
ICSEA 2014

The Ninth International Conference on Software Engineering Advances

ISBN: 978-1-61208-367-4

October 12 - 16, 2014

Nice, France

ICSEA 2014 Editors

Herwig Mannaert, University of Antwerp, Belgium

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology,

Sweden

Michael Gebhart, iteratec GmbH, Germany

 1 / 679

ICSEA 2014

Forward

The Ninth International Conference on Software Engineering Advances (ICSEA 2014), held
between October 12 - 16, 2014 in Nice, France, continued a series of events covering a broad
spectrum of software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and
maintaining various kinds of software. The tracks treated the topics from theory to practice, in
terms of methodologies, design, implementation, testing, use cases, tools, and lessons learnt.
The conference topics covered classical and advanced methodologies, open source, agile
software, as well as software deployment and software economics and education.

The conference had the following tracks:

 Advances in fundamentals for software development

 Agile software techniques

 Improving productivity in research on software engineering

 Software security, privacy, safeness

 Advances in software testing

 Advanced mechanisms for software development

 Specialized software advanced applications

 Software engineering techniques, metrics, and formalisms

 Business technology

 Software deployment and maintenance

 Advanced design tools for developing software

 Software performance

 Web accessibility

Similar to the previous edition, this event continued to be very competitive in its selection
process and very well perceived by the international software engineering community. As such,
it attracted excellent contributions and active participation from all over the world. We were
very pleased to receive a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2014 technical
program committee, as well as the numerous reviewers. The creation of such a broad and high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors that dedicated much of their time and effort to contribute to ICSEA
2014. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

 2 / 679

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the ICSEA 2014 organizing
committee for their help in handling the logistics and for their work that made this professional
meeting a success.

We hope the ICSEA 2014 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in software
engineering research. We also hope that Nice, France provided a pleasant environment during
the conference and everyone saved some time to enjoy the charm of the city.

ICSEA 2014 Chairs

ICSEA Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium

Jon G. Hall, The Open University - Milton Keynes, UK

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Åbo Akademi University, Finland

Davide Tosi, Università dell'Insubria - Como, Italy

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Michael Gebhart, iteratec GmbH, Germany

ICSEA 2014 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam,

Germany

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Gunma University, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

ICSEA 2014 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands

Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2014 Special Area Chairs

Formal Methods

Paul J. Gibson, Telecom & Management SudParis, France

 3 / 679

Testing and Validation

Florian Barth, University of Mannheim, Germany

Web Accessibility

Adriana Martin, National University of Austral Patagonia (UNPA), Argentina

ICSEA 2014 Publicity Chairs

Sébastien Salva, University of Auvergne, Clermont-Ferrand, France

 4 / 679

ICSEA 2014

Committee

ICSEA Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium
Jon G. Hall, The Open University - Milton Keynes, UK
Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Åbo Akademi University, Finland
Davide Tosi, Università dell'Insubria - Como, Italy
Luis Fernandez-Sanz, Universidad de Alcala, Spain
Michael Gebhart, iteratec GmbH, Germany

ICSEA 2014 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam,
Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Osamu Takaki, Gunma University, Japan
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

ICSEA 2014 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2014 Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Testing and Validation
Florian Barth, University of Mannheim, Germany

Web Accessibility
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina

 5 / 679

ICSEA 2014 Publicity Chairs

Sébastien Salva, University of Auvergne, Clermont-Ferrand, France

ICSEA 2014 Technical Program Committee

Shahliza Abd Halim, Universiti of Technologi Malaysia (UTM) - Skudai, Malaysia
Mohammad Abdallah, Al-Zaytoonah University of Jordan, Jordan
Adla Abdelkader, University of Oran, Algeria
Moataz A. Ahmed, King Fahd University of Petroleum & Minerals – Dhahran, Saudi Arabia
Syed Nadeem Ahsan, TU-Graz, Austria
Mehmet Aksit, University of Twente, Netherlands
Ahmed Al-Moayed, Hochschule Furtwangen University, Germany
Basem Y. Alkazemi, Umm Al-Qura University, Saudi Arabia
Abdullah Alqahtani, University of Dammam, Saudi Arabia / Glasgow Caledonian University, UK
Mohammad Alshayeb, King Fahd University of Petroleum and Minerals, Saudi Arabia
Zakarya A. Alzamil, King Saud University, Saudi Arabia
Vincenzo Ambriola, Università di Pisa, Italy
Jose Andre Dorigan, State University of Maringa, Brazil
Buzzi Andreas, Credit Suisse AG – Zürich, Switzerland
Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus
Maria Anjum, Durham University, UK
Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil
Colin Atkinson, University of Mannheim, Germany
Robert Azarbod, Oracle Corporation, USA
Thomas Baar, Hochschule für Technik und Wirtschaft (HTW) Berlin, Germany
Gilbert Babin, HEC Montréal, Canada
Muneera Bano, International Islamic University - Islamabad, Pakistan
Fernando Sérgio Barbosa, Escola Superior de Tecnologia do Instituto Politécnico de Castelo
Branco, Portugal
Jorge Barreiros, CITI/UNL: Center of Informatics and Information Technology - UNL || ISEC/IPC:
ISEC - Polytechnic Institute of Coimbra, Portugal
Florian Barth, University of Mannheim, Germany
Gabriele Bavota, University of Salerno, Italy
Assia Belbachir, IFSTTAR - Versailles, France
Noureddine Belkhatir, University of Grenoble, France
Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza,
Spain
Jorge Bernardino, Polytechnic Institute of Coimbra - ISEC-CISUC, Portugal
Ateet Bhalla, Oriental Institute of Science and Technology, Bhopal, India
Celestina Bianco, Systelab Technologies - Barcelona, Spain
Christian Bird, University of California, USA
Kenneth Boness, Reading University, UK
Marko Boskovic, Forschungsgesellschaft mbH – Wien, Austria

 6 / 679

Mina Boström Nakicenovic, Sungard Front Arena, Stockholm, Sweden
M. Boukala-Ioualalen, University of Science and Technology Houari Boumediene, Algeria
Premek Brada, University of West Bohemia in Pilsen, Czech Republic
Fernando Brito e Abreu, Instituto Universitário de Lisboa (ISCTE-IUL), Portugal
Hongyu Pei Breivold, ABB Corporate Research, Sweden
Manfred Broy, Technische Universität München, Germany
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Lucas Bueno Ruas de Oliveira, University of São Paulo (ICMC/USP), Brazil
Luigi Buglione, ETS Montréal / Engineering.IT S.p.A., Canada
Christian Bunse, University of Applied Sciences Stralsund, Germany
David W. Bustard, University of Ulster - Coleraine, UK
Fabio Calefato, University of Bari, Italy
Matteo Camilli, University of Milan, Italy
Vinicius Cardoso Garcia, Centro de Informática (CIn) - Universidade Federal de Pernambuco
(UFPE), Brazil
José Carlos Metrôlho, Polytechnic Institute of Castelo Branco, Portugal
Bengt Carlsson, Blekinge Institute of Technology – Karlskrona, Sweden
Rocío Castaño Mayo, Universidad de Oviedo, Spain
Everton Cavalcante, Federal University of Rio Grande do Norte, Brazil / IRISA-UMR CNRS-
Université de Bretagne-Sud, France
Alexandros Chatzigeorgiou, University of Macedonia, Greece
Antonin Chazalet, IT&Labs, France
Yoonsik Cheon, The University of Texas at El Paso, USA
Vanea Chiprianov, University of Pau, France
Morakot Choetkiertikul, Mahidol University, Thailand
Antonio Cicchetti, Mälardalen University, Sweden
Marta Cimitile, Unitelma Sapienza University, Italy
Tony Clark, Middlesex University, UK
Stephen Clyde, Utah State University, USA
Methanias Colaço Júnior, Federal University of Sergipe, Brazil
Andrew Connor, Auckland University of Technology, New Zealand
Rebeca Cortázar, University of Deusto - Bilbao, Spain
Oliver Creighton, Siemens AG, Germany
Carlos E. Cuesta, Rey Juan Carlos University - Madrid, Spain
Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland
Zhen Ru Dai, Hamburg University of Applied Science, Germany
Darren Dalcher, Hertfordshire Business School, UK
Peter De Bruyn, University of Antwerp, Belgium
Claudio de la Riva, Universidad de Oviedo - Gijon, Spain
Peter De Bruyn, University of Antwerp, Belgium
Onur Demirors, Middle East Technical University, Turkey
Steven A. Demurjian, The University of Connecticut - Storrs, USA
Vincenzo Deufemia, University of Salerno, Italy
Antinisca Di Marco, University of L'Aquila - Coppito (AQ), Italy

 7 / 679

Themistoklis Diamantopoulos, Aristotle University of Thessaloniki, Greece
Tadashi Dohi, Hiroshima University, Japan
José André Dorigan, State University of Londrina, Brazil
Lydie du Bousquet, J. Fourier-Grenoble I University, LIG labs, France
Roland Ducournau, LIRMM - CNRS & Université Montpellier 2, France
Juan Carlos Dueñas López, Universidad Politécnica de Madrid, Spain
Slawomir Duszynski, Fraunhofer Institute for Experimental Software Engineering, Germany
Christof Ebert, Vector Consulting Services, Germany
Lars Ebrecht, German Aerospace Centre (DLR), Germany
Holger Eichelberger, University of Hildesheim, Germany
Younès El Amrani, Université Mohammed V - Agdal, Morocco
Mohamed El-Attar, King Fahd University of Petroleum and Minerals - Al Dhahran, Kingdom of
Saudi Arabia
Vladimir Estivill-Castro, Griffith University - Nathan, Australia
Kleinner Farias, University of Vale do Rio dos Sinos (Unisinos), Brazil
Fausto Fasano, University of Molise - Pesche, Italy
Feipre Ferraz, CESAR / CIN-UFPE, Brazil
Martin Filipsky, Czech Technical University in Prague, Czech Republic
Derek Flood, Dundalk Institute of Technology (DkIT), Ireland
Rita Francese, University of Salerno, Italy
Terrill L. Frantz, Peking University HSBC Business School, China
Mikael Fridenfalk, Uppsala University, Sweden
Jicheng Fu, University of Central Oklahoma, USA
Felipe Furtado, Recife Center of Advanced Studies and Systems / Federal University of
Pernambuco, Brazil
Cristina Gacek, City University London, UK
Matthias Galster, University of Canterbury, New Zealand
G.R. Gangadharan, IDRBT, India
Stoyan Garbatov, Instituto de Engenharia de Sistemas e Computadores Investigação e
Desenvolvimento - Lisboa, Portugal
José Garcia-Alonso, University of Extremadura, Spain
Kiev Gama, UFPE, Brazil
Antonio Javier García Sánchez, Technical University of Cartagena, Spain
José García-Fanjul, University of Oviedo, Spain
Michael Gebhart, iteratec GmbH, Germany
Sébastien Gérard, CEA LIST, France
Paul Gibson, Telecom SudParis, France
Yossi Gil, Technion - Israel Institute of Technology, Israel
Ignacio González Alonso, Infobótica RG University of Oviedo, Spain
Oleg Gorbik, Accenture - Riga Delivery Centre, Latvia
Mohamed Graiet, ISIMS, MIRACL, Monastir, Tunisia
Gregor Grambow, University of Ulm, Germany
Carmine Gravino, Università degli Studi di Salerno, Italy
Vic Grout, Glyndwr University - Wrexham, UK

 8 / 679

Bidyut Gupta, Southern Illinois University, USA
Ensar Gul, Marmara University - Istanbul, Turkey
Zhensheng Guo, Siemens AG - Erlangen, Germany
Nahla Haddar, University of Sfax, Tunisia
Waqas Haider Khan Bangyal, IUI Islamabad, Pakistan
Imed Hammouda, University of Gothenburg, Sweden
Jameleddine Hassine, King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia
Shinpei Hayashi, Tokyo Institute of Technology, Japan
José R. Hilera, University of Alcala, Spain
Željko Hocenski, University Josip Juraj Strossmayer of Osijek, Croatia
Bernhard Hollunder, Furtwangen University of Applied Sciences, Germany
Siv Hilde Houmb, Secure-NOK AS / Gjøvik University College, Norway
LiGuo Huang, Southern Methodist University Huang, USA
Oliver Hummel, Karlsruhe Institute of Technology (KIT), Germany
Noraini Ibrahim, University of Technology Malaysia (UTM), Malaysia
Milan Ignjatovic, ProSoftwarica, Switzerland
Jun Iio, Mitsubishi Research Institute, Inc. - Tokyo, Japan
Naveed Ikram, Riphah International University – Islamabad, Pakistan
Gustavo Illescas, Universidad Nacional del Centro-Tandil-Bs.As., Argentina
Emilio Insfran, Universitat Politècnica de València, Spain
Shareeful Islam, University of East London, U.K.
Werner Janjic, Fraunhofer IESE, Germany
Slinger Jansen (Roijackers), Utrecht University, The Netherlands
Marko Jäntti, University of Eastern Finland, Finland
Kashif Javed, Abo Akademi University, Finland
Hermann Kaindl, TU-Wien, Austria
Mira Kajko-Mattsson, Stockholm University and Royal Institute of Technology, Sweden
Yasutaka Kamei, Kyushu University, Japan
Ahmed Kamel, Concordia College - Moorhead, USA
Yasutaka Kamei, Kyushu University, Japan
Dariusz W. Kaminski, The Open University, UK
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Lucia Kapova, Karlsruhe Institute of Technology, Germany
Tatjana Kapus, University of Maribor, Slovenia
Krishna M. Kavi, University of North Texas, USA
Carlos Kavka, ESTECO SpA, Italy
Markus Kelanti, University of Oulu, Finland
Thorsten Keuler, Fraunhofer Institute for Experimental Software Engineering - Kaiserslautern,
Germany
Abeer Khalid, International Islamic University Islamabad, Pakistan
Foutse Khomh, École Polytechnique de Montréal, Canada
Holger Kienle, Freier Informatiker, Germany
Reinhard Klemm, Avaya Labs Research, USA
Mourad Kmimech, l’Institut Supérieur d’informatique de Mahdia (ISIMA), Tunisia

 9 / 679

Jens Knodel, Fraunhofer IESE, Germany
William Knottenbelt, Imperial College London, UK
Takashi Kobayashi, Tokyo Institute of Technology, Japan
Radek Kocí, Brno University of Technology, Czech Republic
Christian Kop, Alpen-Adria-Universität Klagenfur, Austria
Georges Edouard Kouamou, National Advanced School of Engineering - Yaoundé, Cameroon
Segla Kpodjedo, Ecole de Technologie Supérieure - Montreal, Canada
Natalia Kryvinska, University of Vienna, Austria
Tan Hee Beng Kuan, Nanyang Technological University, Singapore
Vinay Kulkarni, Tata Consultancy Services, India
Sukhamay Kundu, Louisiana State University - Baton Rouge, USA
Eugenijus Kurilovas, Vilnius University and Vilnius Gediminas Technical University, Lithuania
Rob Kusters, Open University/Eindhoven University of Technology, Netherlands
Alla Lake, LInfo Systems, LLC - Greenbelt, USA
Einar Landre, Statiol ASA, Norway
Kevin Lano, King's College London, UK
Jannik Laval, University Bordeaux 1, France
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Luka Lednicki, University of Zagreb, Croatia
Plinio Sá Leitão-Junior, Federal University of Goias, Brazil
Maurizio Leotta, University of Genova, Italy
Jörg Liebig, University of Passau, Germany
Maria Teresa Llano Rodriguez, Goldsmiths/University of London, UK
Klaus Lochmann, Technische Universität München, Germany
Sérgio F. Lopes, University of Minho, Portugal
Juan Pablo López-Grao, University of Zaragoza, Spain
Ricardo J. Machado, University of Minho, Portugal
Leszek A. Maciaszek, Wroclaw University of Economics, Poland / Macquarie University,
Australia
Sajjad Mahmood, King Fahd University of Petroleum and Minerals, Saudi Arabia
Charif Mahmoudi, LACL - Paris 12 University, France
Nicos Malevris, Athens University of Economics and Business, Greece
Herwig Mannaert, University of Antwerp, Belgium
Eda Marchetti, ISTI-CNR - Pisa Italy
Alexandre Marcos Lins de Vasconcelos, Federal University of Pernambuco, Brazil
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Luiz Eduardo Galvão Martins, Federal University of São Paulo, Brazil
Miriam Martínez Muñoz, Universidad de Alcalá de Henares, Spain
Jose Antonio Mateo, Aalborg University, Denmark
Fuensanta Medina-Dominguez, Universidad Carlos III Madrid, Spain
Karl Meinke, KTH Royal Institute of Technology, Sweden
Igor Melatti, Sapienza Università di Roma, Italy
Andreas Menychtas, National Technical University of Athens, Greece
Jose Merseguer, Universidad de Zaragoza, Spain

 10 / 679

Apinporn Methawachananont, National Electronics and Computer Technology Center (NECTEC),
Thailand
Markus Meyer, University of Applied Sciences Ingolstadt, Germany
João Miguel Fernandes, Universidade do Minho - Braga, Portugal
Amir H. Moin, fortiss, An-Institut Technische Universität München, Germany
Hassan Mountassir, University of Besançon, France
Henry Muccini, University of L'Aquila, Italy
Aitor Murguzur, IK4-Ikerlan Research Center, Spain
Elena Navarro, University of Castilla-La Mancha, Spain
Mahmood Niazi, King Fahd University of Petroleum and Minerals, Saudi Arabia
Oksana Nikiforova, Riga Technical University, Latvia
Natalja Nikitina, KTH Royal Institute of Technology - Stockholm, Sweden
Mara Nikolaidou, Harokopio University of Athens, Greece
Marcellin Julius Nkenlifack, Univeristé de Dschang - Bandjoun, Cameroun
Tetsuo Noda, Shimane University, Japan
Marc Novakouski, Software Engineering Institute/Carnegie Mellon University, USA
Bo Nørregaard Jørgensen, University of Southern Denmark, Denmark
Roy Oberhauser, Aalen University, Germany
Pablo Oliveira Antonino de Assis, Fraunhofer Institute for Experimental Software Engineering -
IESE, Germany
Flavio Oquendo, IRISA - University of South Brittany, France
Baris Ozkan, Atilim University - Ankara, Turkey
Claus Pahl, Dublin City University, Ireland
Marcos Palacios, University of Oviedo, Spain
Kai Pan, Microsoft Corporation, U.S.A.
Päivi Parviainen, VTT, Software Technologies Center, Finland
Aljosa Pasic, ATOS Research, Spain
Fabrizio Pastore, University of Milano - Bicocca, Italy
Asier Perallos, University of Deusto, Spain
Óscar Pereira, University of Aveiro, Portugal
Beatriz Pérez Valle, University of La Rioja, Spain
David Pheanis, Arizona State University, USA
Pasqualina Potena, Università degli Studi di Bergamo, Italy
Christian Prehofer, Kompetenzfeldleiter Adaptive Kommunikationssysteme / Fraunhofer-
Einrichtung für Systeme der Kommunikationstechnik ESK – München, Germnay
Abdallah Qusef, University of Salerno, Italy
Salman Rafiq, Fraunhofer Institute for Embedded Systems and Communication Technologies,
Germany
Claudia Raibulet, Università degli Studi di Milano-Bicocca, Italy
Muthu Ramachandran, Leeds Metropolitan University, UK
Amar Ramdane-Cherif, University of Versailles, France
Gianna Reggio, DIBRIS - University of Genova, Italy
Zhilei Ren, Dalian University of Technology, China
Hassan Reza, University of North Dakota - School of Aerospace, USA

 11 / 679

Samir Ribic, University of Sarajevo, Bosnia and Herzegovina
Elvinia Riccobene, University of Milan, Italy
Daniel Riesco, National University of San Luis, Argentina
Michele Risi, University of Salerno, Italy
Gabriela Robiolo, Universidad Austral, Argentina
Oliveto Rocco, University of Molise, Italy
Rodrigo G. C. Rocha, Federal Rural University of Pernambuco, Brazil
Daniel Rodríguez, University of Alcalá, Madrid, Spain
María Luisa Rodríguez Almendros, Universidad de Granada, Spain
Siegfried Rouvrais, TELECOM Bretagne, France
Mercedes Ruiz Carreira, Universidad de Cádiz, Spain
Mehrdad Saadatmand, Mälardalen University / Alten AB, Sweden
Krzysztof Sacha, Warsaw University of Technology, Poland
Francesca Saglietti, University of Erlangen-Nuremberg, Germany
Sébastien Salva, LIMOS-CNRS / Auvergne University / IUT d'Aubière, France
Maria-Isabel Sanchez-Segura, Carlos III University of Madrid, Spain
Luca Santillo, Agile Metrics, Italy
Gaetana Sapienza, ABB Corporate Research, Sweden
Patrizia Scandurra, University of Bergamo - Dalmine, Italy
Giuseppe Scanniello, Università degli Studi della Basilicata - Potenza, Italy
Klaus Schmid, University of Hildesheim, Germany
Rainer Schmidt, HTW-Aalen, Germany
Christelle Scharff, Pace University, USA
Bran Selic, Malina Software, Canada
Fernando Selleri Silva, Mato Grosso State University (UNEMAT), Brazil
István Siket, University of Szeged, Hungary
Thomas Stocker, University of Freiburg, Germany
Sidra Sultana, National University of Sciences and Technology, Pakistan
Lijian Sun, Chinese Academy of Surveying & Mapping, China
Mahbubur R. Syed, Minnesota State University – Mankato, USA
Davide Taibi, University of Kaiserslautern, Germany
Osamu Takaki, Gunma University, Japan
Giordano Tamburrelli, Università della Svizzera Italiana (USI), Swizterland
Wasif Tanveer, University of Engineering and Technology - Lahore, Pakistan
Nebojša Taušan, University of Oulu, Finland
Pierre Tiako, Langston University, USA
Maarit Tihinen, VTT Technical Research Centre of Finland - Oulu, Finland
Giovanni Toffetti, IBM Research - Haifa, Israel
Maria Tortorella, University of Sannnio - Benevento Italy
Davide Tosi, Università degli studi dell'Insubria - Varese, Italy
Peter Trapp, Ingolstadt, Germany
Elena Troubitsyna, Åbo Akademi University, Finland
Dragos Truscan, Åbo Akademi University, Finland
Mariusz Trzaska, Polish Japanese Institute of Information Technology - Warsaw, Poland

 12 / 679

George A. Tsihrintzis, University of Piraeus, Greece
Masateru Tsunoda, Kinki University, Japan
Henry Tufo, University of Colorado at Boulder, USA
Javier Tuya, Universidad de Oviedo - Gijón, Spain
Andreas Ulrich, Siemens AG, Germany
Christelle Urtado, LGI2P / Ecole des Mines d'Alès - Nîmes, France
Dieter Van Nuffel, University of Antwerp, Belgium
Laszlo Vidacs, Hungarian Academy of Sciences, Hungary
Auri Vincenzi, Instituto de Informática, Brazil
Tanja Vos, Universidad Politécnica de Valencia, Spain
Stefan Wagner, University of Stuttgart, Germany
Hironori Washizaki, Waseda University, Japan
Marc-Florian Wendland, Fraunhofer FOKUS, Germany
Stefan Wendler, Ilmenau University of Technology, Germany
Agnes Werner-Stark, University of Pannonia, Hungary
Ed Willink, Willink Transformations Ltd., UK
Andreas Winter, Carl von Ossietzky University, Germany
Victor Winter, University of Nebraska-Omaha, USA
Martin Wojtczyk, Technische Universität München, Germany & Cubotix, USA
Haibo Yu, Shanghai Jiao Tong University, China
Elisa Yumi Nakagawa, University of São Paulo (USP), Brazil
Saad Zafar, Riphah International University - Islamabad, Pakistan
Amir Zeid, American University of Kuwait, Kuwait
Michal Zemlicka, Charles University – Prague, Czech Republic
Gefei Zhang, Celonis GmbH, Germany
Qiang Zhu, The University of Michigan - Dearborn, USA

 13 / 679

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 14 / 679

Table of Contents

Intertwining Relationship Between Requirements, Architecture, and Domain Knowledge
Azadeh Alebrahim and Maritta Heisel

1

Unified Conceptual Model for Joinpoints in Distributed Transactions
Anas AlSobeh and Stephen Clyde

8

A Tool Evaluation Framework based on fitness to Process and Practice. A usability driven approach
Diego Fontdevila

15

Enhanced Design Pattern Definition Language
Salman Khwaja and Mohammad Alshayeb

22

Model Transformations for the Automatic Suggestion of Architectural Decisions in the Development of Multi-
Layer Applications
Jose Garcia-Alonso, Javier Berrocal Olmeda, and Juan Manuel Murillo

28

An MDE Approach for Reasoning About UML State Machines Based on Constraint Logic Programming
Beatriz Perez

34

Several Issues on the Layout of the UML Sequence and Class Diagram
Oksana Nikiforova, Dace Ahilcenoka, Dainis Ungurs, Konstantins Gusarovs, and Ludmila Kozacenko

40

Communication Aspects with CommJ: Initial Experiment Show Promising Improvements in Reusability and
Maintainability
Ali Raza, Jorge Edison Lascano, and Stephen Clyde

48

Customized Choreography and Requirement Template Models as a Means for Addressing Software Architects’
Challenges
Nebojsa Tausan, Sanja Aaramaa, Jari Lehto, Pasi Kuvaja, Jouni Markkula, and Markku Oivo

55

MDD for Smartphone Application with Smartphone Feature Specific Model and GUI Builder
Koji Matsui and Saeko Matsuura

64

Quality-Oriented Requirements Engineering for Agile Development of RESTful Participation Service
Michael Gebhart, Pascal Giessler, Pascal Burkhardt, and Sebastian Abeck

69

Architecture Coverage: Validating Optimum Set of Viewpoints
Sunia Naeem and Salma Imtiaz

75

Challenges of Adopting Software Reuse: Initial Results
Sajjad Mahmood and Ali Al Zayer

85

 1 / 8 15 / 679

Comparison of Stakeholder Identification Methods - The Effect of Practitioners Experience
Markus Kelanti and Samuli Saukkonen

90

What are the Features of this Software?
Barbara Paech, Paul Hubner, and Thorsten Merten

97

Towards Duplication-Free Feature Models when Evolving Software Product Lines
Amal Khtira, Anissa Benlarabi, and Bouchra El Asri

107

Quantum States in Bivalent Logic
Mikael Fridenfalk

114

An Approach for Modeling and Transforming Contextually-Aware Software Engineering Workflows
Roy Oberhauser

117

A Software Category Model for Graphical User Interface Architectures
Stefan Wendler and Detlef Streitferdt

123

The Impact of User Interface Patterns on Software Architecture Quality
Stefan Wendler and Detlef Streitferdt

134

A Guideline for Supporting Agile Process Assessments
Teresa M. M. Maciel and Silvio R. L. Meira

144

Usage of Kanban in Software Companies An empirical study on motivation, benefits and challenges
Muhammad Ovais Ahmad, Jouni Markkula, Markku Oivo, and Pasi Kuvaja

150

Scaling Agile Estimation Methods with a Parametric Cost Model
Carl Friedrich Kress, Oliver Hummel, and Mahmudul Huq

156

AP3M-SW – An Agile Project Management Maturity Model for Software Organizations
Felipe Soares and Silvio Meira

162

Cybernetic Aspects in the Agile Process Model Scrum
Michael Bogner, Maria Hronek, Andreas Hofer, and Franz Wiesinger

167

Can Functional Size Measures Improve Effort Estimation in SCRUM?
Valentina Lenarduzzi and Davide Taibi

173

On Some Challenges in Assessing the Implementation of Agile Methods in a Multisite Environment
Harri Kaikkonen, Pilar Rodriguez, and Pasi Kuvaja

179

 2 / 8 16 / 679

Towards Agile Composition of Service Oriented Product Lines: A Mashup-based Approach
Ikram Dehmouch, Bouchra El Asri, and Zineb Mcharfi

185

An Approach and a Tool for Systematic Review Research
Manuel Goncalves da Silva Neto, Walquiria Castelo Branco Lins, and Eric Bruno Perazzo Mariz

191

Productivity-Based Software Estimation Model: An Economics Perspective and an Empirical Study
Alain Abran, Jean-Marc Desharnais, Mohammad Zarour, and Onur Demirors

196

Measuring a Software Production Line with IFPUG-based Function Points
Volkan Halil Bagci, Umut Orcun Turgut, Ali Ciltik, Semih Cetin, and Recep Ozcelik

202

Empirical Research in Software Engineering: A Literature Review
Petr Picha and Premysl Brada

209

An Automated Signature Generation Method for Zero-day Polymorphic Worms Based on C4.5 Algorithm
Mohssen Mohammed, Eisa Aleisa, and Neco Ventura

215

On the Automation of Vulnerabilities Fixing for Web Application
Kabir Umar, Abu Bakar Sultan, Hazura Zulzalil, Novia Admodisastro, and Mohd Taufik Abdullah

221

An Approach for Cross-Site Scripting Detection and Removal Based on Genetic Algorithms
Isatou Hydara, Abu Bakar Md Sultan, Hazura Zulzalil, and Novia Admodisastro

227

Safety Patterns in Model-Driven Development
Timo Vepsalainen and Seppo Kuikka

233

Test Data Generation Based on GUI: A Systematic Mapping
Rodrigo Funabashi Jorge, Marcio Eduardo Delamaro, Celso Goncalves Camilo-Junior, and Auri Marcelo Rizzo
Vincenzi

240

Mapping of State Machines to Code: Potentials and Challenges
Mehrdad Saadatmand and Antonio Cicchetti

247

Functional Testing Criteria Applied in a Database Project
Dianne Dias Silva, Edmundo Sergio Spoto, and Leandro Luis Galdino de Oliveira

252

Automatic Unit Test Generation and Execution for JavaScript Program through Symbolic Execution
Hideo Tanida, Guodong Li, Indradeep Ghosh, and Tadahiro Uehara

259

Enabling Functional Integration Testing of Software-Intensive Technical Systems
Thomas Bauer and Frank Elberzhager

266

 3 / 8 17 / 679

Structural Test Case Generation Based on System Models
Leandro Teodoro Costa, Avelino Francisco Zorzo, Elder Macedo Rodrigues, Maicon Bernardino, and Flavio
Moreira Oliveira

276

Towards a Maturity Model in Software Testing Automation
Ana Paula Furtado, Silvio Meira, and Marcos Gomes

282

Low-Variance Software Reliability Estimation Using Statistical Testing
Fouad ben Nasr Omri, Safa Omri, and Ralf Reussner

286

PRReSE – Process of Non-Functional Requirements Reuse for Embedded Systems Based on a NFR-Framework
Cristiano Marcal Toniolo and Luiz Eduardo Galvao Martins

293

A Model-Driven Approach to the Development of Heterogeneous Software Product Lines
Thomas Buchmann and Felix Schwagerl

300

System Composition Using Petri Nets and DEVS Formalisms
Radek Koci and Vladimir Janousek

309

A Prototyping Discipline in OpenUP to Satisfy Wireless Sensor Networks Requirements
Gian Ricardo Berkenbrock, Carla Berkenbrock, and Celso Hirata

316

Easily Evolving Software Using Normalized Systems Theory - A Case Study
Gilles Oorts, Kamiel Ahmadpour, Herwig Mannaert, Jan Verelst, and Arco Oost

322

Towards Task Allocation in Global Software Development Projects
Sajjad Mahmood, Sajid Anwer, Waleed Umar, Mahmood Niazi, and Mohammad Alshayeb

328

Combining MARTE-UML, SysML and CVL to Build Unmanned Aerial Vehicles
Paulo Queiroz and Rosana Braga

334

Collaborative Team Management in Agile and Distributed Development Environments
Nohsam Park and Jonghyun Jang

341

Security Through Software Rejuvenation
Chen-Yu Lee, Krishna M. Kavi, Mahadevan Gomathisankaran, and Patrick Kamongi

347

Design of Mobile Services for Embedded Platforms
Fabrice Mourlin, Sanae Mostadi, and Guy Lahlou Djiken

354

The Quantification of Risk Factors for Predicting Diabetic Cystoid Macular Edema based on a Hierarchical
Approach
Eun Byeol Jo, Ju Hwan Lee, Jong Seob Jeong, Byeong Cheol Choi, and Sung Min Kim

362

 4 / 8 18 / 679

Identifying Requirements for Centralized Service for Movement and Biodiversity Data Analysis
Ivana Nizetic Kosovic, Boris Milasinovic, and Kresimir Fertalj

368

Method for Analytic Evaluation of the Weights of a Robust Large-Scale Multilayer Neural Network with Many
Hidden Nodes
Mikael Fridenfalk

374

Reorganizing an Offshore Software Project With the Goal of Favoring Knowledge Transfer
Carlo Consoli, Paolo Rocchi, Paolo Spagnoletti, and Pietro Nico

379

Challenges of the Existing Tools Used in Global Software Development Projects
Mahmood Niazi, Sajjad Mahmood, Mohammad Alshayeb, and Ayman Hroub

385

ARTIST Technical Feasibility Tool: Supporting the Early Technical Feasibility Assessment of Application
Cloudifications
Juncal Alonso, Leire Orue-Echevarria, Zurik Corera, Jesus Gorronogoitia, and Burak Karaboga

390

Model Reverse-engineering of Mobile Applications with Exploration Strategies
Sebastien Salva and Stassia Resondry Zafimiharisoa

396

On the Ability of Functional Size Measurement Methods to Size Complex Software Applications
Luigi Lavazza, Sandro Morasca, and Davide Tosi

404

An Exploration of the Application of Usability Evaluation Methods by Disabled Users
Khalid Al-Nafjan, Mona Al-Zuhair, and Layla Al-Salhie

410

Towards Automating the Coherence Verification of Multi-Level Architecture Descriptions
Abderrahman Mokni, Marianne Huchard, Christelle Urtado, Sylvain Vauttier, and Huaxi Yulin Zhang

416

A Set-Oriented Formalism as a Foundation for the Modeling and Verification of Connected Data and Process
Specifications
Julia Martini, Hannes Restel, Raik Kuhlisch, and Jorg Caumanns

422

Towards Automated Design Smell Detection
Stefan Burger and Oliver Hummel

428

UCDMD: Use Case Driven Methodology Development
Hanieh Zakerifard and Raman Ramsin

434

Insights from the Defect Detection Process of IT Experts: A Case Study on Data Flow Diagrams
Gul Tokdemir, Nergiz Ercil Cagiltay, and Ozkan Kilic

441

 5 / 8 19 / 679

Using Expert Systems for Coaching and Mentoring ICT Project Managers
Robert T. Hans and Ernest Mnkandla

447

Towards Autonomic Context-Aware Computing for SaaS Through Variability Management Mechanisms
Asmae Benali, Bouchra El Asri, and Houda Kriouile

453

ASDeDaWaS: An Assistant System for the Design of Data Warehouse Schema
Nouha Arfaoui and Jalel Akaichi

458

Towards Implementation and Design of Multi-tenant SaaS Based on Variabiliy Management Mechanisms
Houda Kriouile, Bouchra El Asri, M'barek El Haloui, and Asmae Benali

468

Applications Architecture for a Medium Sized Manufacturing Firm
Alicia Valdez, Sergio Castaneda, Laura Vazquez, and Azucena Garcia

472

Enhanced Search: An Approach to the Maintenance of Services Oriented Architectures
Norman Wilde, Douglas Leal, George Goehring, and Christopher Terry

479

Evaluation of the Applicability of CM3: Emergency Problem Management within the Industry
Mira Kajko-Mattsson, Joakim Snygg, and Emil Hammargren

485

An Analysis of Domain and Application Engineering Co-evolution for Software Product Lines based on
Cladistics: A Case Study
Anissa Benlarabi, Amal Khtira, and Bouchra El Asri

495

EM3: Software Retirement Process Model
Mira Kajko-Mattsson, Anna Hauzenberger, and Ralf Fredriksson

502

Causality Control in Dynamic Platforms
German Vega and Jacky Estublier

512

Maintaining Vaadin Legacy Applications using DSLs based on Xtext
Marcel Toussaint and Thomas Baar

518

Predicting Change Proneness using Object-Oriented Metrics and Machine Learning Algorithms
Abdullah Al-Senayen, Abdurhman Al-Sahood, and Mohammed Misbhauddin

522

Towards an Efficient Traceability in Agile Software Product Lines
Zineb Mcharfi, Bouchra El Asri, and Ikram Dehmouch

529

Implementing IT Service Management as an Organizational Change: Identifying Factors Affecting the Change
Resistance
Marko Jantti and Sanna Heikkinen

534

 6 / 8 20 / 679

Spider-PE: A Set of Support Tools to Software Process Enactment
Carlos Portela, Alexandre Vasconcelos, Sandro Oliveira, Antonio Andre Silva, and Elder Silva

539

On the Use of Ontology for Dynamic Reconfiguring Software Product Line Products
Thyago Tenorio, Diego Dermeval, and Ig Ibert Bittencourt

545

A formal model of use-cases and its application in generating a hierarchical class-structure
Sukhamay Kundu and Arnab Ganguly

551

Fundamentals, Prospects and Challenges for Totally Functional Programming Style
Paul Bailes, Leighton Brough, and Colin Kemp

559

Using Automatic Code Generation Methods for Reusable Software Component Development: Experience Report
Elif Kamer Karatas and Baris Iyidir

566

Automatic Classification of Domain Constraints for Rich Client Development
Manuel Quintela-Pumares, Daniel Fernandez-Lanvin, Alberto-Manuel Fernandez-Alvarez, and Raul Izquierdo

570

A Classification Schema for Development Technologies
Davide Taibi, Christiane Plociennik, and Laurent Dieudonne

577

Working With Reverse Engineering Output for Benchmarking and Further Use
David Cutting and Joost Noppen

584

Software Relialibility Markovian Model Based on Phase-Type Distribution
Mindaugas Brazenas and Eimutis Valakevicius

591

Vergil: Guiding Developers Through Performance and Scalability Inferno
Christoph Heger, Alexander Wert, and Roozbeh Farahbod

598

A Domain-Specific Language for Modeling Performance Testing: Requirements Analysis and Design Decisions
Maicon Bernardino, Avelino F. Zorzo, Elder Rodrigues, Flavio M. de Oliveira, and Rodrigo Saad

609

Inverted Run-Time Behavior of Classic Data Structures on Modern Microprocessors: Technical Background and
Performance Guidelines
Michael Bogner, Andreas Hofer, Maria Hronek, and Franz Wiesinger

615

Benchmarking the Performance of Hypervisors on Different Workloads
Devi Prasad Bhukya, Carlos Goncalves, Diogo Gomes, and Rui Aguiar

622

Performance Engineering Using Performance Antipatterns in Distributed Systems
Chia-En Lin and Krishna Kavi

627

 7 / 8 21 / 679

Performance Optimisation of Object-Relational Database Applications in Client-Server Environments
Zahra Davar, Janusz R.Getta, and Handoko Handoko

637

Web Accessibility on Thai Higher Education Websites
Rattanavalee Maisak and Justin Brown

645

A Usability Inspection Approach to Assist in the Software Development Process
Priscila Silva Fernandes, Bruno Araujo Bonifacio, and Tayana Uchoa Conte

651

Powered by TCPDF (www.tcpdf.org)

 8 / 8 22 / 679

Intertwining Relationship Between Requirements,

Architecture, and Domain Knowledge

Azadeh Alebrahim, Maritta Heisel

paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Germany

Email: firstname.lastname@paluno.uni-due.de

Abstract—In requirements engineering, properties of the environ-
ment and assumptions about it, called domain knowledge, need to
be captured in addition to exploring the requirements. Despite the
recognition of the significance of capturing the required domain
knowledge, domain knowledge might be missing, left implicit,
or be captured inadequately during the software development
process, causing incorrect specifications and software failure.
Domain knowledge affects the elicitation and evolution of require-
ments, the evolution of software architectures, and related design
decisions. Conversely, requirements and design decisions affect
the elicitation and modification of domain knowledge. In this
paper, we propose the iterative capturing and co-developing of
domain knowledge with requirements and software architectures.
We explicitly discuss the effects of requirements and design
decisions on domain knowledge and illustrate this relationship
with examples drawn from our research, where we had to go
back and forth between requirements, domain knowledge, and
design decisions.

Keywords–quality requirements; requirements engineering; do-
main knowledge; design decisions; software architecture.

I. INTRODUCTION

It is acknowledged that there is an iterative interplay
between requirements and software architecture [1]. Require-
ments cannot be considered in isolation and should be co-
developed with architectural descriptions iteratively, known
as Twin Peaks as proposed by Nuseibeh [2], to support the
creation of sound architectures and correct requirements [3].

The system-to-be comprises the software to be built and
its surrounding environment such as people, devices, and
existing software [4]. The environment consists of the part
of the real world into which the software will be integrated.
According to Jackson [5], requirements expressing wishes are
properties of the environment that are to be guaranteed by the
software (machine in Jackson’s terminology), whereas there is
another class of environment properties that are guaranteed
by the environment. Such environment properties and also
assumptions about the environment are known as domain
knowledge [4][6]. Domain properties typically correspond to
physical laws. They are invariable, no matter how we build the
software. Assumptions have to be satisfied by the environment.
They are not guaranteed to be true in every case. For example,
when we build a traffic light system to prevent accidents, the
assumption is that drivers stop when they see a red traffic light.
Otherwise, a traffic light system cannot prevent accidents.

Specifications describe the machine and not the environ-
ment. Domain knowledge supports the refinement of require-

ments into implementable specifications [7]. Hence, in require-
ments engineering domain knowledge needs to be captured in
addition to exploring the requirements [4][6].

Despite the recognition of the significance of capturing the
required domain knowledge, it might be missing, left implicit,
or be captured inadequately during the software development
process [4]. Several requirements engineering methods exist,
e.g., for security. Fabian et al. [8] concluded in their survey
about these methods that there is no state of the art considering
domain knowledge yet. Hooks and Farry report on a project
in which 49% of requirements errors were due to incorrect
domain knowledge [9]. In Colombia in December 1995, cap-
turing inadequate assumptions about the environment of the
flight guidance software led to the crash of a Boeing 757 [10].

As software systems become larger and more complex,
explicitly capturing domain knowledge becomes crucial. The
consideration of domain knowledge is particularly essential
when talking about quality requirements since quality re-
quirements such as performance and security rely on spe-
cific constraints and assumptions for their satisfaction. For
instance, performance is concerned with available resources
(such as CPU and memory) to process the workload [11].
Such resources employed by the software-to-be have specific
characteristics such as speed and size that might constrain the
satisfaction of quality requirements. Hence, one must explicitly
define under which constraints and assumptions a quality
requirement will be fulfilled.

We are convinced that during the software development
process, domain knowledge is not only used in requirements
engineering for obtaining adequate specifications, it also has
to be captured during the design phase when selecting patterns
and mechanisms or when making design decisions. There
are new assumptions and requirements associated with each
pattern and quality-specific solution, which have to be consid-
ered when deciding on this solution. For example, selecting
asymmetric encryption as a solution for a confidentiality re-
quirement demands other assumptions regarding the keys and
their distribution than symmetric encryption.

We distinguish between the domain knowledge related to
the problem world, required for obtaining correct specifica-
tions, and the domain knowledge which is associated with
properties and assumptions about the solution world, required
for applying a pattern or mechanism properly. We call the
former Problem-Specific Domain Knowledge (PSDK), which
is part of the problem peak in the twin peaks model [2]
and the latter Solution-Specific Domain Knowledge (SSDK),

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 23 / 679

as a part of the solution peak. PSDK and SSDK have to be
captured for functional requirements and their corresponding
functional solutions as well as for quality requirements and
their corresponding quality-specific solutions. In this paper, we
focus on PSDK and SSDK related to quality requirements and
the corresponding solutions.

As an example for the PSDK, we consider the performance.
Performance requirements typically describe the time needed
for conducting a task (response time). In order to identify
and analyze potential performance problems, the workload
and the available resources as performance-relevant domain
knowledge have to be captured explicitly (see Section IV-A).
As an example for the SSDK, we consider the symmetric en-
cryption as a security-specific solution candidate for achieving
a confidentiality requirement. This security solution demands
new assumptions regarding the secret key that have to be
elicited explicitly (see Section IV-B).

Capturing SSDK facilitates future design decisions and
architecture evolution since the architect knows the conse-
quences of each design decision through necessary assump-
tions and requirements and can therefore play “what if”
scenarios. Consequently, we consider the SSDK as a set of
assumptions and facts that builds the foundation for making
design decisions. The SSDK represents one input to the design
process.

Domain knowledge affects the elicitation and evolution of
requirements as well as the evolution of software architectures
and related design decisions. Conversely, modification of initial
requirements or taking design decisions might lead to capturing
new domain knowledge or modifying the existing one. There-
fore, apart from the concurrent and iterative development of
requirements and architecture, there is an iterative interplay
within the problem peak between the requirements and the
PSDK and within the solution peak between the design deci-
sions and SSDK. In this paper, we describe these intertwining
relationships and propose to co-develop the domain knowl-
edge together with requirements and software architecture. We
illustrate these relationships with examples drawn from our
research, where we had to go back and forth within each peak
and between two peaks.

The contribution of this paper is 1) emphasizing the im-
portance of domain knowledge, particularly quality-relevant
domain knowledge and the need for capturing and reusing it in
the software development process in a systematic manner, 2)
explicitly considering PSDK as part of the problem peak and
SSDK as part of the solution peak, and 3) elaborating the inter-
twining relationship of domain knowledge with requirements
and design decisions.

The rest of this paper is structured as follows: In the
following, we discuss the related work in Section II. The
smart grid scenario as a running example is introduced in
Section III. In Section IV, we first present our idea of co-
developing requirements, architecture, and domain knowledge.
Then, we give examples on how these artifacts affect each
other. We conclude the paper in Section V.

II. RELATED WORK

Beside the common and traditional approaches utilizing
requirements for creating the software architecture, there have
been increasing efforts regarding the intertwining relationship

between requirements and architecture. De Boer and van
Vliet [12] review different opinions regarding this relationship
between requirements as problem description and software
architecture as solution description. They propose a closer
collaboration between the two communities to profit from the
research results that each community provides.

Ferrari and Madhavji [13] conduct an empirical study to
analyze the impact of requirements knowledge and experience
on the software architecture. Their findings show that architects
having knowledge and experience in requirements engineering
perform better in terms of architecture quality.

A number of approaches exist that explore the impact of
software architecture and design decisions on requirements
engineering [14][15][16][17]. Durdik et al. [14] discuss how
the results of design decisions can be used to drive require-
ment elicitation and prioritization. Koziolek [15] proposes
to use the feedback from architecture evaluation and design
space exploration for prioritizing quality requirements. An
exploratory study has been conducted to analyze to what
extent an existing software architecture affects requirements
engineering [16]. The authors found four types of architectural
effects on requirements decisions, namely enabler, constraint,
influence, and neutral. Woods and Rozanski [17] report on
their experience regarding the relationship between the system
requirements and software architecture. They propose to use
the architecture design to constrain the requirements to a set
which is achievable, to frame the requirements, and to inspire
new requirements.

Van Lamsweerde [4] and Jackson [6] underline the im-
portance of eliciting domain knowledge in addition to the
elicitation of requirements to obtain correct specifications. This
corresponds to capturing the PSDK in this paper. Babar et
al. [18] emphasize the significance of capturing architecture
knowledge for software development. This corresponds to
eliciting the SSDK eplicitly.

However, none of these approaches investigate the in-
tertwining relationship between these artifcats. Moreover, to
the best of our knowledge, there is no approach exploring
the types of effects of requirements, domain knowledge, and
design decisions on each other such as capturing new domain
knowledge and requirement or modifiying the existing ones.

III. SMART GRID EXAMPLE

We illustrate our proposed idea through the example of a
smart grid system, based on the protection profile that was
issued by the Bundesamt für Sicherheit in der Information-
stechnik [19]. To use energy in an optimal way, smart grids
make it possible to couple the generation, distribution, storage,
and consumption of energy. Smart grids use information and
communication technology, which allows for financial, infor-
mational, and electrical transactions.

Figure 1 shows the simplified context of a smart grid
system based on the protection profile [19]. Gateway, the
Target Of Evaluation (TOE) is used for collecting, storing,
and providing meter data from one or more smart meters
which are responsible for one or more commodities, such
as electricity, gas, water, or heat. The Local Metrological
Network (LMN) represents the in-house data communication
netweork which interconnects the smart meters to the gateway.
The term Meter refers to a device which is comparable to

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 24 / 679

Figure 1. The context of a smart grid system based on [19].

a classical meter with additional functionality. Controllable
Local Systems (CLS) are devices of the consumer, such as air
condition, solar planet, and intelligent household appliances
containing IT-components. They do not belong to the smart
metering system. They are in the Home Area Network (HAN)
of the consumer. HAN is the in-house data communication
netweork interconnecting domestic equipments.

Table I shows an excerpt of terms specific to the smart grid
domain taken from the protection profile that are relevant to
understand the requirements.

We focus in this paper on the functional requirement
“The smart meter gateway shall submit processed meter data
to authorized external entities (RQ4)”, the security require-
ments “Integrity (RQ10)/ Confidentiality (RQ11)/ Authenticity
(RQ12) of data transferred in the WAN shall be protected”,
and the performance requirement “The time to retrieve meter
data from the smart meter and publish it through WAN shall be
less than 5 seconds (RQ24)”. We derived these requirements
from the protection profile [19] and the report “Requirements
of AMI” [20].

IV. INTERPLAY OF REQUIREMENTS, ARCHITECTURE,
AND DOMAIN KNOWLEDGE

In this section, we describe how requirements, architecture,
and domain knowledge affect each other. Figure 2 shows the
twin peaks model. It addresses the problem in some linear
software development approaches in which on the one hand
requirements are elicited, analyzed, and specified in isolation
without considering the impact of architecture artifacts. On the
other hand design decisions are made without managing the
conflicts and making necessary changes in the requirements.
The twin peaks model emphasizes the intertwining relationship

TABLE I. AN EXCERPT OF RELEVANT TERMS FOR THE SMART
GRID

Gateway represents the central communication unit in a smart metering
system. It is responsible for collecting, processing, storing, and
communicating meter data.

Meter data refers to meter readings measured by the meter regarding con-
sumption or production of a certain commodity.

Smart meter represents the device that measures the consumption or produc-
tion of a certain commodity and sends it to the gateway.

Authorized
external
entity

could be a human or IT unit that communicates with the
gateway from outside the gateway boundaries through a Wide
Area Network (WAN).

WAN WAN provides the communication network that interconnects the
gateway with the outside world.

Problem Peak Solution Peak

Quality-specific
Solutions

Design Decisions

PSDK

General

Detailed

Le
ve

l o
f d

et
ai

l

Independent Dependent

Implementation dependence

Requirements

SSDK

Figure 2. Twin peak model including interrelationships within each peak.

between requirements and architecture. The spiral between the
problem peak and the solution peak in Figure 2 illustrates
this relationship between the problem world and the solution
world [2].

In this paper, we emphasize the need to capture and
specify requirements and PSDK as it affects the elicitation
and evolution of requirements. Equally, evolving requirements
might have an affect on previously captured PSDK. The spiral
in the first peak, the problem peak in Figure 2 represents
the synergistic relationship between the requirements and the
PSDK. Similarly, architecture artifacts and SSDK exhibit such
intertwining relationship as design decisions and trade-offs
might require the elicitation of new SSDK or modification of
the existing one. Figure 2 shows the relationship between the
design decisions and the SSDK by means of the spiral in the
solution peak.

In the following, we describe the impact of requirements
and PSDK on each other in the problem peak. Then, the impact
of design decisions and SSDK on each other is described. We
give examples of such effects using the smart grid example.

A. Interplay of Requirements and PSDK
For developing software that achieves its desired quality

requirements, additional information (PSDK) for each quality
requirement must be explicitly elicited. As an example, we
consider the performance. As mentioned in Section I, the
workload and the available resources as performance-relevant
domain knowledge have to be elicited and incorporated into
existing requirement models explicitly. The workload is de-
scribed by triggers of the system, representing requests from
outside or inside the system. Workload exhibits the character-
istics of the system use. It includes the number of concurrent
users and their arrival pattern. The arrival pattern can be
periodic (e.g., every 10 milliseconds), stochastic (according
to a probabilistic distribution), or sporadic (not to capture by
periodic or stochastic characterization) [21]. Processing the
requests requires resources. Each resource has to be described
by its type in the system, such as CPU, memory, and network,
its utilization, and its capacity, such as the transmission speed
for a network.

Performance-relevant domain knowledge can be gained
from performance experts and analysts. In this paper, we do
not aim at proposing approaches on how to elicit and model
performance-relevant domain knowledge, but at emphasizing
the need for eliciting domain knowledge as additional infor-
mation to the quality requirements and annotating it properly

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 25 / 679

TABLE II. INSTANTIATED PSDK TEMPLATE FOR RQ24 (AND MAPPING TO THE MARTE PROFILE)

Quality: Performance, Quality Requirement: RQ24
PSDK Template Mapping to MARTE

PSDK Description Possible Values Value Range of Value Property
Number of concurrent users Natural 50 GaWorkloadEvent. pattern. population

Arrival pattern ArrivalPattern closed GaWorkloadEvent. pattern
Data size DataSize (bit, Byte, KB, MB, GB) 640 MB GaStep. msgSize

Memory capacity DataSize (bit, Byte, KB, MB, GB) - HwMemory. memorySize
latency Duration (s, ms, min,hr, day) - HwMemory. timing

Network bandwidth DataRate (b/s, Kb/s, Mb/s) 2.4 Kb/s HwMedia. bandWidth
latency Duration (s, ms, min,hr, day) - HwMedia. packetTime

CPU speed Frequency (Hz, kHz, MHz, GHz) 470 MHz HwProcessor. frequency
Number of cores Natural 1 HwProcessor. nbCores

in the requirement models as initially proposed in our previous
work [22]. We propose to document the PSDK for the corre-
sponding software qualities as structured templates. We call
such templates PSDK Templates to be instantiated separately
for each type of software quality. The instantiated template
should be known to the requirements engineer or performance
analyst to analyze whether a particular performance require-
ment can be satisfied or not. In order for the analyst to be
able to determine “whether the meter data can be transferred
through WAN within 5 seconds”, (s)he needs PSDK involving
the number of concurrent users in the system, the bandwidth of
the network, the CPU speed and the core numbers, and the data
volume which is transferred over the network. We exemplify
the instantiation of the PSDK template for the performance
requirement RQ24 according to the information contained in
the existing documents for the smart grid application [19][20].
Table II shows the instantiated PSDK template (see column
Value). The columns PSDK Description and Possible Values
show the domain knowledge to be elicited for performance
and its possible values. We may extend the template with the
column Range of Value showing the possible range of values.
Such information can be obtained from documents or involved
stakeholders. We make use of this column later on to modify
(strengthen or relax) the PSDK as a conflict resolution strategy.

In addition to the template, a suitable notation for inte-
grating quality-relevant domain knowledge in the requirement
models can be selected to be used for requirements analysis
in a model-based approach. We select the UML profile for
Modeling and Analysis of Real-Time and Embedded systems
(MARTE) [23] adopted by OMG consortium that allows us to
annotate performance-relevant domain knowledge in a UML-
based modeling approach. The column Property shows the
corresponding stereotypes from the MARTE profile.

We describe the need for eliciting PSDK and documenting
it in PSDK templates when we elicit quality requirements
by the example of a performance requirement. Requirements
might affect the PSDK when they are modified for any reason.
In such a case, the PSDK has to be checked for possible
modifications.

One important source for changes in the requirements is
detecting and resolving conflicts among requirements. Such
changes might cause changes in the PSDK [24]. Requirements
conflicts can typically be resolved on the requirement level
by relaxing the conflicting requirements or on the architecture
level by relaxing the corresponding solutions. In some cases,
only potential conflicts among requirements can be detected
and not the genuine ones [25]. Hence, in such cases the
conflict resolution shall preferably be postponed to the archi-

tecture level, where more details are available for detecting the
genuine requirement conflicts and resolving them. Resolving
requirements conflicts by relaxing requirements might lead to
the modification of the existing PSDK (e.g., assumptions).
Resolution of conflicting requirements on the requirement level
is one source for updating existing domain knowledge. One
might make a trade-off between a performance requirement
and a security requirement by relaxing the performance re-
quirement.

In our previous work [24], we proposed a method for
detecting and resolving conflicts among performance and
security requirements, as security has mostly a deep impact
on the performance of the whole system. The reason is that
mechanisms and patterns for satisfying security requirements,
such as encryption or Message Authentication Code (MAC)
are time-consuming. The general principle of our method
for detecting interactions among requirements is using the
structure of requirement models to identify trade-off points,
where security and performance requirements might interact.
After we have identified pairs of conflicting requirements,
we have made trade-offs by relaxing one or both conflicting
requirements to resolve the conflict. As an example, we
consider two requirements RQ11 and RQ24 that we identi-
fied as conflicting. One option for relaxing the performance
requirement is modifying the performance-relevant domain
knowledge. Typically, domain knowledge consists of facts
(domain properties in [4]) that we cannot change, relax, and
negotiate and assumptions that can be changed, relaxed, and
negotiated [4]. For resolving the conflict, we might modify
(relax or strengthen) the assumptions. For example, the number
of concurrent users is not a fixed property. It is an assumption
and can be modified, when the performance requirement
cannot be achieved with this assumption. Hence, we modify
number of concurrent users by reducing it to a number less
than 50. The same holds true for data size, which has to
be reduced to less than 640 MB, network bandwidth, which
has to be relaxed to more than 2.4 Kb/s (see the instantiated
PSDK in Table II). The rest of the properties are either fixed
(can be considered as facts) or irrelevant for the corresponding
requirement, or unknown and thus cannot be considered for the
modification process. We document such modifications in the
column Range of Value. Note that changes in the requirements
or PSDK should be negotiated with the stakeholders.

B. Interplay of Design Decisions and SSDK
Quality-specific patterns and mechanisms for performance

such as load balancer and master worker [26] and for secu-
rity such as Role-Based Access Control (RBAC) and encryp-
tion [27] represent solution candidates for achieving quality

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 26 / 679

TABLE III. IMPACT OF SECURITY-SPECIFIC SOLUTION ASYMMETRIC ENCRYPTION ON REQUIREMENTS AND SSDK

Security-specific Solution
Name Asymmetric Encryption
Brief Description The plaintext is encrypted using the public key and decrypted using the private key.
Quality Requirement to be achieved Security (confidentiality)
Positively affected quality requirement(s) -
Negatively affected quality requirement(s) Performance

Necessary Conditions

Quality Requirement 2 SSDK 2
Integrity of public key during transmission shall be/is preserved.

Quality Requirement 2 SSDK 2
Confidentiality of private key during transmission shall be/is preserved.

Quality Requirement 2 SSDK 2
Integrity of private key during transmission shall be/is preserved.

Quality Requirement 2 SSDK 2
Confidentiality of private key during storage shall be/is preserved.

Quality Requirement 2 SSDK 2
Integrity of private key during storage shall be/is preserved.

Quality Requirement 2 SSDK 2
Integrity of public key during storage shall be/is preserved.

TABLE IV. IMPACT OF SECURITY-SPECIFIC SOLUTION SYMMETRIC ENCRYPTION ON REQUIREMENTS AND SSDK

Security-specific Solution
Name Symmetric Encryption
Brief Description The plaintext is encrypted and decrypted using the same secret key.
Quality Requirement to be achieved Security (confidentiality)
Positively affected quality requirement(s) -
Negatively affected quality requirement(s) Performance

Necessary Conditions

Functional Requirement 2 SSDK 2
Secret key shall be/is distributed.

Quality Requirement 2 SSDK 2
Confidentiality and integrity of secret key distribution distribution shall be/is preserved.

Quality Requirement 2 SSDK 2
Confidentiality of secret key during transmission shall be/is preserved

Quality Requirement 2 SSDK 2
Confidentiality of secret key during storage shall be/is preserved.

Quality Requirement 2 SSDK 2
Integrity of secret key during storage shall be/is preserved.

Quality Requirement 2 SSDK 2
Confidentiality of encryption machine shall be/is preserved.

Quality Requirement 2 SSDK 2
Integrity of encryption machine shall be/is preserved.

Quality Requirement 2 SSDK 2
Confidentiality of plaintext shall be/is preserved.

requirements. By exploring the solution space for achieving
quality requirements, we require to know which assumptions
and facts are to be considered, and which new functional and
quality requirements are to be elicited when deciding on a
particular solution. Generally speaking, all information that can
affect the requirements and related domain knowledge has to
be documented.

We propose to provide a template consisting of two parts
for the analysis of quality-specific solutions and their impacts
on requirements and domain knowledge. We analyze the
impact of the solution candidate on the problem space (i.e.,
requirements), and on the SSDK. Such a template helps us
later on when selecting a particular solution candidate to keep
track on changes in the requirements and domain knowledge. It
also supports an unexperienced architect in understanding the
impact of design decisions on the entire system, particularly
on the achievement of quality requirements.

The first part of the template (see Table III) accommo-
dates information about the quality-specific solution itself,
such as name (Name), description (Brief Description), the
quality requirement which will be achieved when selecting this
solution (Quality Requirement to be achieved), and the quality
requirements which are positively or negatively affected by this
solution ((Positively affected Quality Requirement), (Negatively
affected Quality Requirement)). For example, improving the
security may result in decreasing the performance. Hence,

the impact of each security-specific solution on other quality
requirements has to be captured in the first part of the template.

The second part of the template captures and documents
necessary conditions which have to be addressed when select-
ing this solution. Necessary conditions have to be addressed
either as Functional Requirement, Quality Requirement, or as
SSDK. We elicit the necessary conditions as requirements if
the software to be built shall achieve them. In contrast, as-
sumptions have to be satisfied by the environment [4]. Hence,
the necessary conditions have to be captured as assumptions
(one part of the SSDK) if they have to be satisfied by the
environment. Assumptions are not guaranteed to be true in
every case. For the case that we assume the environment
(not the machine) takes the responsibility for meeting them,
we capture them as assumptions. This should be negotiated
with the stakeholders and documented properly. Tables III and
IV show such a template for the security-specific solutions
asymmetric encryption and symmetric encryption.

We describe Table IV in more detail. After capturing the
basic information about the security-specific solution symmet-
ric encryption in the first part, in the second part we elicit
new requirements and capture new assumptions that arise
with the solution, such as secret key shall be/ is distributed.
Eliciting this condition results in thinking about security issues
concerned with it, such as confidentiality and integrity of
secret key distribution shall be/is preserved. If we require

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 27 / 679

that the software we build is responsible for preserving the
confidentiality and integrity of the secret key not only during
the transmission but also during the storage, we have to capture
these as requirements. This is the reason why the necessary
conditions are presented as checkboxes to be selected by
checking the relevant checkbox as requirement or SSDK.

As mentioned before, one option for resolving interactions
among requirements is making trade-offs between correspond-
ing quality-specific solutions. To this end, one or both quality-
specific solutions have to be relaxed. Making such design de-
cisions requires eliciting or updating SSDK and requirements
associated with the particular solution. For example, selecting
a symmetric encryption for achieving a confidentiality re-
quirement instead of an asymmetric encryption demands other
assumptions and requirements with respect to the required keys
and key distribution as shown in the corresponding Templates
(Tables III and IV). To demonstrate this idea, we consider the
asymmetric encryption as the initial security-specific solution,
which is selected for satisfying the security requirement RQ11.
RQ11 is concerned with transmitting meter data through the
WAN in a confidential way. Asymmetric encryption provides
sufficient protection during transmitting meter data through the
WAN so that the confidentiality requirement can be achieved.
However, by applying our method for detecting interactions
among quality requirements in our previous work [24], we
detected a conflict with the performance requirement RQ24.
Hence, RQ24 cannot be achieved in less than 5 seconds when
keeping the security-specific solution asymmetric encryption
for meeting the security requirement RQ11. We have to decide
for a strategy to resolve the conflict. We can relax the perfor-
mance requirement by increasing the response time as one pos-
sible resolution strategy. Strengthening or relaxing the PSDK
for example by raising the network bandwidth or by decreasing
the data size is possible as well, as described in Section IV-A.
Such strategies are at the cost of the performance requirement
RQ24 and can only be used if the security requirement RQ11
has a higher priority. Here, we assume that the performance
requirement RQ24 has a higher priority. Hence, we have to
make a trade-off by relaxing the security-specific solution. This
can be achieved by selecting another security-specific solution,
which is faster. We decide on symmetric encryption instead of
asymmetric encryption. Symmetric encryption is faster than the
asymmetric encryption. It, however, demands other require-
ments and SSDK. In contrast to the asymmetric encryption,
which uses different keys for encrypting and decrypting data,
the symmetric encryption uses only one key. Thus, we have
to care about the key distribution. Hence, this design decision
leads to changes in the requirements as well as in the domain
knowledge as shown in Table IV.

V. CONCLUSION AND FUTURE WORK

In this paper, we underlined the importance of captur-
ing and documenting domain knowledge, particularly quality-
relevant domain knowledge for the problem space as well
as for the solution space. More importantly, we described
how requirements, design decisions and domain knowledge
affect each other. Eliciting and updating requirements causes
elicitation and modification of PSDK. Capturing and evolv-
ing solutions on the architecture level requires eliciting and
modifying SSDK and requirements. Hence, domain knowledge
should be captured and developed iteratively and incrementally

with requirements and architecture to achieve adequate speci-
fications.

In order to be able to argue that the requirements will
be satisfied under specific constraints and assumptions, PSDK
should be traceable to the requirements [4]. Moreover, design
decisions should be traceable to SSDK and requirements to re-
flect the changes in design decisions and software architecture
to the problem peak. Keeping the changes consistent in require-
ments, domain knowledge (PSDK and SSDK), and software
architecture is challenging. Model-based approaches enables
us to provide support by keeping such trace information in
the model. In the future, we want to provide traceability links
between these artifacts in our models to keep track of the
changes emerging in one peak which cause changes in the
other peak.

ACKNOWLEDGMENTS.
This research was partially supported by the German

Research Foundation (DFG) under grant numbers HE3322/4-
2. We thank Thein Than Tun for his useful feedback on our
work.

REFERENCES

[1] M. Mirakhorli and J. Cleland-Huang, “Traversing the twin peaks,” IEEE
Software, vol. 30, no. 2, 2013, pp. 30–36.

[2] B. Nuseibeh, “Weaving together requirements and architectures,” IEEE
Computer, vol. 34, no. 3, 2001, pp. 115–117.

[3] M. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. Heimdahl, and
S. Rayadurgam, “Your "What" Is My "How": Iteration and Hierarchy
in System Design,” IEEE Software, vol. 30, no. 2, 2013, pp. 54–60.

[4] A. Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[5] M. Jackson, “The meaning of requirements,” Ann. Softw. Eng., vol. 3,
Jan. 1997, pp. 5–21.

[6] ——, Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, 2001.

[7] P. Zave and M. Jackson, “Four dark corners of requirements engineer-
ing,” ACM Trans. Softw. Eng. Methodol., vol. 6, 1997, pp. 1–30.

[8] B. Fabian, S. Gürses, M. Heisel, T. Santen, and S. Schmidt, “A com-
parison of security requirements engineering methods,” Requirements
Engineering – Special Issue on Security Requirements Engineering,
vol. 15, 2010, pp. 7–40.

[9] I. F. Hooks and K. A. F., Customer-centered Products: Creating Success-
ful Products Through Smart Requirements Management. AMACOM,
2001.

[10] F. Modugno, N. Leveson, J. Reese, K. Partridge, and S. Sandys, “In-
tegrated safety analysis of requirements specifications,” Requirements
Engineering, 1997, pp. 65–78.

[11] L. Bass, M. Klein, and F. Bachmann, “Quality attributes design primi-
tives,” Software Engineering Institute, Tech. Rep., 2000.

[12] R. C. de Boer and H. van Vliet, “Controversy corner: On the similarity
between requirements and architecture,” J. Syst. Softw., vol. 82, no. 3,
Mar. 2009, pp. 544–550.

[13] R. Ferrari and N. H. Madhavji, “The Impact of Requirements Knowl-
edge and Experience on Software Architecting: An Empirical Study,”
in Proceedings of the 6th Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2007, p. 16.

[14] Z. Durdik, A. Koziolek, and R. Reussner, “How the understanding of
the effects of design decisions informs requirements engineering,” in
2nd International Workshop on the Twin Peaks of Requirements and
Architecture (TwinPeaks), 2013, pp. 14–18.

[15] A. Koziolek, “Research preview: Prioritizing quality requirements based
on software architecture evaluation feedback,” in Requirements En-
gineering: Foundation for Software Quality. Springer, 2012, vol.
LNCS7195, pp. 52–58.

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 28 / 679

[16] J. Miller, R. Ferrari, and N. Madhavji, “Architectural effects on re-
quirements decisions: An exploratory study,” in Proceedings of the 7th
Working IEEE/IFIP Conference on Software Architecture (WICSA),
2008, pp. 231–240.

[17] E. Woods and N. Rozanski, “How Software Architecture can Frame,
Constrain and Inspire System Requirements.” in Relating Software
Requirements and Architectures. Springer, 2011, pp. 333–352.

[18] M. Ali Babar, I. Gorton, and R. Jeffery, “Capturing and Using Software
Architecture Knowledge for Architecture-Based Software Develop-
ment,” in Proceedings of the 5th International Conference on Quality
Software, ser. QSIC ’05. IEEE Computer Society, 2005, pp. 169–176.

[19] H. Kreutzmann, S. Vollmer, N. Tekampe, and A. Abromeit, “Protection
profile for the gateway of a smart metering system,” BSI, Tech. Rep.,
2011.

[20] Remero et al., “D1.1 Requ. of AMI,” OPEN meter proj., Tech. Rep.,
2009.

[21] L. Bass, P. Clemens, and R. Kazman, Software architecture in practice.
Addison-Wesley, 2003.

[22] A. Alebrahim, M. Heisel, and R. Meis, “A structured approach for
eliciting, modeling, and using quality-related domain knowledge,” in
Proceedings of the 14th International Conference on Computational
Science and Its Applications (ICCSA), ser. LNCS. Springer, 2014,
vol. 8583, pp. 370–386.

[23] UML Revision Task Force, UML Profile for MARTE: Mod-
eling and Analysis of Real-Time Embedded Systems, 2011,
http://www.omg.org/spec/MARTE/1.0/PDF [retrieved: 2014-08-07].

[24] A. Alebrahim, C. Choppy, S. Faßbender, and M. Heisel, “Optimizing
functional and quality requirements according to stakeholders’ goals,”
in System Quality and Software Architecture (SQSA). Elsevier, 2014,
pp. 75–120.

[25] A. Alebrahim, S. Faßbender, M. Heisel, and R. Meis, “Problem-Based
Requirements Interaction Analysis,” in Proceedings of the International
Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ), ser. LNCS, vol. 8396. Springer, 2014,
pp. 200–215.

[26] C. Ford, I. Gileadi, S. Purba, and M. Moerman, Patterns for Performance
and Operability. Auerbach Publications, 2008.

[27] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security patterns: integrating security and systems
engineering. John Wiley & Sons, 2005.

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 29 / 679

Unified Conceptual Model for Joinpoints in Distributed Transactions

Anas M. R. AlSobeh, Stephen W. Clyde

Computer Science Department

Utah State University

Logan, Utah, USA

aalsobeh@aggiemail.usu.edu, Stephen.Clyde@usu.edu

Abstract—Distributed transaction processing systems can be

unnecessarily complex when crosscutting concerns, e.g., logging,

concurrency controls, transaction management, and access

controls, are scattered throughout the transaction processing

logic or tangled into otherwise cohesive modules. Aspect

orientation has the potential of reducing this kind of complexity;

however, currently, aspect-oriented programming languages

and frameworks only allow weaving of advice into contexts

derived from traditional executable structures. This paper lays

a foundation for weaving advice into distributed transactions,

which are high-level runtime abstractions. To establish this

foundation, we capture key transaction events and context

information in a conceptual model, called Unified Model for

Joinpoints Distributed Transactions (UMJDT). This model

defines interesting joinpoints relative to transaction execution

and context data for woven advice. A brief discussion of advice

weaving and the potential for reducing complexity with

transaction-specific aspects is provided, but the details of the

actual weaving are left for another paper. Also, this paper

suggest further research for studying the modularity and reuse

achieved through the ability to weave crosscutting concern into

transaction directly.

Keywords-complexity; modularity; distributed transaction;

joinpoint; operation; context; advice; aspect; crosscutting

concerns.

I. INTRODUCTION

 Frederick Brooks characterizes software complexity as

either essential or accidental, where essential complexity

stems from the very nature of the problem being solved by

the software and accidental complexity comes from the way

that the problem is being solved [1]. A Distributed

Transaction Processing System (DTPS) may have essential

complexity in the nature of the data, operations on the data,

or the volume of data. However, issues such as logging,

persistence, resource location, and even distribution itself are

more likely to be sources of accidental complexity, because

they are not usually inherent parts of the problem. When these

issues are secondary to the primary purposes of a DTPS, it is

common to find logic for them scattered throughout the

software and tangled into core application logic. For

example, concurrency-control operations, like locking and

unlocking, may be spread throughout the system and be

implemented with similar snippets of code.

 Aspect Orientation (AO), an extension to Object

Orientation (OO), can help manage both essential and

accidental complexity by localizing and encapsulating

crosscutting concerns in first-class software components,

called aspects [2]. An aspect is very much like a class in OO

and an aspect instance is like an object, except that an aspect

defines special methods, called advices, which are

automatically woven into the core application according to

specifications, called pointcuts. However, existing AO

Programming Languages (AOPLs) and frameworks only

allow the weaving of advice into the execution of code-based

contexts, such as methods, constructors, and exceptions.

They do not directly allow behaviors to be woven into more

abstract contexts, such as transactions.

 One could argue that a good programmer can do the same

thing in OO by defining classes for the crosscutting concerns

and hard coding calls to methods of those classes in all the

right places. However, the issue is not whether it can be done;

rather, it is the difference in abstractions. AO offers better

abstractions for separating crosscutting concerns from core

functionality that do require core functionality to dependent

on crosscutting concerns in any way. An AO developer

should be able to add/remove aspects to/from a project

without changes to any other code. Some authors refer to this

as a principle, called obliviousness [3].

 A transaction is a set of operations on shared resources,

such that its execution results in either the successful

completion of all operations or the completion of no

operation. Besides this all-or-nothing property, called

atomicity, transactions are consistent, isolated, and durable,

meaning that persistent data will only change from one valid

state to another, other concurrent transactions cannot see the

effects of a transaction until it completes, and that effects of

a transaction become persistent after completion even if there

is system failure. Together, atomicity, consistency, isolation,

and durability are often referred to as the ACID

properties [3][5].

 Distributed transactions are transactions, but their

operations are executed on multiple host machines, ideally

with improved throughput. From a logical perspective, a

distributed transaction can be a flat sequence of operations or

a hierarchy of sub-transactions, also known as nested

transactions. In the latter case, nested transactions may

execute concurrently and still observe the ACID properties.

 Regardless of whether a distributed transaction is a flat

sequence of operations or comprised of nested transactions,

it is an ephemeral concept that spans multiple execution

threads and operations using distributed resources. Therefore,

from an execution perspective, it may seem non-contiguous

and unevenly spread over time and space. A transaction’s

context is not tied to code constructs, like constructors and

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 30 / 679

methods, in a single thread of execution; rather, it consists of

loosely-coupled abstractions like dynamically generated

identifiers, timestamps, and tentative value sets for

distributed resources. This makes its very difficult for AO

developers to localize and encapsulate crosscutting concerns

that apply to transactions as execution units.

 This paper takes a preliminary step in enabling AO

developers to treat transactions as first-class concepts into

which compilers or frameworks can weave crossing

concerns. Specifically, it unifies DTPS concepts related to a)

transactions in general, b) the kinds of information that

comprise their context, and c) events that represent

interesting time points/places for when/where the

crosscutting concerns might augment an application’s core

functional or the underlying transaction processing system.

 Section II provides more detail about aspect-oriented

programming concepts and background about common

transaction concepts. Section III proposes possible joinpoints

in the execution of distributed transactions and relevant the

context information for each. Section IV presents a sample of

transaction-related crosscutting concerns. Section V presents

the UMJDT model and discusses two key areas, namely a

transaction context and joinpoints. Although the technical

details of advice weaving are beyond the scope of this paper,

Section VI provides an outline of the process and highlights

some of the key issues. Section VII summarizes the

contributions on this paper and discusses next steps.

II. BACKGROUND

A. Overview of Aspect Orientation

 As mentioned above, AO is an extension to OO that allows

developers to extract and untangle secondary concerns from

the primary features of an application. It is difficult to define

what constitutes a secondary concern in general because it

depends on the purpose of the software being built. However,

secondary concerns often show up in less-than-expertly-

designed OO software as similar snippets of code scattered

across multiple modules or tangled into methods that

primarily serve other purposes. A common example is tracing

or logging in a data processing application, where the

developers want a chronology of the execution for either

system verification, audit-trail, or performance-monitoring

measurement reasons. To do this, they might insert logic

throughout the code that writes various messages or statistics

to a file. Eventually, these log-writing code snippets become

scattered across the software and tangled in otherwise

cohesive methods.

 An AOPL, like AspectJ [6], would allow a developer to

remove all of the log-writing code from the main application

and place that logic in an aspect, which is a class-like abstract

data type. An aspect can include data members, methods,

nested types and everything else a class can include.

However, they can also include advices and pointcuts. An

advice is like a method because it implements some specific

behavior; however, it is not invoked like a method. Instead,

the AOPL’s compiler or runtime environment weaves the

advice into the system so it is executed at specific places and

time defined by pointcuts. A pointcut is a pattern that

identifies a set of joinpoints, which are best characterized as

intervals within program’s execution flow. Examples of

joinpoints in typical AOPL’s include the execution of a

method or the setting of a property. Consequently, their start

and end points map to specific elements of the code, called

shadows, which correspond to places where those intervals

may start or end. The weaving of advice into the shadows is

an automated process, and understanding it in depth is not

necessary to appreciate the contributions of this paper. We

refer readers interested in learning more about weaving of

advice to the overview of AspectJ by Kiczales, et al. [6].

 When advice executes, it can access context information

about the joinpoint at which it was invoked. This context

includes the location of the joinpoint (i.e., the shadow) and

runtime information about the objects involved. Some on the

context information is static and therefore can be computed

during weaving; other context is dynamic and depends on the

objects involved in the joinpoint.

B. Transaction Concepts

 As mentioned, the objective of this paper is to lay the

foundation for weaving crosscutting concerns into

transactions in DTPS’s. This requires identifying the logical

places, i.e., joinpoints, in transaction execution where a

developer might want to weave advice, as well as the kinds

of information that should be available in joinpoint context.

 There are many different DTPS’s in use today and they

vary in terms of features and implementations. However, they

share commonalities in their underlying concepts of

transaction distribution, management, execution, and

concurrency control. It is on these basic concepts that we will

focus our attention and lay a foundation for identifying

transaction joinpoints and context.

 As with transactions in centralized systems, a distributed

transaction is a sequence of operations on shared resources

that observe the ACID properties [7][8]. The difference is

that the operations of a distributed transaction execute on

more than one host machine, which opens up the possibility

of subsequences of those operations executing concurrently,

without shared memory to help with concurrency controls.

 In general, a distributed transaction can be thought of as a

tree of operations, instead of strict sequence. To visualize

this, consider a simple example of a transaction-based

manufacturing system that builds Widgets from Goo and

Gadgets from Widgets. See Figure 1. The Goo, Widget, and

Gadgets are all stored in “piles”. The individual objects and

the piles of objects are all shared resources. This system also

includes processing components, i.e., shared resources, that

handle the manufacturing. Specifically, there are Builders

that create Raw Widgets from Goo, Bakers that turn Raw

Widgets into Rough Widgets and Polishers that refine Rough

Widgets into Polished Widgets. Finally, there are Assemblers

that create Gadgets from Widgets and Labelers that tag the

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 31 / 679

Gadgets with serial numbers. Figure 2 lists two simple

transactions that represent a) the construction of a Polished

Widget and b) the construction of a Gadget from two Widgets.

 Now assume that piles of Goo, Widgets, and Gadgets are

distributed across many locations (hosts) and that Builders

are at the same location as Goo Piles; Bakers and Polishers

are at the same location as Widget Piles; and Assemblers and

Labelers are close to Gadget Piles, but not necessarily at the

same location. With this distribution of resources, transaction

T2 could execute in a distributed manner by having Op2.1

execute in a sub-transaction, ST2.1, Op2.2 execute in another

sub-transaction, ST2.2, both on the same host as the desired

Widget Pile, and Op2.3-Op2.5 in a sub-transaction, ST2.3, on

the same host as the desired Gadget Pile. Figure 3 represents

this distributed transaction as a simple tree with T2 as the root

and the operations as the leaves.

 T1 and T2 are just two concrete transactions, but this

system could have hundreds of similar transactions running

at the same time. As in all DTPS, each transaction receives a

unique identity, i.e., Transaction Identifier (TID), when it

starts. All references to a transaction will be via this

identifier. Typically, in a DTPS, a Transaction Manager

(TM), is responsible for assigning TID’s and keeping track of

parent/sub-transactions relationships.

 Beside TID assignment, TM’s are also typically

responsible for starting transactions (and sub-transactions),

and ending transactions by either committing or aborting the

results. A TM may also oversee the execution of transaction

operations on resources and any necessary concurrency

controls, such as locking, for those resources. Some DTPS

delegate these responsibilities to separate components such

as Resource Managers and Lock Managers, but such

architectural differences are not important here. For the

purpose of exploring possible transaction-related joinpoints

and context information, it is important to just recognize that

operation execution and concurrency control take place with

respect to individual resources.

 Finally, a TM can also track information about its

execution environment, including information about threads

of execution, processes, host machines, secondary storage,

and even network connections. It may do this for a variety of

reasons, including performance management, audit trails, and

recovery in case of failure.

 A transaction is typically broken up into two basic phases:

an execution phase and a commit phase [8]. The execution

phase is considered tentative, because the changes are not

made permanent until the commit phase. During the

execution phase, the TM performs the operations in the body

within its own context. Logically, the operations may result

in the tentative changes to shared resources. In a commit

phase, the TM will either finalize all of the tentative changes

or abort the transaction.

 Three common approaches to concurrency controls are

optimistic, timestamp-based, and pessimistic. Optimistic

approaches to concurrency control allow conflicts to occur

during the tentative phases of concurrent transactions, then

leave it up to the TM to detect conflicts and abort one or more

transactions when they occur, using either forward or

backward validation [9][10]. Timestamp-based approaches

guarantee serial equivalence [11] by imposing an ordering on

the execution of the operations in the tentative phase.

Pessimistic approaches use locks to prevent conflicts from

occurring in the tentative phase of execution. They do this by

delaying operation execution or by trigging an abort (in the

case of deadlock [12]). Locking schemes vary, but are all

based on premise that a transaction must hold a particular

kind of lock before performing an operation.

 A common and simple locking scheme consists of two

types of locks: one for read operations and one write for

operations [12]. The pseudo-code in Figure 4 includes

requests for the appropriate read and writes locks, following

this simple scheme.

Figure 1 - Resources in a Widget and Gadget Manufacturing System.

a) Transaction T1

Op1.1: Get Goo from Goo Pile

Op1.2: Give Goo to a Builder and get back a Raw Widget
Op1.3: Give Raw Widget to a Baker and get a Rough Widget

Op1.4: Give Rough Widget to a Polisher and get a Polished

Widget

Op1.5: Put Polish Widget in a Widget Pile

b) Transaction T2

Op2.1: Get Widget (W1) from Widget Pile 1

Op2.2: Get Widget (W2) from Widget Pile 2

Op2.3: Give W1 and W2 to Assembler and get a Gadget, G
Op2.4: Put Gadget G in a Gadget Pile

Op2.5: Have Labeler put a tag on G

Figure 2 - Two Sample Transactions for Constructing Widgets and

Gadgets.

Figure 3 - Possible Distribution of Transaction T2.

T2

ST2.1 ST2.3

Op2.1 Op2.2 Op2.3 Op2.4 Op2.5

Runs on host

with Widget

Pile #1

Runs on

host with

Gadget PileST2.2

Runs on host

with Widget

Pile #2

Concurrently

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 32 / 679

 A transaction’s context information includes those pieces

of data and metadata that the transaction needs to be self-

contained, guarantee the ACID properties, and support

correct execution of both the tentative and commit phases of

execution. Supporting correct execution of the commit phase

means that the context needs to include sufficient information

for the TM to decide whether the transaction conflicts with

other concurrent transactions. However, the details of this

context data depend heavily on the implementation of the

DTPS, the types of concurrency control in use, and the

commit algorithm. The only data that are common to virtually

all DTPS are the TID and a reference (direct or indirect) to

the responsible TM. Beyond these two items, a transaction’s

context may include many different kinds of implementation

specific data, e.g., sets of tentative values, rollback logs,

snapshots, lock information, timestamps, and other kinds of

metadata. Therefore, any system that aims to support aspects

for transaction must allow for context information to contain

data that specific to a DTPS’s implementation.

III. POTENTIAL JOINPOINTS AND THE SCOPE OF THE

CONTEXT

 From an advise-weaving perspective, joinpoints map to

places where weaving takes place – hence the user of “point”

in the name. However, from an execution perspective, a

joinpoint represents a logical interval of time in a flow of

execution. It has a beginning and an end, and advice can be

woven into the flow of execution before, after, or around it.

This section presents Figure 4 as a pseudo-code for an

implementation of T2 annotations that illustrate five new

types of joinpoints for DTPS’s: outer transaction, inner

transaction, resource locked, locking, and operation. Each

type of joinpoint is in a different color. This section also

discusses interesting metadata that advice might want to use,

and therefore should be part of joinpoint contexts.

 An Outer Transaction Joinpoint represents an interval that

spans the complete execution of a transaction, starting just

before the tentative phase and ending after the completion on

the commit phase. This kind of joinpoint would allow a

programmer to introduce advice before, after or around an

entire transaction. However, because it starts before the

beginning of the tentative phase, any “before” advice would

not have access to the target transaction’s context

information. However, it would have access to a parent

transaction’s context, which would be particularly important

for advice before or around sub-transactions.

 An Inner Transaction Joinpoint is similar to an Outer

Transaction Joinpoint, except that it starts just after the

tentative phase begins and ends just before the commit phase

ends. Advice woven before this kind of joinpoint would have

access to the target transaction’s context.

 Resource Locked Joinpoint represents an interval that

spans the time when a lock is held, starting after acquiring of

the lock and ending just before its release. Advice woven

before, after or around this type of joinpoint would have

Figure 4 - Pseudo Code for Distributed Version of T2 and the Potential Transaction Joinpoints within the Scope of the T2’s Context.

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 33 / 679

access to metadata about the lock, the associated resources

and, of course, the transaction.

 Locking Joinpoint represents an interval that spans a lock

request. In other words, it begins as a request is made and

ends when the request is granted or denied. Advice woven

before, after, or around a Locking Joinpoint can access

metadata about the type of lock being requested or the

resource.

 Operation Joinpoint is an interval that spans one operation

in the execution of the tentative phase of a transaction. Such

advice would have to access to metadata about the operation

and the affected resources, as well as the transaction as large.

IV. SAMPLE CROSSCUTTING CONCERNS

 The number and variety of crosscutting concerns in a

DTPS are perhaps infinite. However, for illustrative

purposes, we will consider just one here. Imagine that we

would like to optimize the Gadget manufacturing system

such that Widgets were created just in time, by making sure

there are always some Widgets in a pile, but never an excess.

 Such flow-control or timing issues could be considered a

secondary crosscutting concern to the basic Gadget assembly

problem. By talking with the domain experts, we would

probably discover a couple of basic rules that govern when

the Widget product needs to be speed up or slowed down. An

OO programmer could embedded the logic for these rules

into the implement of the Builder, Baker, Polisher, or some

other set of components. With some skill, it is possible that

the OO programmer might even be able to do this in a

modular and reusable way.

 With transaction aspects, an AOP programmer, however,

would have a much similar option. Basically, the programmer

would encapsulate the logic for speeding up or slowing down

widget production into an aspect, maybe called something

like WidgetProductionSpeedControl. This aspect would

include advice that could be woven before (or around) any

operation that accesses a widget pile. The advice’s logic

would speed up Widget product if the pile was getting too

small or slow it down if the pile was getting too large. The

aspect would also include a simple pointcut that defined a

pattern for all relevant joinpoints. The original application

code would not need to be aware of the new production-speed

control logic. In fact, because of this obliviousness, it could

be tested with or without the speed control functionality

without any reprogramming of the system.

V. THE UNIFIED MODEL FOR JOINPOINTS IN

DISTRIBUTED TRANSACTIONS

 Figure 5 shows part of the UML model, called the Unified

Model for Joinpoints in Distributed Transactions (UMJDT),

which captures the key ideas for the new transaction

joinpoints and related context information. The class labeled

TransJP is a generalization of the joinpoints discussed in

Section III. By definition, each is associated with a

StartEvent, but may not have an EndEvent if the interval is

still in process. Every TransJP can also reference a context

that holds all the relevant statics and runtime information for

the joinpoint. Aspect advice will use this context to access a

wide variety of information such as operations in progress,

resources, and current execution environments.

 However, there are three special kinds of contexts, and the

actually kind of context that a TransJP directly accesses

depends on the TransJP specialization. For example, a

LockingJP directly accesses a LockContext.

 Contexts can be composited into a hierarchy of objects, as

indicated by the recursive aggregation relationship connected

to the Context class. Although Figure 5 does not show all the

possibilities and constraints, a LockContext can be part of a

TransactionContext, which could in turn be part of another

TransactionContext (i.e., for a parent transaction.)

 Contexts may also be extensible or customizable objects.

In other words, the base system that makes transaction aspect

possible, will provide classes for Context and its three

immediate specializations. It also projects hooks for

extending those classes, either through specialization, plugs-

in, or even other kinds of aspects, so programmers can use

context details that are specific to a particular DTPS or

DTPS-based applications.

VI. ADVICE WEAVING

Kizcales, et al. introduced the idea of weaving logic for

crosscutting concerns into core applications over 15 years

ago [2]. Their work stems from even earlier research with

inheritance, aggregation, and mix-ins [13]. Like all great

ideas, the heart of the weaving solution is relatively straight

forward – modularize concerns into first-class constructs,

find the right place(s) to introduce appropriate logic from

those constructs, and the either insert code that executes the

new logic unconditional (because it can be determined to

always be needed) or insert code that makes a final decision

about executing the new code at runtime.

The challenge for transaction-related aspects is not so

much the basic weaving process as it is pulling together all of

the relevant data that needs to make up a transaction’s

Figure 5 – Part of the Unified Model for Joinpoints in Distributed

Transactions

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 34 / 679

context. Remember, that in a DTPS, the execution of a single

transaction is an abstraction that might span many different

hosts and be interleaved with the execution of many other

concurrent transactions.

So to solve this problem, we propose to build a runtime

extension to AspectJ that tracks the start and end events of

the TransJP’s using low-level distributed aspects. We believe

this to be feasible because it is similar to the technique used

by CommJ to add communication-related aspects to

AspectJ [14].

Although our approach will re-use many of the ideas first

prototyped and refined in CommJ, our implementation for the

weaving of transaction aspects will have to solve some

additional problems not addressed by CommJ. Some of these

problems include data-sharing optimizations, like the sharing

of context information sharing across hosts only when

necessary. Our future work will include research into both

static and dynamic analysis techniques for solving these

problems.

For the moment, solving the basic weaving and context

management problems are sufficiently interesting and

potentially beneficial to dominate our immediate attention.

VII. SUMMARY AND FUTURE WORK

 This paper presented a foundation for extending AspectJ to

support transaction aspects, using joinpoints and context

information that is both interesting and relevant to DTPS’s.

In doing so, it paves the way for the weaving of crossing

cutting concerns into high-level program abstractions that

span multiple threads of execution and may be interleaved

with concurrent execution of similar abstraction.

 The main contribution of this paper is simply to identify

the set of joinpoints and context information that make the

most sense for DTPS’s. We have captured this knowledge in

a formal model called, Unified Model for Joinpoints in

Distributed Transactions (UMJDT), as presented its essential

parts here.

 Our next steps are to a) complete the implementation of the

an extension to AspectJ that performs the expected weaving

and tracking of context information, and b) perform an

preliminary experiment that we hope will provide evidence

of improvement in modularization and reuse. To measure the

modularity and reuse, we will define an extension to an

existing quality model with following new factors:

correctness, separation of concerns, understandability,

obliviousness, throughput, transaction volume, transaction

velocity, and transaction size. Each factor can be measured

using metrics, such as diffusion of application, concern

diffusion over operations, the number of inter-type

declarations, the number of committed transactions, the

number of aborted transactions, a rate of data flow during

transaction executions, and the length of a transaction design

and code, such as the lines of code, the number of operations,

the number of components, i.e., classes and aspects, into the

transaction, and the weighted operations per component. We

also hope to create a toolkit consisting of reusable transaction

aspects for common concerns, like performance measuring,

logging, exception handling, audit trails, and tracing.

REFERENCES

[1] F. P. Jr. Brooks, “No silver bullet, essence and accidents of

software engineering”, Computer, vol. 20, no. 4, 1987, pp.10 -

19.

[2] G. Kiczales, et al. “Aspect-Oriented Programming,”

Proceedings of ECOOP '97, Springer Verlag, 1997, pp. 220–

242.

[3] C. Clifton and G. T. Leavens, “Obliviousness, Modular

Reasoning, and the Behavior Subtyping Analogy”, In

Proceedings of the Workshop on Software Engineering

Properties of Languages for Aspect Technologies (SPLAT),

Workshop at AOSD, December 2003.

[4] J. Gray and A. Reuter, Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Mateo, CA, 1993.

[5] G. Kohad, S. Gupta, T. Gangakhedkar, U. Ahirwar, and A.

Kumar, “Concept and techniques of transaction processing of

Distributed Database management system,” International

Journal of Computer Architecture and Mobility. (ISSN 2319-

9229) Volume 1-Issue 8, June 2013.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and

W. Griswold, “An Overview of AspectJ”. 15th ECOOP 01,

June 2001, pp. 327 – 357.

[7] G. Alkhatib and R. S. Labban, “Transaction Management in

Distributed Database Systems: the Case of Oracle's Two-Phase

Commit,” The Journal of Information Systems Education,

vol.13:2, 1995, pp. 95-103.

[8] J. Gray, “The Transaction Concept: Virtues and limitations”,

In Proceedings of the 7th International Conference on VLDB

Systems (Cannes, France). ACM, New York, 1981, pp. 144-

154.

[9] T. Härder and K. Rothermel, “Concurrency Control Issues in

Nested Transactions,” Journal of VLDB 2 (1), Jan. 1993, pp.

39-74.

[10] C. Mohan, B. Lindsay, and R. Obermarck, “Transaction

Management in the R*· Distributed Database Management

System,” ACM Trans. on Database Systems, vol. 11, no. 4,

December. 1986, pp. 378-396.

[11] G. Colouris, J. Dollimore, and T. Kindberg, “Distributed

systems, concepts and design,” Addison-Wesley. Fourth

edition 2005. ISBN-10: 9780321263544, 2005.

[12] P. A. Bernstein and N. Goodman, “Concurrency Control in

Distributed Database Systems,” ACM Computing Surveys

Vol. 13 No 2, June, 1981, pp. 185-221.

[13] A. Przybyłek, "Systems Evolution and Software Reuse in

Object-Oriented Programming and Aspect-Oriented

Programming," J. Bishop and A. Vallecillo (Eds.): TOOLS

2011, LNCS 6705, 2011, pp. 163–178.

[14] A. Raza and S. Clyde, “Weaving Crosscutting Concerns into

Inter-process Communications (IPC) in AspectJ,” ICSEA

2013. Nov. 2013, pp. 234-240. ISBN: 978-1-61208-304-9.

Venice, Italy.

[15] A. Hastings, “Distributed Lock Management in a Transaction

Processing Environment,” In Proceedings of IEEE 9th

Symposium on Reliable Distributed Systems, Oct. 1990, pp.

22-31.

[16] B. Gallina, N. Guelfi, and A. Romanovsky, “Coordinated

Atomic Actions for dependable distributed systems: the current

state in concepts, semantics and verification means,” In Proc.

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 35 / 679

18th IEEE Int. Symposium on Software Reliability (Sweden).

Nov. 2007, pp. 29-38.

[17] E. Bodden, “Closure joinpoints: Block Joinpoints without

Surprises,” In Proceedings of the 10th international conference

on AOSD, New York, NY, USA, ACM, 2011, pp. 117-128.

[18] F. F. Rezende and T. Härder, “Concurrency Control in Nested

Transactions with Enhanced Lock Modes for KBMSs,” In:

Proc. 6th DEXA, London, UK, Sept. 1995, pp. 604-613.

[19] H. Kung and J. Robinson, “On optimistic methods for

concurrency control,” ACM Transactions on Database

Systems, Vol. 6, No 2, June 1981, pp. 213-226.

[20] I. Mejía, “Towards a Proper Aspect-oriented Model for

Distributed Systems,” AOSD '11. ACM New York, NY, USA,

March. 2011, pp. 83-84.

[21] J. Eliot and B. Moss, “Nested transactions: and approach to

reliable distributed computing Tech,” Report MIT/LCS/TR-

260, Massachusetts Institute of Technology, 1981.

[22] J. Kienzle, R. Jiménez-Peris, A. Romanovsky, and M. Patiño-

Martinez, “Transaction Support for Ada,” In Reliable Software

Technologies - Ada-Europe, Springer Verlag, 2001, pp. 290 –

304.

[23] K. Donnelly and M. Fluet, “Transactional events,” Journal of

Functional Programming, v.18 n.5-6, September 2008, pp.

649-706. [doi>10.1017/S0956796808006916]

[24] M. Atif, “Analysis and verification of two-phase commit &

three-phase commit protocols,” In Proceedings of the 5th

ICET, IEEE, Oct. 2009, pp. 326 -331.

[25] N. Dhamir, D. N. Mannai, and A. Elmagarmid, “Design and

implementation of a distributed transaction processing

system", COMPCON '88, IEEE, New York, Mar. 4, 1988, pp.

185-188.

[26] P. Ram and P. Drew, “Distributed transactions in practice,”

ACM SIGMOD Record, v.28 n.3, Sept. 1999, pp. 49-

55. [doi>10.1145/333607.333613]

[27] R. Banks, P. Furniss, K. Heien, and H. R. Wiehle, “OSI

Distributed Transaction Processing Commitment

Optimizations,” ACM SIGCOMM Comput Commun Rev ,

Vol. 28, No. 5. ACM, New York, Oct. 1998, pp. 61–75. ISSN:

0146-4833.

[28] R. J. Walker and G. C. Murphy, “Joinpoints as ordered events:

towards applying implicit context to aspect-orientation,”

Workshop on Advanced Separation of Concerns at the 23nd

ICSE, 2001.

[29] T. Haerder and A. Reuter, “Principles of transaction-oriented

database recovery,” ACM Computing Surveys, v.15 n.4,

December. 1983, pp. 287-317. [doi>10.1145/289.291].

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 36 / 679

A Tool Evaluation Framework based on
Fitness to Process and Practice

A usability driven approach

Diego Fontdevila
Departamento de Ingeniería

Universidad Nacional de La Matanza
San Justo, Buenos Aires, Argentina

dfontdevila@ing.unlam.edu.ar

Departamento de Ingeniería
Universidad Nacional de Tres de Febrero

Caseros, Buenos Aires, Argentina
dfontdevila@untref.edu.ar

Abstract — Most current and traditional research on software
development tool evaluation focuses on tool capabilities and
features following the traditional approach for generic
software evaluation. Existing evaluation frameworks and
methods address functional and non-functional requirements,
constraints, technology, knowledge domain, costs and other
acquisition aspects, but such approaches do not account for the
context in which work is done. We propose a usability-based
framework for tool evaluation in terms of fitness to the
development process and practice of their users. Our
contribution is a framework for relating ways of working to
tool evaluation, and a concrete checklist for performing that
evaluation. We present this paper as proof-of-concept of our
framework and validate its applicability (but not the
evaluation results) by using it to evaluate tools with which we
have hands-on experience.

Keywords-tool evaluation; usability-based framework;
process and practice.

I. INTRODUCTION
Most current and traditional research on software

development tool evaluation focuses on tool capabilities and
features [1][2][3][4][5][6][7][8] following the traditional
approach for generic software evaluation [9][10]. Existing
evaluation frameworks and methods address functional and
non-functional requirements, constraints, technology,
knowledge domain, costs and other acquisition aspects, but
such approaches do not account for the context in which
work is done [11]. For example, tools with the required
features might rate well in a feature-based evaluation, but
support users poorly by implementing the workflows in a
way that does not match the users’. Jadhav and Sonar [12]
state that none of the primary studies reviewed address the
final step of the selection process: “Purchasing and
implementing most appropriate software package”. The
authors also state “good evaluation practice suggests that
some action should be taken to ensure that the selected
package performs as well as expected after implementation”.
The problem with such after-the-fact check of successful
evaluation and selection is that mistakes can be very costly;
that is why we propose an earlier focus on evaluating the

final effectiveness of the implementation beyond traditional
tool requirements.

Although research has been conducted on evaluation of
technology fitness to context, including software
development tools [11], the proposed method is limited to
technical issues and maintains a requirements-based
approach (the case study is for web services technology).
Storey et al. [13] propose collaborative demonstration based
tool evaluations, focusing on interoperability and tool
integration, not on end user support (the target users are
themselves researchers).

We propose a usability-based framework for the
evaluation of tools in terms of fitness to the development
process and practice of their users. Our contribution lies in
providing a framework for relating ways of working to tool
evaluation. We present this paper as a proof-of-concept of
our framework and validate its applicability by using it to
evaluate tools with which we have hands-on experience (this
is considered good practice in tool evaluation [6][11]).

The capability of a tool to support the software
development process and practices of its users might very
well be described in terms of usability, based on the idea that
any significant divergence between the tool's model of the
work and the actual way the work is performed would make
the tool difficult to use. A common scenario for
inappropriate process implementation might be having a tool
that forces a process so heavy on its users that they abandon
it partially or completely. Same with practice, a practice
might not fit the process, or a tool might not support the
practice appropriately. For example, inconsistencies in code
review practice between different teams might turn up in
system testing. We consider fitness for use, a key quality
notion in any product o process, and extend it to fitness to
context, where context is defined in terms of software
development process and practice. This work’s key
contribution is a checklist of specific criteria for evaluating
fitness to process and practice, inspired by usability
terminology.

First, we present the framework and then apply it to the
evaluation of two different tools, one related to
Configuration Management practices (Jenkins Continuous
Integration Server [23]) and the other to Requirements and
Project Management (Pivotal Tracker [24]). These tools have

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 37 / 679

been chosen by theoretical sampling to provide very different
process and practice coverage. Jenkins is a tool that supports
a single practice, while Pivotal Tracker covers multiple
processes and practices. Our evaluation method assumes the
evaluators are familiar with the tool’s capabilities and can
focus on evaluating their fitness to process and practice.
Other methods might be used as a first approach for tool
evaluation, to validate basic conformance, followed by
applying our approach to the top ranking alternatives.

In Section II, we define several usability principles and
propose applications of those principles in the context of
software development process and practice. In Section III,
we use those relationships to establish tool evaluation criteria
based on how well the tool supports process and practice
according to those principles. Finally, in Section IV, we
apply those principles and criteria to the evaluation of the
two tools, and in Section V, we present our conclusions and
perspectives.

II. APPLYING USABILITY PRINCIPLES TO PROCESS AND
PRACTICE

At this point, we need to state our working definitions of
practice and process (see [14], chapter 4, for a description of
the interconnection between process and practice):

Process: It is the flow of work, products and information
across the organization that produces value and coordinates
the activities of groups with different practices.

Practice: The term practice describes the everyday
activities and experience of work. Practices comprise a
process, but they can exist without a defined process. If a
practice is imposed that is not viable for the people doing the
work, that same people will usually redefine the practice.

The reason we choose to focus on practice and process is
that process focused perspectives often ignore how the work
is actually performed by teams and individuals, and thus
loose information that is critical to any improvement effort.
In our case, choosing the right tool for the job cannot ignore
“the way we do things here to succeed” (to paraphrase the
title of [15]).

Usability principles are guidelines for the design of
things that are meant to be appropriate for use. They provide
guidance for creating usable designs and for evaluating those
designs.

Processes and practices are tools that humans use to
define, coordinate and execute their activities, and provide a
harness for sustainable high quality work (in [16], Alistair
Cockburn presents a view of practices as one kind of tool of
agile teams). As tools, their success is sensitive to the
capacity of people to make use of them. This leads to the
following definition:

Process/Practice Usability: A measure of how easy it is to
follow a process or practice, including the effort needed to
learn, the probability of making mistakes, the cost of such
mistakes and the overall satisfaction and motivation
promoted by following the practice or process.

In Section III, we present a detailed criteria checklist
organized by usability principles to evaluate how well a tool
suits the process and practice of its users. The main
contribution of this work is the criteria checklist we have

created inspired by those usability principles. This checklist
is not a usability checklist, for it does not evaluate tool
usability, it extends usability terminology to define criteria
for fitness to process and practice.

In Section II.A, we offer our own working definition of
several usability principles (or heuristics, as they are referred
to in [17]), an example of their application to everyday
things (the standard view of usability) and a description of
how each principle can be applied to processes and practices.

A. Usability Principles
We define usability principles for process and practices.

We then apply them to the evaluation of tool fitness to
process and practice. In this section, we extend these
principles described in [18] (Chapter 1) and [17] (Chapter 5)
Heuristics” to define a framework for the software
development domain. Here, we define the following
principles:

1. Feedback
2. Affordance/natural mapping
3. Matching conceptual models
4. Tolerate mistakes
5. Force function

We have chosen these principles because of the way they

resonate with software development process and practice
concepts. The initial inspiration for this work came to us
with the realization of the importance of the term feedback in
the context of both usability and software process
improvement. As we explored this idea, we found that other
usability principles appeared in both contexts, for example,
creating safe work environments by tolerating mistakes is a
key agile tenet.

An example of usability heuristic that we have not
applied here, because no specific criteria related to it seem
applicable to process and practice, is avoid modes [17].

1) Feedback
When we act upon the world, there is a reaction from the

world that we can perceive (based on [18], page 27).
In everyday life: When we press a floor button in an

elevator, we expect it to light up to confirm that the elevator
has been programmed to go to that floor, otherwise we press
the button again and again.

In Practice/Process: This principle is key to Shewhart's
continuous improvement cycle Plan-Do-Check-Act. The
process must be such that it offers continuous feedback so
that we can appreciate (and check) the effect of the
improvement efforts. Idem for Practice, we need to see the
effect of a practice to motivate us to maintain it.

2) Affordance/Natural Mapping
Things should by their outward nature expose what they

are for, what their purpose is (based on [18], page 9, in this
context affordance means “to be for” something).

In everyday things: A small red iron hammer hung in a
red container next to a glass window hardly requires an
“Emergency” sign to express that it is there to help us break
the window (see [18], page 9, there actually is a psychology

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 38 / 679

of materials such that glass by itself affords the idea of
shattering).

In Practice/Process: Process activities should have
obvious effect in the production of quality work by the
people involved. In other words, the purpose of all activities
should be so clear as to not require explanation beyond the
initial adoption phase. As a corollary, process activities
should then match exactly the Practice of the people doing
the work (i.e., should not make them work in a way they do
not believe in).

3) Matching Conceptual Models
Every artifact has an implicit mental model that should

match that of the people doing the work (based loosely on
[18], page 12).

In Everyday things: People tend to believe that if a coin
is bigger, it should be worth more, but that is not always the
case.

In Practice/Process: A process should match the view
that people participating in it have of their work. A
particularly important aspect of this is the coordination of
teams with very different practices, like software
development and marketing. Each team must have an
enabling out-model that allows them to integrate their work
(an out-model is our model of something we are mostly
ignorant about; in this case, the other team and how they
work [15]).

4) Tolerate mistakes
Since mistakes are typical of humans, things should

allow us to make mistakes without incurring much rework or
frustration.

In everyday things: Pushing one wrong button should not
wipe out hours worth of a document we are working in.
Systems should recover from mistakes easily and gracefully.
When recovery is not possible, or too costly, a force function
(the next principle in this Section) might be used to prevent
people from making that mistake.

In Practice/Process: Activities should be designed in
such a way that we do not have to do them all over again if
we make a mistake. Iterative and incremental processes are
good examples of this. Practices such as Collective Product
Ownership, Collaborative Design, Self-Organized Teams
and fluid communication channels around the people
working on the product provide excellent means of reducing
the impact of mistakes. A culture that fosters exploration and
innovation must also “applaud” mistakes as the acceptable
cost of trying out new things.

5) Force Function
Things should not allow us to make use of them if there

is danger of grave consequences of that use.
In everyday things: Door finger protection for babies are

examples of force functions put in place to avoid painful
finger injuries.

In Practice/Process: Processes and practices should
establish hard boundaries on activities that run the risk of
breaking up the team or seriously compromising product
quality. For example, the practice of working long hours can
drive a developer to burnout, and is typical of processes

driven by unrealistic scheduling. The force function might
then the opposite practice, disciplined 40hs a week work; it
is called Energetic Work and included as one of the core
Extreme Programming practices by Kent Beck [19]. Another
example is when a person is empowered to break a tie in an
argument.

III. A FRAMEWORK FOR TOOL EVALUATION
Software development tools are meant to help to work

more efficiently, or to reduce the probability of mistakes, or
to record information. The way the tool supports the process
and practice of its users (the ones doing the work), its
alignment with that process and practice, can determine the
appropriateness of the tool and its overall usefulness.

In this Section, we outline a simple framework for tool
evaluation based on the usability principles described. First,
we describe how tool fitness to process and practice can be
evaluated through the usability principles presented. We
offer a set of criteria for tool evaluation for each principle,
and present an example for each criterion. Finally, we
present the concrete steps to be performed for tool
evaluation.

A. Tool Evaluation Criteria Checklist by Usability
Principle

1) Feedback
A tool should be evaluated according to its capacity to

provide feedback on its successful use to support a given
practice or process. Possible criteria are:

a) Calculation and display of metrics that reflect the
performance of practices or process activities.

b) Validates activity results (e.g., automated test
execution, static analysis, and model checkers).

c) Supports collaboration and interaction between
individuals that provide the actual feedback. For
example, centralized code versioning tools use two
styles for coordinating modifications, copy-merge-
commit (as in CVS, Concurrent Versioning System,
and SVN, Subversion) and lock-modify-commit (as
in Microsoft's old Source Safe). The copy-merge-
commit style favors parallel modification and fast
code integration; thus, providing timely feedback,
whereas lock-modify-commit code versioning tools
tend to delay integration and thus.

2) Affordance/Natural Mapping
A tool should be evaluated according to how its external

appearance suggests its purpose and meaning. Possible
criteria are:

a) Uses the user's language to describe practices and
process activities.

b) Workflow steps in the tool match the practices and
process activities (tools developed in-house tend to
work much better in this respect). As an example,
Defect Lifecycle Tracking tools need to have a
defect lifecycle that matches the one in use by the
organization.

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 39 / 679

c) Is accessible to the people doing the job and they
have the appropriate privileges. As a
counterexample, only a manager might be allowed to
create tasks on which developers must book hours.

d) Supports recording rationale and contextual
information to further under-standing between
teams, especially in activities that coordinate work
between different teams. For example, an
Architecture Modeling Tool should record design
decision rationale (see a practical application to
documentation in [20], “Seven Rules for Sound
Documentation”, page 24).

3) Matching Conceptual Models
A tool should be evaluated according to the match (or

lack thereof) between the tool's model of the work and the
actual way the work is performed. Possible criteria are:

a) Supports specific practices and activities that are
necessary for the process, practice or methodology:
For example, a Scrum planning tool over a general
purpose issue tracker, requirements management
tool over a document editing requirements plugin,
as opposed to end-to-end, generic software
engineering tools.

b) Specificity: Tools built for a specific practice tend
to match that practice very well and avoid cluttering
the interface with low value features (like Jenkins
for Continuous integration, described in Example 1
in Section IV.A, or most versioning systems, or
UML modeling tools). In practice, such specificity
needs to be balanced with good integration with
tools that support related practices.

c) Cohesion: The tool supports multiple activities but
they are deeply interwoven (e.g., versioning
systems and requirements tracking systems, when a
developer commits a change to implement a
requirement or bug fix, the tool records the
relationship between the two, providing
traceability).

d) Flexible customization usually allows users to bend
the tool to better align it with their own process and
practices.

4) Tolerate Mistakes
A tool should be evaluated according to how well it

reacts to problems and how helpful it its in guiding or
supporting recovery of users towards more effective
behavior. Possible criteria are:

a) Does not make judgmental assertions about the
meaning of a practice or process activity. For
example, in the case of metrics (that provide
feedback), a tool should not establish fixed criteria
for determining success. In the words of Tobias
Mayer “metrics should be used to measure truth —
not to measure success or failure. Only measures of
truth can be trusted not to incite quick-fix behavior
in a team” [21]. This might mean tools driving
teams to react to the judgment of the tool by
“pushing the dirt under the rug”. As a concrete
example, a while ago we helped one team to handle

a problem in their automated tests. It only took a
little time to isolate, but it had driven them weeks
ago to disable all tests because they were failing –
They had reacted inappropriately to the feedback of
their tool and abandoned the good practice of
automated testing.

b) Provides means to establish flexible thresholds for
status, alarms and notifications, so that teams can
configure them according to their context. As an
example, tools that generate many e-mails a day
with false positive results for a check (e.g., server
monitor reporting incorrectly that a server is down)
tend to drive teams to ignore any of those e-mails.

5) Force Function
A tool should be evaluated according to the force

functions it provides to avoid potentially grave consequences
of inappropriate use. Possible criteria are:

a) Supports rules for automatic recognition of
inconsistencies. For example, does not allow
improper use of a modeling language construct (In
the case of UML, a semi-formal language, this can
easily become a nuisance).

b) Warns or sets hard restrictions when practices reach
unhealthy limits. For example, for a project
management tool, a force function might be
forbidding team overload.

c) Does not support poor practices because they tend
to establish the inappropriate behavior into the team
or organization and make it harder to fix in the
future. As an example, consider tools that create an
economy of compensation (points, money, etc.) for
specific activities (e.g., bug fixing). Such practices
tend to promote the unthinking pursuit of the
compensated activities without regard to the value
they provide [22]. Putting a tool in place for that
will only make the practice harder to change.

IV. TOOL EVALUATION
In this section, we propose a method for applying the

usability principles and criteria to tool evaluation. Evaluation
is done for all practices and process activities at the same
time to avoid multiple iterations that might make the
framework cumbersome.

To evaluate each tool:
1. Identify practices and process activities supported by

the tool.
2. For each usability principle

a. Qualitatively evaluate the tool on each
criteria related to the principle.

b. Rate the tool on Process and Practice
support.

The rating provides a simple transformation from the
qualitative evaluation of the criteria above into a
quantitative rating describing how well the tool follows
the principle for the selected practices and process
activities. Ratings can be assigned according to the
following guidelines:

Low: if the tool fulfills none of the criteria.

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 40 / 679

Medium: if the tool fulfills one of the criteria.
High: if the tool fulfills two or more of the criteria.

In the following checklists, the evaluation notation is:
√ Complies with criteria (comments for specific

practices or activities)
~ Partial compliance or biased interpretation

(explanation)
X No compliance or particularly negative design

regarding the principle.

A. Example 1: Jenkins Continuous Integration Server
Name: Jenkins
Type: Free Software
Workflow/Phase: Configuration Management
Area of focus: Practice
Main Practices/Activities: Continuous Integration
Description: “Jenkins monitors executions of repeated

jobs, such as building a soft-ware project or jobs run by cron.
Among those things, current Jenkins focuses on the
following two jobs:

• Building/testing software projects continuously [...]
• Monitoring executions of externally-run jobs” [23]

Jenkins Evaluation Checklist

1) Feedback
a) Calculates and displays metrics.√ (product build

and test status)
b) Automatically validates activity results. √

(automated build and tests)
c) Supports collaboration and interactions that provide

feedback.√ (sends e-mails to the whole team when
a build fails)

2) Affordance/Natural Mapping
a) Uses the user's language to describe practices and

process activities.√ (Main entities are builds,
dependencies, jobs).

b) Its workflow steps match the practices and process
activities.~ (is centered on one practice, has few
process issues).

c) Is accessible to the people doing the job and they
have the appropriate privileges. √ (simple
authorization scheme, usually developers install and
manage it).

d) Provides support to record rationale and other
contextual information.~ (allows users to comment
almost all entities, but has no focus in rationale).

3) Matching Conceptual Models
a) Supports only practices and activities that are

necessary for the process, practice or methodology.
√ (Supports only the Continuous Integration
practice).

b) Is designed for one specific practice.√ (See
previous)

c) Supports cohesively multiple activities when they
are deeply interwoven.√ (See previous)

d) Provides flexible customization for better alignment
to process and practices.√ (Provides extensive
customization and extensions through third-party
plugins of which it has a built in market with an
many options, besides its own API and being Free
Software)

4) Tolerate Mistakes
a) Does not make judgmental assertions about the

meaning of a practice or process activity. ~ (a
broken build is considered negatively by the tool,
but that is defined at the core of the practice, not the
tool)

b) Provides means to establish flexible thresholds for
status, alarms and notifications.√ (Allows to set
custom thresholds on test code coverage, failed
build mails can be sent to the author of the change
or to the whole team).

5) Force Function
a) Supports rules for automatic recognition of

inconsistencies. √ (Checks input values by
attempting to use them proactively and offers clear
error messages to advice on correcting errors).

b) Warns or sets hard restrictions when practices reach
unhealthy limits. X (It does not limit too long
builds).

c) Does not promote poor practice.√ (It is a lean tool
focused in a single practice without unnecessary or
counterproductive features).

TABLE I. JENKINS EVALUATION MATRIX

Process
Activity/
Practice

Feedbac
k

Afforda
nce/

Natural
Mappin

g

Matchin
g

Concept
ual

Models

Tolerate
Mistake

s
Force

Functio
n

Continuo
us
Integratio
n

High High High Mediu
m High

The results in Table I show overall high scores for

Jenkins Continuous Integration server. This fits the fact that
it is a tool targeted to a single practice. In other words, if the
users follow the practice of Continuous Integration, it is
reasonable to expect Jenkins to evaluate as a good candidate
for successful implementation.

B. Example 2: Pivotal Tracker Project Management
Name: Pivotal Tracker
Type: Application as a Service
Workflow/Phase: Requirements Management/ Project
Management (Scrum)
Area of focus: Process
Main Practices/Activities: Requirements Management/
Project Planning/Project Tracking
Description: “Simple, collaborative project
management.” [24].

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 41 / 679

Pivotal Tracker Evaluation Checklist

1) Feedback
a) Calculates and displays metrics.√ (e.g., release

burn-down, expected velocity)
b) Automatically validates activity results. √ (if

expected velocity does not match actual velocity, it
modifies the plan expected end date accordingly;
orders requirements by priority automatically)

c) Supports collaboration and interactions that provide
feedback.√ (integrates tracking information on
completed items from the whole team)

2) Affordance/Natural Mapping
a) Uses the user's language to describe practices and

process activities.√ (assuming users are familiar
with Scrum)

b) Its workflow steps match the practices and process
activities.√ (Planning and Tracking are supported
naturally, if a Release plan is in place for the
Release Burn-down to work)

c) Is accessible to the people doing the job and they
have the appropriate privileges. √ (simple
authorization scheme, owner, member, viewer
roles).

d) Provides support to record rationale and other
contextual information. X (Very little in the way or
rationale or contextual information beyond a
general description of each user story)

3) Matching Conceptual Models
a) Supports only practices and activities that are

necessary for the process, practice or methodology.
√ (Supports counting story points for bugs, but
strongly discourages it).

b) Is designed for one specific practice. √ (Generally
well aligned with Scrum)

c) Supports cohesively multiple activities when they
are deeply interwoven.√ (Planning and Tracking)

d) Provides flexible customization for better alignment
to process and practices.~ (Very limited, charts in
particular)

4) Tolerate Mistakes
a) Does not make judgmental assertions about the

meaning of a practice or process activity.~
(Velocity changes in recent iterations affect heavily
and automatically the planned outcome of the
project, but this is usually good practice after the
first few iterations)

b) Provides means to establish flexible thresholds for
status, alarms and notifications. X (None)

5) Force Function
a) Supports rules for automatic recognition of

inconsistencies.√ (Plans and predicts schedule
automatically based on simple velocity metric)

b) Warns or even sets hard restrictions when practices
reach unhealthy limits. X

c) Does not promote poor practice. X (Charts and
reports are unwieldy)

TABLE II. PIVOTAL TRACKER EVALUATION MATRIX

Process
Activity/
Practice

Feedbac
k

Afforda
nce/

Natural
Mappin

g

Matchin
g

Concept
ual

Models

Tolerate
Mistake

s
Force

Functio
n

Requirem
ents
Manage
ment

High Mediu
m High Mediu

m Low

Project
Planning High High High Mediu

m Low

Project
Tracking

HIgh High Mediu
m

Mediu
m

Mediu
m

The results in Table II show overall medium-high scores

for Pivotal Tracker. This fits the fact that it is a tool targeted
to several processes. In other words, fitting multiple user´s
processes is more challenging for the tool since it spans a
wider range of activities and practices. It still evaluates as a
good candidate for successful implementation, but the
insights provided by the checklist should be taken into
account to reduce risks during tool implementation.

V. CONCLUSION AND FUTURE WORK
The purpose of this paper was to validate the

applicability of our usability-based framework for analyzing
tool fitness to the user's process and practice (not to validate
its results). The principles selected and the criteria proposed
to evaluate their concrete application allowed us to conduct
the evaluations without obstacle, and the framework did not
turn up any inconsistencies during the process. Nonetheless,
there is significant overlap between some of them. For
example, a tool that has a Matching Conceptual Model will
usually have Natural Mapping, and both Feedback and
Tolerate Mistakes are related to metrics, although with
different perspectives. Overall, the criteria and usability
terminology have been effective in supporting the discussion
and description of tool fitness to process and practice. One
valuable output of the evaluation that complements other
evaluation methods based on tool requirements is the
qualitative comments produced for each checklist item,
which might help implementors to assess areas of risk during
the implementation process (e.g., for Pivotal Tracker, item
2.b highlights the need to define release items in the tool if
we need to use the release burn-down chart).

Future work includes formal experimentation with tools
to validate evaluation results, refinement of principles and
criteria, peer feedback and expert validation of the
framework, refinement of the evaluation template structure,
an in-depth study of the conceptual issues explored in this
paper, and the application of the framework to the evaluation
of fitness between organizations and practices and processes.

We have learned that the framework is coherent and a
viable subject of research, and that the resonance in
terminology between usability and process and practice that

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 42 / 679

inspired this work holds in the practical application to the
real tools evaluated.

ACKNOWLEDGMENT
Universidad Nacional de La Matanza and Universidad

Nacional de Tres de Febrero fund this research.

REFERENCES
[1] A. Guha Biswas, R. Tandon, and A. Vaish, “A case tool

evaluation and selection methodology,” International Journal
of Strategic Information Technology and Applications
(IJSITA), 4(2), 2013, pp. 48-60,
doi:10.4018/jsita.2013040104.

[2] E. Miranda, M. Berón, G. Montejano, M. J. Pereira, and P.
Henriques, “NESSy: a new evaluator for software
development tools,” In 2nd Symposium on Languages,
Applications and Technologies (SLATe'13), Faculdade de
Ciências da Universidade do Porto, 2013, pp. 21-38, ISBN
978-3-939897-52-1

[3] E. Anjos and M. Zenha-Rela, “A framework for classifying
and comparing software architecture tools for quality
evaluation.” In: B. Murgante, O. Gervasi, A. Iglesias, D.
Taniar, B.O. Apduhan, Eds. ICCSA 2011, Part V. LNCS, vol.
6786, pp. 270–282, Springer, Heidelberg, 2011.

[4] I. Dalmasso, S.K. Datta, C. Bonnet, and N. Nikaein, "Survey,
comparison and evaluation of cross platform mobile
application development tools," Wireless Communications
and Mobile Computing Conference (IWCMC), 2013 9th
International, 1-5 July 2013, pp. 323-328, doi:
10.1109/IWCMC.2013.6583580.

[5] Center for Assured Software, National Security Agency, US,
“CAS Static Analysis Tool Study – Methodology”, December
2012 [Online]. Available from: http://samate.nist.gov/
2014.05.11.

[6] J. F. Cochran and H.N. Chen, “Fuzzy multi-criteria selection
of object-oriented simulation software for production system
analysis,” Computers & Operations Research, vol. 32, issue 1,
January 2005, pp. 153-168, ISSN 0305-0548,
doi:10.1016/S0305-0548(03)00209-0.

[7] X. Franch and J.P. Carvallo, “Using quality models in
software package selection,” IEEE Software, January-
February 2003, pp. 34–41.

[8] R. Firth, V. Mosley, R. Pethia, L. Roberts Gold, and W.
Wood. “A Guide to the Classification and Assessment of
Software Engineering Tools” (CMU/SEI-87-TR-010).
Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1987. [Online]. Available from:
http://resources.sei.cmu.edu/ 2014.05.11.

[9] S. Comella-Dorda, J.C. Dean, E. Morris, and P. Oberndorf,
“A Process for COTS Software Product Evaluation,”
Springer-Verlag, ICCBSS 2002, LNCS 2255, pp. 86–96.

[10] M. Morisio and A. Tsoukias, “IusWare: a methodology for
the evaluation and selection of software products,” IEEE
Proceedings Software Engineering, 144 (3), 1997, pp. 162-
174.

[11] G.A. Lewis and L. Wrage, "A process for context-based
technology evaluation: examples for the evaluation of Web
services technology," Commercial-off-the-Shelf (COTS)-
Based Software Systems, 2006. Fifth International
Conference on, Feb. 2006, pp. 13-16, doi:
10.1109/ICCBSS.2006.2.

[12] A.S. Jadhav and R.M. Sonar, “Evaluating and selecting
software packages: A review,” Information and Software
Technology, vol 51.3, March 2009, pp. 555-563, ISSN 0950-
5849, doi:10.1016/j.infsof.2008.09.003.

[13] M.A.D. Storey, S. E. Sim, and K. Wong, “A collaborative
demonstration of reverse engineering tools,” ACM SIGAPP
Applied Computing Review, vol. 10 issue 1, Spring 2002, pp.
18-25.

[14] J.S. Brown and P. Duguid, The Social Life of Information,
Harvard Business School Press, 2000.

[15] I. Gat, “How we do things around here in order to succeed”,
Workshop, Agile 2010 Conference, Orlando, August 2010.

[16] A. Cockburn, “What the Agile Toolbox Contains”, Crosstalk
Magazine, November 2004.

[17] J. Nielsen, Usability Engineering, Morgan Kauffman Press,
1993.

[18] D. Norman, The Design of Everyday Things, Basic Books,
1988.

[19] K. Beck, Extreme Programming Explained, Embrace Change,
Addison-Wesley Professional, 1999.

[20] P. Clements et al, Documenting Software Architecture, Views
and Beyond, SEI Series in Software Engineering, Addison-
Wesley Professional, 2003 (second edition 2010).

[21] T. Mayer, “Simple Scrum”, Agile Anarchy Blog, [Online].
Available from:
http://agileanarchy.wordpress.com/2009/09/20/simple-scrum/,
2014.05.11.

[22] M. Poppendieck, “Team Compensation”, Better Software,
July/August 2004, [Online]. Available from:
http://www.poppendieck.com/pdfs/Compensation.pdf
2014.05.11.

[23] K. Kawaguchi, et al, “Meet Jenkins”, Jenkins Web Site,
[Online]. Available from: https://wiki.jenkins-
ci.org/display/JENKINS/Meet+Jenkins, 2014.05.11.

[24] Pivotal Labs, “Pivotal Tracker Features”, Pivotal Tracker
Web Site, [Online]. Available from:
http://www.pivotaltracker.com, 2014.05.11.

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 43 / 679

Enhanced Design Pattern Definition Language

Salman Khwaja and Mohammad Alshayeb
Information and Computer Science Department
King Fahd University of Petroleum & Minerals

Dhahran, Saudi Arabia
e-mail: {khwaja & alshayeb} @kfupm.edu.sa

Abstract—Design patterns are abstract descriptions of object-
oriented designs, which appear repeatedly for a possible high-
quality solution. Many design pattern description languages
have been proposed. These languages use a combination of a
natural language, UML-style diagrams, complex mathematical
or logic based formalisms, or eXtensible Markup Language
(XML). In this paper, we propose an extension to the Design
Pattern Description Language (DPDL), which is based on XML
to support composite design patterns. A composite pattern is a
special type of design patterns that is formed from a composition
of other patterns. Composite patterns capture the synergy
arising from the different roles an object plays in the overall
composition structure. The enhanced Design Pattern
Description Language (eDPDL) is found to be effective in
capturing the composite design pattern while representing the
whole composite design pattern in a single description.

Keywords—design pattern language; composite design
patterns; UML; XML; DPDL

I. INTRODUCTION

A composite design pattern (also called as composite
pattern) is a special type of design pattern that represents a
design theme, which keeps recurring in specific contexts.
Composite design patterns are the composition of other simple
design patterns. The main purpose of the composite design
pattern is not to join multiple design patterns but it is to
capture synergy in the overall structure of the system.
Therefore, composite patterns are more than just the sum of
the constituting patterns [1].

One of the purposes of the composite design patterns is to
enable a higher level of reuse than individual design patterns
and objects [2][3][4]. The modeling of the structure and
behavior of the composite design patterns is usually done on
object-oriented modeling techniques that use graphical
notations such as the Unified Modeling Language (UML)
[5][6]. UML has become one of the most widely used general-
purpose languages for specifying, constructing, visualizing,
and documenting artifacts of software-intensive systems. It
provides a collection of notations to capture different aspects
of the system and sub-systems under development [7].

The objective of this paper is to propose an extension to
the Design Pattern Definition Language (DPDL) [8], which is
called extended Design Pattern Definition Language
(eDPDL), to be able to express the composite design patterns
in a reusable fashion. DPDL was originally created to share
design pattern implementation details. DPDL already covers
the structural and behavioral aspects of the design pattern and
is also flexible. However, DPDL is restricted to specify only

the structural and behavioral aspects of a single design pattern.
DPDL does not provide any means to specify that a particular
component or action is originally part of some simple design
pattern. Therefore, the composite design pattern description in
DPDL becomes a description of one big complex design
pattern instead of the aggregation of few simple design
patterns.

This motivated us to propose enhancement to DPDL in
order to handle composite design patterns. This will enable us
to distinguish the components of individual design patterns
and their behavior, which makes the composite design pattern
less complex and more understandable.

The paper is organized as follows: Section 2 contains the
literature review, in Section 3, the proposed enhancement is
presented in Section 4. In Section 5, we present an example to
validate the proposed enhancement and finally the conclusion
is presented in Section 6.

II. LITERATURE REVIEW

In our literature survey, we could identify only three
composite design patterns. These are: Active Bridge,
Bureaucracy and Model View Controller (MVC) design
patterns.

Active Bridge is usually used in recurring types of
frameworks, where the application is needed to be connected
with a resource like widget or inter-process communication
channel. At the heart of the Active Bridge pattern is Bridge
Pattern. Other than that proxy, Observer, Abstract Factory and
Factory method design patterns are also used for different
components of Active Bridge [9][10].

The second commonly mentioned composite design
pattern is Bureaucracy. Bureaucracy design pattern is created
using Chain of Responsibility, Composite, Mediator and
Observer design patterns. Bureaucracy is also considered as a
complex design pattern since it is used in the resource
management and interaction of the complex objects. This
pattern is highly efficient in developing large application
where consistency is important [11]. This design pattern is
used in many frameworks including ET++ [10], InterViews
[12] and SmallTalk Framework [13].

The most commonly used composite design pattern is
Model View Controller (MVC). MVC is also used in
designing 3-tier or n-tier architecture frameworks. It is used to
handle multiple user interfaces based on the user information
or interaction. MVC allows modifying a user interface
independent of the application logic or data associated with it
[14]. It is usually based on Observer and Strategy design
patterns. There are many variations of this design pattern used

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 44 / 679

in the industry like Model View Presenter (MVP) [15] and
Model View ViewModel [16].

Although many researchers have tackled the problem of
design pattern description or definition languages but very few
worked on the language for the composite design pattern
definition or description.

Vlissides proposed a visual notations called Pattern: Role
annotation that adds scalability and readability over the Venn
Diagram notation [17]. This notation focused on static
properties of the design pattern compositions. The notation
failed to capture the behavioral aspect of the operations in a
design pattern.

Dong et al. [18] used First Order Logic (FOL) theories to
specify the structural aspect of patterns and Temporal Logic
of Action (TLA) of specify their behavioral aspect. The same
techniques were used to specify pattern composition. The
specification of the structural aspect of a pattern used
predicates for describing classes, state variables, methods and
their relations.

Dong et al. also investigated the commutability of pattern
instantiation with pattern integration (composition). A pattern
instantiation was defined as a mapping from names of various
kinds of elements in the pattern to classes, attributes, methods,
etc. in the instance. An integration of two patterns was defined
as a mapping from the set union of the names of elements in
the two patterns into the names of the elements in the resulting
pattern. This formal definition of integration is
mathematically equivalent to the multiple name mapping
approach [18].

Taibi and Ngo [19] also took an approach very similar to
the one by Dong et al. Instead of defining mappings for pattern
compositions and instantiations, they used substitution to
directly rename the variables that represents pattern elements.
For instantiation, the variables are renamed to constants,
whereas for composition, they are renamed to new variables.
The composition of two patterns is then the logical
conjunction of the predicates that specify the structural and
behavioral properties of the patterns after substitution.

Helm et al. [20] used notion of contracts for describing the
behavioral composition of the objects. However, his approach
was much broad and not specific to composite design patterns.
In addition, it only emphasized on the functional or behavioral
aspect of the system and the interactions of the objects in the
system.

All of these approaches could be used for composite
design patterns but they were not specifically designed for the
composite design patterns but were for general composition of
design patterns in the system.

Riehle [21] investigated the composite design patterns as
a recurring framework. In his technique, he used role-based
analysis and described the design patterns composition using
role-diagrams. Role-diagrams were supplemented with
composition constraints, which specify the set of roles an
object may, have to, or must not play.

Dong [22] studied the composite patterns in formal
settings. He called composition of two or more patterns as
name mapping. He defined name mapping as “classes and
objects declared in a pattern with the classes and objects
declared in the composition of this pattern and other patterns"

[22]. Dong used formal mathematical specification for the
structural and behavioral properties of the instance of the
composite design pattern.

III. DESIGN PATTERN DESCRIPTION LANGUAGE

DPDL a design pattern description language that provides
a flexible and a simple way to express patterns [8]. DPDL
covers the maximum possible characteristics of the design
pattern in a simple way. Figure 1 shows the high level schema
for the DPDL language. At the left most in the diagram is the
DesignPattern element; for each design pattern there is a
DesignPattern element.

Figure 1. DPDL High Level Schema

As can be seen from Figure 1, the design pattern element
has three sub elements; (a) structuralAttributes, (b)
behavioralAttributes and, (c) ForFuture. The Structural
attribute covers the structural properties of the design pattern.
The behavioral attribute defines the behavioral aspect of the
design pattern. Finally, ForFuture element is for extending
DPDL to add other elements to cover new features of the
design pattern in the future.

IV. THE PROPOSED ENHANCEMENTS

Enhancements are made on the original DPDL schema in
order to handle the composite design patterns. This section
covers these changes. The changes made on the DPDL to
handle composite patterns are done on the attributes; no new
elements were introduced. Therefore, eDPDL schema is
backward compatible; thus, all the existing design pattern
instances created using DPDL are still valid on eDPDL.

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 45 / 679

Two new attributes: isComposite and ConstituentPatterns
have been added to DesignPattern element, as shown in Figure
2. isComposite attribute is of Yes/No type; if this attribute is
Yes that means the description is for a composite pattern thus
the designer of the pattern needs to put the design patterns
involved in the composite pattern in the ConstituentPatterns
attribute. ConstituentPatterns attribute is of a list type, which
means that this attribute can have a list of values delimited by
a space.

Figure 2. Changes in Attributes of DesignPattern element of DPDL

A. Changes in StructuralAttribute’s Elements

In the StructuralAttributes element, there are four
elements. These elements are Classes, Objects, Operations
and Relationships. Each of these elements has a subgroup
element. The changes made in StructuralAttributes element
are restricted to the changes in the subgroup element of the
four main elements of the StructuralAttribute’s element. The
changes are shown in Figure 3.

Figure 3. Structural Attributes of DPDL and changes made for eDPDL

As can be seen from Figure 3, AssociatedPatterns attribute
(highlighted with a thick rectangle) has been added, hence,
each element of class, operation, object or relationship is
linked to one or more pattern of the composite design pattern.
Therefore, an operation belonging to a particular design
pattern in a composite design pattern is mentioned by giving
the name of that particular design pattern in the
AssociatedPatterns attribute for that particular subgroup
element of the operation.

It is also important to mention that attribute name
(“AssociatedPatterns”) is used in the plural form. This means
that multiple design patterns can be listed in this attribute.
These patterns can be listed using space delimited. This is
done because in some cases a class in a composite pattern
might be represent two different patterns in a single composite
design pattern.

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 46 / 679

Figure 4. Behavioral Attributes of DPDL and changes made for eDPDL

B. Changes in BehavioralAttribute’s Elements

The second part of DPDL language is the Behavioral
Attributes element. This element has five sub elements
describing the behavioral aspect of the design pattern. In all
elements related to the behavioral attributes of the design
pattern an AssociatedPatterns attribute is added. The changes
made for the eDPDL in the DPDL are shown in the Figure 4.

V. EDPDL VALIDATION

Model View Controller (MVC) is a software architecture
pattern, which separates the representation of information
from the users’ interaction with it. There are three types of
objects in MVC. Application data is represented by Model,
the View is the output or the screen shown to the user, and the
Controller handles all the reaction to the input. The Publish-
Subscribe protocol is used between model and view - when

Model data is changed it will update the View. It also allows
attaching multiple Views to the same Model. This is achieved
by using the Observer design pattern [23]. Controller
implements a particular Strategy for the View, which is
similar to the Strategy design pattern. Therefore, this makes
MVC a composite design pattern with two design patterns
Observer and Strategy. There are different variations of the
Model View Controller (MVC) design pattern. Below is one
of them [2].

Figure 5. Model View Controller Class Diagram

As can be seen in Figure 5 the shown version of the Model
View Controller (MVC) design pattern is composed of
Observer and Strategy patterns. The Observer pattern is
shown on the left side and the Strategy pattern is on the right
side. The view class performs the role of both Strategy design
pattern and observer design pattern.

This example shows that there can be a component in the
composite design pattern, which acts for more than one design
pattern. The update operation in the View class of Model
View Controller design pattern is acting in a role of Observer
and the contextInterface operation is acting in a role of
Strategy design pattern.

We can see in Classes Node that Model Class is defined as
part of Observer design pattern and similarly Controller class
is defined as link to the Strategy design pattern. However,
View Class is shown as part of both Observer and Strategy
design group.

Similarly, in Operations group, different operations are
also linked with their respective design pattern by listing the
pattern in the AssociatedPattern element of the particular
operation subgroup. Similarly, same approach is used in the
Objects and Relationships Nodes.

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 47 / 679

<StructuralAttributes>
 <Classes>
 <SubGroup groupID="ModelClassGroup" noOfClasses="1" >
 <Class className="Model" isAbstract="Yes" isParent="Yes"
hasConstructor="Yes" classModifier="public" isDerived="No"/>
 </SubGroup>
 <SubGroup groupID="ConcenteModelClassGroup"
noOfClasses="1" >
 <Class className="ConcreteModel" isAbstract="No"
isParent="No" hasConstructor="Yes" classModifier="public"
isDerived="Yes" parentId="Model"/>
 </SubGroup>
 <SubGroup groupID="ViewClassGroup" noOfClasses="1">
 <Class className="View" isAbstract="Yes" isParent="Yes"
hasConstructor="Yes" classModifier="public" isDerived="No" />
 </SubGroup>
 </Classes>
 <Operations>
 <SubGroupOp>
 <Function returnType="Null" containingClassId="Model"
functionName="Attach" functionModifier="public"
inputVariablesType="View" />
 </SubGroupOp>
 </Operations>
 <Objects>
 <SubgroupOb>
 <Object objectName="Views" objectClass="ICollection"
containingClass="Model" objectModifier="private" isList="Yes"
ListType="ICollections"/>
 </Objects>
 <RelationShips>
 <SubgroupR>
 <Relation endClass="View" initiatingClass="ConcreteView"
relationName="Generalization" />
 </SubgroupR> </RelationShips>
</StructuralAttributes>

Figure 6. Example of Structure Attributes of MVC Design Pattern written
in DPDL

<StructuralAttributes>
 <Classes>
 <SubGroup groupID="ModelClassGroup"
noOfClasses="1" AssociatedPatterns="Observer">
 <Class className="Model" isAbstract="Yes"
isParent="Yes" hasConstructor="Yes" classModifier="public"
isDerived="No"/>
 </SubGroup>
 <SubGroup groupID="ViewClassGroup"
noOfClasses="1" AssociatedPatterns="Observer Strategy">
 <Class className="View" isAbstract="Yes"
isParent="Yes" hasConstructor="Yes" classModifier="public"
isDerived="No" />
 </SubGroup>
 <SubGroup groupID="ControllerClassGroup"
noOfClasses="1" AssociatedPatterns="Strategy">
 <Class className="Controller" isAbstract="Yes"
isParent="Yes" hasConstructor="No" classModifier="public"
isDerived="No"/>
 </SubGroup>
 </Classes>
 <Operations>
 <SubGroupOp AssociatedPatterns="Strategy">
 <Function returnType="Null"
containingClassId="View" functionName="ContextInterface"
functionModifier="public" inputVariablesType="Null" />
 </SubGroupOp>
 </Operations>
 <Objects>

 <SubgroupOb AssociatedPatterns="Observer">
 <Object objectName="Model"
objectClass="ConcreteModel" containingClass="ConcreteModel"
objectModifier="private"/>
 </SubgroupOb>
 </Objects>
 <RelationShips>
 <SubgroupR AssociatedPatterns="Observer">
 <Relation endClass="Model"
initiatingClass="ConcreteModel"
relationName="Generalization"></Relation>
 </SubgroupR>
 </RelationShips>
</StructuralAttributes>

Figure 7. Example of Structure Attributes of MVC Design Pattern Written
in eDPDL

 <BehavioralAttributes>
 <create ObjectId="views" callingClass="Model"
returns="null" Collection="Yes" objectClass="ICollection"
createType="ReadOnly" AssociatedPatterns="Observer"/>
 <call callingClass="Model" returns="null"
CallFrom="function" variableType="{Views}" calledClass="View"
variables="{v}" Callerfunction="Attach" Calledfunction="Add"
AssociatedPatterns="Observer" />
 <call callingClass="Model" returns="null"
CallFrom="function" variableType="{Views}" calledClass="View"
variables="{v}" Callerfunction="Detach" Calledfunction="Remove"
AssociatedPatterns="Observer" />
 <call callingClass="Model" returns="null"
CallFrom="function" variableType="{Views}" calledClass="View"
variables="{v}" Callerfunction="Notify" Calledfunction="Update"
AssociatedPatterns="Observer" />
 <create ObjectId="Controller" callingClass="View"
returns="null" Collection="null" objectClass="Controller"
createType="Readonly" AssociatedPatterns="Observer" />
 <SetObject CallingClass="View" ObjectId="controller"
ObjectClass="Controller" SetTo="Controller"
AssociatedPatterns="Observer" />
 <call callingClass="View" returns="null"
CallFrom="Function" variableType="null"
calledClass="ConcreteController" variables="null"
Calledfunction="AlgorithmInterface" calledThrough="Controller"
Callerfunction="ContextInterface" AssociatedPatterns="Observer" />
 <create ObjectId="ViewState" callingClass="object"
returns="null" Collection="No" objectClass="object"
createType="null" AssociatedPatterns="Observer" />
 <SetObject CallingClass="ConcreteView" ObjectId="Model"
ObjectClass="ConcreteModel" SetTo="Model.ModelState"
AssociatedPatterns="Observer" />
 </BehavioralAttributes>

Figure 8. Example of Behavioral Attributes of Model View Controller
Design Pattern

Figure 6 shows the structural view of the MVC design
pattern written using the original definition of DPDL. Figure
7 and Figure 8 show the structural and the behavioural views
of the MVC Design Pattern written in eDPDL respectively.
As can be seen, the structural view of the original DPDP does
not have AssociatedPatterns tag. Without having this tage, it
will be impossible to recognize if the described design pattern
is a one large design pattern or the sum of two or more design
patterns.

The eDPDL is an extension of DPDL, which not only
handles describing the regular single design patterns in a
singular fashion but can also describe composite design

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 48 / 679

pattern as a combination of two or more design patterns. This
makes it clear if the design pattern is a composite design
pattern or not. The original DPDL description cannot
differentiate between composite design patterns and single
design pattern. eDPDL is also backward compatible, that is all
design pattern which were described based on DPDL schema
will work on the schema of eDPDL without any change.

VI. CONCLUSION AND FUTURE WORK

Composite design patterns are usually handled through
UML or formal mathematical notations, which are either too
complicated or they do not cover the roles and operations
comprehensively for the composite design patterns. Thus, the
roles that the classes, operations, and attributes play in the
pattern get lost. To accomplish the goals of the design pattern,
pattern related information becomes important. If this
information is not explicitly, the designers are forced to
communicate at the class and object level, instead of the
pattern level [24].

In this paper, we proposed an extension to DPDL to handle
the composite design patterns. The proposed extension,
eDPDL, adds attribute to DPDL to handle composite patterns
in an easy and efficient way. An example was provided and
we found that eDPDL is effective in handling composite
design patterns and is also easily understandable as it is built
on XML.

Our future research includes extending eDPDL to include
other design patterns such as security. We also plan to provide
an automated tool to fully support eDPDL.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support
provided by the Deanship of Scientific Research at King Fahd
University of Petroleum and Minerals, Saudi Arabia.

REFERENCES
[1] D. Riehle and H. Züllighoven, “Understanding and using patterns in

software development,” Theor. Pract. Object Syst., vol. 2, 1996, pp. 3-
13.

[2] A. Shelest. Model View Controller, Model View Presenter, and Model
View ViewModel Design Patterns. Available:
http://www.codeproject.com/Articles/42830/Model-View-Controller-
Model-View-Presenter-and-Mod. [Retrieved 2014: 18 August 2014].

[3] P. Alencar, D. Cowan, J. Dong, and C. Lucena, “A pattern-based
approach to structural design composition,” in Computer Software and
Applications Conference, 1999. COMPSAC'99. Proceedings. The
Twenty-Third Annual International, 1999, pp. 160-165.

[4] J. Dong, “Design component contracts: model and analysis of pattern-
based composition,” Ph. D. Thesis, Computer Science Department,
University of Waterloo, 2002.

[5] J. Rumbaugh, I. Jacobson, and G. Booch, "The Unified Modeling
Language User Guide," ed: Addison-Wesley, 1999.

[6] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual vol. 2: Addison-Wesley, 2005.

[7] L. Fuentes-Fernahndez and A. Vallecillo-Moreno, “An Introduction to
UML Profiles,” in The European Journal for the Informatics
Professional, 2004, pp. 5–13.

[8] S. Khwaja and M. Alshayeb, “Towards design pattern definition
language,” Software: Practice and Experience, vol. 43, 2013, pp. 747–
757.

[9] P. M. Yelland, “Creating host compliance in a portable framework: a
study in the reuse of design patterns,” ACM SIGPLAN Notices, vol.
31, 1996, pp. 18-29.

[10] A. Weinand and E. Gamma, “ET++–a portable, homogenous class
library and application framework,” Computer Science Research at
UBILAB, 1994, pp. 66-92.

[11] D. Riehle, “Bureaucracy,” 1997,
[12] M. A. Linton, J. M. Vlissides, and P. R. Calder, “Composing user

interfaces with InterViews,” Computer, vol. 22, 1989, pp. 8-22.
[13] D. Riehle, B. Schäffer, and M. Schnyder, “Design of a Smalltalk

Framework for the Tools and Materials Metaphor,”
Informatik/Informatique, vol. 3, 1996, pp. 20-22.

[14] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern Oriented
Software Architecture: On Patterns and Pattern Languages vol. 6:
Wiley, 2007.

[15] M. Potel, “MVP: Model-View-Presenter The Taligent Programming
Model for C++ and Java,” Taligent Inc, 1996,

[16] J. Smith, “WPF apps with the model-view-ViewModel design pattern,”
MSDN magazine, 2009,

[17] J. Vlissides, "Notation, Notation, Notation. C++ Report," 1998.
[18] J. Dong, T. Peng, and Y. Zhao, “On Instantiation and Integration

Commutability of Design Pattern,” The Computer Journal, vol. 54,
2011, pp. 164-184.

[19] T. Taibi and D. C. Ngo, “Formal specification of design pattern
combination using BPSL,” Information and Software Technology, vol.
45, March 2003, pp. 157-170.

[20] R. Helm, I. M. Holland, and D. Gangopadhyay, “Contracts: specifying
behavioral compositions in object-oriented systems,” in European
conference on object-oriented programming on Object-oriented
programming systems, languages, and applications, 1990, pp. 169-180

[21] D. Riehle, “Composite design patterns,” 1997, pp. 218-228.
[22] J. Dong, P. S. Alencar, and D. D. Cowan, “Ensuring structure and

behavior correctness in design composition,” in Engineering of
Computer Based Systems, 2000.(ECBS 2000) Proceedings. Seventh
IEEE International Conference and Workshopon the, 2000, pp. 279-
287.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software: Addison Wesley,
1994.

[24] J. Dong, “UML Extensions for Design Pattern Compositions,” Journal
of Object Technology, vol. 1, 2002, pp. 151-163.

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 49 / 679

Model Transformations for the Automatic Suggestion of Architectural Decisions in the
Development of Multi-Layer Applications

Jose Garcia-Alonso
Quercus Software Engineering Group

Centro Universitario de Merida
Merida, Spain

Email: jgaralo@unex.es

Javier Berrocal Olmeda
Juan Manuel Murillo

Quercus Software Engineering Group
Escuela Politecnica

Caceres, Spain
Email: {jberolm, juanmamu}@unex.es

Abstract—Multi-layer architectures have become one of the
most widely used architectures for enterprise application devel-
opment. Among other reasons, this is due to the proliferation
of development frameworks simplifying the implementation of
applications based on such architectures. However, the design of
these architectures poses a significant challenge to the software
architect, mostly due to the large number of design patterns and
development frameworks that can be used in the development of
these architectures. The present work proposes a set of model
transformations to automatically suggest the design patterns and
frameworks best suited to satisfy both the functional and non-
functional requirements of the system. This technique is part of
a broader procedure to facilitate the software architect’s task of
converting the preliminar design of an application into a specific
design tailored to the software architecture.

Keywords—Multi-layer architectures; design patterns; develop-
ment frameworks; model transformation; architectural decisions.

I. INTRODUCTION

The layer architectural pattern allows software architects to
decompose a system into decoupled components called layers.
Each layer provides services to the layer above and uses the
services of the layer below. The use of this pattern benefits the
modifiability, portability, and reusability of the final system
[1]. Therefore, multi-layer architectures are those in which
the system has been decomposed into two or more decoupled
components in a vertical manner.

These architectures are one of the most common solutions
to develop enterprise web applications, since they allow de-
velopers to focus on the application’s business logic instead
of its structural details. However, the responsibility for the
effective use of these architectures lies with each individual
development team [2]. Specifically, the figure of the software
architect takes on particular importance since the architecture
plays a very important role in the way the application will be
developed [3].

Thus, a development success will largely depend on the
architect’s experience, expertise, and skill in avoiding the
introduction of potential errors [4]. Defining the architecture
requires the architect to follow an arduous and complex process
for getting information on the system requirements and for
making decisions about how to structure the application to
comply with them [5]. First, the architect has to acquire a
great knowledge on the requirements and the relationships
between them [6]. Subsequently, the knowledge extracted from
the analysis of the requirements is used as the basis for

making decisions about how to structure the system [7]. This
implies that the architect cannot make these decisions based
on a single requirement; she must have a complete view of
all the requirements and how they interact. This conjuncture
complicates the architect’s work and exposes her to situations
in which a misinterpretation can lead to the selection of an
incorrect architectural pattern.

This situation gets even more complicated due to the
close relation between architectural patterns. The application
of a given pattern favors the selection of other patterns [8].
Therefore, the incorrect selection of a pattern can lead the
architect to make incorrect decisions during the refinement of
the architecture. This may cause the final design to fail the
requirements of the system, jeopardizing the success of the
project. Development frameworks, one of the most used tools
in complex software development [9], complicate this problem.
The increasing amount of frameworks and their rapid evolution
rate [10] make it really difficult to keep up-to-date knowledge
about them.

In this paper, a set of model transformations is presented
to automatically suggest the architectural decisions best suited
for each project. The transformations take as input the initial
design of a system, including both functional and non func-
tional requirements, and provides a set of architectural deci-
sions, including design patterns to be applied and development
frameworks to be used in the development, that would help
the system meet its requirements. This work forms part of a
broader proposal that covers the entire process of designing
multi-layer applications.

The rest of this communication is organized as follows.
Section 2 motivates this work by introducing the process of
which the presented transformations are part of. Section 3
details the proposed transformation for automatically suggest
architectural decisions. Section 4 specifies the validation per-
formed over the transformation. Section 5 gives a review of the
most significant related work. Finally, Section 6 presents the
conclusions to be drawn from this work, and some indications
of future work planned in this line of research.

II. MULTI-LAYER ENTERPRISE APPLICATIONS

Figure 1 shows a complete diagram of the process proposed
for the development of framework-based multi-layer applica-
tions.

It shows how the proposed process begins with the pre-
liminar design, normally consisting of a use case diagram and

28Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 50 / 679

Figure 1. The multi-layer application development process.

multiple activity diagrams representing the behaviour of those
use cases. In activity 1, this design has to be refined by the
architect or requirements experts to include information about
the quality attributes of the system.

Usually, the relationship between functional and non-
functional requirements are not explicitly detailed [11]. To
make these relationships explicit, the architect or the require-
ments expert mark the preliminary design with information
about the quality attributes to be met by the application. The
technique used to accomplish this marking is described in more
detail in another paper by Berrocal et al. [12].

Once the architect has the marked design, the next task
is to select the layers into which to split the application,
activity 2 in the diagram. In order to simplify this task, the
process offers to the architect an initial selection of layers.
This initial selection is based on the preliminary design and
the information added by the marks. However, is the architect
who must refine, validate or reject it based on other criteria
such as technological limitations, type of project, client, etc.
This task is done in the activity 3 in the diagram, more details
on the decision-making process followed by architects may be
found in [13].

Once the layers have been selected, the initial design can
be refined to adapt it to them. This adaptation is performed
by a transformation of the model that takes as input the
initial design and the configuration of the feature model. This
correspond to activity 4.

Feature modeling is one of the most extensively accepted
techniques for modeling variability [14]. The specific model
used in the present work follows the approach of Cardinality
Based Feature Modeling, a widely used technique with proven
usefulness in working with development frameworks [15].

To use a feature model as input or output for models trans-
formations it needs to conform to a clearly defined structure or
some sort of “metamodel”. This structure must, however, be
flexible enough to incorporate both the existing architectural

and technological elements and any new ones that may arise in
the future. For the model to have these features, we performed
a study of some of the most used development frameworks
(including Spring, Hiberate, Struts, JSF, CXF, Axis, DWR,
etc.). More details on the analysis performed for the creation
of the feature model and the decisions made for its creation
may be found in [16].

At this point in the process, the architect must specify the
design patterns and development frameworks on which to base
the final design of the application, activity 5 in the diagram.
To make this selection, the architect uses the information
contained in the feature model, and then must link each
element of the layer design to the architectural decisions that
affect it, activity 6 in the diagram.

It should be noted that we propose a specific order for
the decision making process, first the layers then the design
patterns and finally the development frameworks. However,
this order is not fixed and the architect can change it to suit
their needs and preferences The abilities exhibited by features
model to allow such flexibility were one of the main motivation
to choose them as our architectural knowledge representation
tool.

Finally, with all the information available, a model trans-
formation is performed to convert the application layer design
obtained previously into a specific design for the architectural
decisions taken by the architect, activity 7 in the diagram. For
this transformation, information is required about the develop-
ment frameworks to be used. This information is included in
the transformation by means of specific models describing the
use of a particular technology.

The present work focuses on the model transformations
used to offer a set of viable architectural suggestion to the ar-
chitect; specifically, on activities 2 and 5 in the diagram shown
in Figure 1. To accomplish these activities, the transformation
use two elements: the feature model containing information
about the design patterns and development frameworks that
can be used for the development and the preliminary marked

29Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 51 / 679

Figure 2. Layer Suggestion Transformation application diagram

design that contains information about the relationship between
the requirements and the system’s quality attributes.

III. AUTOMATIC SUGGESTION OF ARCHITECTURAL
DECISIONS

This section will describe in detail the model transforma-
tion used in activities 2 and 5 of the process presented above to
automatically provide a set of architectural decisions that can
be used for the architect to design a multi-layer architecture
that meets the requirements of the system.

A. Automatic layer suggestion

The first model transformation presented is the Layer
Suggestion Transformation. Figure 2 shows the elements of
the process involved in the application of this transformation.

The goal of this transformation is to provide to the architect
a possible set of layers to be used in the development of a
system. For this, the transformation take as input a feature
model containing the set of possible architectural decisions
and the initial design of the system marked with information
about the QAs it must fulfill. With this information, the
transformation generates a copy of the feature model in which
the suggested layers has been selected.

As shown in Figure 2, the transformation is designed in
such way that it can be applied multiple times, if the initial
design of the system is described in several models. Each
application of the transformation generates an enriched layer
suggestion that can be used as the input of the next application
of the transformation. The final result obtained is the set of
layers suggested to implement all the elements contained in
the different initial design models.

The transformation will suggest a given layer based on
specific features found in the initial design of the application
or based on the marks containing information about the QAs
of the system. Figure 3 shows a fragment of the transformation
that suggest the use of a persistence layer if the initial design
model contains any DataStore elements.

Figure 5 shows a fragment of the transformation that
suggest the use of a security layer if any element of the initial
design model is annotated with the given QAs.

This simple set of criteria for layers suggestion can be
adapted to meet company policies or architects preferences by

Figure 3. Persistence layer suggestion transformation

Figure 5. Security layer suggestion transformation

30Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 52 / 679

Figure 4. Design Patterns and Frameworks Suggestion Transformation application diagram

Figure 6. Alternative security layer suggestion transformation

enriching the transformations that suggest each of the layers.
Figure 6 shows an alternative to the security layer suggestion
that only select such layer if half or more of the use cases of
the initial design are marked with the given QAs.

The final product obtained by this transformation is a
configuration of the feature model in which the suggested
layers are selected. This model will be later used by other
transformations to further advance in the development process
and can also be used or modified by the software architect.

B. Automatic design patterns and frameworks suggestion

The next model transformation presented is the Design
Patterns and Frameworks Suggestion Transformation. Figure 4
shows the elements of the process involved in the application
of this transformation.

The goal of this transformation is to provide to the architect
a possible set of design patterns and frameworks to be used
in the development of a system. To do this, the transforma-
tion is divided in two. The first one take as input the set

of layers selected and the marked use case diagram. With
this information, the transformation generates a copy of the
feature model in which the suggested design patterns have
been selected. The second transformation take as input the
previously generated set of selected design patterns and the
marked use case diagram and generates a copy of the feature
model in which the suggested frameworks have been selected.

The transformation has been divided in two steps in order
to give architects the opportunity to refine or validate each
level of suggestion independently. Thus, the set of selected
design patterns using in the second part of the transformation
are not necessarily the ones automatically suggested by the
transformation but the ones validated by the architect.

To suggest a particular design pattern or framework the
transformation uses the information about the QAs affected
by them included in the feature model. This information is
checked against the QAs the system must fulfill, as indicated
by the marks included in the use case diagram, not forgetting
the effect the combination of different design patterns and
frameworks has on the final system QAs. Figure 7 shows a
fragment of the algorithm used to suggest a framework on the
basis of such information.

For each selected design pattern this prioritization algo-
rithm suggest the framework that best helps to fulfill the system
QAs based on the framework influence in the QAs and in
the relations with the already selected frameworks. The final
product obtained by this transformation is a configuration of
the feature model in which the suggested design patterns and
frameworks are selected. This model will be later used by
the last transformation to further advance in the development
process and can also be used or modified by the software
architect.

The transformation fragment showed in Figure 7 calculates
the priority value of a specific framework given the positively
and negatively affected QAs by such framework and by its
combination with the rest of the frameworks already selected.
The framework with the highest priority value is suggested to
be used in the development

31Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 53 / 679

Figure 7. Framework suggestion transformation

IV. VALIDATION

This section tries to detail the usefulness of the presented
transformations. To validate them, they have been applied to
two industrial project. Industrial projects were used instead of
other validation methods since, to properly ensure their impact
and benefits, reasonably large projects were needed.

The two projects involved the development of a medium-
size multi-layer application. In each project, the transforma-
tions presented here were used and the following features were
evaluated: their feasibility, their completeness and the effort
required to apply them.

The results obtained evaluating the feasibility of the trans-
formations were very positive. All the information available in
the process was used to suggest a set of architectural decision
by evaluating every architectural decision posible and choosing
the best suited to the system requirements. The only feasibility
drawbacks were found on the usability of the transformations.
Some of the detected problems were fixed, but additional effort
is needed in that regard. In general, the performed validation
strongly support that the transformations are feasible, i.e.,
they can be applied to real-life examples by averagely trained
personnel.

The results obtained assessing the completeness of the
transformations were encouraging. A significant amount of the
architectural decisions taken during the projects were automati-
cally suggested by the transformations. The goal of the process,
of which the presented transformations are part of, never was
to include the complete range of development frameworks,
but to provide a mechanism flexible enough to admit all of
them. However, this flexibility has some disadvantages, namely
the transformations will never be complete because there will
always be a new technology to add. Summarizing, the data
collected support that the transformations are complete. They
facilitate the use of a broad range of architectural decisions
and development frameworks, which is very useful for the
development multi-layer applications but they have to be
constantly updated to keep up with technological evolution.

The results obtained assessing the effort required to use the
transformations are very promising. The use of the transforma-
tions causes a small overhead in effort needed, but its effect is
diluted in the time saved during development. Additional effort
are needed when new architectural decision or technologies
have to be included into the transformations. This additional
effort can be a major drawback using them. Their potential
benefits are shown more clearly where no additional element
has to be taken into account. Concluding, the data collected
strongly support the effort needed characteristic, indicating
that the use of the proposed transformation reduces the total
effort spent in the design and development of multi-layer
applications.

V. RELATED WORK

In the area of architectural decision making, particularly
stand out for their close relationship with our proposal two
works of Zimmermann [17][18]. They present a framework for
the identification and modeling of recurring architectural deci-
sions, and for converting those decisions into design guidelines
for future development projects. In particular, Zimmerman

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 54 / 679

proposes seven Identification Rules (IRs). These rules have
their counterpart in our transformations. The main difference
between our work and that of Zimmerman is the use made of
those architectural decisions. In his work, the main objective
is to gather information for use in future projects. Our focus is
on automatically suggesting the best suited decisions to meet
the requirements of the system being developed.

In the field of Web application development, Melia et al.
[19] propose an extension to the model-driven methods of Web
application development. Their proposal is closely related to
the present work. Both pursue the same goal – to increase
the architect’s reliability when using model-driven techniques
to design the architecture of a Web application. Nevertheless,
their work focuses on RIA development, while ours is intended
to encompass the entire class of multi-layer applications. Also,
unlike our proposal, the approach in [19] does not allow for
control of the technologies used to implement the application,
and neither does it provide any mechanism to log and store
the decisions made by the architect for later use.

Finally, the studies of Antkiewicz et al. [15] and Hey-
darnoori et al. [20] are of particular interest in the area of
framework-based software development. Antkiewicz’s tech-
niques allow the modeling of specific designs for certain
frameworks, and these models are then used to generate
the source code. Heydarnoori et al. propose a technique for
automatically extracting templates for implementing concepts
of development frameworks. Unlike our work, the proposed
techniques are very code centric, and their creation requires
expertise in each framework employed. Our work is aimed at
increasing the level of abstraction in the sense of being able
to start from a technology-independent design, and progress to
obtaining the final specific design by using the decisions made
by the architect and model transformations.

VI. CONCLUSIONS AND FUTURE WORK

This paper has addressed the problems facing the soft-
ware architect when designing a multi-layer architecture. The
complexity of these architectures, the complex relationship
between functional and non-functional requirements and the
high number of development frameworks and how they affect
the non-functional requirements complicate the architect’s task.
We have proposed a technique for simplifying the architectural
decision making process by means of the use of a feature
model, a marked preliminary design and a set of model
transformations to automatically suggest the best suited design
patterns and development frameworks. The proposed technique
forms part of a broader procedure to address the transition from
an initial design of an application to a design adapted to the
architecture and technologies selected by the architect. This is
a complex process that requires deep technical knowledge of
the technologies involved. This complexity can be significantly
mitigated by using model-driven development processes.

The next steps related to the architect’s decision making
and the model transformations presented in this work will
be based on improving the prioritization algorithm used to
suggest the most appropriate development framework based
on the QAs affected by it. This algorithm can be improved by
taking into account the frameworks that has not been selected
but that can improve the system QAs if they are chosen over
the architect manual selection.

ACKNOWLEDGMENTS

This work was partially funded by the Spanish Ministry
of Science and Innovation under Project TIN2012-34945, as
well as by the Autonomous Government of Extremadura and
FEDER funds.

REFERENCES

[1] P. Avgeriou and U. Zdun, “Architectural patterns revisited - a pattern
language,” in EuroPLoP, 2005, pp. 431–470.

[2] R. S. Pressman, “Manager - What a tangled web we weave,” IEEE
Software, vol. 17, no. 1, 2000.

[3] L. Northrop, “The importance of software architecture,”
http://sunset.usc.edu/GSAW/gsaw2003/s13/northrop.pdf, SEI, Carnegie
Mellon University, [retrieved: 07, 2014], 2003.

[4] M. Dalgarno, “When good architecture goes bad,” Methods & Tools,
vol. 17, no. 1, 2009, pp. 27–34.

[5] P. Clements, R. Kazman, M. Klein, D. Devesh, S. Reddy, and P. Verma,
“The duties, skills, and knowledge of software architects,” in Pro-
ceedings of the Sixth Working IEEE/IFIP Conference on Software
Architecture, ser. WICSA ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 44–47.

[6] R. Capilla, M. A. Babar, and O. Pastor, “Quality requirements engi-
neering for systems and software architecting: methods, approaches,
and tools,” Requir. Eng., vol. 17, no. 4, 2012, pp. 255–258.

[7] P. C. Clements, “On the importance of product line scope,” in PFE,
2001, pp. 70–78.

[8] N. B. Harrison and P. Avgeriou, “How do architecture patterns and
tactics interact? a model and annotation,” Journal of Systems and
Software, vol. 83, no. 10, 2010, pp. 1735–1758.

[9] I. Vosloo and D. G. Kourie, “Server-centric web frameworks: An
overview,” ACM Comput. Surv., vol. 40, no. 2, 2008.

[10] M. Raible, “Comparing JVM web frame-
works,” Jfokus, [retrieved: 07, 2014], 2012. [On-
line]. Available: http://static.raibledesigns.com/repository/presentations/
Comparing JVM Web Frameworks Jfokus2012.pdf

[11] L. Chung and J. C. S. do Prado Leite, “On non-functional requirements
in software engineering,” in Conceptual Modeling: Foundations and
Applications, 2009, pp. 363–379.

[12] J. Berrocal, J. Garcı́a-Alonso, and J. M. Murillo, “Facilitating the
selection of architectural patterns by means of a marked requirements
model,” in ECSA, ser. Lecture Notes in Computer Science, M. A. Babar
and I. Gorton, Eds., vol. 6285. Springer, 2010, pp. 384–391.

[13] J. Garcia-Alonso, J. B. Olmeda, and J. M. Murillo, “Architectural de-
cisions in the development of multi-layer applications,” in Proceedings
of the 8th International Conference on Software Engineering Advances,
ser. ICSEA ’13, 2013, pp. 214–219.

[14] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged configuration
through specialization and multilevel configuration of feature models,”
Software Process: Improvement and Practice, vol. 10, no. 2, 2005.

[15] M. Antkiewicz, K. Czarnecki, and M. Stephan, “Engineering of
framework-specific modeling languages,” IEEE Trans. Software Eng.,
vol. 35, no. 6, 2009, pp. 795–824.

[16] J. Garcia-Alonso, J. B. Olmeda, and J. M. Murillo, “Architectural
variability management in multi-layer web applications through feature
models,” in Proceedings of the 4th International Workshop on Feature-
Oriented Software Development, ser. FOSD ’12. New York, NY, USA:
ACM, 2012, pp. 29–36.

[17] O. Zimmermann, “Architectural decisions as reusable design assets,”
IEEE Software, vol. 28, no. 1, 2011, pp. 64–69.

[18] ——, “Architectural decision identification in architectural patterns,” in
WICSA/ECSA Companion Volume, 2012, pp. 96–103.

[19] S. Meliá, J. Gómez, S. Pérez, and O. Dı́az, “Architectural and technolog-
ical variability in rich internet applications,” IEEE Internet Computing,
vol. 14, no. 3, 2010, pp. 24–32.

[20] A. Heydarnoori, K. Czarnecki, W. Binder, and T. T. Bartolomei, “Two
studies of framework-usage templates extracted from dynamic traces,”
IEEE Trans. Software Eng., vol. 38, no. 6, 2012, pp. 1464–1487.

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 55 / 679

An MDE Approach for Reasoning About UML State
Machines Based on Constraint Logic Programming

Beatriz Pérez
Department of Mathematics and Computer Science,

University of La Rioja,
Logroño, Spain.

Email: beatriz.perez@unirioja.es

Abstract—Model Driven Engineering promotes models as pri-
mary artifacts in the software engineering development process.
Such models must conform to a metamodel and held associated
constraints which restrict their validity. The verification of models
against such requirements becomes therefore a fundamental
activity to ensure the quality of a system. In this context, the
Unified Modeling Language (UML) constitutes one of the most
commonly used modeling languages to represent both static
and dynamic aspects of software systems. Nevertheless, while
the formalization and analysis of static models has motivated
a significant number of proposals, it far exceeds the research
done on dynamic models, specially on UML state machines,
considered to be the mainstay to represent the dynamics of
a system. We have defined a proposal to reason about UML
state machines based on Constraint Logic programming (CLP),
using Formula as model finding and design space exploration
tool. We show how to translate a UML state machine model
into a CLP program following a Meta–Object Facility (MOF)
like framework. Furthermore, we enhance our proposal by
giving support for the automatic translation of state machines
to Formula specifications, based on a Model Driven Engineering
(MDE) approach. The proposed framework can be used to reason
and validate UML state machine designs by generating valid
sets of execution state configurations and checking correctness
properties, using Formula as model exploration tool.

Keywords—UML state machines, OCL, Constraint Logic Pro-
gramming, reasoning, MDE

I. INTRODUCTION

Model-Driven Engineering (MDE) has been promoted for
some time as a solution to handle the increased complexity
of software development. In the MDE paradigm, models
constitute the cornerstone components during the software de-
velopment process. Such models must conform to a metamodel
and held associated constraints which restrict their validity.
Effective verification of models against such requirements
becomes therefore a fundamental activity to ensure the quality
of a system. In the context of MDE, the Unified Modeling
Language (UML) [1] has been widely accepted as the de-
facto standard object-oriented software modeling language. In
particular, UML is widely used in software design to specify
both the static and dynamic aspects of object oriented systems,
where UML Class Diagrams and UML State Machines are
considered to be the mainstay to represent the statics and
dynamics of a system, respectively.

As any other software artifact, software models may
contain design flaws. Unfortunately, in some occasions such

possible design defects are not detected until the later imple-
mentation stages, thus increasing the cost of development [2],
[3]. This situation requires a wide adoption of formal methods
as well as of verification and validation approaches. In this line,
there have been remarkable efforts to formalize UML seman-
tics, in order to address and solve the ambiguity, uncertainty
and underspecification issues detected in UML semantics.
Nevertheless, while the formalization and analysis of static
models has motivated a significant number of proposals [2],
[4], [5], [6], [7], [8], [9], [10], it far exceeds the research done
on dynamic models, specially on UML state machines or on
any other variant of Harel statecharts [11], [12]. In many of
such proposals, the formalization and analysis of UML artifacts
is accomplished carrying out a translation to another language
that preserves the semantics. The resulted translation can be
used to reason about the original model by checking predefined
correctness properties about the original model [3].

In this paper, we extend the work we presented with I.
Porres in [10], [13], which proposes an overall framework to
reason about UML Class diagrams annotated with OCL, to
give also support to UML State Machines. In particular, in
this paper we propose a framework to reason about UML State
Machine models based on the Constraint Logic programming
(CLP) paradigm. As in [10], [13], we use Formula [14] as
model finding and design space exploration tool, which is
based on algebraic data types and CLP. More specifically, we
show how to translate a UML state machine model into a
CLP program following a Meta–Object Facility (MOF) like
framework. Once a UML state machine model is translated
into the Formula language, the Formula tool can be used,
for example, to prove the reachability of specific states of
the state machine or to check for consistency requirements of
the state machine definition. Furthermore, in order to provide
full support for the automatic translation of state machines
into Formula, we have included an additional menu option
in the Eclipse plugin we presented in [10], to easily and
automatically carry out such translation. Our framework can
be used to reason and validate UML state machine designs
by generating valid sets of execution state configurations and
checking correctness properties, using the model exploration
tool Formula. We illustrate the usefulness and effectiveness of
our approach by applying it to a particular case study.

The paper is structured as follows. Section II provides
a brief introduction to UML State Machines and presents a
simple case study we use throughout the paper. Section III
gives an overview of our proposal for the translation of UML

34Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 56 / 679

Region

In Maintenance

t1:

delivered

t0

Ordered

t3:

disabled

Ready for Use

t4:

withdrawn

t2:

enabled

TransitionVertex

PseudoState

StateMachine

Event

Activity

+trigger

+region

+container +container
+region

+subvertex +transition

+effect

+source

+target

+outgoing

+incoming

+entry

+exit

+doActivity

0..1

0..1

0..1

0..1

0..1

0..1
0..1

0..1

*

*
*

1..*

1..*

1..*

1..*

0..1

0..1

0..1

1

1

Metamodel level

Model level

Intance level

+kind:PseudoStateKind

+kind:TransitionKind

TransitionKind

internal
locale
external

<<enumeration>>

PseudoStateKind

initial
deepHistory
ShallowHistory
join
fork
choice
entryPoint
exitPoint
terminate

<<enumeration>>

State

isComposite
isOrthogonal
isSimple
is SubmachineState

O IM
t1t0 t4

O IM RU
t1 t2 t3t0

IM
t4

O IM RU
t1 t2t0 t3

IM RU
t2 t3

IM
t4

...

Figure 1: MOF model levels concerning UML State Machines applied to our case study.

state machines to Formula. Section IV explains the application
of our proposal, and illustrates the usefulness of our approach
by applying it to our case study. Related work is discussed in
Section V. Finally, Section VI contains our main conclusions.

II. BACKGROUNDING AND CASE STUDY

In this section, we present general background information
of UML State Machines, together with the case study we use
throughout the paper. In particular, we illustrate UML State
Machines with the help of Fig. 1 in which we represent three
of the MOF model levels concerning UML State Machines,
applied to our case study: the Metamodel level, the Model level,
and the Instance level. In particular, we show an excerpt of the
UML State Machine metamodel (see the top side of Fig. 1),
and the specific state machine model of our case study (see
the center side of Fig. 1). This state machine model has been
extracted from [15], which we have slightly modified to cover
basic aspects of UML state machines for explanation purposes.
In particular, this state machine represents the basic states that
an object airplane can be in during the course of its life.

As we show in the excerpt of the UML State Machine
metamodel depicted on the top side of Fig. 1, a state machine
consists essentially of states, transitions and various other
types of vertexes named pseudostates [1]. Firstly, states denote
a situation of objects during which some condition holds.
There are three kinds of states: simple, composite or subma-
chine. Simple states are characterized by not having substates,
while composite states are divided into orthogonal composite
states, to model concurrent behaviors where several states are
active simultaneously, and simple composite states, to specify
that only one of their substates must be active. Submachine
states are used basically as a way to encapsulate states and
transitions so that they can be reused. In our case study, we
represent that, over the course of the life of an object plane, it
can take up three simple states: Ordered, In Maintenance, and
Ready for Use. The valid set of states that the object can be
active in, at a specific moment in time during the execution of
the state machine, is known as state configuration.

On the other hand, a transition is the mechanism by which

an object leaves a state configuration and changes to a new
state configuration. A transition can be triggered by some
event. In our case study, if the event deliver occurs, and the
plane is the state Ordered, it changes to the state In Mainte-
nance, nothing happens if the plane is in any other state than
Ordered. Particularly, a transition is a directed relationship
between a source vertex and a target vertex, where these
vertexes can be either pseudostates or states. A pseudostate is
an abstraction used to connect multiple transitions into more
complex state transitions paths. There are several kinds of
pseudostates (such as initial, join and fork pseudostates). An
example of an initial pseudostate is shown in our case study of
Fig. 1 depicted by a filled circle, representing the creation of
the object plane. Additionally, composite states can have one
or more regions which are considered as simple containers of
a connected set of substates, pseudostates and transitions.

Finally, the sequence of state configurations an object can
go through during its lifetime is known as execution trace. For
example, on the bottom side of Fig. 1 we show three of the
execution traces a plane can be during its lifetime. For a more
complete explanation of state machines, we refer to [1].

III. UML STATE MACHINES TO FORMULA TRANSLATION

Our proposal for reasoning about UML State Machines
has some similarities with the approach we presented in [10],
[13] for reasoning about UML Class Diagrams, but there
is a subtle and essential difference between them. In both
proposals we represent the corresponding UML metamodel
and model (related to Class Diagrams and State Machines,
respectively) in the Formula language, resulting a translation
that can be used for several purposes. For example, the resulted
Formula specification can be used to rigorously reason about
the model’s design, by checking predefined correctness prop-
erties about the original model such as the lack of redundant
constrains. Additionally, the Formula specification can be used
to inspect the model, in order to search for conforming object
models and to choose those which better fit the domain needs.
Nevertheless, while in [10], [13] we aimed at finding sets of
classes’ instances conforming the class diagram, in the case

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 57 / 679

1 [Unique(name ->type)]

2 primitive State ::= (name: String, type: stateType).

3 [Unique(name -> type)]

4 primitive Pseudostate ::= (name: String, type: pseudostateType).

5 Vertex ::= State + Pseudostate +

6 [Closed(src, dst)]

7 primitive Transition ::= (name: String, type: transitionKind, src: Vertex, dst: Vertex).

8 error_meta_undeclStates := Transition(_,_,State(x,y),_), fail State(x,y). ...

Metamodel
level

Legend

Formula

extension

Formula

instance of

Formula

inclusion (UML

instance of)

Formula data

types

Formula

instances

MetaLevel Domain

9 Final is State("final", simple)

10 ordered is State("Ordered", simple)

11 inMaintenance is State("InMaintenance", simple)

12 readyForUse is State("ReadyForUse", simple)

13 ini is Pseudostate("initial",initial)

14 tr0 is Transition("tr0",external,ini,ordered)

15 tr1 is Transition("tr1",external,ordered,inMaintenance) ...

Model level

StateMachine Model

16 [Closed(type)][Unique(name -> type)]

17 primitive StateInstance ::=(name: String, type: State).

18 stateName := StateInstance(name, type), type.name!=name. ...

19 VertexInstance ::= StateInstance + PseudostateInstance.

20 [Closed(type,source,target)][Unique(name-> type)]

21 primitive TransitionInstance ::=(name: String, type: Transition,

source: VertexInstance, target: VertexInstance). ...

22//Formula expressions needed to create new configuration states ...

InstanceLevel Domain

Instances level
23 pIni is PseudostateInstance("initial",ini)

24 O is StateInstance("Ordered",ordered)

25 IM is StateInstance("InMaintenance",inMaintenance)

26 RU is StateInstance("ReadyForUse",readyForUse)

27 Final is StateInstance("final"Final)

28 t0 is TransitionInstance("tr0",tr0,pIni,O)

29 t1 is TransitionInstance("tr1",tr1,O,IM) ...

StateMachineInstances Model

extends

of

of

includes

of

includes

30 Bound(14)

31 Trigger(0,_)

32 Trigger(1,_)

...

Execution Partial Model

Figure 2: Formula specifications defined for the representation of our case study in Formula.

of UML State Machines we are interested in reasoning and
validating UML State Machine designs by generating possible
sets of state configurations, simulating valid execution traces.

As we propose in [10], [13], our approach for reasoning
about UML State Machines follows a MOF-like metamod-
eling approach. More specifically, our proposal defines five
different Formula units which are distributed along the MOF
Metamodel, Model and Instance levels [1]. In order to have
a better understanding of our proposal, in Fig. 2 we illustrate
the defined Formula units, which are represented by means
of rectangles. Furthermore, associated to each Formula unit,
we have included, depicted by means of rhomboids, part of
the specific Formula expressions that would be defined for
representing the state machine of our case study. Next, we
briefly explain our proposal for the representation in Formula
of a specific UML state machine leaning on this figure.

A. Formula Data Types and Queries

Formula allows to represent a system by using three
different units: domains, models and partial models. Firstly, a
problem domain FD can be specified to formalize an abstrac-
tion of the problem that can be used by Formula to reason
about the design. This type of units allows to specify abstract
data types and a logic program describing properties of the
abstraction [14]. For this reason, we have decided to represent
the UML State Machine’s constructs by means of domains (see
MetaLevel and InstanceLevel domains in Fig. 2).

In particular, a Formula domain consists of abstract data
types, rules and queries. Firstly, abstract data types constitute
the key syntactic elements of Formula. They are defined by
using the operator ::=, indicating on the right hand side their
properties by means of fields. Data types can be labeled in their
definition with the primitive keyword, defining primitive
constructors. As an example, in line 7 of Fig. 2 we define the
Transition data type, which represents the Transition
element of the UML State Machine metamodel. In particular,

it defines several fields together with their types (such as
the fields src and dst of type Vertex, representing the
source and target vertexes of a transition, respectively). If
the primitive keyword is omitted, the data type definition
results in a derived constructor (see the definition of the type
Vertex in line 5, representing the Vertex element of the
UML metamodel). Data types are used as building blocks for
defining Formula expressions (terms and predicates). Terms
are the basis for defining predicates, which constitute the
basic units of data, used for defining queries and rules. As an
example of the definition of a term, in line 8 of Fig. 2 we show
the term Transition(_,_,State(x,y),_), representing all
instances of the Transition term, where the third field is
set to a fixed property (State(x,y)). The other fields are
filled with a do not-care symbol (‘ ’), so that Formula will
find valid assignments. In this way, this term represents any
transition whose source state is a specific state (State(x,y)).

Based on the defined data types, rules and queries are
specified as logic program expressions, ensuring the remaining
constraints [14]. In particular, a rule behaves like a univer-
sally quantified implication, that is, whenever the relations
on the right hand side of a rule hold for some substitution
of the variables, then the left hand side holds for that same
substitution [12]. The main aim of rules is production; they
create new entries in the fact-base of Formula, populating
previous defined types with facts representing the members
in the collection presented in the rule. Rules are specified by
means of the operator :-, indicating on the left–hand of the
expression a simple term and, on the right–hand, the list of
predicates specifying the rule (an example of a rule is shown
later in this section). On the other hand, a query, which is
constructed by means of the operator :=, corresponds to a
rule where left–hand side is a nullary construction [12]. A
query behaves like a propositional variable that is true if and
only if the right-hand side of the definition is true for some
substitution [12]. In particular, Formula defines in every do-
main the conforms standard query, where all constraints come

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 58 / 679

together and define how a valid instance of the domain have to
look like. Based on the existential quantification semantics of
queries, we can use them to prove the existence of specific facts
in the model. Additionally, the universal quantification can be
achieved by verifying the negation of a query representing the
opposite of the original predicate. For example, to ensure that
Transitions are not created as connections of undeclared
States, we firstly need to define a query representing the
existence of transitions verifying the opposite (see line 8 of
Fig. 2). With this query we are considering such incoherent
situation as a valid state. Thus, to verify that such situation is
not valid, we need to include the negation (‘!’) of the query
in the conforms query of the specific domain.

Taking this into account, the defined domains contain (1)
specific data types, which allow us to represent facts and
generate reasoning instances of such types, and (2) queries,
which restrict the valid system states by specifying forbidden
states. Due to space reasons in this paper we mainly focus
on explaining the defined data types. In particular, firstly we
have created the MetaLevel domain, which mainly defines a
primitive Formula data type for each meta model element
State, Pseudostate, and Transition, together with specific For-
mula queries representing UML State Machine metamodel
constraints (see lines 1 to 7 in Fig. 2). The definition of these
types allows the tool to create Formula instances representing
specific UML States, Transitions and Pseudostates at the
Model level (such as the specific state Ordered). We note that,
since the representation of the Metamodel level is the same
whatever state machine is considered, this Formula domain is
defined once and used for each state machine. On the other
hand, to be able to represent the information generated during
the execution of a state machine (that is, the state configura-
tions which constitute the execution traces, together with the
representation of the triggered transitions), we have defined
specific types included in a Formula domain InstanceLevel
(see Fig. 2), which defines types such as StateInstance or
TransitionInstance (see lines 16-17 and 20-21).

B. Formula Data Types’ Instances

Having defined the Formula domains with the abstractions
of the problem, Formula gives the possibility of creating a
model FM as a finite set of data type instances built from
constructors defined in the associated domain FD, and which
satisfies all the FD constraints [12]. In our particular case, we
have defined two different Formula models. Firstly, we have
created the StateMachine model, which contains the instances
of the data types created in the MetaLevel domain, and which
represent the specific elements of a particular state machine
(see Fig. 2). For example, in line 10 of Fig. 2 we show
the definition of the element ordered, which corresponds
to a Formula instance of the constructor State defined at
the Metamodel level. Secondly, we define the StateMachine-
Instances model, which contains the instances of the data
types defined in the InstanceLevel domain. In particular, such
instances refer to the state and transition instances that Formula
would use as constructors of the execution traces of the specific
state machine. For example, in this Formula model we define
instances such as O (see line 24), which would represent
the fact that a specific airplane object has been in the state
“Ordered”. On the left hand of Fig. 3 we also show graphically
the overall instances we would define for the case study. Taking

t1

O IM RU

IM RU

t1 t2

t3

t3
IM

RUO

t2

t4

t3

t0

t0

t2

IM

t4

Figure 3: Instance elements and complete execution trace.

this into account, the StateMachine model conforms with the
MetaLevel domain, while the StateMachineInstances model
conforms with the InstanceLevel domain.

C. Logic Instructions to Simulate State Machines’ Execution

Up to now, we have established the bases to be able to
represent in Formula the UML State Machine metamodel,
specific state machines conforming with such metamodel, as
well as the concrete instances produced during the execution of
a state machine and which would constitute the state machine
execution traces. Nevertheless, the defined Formula data types,
instances and queries are not enough to allow Formula to
reason about the state machine execution, that is, to take such
concrete elements and organize them into valid execution state
configurations. More specifically, in addition to such instances
(see the left hand of Fig. 3) and queries, we provide Formula
with specific data types and rules to instruct the tool in the way
to reason about such data, so that it is able to generate valid
execution traces (such as the one shown on the right hand of
Fig. 3). For this reason, we have completed our proposal by
defining other two Formula specification blocks.

Firstly, we need to indicate Formula the way in which it
has to generate a valid chain of active state configurations’
instances which will constitute the valid execution traces.
For this task, we have included in the InstanceLevel domain
the definition of a new data type called Trigger (see lines
from 3 to 5 in Fig. 4), in order to simulate the triggered
of a transition. For this reason, its definition includes a field
t, referring the moment in which the triggered takes place, and
the associated TransitionInstance instance (see line 4).
We have included the Formula constraint [Closed(tr)] to
instruct Formula to apply a closed check to instances of
the TransitionInstance data type, that is, using only the
instances of such a type already created in the StateMachineIn-
stances model. Based on the Trigger type, we define the type
stateConfiguration to represent a state configuration (see
line 7), and which has three fields: (1) t, which keeps track
in time of the sequence of state configurations, (2) v, which
refers to the specific active vertex, and (3) traT, which refers
to the specific transition (TransitionInstance instance)
which has been triggered to change to that state.

Additionally, in order to construct the chain of state
configurations as the transitions are triggered, we have
defined a Formula rule (see line 9 in Fig. 4), in order to
create new entries of type stateConfiguration in the
fact-base of Formula. As we have described previously,
whenever the relations on the right hand side of a rule
hold for some substitution of the variables, then the left
hand side holds for that same substitution, and Formula
generates the new entry corresponding to the left hand
side. Taking this into account, given the current state
configuration stateConfiguration(t,src,traT)and

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 59 / 679

1 domain InstanceLevel extends MetaLevel {
2
3 [Unique(t ->tr)][Closed(tr)]
4 primitive Trigger ::=(t: Natural, tr: TransitionInstance).
5 triggerNumber := tri1 is Trigger(t1,tr1), tri2 is Trigger(t2,tr2), t1!=t2,tr1=tr2.
6 primitive Bound::=(t: Natural).
7 stateConfiguration ::= (t: Natural, v: VertexInstance , traT: String).
8 stateConfiguration (0,ini, traT):- ini is PseudostateInstance ("initial",

Pseudostate("initial",initial)), traT="__".
9 stateConfiguration (tnext, dst,traTnext) :-

stateConfiguration (t, src,traT),
Trigger(t, TransitionInstance (tn,_,source,target)),
source.name=src.name,
target= dst, tnext=t+1,
Bound(end), t<end.

10 ...
11}

Figure 4: Generation of new state configurations.

the triggered of a transition Trigger(t,
TransitionInstance(tn,_,source,target)) whose
source vertex corresponds to the current one
(source.name=src.name), Formula creates a new fact
stateConfiguration (tnext,dst,traTnext), which
corresponds to the new state configuration where the new
state dst is the target vertex of the triggered transition
(target=dst). The value of the time parameter tnext is
also incremented by 1 for the following state configuration.
Another rule is created (see line 8 in Fig. 4) to get the initial
state configuration fact. We also define the Bound type to
limit the number of transitions triggered during the state
machine execution (see Bound(end), t < end in line 9).

Secondly, we need to instruct Formula to find valid as-
signments for the TransitionInstance appearances in the
Trigger elements of the rule in charge of creating new
stateConfiguration facts (see line 9 in Fig. 4). For these
types of tasks, Formula defines another type of Formula units,
called partial models FPM, in which specify individual con-
crete instances of the design-space or unknown parts thereof,
these latter corresponding to the parts of the model FM that
must be solved by the Formula tool [14]. For this reason, we
have defined a partial model called Execution (see Fig. 2), in
which we include as many Trigger terms as necessary, and
which define a do not-care symbol (‘ ’) in the field which
corresponds to the TransitionInstance instance, so that
Formula will find valid transition assignments.

IV. APPLICATION AND TOOL SUPPORT

In this section, we briefly explain how to use our framework
in practice and apply it to our case study to illustrate its
usefulness. Finally, we give some remarks of our plug-in.

The first step to apply our proposal is the translation
of the specific state machine we want to reason about into
the input specification language of the Formula tool. Such
step is carried out by following the guidelines explained
in the previous section. Having translated the UML state
machine into the Formula language, the Formula finder can
be used for different reasoning purposes, such as to prove the
reachability of states or check the existence of consistency
requirements in the state machines’ definition. In particular,
such requirements are represented by means of the definition
of new Formula queries. Additionally, since the requirements
are defined over the execution traces, such queries are included
in the conforms query of the InstanceLevel domain, for their
verification. Finally, if the system holds such requirements, the
tool returns a state machine execution trace verifying all the

established constraints. Otherwise, Formula will have proven
that the model is unsatisfiable, that is, not execution trace is
possible since some of the constraints become violated. In this
latter case, the inconsistencies detected could be taken into
account, for example, for the redefinition of the state machine.

In the particular case of using our proposal to prove the
reachability of states, we can check whether there exists a
path which leads to a specific state configuration. A specific
use in this line is to find out whether the state machine has
a valid execution trace in which the object reaches a final
status (that is, there is at least a execution path in which
a final status is reached, which corresponds to a possible
existence property). As an example of application, we can test
whether the final state in the state machine of our case study
(represented as stateConfiguration(_,sFinal,_)) can
be reached at some point. In this case, the following query
is defined, which is included in the conforms query:
q1:= count(stateConfiguration(_,sFinal))=1. For-
mula takes as input the state machine specification including
this query, and outputs a chain of state configurations proving
the reachability of the final state. In particular, Formula returns
the following facts, which particularly correspond to the first
execution trace depicted in the Instance level of Fig. 1:

stateConfiguration(0,pIni,‘‘_’’)
stateConfiguration(1,O,‘‘t0’’)
stateConfiguration(2,IM,‘‘t1’’)
stateConfiguration(3,Final,‘‘t4’’)

On the other hand, we can also check consistency re-
quirements of state machines’ definition. More specifically, we
refer to consistence from a structural perspective, referring to
properties that the model is expected to satisfy irrespective
of its semantic content. In particular, we can verify whether
the state machine exhibits a number of desired properties,
obtaining at the same time the corresponding execution traces
proving that the state machine holds such properties. For
example, we can check whether an air plane can be available
during its life time a specific number of times, obtaining
the corresponding trace of state configurations. In particu-
lar, this property is checked by defining the query: q2:=
count(stateConfiguration(_,sRFU,_))=number.

As for as tooling support, we have taken our CD2Formula
plug-in presented in [10] to automatically translate specific
class diagrams into Formula and we have modified it giving
support for UML state machines. Finally, we have included
both functionalities in an only plug-in called UML2Formula.
Again, we have used MOFScript tool [16] which provides
support for customizable model–to–text transformations. We
use the UML 2.0 metamodel and the specific state machine
as the model which can be defined using any UML 2.0
compliant tool that can create models in the XMI format
supported by EMF (for example, the UML2 Eclipse plug-
in [17] or a UML2 compliant graphical tool). As far as the
Formula units generation is concerned, we have defined an
only set of MOFScript transformation scripts that generates
the different Formula units as stated in our proposal. The
defined MOFScript transformations have been integrated into
the plug–in, allowing the automatic generation of the Formula
specification by means of a menu option the plug–in provides.
Applying this menu option to a specific state machine, the
plug–in returns a .4ml extension file. Later, the specific query

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 60 / 679

properties to be checked have to be manually included in this
file, which Formula will use for reasoning about the model.

V. DISCUSSION AND RELATED WORK

In the past decade, there are several works which have used
Constraint Logic Programming to formalize UML semantics,
being limited those which tackle UML State Machines or
on any other variant of Harel statecharts [11], [12], [18],
[19]. In particular, there have been some proposals which
aim at formalizing UML State machines which have followed
a MOF–like approach to a greater or lesser extent. More
specifically, authors in [11] focus on Hierarchical Finite State
Machines (HFSM), which are a simplified version of UML
State Machines, which consider more structural elements (such
as concurrent states and pseudostates). The difference between
both proposals, besides the different types of modeling lan-
guages, lies in the main goal. In particular, authors in [11] give
an approach to complete partially specified dynamic models.
More specifically, starting from a partial model constituted
by unlinked states and transitions, they are able to find a
complete state model defined from that partial model and
which conforms with the HFSM metamodel. In contrast, our
proposal aims at reasoning about specific state machines, not
arbitrary ones, that is the reason because it starts from a
complete specific state machine model instead of a partial one.
In [12], authors present a metamodeling framework based on
Formula and reason about typed graphs. In particular, they
give a metamodel-based approach for representing only the
MetaNode and the MetaEdge elements, at the Metamodel
level, and graph nodes and edges, at the Model level, and
finally reason about models. In particular, they apply their
proposal to the particular case of state diagrams (where states
are nodes and transitions are edges) in order to construct,
similarly to the proposal in [11], well–formed state diagrams.
In [19] where the author uses Alloy, a textual modelling
language based on first-order relational logic, used in other
works for analyzing UML class diagrams [18], gives a proposal
to simulate states by specifying the notion of state on the model
level, in an Alloy model, while the transition between states
is given by the invocation to a UML operation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a framework to reason about UML
state machine models based on the CLP paradigm. The main
contribution of our work is the translation of a UML state
machine into a Constraint Satisfaction Problem following a
MOF–like framework. We enhance our approach by providing
an MDE-based implementation of our translation proposal,
based on our UML2Formula plug–in. Particularly, starting
from a UML state machine representing the dynamic structure
of a software system, our plug–in carries out the automatic
generation of the Formula specification corresponding to such
UML model, by simply choosing a menu option the plug–
in provides. The proposed framework can be used to reason
and validate UML state machine designs by generating valid
sets of execution state configurations and checking correctness
properties, using the model exploration tool Formula.

Our proposal considers basic UML State Machine ele-
ments, but the support for other commonly used elements (such
as guards or composite states) constitutes a remaining work.

ACKNOWLEDGMENTS

This work has been partially supported by the University
of La Rioja (project PROFAI13/13).

REFERENCES

[1] OMG, “UML 2.4.1 Superstructure Specification,” document
formal/2011-08-06, August, 2012. Available at: http://www.omg.org/.
Last visited on August 2014.

[2] A. Calı̀, D. Calvanese, G. D. Giacomo, and M. Lenzerini, “A Formal
Framework for Reasoning on UML Class Diagrams,” in Proc. of the
13th International Symposium on Foundations of Intelligent Systems
(ISMIS’02), ser. LNCS, vol. 2366. Springer, June 2002, pp. 503–513,
ISBN:3-540-43785-1.

[3] J. Cabot, R. Clarisó, and D. Riera, “Verification of UML/OCL Class
Diagrams using Constraint Programming,” in Proc. of the 2008 IEEE
International Conference on Software Testing Verification and Valida-
tion Workshop (ICSTW’08). IEEE Computer Society, April 2008, pp.
73–80, ISBN: 978-0-7695-3388-9.

[4] A. Queralt, A. Artale, D. Calvanese, and E. Teniente, “OCL-Lite:
Finite reasoning on UML/OCL conceptual schemas,” Data Knowl. Eng.,
vol. 73, pp. 1–22, 2012.

[5] M. Balaban, A. Maraee, and A. Sturm, “Reasoning with UML Class
Diagrams: Relevance, Problems, and Solutions – a Survey,” March
2007, available online at: http://www.cs.bgu.ac.il/ mira/CDReasoning-
07.pdf. Last visited on August 2014.

[6] M. Broy, M. V. Cengarle, H. Grönniger, and B. Rumpe, “Considerations
and Rationale for a UML System Model,” in UML 2 Semantics and
Applications, K. Lano, Ed., 2009, pp. 43–60.

[7] J. Osis and U. Donins, “Formalization of the UML Class Diagrams,”
in Evaluation of Novel Approaches to Software Engineering, ser. Com-
munications in Computer and Information Science. Springer, 2010,
vol. 69, pp. 180–192, ISBN: 978-3-642-14818-7.

[8] D. Berardi, A. Cali, D. Calvanese, and G. Di Giacomo, “Reasoning on
uml class diagrams,” Artificial Intelligence, vol. 168, pp. 70–118, 2005.

[9] M. Gogolla, J. Bohling, and M. Richters, “Validating uml and ocl
models in use by automatic snapshot generation,” Software and System
Modeling, vol. 4, no. 4, pp. 386–398, 2005.

[10] B. Pérez and I. Porres, “An Overall Framework for Reasoning About
UML/OCL Models Based on Constraint Logic Programming and
MDA,” Intern.Journal on Advances in SW, vol. 7, no. 1&2, pp. 370–
380, 2014.

[11] S. Sen, B. Baudry, and D. Precup, “Partial Model Completion in
Model Driven Engineering using Constraint Logic Programming,” in
Proc. of the International Conference on Applications of Declarative
Programming and Knowledge Management (INAP’07), 2007, pp. –.

[12] E. K. Jackson, T. Levendovszky, and D. Balasubramanian, “Automat-
ically reasoning about metamodeling,” Software & Systems Modeling,
pp. 1–15, february, 2013.

[13] B. Pérez and I. Porres, “Reasoning About UML/OCL Models Using
Constraint Logic Programming and MDA,” in Proc. of the Eighth In-
ternational Conference on Software Engineering Advances (ICSEA’13),
October 2013, pp. 228–233, ISBN: 978-1-61208-304-9.

[14] FORMULA - Modeling Foundations, Website: http://research.micro–
soft.com/en-us/projects/formula/. Last visited on August 2014.

[15] H. Baumann, P. Grassle, and P. Baumann, UML 2. 0 in Action: A
Project-based Tutorial. Packt Publishing, 2005.

[16] MOFScript Home page, Website: http://www.eclipse.org/gmt/mofscript/.
Last visited on August 2014.

[17] The Eclipse UML2 project, website: http://www.eclipse.org/modeling
/mdt/?project=uml2. Last visited on August 2014.

[18] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: A
Challenging Model Transformation,” in Proc. of the 10th International
Conference on Model Driven Engineering Languages and Systems
(MoDELS’07), ser. LNCS, vol. 4735. Springer, 2007, pp. 436–450.

[19] D. Jackson, “Automating first-order relational logic,” SIGSOFT Softw.
Eng. Notes, vol. 25, no. 6, pp. 130–139, 2000.

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 61 / 679

Several Issues on the Layout of the UML Sequence and Class Diagram

Oksana Nikiforova, Dace Ahilcenoka, Dainis Ungurs, Konstantins Gusarovs, Ludmila Kozacenko

Faculty of Computer Science and Information Technology

Riga Technical University

Riga, Latvia

{oksana.nikiforova, dace.ahilcenoka, dainis.ungurs, konstantins.gusarovs, ludmila.kozacenko}@rtu.lv

Abstract — Models are widely used and are one of the advanced

tools of software engineering. Therefore, it is very important

that the models and diagrams are well built not only

considering their content, but also how they visually represent

information, how they are layout. Layout is an important factor

considering readability and comprehensibility of a diagram.

Providing manual diagram layout is time consuming; it can also

be ineffective; therefore, this paper is a research about diagram

automatic layout. UML provides a variety of diagrams, which

covers all of the system development life cycle steps. The most

important UML diagrams are class and sequence diagrams,

because they are the main diagrams to present system structure

and behavior. We analyze existing layout techniques and

algorithms, offer new ones and evaluate them regarding their

applicability to class and sequence diagram layout in different

modeling tools, how they comply with layout criteria.

Keywords – UML class diagram; UML sequence diagram;

layout algorithm; BrainTool.

I. INTRODUCTION

One of the tasks of software development is to present
different aspects of the system before developing the software
solution for that system. To solve this task, system modeling
became one of the important activities during software
development. Models are useful for understanding problems,
communicating with everyone involved within the project
(customers, domain experts, analysts, designers, etc.),
modeling enterprises, preparing documentation and designing
programs and databases. Modeling promotes better
understanding of requirements, more clear designs and more
maintainable systems. Graphical models help to provide a
common base for system developers at different levels of
system domain and are used at different stages of system
abstraction. It is specially pointed to such standardized
modeling mean as Unified Modeling Language (UML) [1].

The graphical aspect of modeling language turns
developers to an intuitive language semantics and perceptible
location of model elements on the diagram. Thus, modelers
have to decide two main tasks during creation of the diagram:
to think of how to present system functionality by diagram
elements and to invent an optimal placement of diagram
boxes and wires. Thus, the systematic approach to elements
placement within the diagram, which is specified as a task of
diagram layout, plays an important role in completing the task
of system modeling. This paper tries to solve the problem of
diagram layout in correspondence with the most used UML
diagrams, namely the UML class diagram and the UML

sequence diagram. The goal of the research is to offer layout
algorithms for both diagrams, to implement the presenting
algorithms within the BrainTool [2] modelling tool, which
gives an ability to generate UML diagrams from the two-
hemisphere model [3].

The paper is structured as follows. The next sections
introduce requirement set to layout the UML sequence and
class diagrams. The algorithm based on the defined
requirement sets is described in the second and the third
section. The fourth section gives a brief overview of the
related work and compares our solution with the existing
ones. We discuss about the present research and state the
direction for the future in the conclusion of the paper.

II. LAYOUT ALGORITHM FOR THE UML SEQUENCE

DIAGRAM

Basically, the software system development starts with the
business information gathering and presenting it in the form
suitable for further software system modeling. Then, this
presentation of business information has to be transformed
into the model, which in object-oriented manner for software
development requires to present objects to interact in the form
of UML sequence diagram [1]. It shows objects, their lifelines
and messages to be sent by objects-senders and performed by
object-receivers and is used to present dynamic aspect of the
system. The dynamic of interactions is defined by an ordering
of the messages. It serves as a basis for definition of
operations performed by objects to be grouped into classes, as
well as to present and to verify a dynamic aspect of class state
transition. UML sequence diagram is a popular notation to
specify scenarios of the processing of operations as its clear
graphical layout gives an immediate intuitive understanding
of the system behavior. UML sequence diagram is stated as
one of the ambiguous UML diagrams, with an implicit and
informal semantics that designers can give to basic sequence
diagram as a result of this conflict.

The time aspect plays the most important role and helps to
organize messages in correct sequences. Vertical axis is used
to display time, the beginning of the diagram is at the top and
it is read downwards. Sequence diagram can consist of many
different elements; however, the authors will use only those,
which can be acquired from the two-hemisphere model,
which is a kind of initial presentation of the problem domain
in the model form, which consist of process model
interrelated with conceptual model. It is possible to generate
UML sequence and class diagram from the two-hemisphere
model based on the direct transformation of diagrams, which

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 62 / 679

are already explained in [3][4]. To enable implementation of
the model transformation by a tool, it is necessary to have an
algorithm for element placement after the transformation
execution.

A. Layout Requirements for the UML Sequence Diagram

Table 1 shows the list of criteria for layout the elements of
the UML sequence diagram in descending order of their
importance. Criteria are marked with SD identifier. General
layout criteria result from the theory of perception [5].
Specific diagram like the UML sequence diagram has
additional criteria, e.g., “slidability”. There are six perceptual
principles referring to organization of diagram elements,
when the elements are considered as a group [6]. These
principles are acquired from Gestalt theory [5]. There are
three more principles related to perceptual element
segregation. All of these Gestalt theory principles are
considered as aesthetic criteria. General aesthetic criteria are
widely discussed in [7][8][9].

TABLE I. CRITERIA FOR LAYOUT OF THE UML SEQUENCE DIAGRAM

ID Name of

criterion

Description

SD0 Precise

sequence of
messages

Notational convention of the UML requires to

display messages in the order they are being
sent.

SD1 Avoid object

and lifeline

overlapping

When objects or lifelines are overlapping it is

hard or sometimes impossible to read the

diagram.

SD2 Elements to

be arranged

orthogonally

Sequence diagram is an example of orthogonal

diagram - message arrows are situated

horizontally (typically) and lifelines -
vertically.

SD3 Diagram flow It is very important to layout elements by

creating obvious flow - visible start and end of
the diagram, easier to follow the elements and

read the diagram. The first message is located

at the top left corner of sequence diagram.

SD4 Minimize
crossings

In the sequence diagram message arrows
should not cross at all, therefore with crossings

is understood message arrow crossings over

lifelines and number of this kind of crossings
should be reduced.

SD5 Message

arrow length
minimization

To make the diagram more comprehensible

and the area smaller, the message arrow length
should be minimized

SD6 Reduction of

long message

arrow number

It is difficult to follow long message arrows, so

they should be as few as possible.

SD7 Minimize

longest

message
arrow length

The longest message arrow should be

shortened if possible, e.g., placing elements

closer.

SD8 Uniform

message

arrow length

Message arrows with similar length make

diagram more understandable. Similar arrow

length is also needed to fulfill the “slidability”
criteria.

SD9 Improve

“slidability”

“Slidability” is an aesthetic criteria for better

clearness, particularly important in bigger
sequence diagrams, where the whole diagram

fails to fit in one screen.

A sequence diagram is specific in its visual presentation.
All the objects are allocated horizontally at the top of the
diagram and the life lines are drawn vertically top-down.

Therefore, the criteria for the UML sequence diagram should
be carefully selected or even modified, so that they could be
applied. For example, one specific criterion for sequence
diagram is correct sequence of messages, which is the
meaning of this diagram. Poranen et al. [10] and Wong and
Sun [6] have identified the criteria specific for sequence
diagrams.

B. Basic Principles of the Layout Algorithm

Considering the specificity of sequence diagram the
authors propose to use an algorithm, which is based on
topology-shape-metrics planarization step and uses one
principle of force-directed approach – object tends to attract
those objects, with which it communicates. The algorithm
places the elements possibly close and tries to arrange
communicating participants beside based on priorities.
Priorities are calculated considering object attraction forces –
as more messages between elements as higher priority for
them to be beside. The layout algorithm calculates the
distance between the elements considering lengths of
messages and class object names. Algorithm places elements
as close as possible by taking into account the diagram flow
(e.g., interacting objects are being placed beside if possible).
The pseudo-code of the layout algorithm implemented is the
following [11]:

Figure 1 shows an example of “bad” layout of the UML

sequence diagram and the corresponding good layout of the
same object interaction. The algorithm is implemented in
BrainTool, which serves for generating UML diagrams from
the two-hemisphere model mentioned above.

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 63 / 679

(a) (b)

Figure 1. Example of “bad” (a) and “good” (b) layout of the UML sequence diagram.

III. LAYOUT ALGORITHM FOR THE UML CLASS

DIAGRAM

The UML class diagram describes system’s structure by
showing its classes with the methods and attributes, and
relations between classes. The visual presentation of the UML
class diagram lookes like graph with vertexes and edges, but
due to class diagrams ability to present different types of
relationships between classes, the diagram is classified as a
graph with specific constructions of arcs of different types.

A. Layout Requirements for the UML Class Diagram

There is no set standard for the location of classes. It is
generally agreed upon to place the most important objects at
top left and read the diagram to the right and downwards [6],
however, by not following this rule would not make the
diagram less readable.

By analogy with the UML sequence diagram, layout
criteria for the UML class diagram result from the theory of
perception. The same as for sequence diagram, the layout
algorithm for class diagram should take into consideration all
the Gestalt theory principles described above.

In addition, it is possible to define requirements’ set for
UML class diagram elements’ layout on basis of perceptual
theory. This helps to determine UML diagram’s layout
algorithm’s tendency. Therefore, an algorithm provides the
opportunity to automate layout of UML diagram’s elements
and transform given diagram to its normal form.

Some of defined requirements conflict with each other
(for example, minimizing the subset separation requirements
and exploiting the proximity requirement). This means that it
is essential to define significance for conflicting requirements
especially for diagrams’ elements layout automation; also this
ability can be given to user. We leave this task and
discovering of new requirements for diagrams’ elements
layout for further studies.

However, it is up to the creator of the layout algorithm to
decide which criterion is more important. All the described
principles and requirements can be used for creation of
algorithm for diagram’s elements’ automated layout. Table 2
shows the list of criteria for the UML class diagram layout.
Criteria are marked with CD identifier.

TABLE II. CRITERIA FOR LAYOUT OF THE UML CLASS DIAGRAM

ID Name of

criterion

Description

CD0 Join
inheritance

arcs

Joining inheritance arcs provide a more
understandable structure and suggest

hierarchy. It also decreases the amount of

connections to a class, which can make it
easier to view.

CD1 Ensure

association

representation

There are several ways to represent

associations, depending on how much

information is shown.

CD2 Employ

selectivity

Some information contained in a class or

relationship can be less useful than other,

so displaying only the useful information
can help the understandability of the

diagram.

CD3 Use colors Many people are sensitive to colors [5].

This can be used to visually group classes.

CD4 Minimize

crossings and

bends

Crossings and bends can make it harder to

distinguish what classes a relationship

connects.

CD5 Center parents
or children

Centering parents or children can visually
group them together.

CD6 Reduce length

of
relationships

Shorter relationships help decrease the size

of the diagram and make it easier to view.

CD7 Ensure

inheritance
direction

It is generally agreed upon, that child

classes should be placed below parent
class [8]. This helps display the hierarchy.

CD8 Avoid

overlapping

Overlapping can cause loss of data and

remove the representation of object

shapes. All this leads to less readable
diagrams.

CD9 Employ

symmetry

Symmetry can improve the readability of a

diagram.

CD10 Employ
orientation

It is advisable to layout diagrams in a way,
to read them from top to bottom and from

left to right. This is more common in most

countries and helps to guide the flow of
information.

CD11 Employ

orthogonality

Orthogonal relationships are easier to

follow than bent or straight lines and help
avoid overlapping.

CD12 Place labels

horizontally

Placing all the labels horizontally helps

readability of the diagram.

CD13 Place
associations

horizontally

Associations should be placed horizontally
if possible. It helps readability of the

diagram as well as placement of labels.

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 64 / 679

B. Basic Principles of the Layout Algorithm

The layout algorithm operates in four major steps [12].
Prior to these steps, algorithm gathers data on all the classes
and their relationships in the diagram and places them in
specific data types and constructs, for easier usage.

The pseudo-code of the layout algorithm implemented is
the following [12]:

During the first step, each class is assigned a score. This

score is calculated based on how many relationships a class
has, as well as the type of these relationships. Additionally,
class content is taken into account, such as attribute and
method count.

In the second step, all the classes are divided into small
groups. The groups are created around the classes with the
highest scores. Each group contains classes’ no more than
two relationships away from the main class of the group. This
ensures each group is compact and contains classes with
similar content. As a special condition, parent class that has
generalization relationships will always be the main class of a
group. All the child classes will be part of it.

The third step covers the layout of individual groups.
Since the diagram is now divided into many small clusters of
classes, each group contains a small and limited amount of
classes. This limit can be set by the user to personalize the
workflow of algorithm. Because the amount of cases is small,
a simple layout can be applied, by checking the type of
relationship classes have and placing them accordingly, to
suit various layout criteria.

Step four involves returning and re-doing steps one to
three, treating the newly created and laid out class groups as
standalone classes. Because the classes are generally drawn as
rectangles, so a group of classes can also be combined and
displayed in a similar way. An already implemented approach
that remotely resembles this is structured class notation [1].

In order to successfully implement the steps described
above, a specific approach is used. All the classes and in later
iterations- class groups, are placed in a container object. This
object contains all the required data for the layout- class
coordinates, width, height and score. Because it can contains
a single class and a group of classes, the algorithm only needs
to iterate trough the same object type. This improves the
workflow of the algorithm.

Figure 2 shows an example of “bad” layout of the UML
class diagram and the corresponding good layout of the same
class structure. The class diagram consists only from seven
classes, but still it is possible to demonstrate the ability of the
algorithm to layout the diagram.

(a) (b)

Figure 2. Example of “bad” (a) and “good” (b) layout of the UML class diagram

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 65 / 679

IV. RELATED WORK AND EVALUATION OF THE RESULT

The problem of automatic UML diagram layout still exists
and it is widely discussed in relation to class and sequence
diagrams. The cause of the layout problem is that algorithms
are not well suited for each diagram type and there are many
different aesthetic criteria to comply with. Some of the
criteria are easier to implement than others, for example SD1,
SD2, SD4-SD8 [10]. Another problem in automatic layout is
that many of the aesthetic criteria are conflicting, e.g.,
message arrow length minimization (SD5) and minimization
of crossings (SD4), and because reducing message arrow
length is more likely to cause more crossings. The authors of
[10] mention that the optimal layout is algorithmically
complicated challenge, which is one more problem to
automatic layout, for example an optimal linear layout
problem is considered as NP-complete problem [13].

Since there are many different layout algorithms a
solution can be found by studying different possibilities to
tailor algorithm to specific problem or combine several of
them to get the expected results. Diagram layout algorithms
are based on graph theory and graph layout algorithms [14].
Algorithms can be divided into approaches, where the most
used ones are topology-shape-metrics, hierarchical, visibility,
divide and conquer, force-directed approaches; they are
described in [7]. Genetic algorithms can also be used in
diagram layout.

Topology-shape-metrics approach is one of the most used
one [15]. The approach is suitable for orthogonal graphs and
it supports many different aesthetic criteria [7]. Eichelberger
and Schmid [9] mention that the algorithms of this approach
have been used to layout UML class diagrams and are
implemented in such tools as GoVisual [16] and
yWorksUML [17]. The approach has three main steps,
namely, planarization, orthogonalization and compaction,
which are well described by di Batista et al. [7].

Hierarchical approach, also called Sugiyama approach, is
also used in UML class diagram automatic layout [18]. This
approach is suitable for directed acyclic graphs - more or less
hierarchic graphs, which is not the sequence diagram case.

Visibility approach is the general approach suitable for
various types of graphs. It has been used in entity-relationship
diagram layout by Tamassia [19]. The approach also has three
main steps, as mentioned in [9] and [7]. This approach can be
put in the middle between both previously described
approaches. Having studied this approach more closely we
can conclude that this approach is less suitable for the
sequence diagram than topology-shape-metrics because of its
second and third steps.

Divide and conquer approach first divides graph in parts,
arranges elements and then merges these parts together [7].
Regarding to sequence diagram, this approach is only suitable
to diagrams with separable subsets therefore not suitable for
all kinds of sequence diagrams.

Force-directed approach is suitable for undirected graphs
[7]. The force-directed approach simulates a physical system
of forces, where a system tries to achieve the state of
minimum energy. One of main criteria in this approach is

minimization of crossings, which is not the most important
criteria for sequence diagrams.

There is a wide range of genetic algorithms and they can
be used for various purposes, as it was mentioned by
Galapovs and Nikiforova in [20]. Genetic algorithms simulate
processes from nature, like mutations crossover and selection.
Genetic algorithms were used in [21] for class diagram layout
and according to the research results these algorithms are time
consuming (20 minutes for 17 class layout).

Authors compared the relevance of each algorithm for the
sequence diagram to genetic algorithms, topology-shape-
metrics and force-directed approach algorithms proved to be
theoretically most suitable according to how they meet the
sequence diagram criteria. Other approaches are not
considered to be suitable at all because they either do not
consider the right order of the priorities of criteria or they are
not suitable for such diagram/graph type (e.g., they are
tailored for undirected, acyclic types of graphs, but the
sequence diagram is directed and cyclic).

There are several tools that provide automatic diagram
layout, e.g., Borland Together [22] supports automatic UML
sequence diagram layout, but uses lawless set of layout
criteria while Rational Rose [23] supports UML class, but
does not support sequence diagram layout. Sparx Enterprise
Architect [24] and Visual Paradigm [25] are tools that also
provides automatic UML sequence diagram layout, however,
it does not satisfy all the mentioned criteria of layout [11].

Table 3 shows how different criteria of the UML
sequence diagram layout are supported by different
algorithms and how they are implemented in UML modeling
tools. The evaluation “Yes/No” means that criterion is/is not
supported. The evaluation “partly” means that criterion is not
supported completely, only part of the criterion is
implemented. The evaluation “adjustable” means that
criterion can be implemented by the algorithm.

The same evaluation for criteria supporting in different
modeling tools according the layout of class diagram is
shown in Table 4.

Researches also have been made on other types of UML
diagrams. Eichelberger and Schmid [9] give researches on
automatic layout of UML use case diagrams. Bist et al.
presented an approach to draw sequence diagrams in
technical documentation to ease communication between
project members [26]. Poranen et al. proposed various criteria
for drawing a sequence diagram based on traditional graph
drawing aesthetics and the special nature of sequence
diagrams [10]. Wong and Dabo give requirement set based on
cognitive science for sequence and class diagrams, which can
help to improve diagrams’ readability [27].

The KIELER project [28] evaluated the usage of
automatic layout and structure-based editing in the context of
statecharts. It provided a platform for exploring layout
alternatives and has been used for cognitive experiments
evaluating established and novel modeling paradigms.
However, it was rather limited in its scope and applicability.

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 66 / 679

TABLE III. CRITERIA EVALUATION FOR LAYOUT OF THE UML SEQUENCE DIAGRAM

Abbreviations used in the table are the following: TSMA – Topology-Shape-Metrics Approach, HA – Hierarchical Approach, VA – Visualization Approach,

DCA – Divide and conquer approach , FDA – Force-Directed Approach, MSA – Multi-Scale Algorithms, GA – Genetic Algorithms, EA – Enterprise
Architect, T – Together, VP – Visual Paradigm, BT – BrainTool, adj – adjustable.

ID Name of criterion TSMA HA VA DCA FDA MSA GA EA T VP BT

SD0 Precise sequence of messages yes yes yes yes yes yes adj partly partly partly yes

SD1 Avoid object and lifeline overlapping yes no no no no adj adj yes yes yes yes

SD2 Elements need to be arranged orthogonally no no no no no no adj partly no yes yes

SD3 Diagram flow yes yes yes adj yes no adj no no no yes

SD4 Minimize crossings adj adj adj adj adj adj adj no partly no yes

SD5 Message arrow length minimization adj adj adj adj adj adj adj no no no yes

SD6 Reduction of long message arrow number adj adj adj adj adj adj adj no no no yes

SD7 Minimize longest message arrow length yes yes no adj yes no adj no no partly yes

SD8 Uniform message arrow length no no no no no no adj no no no no

SD9 Improve “slidability” no no no yes yes no adj no no no no

TABLE IV. CRITERIA EVALUATION FOR LAYOUT OF THE UML CLASS DIAGRAM

Algorithms CD1 CD2 CD3 CD4 CD5 CD6 CD7 CD8 CD9 CD10 CD11 CD12 CD

13

Sparx Enterprise Architect 11

Ring No Yes Yes Yes Poor No Medium No Poor No Yes No Yes

Ellipse No Yes Yes Yes Poor No Medium No Poor No Yes No Yes

Box No Yes Yes Yes Poor No Poor No Medium No Yes No Yes

Page No Yes Yes Yes Very Poor No Medium No Poor No Yes No Yes

Di-graph No Yes Yes Yes Good No Medium Yes Medium Poor Yes No Yes

Spring No Yes Yes Yes Medium No Good No Poor No Yes No Yes

Right to left No Yes Yes Yes Very Good No Medium Yes Good Poor Yes Yes Yes

Visual Paradigm 11

Automatic No Yes Yes Man. Very Good No Medium No Very Good Medium Yes Yes Yes

Hierarchical Yes Yes Yes Man. Medium No Very
Poor

Yes Good Medium Yes Medium Yes

Orthogonal No Yes Yes Man. Good No Medium No Very Good Medium Yes Yes Yes

Ring No Yes Yes Man. Medium No Good No Good No Yes No Yes

Organic No Yes Yes Man. Medium No Good No Good No Yes No Yes

Compact No Yes Yes Man. Medium No Good No Good No Yes No Yes

MagicDraw 18.0 beta

Class
diagram

Yes Yes Yes Yes Good No Medium Yes Good No Yes Yes Yes

Hierarchycal Yes Yes Yes Yes Good No Medium Yes Medium No Yes Yes Yes

Orthogonal No Yes Yes Yes Good No Poor No Good No Yes Yes Yes

Organic No Yes Yes Yes Medium No Good No Good No Yes Yes Yes

Circular No Yes Yes Yes Medium No Poor No Good No Yes Yes Yes

Braintool

Organic No Yes Yes Yes Good No Good No Poor Poor Yes No Yes

Compact No Yes Yes Yes Medium No Good No Medium Medium Yes Good Yes

Modular No Yes Yes Yes Good Yes Good Yes Medium Good Yes No Yes

Purchase et al. analyzed graph layout aesthetics in UML

diagrams, focusing on user preferences, and conducted
empirical studies of human comprehension to validate those
aesthetic criteria and rank their effect [8]. They also compared
various UML notations, and suggested which notations are
more understandable [29].

Since there are so many criteria, with some conflicting
with each other, software engineers and tool designers are

often overwhelmed and confused on choosing the appropriate
algorithm to use. The result of the experiments with diagram
import/ export and evaluation of their layout in several
modeling tools shows that there are still problems with
optimal allocation of diagrams elements. And still the
problem is not solved. Therefore, we can assume that the
algorithms offered and implemented in BrainTool is a step
forward in the evolution of the UML diagram layout.

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 67 / 679

V. CONCLUSION

As mentioned in the introduction of the paper, the task of
element placement during system modeling has an impact on
better understanding of system model and more effective
usage of them during development of the system. Nowadays,
one of the leaders in system development is object oriented
manner of software development and object oriented system
modeling has its own way for presentation of different aspects
of the system. Therefore, we focused on the problem of
diagram layout creating UML diagrams, which is declared as
a standard for presentation of software system model and
provides a notation, which grows from analysis through
design into implementation in object oriented programming
languages.

As a notation of system modeling for different aspects of
the system, UML introduces 14 types of diagrams, which can
describe system from different points of view. However,
Ambler stress yet in 2004 that the UML class, sequence and
activity diagrams are considered more important than others
[30]. And since that time, after 10 years, still the state of the
art is not changed in the importance and popularity of the
UML diagrams. Nowadays, commonly used UML diagrams
in software development projects still are the UML class and
sequence diagrams [31][32]. So far, we presented the layout
algorithm and its application for UML class and sequence
diagram and demonstrates the application of the algorithms in
the model transformation tool – BrainTool.

The layout algorithms we offered for the two UML
diagrams, namely, sequence and class, satisfy the most
criteria stated for diagram layout, which are defined by
different authors. In the case with the UML sequence diagram
the algorithm support 8 criteria from 10 stated, whereas the
best result is 4 criteria for other algorithms and two criteria
for the modelling tool. In the case with the UML class
diagram, the evaluation of the algorithm offered and
implemented by BrainTool is also the same obvious.

ACKNOWLEDGMENT

The research presented in the paper is supported by
Latvian Council of Science, No. 342/2012 "Development of
Models and Methods Based on Distributed Artificial
Intelligence, Knowledge Management and Advanced Web
Technologies".

REFERENCES

[1] Unified Modeling Language: superstructure v.2.2, OMG.
Available: http://www.omg.org/spec/UML/2.2/Superstructure
[retrieved: August, 2014].

[2] BrainTool. Available at http://braintool.rtu.lv/ [retrieved:
August, 2014]

[3] O. Nikiforova and M. Kirikova, “Two-hemisphere model
drivenapproach: engineering based software development,”
The 16th International Conference Advanced Information
Systems Engineering, A. Persson and J. Stirna, Eds.
BerlinHeidelberg: Springer-Verlag, LNCS 3084, 09.2004, pp.
219-233.

[4] Nikiforova O., Kozacenko, and D. Ahilcenoka. “Two-
Hemisphere Model Based Approach to Modelling of Object
Interaction,” Proceedings of the Eight International
Conference on Software Engineering Advances, Mannaert H.

et al. (Eds), IARIA ©, Venice, Italy, October 28-November 1,
2013, pp. 605-611.

[5] B.E. Goldstein, Sensation and Perception. Wadsworth, 2002.

[6] K. Wong and D. Sun “On evaluating the layout of UML
diagrams for program comprehension,” IWPC 2005, 13th
International Workshop on Program Comprehension, May 15-
16, 2005, St. Louis, Missouri, USA. IEEE Computer Society
2005, pp. 317-326.

[7] G. di Battista, P. Eades, R. Tamassia, and I. Tollis, Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice
Hall, 1999.

[8] H. C. Purchase, J-A. Allder, and D. Carrington, "Graph Layout
Aesthetics in UML Diagrams: User Preferences," Journal of
Graph Algorithms and Applications, vol. 6, no. 3, 2002, pp.
255-279. [Online]. Available: Universitat Trier,
http://www.informatik.uni-trier.de [retrieved: August, 2014].

[9] H. Eichelberger and K. Schmid, "Guidelines on the aesthetic
quality of UML class diagrams." In Information and Software
Technology, vol. 51, no. 12, 2009, pp.1686-1698. [Available:
ScienceDirect, http://www.sciencedirect.com. [retrieved:
August, 2014].

[10] T. Poranen, E. Makinen, and J. Nummenmaa “How to Draw a
Sequence Diagram,” SPLST'03 Proceedings of the Eighth
Symposium on Programming Languages and Software Tools,
June 17-18, 2003, Kuopio, Finland. University of Kuopio,
Department of Computer Science 2003, pp. 91-102.

[11] D. Ahilcenoka, Development of the Layout Algorithm of the
UML Sequence Diagram, Master Thesis, Riga Technical
University, 2014.

[12] D. Ungurs, Development of the Layout Algorithm of the UML
Class Diagram, Master Thesis, Riga Technical University,
2014.

[13] M. Garey and D. Johnson, Computers and intractability - A
Guide To The Theory Of NP- Completeness. W.H.
FREEMAN AND COMPANY, 1991.

[14] K. Freivalds, U. Dogrusoz, and P. Kikusts, “Disconnected
Graph Layout and the Polyomino Packing Approach,” GD
2001 9th International Symposium on Graph Drawing,
September 23-26, 2001, Vienna, Austria. Lecture Notes in
Computer Science, Springer-Verlag, 2002, pp. 378-391.

[15] J. Sun, Automatic, Orthogonal Graph Layout, Project work,
Hamburg University of Technology, 2007.

[16] Oreas optimization, research and software, GoVisual Diagram
Editor. Available: http://www.oreas.com/gde_en.php.
[retrieved: August, 2014]

[17] yWorks, Automatic Layout of Networks and Diagrams.
Available:
http://www.yworks.com/en/products_yfiles_practicalinfo_gall
ery.html [retrieved: August, 2014].

[18] J. Seemann, “Extending the Sugiyama Algorithm for Drawing
UML Class Diagrams: Towards Automatic Layout of Object-
Oriented Software Diagrams,” GD '97, Graph Drawing, 5th
International Symposium, September 18-20, 1997, Rome,
Italy. New York: Springer Verlag, 1997, pp. 415-424.

[19] R. Tamassia, “New Layout Techniques for Entity-Relationship
Diagrams,” Proceedings of the Fourth International
Conference on Entity-Relationship Approach October 29-30,
1985, Chicago, Illinois, USA. IEEE Computer Society and
North-Holland, 1985, pp. 304-311.

[20] M. Mitchell, An Introduction to Genetic Algorithms. A
Bradford Book, 1999.

[21] A. Galapovs and O. Nikiforova, “Several Issues on the
Definition of Algorithm for the Layout of the UML Class
Diagram,” 3rd International Workshop on Model Driven
Architecture and Modeling Driven Software Development
(MDA & MDSD 2011) in conjinction with the 6th
International Conference on Evaluation of Novel Approaches

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 68 / 679

to Software Engineering, June 8-11, 2011, Beijing, China.
SciTePress Digital Library 2011, pp. 68-78.

[22] Borland a micro focus company, Borland Together. Available:
http://www.borland.com/products/Together/. [retrieved:
August, 2014].

[23] IBM, Rational Rose product family. Available: http://www-
01.ibm.com/software/awdtools/developer/rose/. [retrieved:
August, 2014]

[24] Visual Paradigm "Drawing activity diagrams". Available:
http://www.visualparadigm.com/support/documents/vpumluser
guide/94/200/6713_drawingactiv.html [retrieved: August,
2014].

[25] Sparx systems, "Enterprise Architect". Available:
http://www.sparxsystems.com.au/ [retrieved: August, 2014].

[26] G. Bist, N. MacKinnon, and S. Murphy, “Sequence diagram
presentation in technical documentation,” SIGDOC 2004:
Proceedings of the 22nd Annual International Conference on
Design of Communication, NewYork, NY, USA, ACMPress,
2004, pp. 128–133.

[27] K. Wong and S. Dabo, “On evaluating the layout of UML
diagrams for program comprehension,” Software Quality
Journal, 2006, pp. 233–259.

[28] KIELER project, the Kiel Integrated Environment for Layout
Eclipse Rich Client [Online] Available
http://www.informatik.uni-kiel.de/rtsys/kieler [retrieved:
August, 2014]

[29] H.C. Purchase, M. McGill, L. Colpoys, and D. Carrington
“Graph drawing aesthetics and the comprehension of UML
class diagrams: an empirical study,” CRPITS 2001: Australian
Symposium on Information Visualisation, Australian
Computer Society, Inc., 2001, pp. 129–137.

[30] S. W. Ambler. The Object Primer: Agile Model-Driven
Development with UML 2.0. Third Edition. Cambridge, UK:
Cambridge University Press, 2004. 572 p. ISBN 978-
0521540186.

[31] Runtime Verification: First International Conference, RV
2010, St. Julians, Malta, November 1-4, 2010. Proceedings
(Lecture Notes in Computer Science / Programming and
Software Engineering), Barringer et al. (eds.), 2010.

[32] L. T. Yang, E. Syukur, and S. W. Loke Handbook on Mobile
and Ubiquitous Computing: Status and Perspective, CRC
Press, 2012.

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 69 / 679

Communication Aspects with CommJ: Initial Experiment Show Promising
Improvements in Reusability and Maintainability

Ali Raza
Computer Science Department

Utah State University
Logan, Utah, USA

ali.raza@aggiemail.usu.edu

Jorge Edison Lascano
Computer Science Department

Universidad de las Fuerzas Armadas
ESPE

Sangolqui, Ecuador
jelascano@dcc.espe.edu.ec

Stephen Clyde
Computer Science Department

Utah State University
Logan, Utah, USA

stephen.clyde@usu.edu

Abstract—A 2013 ICSEA paper introduced CommJ as an
extension to AspectJ for encapsulating communication-related
crosscutting concerns in modular, conversation-aware aspects.
This paper now presents preliminary, but encouraging results
from a subsequent study that shows six different ways in which
CommJ can improve the reusability and maintainability of
applications requiring network communications. We begin by
defining a reuse and maintenance quality model as an
extension to an existing quality model. We then identify six
hypotheses that can be measured using metrics from the
quality model. Finally, to test the hypotheses, we compare
implementations of different sample applications across two
study groups: one for CommJ and another for AspectJ. Results
from the study show improvement in the CommJ for all six
areas addressed by the hypotheses.

Keywords-aspect-oriented programming (AOPL);
crosscutting concerns; AspectJ; software reuse and
maintenance; software metrics.

I. INTRODUCTION
Aspect-oriented Software Development (AOSD) first

started to appear in the literature in 1997 [4][12] as a way of
reducing the scattering and tangling of code caused by
crosscutting concerns [15]. Its contribution was to
encapsulate the essence of crosscutting concerns into
abstractions, called aspects. An aspect is an Abstract Data
Type (ADT) with all of the same capabilities as an object
class, plus a few enhancements. Specifically, it can contain
advice, which is logic for implementing crosscutting
concerns that is automatically woven into appropriate places
in the base applications. The aspects also include pointcuts,
which describe where and when the advice weaving takes
place. More specifically, each pointcut identifies a set of
joinpoints, which are intervals in the execution of the system
and weaving can occur before, after, or around these
intervals [15].

AspectJ is an Aspect-oriented Programming Language
(AOPL) that extends Java for aspects [14]-[17]. It allows
programmers to weave advice into joinpoints that correspond
to constructor calls or executions, methods calls or
executions, class attribute references, and exceptions. The
problem is that AspectJ, like other AOPLs, does not support
the weaving of advice into high-level abstraction, like Inter-
Process Communication (IPC) where each conversation has
an independent context. IPC are ubiquitous in today’s
software systems, yet they are rarely treated as first-class

programming concepts. Instead, developers typically have to
implement communication protocols using primitive
operations, such as connect, send, receive, and close. The
sequencing and timing of these primitive operations can be
relatively complex.

The CommJ framework (Section II) extends AspectJ so
developers can weave crosscutting concerns into IPC in a
modular and reusable way, while keeping the core
functionality oblivious to those concerns. Specifically, it
allows programmers to view individual conversations as
uniquely identifiable concepts, with its own context and
weave logic into a base application that makes use of the
context information for individual conversations.

Our study investigates potential changes to the reuse and
maintenance to software when developers use CommJ. It
does so by evaluating certain desirable characteristics
defining a quality model (Section III) that can be measured
by computable metrics (Section IV). Based on initial
theoretic notions, we hypothesize that developers should see
reuse and maintenance improvements relative to six desired
qualities (Section V) defined by the quality model. Section
VI talks about our experiment methodology, which required
formal approval from Institutional Review Board (IRB) [10],
selection of the sample software application, and identifying
interesting crosscutting concerns that would give us good
coverage. The methodology also included typically,
supporting activities such as recruitment and training of the
developers. After the experiment, we collected data from the
code, surveys, hourly journals, and questionnaires.

From the results (Section VII) of the study, we conclude
that IPC software components developed with CommJ were
more cohesive and oblivious. They were also less scattered,
coupled, complex and smaller in size than similar
components programmed in AspectJ. These preliminary
results lead us to believe that further experimentation with
CommJ and refinement of its framework could prove to be
very beneficial to a wide range of software systems.

II. HIGH-LEVEL OVERVIEW OF COMMJ
CommJ enables the partitioning of a complex

communication problem into manageable cohesive concepts
and promotes greater reuse with better maintainability.
Figure 1 shows an architectural block diagram that represents
relevant conceptual layers and their dependencies. The
following paragraphs describe these high-level components
and their dependencies. More details on the architecture,

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 70 / 679

design and examples are given in [1].
The lowest layer on the left is conceptual model, called

the Universe Model for Communication (UMC). It is a
formal description of common knowledge related to IPC. It
describes, for example, the notation of a communication
protocol in terms of role-specific state machines and message
types. It then defines a conversation as an instance of two or
more processes exchanging data according to the behavioral
rules defined by a protocol. One important part of the UMC
is the definition of message. Regardless of the system, every
message is a uniquely identifiable thing (object) that is part
of a conversation. How a system identifies messages and
tracks their relationship to conversations are different, but
the underlying concept is assumed to be true for systems that
use IPC.

The next layer is the Core CommJ Infrastructure. It is an
AspectJ library that defines message-event joinpoints and
provides mechanisms to track conversations, which will hold
value context information for communication aspects. A
software developer that wants to use communication-related
aspects simply has to include this library in the project.

The Reusable Aspect Library (RAL) is a toolkit-like
collection of communication aspects that application
programmers should find useful for many different kinds of
applications. They include aspects for measuring turn-around
times, tracing conversations, and introducing behaviors into
complex, multi-step protocols [1].

Application-level Aspects are those written by the
application programmers, either using the abstractions
provided by CommJ directly or by specializing the aspects in
RAL. These aspects can encapsulate complex crosscutting
behaviors in understandable and maintainable software
components, without sacrificing obliviousness or flexibility.

III. EXTENDED QUALITY MODEL (EQM)
McCall identifies a list of eleven quality attributes [2],

which have influence on quality of the software in general.
Of these, we selected maintainability and reusability as the
important qualities to consider initially because of potential
for cost savings they both represent. Further work could
focus on some of the other nine qualities.

To formalize the reuse and maintainability qualities, we
adapt and extend the Sant’Anna quality model [3], because it

allows for more generalized measurement, compared to
Lopes’ work [4] and it supports different types of
implementation environments. The author builds the Quality
model [3] using Basili’s GQM Methodology [6]. Basili
provides a three-step framework: (1) list the major goals of
the empirical study, (2) derive from each goal the questions
that must be answered to determine if the goals have been
met; (3) decide what must be measured in order to be able to
answer the questions adequately. In a nutshell, the model
consists of Qualities, Factors, Internal Attributes, and
Metrics (see Figures 2 and 3 for more details.).

The qualities, such as reusability and maintainability, are
the most abstract of the concepts in the model and represent
the ultimate goals of “good” software. Each quality is
determined by one or more factors, which are in turn
determined by internal attributes. Although still abstract,
these internal attributes are properties related to well-
established software-engineering principles and there exists
some informal notations on how to assess or evaluate them.
And, that’s where the metrics come in. The metrics means of
measuring the internal attributes, or at least giving them a
rough relative ranking. Ideally, we would like to be able to
compute all metrics automatically, but that is not mandatory.

In our EQM [3], localization of design decisions, and
code obliviousness were not part of original quality model
[3]. However, we introduced them in our EQM for two
reasons. Firstly, Parnas [27], in his landmark paper proposes
three important characteristics of modular code, which were
understandability, flexibility, and localization of design
decisions (information hiding). Hence, reasoning
maintainability and reusability only in terms of
understandability and flexibility is not complete.
Introduction of obliviousness is also equally important. By
the time Parnas proposed the definition of modular code,
obliviousness had not been invented as a fundamental design
principle. However, in the context of our research
experiment, which depends heavily on measuring
crosscutting concerns, code obliviousness becomes very
critical.

Figure 1. CommJ Architectural Block Diagram.

	

Figure 2. Extended Quality Model (EQM).

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 71 / 679

Figure 3. Measurement Metrics in EQM.

	

IV. EQM METRICS
The EQM includes 16 metrics for the six different

internal attributes shown in Figure 3. Ten of the metrics can
be computed automatically [20] from the code written by the
subjects. The others have to be computed by hand. Below are
brief descriptions of these metrics, so the reader can better
understand the results presented in Section VII.

A. SoC Metrics
Separation of Concerns (SoC) defines ability to identify,

encapsulate and manipulate those parts of software that are
relevant to a particular concern [23]. Concern Diffusion over
Application (CDA) and Concern Diffusion over Application
Operations (CDO) are the two SoC metrics. CDA counts the
number of primary components (class or aspect) whose main
purpose is to contribute to the implementation of a concern.
CDO counts the number of primary operations and advices
that contribute to the implementation of a concern.

B. Coupling Metrics
Coupling is an indication of the strength of

interconnections between the components in a system [24].
The EQM describes three coupling metrics. First, Coupling
between Components (CBC) counts the number of other
classes and aspects to which a class or an aspect is coupled.
Excessive coupling of concerns increases CBC, which can be
detrimental to the modular design and prevent reuse &
maintenance. Depth Inheritance Tree (DIT) counts how far
down in the inheritance hierarchy a class or aspect is
declared. As DIT grows, the lower-level components inherit
or override many methods and leads to design complexity
and understanding problems. Number of Children (NOC)
counts the number of children for each class or aspect. As
NOC increases, the abstraction represented by the parent
component can be diluted.

C. Cohesion Metrics
The cohesion of a component is a measure of the

closeness of relationship between its internal components
[24]. Lack of Cohesion in Operations (LCO) is the only
cohesive metric in EQM that measures the cohesion of a
class or aspect in our model. It does so in terms of number of
method and advice pairs that do not access the same instance
variable and hence should be separated.

D. Size Metrics
Size metrics physically measure the length of a software

system’s design and code [25]. EQM describes the following
six size related metrics. Lines of Code (LOC). The greater
the LOC, the more difficult it is to understand and manage
the software. Method lines of Code (MLOC) is the average
number of the lines of code per method. Kemerer [9] states
that the greater the MLOC for a component, the more
complex the component would be. Number of Operations
(NO) counts the number of operations in a component.
Objects with large number of operations are less likely to be
reused. Number of Parameters (NP) counts the number of
parameters for methods in each class or aspect. A method
with more parameters is assumed to have more complex

collaborations and may call many other method(s).
Vocabulary Size (VA) counts the number of system
components, i.e., the number of classes and aspects into the
system. Sant’Anna [3] claims that if VA increases, it is an
indication of more cohesion and less tangling for set of
ADTs. Finally, Weighted Operations per Component (WOC)
metric measures the complexity of a component in terms of
its operations. The operation size measure is obtained by
counting the number of parameters of the operation. An
operation with more parameters than another is likely to be
less understandable.

E. Complexity Metric
Complexity measures how components are structurally

interrelated to one another. EQM uses Cyclomatic
Complexity (CC) for measuring the complexity of the
program. Mathematically, the cyclomatic complexity of
a structured program is defined with reference to the control
flow graph of the program. The metric is defined by the
number of independent paths and provides an upper bound
for the number of test cases that must be conducted to ensure
that all statements have been executed at least once. A high
value of CC affects program maintenance and reuse.

F. Obliviousness (Aspects) Metrics
Obliviousness is the idea that core functionality should

not have to know about crosscutting concerns [13]. EQM
defines three quality metrics for obliviousness. First, Number
of Inter-type Declarations (NITD). A higher value of NITD
indicates a tighter coupling between the aspect and
application components. Second, Aspect Scattering over
Components (ASC) counts the number of aspect components
scattered over application components. It measures the
tangling of aspects in the application components. More
tangling of aspects in the program makes the original
application less reusable and maintainable. Finally, Aspect
Scattering over Component Operations (ASCO) counts the
number of aspect components scattered over application
component operations. ASC gives a high-level overview of
the application tangling in the aspect components but ASCO
provides more insight on operations-level tangling of
applications inside aspect components.

V. HYPOTHESIS
The theoretical ideas that underpin CommJ lead to the

following six hypotheses, with respect to comparing the

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 72 / 679

reusability and maintainability of IPC software built with
CommJ instead of just AspectJ.
• Hypothesis 1: If crosscutting IPC concerns are

effectively encapsulated in CommJ aspects, then the
software has better separation of concerns and less
scattering (as described by CDA, CDO in Section IV.A
than equivalent systems developed with AOP design
techniques.

• Hypothesis 2: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software has
lower coupling (as described by CBC, DIT, NOC in
Section IV.B) than equivalent systems developed with
AOP design techniques.

• Hypothesis 3: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software has
higher cohesion and less tangling (as described by LCO
in Section IV.C) than equivalent systems developed with
AOP design techniques.

• Hypothesis 4: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software is not
significantly complex (as described by CC in Section
IV.D) than equivalent systems developed with AOP
design techniques.

• Hypothesis 5: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software is
significantly more oblivious (as described by NITD,
ASC, ASCO in Section IV.E) than equivalent systems
developed with AOP design techniques.

• Hypothesis 6: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software is not
significantly larger (as described by LOC, MLOC, NO,
NP, VA, WOC in Section IV.F) than equivalent systems
developed with AOP design techniques.

VI. EXPERIMENT METHODOLOGY
The research experiment consisted of the following steps:

A. Experimental Approval
In the first step, we submitted an application for

conducting this Human Research Experiment to the IRB [10]
and got its approval. All the researchers then passed the
online human research experiment-training course offered
through Collaborative Institutional Training Initiative (CITI)
[11].

B. Selection of Applications and Crosscutting Concerns
We selected applications that were multithreaded, used

whether JDK sockets or channels. The applications were
diverse in the way they implemented IPC and therefore
provide good coverage of different types of communication
heterogeneities. Finally, each application supported more
than one communication protocol. Table 1 lists the set of
selected applications.

Since the experiment would eventually require
developers to modify or extend applications for requirements
that represented communication-related crosscutting
concerns, our methodology included a step, which
systematically selected our representative crosscutting
concerns. Developers would have to apply each of these to
the applications, individually. Additionally, to minimize
noise in our data, we wanted to make sure that these
crosscutting concerns were sufficiently simple that a novice
programmer could understand the need and come up with a
solution in less than 10 hours. Table 2 introduces the set of
selected crosscutting concerns.

C. Recruitment and Training of Participants
To transparently recruit the candidates, we sent invitation

letters and recruited seven volunteer developers who were
experienced in object-oriented software development, Java
and software-engineering design principles such as
modularity and reusability. We then randomly organized
them into two study groups: A and B. Group A programmed
using an AOP approach and Group B used CommJ. Next, the
participants completed a survey that assessed their
background and skill levels. We also provided AOP training
to developers in Group A, and had them worked through
some practice applications. Similarly, we trained Group B

TABLE I. SELECTED SAMPLE APPLICATIONS

Application Name Description
Levenshtein Edit-Distance
Calculator (LD)

A server will calculate the LD between two input strings, provided by the client,
over a connection-oriented communication.

File Transfer Program (FTP) A file transfer protocol over connection-oriented communication.

Weather Station Simulator (WS) A simple weather station simulator, supported by a Transmitter and a Receiver.
	

TABLE II. SELECTED CROSSCUTTING CONCERNS

Application Name Description

Version Compatibility
This concern adapted one version of the message to another, so processes running
different versions could still communicate with each other. The crosscutting
concern included knowledge of converting one version to another and conversely

Symmetric-Key Encryption It encrypted the communication between a sender and receiver using symmetric-
key encryption

Measuring Performance It measured some performance related statistics for message-based
communications between sender and receiver

	
51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 73 / 679

developers with CommJ, and had them worked through some
practice applications.

D. Experiment Phases
In the first phase, participants filled a pre-implementation

questionnaire, developed the application using initial
requirements, recorded hourly journals and completed a post
implementation questionnaire. In the second phase, we
requested enhancements (sample applications and
crosscutting concerns), had them revised their
implementation accordingly, and then collected those
software systems. Participants again completed the pre and
post questionnaire and wrote their experiences in the hourly
journals.

Finally, after the second phase, we analyzed and
evaluated the reusability and maintainability using various
software artifacts, which included surveys, questionnaires,
hourly journals, and actual code.

We used both manual computation and automated tools
to compute measurements for all 16 metrics [20].
Experiment generated a total of 28 software systems. With
16 code metrics in the EQM, we had a total of 448
measurements, 280 computed automatically with a tool [20]
and 168 calculated manually.

VII. RESULTS
This section presents the data collected from the

experiment and our results in context of the six hypotheses.
In the following graphs, the vertical axes represent the
measurements, and the horizontal axes represent the four
activities of the experiment. For each activity there are two
bars: a blue bar is for the results of AspectJ group and a
green bar for CommJ group.

A. Hypothesis 1: Better Separation of Concerns
From the graph in Figure 4, we found that CDA and

CDO values for the CommJ group went to zero in all four
activities of the experiment. The reason for this phenomenon
is that CommJ pointcuts provide total obliviousness between
the application and communication-related crosscutting
concern. AspectJ, components and their operations for
crosscutting concern were significantly more diffused in the
application because the pointcuts had to be tied to
programming constructs instead of communication

abstractions. From these results, we can conclude that
Hypothesis 1 holds true for better separation of concerns in
CommJ than in AspectJ.

B. Hypothesis 2: Reduced Coupling
The graph in Figure 5 indicates that CommJ

implementations significantly reduced the values of CBC,
DIT and NOC as compared to AspectJ implementations.
CommJ crosscutting concerns didn’t maintain any direct
relationship with the application components and thus had a
lower CBC value. However, in AspectJ, excessive coupling
of concern with the application increased CBC, which
hindered reuse and maintenance.

The reason for higher DIT and NOC values in AspectJ
was that the participants preferred to override parent methods
in crosscutting concerns to share data structures across aspect
and application components during message passing.
However, CommJ provides comprehensive set of pointcuts
that fully encapsulates the IPC abstractions and thus
participants didn’t need to override or inherit the aspects.

From these results, we can conclude that Hypothesis 2
holds true for reduced coupling in CommJ than in AspectJ.

C. Hypothesis 3: Improved Cohesion
The results from the graph in Figure 6 demonstrate that

CommJ maintains a lower value for LCOO than AspectJ in
all phases of the experiment. Sant’Anna [3] says that LCO
measures the degree to which a component implements a
single logical function. Results argue that CommJ
implementations are more cohesive and logical than AspectJ,

Figure 4. CDA, CDO coverage over phases.

Figure 6. LCOO coverage over phases.

Figure 5. CBC, DIT, NC coverage over phases.

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 74 / 679

hence have a lower LCO value, which concludes that
Hypothesis 3 holds true for increased cohesion in CommJ
than in AspectJ.

D. Hypothesis 4: Reduced Complexity
The graph in Figure 7 shows that value of CC is smaller

for CommJ than AspectJ, because CommJ hides complex
IPC abstractions, which results in simple conditional
statements and less tangled code. From these results, we can
conclude that Hypothesis 4 holds true for less complex
software in CommJ than AspectJ.

E. Hypothesis#5: Improved Obliviousness
The following graph in Figures 8 shows that CommJ

implementations significantly reduced the values of NITD,
ASC and ASCO metrics.

The reason for having a zero value for NITD in CommJ
was that the participants used IPC constructs and did not
need to use inter-type declarations (ITD) for sharing of data
structures between application and aspect component.
Significant reduction in ASC and ASCO was due to the
layers of indirection between the application and aspect
components, which CommJ provides but missing in AspectJ.

From these results, we believe that Hypothesis 5 holds
true for less oblivious software concerns in CommJ than
AspectJ.

F. Hypothesis#6: Reduced Size
The graphs in Figure 9 shows that CommJ

implementations significantly reduced the metrics values for
LoC, MLoC, NP, NO and WOC and increase for VA in all
phases of the experiment.

In comparison with AspectJ, CommJ participants found
better pointcuts that helped them code the crosscutting
concerns with less LOC. This is because the UMC models
various general network and distributed abstractions. CommJ
captures those abstractions in meaningful, reusable
joinpoints and a family of base aspects, which helped the
participants implement the application crosscutting concerns
in simpler units, with no extra lines of code and fewer
operations. Hence, CommJ reduced MLOC, NO, NP and
WOC. Finally, the VA results indicate that average VA for
all programs was more for CommJ than AspectJ, which, as
Sant’Anna [3] claims, is an indication of more cohesion and
less tangling. From these results, we can conclude that
Hypothesis 6 holds true.

Besides analysis of the hypotheses via the metrics, we
also collected observations through participant
questionnaires and daily journals. On writing clean code, we
found that 100% of AspectJ participants in the Phase 1 were
struggled with identifying meaningful pointcuts for
implementing the add-on requirements, while 33% of them
still struggled with the same issue during Phase 2. On the
other side, none of the CommJ participants struggled with
this problem in either phase, which seem to indicate that
CommJ provides simple pointcuts for IPC abstractions.

On reusability, we observed that 67% of the AspectJ
participants in Phase 1 agreed that their applications might
not run after removing the extension part from the original
application. This percentage further increased to 100% in
Phase 2. On the other hand, none of the CommJ participants
felt this way for either phase. Similarly on maintainability,
100% of the AspectJ participants said that their changes (for
either phase) introduced new dependencies in the original
sample application. However, none of the CommJ
participants felt the same way. The survey also provided
some anecdotal information on frequency of bugs,
specifically 67% of the participants in AspectJ group said
that their implementation of extensions introduced new bugs
in Phase 1. This percentage further increased to 100% in
Phase 2. However, only 25% of the CommJ participants felt
that their extensions introduced bugs in Phase 1 and Phase 2.
This tells us that CommJ modularization and obliviousness
may decrease the introduction of failures and the debugging
time.

G. Threats to the Validity
Despite our best effort to perform the experiment

objectively with minimize extraneous variables, it is
important to recognize that this preliminary study has some
significant threats to validity. These include variations in
intelligence among the developers, health factor, work
environment, and personnel commitment. Still, we believe
that the results are very encouraging.

Figure 7. CC coverage over phases.

Figure 8. ASC, ASCO, NITD coverage over phases.

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 75 / 679

VIII. SUMMARY AND FUTURE WORK
In ICSEA 2013, we presented the design and

implementation of a new AOPL framework, called CommJ,
which allows developers to encapsulate IPC crosscutting
concerns in reusable and maintainable modules [1]. This
paper discusses an initial study on hoped-for benefits of
CommJ in comparison with AspectJ. It defines an extended
quality model, then setup an experiment methodology,
involving six quality hypotheses and data collection from 28
programs. The results from this preliminary investigation
provides sufficient evidence to conclude that CommJ is
capable of encapsulating a wide range of communication-
related crosscutting concerns and that it can provide better
maintainability and reusability. In the future, we plan to
conduct additional studies, refine the CommJ Infrastructure,
and extend the library of reusable aspects (RAL).

REFERENCES
[1] A. Raza and S. Clyde, “Weaving Crosscutting Concerns into

Inter-Process Communication (IPC) in AspectJ,” in ICSEA
2013, Venice, Italy, pp. 234-240.

[2] Jim A. McCall, “Factors in Software Quality,” in Nat’l Tech.
Information Service, 1977, vol. 1, 2 and 3.

[3] C. Sant'Anna, A. Garcia, C. Chavez, C. Lucena, and A. Von
Staa, “On the Reuse and Maintenance of Aspect-Oriented
Software: An Assessment Framework,” in 17th Brazilian
Symposium on Software Engineering (SEES 2003), Manaus,
Brazil (2003), PUC-RioInf.MCC26/03.

[4] C. Lopes, “D: A Language Framework for Distributed
Programming,” in PhD Thesis, College of Computer Science,
Northeastern University, 1997.

[5] J. Zhao, “Towards a Metrics Suite for Aspect-Oriented
Software,” in Technical-Report SE-136-25, Information
Processing Society of Japan (IPSJ), March 2002.

[6] V. Basili, G. Caldiera, and H. Rombach, “The Goal Question
Metric Approach,” in Encyclopedia of Soft. Eng., September
1994, vol. 2, pp. 528-532, John Wiley & Sons, Inc.

[7] L. Benavides, M. Sudholt, W. Vanderperren, B. Fraine, and
D. Suvee, “Explicitly distributed AOP using AWED,” in
AOSD 2006, pp. 51-62.

[8] G. Kiczales and M. Mezini, “Aspect-Oriented Programming
and Modular Reasoning,” in ICSE 2005, pp. 49-58.

[9] S. Chidamber and C. F. Kemerer, “A Metrics Suite for

Object-Oriented Design,” in IEEE Trans. Software
Engineering, June 1994, vol. SE-20, No. 6, pp. 476–493.

[10] Institutional Review Board (IRB), http://rgs.usu.edu/irb,
retrieved: August, 2014.

[11] Collaborative Institutional Trainig (CIIT),
https://www.citiprogram.org, retrieved: August, 2014.

[12] G. Kiczales et al., “Aspect-oriented programming,” in
(ECOOP), 1997, pp. 220—242.

[13] L. Bergmans and M. Aksit, “Composing Software from
Multiple Concerns: Composability and Composition
Anomalies,” in ICSE’2000. Position paper.

[14] AspectWorkz2, http://aspectwerkz.codehaus.org, retrieved:
August, 2014.

[15] ApectJ, http://www.eclipse.org/AspectJ, retrieved: August,
2014.

[16] JBoss AOP, http://www.jboss.org/jbossaop, retrieved:
August, 2014.

[17] Spring AOP,org.springframework, retrieved: August, 2014.
[18] C. Clifton and T. Leavens, “Obliviousness, Modular

Reasoning, and the Behavior Subtyping Analogy,” in SPLAT
2003.

[19] R.D. Tennent, “The Denotational Semantics of Programming
Languages,” in Communications of ACM 1976, pp. 437-453.

[20] Metrics plugin, http://metrics2.sourceforge.net, retrieved:
August, 2014.

[21] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair,
“Distributed Systems: Concepts and Design (5th ed.),” in
2011, Addison-Wesley Publishing Company, USA.

[22] R. Dromey, “A Model for Software Product Quality,” in IEEE
Transactions on Software Engineering,” in February 1995,
vol. 21, No. 2, pp. 146-162.

[23] P. Tarr and S. Sutton, “N-Degrees of Separation: Multi-
Dimensional Separation of Concerns,” in 21st International
Conference on Software Engineering, May 1999, pp. 107-
119.

[24] I. Sommerville, “Software Engineering”, 6th Edition, Harlow,
England. Addison-Wesley. 2001.

[25] N. Fenton and S. Pfleeger, “Software Metrics: ARigorous and
Practical Approach,” in 2.ed. London: PWS. 1997.

[26] A. Raza,. “Improving reuse and maintenance of
communication softwares with conversation-aware aspects,”
in Ph.D. Disseration, Computer Science Department, Utah
State Univeristy 2014.

[27] D. Parnas, “On the criteria to be used in decomposing systems
into modules,” in Communications of the ACM 15, val. 12
(December 1972), pp. 1053-1058.

Figure 9. LoC, MLoC, NP, NO, WoC coverage over phases.

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 76 / 679

Customized Choreography and Requirement Template Models as a Means for

Addressing Software Architects’ Challenges

Nebojša Taušan, Sanja Aaramaa, Pasi Kuvaja,

Jouni Markkula, Markku Oivo

Department of Information Processing Sciences

University of Oulu

Oulu, Finland

{nebojsa.tausan, sanja.aaramaa, pasi.kuvaja,

jouni.markkula, markku.oivo}@oulu.fi

Jari Lehto

Segment Manager

Nokia Networks

Espoo, Finland

jari.lehto@nsn.com

Abstract—Software architecture designs are useful artifacts;

however, their development and maintenance are considered

challenging. To better understand the possible causes for these

challenges, this article presents a case-study intended to

discover and understand software architects’ challenges and to

propose domain-specific models to address these challenges.

The main results of the case-study include a) the classification

of challenges in software architecture design as well as an

interpretation of the rationale behind these challenges, and b)

two domain-specific models for addressing architects’

challenges through architectural design. The proposed models

are expected to facilitate communication between development

teams, and to improve the technical aspects of the information

content of requirements.

Keywords- Software Architecture; Case-study;

Choreography; Requirements Engineering; Challenge.

I. INTRODUCTION

Throughout the software product life cycle, well-
established Software Architecture (SA) design is considered
a valuable asset that can guarantee several quality aspects, as
well as efficient development and maintenance work [1].
Today, software architects have a substantial amount of
knowledge and a plethora of methods and tools at their
disposable; still, well-established SA designs are scarce. One
of the reasons for this situation is that, according to Falessi et
al. [2], there is no SA design methodology that can
simultaneously meet all the needs of an architect. In this
study, the assumption is that the growing complexities of SA
design challenges are one of the main reasons for the
scarceness of well-established SA designs. The plethora of
challenges that architects face during their work is reported
in several empirical studies. Some of these studies are
presented in more detail in the following paragraphs.

Smolander and Päivärinta [3] analyzed stakeholders
participating in SA design and reported their problems in
relation to SA. The problems, or challenges, that were
expressed by software architects included: a) the continuous
lack of skilled architects, which resulted in a need for well-
documented SA specifications, and b) the communication
mismatch, which results from architects’ need to
communicate with other stakeholders who often lack the
necessary technical knowledge and insights.

In [4], Bosch presents his view on SA design challenges
along with proposals for how to overcome them. These
challenges include the lack of first-class representation,
cross-cutting and intertwined design decisions, high costs of
change, design rules and constraints violations, and obsolete
design decisions failing to be removed from SA designs.

The challenge of enriching existing software
development practices with architectural thinking is reported
by Lattanze in [5]. Besides the conclusion that common
methods of disseminating architectural knowledge do not
work, the author proposes a list of challenges that lead to
challenge state. Among others, the list includes the lack of
resources for SA design, the ill-treatment of architecture
activities, lack of career path for architects, and the fact that
created SA designs are not used.

One of the promising ways to overcome architects’
development challenges is the utilization of a Model-Driven
Engineering approach [6]. In short, this approach allows
architects to identify the areas in SA design that they see as
particularly challenging and express these areas with
Domain-Specific Models (DSM). The identified areas are
then specified and managed using the concepts, rules and
relationships defined in the DSM. The utilization of the
domain-specific approach for the specifications and
management is expected to yield several benefits, such as
better comprehension of specifications, faster development
and enhanced productivity [7][8][9]. The Model-Driven
Engineering approach represents the overall context of this
study.

To better understand and learn about SA design
challenges in a real-life setting, a case-study with four
software development companies was conducted. The main
results are presented in this article. The main study goals
were to identify a software architect’s challenges and to
propose DSMs as a means to address those challenges.
Stated goals were reached by answering to the following
research questions:

 RQ1: What challenges do software architects face
during the development and maintenance of software
architecture design?

 RQ2: How to address the identified challenges with
domain-specific models?

These research questions were answered by conducting
and analyzing five interviews with software architects,

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 77 / 679

analyzing additional interviews from previous studies,
consulting the relevant literature, analyzing company-
specific documentation, and closely collaborating with
industry experts.

The stated case-study goals are also aligned with the
goals of the AMALTHEA project. AMALTHEA is a
European ITEA2 project of which this study is a part of, and
its main goals include the development of an open source
tool integration platform, the creation of an engineering
methodology, and the specification of a tool-chain that will
support all relevant software development areas with
methods and DSMs [10]. The case-study results support
AMALTHEA’s goals by identifying the challenges faced by
software architects on the basis of which the DSMs will be
proposed. Proposed DSMs will serve as a foundation for the
development of distinct tools which will become a part of
AMALTHEA tool-chain.

The structure of this article consists of six sections. The
following section, Section II, introduces the research method.
This section is followed by the research results, which are
described in Section III and Section IV. A validity discussion
is presented in Section V. Concluding remarks and future
research directions are outlined in Section VI.

II. RESEARCH METHOD

In this study, software architects, their challenges and
model proposals are studied in their natural context.
Accordingly, the case-study approach was selected as an
overall research approach [11]. The research activities within
the case-study were divided into two major phases, each of
which sought to provide the answer to one research question.
In the first phase, the SA design challenges were identified,
categorized and interpreted based on knowledge gathered
through an interview of the company experts. In the second
phase, new DSMs were developed in such a way as to
address the identified challenges. The knowledge resulting
from the first phase represented the inputs to the activities in
second phase. The two phases of the case-study, labeled as
Phases A and B, together with the corresponding topics
under investigation, the relationships between those topics,
and RQs they answer, are presented in Figure 1. The
research activities undertaken in these phases are described
in more detail in the subsections bellow.

A. Research Phase A

The main purpose of Phase A was to provide the
knowledge necessary for the development of DSM

proposals. Since the DSMs seek to address the challenges
faced by architects, the knowledge here implies concrete
challenges, which were categorized and interpreted. For this
purpose, the researchers adapted the thematic analysis
method following Miles and Huberman’s guidelines [12].
The main reason that a qualitative method was selected for
this phase is that such a method provides a useful starting
point for studying phenomena for which existing knowledge
is scarce [13]. SA design challenges can be seen as such a
phenomenon. The adaption of the thematic analysis will be
presented through the two major phases: data collection and
data analysis.

Data collection: According to Falessi et al. [14],
empirical methods, such as interviews, are suitable data
collection techniques for studying SA. Following this
recommendation, the authors used five interviews as the
primary source of information for this study. The interviews
were conducted during the first quarter of 2012, with
interviewees who were working in the role of a software
architect, and who had between 10 and 26 years of
experience in software development.

The interviews were conducted as semi-structured, which
allowed researchers to define the themes of interest, but also
allowed interviewees to express their views regarding these
themes in the way that was most suitable for them. Broad
themes covered by the interview questions included
interviewees’ backgrounds, their understanding of what SA
is, things that are seen as challenges and things that are seen
as improvements. Additional data about the interviews are
included in Table I.

In addition to the interview data, the large ICT company
with which the authors collaborated provided company-
specific documentation related to technical analysis. This
documentation included: templates, process and work
descriptions, example requirements and test specifications.
This documentation was mostly used in Phase B, during the
development of models, but it was also used as a means to
better understand the interview response and to put these
responses in context. For the purpose of data triangulation,
supplementary interviews from a previous study [15] were
utilized as well. Relevant information about interviewees
from these supplementary interviews is presented in Table I.

To ensure the accuracy and the high quality of the data,
the following measures were taken: a) The questionnaire
used for the data collection was developed by a single
researcher, but reviewed by at least two senior researchers
and one industry expert. This was also the case for the
supplementary interviews used during the study. b) The
interviews were recorded, transcribed, and sent to

TABLE I. INTERVIEW DATA

Company Type Country Method Duration

A Large ICT A Telephone call 1 h

A Large ICT A Face to face 1.5 h

B SME ICT A Telephone call 1 h

C SME ICT B Telephone call 1.5 h

D Consultant A Face to face 2 h

Supplementary interviews

A Large ICT C Telephone call 1 h

A Large ICT D Telephone call 1.5 h

Category

Stakeholder

(Software architect)
Challenge Interpretation

Domain-Specific

Model

1

1

1

1

1

1 1m

m

m

1

m

has

has

includes

addresses

explains

has

Research

Phase A

Answers RQ1

Research

Phase B

Answers RQ2

Figure 1. Case study overview.

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 78 / 679

the interviewees for verification and for the clarification of
terms that were unclear to the researchers. Upon finalization
of the analysis, the results were sent for verification to
industry experts in the form of technical reports and were
presented in the workshops. c) Researchers worked under
non-disclosure agreements and the project consortium
agreement, which protected the privacy of the interviewees.

 Data analysis: To aid the analysis, interview transcripts
and company-specific data were imported into the NVivo
tool [16], which is a software package for qualitative data
analysis. A distinctive feature of this tool allowed the
researchers to work on the same data sources and to
continuously have insight into one another’s work. This
feature was especially useful because it allowed for mutual
verification of work “on the fly”.

At the core of the thematic analysis approach is the
technique of coding. Coding allows a researcher to relate
pieces of text that are of interest to the analysis with specific
names or codes. The subsequent analysis of the text under
each code facilitates the development of themes (i.e.,
categories) and for the rendering of interpretations. Code and
category development, as well as their interpretations, are
used to structure the explanation of the data analysis.

Code development: First, every piece of text that
interviewees explicitly mentioned as a challenge, as well as
text, that based on the researchers’ expertise was known to
be a challenging aspect of SA design, was encoded. The
pieces of text under each code helped researchers gain a
deeper understanding of SA-related problems and to
formulate these problems as the challenges presented in this
article. These challenges are the foundational concept of this
study since they represent the basis for the development of
DSMs (cf. Figure 1).

Category development: Newly formulated challenges
were expressed as new codes. In the following iteration, the
interview transcripts were re-coded using these new codes.
The coded text was further analyzed to find commonalities,
and in this case, four themes reflecting the underlying causes
for the identified challenges were proposed. These themes, or
categories, were used to organize the challenges and to
facilitate their interpretation.

Interpretation: The final step in the data analysis was
interpretation, in which the researchers combined and
summarized what had been learned from the interviews with
their own existing knowledge and experience. The main goal
of this step was to go beyond the challenges and categories,
to add the explanations and rationales behind these
challenges.

The challenges, categories, interpretations, and
relationships between them are illustrated in Figure 1, and,
together, they represent the core knowledge necessary for the
development of DSM proposals.

B. Research Phase B

Research Phase B used the results from the previous

research phase for the development of DSM proposals. For

this purpose, a number of workshops were organized in

which industry experts, together with researchers, analyzed

the challenges, categories, and their interpretations. During

these workshops, challenging areas for which DSMs could

be developed were identified. The first such area was

described as the lack of system-level agreement on

responsibilities during the implementation phase, while the

second area was identified as the lack of adequate technical

information in the requirement document.

Once these areas were identified, the researchers

consulted the relevant literature and used company-specific

materials and their own expertise to structure proposals for

addressing the challenges through DSM. For the first

identified area, a choreography-based DSM was proposed,

while, for the second, researchers proposed a DSM for the

dynamic requirement template. These two proposals were

developed for the context of the case company which

develops large embedded software systems and, therefore,

were strongly influenced by the case company’s practice.

Still, the ideas within proposals are considered generic

enough to be useful to architects in other companies as well.

The way in which the developed DSMs relate to the

previous research phase is illustrated in Figure 1, while the

more elaborate explanations of research results (i.e.,

challenges, categories, interpretations, and DSMs), are

presented in the following two sections.

III. SOFTWARE ARCHITECTS’ CHALLENGES

In this section, the results of the research Phase A are
presented. These results were obtained using interview data
and the thematic analysis approach, and they include the
identified challenges, categories, and interpretations. Here,
the derived categories are used to organize the presentation
of concrete challenges and their corresponding
interpretations.

A. Challenges, categorization and interpretation

The identified challenges are organized into four
categories: knowledge, global software development, system
size and complexity, and architectural viewpoints. This
categorization seeks to reflect the underlying causes for the
identified challenges.

Knowledge category: The development of SA designs,
or architecting, is a knowledge-intensive process. Large
amounts of both theoretical and practical knowledge are
required to fulfill daily tasks. The analysis of the collected
data revealed five challenges whose causes can be traced to
the lack of knowledge. These challenges are summarized in
Table II, and their interpretation is presented in the text
below.

TABLE II. KNOWLEDGE RELATED CHALLENGES

ID Challenge

K1 Architecting is usually experience based, without any clear

statement about the rationales for design constructs or decisions.

K2 Architecting is done in the uncertain conditions. Needed
information is missing.

K3 Architecting is done in the uncertain conditions Needed

information is not reliable.

K4 Software architect replacement.

K5 Communicating the architecture between the developers.

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 79 / 679

 K1: SA theory and SA design techniques are not
sufficiently included in the educational background of
software architects. Consequently, each architect devises his
or her own personal understanding about SA concepts and
practices and uses this understanding to specify the
underlying logic behind SA designs. Since these design
specifications are heavily burdened with architects’ personal
experiences and understandings, communicating designs to
other architects becomes a challenge.

K2: Architects often do not receive the information
necessary for their work. This leads to additional time
consumption for information gathering and the usage of
informal communication channels. What is discussed and
agreed during informal communication can be important for
understanding certain architectural solutions, but it often
remains undocumented and can be forgotten.

K3: Two explanations for this challenge are possible: a)
differences in education and experience can cause
misunderstandings, and b) large systems are often
documented from specific points of view. What is
meaningful from one viewpoint can be irrelevant from
another.

K4: During their work, architects gain knowledge about
systems, interdependencies, processes, people, and
customers, and they use this knowledge to develop SA
designs. In some cases, architects are displaced during the
course of development. The work done by a displaced
architect is often poorly documented and experience based
(see also K1), and for these reasons it takes a significant
amount of time to train the novice architect who will
continue the work of the outgoing architect.

K5: Employees often have different understandings about
the same concepts. Terms like component, domain, and
functional area are defined in the literature, but they are often
interpreted differently by practitioners or used differently in
different contexts. Refer also to challenges K1 and K3.

Global software development category: Software
development companies often operate across several
locations worldwide. In such a development setting, project
teams are formed with developers coming from various
cultural backgrounds and time zones and who communicate
using non-native languages. Our analysis revealed four
problems that can be linked to such a development setting
(cf. Table III).

G1: Two explanations for this challenge are possible: a)
For most team members, working in global development
setting means communicating in a non-native language.
Communicating complex issues requires a high level of
language proficiency, which does not always exist. b) Global
communication is done via different tools, such as emails,
faxes, Wikis and voice calls. These means are not necessarily
considered good substitutes for face-to-face communication.

G2: Due to mergers and acquisitions, companies are

faced with the task of imposing different rules and practices.
For example, if one company uses agile development, while
another uses a traditional development approach, employees
will be obligated to accept a new way of working.

G3: Personal acquaintances and face-to-face
communication is highly appreciated among architects, and
often seen as the best method of problem solving. However,
this type of communication in global software development
setting requires a substantial amount of resources; therefore,
it always has to be justified in terms of the costs and benefits
that will accompany it.

G4: Due to the variety of tasks and the large number of
teams that are scattered throughout the globe, the precise
responsibilities of architects are not always clear.

System size and complexity category: The interviewees
work with software systems that are considered large and
complex. The phrase “large and complex” emphasizes the
variety of different implementation technologies, software
platforms, development teams and features that such systems
support. Size and complexity cause a number of challenges.
The interview analysis revealed six of these challenges,
which are presented in Table IV.

S1: The development of an architecture for large
software systems is hampered by frequent changes, such as
a) changes in organization (similar to G2), b) changes in, for
example, requirement and feature documents, c) changes in
release content, and d) changes in technology.

S2: Different teams prefer different practices and
technologies. Sometimes, these technologies are mutually
exclusive, and in these circumstances architects must decide
in favor of one technological solution.

S3: System functionality can often be implemented in
different architectural parts. A consensus must be reached
among architects regarding which functionality will be
allocated to which architectural part. This is especially
important in cases for which various architectural parts are
also distinct sellable items. Allocating functionality in one
architectural part, means making that part a more lucrative
investment option for customers.

S4: Large systems have a large number of stakeholders.
Each stakeholder has his or her own vision for how the
system should work, which is expressed through specific
requirements. Often these requirements conflict with one
another, and it is up to the architects to decide how to
reconcile these conflicts.

S5: Systems tend to become large, while architects tend
to become focused only on distinct parts. This state results in
a loss of understanding about systems “as a whole”. Systems
are only valuable as a “systems” - that is, as a whole. If
several parts are preforming well, but other parts are creating

TABLE III. GLOBAL SOFTWARE DEVELOPMENT CHALLENGES

ID Challenge

G1 Difficulties in communicating tasks and results.

G2 Merging different architecting practices.

G3 Lack of personal acquaintances and face-to-face communication.

G4 Architects’ responsibilities are not clear.

TABLE IV. SIZE AND COMPLEXITI CHALLENGES

ID Challenge

S1 Architecting in a changing environment.

S2 Architecting in a heterogeneous environment.

S3 Architecting in a competitive environment.

S4 Architecting in a conflicting environment.

S5 Narrowly focused architecting.

S6 Models and tools are not sufficient for current architecting needs.

S7 Architecture and implementation often (mis)align.

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 80 / 679

bottlenecks, the overall system’s performance becomes
questionable. The performance of all parts must be balanced
and planned - so that the overall performance is optimized.

S6: Conventional modeling techniques and tools are not
sufficient for architects’ needs. For example, the model or
format of a requirement can be sufficient for one group of
stakeholders, but insufficient for another. Different groups,
working on different problems, have different expectations
for models and tools.

S7: Large systems have large architectures that must be
followed by developers. However, there are no means by
which to verify that, for example, the source code for the
release actually follows the architecture. Since new releases
tend to reuse old designs, this misalignment can result in
huge losses in time and resources.

Architectural viewpoints category: Viewpoints
represent one of the crucial concepts for documenting
software architecture. Architecture is actually expressed as a
collection of views [17][18] based on several viewpoints.
Each viewpoint emphasizes elements, and provides data that
are significant only for specific concern(s) tied to a particular
viewpoint. Other elements and data are omitted for clarity
reasons. Based on their needs, architects can develop a
feature viewpoint, a component viewpoint, a performance
viewpoint, a maintenance viewpoint, and many others
viewpoints they find useful. However, besides benefits, the
existence of different viewpoints also causes challenges (cf.
Table V).

V1: Each viewpoint represents a “world” for itself. It has
its own purpose terminology, conceptualization and rules
which must be known and understood in order to be
effectively used, discussed and decided. Sometimes
employees discuss things from the perspective of different
viewpoints. This can lead to communication problems,
which hamper the development process.

V2: A viewpoint addresses certain concern(s), but it does
not exist in isolation. Typically, viewpoints rely on each
other, meaning that updating one viewpoint often requires
updating and validating other viewpoints as well. These
relationships are often neither explicit, nor maintained.

V3: A reference architecture is an artifact whose purpose
is to be shared across all development teams. It represents a
common vision, or a shared mental model that sets common
rules and terminology. The system described from this
particular viewpoint is often seen as a reference for
communication and development. The study revealed,
however, that the reference architecture is not always
properly maintained.

V4: Architectural designs, or views, are not used to their
full potential. Often only a small portion of a design is used,
while the rest of the information it offers remains neglected.

V5: Development problems are often discussed from
only one viewpoint, and, as a result, wrong design decisions
are made. For example, a static structure can be useful for an
efficient breakdown of work, but it would be risky to use
such a structure as a solution for certain other problems such
as requirements breakdowns.

V6: In order to reach its full potential, a viewpoint must
be used and understood by all interested stakeholders. A
company that operates worldwide may encounter problems
in enforcing certain viewpoints or practices related to these
viewpoints throughout all of their global departments (refer
also to G1).

IV. DOMAIN-SPECIFIC MODELS PROPOSAL

In this section, the results of the second research phase
are presented. These results include two DSMs which were
developed based on the identified challenges and which seek
to address two subsets of those challenges. The structure for
the presentation of the two models includes the following
parts: a) context which explains the circumstances from
which the challenges were identified; b) challenge area,
which explains the architects’ interest and identifies which of
the identified challenges the model includes; c) proposal,
which provides a description of the proposed DSM; and d)
theory, which presents a short overview of the theoretical
foundations underpinning the proposed DSM.

Both DSM proposals share a common underlying
assumption, which is that there is an interrelationship
between the product breakdown and the way in which
development teams are organized. The logic of the “product-
team breakdown” assumption is known in software
development and reported in, for example, [19]. A simplified
version of this logic is illustrated in Figure 2.

A system as a whole is subdivided into several logical
components, which are further subdivided into more fine
grained logical components. These components are mapped
into real, physical software components, which are illustrated
as the leaves of the hierarchy on the left side of Figure 2.
Software development teams are organized following the
same hierarchical structure. As illustrated, the board of
architects is responsible for the high level conceptualization
of the overall system, which is then operationalized by
architects and their development teams. Each development
team is responsible for a dedicated logical component, and
its corresponding physical components. With this assumption
in mind, the following subchapters present the detailed
explanations of the two proposals.

Software system

Logical

component

Logical

component

Logical

component
...

Logical

component

Development

team

Architect

Development

team

Development

team

Physical components

System conceptualization

Architect Architect

Board of software architect

Figure 2. A system breakdown and team organization.

TABLE V. CHALLENGES RELATED TO VIEWPOINTS

ID Challenge

V1 Employs are not aware of the existence of different viewpoints

V2 Relationship between viewpoints is not clearly visible

V3 No common, comprehensive reference architecture

V4 Architectural designs (views) are used too narrowly

V5 Architectural designs (views) are misused

V6 Difficulties in enforcing viewpoints

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 81 / 679

1) Proposal 1: Choreography based agreements
Context: The case company employs several hundred

developers in its R&D division. The main task of those
developers is to ensure the continuous evolution and
maintenance of a large, embedded software system. The
developers are organized in teams and, as illustrated in
Figure 2, each team is responsible for a distinct, logical part
of the system. Due to the large number of teams which are
typically dispersed across different geographical, national,
and cultural locations, developers are often unaware of their
role in the “big picture”. The “big picture” here denotes an
understanding of how a developer’s everyday work is
aligned with the work of other teams and how it affects the
functioning of a system as a whole.

Challenge area: There is no system-level agreement that
would increase developers’ awareness regarding who does
what, and in which order. This leads to work duplication,
reworks, frequent delays, and a loss of opportunities from the
parallelization of work. The problem of duplication of work,
for example, is explicitly stated by one of the interviewees:

“Truly, there is not such a company-level function where
a decision could be made that a specific solution is

implemented in a specific product and not in some other
product. In practice, there may be several products that
provide technical solution for system level need, and, in

addition, all the solutions are standardized.”
This challenge area can be seen as a collection of several

of the challenges faced by architects’ which have been
previously identified. These challenges are K5, S3, S5, S6
and, partially, G1. An explanation of the proposal and the
rationale for why it can be seen as a potential solution to
these challenges is given in the text below.

Proposal: A choreography model is a way to intervene in
the challenge area. The proposal is to select, customize, and
provide tool support for the choreography modeling, by
supplementing it with domain-specific content, and by
merging it with additional models. Initial work on domain-
specific supplements is begun, and some of the results are
explained in Taušan et al. [20], where the way how different
implementation of middleware features are affecting the
choreography model is studied.

The goal behind the merger of choreography and other
models is to create more ways for architects to express their
designs. For example, the WS Choreography model [21]
prescribes constructs for representing, e.g., the interaction. A
merger provides an additional option to express interactions
using techniques such as UML state charts, or UML-
collaborations.

Theory: Choreography represents a system-level view of
the interactions between distinct system parts [22]. The
semantics of a choreography model allow architects to
capture and analyze the use case in terms of participants,
their roles, their messages, and the order in which those
messages are exchanged in order to fulfill the use case [23].
Referring to Figure 2, each participant represents a distinct
development team or engineering unit within the company.
The role indicates the contribution of the architectural part,
which is embodied in physical components under the team’s
responsibility. Messages and message ordering have to do

with what is exchanged between the roles, as well as when
the exchange occurs. The simplified illustration of the
choreography model instance is presented in Figure 3. Here,
four teams (teams x, y, z, and q) are participating in fulfilling
the use-case, while the components under their responsibility
take six roles (roles A, B, C, D, E and F).

The semantics of the choreography model, the
experiences published in literature, and the possibilities for
customizations were the main arguments for proposing it as a
potential solution for the challenges in the challenge area.
These arguments are discussed in more detail below.

The challenge of communicating the SA (ID: K5) is
explained through the ambiguity and misunderstanding of
the concepts in use. One way to address this challenge is to
customize the choreography model by including domain-
specific concepts. The rationale behind this approach
involves reported evidence that the inclusion of domain-
specific concepts can improve the comprehension and
readability of specifications [7][8], which are at the core of
this challenge. Moreover, this approach partially addresses
the challenge of communicating tasks and results (ID: G1).

The challenge related to competing environments (ID:
S3) involves allocating functionality to a set of architectural
parts. Choreography natively supports the role concept for
documenting the contribution that an architectural part
provides to the fulfillment of the use-case. In the proposed
approach, the focus is on the role, as a means of addressing
this challenge, by providing the methodological and tool
support for role identification and management. The
rationale for using the role to understand the contribution of
architectural parts at the analysis level, and to relate this to
physical components during the implementation, is claimed
to be a good practice by Kruger [24] and by Kruger, Nelson
and Venkatesh [25].

The challenge of the narrow focus (ID: S5) involves
comprehending the system as a whole and ensuring its
performance. The reason choreography is seen as a suitable
approach for this challenge is that it natively captures the
interactions needed for the system-level use cases. As such,
it imposes and documents the collaboration of all interested
teams and provides insights into the roles that each team has.
Regarding performance issues, the existing literature offers
evidence that organizing systems according to a
choreography model can result in better performance
[26][27].

++

Role A

Role B
Role A

Role C

Role B

Role F

++

Role D

Role E

Team x

Team y

Team z

Team q

Team y

Team x

Team x
Team z

Figure 3. Choreography model.

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 82 / 679

The challenge of inadequate models (ID: S6) will be
addressed through the merger of a choreography model and
other models which are used by industry partners. Allowing
architects to use their own preferred modeling techniques,
together with the domain-specific constructs offered by the
choreography model can be seen as an adequate response to
this challenge.

2) Proposal 2: Dynamic requirement template
Context: In the case company, requirements are elicited

by customer teams and then communicated to product
management. At first, an initial screening is undertaken to
quickly determine whether a requirement has the potential to
bring value to the customer. If a value is identified, the
requirement is analyzed in more detail from business and
technical feasibility points of view (see Aaramaa et al. [15]
for more details about such an analysis). This particular
proposal improves the information content that is needed for
the technical feasibility analysis.

Challenge area: Collecting the needed requirement
information from customers and communicating this
information to product management, and then to software
architects, is the task of customer teams. The template for
collecting and recording requirements, however, lacks the
necessary technical information, and the reliability of the
information in the requirement specifications is questionable.
In addition, distinct technical information content has to be
provided to describe each architectural part.

The direct consequence of this challenge is that architects
use a significant portion of their time trying to find the
necessary information, before they can begin the technical
feasibility study and implementation of the requirement. This
inefficient use of architects’ time is only one example of the
issues that are prevalent in this area, and it is also recognized
by one of the interviewees:

“And because they [customer teams] are technically not
that well-trained or they don’t have that kind of deep

knowledge about the new functionality, (…) and then we
[software architects] always have to make new and new

inquiries towards them, to go back to the customer in order
to get more information.”

This challenge area can also be seen as a collection of
several architects’ challenges that have previously been
identified. These challenges include K2 and K3, as well as,
partially, S1, S5 and S6. An explanation of our proposal and
the theory that supports it is presented in the text below.

Proposal: The dynamic requirement template consists of
two parts: a common and a specific part. The common part is
the same for all requirements and consists of data such as the
requirement’s ID, name, priority, and description. The
specific part is tied to a distinct part of the system or to a
logical component, as is shown in Figure 2, and it consists of
data that are relevant only for that specific system part. The
main idea here is to use the specific part of the template to
allow architects and their teams to define the information
content that is relevant to their work.

This model of a requirement template is illustrated in
Figure 4. The architects and their teams define the
information content which includes data that have to be
collected from customers, the descriptions of those data,

guidance how to collect them, and criteria for the collected
data’s completeness. This information content forms the
specific part of the requirement template. When this is done,
the model is ready for instantiation by customer teams.

There are three distinct steps that can be identified during
the template instantiation: a) recording data from the
common part, b) understanding which parts of the systems
are affected by the requirement and c) recording the specific
part of the requirement for the identified system part. When
these steps are completed, the requirement specification can
be passed to the architects for technical feasibility analysis
and implementation. It is expected that, due to the provision
of focused technical data, architects and developers can do
their work more efficiently.

Theory: The model behind the dynamic requirement
template proposal is motivated by the idea that SA has a
strong influence on Requirement Engineering (RE), and that
including SA-related items in a requirement specification
may result in different benefits. Some of the studies
supporting this idea are presented below.

One of the first publications to focus on this idea is the
panel discussion presented in Shekaran et al. [28]. In this
panel, participants expressed their views on how SA is
present in RE and outlined expected benefits. These benefits
included an understanding of the resistance to change; the
consistency, comparability, and feasibility of the
requirements; and the consideration of different design
alternatives.

Ferrari et al. [29] conducted a controlled experiment to
understand the impact of architectures on new system
requirements. The authors claimed that by considering SA
during RE (among other things), analysts could elicit 10%
more architecturally relevant requirements, 10% more
“important” requirements, 7% more crosscutting
requirements, and more implementation and interoperability
requirements.

According to Cervantes et al. [30], frameworks as SA
concepts influence RE. Frameworks can impose constraints
such, as testability and developer skills, or create new system
requirements. The example of new requirements is the case
when the utilization of a concrete technology demands the
usage of a concrete application type. By considering this
constraint early, (i.e., in RE), losses in later development
phases can be avoided.

Architect and

team x

Architect and

team y

Architect and

team z

Logical

component A

Logical

component B

Logical

component C

Physical components

Requirement

-common part-

Specific part A Specific part CSpecific part B

Figure 4. A dynamic requirement template.

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 83 / 679

V. VALIDITY DISCUSSION

The validity of a case-study, according to Yin [31],
constitutes four aspects: construct validity, internal validity,
external validity and reliability. There are several issues that
may threat the validity aspects, and these were considered
throughout the study.

If the researchers and the interviewees do not understand
the concepts to be studied in the same way, a threat to
construct validity is introduced. This threat was mitigated in
this study through the rigorous peer review of the interview
questionnaires that were used to collect the data for both the
primary and the supplementary interviews.

The utilization of supplementary interviews can represent
another threat to validity, since these data were collected for
another purpose and, thus, must be considered as third-
degree data [11]. Using this type of third-degree data,
however, may also mitigate threats to validity, since such
data’s use triangulates the data; moreover in this particular
study, the results of the additional interviews were in line
with the primary set of data. Thus, the additional interviews
addressed the validity threat to generalizability that resulted
from the relatively low number of interviewees in the
primary set.

The fact that the researchers have years of experience of
research co-operation in the context of the case company
also poses a threat to reliability in the form of researcher
bias. To mitigate this threat, measures for ensuring data
quality and correctness were taken. These were presented in
Section II.

A threat to internal validity relates to possibilities to
generalize the results and draw cause–relationship
conclusions from those results. This case-study did not seek
to analyze causal relationships, so, from that viewpoint
internal validity has not been considered.

External validity concerns how much an analysis’s
results can be generalized, (i.e., used in other companies).
The analysis results for this study were based on qualitative
data from four companies, which develop different types of
systems in different domains. The diversity of the
interviewees suggests that categories and challenges could be
identified in other contexts as well. The improvement
proposals, however, were developed in cooperation with
experts from a single company. Beyond the educated opinion
that these proposals are applicable in similar type of
companies or context, no other argument can be provided
regarding external validity. Therefore, a threat to external
validity remains.

VI. CONCLUSION AND FUTURE WORK

SA design is a solid approach to ensuring software
quality and longevity. Its importance in software
development is undoubtedly confirmed by one of the
interviewees who, for example, claimed that:

“When we have it, [software architecture] work comes
much easier.”

The goals expressed in the AMALTHEA project,
however, represent an additional empirical argument that SA
design practices still need improvements. Consequently, this
article presents our results from the study in AMALTHEA

project which is conducted to improve the understanding of
what architects perceive as challenging in their daily
practice, as well as to develop ways to address these
challenges with DSM.

The main results of this study are two DSM proposals.
These DSMs were developed using the discovered
challenges, the challenge categories (which were devised to
reflect the underlying causes), and the interpretations of the
challenges. In addition, existing literature, company-specific
material and researcher’ expertise were also used during the
DSM development.

These results are also seen as answers to the research
questions that where stated at the beginning of this paper. In
short, based on the data analysis, RQ1 is answered by
identifying, categorizing, and interpreting the architects’
challenges. To answer RQ2, the researchers used the RQ1
answers and proposed two DSMs: namely, choreography-
based agreements and the dynamic requirement template.
These two proposals have yet to be validated. It should be
also noted that, based on the identified challenges, additional
DSMs could be derived as well. Which combination of
challenges an architect sees as suitable for addressing
through DSM is highly influenced by the architect’s
experience and the development context.

In addition to using these results, software architects can
also recognize the derived categories and use them to predict
possible challenges they will face if, for example, their
company operates in a global software development setting,
their product becomes large and complex, or multiple
viewpoints are in use. It is also important to emphasize that
the knowledge category can be seen as a pervasive category,
which is present regardless of software size, complexity, the
utilization of viewpoints or global software development
settings. The list of challenges under each category can be
seen as the concrete points that can either be addressed
through an architect’s choice of development practice, or
serve as a means through which to raise architects’
awareness about the particular challenge.

In future work, the two proposals will be fully
customized to fit the case company’s context. Customization
will include various tasks, such as specifying of the
information content for the dynamic requirement template,
supplementing the choreography model with details that are
relevant to the developers, and developing software support
for the proposals. Additionally, the authors plan to conduct a
series of evaluations with industry practitioners to validate
and improve the two proposals.

ACKNOWLEDGMENTS

This study was supported by ITEA2 and TEKES. The
authors would like to express their gratitude to the
interviewees for their time and effort, and to the
AMALTHEA partners for their cooperation. The authors are
also grateful to J. Peltonen from the Tampere University of
Technology for his valuable suggestions regarding the
choreography model proposal.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software architecture
in practice. Addison-Wesley Professional, 2003.

62Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 84 / 679

[2] D. Falessi, G. Cantone, and P. Kruchten, “Do architecture
design methods meet architects’ needs?,” The Working
IEEE/IFIP Conference on Software Architecture
(WICSA’07), 2007, pp. 5.

[3] K. Smolander and T. Päivärinta, “Describing and
communicating software architecture in practice: observations
on stakeholders and rationale,” In Advanced Information
Systems Engineering, 2002, pp. 117–133.

[4] J. Bosch, “Software architecture: The next step,” in Software
architecture, 2004, pp. 194–199.

[5] A. J. Lattanze, “Infusing Architectural Thinking into
Organizations.,” IEEE Software, vol. 29, no. 1, 2012, pp. 19 –
22.

[6] D. C. Schmidt, “Model-driven engineering,” Computer, IEEE
Computer Society, vol. 39, no. 2, 2006, pp. 25 – 31.

[7] T. Kosar, M. Mernik, and J. C. Carver, “Program
comprehension of domain-specific and general-purpose
languages: comparison using a family of experiments,”
Empirical Software Engineering, vol. 17, no. 3, 2012, pp.
276–304.

[8] M. Völter, “Architecture as Language,” IEEE Softw., vol. 27,
no. 2, 2010, pp. 56–64.

[9] A. Van Deursen, P. Klint, and J. Visser, “Domain-Specific
Languages: An Annotated Bibliography,” Sigplan Notes, vol.
35, no. 6, 2000, pp. 26–36.

[10] “AMALTHEA,” 2014. [Online]. Available:
http://www.amalthea-project.org/. [Accessed: 09-May-2014].

[11] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,”
Empirical Software Engineering, vol. 14, no. 2, 2008, pp.
131–164.

[12] M. B. Miles and A. M. Huberman, Qualitative data analysis:
An expanded sourcebook. Sage, 1994.

[13] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian,
“Selecting empirical methods for software engineering
research,” in Guide to advanced empirical software
engineering, F. Shull, J. Singer, and D. I. K. Sjøberg, Eds.
Springer, 2008, pp. 285–311.

[14] D. Falessi, M. A. Babar, G. Cantone, and P. Kruchten,
“Applying empirical software engineering to software
architecture: challenges and lessons learned,” Empirical
Software Engineering, vol. 15, no. 3, 2010, pp. 250–276.

[15] S. Aaramaa, T. Kinnunen, J. Lehto, and N. Taušan,
“Managing Constant Flow of Requirements: Screening
Challenges in Very Large-Scale Requirements Engineering,”
Product-Focused Software Process Improvement, 2013, pp.
123–137.

[16] “NVivo 10 research software for analysis and insight,” 2014.
[Online]. Available:
http://qsrinternational.com/products_nvivo.aspx. [Accessed:
09-May-2014].

[17] “42010-2011 - ISO/IEC/IEEE Systems and software
engineering - Architecture description,” IEEE Computer
Society. 2011.

[18] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers,
and R. Little, Documenting software architectures: views and
beyond. Pearson Education, 2002.

[19] N. Nagappan and T. Ball, “Using Software Dependencies and
Churn Metrics to Predict Field Failures: An Empirical Case
Study,” First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007), 2007, pp. 364–
373.

[20] N. Taušan, J. Lehto, P. Kuvaja, J. Markkula, and M. Oivo,
“Comparative Influence Evaluation of Middleware Features
on Choreography DSL,” The Eighth International Conference
on Software Engineering Advances (ICSEA 2013) IARIA,
2013, pp. 184–193.

[21] D. Burdett and N. Kavantzas, “WS choreography model
overview,” W3c Work. Draft. W3C, 2004.

[22] R. Dijkman and M. Dumas, “Service-oriented design: A
multi-viewpoint approach,” International journal of
cooperative information systems, vol. 13, no. 4, 2004, pp.
337–368.

[23] A. Mahfouz, L. Barroca, R. Laney, and B. Nuseibeh, “From
organizational requirements to service choreography,” World
Conference on Services-I, 2009, pp. 546–553.

[24] I. H. Krüger, “Service specification with MSCs and roles,”
IASTED Conference on Software Engineering, 2004, pp. 42–
47.

[25] I. H. Krüger, E. C. Nelson, and P. K. Venkatesh, “Service-
based software development for automotive applications,”
Proceedings of the CONVERGENCE 2004, 2004, pp. 0.

[26] S. Cherrier, Y. M. Ghamri-Doudane, S. Lohier, and G.
Roussel, “Services collaboration in wireless sensor and
actuator networks: orchestration versus choreography,” IEEE
Symposium on Computers and Communications (ISCC
2012), 2012, pp. 411–418.

[27] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda,
“Decentralized orchestration of composite web services,”
Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, 2004, pp.
134–143.

[28] C. Shekaran, D. Garlan, M. Jackson, N. R. Mead, C. Potts,
and H. B. Reubenstein, “The role of software architecture in
requirements engineering,” Proceedings of the First
International Conference on Requirements Engineering,
1994, pp. 239–245.

[29] R. Ferrari, J. A. Miller, and N. H. Madhavji, “A controlled
experiment to assess the impact of system architectures on
new system requirements,” Requirements Engineering, vol.
15, no. 2, 2010, pp. 215–233.

[30] H. Cervantes, P. Velasco-Elizondo, and R. Kazman, “A
Principled Way to Use Frameworks in Architecture Design,”
IEEE Software, vol. 30, no. 2, 2013, pp. 46–53.

[31] R. K. Yin, Case study research: Design and methods, vol. 5.
Sage, 2009.

63Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 85 / 679

MDD for Smartphone Application with
Smartphone Feature Specific Model and GUI Builder

Koji Matsui and Saeko Matsuura
Division of Electrical Engineering and Computer Science,

Graduate School of Engineering and Science.
{ma14097@, matsuura@se.}shibaura-it.ac.jp

Abstract—Unlike general PC applications, smartphone
applications have three innovative features that make useful
mobile services a possibility. Conventional code-centric
development tools used for general PC applications are not
efficient for developing high-quality software with mobile
features. The difficulty with conventional development is
because of the variety of platforms and operations. Model
Driven Development (MDD) is a promising approach to
develop high-quality software products efficiently. To develop
richer applications using such features, we propose a UML-
based MDD method. This method uses a Smartphone Feature
Specific Model and a GUI builder, independent of any specific
OSs.

Keywords-MDD; UML; Smartphone Application; GUI
builder.

I. INTRODUCTION
Smartphone applications have three innovative features

that present a possibility of useful mobile services. The first
feature is that the device is equipped with various types of
hardware. This enables the user to input a variety of data;
for example, user actions that cannot be expressed by
characters. The second feature is that the application can be
easily extended by connecting external applications, such as
Intent in Android, or URLScheme in iOS using various
communication mechanisms. The third feature is a set of
rich User Interface components for multi-touch devices that
enables us to use the interface to improve the operability of
a smartphone.

The development of applications for a smartphone is a
complicated task because of the variability of platforms and
the number of different devices that need to be supported.
Moreover, the basic design of a target application that
includes UI operability needs to be analyzed at the early
stages of development to reduce the need to rework.

GUI builder allows a developer to arrange widgets using
a drag-and-drop WYSIWYG editor, so that he/she can
develop the user interface of the application in an intuitive
manner. However, the intuitiveness of the interface is
entirely dependent on the specific programming language
and the analysis of the application logic. This relationship
tends to be insufficient in regards to the first two features.

We propose a unified modeling language (UML)[1]-
based Model Driven Development (MDD) method using a

smartphone feature-specific model and a GUI builder that is
platform independent.

The remainder of the paper is organized as follows.
Section II discusses how to develop smartphone applications
efficiently. Section III explains how to model the smartphone
application using suitable development tools stated in our
approach. Then, the related work is discussed in Section IV.

II. PROBLEMS IN DEVELOPMENT OF SMARTPHONE
APPLICATION

Since mobile services with the abovementioned features
support varied platforms and operations, it is difficult to
implement conventional code-centric development to
develop such a system efficiently. MDD [2] [3] is a
promising approach to develop high-quality software
products efficiently because it enables code generation and
has high traceability.

The issue with changeability of platforms can be solved
by separating concerns about platforms. The Platform
Independent Model (PIM) and the Platform Specific Model
(PSM) use UML. However, to realize appropriate
operability, we need to design a system that uses a concrete
screen image.

A developer can use GUI builder [4] for the specified
OSs and develop application user interfaces in an intuitive
manner. However, the intuitiveness of the interface is
entirely dependent on the specific programming language
and the analysis of the application logic. This relationship
tends to be insufficient. Thus, the product developed using
GUI builder is difficult to reuse in other applications and
cannot follow various requirements changes.

UML is a well-known general-purpose modeling
language that provides a standard method to visualize the
design of a system. There are several convenient UML
editors, such as astah* [5]. astah* and other UML editors
are effective tools to design the static structure and behavior
of a system; however, these tools are unsuitable to design
GUI in an intuitive manner.

The problem is how to efficiently develop smartphone
applications that deliver feasible static content, as well as an
intuitive behavioral model. Further, these applications must
also be independent of any specific OSs.

64Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 86 / 679

III. UML-BASED MODEL DRIVEN DEVELOPMENT
METHOD

A. Overview of Development Process
To solve the above-mentioned problem, we propose a

UML-based MDD method using a Smartphone Feature
Specific Model and an original GUI builder independent of
any specific OSs. Figure 1 shows an overview of our method.

Figure 1. Overview of our Method

Use case analysis [6] is known as an effective method to
define functional requirements. Therefore, because a use
case represents a basic unit of function that is used by an
end-user, we begin the method by constructing a use case

diagram
The Smartphone Feature Specific Model consists of two

types of data edited by such different design views as a
UML modeling tool and the GUI builder.

The first data is a UML Model specified by a glossary of
smartphone features, as shown in Figure 2. A UML Model
consists of a use case diagram and a pair of an activity and a
class diagram. An activity diagram and a class diagram
correspond to a use case. A developer edits the pair using
the UML modeling tool, astah*.

The second data is defined by the GUI builder and
consists of Abstract GUI Information and Concrete GUI
Information. The former consists of abstract components
that are common in the Android, iOS, and Windows Phone
SDK [7] [8] [9]. Moreover, the second data is connected
with the UML Model by a mapping rule based on a meaning
of a use case. The latter shows properties such as size,
position, font, color, and concrete values, which are added
to the first data.

The mapping rule defines mutual transformation
between both data defined by the UML modeling tool and
the GUI builder. The data of the UML Model is extracted
using the astah* API Plug-in.

After a developer edits a target application using proper
views that he/she thinks fit to design such aspects as
function, structure, behavior, and operability. Smartphone
Feature Specific Model data is written in XML and can be
translated into codes in specific programming language such
as Java, Objective-C, and C#.

B. Glossary of smartphone features.
Figure 2 shows a glossary of smartphone features

mentioned in Section I. Smartphone features are classified
into four classes: View, Gesture, State, and ExternalSystem.
These classes are used as basic components of the
smartphone specific model.

View consists of 13 Widgets and 5 Layout classes that
are used for editing on the GUI builder. Widgets are

Figure 2. The Glossary of Smartphone Features

65Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 87 / 679

classified into InputWidget and OutputWidget and both of
become components in a class diagram corresponding to a
use case.

The Gesture class has a role of expressing requests for
the operability of a system.

The State class is used to express a distinction of a
property of a process in an early stage of development.
Background processing has API usage restrictions.

The ExternalSystem class expresses a system with which
an application can cooperate to improve the service. The
class becomes an object node in an activity diagram and an
actor of the use case. These classes include not only
cooperating with other applications, but also the use of
various types of hardware and communication methods.

C. UML Models
A use case diagram includes several use cases with the

related actor, such as a user or available external application
or hardware component. A developer may decide a root use
case by relating the other use cases using extend or include
relationships. The root use case represents a scenario of
starting the application. By the end of the operation, each
use case is defined by an activity diagram and the
relationship is expressed by calling a sub activity
corresponding to the other use case in the activity diagram
(Figure 3).

An activity diagram expresses a series of processing
actions with related data. The background action is
distinguished from the foreground action by the use of a
partition. An object node is used to denote the linking of
external applications or hardware. A User partition includes

user actions with input data whereas the Interaction
partition includes actions with output data through a user
interface.

Figure 4 shows a class structure of system partition
specified by State of the glossary. In this model, the general
components in an activity diagram are specified by
smartphone features. A class of the glossary is displayed in
red and a developer can design smartphone features by
using this class.

Figure 4. System Partition in Activity Diagram

Figure 5 shows how a use case corresponds to a screen
of the application preventing complication of models.
Information about input/output data that are used in the use
case is expressed by a class diagram composed of a class

Figure 3. Activity Diagram for a Use Case

66Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 88 / 679

corresponding to three types of classes in the glossary.
Entity data is also defined by a class related to the use case,
as shown in Figure 5.

Figure 5. Use case and Class Diagram

D. UI Design with GUI Builder
Based on a use case diagram, a developer can design the

UI screen image using the drag-and-drop WYSIWYG editor.
In this step, the UI is designed using subclasses of View and
Gesture in the glossary. As Figure 6 shows, there are 17
types of widgets in View. Each View has one or more
Gestures that is a trigger to call the use case function.
EventAction objects can have a connection with the other
use cases. EntityData object expresses data that is created
by the function and will be read by the View object. Abstract
GUI Information is automatically generated or updated by
these operations on the GUI builder. This sequence of
operations corresponds to a sequence of actions in the
related activity diagram.

Figure 6. Abstract GUI Information

A developer defines attributes or values such as the size
of a widget, the position, font type and font size, the content
of the message presented, and a name of a label or button.
Such data is saved as Concrete GUI Information written in
XML.

Another important role of the GUI builder is to decide
the most appropriate screen transition based on the amount
of information caused by the combination of use cases.
Figure 7 shows an example of how such a decision is made,
to integrate two screens into one screen or not to integrate
the screens.

Figure 7. Products of UML-based MDD

IV. RELATED WORK
Lettner et al. [10] has stated that MDD is a promising

approach for mobile phones in solving problems of
conventional code-centric development approaches. They
discuss the problem from the viewpoint of the reusability of
parts of a system and the adaptability to various changing
platforms. However, Lettner did not propose a concrete
mechanism in which we can design reusable models with
smartphone specific features independent of specific OSs.

There have been several studies of MDD for smartphone
applications. In one study, Sabraou, et al. [11] proposed a
MDD method to design GUI using object diagrams in UML.
These diagrams are translated into XML based data on the
Android GUI Meta model. However, in comparison with
our approach, a developer cannot design the user interface
in an intuitive manner. Moreover, consideration of screen
transition in accordance of the amount of information is not
discussed in the Sabraou study.

In another study, Diep et al. [12] proposed an MDD
environment to provide developers with a platform-
independent GUI design for mobile applications. Though the
static screen composition can be defined, dynamic screen
changes cannot be performed. In contrast, we use a GUI
builder to design GUI. Moreover, we analyze application
logic called by UI components using the activity diagram
and the entity data. This combination ensures that dynamic
screen changes can be performed.

67Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 89 / 679

MD2 [13] is a framework for cross-platform model-
driven mobile development. In their approach, a developer
needs to design an application model by using a specific
DSL in text form. However, the DSL is insufficient to
flexibly design the smartphone application model from both
the structural view and the UI view.

Franzago et al. [14] also proposed a collaborative
framework for the development of data-intensive mobile
applications exploiting MDD techniques and separation of
concerns. Our approach uses familiar modeling Language
UML and GUI builder which can easily use in intuitive
manner.

V. CONCLUSION AND FUTURE WORK
In our paper, we proposed an MDD method by using an

existing UML modeling tool and our own GUI builder to
operate abstract widgets in an intuitive manner. This allows
flexibility in the design of the smartphone application from
both the structural view and the UI view. We are currently
developing the GUI builder using the Android tablet PC
based on the Smartphone Feature Specific Model. By
applying our method to more smartphone applications, we
will verify if minute differences between features of OSs can
be discussed on the model.

REFERENCES
[1] OMG,” Unified Modeling Language”, http://www.uml.org/

(accessed: Aug. 13, 2014)
[2] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, MDA Distilled

Principles of Model-Driven Architecture. Addison-Wesley, 2004.

[3] OMG, “MDA Guide Version 1.0.1.” Object Management Group,
Tech. Rep., 2003.

[4] ADT Plugin, http://developer.android.com/tools/sdk/eclipse-adt.html
(accessed: Aug. 13, 2014)

[5] astah:http://astah.change-vision.com/ja/ (accessed: Aug. 13, 2014)
[6] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-

oriented software engineering: A usecase driven approach, Addison-
Wesley Publishing, 1992.

[7] Android developers, http://developer.android.com/index.html, 2014
[8] iOS Developer Library,

https://developer.apple.com/library/ios/navigation/ (accessed: Aug.
13, 2014)

[9] Windows Phone Dev Center, https://dev.windowsphone.com/en-
us/home (accessed: Aug. 13, 2014)

[10] M. Lettner and M. Tschernuth “Applied MDA for Embedded
Devices: Software design and code generation for a low-cost mobile
phone”, the 34th Annual IEEE Computer Software and Applications
Conference Workshops, 2010, pp. 63-68.

[11] A. Sabraou, M. E. Koutb, and I. Khriss, ”GUI Code Generation for
Android Applications Using a MDA Approach”, International
Conference on Complex Systems, 2012, pp. 1-6.

[12] C. K. Diep, Q. N. Tran and M. T. Tran, ”Online Model-driven IDE to
Design GUIs For Cross-platform Mobile Applications”, SolCT, ACM
International Conference Proceeding Series, 2013, pp. 294-300.

[13] H. Heitkotter, A. T. Majchrzak and K. Herbert. "Cross-platform
model-driven development of mobile applications with md 2."
Proceedings of the 28th Annual ACM Symposium on Applied
Computing. ACM, pp. 405–411, 2013.

[14] M. Franzago, H. Muccini and I. Malavolta, Towards a collaborative
framework for the design and development of data-intensive mobile
applications. In Proceedings of the 1st International Conference on
Mobile Software Engineering and Systems (MOBILESoft 2014). pp.
58-61, 2014.

68Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 90 / 679

Quality-Oriented Requirements Engineering for

Agile Development of RESTful Participation Service

Michael Gebhart

iteratec GmbH

Stuttgart, Germany

michael.gebhart@iteratec.de

Pascal Giessler, Pascal Burkhardt,

Sebastian Abeck

Cooperation & Management

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

pascal.giessler@student.kit.edu,

pascal.burkhardt@student.kit.edu, abeck@kit.edu

Abstract—Decision-making between humans is a recurring

challenge in a society where consensuses for disagreements

have to be found. To support such decision-makings, at the

Karlsruhe Institute of Technology a Participation Service is

developed as part of a service-oriented campus system in an

agile manner and based on the Representational State Transfer

(REST) paradigm. One of the key success factors of such

software projects is the requirements engineering process.

Scenarios are an appropriate way to describe a system from

the user’s point of view. However, existing methodologies do

not specify quality requirements for these scenarios. This

article presents an enhancement of existing scenario-based

requirements engineering techniques to fulfill the quality

characteristics of the international standard ISO/IEC/IEEE

29148 and align the quality aspects to the product strategy. We

illustrate the approach and the resulting quality improvements

by eliciting functional and non-functional requirements for the

Participation Service in an agile manner, while considering

constraints emerged from the existing RESTful system.

Keywords: requirements engineering; agile; scenario; rest;

service; participation; iso 29148

I. INTRODUCTION

In a society, decision-making is always a recurring and
complex challenge. Several stakeholders and participants
defend their points of view and try to convince the others of
their personal opinion. To overcome these disagreements,
consensuses have to be found that satisfy all participants.

To support the process of decision-making in a society by
Information Technology (IT), at the Karlsruhe Institute of
Technology (KIT) a software solution is to be created that is
part of the existing service-oriented KIT Smart Campus
System. This system is a collection of functionality for
students for supporting their life on the campus of the
university. The required software solution consists of a so-
called Participation Service that provides the required
functionality. The Participation Service is based on the idea
of systemic consenting. This approach describes how to find
a compromise or consensus that is near to an optimal
consensus of the group. For that purpose, compared to usual
decision-making processes, possible solutions are not scored
with agreement points but with refusing points. This means,

after describing the issue and collecting possible solutions,
the one is selected that has the fewest refusing points. This
solution represents the one with minimum resistance. As the
Participation Service is required to be used by different
devices, such as smartphones and tablets, it is expected to be
developed as a web service based on the Representational
State Transfer (REST) paradigm [1] as lightweight
alternative to technologies, such as SOAP over Hypertext
Transfer Protocol (HTTP), Extensible Markup Language
(XML), and Web Services Description Language (WSDL).
Furthermore, the service is developed in an agile manner.

One of the key success factors of such software projects
is the requirements engineering process [2][3], i.e., the way
how functional and non-functional requirements are
captured. The usage of scenarios has evolved as an
appropriate methodology to describe a system from the
user’s point of view. As the requirements constitute the basis
for the developed software system, the quality of these
requirements is very important. For that purpose, the IEEE
recommended practice for software requirements
specifications [4] and ISO/IEC/IEEE 29148 [5] were created.
However, existing requirements engineering methodologies
do not consider these quality requirements.

This article enhances existing methodologies in a way
that quality characteristics of the international standard
ISO/IEC/IEEE 29148 [5] are considered. For that purpose,
the quality characteristics in [5] are analyzed and existing
requirements engineering methodologies are described step
by step and adapted when necessary.

To illustrate the approach, the resulting methodology is
directly applied to the Participation Service at the KIT as a
real-world project. After identification of stakeholders, the
goals are elicited and prioritized. Finally, functional and non-
functional requirements are formalized that fulfill the quality
characteristics.

The article is organized as follows: Section II examines
existing work in the context of requirements engineering
methodologies. The Participation Service scenario is
described in Section III. In Section IV, our methodology is
presented and directly applied to the scenario by considering
the quality characteristics and existing constraints. Section V
concludes this article and introduces future research work.

69Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 91 / 679

II. BACKGROUND

This section analyzes existing approaches in the context
of requirements engineering methodologies that identify the
goals of stakeholders and writes them down in a precise way
so that they can be used in the following development phases
[6].

In [4], the IEEE offers an official recommended practice
for software requirements specifications, which was replaced
by the new international standard ISO/IEC/IEEE 29148 [5].
Based on them, quality characteristics for high quality
requirements can be derived. Furthermore, the new standard
provides language criteria for writing textual requirements
and requirements attributes to support requirement analysis.
It also provides guidance for applying requirements-related
processes. These concepts will be used to analyze existing
scenario-based requirements engineering methodologies and
to design the one introduced in this article.

Sharp et al. [7] present a domain-independent approach
for identification of the stakeholders based on four
determined groups of so-called baseline stakeholders. They
can be further refined in three different groups based on their
role. This approach will be used to identify the stakeholders
in this article. However in large projects, the resulting
network of stakeholders can be huge.

For that reason, Ackermann et al. [8] describe a method
with a matrix in which the stakeholders were arranged by
their importance and their influence on the project. This
method can be used to prioritize the discovered stakeholders
for the project.

There are different requirement types, which have to be
taken into account when eliciting requirements for a software
product. Glinz [9] provides a concern-based taxonomy of
requirements, which consists of functional requirements,
non-functional requirements, and constraints. These types
will be reflected in the introduced requirements engineering
methodology, however with one difference: The
performance will not be considered as a separate entity since
it is already an ingredient of [10].

For eliciting functional requirements, Rolland et al. [11]
present a goal modeling approach by using scenarios. A goal
represents something that the stakeholders want to have in
the future, while a scenario represents the required
interactions between two actors to achieve the corresponding
goal. Once a scenario has been composed, it is investigated
to addict more goals. This approach can be aligned with [5],
which is why it will be reused in this article.

However, there are two issues: 1) Goals cannot be
regarded separately, because they could be composed of
existing goals and 2) the recursive process is repeated until
no more subgoals can be derived, but this can lead to a big
bunch of subgoals. A solution for 1) is a repository of
already analyzed goals, which can be reused by reference.
The determination of a threshold in 2) is difficult, because it
cannot be set easily by metrics. So the requirements engineer
has to decide on its own when the abstraction meets its
expectations. For this purpose, some conditions had to be
found, which support the decision-making. Furthermore, it is
not obvious, how to achieve the initial goals.

At this point, Bruegge and Dutoit [12] introduce some
interview questions that can be used for identification of the
initial goals. Furthermore, elicitation techniques can be
found in [2]. To support agile software engineering, the
discovered goals have to be arranged by importance to select
the goals with the highest rank similar to iteration.

For that reason, the approach by Karlsson and Ryan [13]
will be applied, which uses pairwise comparisons in
consideration of cost and value. But, for many goals, this
approach will rapidly become impracticable as the number of
comparisons increases significantly. For that reason and the
statement “Keep the prioritization as simple as possible to
help you make the necessary development choices” by
Wiegers [14], a simple classification approach with three
different scales based on [4] is best suited for the initial
prioritization.

When writing scenarios, the quality characteristics by [5]
have to be considered. Glinz [15] presents an approach,
which respects the quality characteristics by the old
recommendation [4]. His findings will be used to improve
the quality of requirements.

Also, Terzakis [16] presents techniques for writing
higher quality requirements by providing an overview of
requirements and pitfalls by using the natural language for
their description. Based on this, the quality of requirements
will be improved even further.

In [10], the ISO provides a quality model comprising
quality characteristics that are further decomposed into sub-
characteristics. This model will be used for determining the
quality aspects of a software product.

For eliciting non-functional requirements, the approach
by Ozkaya et al. [17] will be used. Due to the fact that
statements like “The system shall be maintainable” are
imprecise and not very helpful, this approach is using so-
called quality attribute scenarios. Based on these, the
corresponding quality characteristic of ISO 25010 [10] can
be derived. However, for many quality characteristics it can
be very time-consuming.

To reduce the effort, the decision-making approach by
Saaty [18] will be applied by using pairwise comparison of
the quality characteristics in [10] with regard to their
importance for the product strategy.

With the provided constraints of the architectural style
REST in [1], the last requirement type according to the
taxonomy in [9] will be considered.

III. SCENARIO

To illustrate the requirements engineering approach, the
KIT Smart Campus System at KIT is to be enhanced by a
new service, the Participation Service. The Participation
Service is designed to support the process of decision-
making between professors, students, and other KIT
members according to the principle of systemic consenting.

In the first phase, participants can create and describe
their own subjects of debate and share them to a group of
participants. In the second phase, the participants rate
suggestions by expressing their dislike instead of their like as
usually expected. They are able to do that in the form of
refusing points from zero to ten. Refusing points indicate

70Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 92 / 679

how much a participant dislikes a possible suggestion. Thus,
rating a suggestion with zero refusing points means that the
participant totally agrees with the suggestion. Rating a
suggestion with ten refusing points means that the participant
rejects the suggestion. The suggestion with the fewest
amount of refusing points represents the one with the highest
acceptance of all participants. This suggestion has minimum
resistance and is the consensus of the group. Fig. 1 illustrates
the described process. For example, the Participation Service
can be used for determining new lecture contents in
collaboration with students in the context of the Research
Group Cooperation & Management (C&M).

Figure 1. Systemic consenting process.

For illustration of our scenario-based requirements
engineering technique, the simple goal “Rate a suggestion”
of the Participation Service was chosen: A participant
requests the website of the Participation Service and gets to
see a login screen. After he logged in correctly, he gets a list
of subjects of debate. He selects a subject of debate, which
he is interested in. He sees a description of the subject and a
list of suggestions sorted descending by acceptance. Once
reading all suggestions, the participant rates each suggestion
with refusing points from zero to ten to express his dislike
against the suggestion. The Participation Service updates the
acceptance of each suggestion and rearranges them.

IV. QUALITY-ORIENTED REQUIREMENTS ENGINEERING

FOR AGILE DEVELOPMENT OF RESTFUL

PARTICIPATION SERVICE

In this section, our requirements engineering
methodology is introduced. This represents our proposed
solution for gathering requirements that verifiably fulfill
quality attributes introduced in ISO/IEC/IEEE 29148 [5].
This can be proven to the customer. First, the quality
characteristics of the standards [4] and [5] are presented.
Next, the stakeholders are identified followed by an
elicitation of their goals. With the prioritization of the goals,
they are selected for the iteration. Afterwards, the functional,
non-functional requirements are discovered and documented
according to the derived quality characteristics of [5] and the
provided taxonomy by Glinz [9]. The entire requirements
engineering methodology is shown in Fig. 2.

Figure 2. Requirements engineering methodology for agile development of

RESTful Participation Service.

A. Quality Characteristics for Requirements

According to the IEEE [4], the requirements quality

focuses on correctness, unambiguousness, completeness,

consistence, prioritization, verifiability, modifiability, and

traceability. [4] was replaced by the international standard

ISO/IEC/IEEE 29148 [5], which introduces feasibility,

necessity, free of implementation, and singularity as new

characteristics for requirements while removing

prioritization, correctness and modifiability. Furthermore,

the new standard distinguishes between individual and a set

of requirements. According to them, a set of requirements

shall be complete, consistent, affordable, and bounded.

These can be fulfilled by ensuring the individual ones. In the

following, we consider the full set of quality characteristics

for individual requirements of the current standard [5].

B. Identification of Stakeholders

In the elicitation phase, all stakeholders of the project
have to be identified. A missing stakeholder can lead to
incomplete requirements, which endanger the project
success. For this purpose, we apply the approach by Sharp et
al. [7]. Based on the four groups a) users, b) developers, c)
legislators, and d) decision-makers, for the Participation
Service, we could identify all stakeholders as listed in Table
I and assign them to the corresponding scrum role.

The prioritization of the stakeholders with regard to their
influence on the project was not necessary at this point. Due
to the fact that the complexity of the project and the amount
of involved stakeholders is not as high as in an industrial
project.

Constraints

Elicitation
 of the goals

Identification of
stakeholder

Functional
requirements

Non-functional
requirements

Prioritization
of the goals

Iteration 1 Iteration 2 Iteration n

Functional
requirements

Functional
requirements

Non-functional
requirements

Non-functional
requirements

Requirements of
product increment

#1

Requirements of
product increment

#2

Requirements of
product increment

#n

Iteration

Constraints

71Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 93 / 679

TABLE I. STAKEHOLDERS OF THE PARTICPATION SERVICE

Group Stakeholders

Users Enrolled students and members of the KIT

Developers Students at C&M and KIT as operator of the
Participation Service

Legislators State of Baden-Wuerttemberg and Federal

Republic of Germany

Decision-Makers C&M leader, C&M members and one expert of

systemic consenting

C. Elicitation of Goals

After the identification of stakeholders, the elicitation of
goals can be initiated. For this purpose, the interview and
brainstorming technique was chosen and the questions
introduced by Bruegge and Dutoit [12] were used for easier
discovery of the goals according to the definition by [11].
Each goal corresponds exactly to one requirement in order to
fulfill the singularity according to [5]. An excerpt of the
determined goals is shown in Table II. Goal G2 will be
further refined in the upcoming sections.

TABLE II. EXCERPT OF GOALS OF THE PARTICIPATION SERVICE

ID Goal Stakeholder

G1 Logs in at the Participation Service C&M member

G2 Rate a suggestion C&M member

G3 Add a new proposal for solution C&M member

In contrast to traditional software methodologies, such as

the waterfall approach, in agile development more goals can
be added in the course of the software project.

By investigating the quality characteristic of the current
standard [5], we discovered that the meaning was changed
compared to [4]. In [4], requirements were expected to be
complete for the entire system. According to the current
standard, a set of requirements contains everything to define
a system or only a system element. This allows us, to use
iterations in which system elements are described.

D. Prioritization of Goals

The next step is the prioritization of the goals with regard
to their importance for the stakeholders. Due to the
abstraction level of the goals and the statement by Wiegers
[14], we applied a simple classification approach based on a
three-level scale (essential, conditional, optional) according
to [4]. In order to prevent ambiguousness, each stakeholder
has agreed on the meaning of each level [14]. After rating of
goals, a specific amount of highest ranked goals, which
reflects the necessity [5], form the basis for the first iteration.
The amount depends on the estimated velocity of the
development team and expected effort for the
implementation. In this context, the essential goals are those
presented in Table II.

E. Functional Requirements

For each selected goal, a scenario will be authored or
reused that describes the required interactions to reach the
goal. Based on a scenario, further goals can be derived. The
combination of a goal and the corresponding scenario is
called requirement chunk as described in [11]. Fig. 3
illustrates this by showing a meta-model that defines the
rules and the elements of a requirement chunk.

Figure 3. Meta-model of a requirement chunk.

This recursive process with objective of functional
decomposition can be aligned with the process defined in the
standard [5]. But, this recursive process can be repeated
several times, which results in rising costs.

For that reason, we propose three conditions that serve as
abort criteria for the process. If all of the following
conditions apply, the process can be aborted:

1) no additional benefit in form of new derived goals
2) other scenarios will definitively not reuse atomic

actions of the current scenario
3) the size of the scenario exceeds more than 20 atomic

actions
According to Glinz [15], the decomposition in user functions
and the ease of understanding assure the precondition of
correct specification. Furthermore, the decomposition allows
us to describe the capability and properties of a given
requirement chunk in detail according to the stakeholder’s
need, which represents the completeness of individual
requirements. In the following, authoring and reusing of
scenarios will be presented.

E.1. Reusing Scenarios
 In the best case, a requirement chunk still exists in the
repository, which contains all analyzed goals and their
scenarios. Therefore, redundant scenarios will be avoided,
which ensures the consistence regarding to a set of
requirements. As a result, we can compose different
requirement chunks to support higher goals. For example,
the goal G1 “Logs in at the Participation Service” represents
a cross-sectional goal, which will be used by G2 and G3.
Furthermore, the usage of cross-references results in an
increase of consistence [5]. This is because scenarios can be
related to one another in a meaningful way, which allows
detection of conflicts.

Goal

Scenario

0..* Subgoal

1

Realized by

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 94 / 679

E.2. Authoring Scenarios
 If no requirement chunk for the given goal can be found
in the repository, a new scenario has to be authored while
considering the quality characteristics by [5].
 The unambiguousness cannot be fulfilled properly as we

use the natural language with inherent equivocality for the

description of the scenario [4]. So a trade-off between ease

of understanding and formalism has to be made. For this, we

used the provided meta-model of a scenario by Rolland et

al. [11] to reduce equivocality. Moreover, we used the

introduced structural constructs of Glinz [15] to further

reduce the level of equivocality. To detect ambiguousness

during description or validation of scenarios, Terzakis [16]

offers a detailed checklist. Also, the current standard [5]

provides some terms, such as superlatives or vague

pronouns, which should be prevented to ensure bound and

unambiguousness. For newly introduced terms and units of

measure, we have created a separate document, which acts

as a glossary.

 According to [5], a scenario should be implementation

free. This means that no architectural design decisions take

place in this phase. This is the nature of a scenario as it

describes what is needed in form of a concrete instance to

achieve its intended goals. The nature of a scenario also

allows us to derive acceptance criteria to verify the

requirements in the form of test cases [15], which fulfills the

verifiability [5].

 The feasibility is another quality characteristic of the

standard [5] with focuses on technical realization of the

requirement. At this point, the scenario has to be

investigated with regard to system constraints such as the

existing environment (cf. Section G).

Figure 4. Style for representation of scenarios.

To ensure the traceability [5], each scenario must have a
unique identifier. In the course of modification over time, the
scenarios also need a version number representing the
current state. Due to the fact of reusing scenarios, each
scenario should also be aware of dependable requirement
chunks to clarify, which requirement chunks will be affected
by modifications of one scenario.

Based on these findings, the representation in [15], and
the provided requirement attributes in [5], we created a style
for representation of scenarios, which is illustrated in Fig. 4.
Similar to the approach by Glinz [15], the representation can
also be easily transformed into a state chart.

F. Non-Functional Requirements

After all goals have been analyzed, the resulting
requirement chunks represent the functional aspects of the
system. Each scenario can now be investigated with regard
to non-functional aspects. For this purpose, we use quality
attribute scenarios by Ozkaya et al. [17] and link these with
the corresponding requirement chunk.

The stimulus represents the condition for the release of
the event, while its source is the entity that triggers it. The
response is the activity of the stimulus. The environment,
such as normal operation of a service, stands for the
constraint under which the stimulus occurred. The functional
scenario represents the stimulated artifact. Finally, the
response measure represents the measure for evaluating the
response of the system.

To align this with the product strategy, the product
quality characteristics [10] have to be ranked by their
importance for the stakeholders. For example, the security is
probably more important than the user experience for a
product in the bank sector. This is why we used pairwise
comparisons of the quality attributes according to the
Analytical Hierarchy Process (AHP) by Saaty [18].

The results have shown that for the Participation Service
security, functionality and usability are more important than
the others. Based on this result, we could focus on the most
important quality attributes. Nevertheless, we still have to
keep the quality attributes with minor importance for the
product strategy in mind. We can thus reduce the effort for
eliciting the non-functional requirements since resources,
such as time, often limit a project.

Figure 5. Style for representation of quality attribute scenarios.

Final State: User rated a proposed solution

Initial State: User wants to rate a proposed solution

User logs in at the Participation service

System verifies the credentials
1

Dependable goals: No dependable goals

G1

Nr. Normal action flow Ref.

2’

User gets a list of available subjects of debate
-2

Concurreny / Alternative action flowNr.

IF the list of available subjects is empty
THEN the system displays „There are currently no subjects of debate“
TERMINATE

User selects a subject from the provided list
-3

User rates a proposed solution by selecting the refusing points

System calculates the acceptance of the suggested solution
G54

Priority: High

System receives the selection and redirects him to the subject of debate

System redirects him to the secured area (Def. 1.1)

Source:

Title: ID: G2

Risk: Middle Difficulty: Nominal

Rationale: Integral ingredient of systemic finding

C&M member

Rate a proposed suggestion

Type: FunctionalVersion: 1.0

Quality
attribute
scenario

Source of stimulus:

Stimulus:

Environment:

Response:

User

clicks on the button

during normal operation,

the system gives a feedback

Response measure: within a period of 200ms

Priority: 0.18

Source:

Type: ID: N2

Risk: Low Difficulty: Easy

Rationale: Better user experience

C&M member, students

Usability

Ref: G2Version: 1.0

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 95 / 679

Similar to the description of the functional scenarios (c.f.
Section E), we have to respect the same conditions. This is
why we do not describe this in detail at this point.

For the prioritization of non-functional requirements, we
used the ranked result of the AHP. But, it is also possible to
add another prioritization step, such as the ones mentioned in
[14] or [17]. Fig. 5 shows one non-functional requirement of
goal G2.

G. Constraints

According to Glinz [9], the constraints restrict the
solution space for the functional and non-functional
requirements. For example, a constraint can be company-
based human interface guidelines, legal issues, or existing
environments [9]. With regard to the Participation Service,
we only had to investigate the constraints emerging from the
existing environment: As described in the introduction, the
Participation Service should be a part of the existing service-
oriented KIT Smart Campus System based on REST. The
usage of REST as an architectural style requires the
consideration of six specific characteristics according to
Fielding [1]: client-server, stateless, caching, uniform
interface, layered architecture, and optionally code on
demand. These constraints were written down in a separate
constraints document similarly to the glossary so that we are
able to reference this over the whole iteration cycle with
regard to the feasibility [5].

V. CONCLUSION AND OUTLOOK

In this article, we introduced a requirements engineering
methodology that is based on existing approaches and
considers quality characteristics of the ISO/IEC/IEEE 29148
standard [5]. For that purpose, we analyzed the quality
characteristics of [5] and enhanced existing methodologies
for scenario-based requirements engineering.

We illustrated our approach by means of the Participation
Service developed at the KIT. By applying our methodology
on the Participation Service we could improve the quality of
our requirements. For example, we detected some
inconsistencies during the authoring of the scenarios and
reduced the communication effort and the costs emerged
from misunderstandings.

Compared to the previous IEEE recommendation [4], it is
easier to meet the desired qualities of ISO/IEC/IEEE 29148
[5]. The reason for this is that the new standard does not give
tough specifications for the satisfaction of the quality
characteristics. Due to the fact that in a scenario-based
approach we are using the natural language for describing
requirements, we can only merely reduce the ambiguousness
and not prevent it completely. However, this does not imply
bad requirements but rather potential for improvements.

Our approach helps requirements engineers and business
analysts with capturing and describing high-quality
functional and non-functional requirements in a systematic
manner. The quality characteristics are standardized [5] and
represent recognized criteria for requirements. With our
approach, requirements engineers and business analysts can
capture new requirements that fulfill these criteria in a
systematic manner or improve existing requirements.

In this article, we have focused on the requirements
analysis phase of RESTful services. For the future, we plan
to focus on the quality assurance of RESTful services during
the design phase as part of an agile development process.
After we have shown how to assure the quality of functional
and non-functional requirements that constitute the basis for
the development, the design phase has to consider quality as
well. We will examine how to evaluate a service design as
the one for the Participation Service regarding widespread
quality characteristics and design patterns for RESTful
services. For that purpose, we will enhance our existing work
in the context of quality assurance of service-oriented
architectures [19].

REFERENCES

[1] R. Fielding, “Architectural styles and the design of network-based
software architectures,” University of California, Irvine, 2000.

[2] Standish group, “Chaos report,” http://www.projectsmart.co.uk/
docs/chaos-report.pdf, 1995, Accessed 2014-05-21.

[3] A. F. Hooks and K. A. Farry, “Customer centered products: creating
successful products through smart requirements management,”
American Management Association, 2000, ISBN 978-0814405680.

[4] IEEE, IEEE Std 830-1998 “Recommended practice for software
requirements specifications,” 1998.

[5] ISO/IEC/IEEE, ISO/IEC/IEEE 29148:2011 “Systems and software
engineering – life cycle processes – requirements engineering,” 2011.

[6] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a
roadmap,” The Future of Software Engineering, Special Volume
published in conjunction with ICSE, 2000, pp. 35-46.

[7] H. Sharp, A. Finkelstein, and G. Galal, “Stakeholder identification in
the requirements engineering process,” Database and Expert Systems
Applications, 1999, pp. 387-391.

[8] F. Ackermann and C. Eden, “Strategic management of stakeholders:
theory and practice,” Long Range Planning, Volume 44, No. 3, June
2011, pp. 179-196.

[9] M. Glinz, “On non-functional requirements,” 15th IEEE International
Requirements Engineering Conference (RE 2007), 2007, pp. 21-26.

[10] ISO, ISO/IEC 25010:2011 “Systems and software engineering -
systems and software quality requirements and evaluation (SQuaRE)
- system and software quality models,” 2011.

[11] B. C. Rolland, C. Souveyet, and C. B. Achour, “Guiding goal
modeling using scenarios,” IEEE Transactions on Software
Engineering, Volume 24, No. 12, 1998, pp. 1055-1071.

[12] B. Bruegge and A. H. Dutoit, “Object-oriented software engineering:
using uml, patterns and java,” Pearson Education, 2009, pp. 166-168.

[13] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Software, Volume 14, No. 5, 1997, pp. 67-74.

[14] K. Wiegers, “First things first: prioritizing requirements,” Software
Development, No. 9, Volume 7, Miller Freeman, Inc, September
1999, pp. 48-53.

[15] M. Glinz, “Improving the quality of requirements with scenarios,”
Proceedings of the Second World Congress on Software Quality,
Yokohama, 2000, pp. 55-60.

[16] J. Terzakis, “Tutorial writing higher quality software requirements,”
ICCGI, http://www.iaria.org/conferences2010/filesICCGI10/ICCGI_
Software_Requirements_Tutorial.pdf, 2010, Accessed 2014-07-16.

[17] I. Ozkaya, L. Bass, R. L. Nord, and R. S. Sangwan, “Making practical
use of quality attribute information,” IEEE Software, April 2008, pp.
25-33.

[18] T. L. Saaty, “How to make a decision: the analytic hierarchy
process,” Informs, Volume 24, No. 6, 1994, pp. 19-43.

[19] M. Gebhart, “Measuring design quality of service-oriented
architectures based on web services,” Eighth International Conference
on Software Engineering Advances (ICSEA 2013), Venice, Italy,
October 2013, pp. 504-509.

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 96 / 679

Architecture Coverage: Validating Optimum Set of Viewpoints

Sunia Naeem, Salma Imtiaz
Department of Computer Science and Software Engineering,

International Islamic University,
Islamabad, Pakistan

sunia.naeem@yahoo.com, salma.imtiaz@iiu.edu.pk

Abstract— There are various software architecture
viewpoint models but none of them provides optimum coverage
of software architecture domain. Software architecture
coverage is the coverage of concepts that are required to
effectively design and analyze software architecture. An
optimum set of viewpoints can be selected from different
software architecture viewpoint models that provide maximum
coverage of software architecture domain than an individual
architecture model. In this paper, an optimum set of
viewpoints is selected by comparing five commonly used
software architecture viewpoint models namely 4+1 RM-ODP,
SEI, Siemens and Rational ADS via a common comparison
framework. These architecture models are compared on the
evaluation criteria, i.e., viewpoints, stakeholders and quality
attributes. This evaluation criterion is based on IEEE
Standard 1471 Recommended Practice for Software
Architecture Description. The resulting optimum set is
validated in industry via multiple case studies, and the results
show that the optimum set of viewpoints provide greater
coverage than any of the viewpoint alone.

Keywords-architecture coverage; optimum; viewpoints;
stakeholders; quality attributes.

I. INTRODUCTION

Software architecture is system’s high level structure
and describes that system as computational components and
interactions between them.

The need for documenting software architecture is its
ability to communicate between stakeholders, to provide re-
usable abstractions of software systems and to capture early
design decisions [1]. The commonly used approach to
model a complex architecture was to make use of a heavily
overloaded, single model that does not adequately represent
the system and difficult to understand and manage [2].
Some of the disadvantages of using this approach are
unreliable notations, over emphasis of one aspect, mixing of
architectural styles and overlooking of individual
stakeholder concerns [1].

A great amount of work has been done to partition the
architecture of the system into multiple views, where each
view highlights a different perspective. This approach helps
in comprehension and understandability from stakeholders’
point of view. Architects also come to an understanding that
to develop successful software architecture we should draw
many different system structures simultaneously to handle
the multi-faceted nature of architecture. It seems that

software research community also have decided that the
only way to design architecture is by representing system
using several related models (or views) [3].

Viewpoints are used to choose which view to produce
for a particular system, and what information to represent in
that view. Views and viewpoints usage has various benefits,
such as management of complexity, separation of concerns
and improved communication with stakeholders. Viewpoint
model [3] means a framework that describes the significant
concerns that need to be taken care of while designing
software architecture. Generally, software architecture
models contain several viewpoints which define the models
and concepts which can be used while dealing with the
specific concern.

A research work by Nicholas May [1] surveys the
different viewpoint models and highlights that existing
viewpoint models need to be tailored because they do not
address every concern of software architecture domain. The
key purpose of this research work was to understand
different software architecture models, their coverage of
software architecture domain and their comparative
strengths. The view point models are compared with respect
to IEEE 1471-2000 Standard called the IEEE
Recommended Practice for Software Architecture
Description.

The author also proposed a classification of viewpoints
within a common framework that allowed combining views
from different viewpoint models and determining an
optimum set of views with the purpose of providing
maximum coverage to represent the architecture. Different
vocabularies of models can be compared by common
reference vocabulary. Optimum set, has the maximum
coverage as compared to any individual viewpoint model.

Viewpoint models selected in this survey[1] are
Kruchten’s “4+1” View Model [20], Siemens Four View
model [23], Software Engineering Institute (SEI) set of
views [21], Rational Architecture Description Specification
(ADS) [25] and ISO Reference Model of Open Distributed
Processing (RM-ODP) [22]. All these five models describe
software architecture from multiple perspectives. Each one
of them identifies separation of concerns and specifies
stakeholders. Also, these models focus on describing
software architecture structures instead of describing
particular notations for each of these structures.

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 97 / 679

Our research work focus on the extension of comparison
criteria described in [1]. Section II presents the related work
and compares it on a common criteria. The comparison
criteria is presented in Section III where the mapping of
stakeholder, viewpoints and quality attributes is presented in
Section IV. The evaluation on the chosen criteria is done in
Section V, and the proposed optimum set of viewpoints is
presented in Section VI. The evaluation in this extended
coverage criteria done in Section VII and validated in
Section VIII. Conclusion and future work are discussed in
Section IX.

II. RELATED WORK

This section, presents the comparison of different
viewpoint models based on the Focus of Research, Criteria
used for Comparison and Limitation of the Research
Work.

TABLE I OVERVIEW OF RELATED WORK

P
a
p
e
r

I
d

Description Models
reviewed/com

pared

Criteria
for

compari
son

limitatio
ns

[3] In this paper, the
author surveyed
some
architecture
Models and
conduct a case
study on the
usage of
software
architecture
documentation
practices in the
Telecommunicat
ions industry.

RM-ODP, US
Department of
Defense
frameworks
TAFIM, C4ISR,
4+1 view,
Zachman
framework

No specific
criteria

Models are
reviewed
from
literature
and their
details,
benefits and
deficiencies
are based
on literature
review.

[4] In this paper,
viewpoint sets
are applied to
development of
information
systems and
evaluated so
weaknesses and
strengths of
every set of
viewpoints is
described and
few general
observations
about their
definition and
use are
presented.

4+1, RM-ODP,
Siemens,
Garland and
Anthony

Industrial
experience

Comparison
is based
only on
observation
s of author.
No
common
reference
vocabulary
is used for
comparison
.

[5] This study
provides
analysis and
comparison of
six architecture
frameworks
categorized by
major elements
such as their
inputs, outcomes
and goals. It
provides
classification of
architecture
frameworks into
Software
Architecture
Frameworks and
Enterprise
Architecture
Frameworks and
identifies some
of their
deficiencies.

Zachman
Framework,
4+1, Federal
Enterprise
Architecture
Framework
(FEAF),
RMODP,
Department of
Defense
Architecture
Framework
(DoDAF), The
Open Group
Architecture
Framework
(TOGAF)

goals,
inputs and
outcomes

More focus
is on
classificatio
n of
frameworks
not on
frameworks
’
deficiencies
.

[26] In this paper, the
author provides
overview of two
classes of
architecture
frameworks
Software
Architecture
Frameworks and
Enterprise
Architecture
Frameworks and
find some
dimensions
which can be
helpful to
understand
architecture
documents

Zachman
Framework, The
Information
Framework
(IFW),
Integrated
Architecture
Framework
(IAF), The Open
Group
Architecture
Framework
(TOGAF),
Methodology
forArchitecture
Description
(MAD), 4+1,
Siemens

No specific
criteria

More focus
of
comparison
is on the
difference
between
two classes
of
architecture
framework.

[27] In this paper, the
author surveyed
few architecture
frameworks and
compared them
on the basis of
methodologies
and techniques
they use and
suggested that
more
architecture
styles can be
added to yield
new architecture
framework
which focus on
quality

Zachman
Framework,
4+1, Federal
Enterprise
Architecture
Framework
(FEAF), RM-
ODP,
Department of
Defense
Architecture
Framework
(DoDAF), The
Open Group
Architecture
Framework
(TOGAF)

methodolog
ies and
techniques
used in the
framework

Focus of
this
comparison
is to state
only
general
advantages
and
disadvantag
es of
architecture
frameworks

[6] This paper
compares SEI
with IEEE 1471
and show
compliance of
SEI with IEEE
1471.

SEI, IEEE 1471 Requireme
nts
imposed by
IEEE 1471

Only
compliance
of one
viewpoint
model is
considered
.Complianc
e of other
viewpoint
models are
missing.

76Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 98 / 679

III. COMPARISON FRAMEWORK ELEMENTS

To compare the software architecture viewpoint models,
a common comparison framework is required. IEEE 1471-
2000 Standard, called the IEEE Recommended Practice for
Software Architecture Description [19] has been selected for
evaluation, which consists of viewpoints, stakeholders and
quality attributes, and their relationships for documenting
the software architecture. IEEE 1471 considers stakeholders
and their respective architectural concerns as essential
elements in an architectural description. Architectural
concern is a matter of importance to one or more
stakeholders relating to the architecture. Another major
element of ANSI/IEEE 1471 is that every architecture view
in an architecture description is defined relative to an
architectural viewpoint as we know architecture description
is planned into multiple views and each one of them denotes
the system architecture with reference to a set of related
architectural concerns. So an architecture viewpoint
captures the rules for analyzing and constructing a particular
view and acts as a view template so it can be reused across
many architectural descriptions.

A. Software Architectural Viewpoints
Viewpoints reason about quality attributes so

architecture description should provide enough details or
information necessary to analyze quality attributes. We have
added conceptual viewpoint, in the list of viewpoints stated
by Nicholas. Conceptual viewpoint [8] describes the system
in form of system’s major design elements and relationship
between them. Conceptual viewpoint is very important
because it is strongly linked with the problem domain and
acts as an important means of communication when the
architect interacts with domain expert. It helps in clearly
defining modules in module view and impact of changes in
requirements can be minimized. Viewpoints are not system
specific so they are pre-defined and reusable.

B. Software Architectural Stakeholders
Stakeholder of software architecture is someone who has

a vested interest in it, who implicitly or explicitly motivates
the whole shape and direction of the architecture [16].

Stakeholders are consumers of software architecture
description and architecture description serves as a means of
communicating design decisions between stakeholders.
Architecture should be communicated in a way that
stakeholders use it properly for their respective use [24].
There is variety of stakeholders and their use with respect to
architectural documentation varies. Nicholas`s list [1] of
stakeholders can be extended to incorporate all stakeholders
meant for required comparison. Our analysis will be based
on the stakeholders who are consumers of software
architecture’s documentation. These stakeholders will make
the analysis of viewpoints possible as they provide coverage
of stakeholders that different viewpoints address e.g.,
product managers, business analysts and marketers.

C. Software Quality Attributes
Software architecture description should address

stakeholder’s concerns otherwise it is considered incomplete
[16].

Concerns [18] are normally driven by the need for the
system to exhibit a certain quality attributes rather than to
provide a particular function. There is inherent need to
consider quality attributes in each architecture view. Quality
attributes are considered as concerns. Quality attributes can
be classified into three types: Run-time, development-time
and business. Nicholas`s list of concerns [1] does not
include important concerns such as business quality
attributes which repeatedly form a system`s architecture.
Table 2 shows elements of our comparison framework
comprising viewpoints, stakeholders and quality attributes.

TABLE II ELEMENTS OF COMPARISON FRAMEWORK

Viewpoints[12][8] Stakeholders[12][24][10]
[11]

Quality
Attributes[17][12]

Conceptual
Decomposition

Uses
Layered

Class/Generalization
Process

Concurrency
Shared Data
Client-Server
Deployment

Implementation
Work Assignment

Architects
Requirements Engineers

Sub-System Architects and
Designers

Implementers
Testers

Integrators
Maintainers

External System Architects
and Designers

Managers
Product Line Managers

Quality Assurance Team
Users

Customers
Project Manager

Production Engineers
Suppliers

System Administrators
Business Analysts
Product Managers

Marketers
Support Staff

System Run-Time
Functionality
Performance

Capacity/Space
Availability
Reliability
Security
Safety

Usability
Supportability
configurability

Scalability
Interoperability

System
Development-

Time
Modifiability
Reusability
Testability
Portability

Evolvability
Localizability
Integrability

Business
Time to market
Cost and benefit

Projected lifetime
of the system

Targeted market
Rollout schedule
Integration with
legacy systems

IV. MAPPING BETWEEN STAKEHOLDERS, VIEWPOINTS AND
QUALITY ATTRIBUTES

Thus, evaluation done by Nicholas [1] can be extended
on all three attributes which are viewpoints, stakeholders an
quality attributes. In case of stakeholders and quality
attributes, only those are covered that are explicitly stated
by viewpoint models. We identify implicit quality attributes
and stakeholders by investigating the relationship between
stakeholders,viewpoints and quality attributes. Implicit
stakeholders will be satisfied if all their concerns are

77Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 99 / 679

addressed by viewpoints and similarly different viewpoints
address different quality attributes.

Figure 1. Mapping between Stakeholders, Viewpoints and Quality
Attributes

V. MODELS EVALUATION AND COMPARISON FRAMEWORK
COVERAGE

Tables 3, 4 and 5 show the coverage of viewpoints,
stakeholders and quality attributes by the five software
architecture viewpoint models. The coverage is found
individually for each of the elements of comparison
framework’s concepts of stakeholders, quality attributes and
viewpoints. Each viewpoint model provides different
coverage of comparison framework elements. In case of
viewpoints and quality attributes, SEI provides greatest

coverage. As far as stakeholders are concerned, SEI and
Rational ADS provide good coverage of stakeholders.

TABLE III MODELS COVERAGE OF VIEWPOINTS

Viewpoints “4+1” SEI RM-
ODP

Siemens Rational
ADS

Conceptual Y N Y Y Y

Decomposition Y Y Y Y Y

Uses N Y N N N

Layered Y Y Y Y Y

Class/Generalizatio
n

Y Y Y N N

Process Y Y N Y Y
Concurrency Y Y Y Y Y
Shared Data N Y Y N N
Client-Server Y Y Y Y N
Deployment Y Y Y N Y

Implementation N Y N Y Y
Work Assignment N Y N N N

TABLE IV MODELS COVERAGE OF STAKEHOLDERS

Stakeholders “4+1” SEI RM-
ODP

Siemens Rationa
l ADS

Architects Y Y N Y Y

Requirements
Engineers

Y N N Y Y

Sub-System
Architects and

Designers

Y Y N Y Y

Implementers Y Y Y N Y
Testers Y Y Y N Y

Integrators Y Y Y Y Y
Maintainers N Y Y N N

External System
Architects and

Designers

N Y N N N

Managers Y Y Y Y Y
Product Line

Managers
Y Y N N N

Quality
Assurance Team

N N N N Y

Users Y N Y N Y
Customers Y N Y N Y

Project Manager N Y N N N
Production
Engineers

Y Y Y N Y

Suppliers N Y N N N
System

Administrators
Y Y Y N N

Business Analyst N N Y N Y
Product Manager N Y Y N N

Marketer Y N Y Y Y

Support Staff N Y N Y Y

TABLE V MODELS COVERAGE OF QUALITY ATTRIBUTES

Quality
Attributes

“4+1” SEI RM-
ODP

Siemens Ration
al

ADS
Functionality Y N Y Y Y

Performance Y Y N Y N

Capacity/Space N Y Y N Y

Layered

Class/Genera
lization

Process

Concurrency

Shared Data

Client-Server

Deployment

Implementati
on

Project
Manager

System
Administrato

r

Production
Engineers

Support Staff

Work
Assignment

Architect

Implementers

Testers

Integrators

Evolvability

Reusability

Localizability

Portability

Performance

Scalability

Availability

Security

Reliability

Configurabili
ty

Supportabilit
y

Decomposition

Conceptual

Uses

Architect

Implementers

Maintainers

Product Line
Managers

Testers

Integrators

External
System

Architects and Designers

Functionality

Safety

Reliability

Modifiability

Integrability

78Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 100 / 679

Availability Y Y N Y Y
Reliability Y Y N Y Y
Security N Y Y N N
Safety N N N Y N

Usability N N N N Y
Supportability N Y N Y Y
Configurability N Y N Y Y

Scalability Y Y N N Y
Modifiability N Y Y N N
Reusability Y Y N N Y
Testability N N Y N Y
Portability Y Y Y Y Y

Evolvability Y Y Y N N
Localizability Y Y N N N
Integrability N Y N N N

Interoperability Y Y N Y Y

Time to market Y Y Y Y Y

Cost and benefit Y N Y Y Y

Projected lifetime
of the system

N Y Y N N

Targeted market Y N Y Y Y

Rollout schedule N Y Y N N

Integration with
legacy systems

Y N N N Y

Y: provides Coverage
N: Does not provide coverage

VI. OPTIMUM SET OF VIEWPOINTS

When combining views from different viewpoint
models, the biggest obstacle is dependency between views
of viewpoint models. In case of” 4+1” model the views are
dependent on each other, i.e., being an iterative method
there is strong data flow between views. The views of the
SEI and the RM-ODP model are comparatively
independent. The views of Siemens model are less tightly
coupled. In Rational ADS, context of lower views are
provided by higher views so there is strong dependency
between views.

Therefore, when combining views from different
viewpoint models, we see that SEI model provides good
coverage of viewpoints, stakeholders and quality attributes
and also its views are independent so its three views that are
module, component and connector and allocation are
considered for merging. The missing stakeholders such as
users, customers and business analysts which are not
addressed by SEI can be incorporated by including Use
Case View from Rational ADS. There is a dependency
between Rational ADS views as Use Case being the highest
view is not dependent on any other view. Use Case View
also covers the usability concern which is not covered by
SEI model. Siemens’s Conceptual view is also included in
optimum set as SEI model does not cover the conceptual
structure and its related concern, which is functionality.
Conceptual viewpoint [8] describes the system in form of
system’s major design elements and relationship between

them. This viewpoint is very important because it is strongly
linked with the problem domain.

Rational ADS Test View is added in optimum set of
views to address testability Rational ADS’s Test view
addresses testability by enabling one to perform test
realization, preparing test cases and then forming whole test
procedure also satisfying the Quality Assurance Team. As
we know that in Rational ADS that context of lower views
are provided by higher views so we investigated and found
that SEI Allocation view type overlaps well with Rational
ADS Realization viewpoint which contains Implementation
and Deployment View. So, context of Test View can be
provided by Allocation View type of SEI model. RM-ODP
views are not considered for merging because RM-ODP
uses language for architecture description and not a notation
so it supports communication between different systems
developers and not among other stakeholders of the same
system. Figure 2 shows optimum set of views from different
viewpoint models.

Figure 2. Optimum Set of Viewpoints

VII. COVERAGE OF OPTIMUM SET OF VIEWPOINTS

Tables 6 and 7 show stakeholders and quality attributes
addressed by Optimum Set of Viewpoints.

79Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 101 / 679

TABLE VI STAKEHOLDERS ADDRESSED BY OPTIMUM SET OF
VIEWPOINTS

Views Stakeholders Addressed
Use Case Users, Customers, Business Analysts

Conceptual Architect, Implementers

Decomposition Implementers, Maintainers, Product Line
Managers, Architect, Testers

Uses Implementers, Maintainers, Architect, Testers,
Integrators, External System Architects and

Designers
Generalization Implementers, Architect, Testers, Integrators

Layered Implementers, Architect, Testers, Integrators
Component And

Connector
Implementers, Architect

Deployment Project Manager, Testers, Integrators, Architect,
System Administrator, Production Engineers

Implementation Support Staff
Work Assignment Project Manager

Test Testers, Quality Assurance Team

TABLE VII QUALITY ATTRIBUTES ADDRESSED BY OPTIMUM SET OF
VIEWPOINTS

Views Quality Attributes Addressed

Use Case Usability

Conceptual Functionality, Safety, Reliability

Decomposition Modifiability

Uses Modifiability, Integrability

Generalization Evolvability, Reusability, Localizability

Layered Portability, Modifiability, Reusability

Pipe-and-Filter Performance

Shared-Data Security

Client-Server Performance, Scalability, Availability, Reusability

Peer-to-Peer High Availability, High Scalability

Communicating
Processes

Performance, Reliability

Deployment Performance, Reliability, Availability, Security

Implementation Configurability, Supportability

Test Testability

VIII. VALIDATION OF OPTIMUM SET OF VIEWPOINTS

A. Research Design
In order to validate optimum set of viewpoints, we

conducted multiple-case study[7] of three software intensive
projects of medium to large complexity whose architectures
were built using our proposed optimum set of viewpoints
either by software architect or personnel who have sound
knowledge of developing software architecture by using
software architecture viewpoint models. We have chosen a
multiple-case study approach as multiple sources of
evidence allow a better validity for the findings and used
purposeful sampling. We looked for projects of those
software development companies that had experience in
using software architecture viewpoint models and also have

experienced personnel who have sound knowledge of
applying views for developing architecture of applications.

B. Data Sources
We collected data using semi-structured scripted

interviews so the questions were prepared in advance and
pre-defined questionnaire were used and filled in print. We
could not manage to conduct face to face interviews or
interview via Skype Out calls because of nature and secrecy
of projects and work load.

C. Data Analysis
The purpose of filling the questionnaire was to find out

optimum set of views coverage of software architecture
concepts (i.e., viewpoints, stakeholders and quality
attributes) that are required to efficiently design and analyze
software architecture after applying it on the case projects
and discuss its coverage as compared to the software
architecture viewpoint model which they usually use to
develop architecture of their applications. To analyze data,
frequency distributions related to coverage of viewpoints,
stakeholders and quality attributes by our research outcome
i.e., optimum set of viewpoints in all three cases are
developed separately in the form of graphs in section E .

D. Overview of Case Studies
1) Project A

Project A is software project developed by a software
house (CMMI Level 3) that specializes in developing
Financial, Business Management and E-government
applications and project A is E-government in nature.
Project A’s architecture is built using optimum set of
viewpoints by their software architect who has eight years
experience in developing architecture of applications and
Software Architect has used all views of optimum set to
develop application’s architecture due to project’s
complexity.

After analyzing data of questionnaire we found out that
according to architect’s views and analysis of questionnaire
optimum set of viewpoints provide more coverage with
respect to viewpoints and stakeholders’ concerns as
compared to the viewpoint model (i.e., Rational ADS with
customization) which they usually follow for developing
architecture because it ignores the internal structures of the
application and hence the performance and reliability
behaviors are not explicitly and individually captured, so
these types of problems are sufficiently covered by optimum
set of views. In case of quality attributes optimum set of
views provides all applicable attributes. Suggestion given by
Architect is that optimum set should define how things in
one view are connected and complimented in the next view
such as how uses cases are linked to class and sequence
diagrams and how they are connected to test cases so an
overall detailed inter connectivity needs to be defined.

2) Project B
Project B is software project developed by a software

house (CMMI Level 2) that specializes in Data Management
(Data warehouse, Business Intelligence, Data Mining,

80Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 102 / 679

Document Management Application Dev., Document
Management Services) in Telecom and Banking Domains.
They did not give much detail of project. Project B’s
architecture is built using optimum set of viewpoints by
their Project Manager who has five years plus experience in
developing architecture of applications and after that our
questionnaire is filled by him in order to find coverage of
optimum set of viewpoints. Project Manager has used all
views of optimum set to develop application’s architecture
due to project’s complexity.

After Analyzing data of questionnaire we found out that
according to architect’s view and analysis of questionnaire
optimum set of viewpoints provide more coverage of
business needs and maximum completeness of software
architecture aspects i.e., viewpoints, stakeholders and
quality attributes by customizing already available software
architecture solutions. Being the SEI / CMMI certified firm
they usually follow SEI’s views with customization to work
for implementation of data warehouse and business
intelligence projects.

3) Project C
Project C is software project developed by a software

house that specializes in managing the entire office
automation system and providing IT support to defense
organizations and project C is web based document
management and filing system. Project C’s architecture is
built using optimum set of viewpoints by their project
manager who has four years experience in developing
architecture of applications. Software Architect has used all
views of optimum set except Component & Connector View
type to develop application’s architecture.

After Analyzing data of questionnaire we found out that
according to architect’s views and analysis of questionnaire
optimum set of viewpoints provide more coverage with
respect to viewpoints and quality attributes as compared to
the software architecture processes or models (i.e., RUP and
Rational ADS with customization) which they usually
follow for developing architecture. In case of quality
attributes optimum set of views provides high availability as
compared to approach followed by them. Suggestion given
by project manager is use case viewpoint should be added in
list of viewpoints.

E. Case Studies Results
1) Coverage of Viewpoints

Figure 3 shows coverage of software architecture
viewpoints by optimum set of viewpoints after applying it
on case projects. Out of 12 viewpoints optimum set of
viewpoints provides 100% coverage, i.e., 12 viewpoints in
first case study, 92% coverage, i.e., 11 viewpoints in second
case study and 83% coverage, i.e., 10 viewpoints in third
case study.

12
11

10

100% 92% 83%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
1
2
3
4
5
6
7
8
9

10
11
12

Case
Study

1

Case
Study

2

Case
study

3

N
o.

 o
f V

ie
w

po
in

ts

No. of Executions

Coverage of Viewpoints

Coverage

Percentage

Figure 3. Coverage of Viewpoints by Optimum set of Viewpoints

From analysis of questionnaire results it is shown that
viewpoints such as shared data, uses, generalization,
implementation and work assignment which are not covered
by most of models, are covered in detail by optimum set of
viewpoints.

2) Coverage of Stakeholders
Figure 4 shows coverage of software architecture

stakeholders by optimum set of viewpoints after applying it
on case projects. Out of 21 stakeholders optimum set of
viewpoints provides 100% coverage, i.e., 21 stakeholders in
first case study, 100% coverage, i.e., 21 stakeholders in
second case study and 76% coverage, i.e., 16 stakeholders in
third case study.

21 21

16

100% 100%

76%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Case
Study

1

Case
Study

2

Case
study 3

N
o.

 o
f S

ta
ke

ho
ld

er
s

No. of Executions

Coverage of Stakeholders

Coverage

Percentage

Figure 4. Coverage of Stakeholders by Optimum set of Viewpoints

81Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 103 / 679

From analysis of questionnaire results it is shown that
stakeholders such as Designers, External System Architects
Quality Assurance Team, Product line Managers, Suppliers,
Support Staff and Project Managers which are not covered
by most of models are covered in detail by optimum set of
viewpoints.

3) Coverage of Quality Attributes
Figure 5 shows coverage of software architecture quality

attributes by optimum set of viewpoints after applying it on
case projects. Out of 25 quality attributes optimum set of
viewpoints provides 100% coverage i.e., 25 quality
attributes in first case study, 80% coverage i.e., 20 quality
attributes in second case study and 96% coverage i.e., 24
quality attributes in third case study.

25

20

24

100%

80%
96%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Case
Study 1

Case
Study 2

Case
study 3

N
o.

 o
f Q

ua
lit

y
At

tr
ib

ut
es

No. of executions

Coverage of Quality Attributes

Coverage

Percentage

Figure 5. Coverage of Quality Attributes by Optimum set of Viewpoints

From analysis of questionnaire results it is shown that
quality attributes such as security, modifiability,
integrability, safety, supportability, projected lifetime of the
system and testability which are not covered by most of
models are covered in detail by optimum set of viewpoints.

F. Discussion
Mean coverage of concepts that are needed to efficiently

design and analyze software architecture i.e., viewpoints,
stakeholders and quality attributes is calculated for optimum
set of viewpoints and compared to coverage of viewpoints
by five software architecture viewpoint models and it is
shown that optimum set of viewpoints provide more
coverage of concepts than surveyed individual models.

Figure 6 shows comparison between optimum set of
viewpoints and surveyed individual models with respect to
coverage of viewpoints. Optimum set of viewpoints provide
more coverage as compared to individual models. SEI

coverage and optimum set of viewpoints coverage is same
in case of viewpoints because our comparison framework is
based on IEEE 1471 Standard i.e., Recommended Practice
for Architectural Description of Software-Intensive Systems
and SEI model provides template for more than one
representation to describe contents of view in order to
conform with the IEEE 1471 and can cover all details.

12
11

10

100% 92% 83%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
1
2
3
4
5
6
7
8
9

10
11
12

Case
Study 1

Case
Study 2

Case
study 3

N
o.

 o
f V

ie
w

po
in

ts
No. of Executions

Coverage of Viewpoints

Coverage

Percentage

Figure 6. Comparison of Coverage of Viewpoints by Optimum set of
Viewpoints with individual viewpoint models’ coverage

Figure 7 shows comparison between optimum set of
viewpoints and surveyed individual models with respect to
coverage of stakeholders. Optimum set of viewpoints
provide more coverage as compared to individual models.

Figure 7. Comparison of Coverage of Stakeholders by Optimum set of
Viewpoints with individual viewpoint models’ coverage

82Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 104 / 679

Figure 8 shows comparison between optimum set of
viewpoints and surveyed individual models with respect to
coverage of quality attributes. Optimum set of viewpoints
provide more coverage as compared to individual models.

Figure 8. Comparison of Coverage of Quality Attributes by Optimum set
of Viewpoints with individual viewpoint models’ coverage

Also from case studies, it is concluded that Optimum set
of views provide more coverage with respect to viewpoints,
stakeholders and quality attributes of software architecture
domain, than what can be achieved via individual
architecture model alone.

G. Limitations
Due to resource limitations and confidentiality issues,

we were not able to triangulate our findings by software
architectural documentation analysis and face to face
interviews which can provide in depth analysis.
Furthermore, close ended questions in questionnaire has
Yes\No\Partial\Not Applicable options, so while analyzing
questionnaire results we assign same scale to partial option
as Yes option regarding coverage of Software architecture
concepts because we have to compare coverage of optimum
set of viewpoints with coverage of surveyed viewpoint
models whose coverage were determined by review of
literature not by software architectural documentation
analysis and from review of literature partial coverage
cannot be find out.

IX. CONCLUSION AND FUTURE WORK

A. Conclusion
There are a number of viewpoint models that create

architecture document by means of the separation of the
concerns. Each one of them describes viewpoints set and
recognizes the concerns that each of them address. But none
of them provides complete coverage of software architecture
domain. So, a set of optimum viewpoints is selected from
different software architecture viewpoint models after
comparing them on a common comparison framework that
allows combining views from different viewpoint models.

 Then we present a Multiple-case study on the
application of optimum set of viewpoints to three software
development projects. From the results of case studies it is
concluded that Optimum set of views provide more
coverage with respect to viewpoints, stakeholders and
quality attributes of software architecture domain, than what
can be achieved via individual architecture model alone.

B. Future Work
In the future, this work can be augmented by additional

case projects and data can be collected and analyzed from
several sources i.e., architectural documentation and face to
face interviews to get a more complete understanding of
coverage of software architecture concepts.

Furthermore, by modeling system from architectural
documentation with five surveyed models we can get a
clearer picture of their coverage of software architecture
concepts and also their partial coverage of concepts can be
found, which cannot be found via literature.

REFERENCES

[1] N. May, "A survey of software architecture viewpoint
models", Proc. of the Sixth Australasian Workshop on Software
and System Architectures, March 2005, pp. 13-24.

[2] N. Rozanski and E. Woods, “Applying Viewpoints and
Views to Software Architecture”, 2005.

[3] K. Smolander,” What is included in software architecture?
A case study in three software organizations", Proc. Of the Ninth
Annual IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems, April 2002, pp.
131–138.

[4] E. Woods, “Experiences using viewpoints for information
systems architecture: an industrial experience report”, Proc. of
Software Architecture First European Workshop EWSA, 2004, pp.
182-193.

[5] A. Tang, J. Han and P. Chen, “A Comparative Analysis of
Architecture Frameworks”, Proc. of the 11th Asia-Pacific Software
Engineering Conference, 2004, pp. 640-647.

83Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 105 / 679

 [6] P. Clements, ”Comparing the SEI's Views and Beyond
Approach for Documenting Software Architectures with ANSI-
IEEE 1471-2000”, Technical Note 017, Software Engineering
Institute, Carnegie Mellon University, 2005.

[7] P. Runeson and M.
Höst, "Guidelines for conducting and reporting case study research
in software engineering." Empirical software engineering, vol.
14.2, 2009, pp. 131-164.

[8] L. Bass and R. Kazman, “Architecture-Based
Development”, Technical Report 007, Software Engineering
Institute, Carnegie Mellon University, 1999.

[9] M. Shaw and D. Garlan, “Software Architecture:
Perspectives on an Emerging Discipline”, Prentice-Hall, 1996.

[10] K. Smolander and T. Päivärinta , "Describing and
Communicating Software Architecture in Practice: Observations
on Stakeholders and Rationale", Proc. of the Fourteenth
International Conference on Advanced Information Systems
Engineering, 2002, pp. 117-133.

[11] Z. Baida, “Stakeholders and Their Concerns In Software
Architectures”, October 2001.

[12] L. Bass, P. Clements and R. Kazman, “Software
Architecture in Practice”, 2nd edition, Addison Wesley, 2003.

[13] S. Fricker, T. Gorschek and P. Myllyperkiö,

“Handshaking Between Software Projects and Stakeholders Using
Implementation Proposals”, Proc. of the 13th International
Working Conference on Requirements Engineering: Foundation
for Software Quality, Springer, 2007, pp. 144 – 159.

[14] W.H. Huen, “Systems Engineering of Complex Software
Systems”, Proc. of 37th ASEE/IEEE Frontiers in Education
Conference, October 2007.

[15] J Asundi, R. Kazman and M. Klein, “An Architectural
Approach to Software Cost Modeling”, SEI Interactive, March
2000.

[16] N. Rozanski and E. Woods, “Software Systems
Architecture: Working with Stakeholders Using Viewpoints and
Perspectives”, Addison-Wesley, 2005.

[17] Malan, R. and D. Bredemeyer, “Defining non-functional
requirements”, Bredemeyer Consulting white paper, 2001.

[18] F. Losavio, L. Chirinos, N. Lévyand and A. Ramdane-
Cherif, “Quality Characteristics for Software Architecture”,
Journal of Object Technology, Vol. 2, No. 2, 2003, pp. 133-150.

 [19] IEEE. IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems. Institute of Electrical
and Electronics Engineers, Sept. 2000.IEEE Std 1471-2000.

[20] P. Kruchten. “Architectural Blueprints - The “4+1” View
Model of Software Architecture”, IEEE Software, vol. 12, Issue
no. 6,1995,pp. 42–50.

[21] P. Clements et al. “A practical method for documenting
software architectures”, Proc. Of the 25th ICSE, 2003.

[22] ISO. Reference Model of Open Distributed Processing
(RMODP). International Organization for Standardization,
Technical Report 10746, 1994.

[23] D. Soni, R.L. Nerd, and C. Hofmeister, “Software
architecture in industrial Applications”, Proc. of International
Conference on Software Engineering,1995, pp. 196–207.

[24] P. Clements et al., “Documenting Software Architecture:
Views and Beyond”, Addison Wesley, 2002.

[25] D. Norris, “Communicating Complex Architectures with
UML and the Rational ADS”, Proc. of the IBM Rational Software
Development User Conference, 2004.

[26] D. Greefhorst, H. Koning and H. van Vliet, “The Many
Faces of Architectural Descriptions”, Information Systems
Frontiers, vol. 8, Issue no. 2, 2006, pp 103-113.

[27] S. Roselin Mary and P. Rodrigues,” Software
Architecture- Evolution and Evaluation”, (IJACSA) International
Journal of Advanced Computer Science and Applications, vol. 3,
no.8,2012.

84Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 106 / 679

Challenges of Adopting Software Reuse: Initial Results

Sajjad Mahmood

Department of Information and Computer Science

King Fahd University of Petroleum and Minerals

Dhahran, 31261, Saudi Arabia

smahmood@kfupm.edu.sa

Ali Al Zayer

Department of Information and Computer Science

King Fahd University of Petroleum and Minerals

Dhahran, 31261, Saudi Arabia

g200163270@kfupm.edu.sa

Abstract—A significant number of software development

organizations have started adopting software reuse in order to

facilitate achieving quality software, faster and at a lower cost.

Software reuse helps organizations to leverage the benefits of

systematic reuse with respect to architecture, design, source

code and testing artifacts. One of the major issues is that many

organizations endorse software reuse prior to understating and

testing their readiness for the reuse based development

processes. The objective of this paper is to identify challenges

associated with software reuse in an organization. We have

performed a Systematic Literature Review (SLR) by applying

customized search strings derived from our research question.

We have identified challenges, such as domain analysis and

modeling, lack of reuse skills and knowledge, lack of

management support, high reuse cost and lack of component

repositories as key challenges in software reuse. Our ultimate

aim is to develop a model in order to measure organizations’

readiness for software reuse activities.

Keywords-systematic software reuse; challenges and barrier;

systematic literature review; empirical studies.

I. INTRODUCTION

Software industry has been of the view that software

artifacts can be reused to develop new applications. Software

processes and artifacts have been reused since the early days

of computing, as software reuse has the potential benefits to

reduce development effort, reduce process risks and increase

product quality and standard compliance [1]-[5].

Software development paradigms such as component-

based development and service-oriented development

encourage software reuse by supporting development based

on reusable blocks of source code. In addition to source

code, reuse of requirements patterns [6], system architecture,

design and testing artifacts also have the potential to help

achieve benefits associated with systematic reuse of software

artifacts.

In addition to reuse benefits, numerous problems have

been reported in the reuse initiatives [7][8]. Software reuse

poses certain strategic challenges with respect to difficulty in

maintaining a library of reusable artifacts and the cost of

locating and adapting reusable artifacts [9]. Despite the

importance of this problem, little research has been carried

out to improve organizations’ for adopting software reuse

based development process. Understanding issues related to

organizations readiness can help to ensure the successful

outcome of projects.

In this paper, we aim at identifying the challenges via a

systematic literature review that impact software reuse.

Identifying these challenges will help software organizations

in addressing them and be ready for systematic reuse. Our

long term research objective is to develop a software reuse

readiness framework to assist software developers in

measuring and improving their software reuse readiness prior

to adopting reuse driven development paradigms. To do this,

we intend to address the research question as follows:

RQ: What are the challenges associated with adopting

software reuse?

The rest of this paper is organized as follows: Section II

presents motivation of the paper. Section III presents the

background. In Section IV, we present the research

methodology and Section V discusses the initial results. We

conclude the paper and discuss future work in Section VI.

II. MOTIVATION

Sherif and Vinze [15] presented a qualitative study based

on a series of five cases to explore the individual and

organizational barriers associated with the adoption of reuse.

The study indicates that barriers to adoption of software

reuse occur at both the individual and organization level.

Mellarkod et al. [17] identified and assessed factors that

influence developers’ intention to reuse software assets. The

study identified development of an infrastructure, self-

efficacy and reuse experience as key factors that motivate

individual developers to adopt software reuse. Similarly,

Lucredio et al. [16] used survey based approach involving

Brazilian organizations to identify some of the key factors in

adopting an organization wide software reuse program.

85Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 107 / 679

To the best of our knowledge, no explicit SLR-based

empirical study has been conducted to identify the challenges

associated with adopting software reuse in an organization.

The initial results of this study are important for both

practitioners and researchers to better understand the current

state-of-the-art literature in the context of adopting

systematic reuse. This study uncovers the challenges that

need better management during adoption of software reuse in

a given organization.

III. BACKGROUND

Software developers have reused abstractions and

process ranging from objects to commercial off the shelf

components. Over the last couple of decades, a number of

software reuse focused development paradigms have

evolved, such as component-based development [18][19],

software product lines [20], etc. Figure 1 presents a summary

of reuse driven software development paradigms.

However, a significant number of software products

developed using these paradigms have faced problems due to

insufficient preparation and poor management both by

reusable code developers and component integrators.

Understanding issues related to organization’s software

reuse will help ensure the successful outcome of projects.

Hence, in this paper, we conduct a systematic literature

review to identify challenges associated with adopting

software reuse during development of software applications.

The collected data focuses on challenges for effective

management of software reuse driven development

processes.

Figure 1. Software reuse paradigms.

IV. RESEARCH METHODOLOGY

In this study, we aim at identifying the challenges

associated with software reuse during development of a

software application. In order to address the research

question in hand, the Systematic Literature Review (SLR)

[10] was used as a tool for data collection. SLR is a well-

established empirical study technique for identifying,

assessing and analyzing published studies to investigate a

specific research question. Furthermore, the SLR approach

provides a higher level of validity in its findings. A

systematic review protocol was prepared to outline the

review process. The main phases [11][12] in our research

methodology are as follows:

 Construct search strategy and search relevant

articles.

 Carryout the study selection process.

 Apply study quality evaluation.

 Extract and analyze the data.

In this paper, we focus on the challenges associated with

adopting software reuse in an organization. In order to

address that, we are going to address the following research

question:

RQ1: What are the challenges of software reuse in

developing projects?

The search strategy used is based on the following steps:

a) Derive the main terms from Population,

Intervention and Outcome.

b) Find the synonyms and of the derived terms

obtained in the first step.

c) Validate these terms in various academic databases

d) AND operator is used to connect main terms (if

allowed depending on the academic databases).

e) OR operators, is used to connect synonyms and

similar spellings. (If allowed academic databases).

Based on our search strategy, we have come up with the

following search terms:

 POPULATION: software reuse

 INTERVENTION: project development challenges

and barriers.

 OUTCOME OF RELEVANCE: challenges and

barriers in project development of software reuse.

 EXPERIMENTAL DESIGN: SLRs, case studies,

empirical and theoretical studies, researchers and

expert opinions.

After testing our main terms in several academic

databases, the most relevance terms used to the topic are as

follows:

86Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 108 / 679

 Software reuse: "Software reuse" OR "architecture

reuse" OR "component reuse" OR "reuse

environment" OR "product line based reuse".

 Software Development: "Software Development"

OR "Software Implementation" OR "Software

Coding".

 Challenges: "Challenges" OR "problems" OR

"difficulties" OR "complications" OR "obstacles"

OR "barriers" OR "risks".

The final search string has been designed after trail

search, which is as follows:

(("Challenges" OR "problems" OR "difficulties" OR

"complications" OR "obstacles" OR "barriers" OR "risks")

AND

("Software reuse" OR "Architecture Reuse" OR

"Component Reuse" OR "Code Reuse" OR "Product Line

Based Reuse" OR “Software Reusability”)

AND

("Software Development" OR "Software Implementation"

OR "Software Application"))

Our focus was based on the following digital library:

 IEEE Explore. (http://ieeexplore.ieee.org)

The following inclusion criteria were used:

 Conference proceedings, magazines and journals

published after 1980.

 Papers published in any of the primary or secondary

resources mentioned previously.

 Studies which focus on answering our research

question.

The following exclusion criteria were used:

 Duplicated or repeated studies.

 Manuscripts written in a language other than English

language.

 Technical reports and white papers.

 Graduate projects, Master theses and PhD

dissertations.

 Textbooks, whether in print or electronic.

For any paper to pass the initial phase, a quality

assessment was done and four quality criteria were defined,

as shown in Table I. We have selected 36 articles which

meet the inclusion and quality criteria. Next, we extracted

data from the final selected papers to address our research

question. Table II presents the data extracted from the

selected articles.

TABLE I. QUALITY ASSESSMENT

Criteria Notes

Are the findings and results clearly stated in the

paper?

Yes =1

No =0

Is there any empirical evidence on the findings? Yes =1

No =0

Are the arguments well- presented and justified? Yes =1

No =0

Is the paper well referenced? Yes =1

TABLE II. DATA EXTRACTION FORM

Extracted Data

 Publication Name Author(s)

 Publication Date Geographical Location

 Reference Type Publication Type

 Publisher Challenges

V. INITIAL RESULTS AND DISCUSSION

In this paper, we report our initial results based on IEEE

electronic database. Table III shows the total number of

results retrieved from IEEE electronic database. After initial

round of screening by reading the title and abstract, 73

articles were selected. Next, full text of the 73 articles was

read and 36 primary studies were finally selected.

TABLE III. SEARCH EXECUTION

Resource Total Results Initial Selection Final Selection

IEEExplore 1395 73 36

In our SLR, we have classified the papers found into

seven study strategies, which are commonly used in the

empirical software engineering, as shown in Table IV. The

majority of the selected articles used case study research

method.

TABLE IV. STUDY STRATEGIES USED

Study Type Count

Case Studies 24

Interviews 1

Experience Report 3

Systematic Literature Reviews 0

Survey/Questionnaire 6

Delphi Study 2

Total 36

Table V shows the country-based analysis for the papers

included in the SLR study. Twenty studies were carried out

in USA, three each in China and Spain, and two in Canada

and United Kingdom, respectively.

87Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 109 / 679

TABLE V. STUDY COUNTRIES

Country Count Country Count

Canada 2 Saudi Arabia 1

China 3 Spain 3

Germany 1 Italy 1

Japan 1 United

Kingdom

2

Malaysia 2 USA 20

To answer our research question, the data were extracted

and synthesized from the 36 finally selected studies. We

have identified eight challenges for systematic reuse during

development of software applications, as shown in Table VI.

TABLE VI. LIST OF CHALLENGES

Challenges Freq.

(n=36)
%

Domain analysis and modeling 29 83

Lack of reuse skills and knowledge 27 75

Lack of management support 12 33

High reuse cost 12 33

Lack of component storage 9 25

Lack of documentation 7 20

Lack of proper IT infrastructure 4 11

Lack of team awareness 2 6

In our study, the most common software reuse challenge

is ‘domain analysis and modeling’ (83%). The fact that in

software reuse-driven development, practitioners need to

carry out detailed domain analysis and modeling to search

and select suitable reusable components. The second highest

ranked challenge is ‘lack of reuse skill and knowledge’. For

example, Gonzalez [13] identified that the users of object

oriented software components face cognitive gap in

knowledge and often face difficulty in understanding the

vocabulary used in component documentations.

About 33% of the articles in our study described ‘lack of

management support’ and ‘high reuse cost’ as another major

challenges. ‘Lack of component storage’ has been mentioned

in about 25% of the articles. The main reason for this

challenge is lack of standard reuse environments [9] and

repositories. Furthermore, ‘lack of documentation’ has also

been an important challenge in reuse based development. For

example, Mahmood and Khan [14] empirical study indicates

that the lack of good component documentation presents a

risk for use of reusable components.

VI. CONCLUSION AND FUTURE WORK

Systematic software reuse facilitates achieving quality

software, faster and at a lower cost. Despite the potential

benefits associated with software reuse, software

organizations struggle with adopting reusable components

during development of a software application. Due to

availability of a number of reuse-driven development

paradigms and the increasing trend of adopting reusable

components, we aim to discover challenges associated with

systematic reuse.

In our initial results, the frequently mentioned challenges

for systematic reuse are domain analysis and modeling, lack

of reuse skills and knowledge, lack of management support,

high reuse cost and lack of component repositories.

As part of future work, we plan to carry out SLR in other

major databases, namely, ACM, Science Direct, Springer

Link, and John Wiley. We also plan to identify solutions, in

the form of best practices, for each of the frequently

mentioned challenge. We intend to find the best practices by

carrying out an empirical study with software industry.

ACKNOWLEDGMENT

The authors would like to thank King Fahd University of

Petroleum and Minerals (KFUPM) for its continuous support

of research.

REFERENCES

[1] W. B. Frakes, "Software reuse research: status and future",
IEEE Trans. Softw. Eng., vol. 31, pp. 529-536, 2005.

[2] W. B. Frakes and S. Isoda, "Success factors of systematic
reuse. Software", IEEE Software, vol. 11, pp. 14-19, 1994.

[3] A. Mili, S. Yacoub and H. Mili, "Toward an engineering
discipline of software reuse", IEEE Software, vol. 16, pp. 22-
31, 1999.

[4] L. Prechelt, B. Unger, W. F. Tichy and P. Brossler, "A
controlled experiment in maintenance comparing design
patterns to simpler solution", IEEE Trans. Softw. Eng., vol.
27, pp. 1134-1144, 2001.

[5] S. Watanabe, "Professionalism through OO and reuse", IEEE
Software, vol. 14, pp. 26, 1997.

[6] X. Franch, "Software requirement patterns", 35th
International Software Engineering Conference, pp. 1499-
1501, 2013.

[7] D. Card, and E. Comer, "Why do so many reuse programs
fail", IEEE Software, pp. 114-115, 1994.

[8] M. Jha, and L. O'Brien, "A comparison of software reuse in
software development communities", 5th Malaysian Software
Engineering Conference, pp. 313-318, 2011.

[9] S. Mahmood, M. Ahmed, and M. Alshayeb, "Reuse
envirnoments for software artifacts: analysis framework",
12th IEEE/ACIS International Conference on Computer and
Information Sciences, pp. 35-40, 2013.

[10] B. Kitchenham, and C. Charters, "Guidelines for performing
systematic literature reviews in software engineering", Keele
University and Durham University Joint Report - EBSE 2007-
001, EBSE 2007-001, 2007.

[11] S.U. Khan, M. Niazi, and R. Ahmad, "Factors influencing
clients in the selection of offshore software outsourcing
vendors: an exploratory study using a systematic literature
review", Journal of Systems and Software, vol. 84, pp. 686-
699, 2011.

[12] M. Niazi, S. Mahmood, M. Alshayeb, A. M. Qureshi, K.
Faisal and N. Cerpa, "Towards identifying the factors for
project management success in global software development:

88Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 110 / 679

Initial results", The Eigth International Conference on
Software Engineering Advances, pp. 285-290, 2013.

[13] P. A. Gonzalez, "Applying knowledge modelling and case-
based reasoning to software reuse", IEEE Software Proc., vol.
147, pp. 169-177, 2000.

[14] S. Mahmood, and A. Khan, "An industrial study on the
importance of software component documentation: A system
integrator's perspective", Information Processing Letters, vol.
111, pp. 583-590, 2011.

[15] Karma Sherif and Ajay Vinze, "Barriers to adoption of
software reuse: A qualitative study", Information and
Management, vol. 41, pp. 159-175, 2003.

[16] Lucredio et al., "Software reuse: the Brazilian industry
scenario", Journal of Systems and Software, vol. 81, pp. 996 -
1013, 2008.

[17] V. Mellarkod, R. Appan, D. R. Jones and K. Sherif, "A multi-
level analysis of factors affecting software developers'
intention to reuse software assests: an empirical
investigation", Information and Management, vol. 44, pp. 613
- 625, 2007.

[18] M.A. Khan and S. Mahmood, "A graph based requirements
clustering approach for component selection", Advances in
Engineering Software, vol. 54, pp. 1-16, 2012.

[19] S. Mahmood, R. Lai and Y.S. Kim, "Survey of component
based software specification", IET Software, vol.1, pp. 57-66,
2007.

[20] F.V. Linden, K. Schmid and E. Rommes, "Software product
lines in action: The best industrial practice in product line
engineering', Springer, 2007.

89Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 111 / 679

Comparison of Stakeholder Identification Methods – The Effect of Practitioners

Experience

Markus Kelanti, Samuli Saukkonen

Department of Information Processing Science

University of Oulu

Oulu, Finland

{markus.kelanti; samuli.saukkonen}@oulu.fi

Abstract—Stakeholder analysis is an important part of

Requirements Engineering activities. Since stakeholders affect,

and can be affected by, a system under development, it is

important to identify them. While several stakeholder analysis

methods are available, there has been less discussion about their

effectiveness when practitioners have different levels of work

experience. This paper evaluates how the stakeholder

identification method affects the amount and variation of

stakeholders in cases where practitioners have relevant, not

relevant or no experience at all. The research investigated this

question by conducting a study in a university Requirements

Engineering course comparing three different stakeholder

identification methods where participants’ work experience was

known. This paper discusses the results of the experiment and

their implications. The results highlight the importance of

relevant experience and systematic approach to stakeholder

identification.

Keywords-Stakeholder; Stakeholder identification.

I. INTRODUCTION

Stakeholder analysis is considered an important part of
Requirements Engineering (RE). Identifying different types of
stakeholders is crucial to creating successful software projects
and is recognised by initiatives like IEEE standard 830 [2] and
SWEBOK [1]. While many papers emphasise the importance
of stakeholders, the identification process itself is not as well
defined or documented in the RE literature [5][7]. Several
authors, e.g., Sharp et al. [5] and McManus [6], criticise the
lack of clear and efficient methods for identifying actual
stakeholders.

This problem has gained some attention, and several
concrete methods [5][6] have been developed to conduct the
analysis, including the identification of the actual stakeholders.
StakeNet [8], in addition to providing a stakeholder
identification method, also studied the effectiveness of the
method. Since the problem is gaining attention, an interesting
question arises as to how the effectiveness of different
stakeholder identification methods is affected by practitioners’
experience. In other words, what is their ability to produce a
list or group of stakeholders if different methods are used? The
goal of this paper is to answer the following research question:

How the use of a stakeholder identification method does

affect the effectiveness of the stakeholder identification process
for experienced and inexperienced practitioners?

In this paper, effectiveness is defined as how fast a list of
stakeholders can be generated for a single system. The three
methods used in this study represent three different approaches
to stakeholder identification in order to determine whether the
identification results are different. The following stakeholder
identification methods were used: a systematic approach from
Sharp et al. [5], a question-based approach method used by
McManus [6] and a general list of possible stakeholders that
should be considered when developing software systems, from
Lauesen [12]. In order to answer the research question, a study
was conducted in a university RE course. The results of the
study were analysed to determine whether a specific method
had any advantage. In the study, the level and quality of the
students’ experience was controlled to determine the role of
experience in the results.

The rest of the paper is structured as follows. Section 2
describes the literature regarding stakeholders and how the
concept is generally used in RE. Section 3 describes the
stakeholder identification methods used in this study and how
the study was conducted. Section 4 presents and discusses the
results. Section 5 discusses limitations and possible threats to
the validity of the findings, and Section 6 provides a conclusion
and future directions for research on this topic.

II. LITERATURE

The concept of the stakeholder was popularised by
Freeman [9]. Freeman described a stakeholder as a group or an
individual who is affected by the achievement of an
organisation’s objectives or who can affect on them.
Stakeholders and stakeholder analysis was first used mostly in
management literature and practice to understand the different
stakeholder needs in a company [10]. Eventually, the concept
made its way to RE.

In RE, a stakeholder can be identified as a person or a
group who will be affected by the system either directly or
indirectly [11]. Sometimes, there is no clear definition of a
stakeholder; instead they are specific groups of people who
make demands of a particular system [12]. Depending on the
development domain and target market, common stakeholders
include various end users, customers, engineers and managers
[3][11]. In general, stakeholders are considered persons,
groups, or organisations that express needs regarding a
particular system, are affected by it, or can somehow affect it.

The importance of stakeholders in RE is most visible in the
elicitation process. Stakeholders are one of the main sources of
information in the elicitation process that creates actual
requirements. However, stakeholders often have conflicting

90Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 112 / 679

views and needs, are unable to express their needs in a detailed
manner or they demand a solution that does not match their
real need. Even if this makes requirements analysis a hard and
tedious task, identifying and understanding stakeholders’ needs
more comprehensively and reaching consensus among them
increases the quality of the software product [3][11][12].

Clearly, identifying stakeholders and analysing their needs
is an important task. However, the process of stakeholder
identification is often an ad-hoc analysis or left for the
practitioners to figure out for themselves. The literature has
criticised this lack of guidance for practitioners [5][6][8].
Stakeholder identities are either assumed to be obvious to the
practitioners or to fit into categories too broad and generic to be
useful. Some studies just present lists or categories of identified
stakeholders, such as the most commonly known
clients/customers, users and developers [3][11][12]. Other
papers expand these lists by adding businesses, projects and
products [13][14][15] or government agencies [16],
organisations [16] and the general public [17] as stakeholders.
Pachecho and Garcia [18] systematically surveyed the
contemporary literature for state-of-the-art identification
methods and concluded that the stakeholder identification
process still lacks standards and proper guidance.

Several authors have addressed the above criticisms by
developing concrete methods to aid in the identification
process. For example, Lyytinen and Hirschheim [19] provide
some guidance in identifying stakeholders; they note that
identification itself is far from trivial. Further, McManus [6]
uses the question list provided by the World Bank and criticises
the lack of exact methods to identify concrete stakeholders.
Similarly, Sharp et al. [5] present a systematic approach for
identifying stakeholders in the absence of a clearly defined
identification method. The latest advances include social media
applications like StakeNet [8], a stakeholder identification
method based on social networks. In this method, stakeholders
are first identified by asking a person to identify an initial set of
stakeholders. These stakeholders are then asked to produce
another set of stakeholders, and the pattern repeats itself until a
stable network of interconnected stakeholders is formed.

III. RESEARCH SETTING

The experiment ran as part of an RE course at the
University of Oulu. In order to obtain the necessary data to
answer the research question, basic software experiment
guidelines [20][21] were followed in designing the study. This
section describes the stakeholder identification methods,
research setting, execution and how the data were analysed.

A. Experiment setting

The RE course is a part of the 3rd year Bachelor’s degree
studies in Information Systems and Software Engineering (SE)
and is compulsory for every student of the program. One topic
in the course is stakeholder analysis as a part of RE activities.
The experiment was designed to be the compulsory practice
session necessary for every student to pass the course. The
students, both Finnish and foreign, were all from the same
university and department. The majority of the students were
Finnish.

To answer the research question, an experimental setup
comparing three different stakeholder identification methods
was conducted. Before the experiment, students completed a

background questionnaire about their experience. This
questionnaire asked students about their work experience,
specifically whether the experience was generally related to
SE, and how many total years of experience they had.
Experience was divided into SE and other experience, since
students might be experienced in other fields as well. This
information was used to split the students into three different
groups: those with experience in SE, those with no previous
experience in SE and those who had related experience but not
in SE.

The scenario used in the experiment required the students
to develop a requirements document for the new department
timetable software named LUKKARI. The scenario stated that
the old timetable software was unsuitable for today’s needs and
should therefore be replaced with a new system. This scenario
was selected and developed to ensure that each student
understood how a timetable system works since they had been
using one during their studies. This was also done to avoid
situations where some students would not have a specific
domain expertise that could affect the results. The minimum
basic functionalities of LUKKARI allow users to:

- Log in and out
- Browse their own and course timetables
- Create, edit and remove items to their own timetable
- Access the timetable through a web browser
- Add, edit and remove resources from timetable items
In order to obtain the stakeholder data, an answer sheet was

designed for the students, which asked them to name any
identified stakeholder, give a short description and provide a
rationale for why the student thinks that stakeholder is relevant.
In addition, researchers recorded the time when the answer
sheet was returned to calculate the amount of time used to
identify stakeholders.

Students were informed that their answers would not affect
their course scores. However, they were told that they could
use their own results when they began working with the
Requirements Specification documents required by the course.
This helped to remove possible pressure from the students
while also providing an incentive to identify stakeholders.

B. Methods Under Experiment

The experiment was designed to present two different types
of identification methods: McManus’s questionnaire method
(based on World Bank’s stakeholder analysis) [6], and Sharp et
al.’s systematic analysis [5]. It should be noted that only the
stakeholder identification part was used from both methods.
The control method was based on an analysis process described
in Lauesen’s textbook [12] because it was already part of the
course. These methods fit the restrictions of the experiment
because all material had to be in a written format, and all
methods had to be designed for or used in SE.

1) Systematic method
The systematic method of Sharp et al. [5] for identifying

stakeholders uses four baseline stakeholder groups: users,
developers, legislators and decision makers. Users are the
people, groups or companies who interact, directly control or
use the software. Developers have a stake in the system’s final
requirements specification but are not themselves users.
Legislators are, for example, government agencies, trade
unions and legal representatives, all of which act nationally and

91Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 113 / 679

internationally, setting guidelines for operations that affect the
product’s development or its final use. Finally, decision makers
direct both development and user organisation. The
identification method itself is straightforward:

1. Identify all specific roles within the baseline

stakeholder group.

2. Identify supplier stakeholders for each baseline role.

The supplier stakeholders provide information or

supporting tasks for the baseline stakeholders.

3. Identify client stakeholders for each baseline role. The

client stakeholders process or inspect the products of

the baseline stakeholders.

4. Identify satellite stakeholders for each baseline role.

The satellite stakeholders interact with the baseline

stakeholders in a variety of ways.

5. Repeat steps 1 to 4 for each of the stakeholder groups

identified in steps 2 to 4.

2) Questionnaire method
The questionnaire method represents the question-based

stakeholder identification method used by McManus [6].
Compared to the systematic method, the questionnaire method
does not provide any systematic way to address stakeholder
categories, presenting only a pre-defined list of questions that
can reveal stakeholders. McManus uses a question list
developed by the World Bank to identify stakeholders in pre-
defined categories. These questions are [6]:

1. Who might be affected (positively or negatively) by the

development concern to be addressed?

2. Who are the "voiceless" for whom special efforts may

have to be made?

3. Who are the representatives of those likely to be

affected?

4. Who is responsible for what is intended?

5. Who is likely to mobilize for or against what is

intended?

6. Who can make what is intended more effective

through their participation or less effective by their

non-participation or outright opposition?

7. Who can contribute financial and technical

resources?

8. Whose behaviour has to change for the effort to

succeed?

3) Control method
The control method, which is derived from the course

textbook [12], is a simple list of very specific definitions for
identifying stakeholders. As all the participating students are
familiar with this list, it provides an ideal control method. In
addition, it roughly follows the same manner of describing
stakeholders as other undergraduate-level SE textbooks.

The control method defined stakeholders mainly as people
who are needed to ensure the success of a project, who can be
[12]:

1. The sponsor who pays for the product. He wants value for

his money.

2. Daily users from various departments. They have to live

with the product and, without their support, there will be

no success.

3. Managers of the departments. They want business

advantages from the system.

4. The company’s customers (clients of the system). Often

they will see changes too, and without their support there

will be no business advantages.

5. Business partners, for instance suppliers, carriers, and

banks. If they will see changes, their support is essential

too.

6. Authorities, for instance safety inspectors, auditors, local

government.

7. IT people and hotline staff in case the product is to be

developed in-house.

8. Other people providing resources for the product.

9. The daily users of the product at the client’s site.

10. Managers and sponsors at the client’s site.

11. IT people at the client’s site.

12. Distributors and value-adders for our product. (Value

adders – or VARs – may for instance be software houses

that combine our product with other products or

services.)

13. Competitors. They are definitely influenced by the

product, but usually in an adverse manner. If so, they will

not be treated as stakeholders. However, in some cases

you depend on their co-operation, for instance if you are

going to exchange data with them electronically. These

situations may be delicate, and your best change is to

create a win-win situation where they benefit too.

C. Experiment execution

Before the actual session, students were divided into three
groups based on their answers from the pre-questionnaire
regarding their prior experience. The groups were balanced to
include only students with relevant experience, students with
no relevant experience or students with no experience at all.
Students in these groups were then randomly assigned to one of
the three stakeholder identification methods. Each student
received a package containing instructions, an answer sheet
and a description of the stakeholder identification method.

All students were required to participate in a 2-hour
practice session. At the beginning, students were asked to pick
up the answer sheet with their name on it and sit down to wait
for the session to start without looking at the papers. Students
were given a short 15-minute introduction to the experiment
and were allowed to ask questions and clarifications about the
experiment. Students were told to fill in the answer sheet
according to the instructions and return it to the researchers
when completed. No other time limit was imposed aside from
the maximum 2 hours reserved.

Students were instructed to work alone, and the researchers
supervised the session to enforce this rule. In addition, no
computers were allowed, but only the given material and
writing equipment. Two researchers were constantly present
during the session to answer questions and ensure that the rules
and instructions were followed.

All answer sheets were returned to the researchers after
students completed them. Each answer sheet was then
transferred to an Excel file to conduct the analysis.

92Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 114 / 679

D. Data analysis

Before analysing the results, the data needed to be checked
for:

 Possible duplicates in case the same stakeholder was
mentioned twice in one answer sheet. Duplicates were
simply removed.

 A list of stakeholders that appeared as a single
stakeholder in the answer sheet. In this case, the
stakeholders were marked as separate stakeholders in
the answer sheet.

 Plural or single stakeholder terms. All stakeholders in
single terms were changed to plural.

 All stakeholder names were in English. In case a
name was not given in English, two researchers
agreed on the translation that matched the original
name as precisely as possible.

 Extra lines or words. Only named stakeholders were
considered as such; all other answers were removed,
such as ‘etc.’, ‘and so on’ and ‘…’.

After the pre-analysis, the next step was to check how
many unique stakeholders were identified. For this step, two
researchers checked and compared each identified stakeholder
against the others to determine whether they were exactly the
same. All stakeholders were considered unique by default, and
stakeholders were only considered the same if the name
contained a clear typo, the stakeholder description was the
same or it was otherwise obvious that the stakeholder itself was
exactly the same. The most typical case was that identified
stakeholders belonged to the same group but were
miscategorised as a sub group or an individual stakeholder
within the group. In this case, the stakeholders were considered
unique.

Finally, two researchers worked together to evaluate
whether the identified stakeholders were relevant stakeholders
for the LUKKARI system. The main criterion for determining
whether a stakeholder was relevant was the rationale provided
for each stakeholder. Stakeholders were excluded from the
study if the rationale was not provided or if it clearly indicated
that the stakeholder was not connected to the described
LUKKARI system.

Time was also measured to determine whether there was
any significant difference in analysis time between different
student groups or methods.

IV. RESULTS

In total, 51 students participated in the experiment and
identified a total of 449 stakeholders, an average of 8.8
stakeholders per student. The results are shown in Table 1. The
control method produced a total of 128 stakeholders, averaging
8 stakeholders per student.

There were 54 unique stakeholders, an average of 3.4 per
student. These results include all three groups of students and
form the baseline performance for comparing the performance
of the two stakeholder identification methods. Given the results
in Table 1, both the questionnaire and systematic methods
outperform this baseline. The questionnaire method produced a
slightly better average when comparing identified stakeholders
per student while the systematic method was clearly better than
the other two. Similar results were found with the unique
stakeholders, the questionnaire being slightly better than the
control, while the systematic method was superior overall.

Comparing the methods when the students were evenly
distributed based on their experience, the questionnaire method
was slightly better than the control method, but the systematic
method clearly outperformed the others. The results are also
similar with unique stakeholders, with the systematic method
again outperforming the other two. This suggests that instead
of relying on questions and categories, a systematic approach
more accurately finds stakeholders and identifies unique
stakeholders. Comparing the time spent identifying
stakeholders, there is only a slight difference between the
control and systematic methods. The questionnaire method
took the most time of the three, so in this regard it was less
effective.

When experience is measured separately, the students
without experience produced a total of 223 stakeholders, with
an average of 8.3 stakeholders identified per student. Of all
stakeholders, 87 were unique stakeholders, an average of 3.1
unique stakeholders per student. This group forms the baseline
for measuring the influence of experience. Table 1 clearly
shows that experienced students performed better than the
baseline in terms of the average number of stakeholders and
unique stakeholders identified per student. The group with no
relevant experience performed slightly poorer in regard to
average stakeholders per student than the group with no
experience at all. However, the totally inexperienced group
identified more unique stakeholders.

TABLE I. OVERALL RESULTS FROM THE EXPERIMENT

 Control method Questionnaire method Systematic method

Students: 16 19 16

Total identified stakeholders: 128 165 156

Average per student: 8.0 8.7 9.8

Average time per stakeholder 4 min, 44 sec 5 min, 18 sec 4 min, 52 sec

Total unique stakeholders: 54 74 84

Unique stakeholders per student: 3.4 3.9 5.3

 No experience Experience but not SE Experience from SE

Students: 28 10 13

Total identified stakeholders: 223 72 141

Average per student: 8.3 7.4 10.8

Average time per stakeholder 5 min, 29 sec 5 min, 19 sec 4 min, 1 sec

Total unique stakeholders: 87 39 81

Unique stakeholders per student: 3.1 3.9 6.2

93Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 115 / 679

The experienced group clearly outperformed the other two
groups. Experienced students were able to find more
stakeholders than students with no experience. The groups with
no experience at all and without relevant experience provided
fewer stakeholders. What was surprising, however, was that the
group that lacked relevant experience managed to find fewer
stakeholders than that with no experience at all. Although the
group still came up with more unique stakeholders, their
experience from different domains might have caused this
interference. While this study cannot provide an answer for this
finding, it might be useful to experiment to investigate how the
different experience affects the identification process. Finally,
accounting for the time spent to identify a single stakeholder,
there was only a slight difference between those with no
relevant experience and those with no experience at all. Those
with experience, however, were clearly faster. These results
indicate that experience is a key attribute for identifying unique
stakeholders, and relevant expertise provides a clear benefit.

TABLE II. AVERAGE OF IDENTIFIED STAKEHOLDERS IN EACH METHOD

SEPARATED BY EXPERIENCE GROUPS

 Control

method

Questionnaire

method

Systematic

method

Experienced 8.8 9.4 14.6

No relevant

experience

7.3 6.8 7.7

No experience 7.1 8.3 8.4

The results were also tabulated according to the

identification method group based on experience level, as
shown in Table 2. While the comparison groups were clearly
smaller, the use of a specific method still provided better
results. The data shows that students benefitted from the
method regardless of experience. The only difference was that
the group with no relevant experience that specifically used the
questionnaire method identified the least stakeholders. It
should be noted that while the difference is not big, the group
with no relevant experience showed the least amount of
improvement over the other two groups. This result is

interesting because general experience should indicate more
information about stakeholders, whereas this experiment hints
that specifically relevant experience matters more.

The rate at which sets of stakeholders occurred in the
different method and experience groups were evaluated, as
shown in Table 3. Comparing the frequency of stakeholders
found no clear difference between any of the groups. The main
stakeholders each group identified were similar in kind;
generally, the stakeholders were organisational units of the
university, stakeholders related to the university itself and
stakeholders related to the LUKKARI system. Mainly, the
frequency of their appearance varied. When all stakeholders
were ranked according to occurrence, each group received
similar results. While some groups’ position in the list varied
greatly, no group clearly appeared more frequently in one
group and less in another. This indicates that identification
method and experience did not bias students to select particular
stakeholders that would greatly differ from other groups.

V. THREATS TO THE EXPERIMENT’S VALIDITY

Students were expected to do the work individually in order
to test whether the method actually helps individual students
identify stakeholders. Communication between students and
data searches were deliberately denied to control the
experiment. In real life, however, work is often done in teams,
and several people can work on the same task. In addition,
access to company resources and the Internet also provide
resources to help the identification process. Therefore, this
study cannot be directly compared to a real environment as
such.

The study did not consider how valid and important each

stakeholder was for the system. This was intentionally

excluded because determining validity and importance was

beyond the scope of this study. The study concentrated only

on determining which identification method is more likely to

produce a larger and more accurate set of stakeholders,

compared to working without any specific method at all.

TABLE III. COMMON STAKEHOLDERS

Control method Count Questionnaire method Count Systematic method Count

IT Services 10 Students 10 Students 27

Students 9 University of Oulu 5 Student Councilors 15

Teachers 7 Teachers 5 LUKKARI Developer 12

Student Councilors 7 IT Services 5 University of Oulu 11

LUKKARI Developer 6 Student Councilors 5 IT Services 11

University of Oulu 5 Lukkari Developer 5 Teachers 10

Ministry of Education 3 University of Oulu Management 3 LUKKARI Development Team 7

External Consults 3 Course Management System Developers 2 University of Oulu Management 7

Requirements Engineers 3 Department Managers 2 Project Financiers 6

LUKKARI Development Team 3 LUKKARI Administrators 2 Teaching Staff 5

No experience Count Experience but not SE Count Experience from SE Count

Students 17 Students 14 Students 15

Student Councilors 13 Teachers 9 IT Services 10

IT Services 10 LUKKARI Developer 7 LUKKARI Developer 9

Teachers 9 IT Services 6 Student Councilors 8

University of Oulu 8 Student Councilors 6 University of Oulu 8

LUKKARI Developer 7 University of Oulu 5 IT Support 4

Project Financiers 5 University of Oulu Management 5 University Financiers 4

University Administration 5 LUKKARI Development Team 5 Teachers 4

Ministry of Education 4 LUKKARI Administrators 4 University of Oulu Management 4

LUKKARI Development Team 4 LUKKARI Project Managers 3 Teaching Staff 3

94Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 116 / 679

No quantitative analysis was performed on the results
due the nature of the study. The rationale behind the decision
to use only a qualitative analysis was that the study was
designed to be more explorative to see whether the methods
provided clearly different results. Each answer provided by
the students was therefore analysed separately to understand
whether the stakeholders were the same, whether the
stakeholder had a rationale to be a stakeholder for the
LUKKARI system and what kind of stakeholder groups were
formed by the different methods. Therefore, the quantitative
analysis was used to gain an insight into whether experience
and method had any effect. However, quantitative analysis
could provide more insight about the results from this study.
Based on the results of this study, a longer study with a
larger audience should be conducted.

The experiment was limited only to students, which
affects the generalisation of the results. However, this
shortcoming was addressed by pinpointing students with
relevant experience in software engineering and classifying
them as a separate group for analysis. Experimenting in a
real development situation should be the next step after this
experiment to confirm the large-scale effect of experience.

VI. CONCLUSION AND FUTURE WORK

The current advances in the development of stakeholder
identification methods are gaining more attention, and
defined stakeholder identification methods for RE have
already been published. While the need for these methods is
receiving more attention, comparing their effectiveness with
practitioners having different types of expertise is less
studied. This paper contributes to this issue with an
experiment in which different stakeholder identification
methods, the systematic method of Sharp et al. [5] and the
questionnaire method of McManus [6], are measured against
standard RE education literature guidance [12].

When the results from groups using either systematic or
question-based stakeholder identification method were
compared to a control group, both groups were able to
identify more stakeholders than the control group. The
results also indicate that the systematic identification method
performed slightly better than the questionnaire. Based on
this finding, a systematic stakeholder identification method
provided more identified stakeholders, although a defined
method, like a questionnaire, was found to be better than just
a list of possible stakeholders.

The results show that experience is an important factor in
stakeholder identification. The main finding was that
experienced participants were able to identify more
stakeholders than those without relevant experience or with
no experience at all, regardless of what identification method
was used. In addition, those without relevant experience
actually performed slightly worse compared to others,
indicating that the type of experience is also relevant. Using
a defined stakeholder identification method in this study
clearly increased the amount of stakeholders identified by
both experienced and non-experienced participants.

One area for future work will be testing these methods
with companies working with real customer projects and

extending the experiment to determine whether identified
stakeholders are actually important for a software product.
Another research topic is to study how the guide helps to
identify stakeholders and whether the efficiency of a single
method depends on the application domain. In this regard,
one direction is to analyse approaches like StakeNet [8],
where several practitioners participate in the identification
process to generate a richer set of stakeholders.

Finally, the quality and domain of the experience itself
should be studied. This study demonstrated an interesting
anomaly in the results between those that were experienced
in SE and those without relevant experience. Therefore, one
of the future research activities should concentrate on this
particular finding.

ACKNOWLEDGMENT

The authors would like to thank the ITEA2 AMALTHEA
and Digile N4S projects for providing support for the
research.

REFERENCES

[1] IEEE. Guide to the software engineering body of knowledge,
http://www.swebok.org [retrieved: August, 2014]

[2] IEEE. IEEE Recommended Practice for Software Requirements
Specifications, IEEE Std. 830–1998. IEEE Press, 345 East 47th Street,
N.J., 1998.

[3] A. Aurum and C. Wohlin, ‘Engineering and managing software
requirements’, Springer-Verlag, Berlin, Heidelberg, 2005.

[4] I. Sommerwille and P. Sawyer, ‘Requirements engineering – A good
practice guide’, John Wiley & Sons Ltd, Chichester, West Sussex,
1997.

[5] H. Sharp, A. Finkelstein, and G. Galal, ‘Stakeholder identification in
the requirements engineering process’, Tenth International Workshop
on Database and Expert Systems Applications (DEXA 99), Aug.
1999, pp. 387–391.

[6] J. MacManus, ‘A stakeholder perspective within software engineering
projects’, IEEE International Engineering Management Conference,
Vol. 2, Oct. 2004, pp. 880–884.

[7] C. Pacheco and I. Garcia, ‘Effectiveness of stakeholder identification
methods in requirements elicitation: Experimental results derived
from a methodical review’, Eighth IEEE/ACIS International
Conference on Computer and Information Science, Jun. 2009, pp.
939–942.

[8] S. L. Lim, D. Quercia, and A. Finkelstein, ‘StakeNet: Using social
networks to analyse the stakeholders of large-scale software projects’,
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering (ICSE’10), May. 2010, pp. 295–304.

[9] R. E. Freeman, ‘Strategic management: A stakeholder approach’,
Pitman, Boston, 1984.

[10] A. P. Friedman and S. Miles, ‘Stakeholders, theory and practice’
Oxford University Press, Oxford, 2006.

[11] I. Sommerville, ‘Software engineering, 7th ed.’, Pearson Education
Ltd, Edinburgh Gate, Harlow, 2004.

[12] S. Lauesen, ‘Software requirements: Styles & techniques’, Pearson
Education, 2002.

[13] S. Barney, A. Aurum, and C. Wohlin, ‘Quest for a silver bullet:
Creating software product value through requirements selection’,
Proceedings of the 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications, Aug. 2006, pp. 274–281.

[14] S. Barney, C. Wohlin, H Ganglan, and A. Aurum, ‘Creating software
product value in China’, IEEE Software, vol. 25, iss. 4, 2009, pp. 84–
90.

95Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 117 / 679

[15] S. Barney, A. Aurum, and C. Wohlin, ‘A product management
challenge: Creating software product value through requirements
selection’, Journal of Systems Architecture, vol. 54, iss. 6, 2008, pp.
576 – 593.

[16] J. Fedorowicz, U. J. Gelinas Jr, J. L. Gogan, and C. B. Williams,
‘Strategic alignment of participant motivations in e-government
collaborations: The internet payment platform pilot’, Government
Information Quarterly, vol. 26, iss. 1, Jan. 2009, pp. 51–59.

[17] H. In and B. Boehm, ‘Using WinWin quality requirements
management tools: A case study, Annals of Software Engineering,
vol. 11, iss. 1, Nov. 2001, pp. 141–174.

[18] C. Pachecho and I. Garcia, ‘A systematic literature review of
stakeholder identification methods in requirements elicitation’,
Journal of Systems and Software, vol. 85, iss. 9, Sep. 2012, pp. 2171–
2181.

[19] K. Lyytinen and R. Hirschheim, ‘Information systems failures - a
survey and classification of the empirical literature’, Oxford Surveys
in Information Technology, vol. 4, 1987, pp. 257–309.

[20] N. Juristo and A. M. Moreno, ‘Basics of software engineering
experimentation’, Springer Publishing Company, 2010.

[21] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén, ‘Experimentation in software engineering’, Kluwer
Academic Publishers, Norwell, 2000.

96Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 118 / 679

What Are the Features of This Software?
An Exploratory Study

Barbara Paech, Paul Hübner

University of Heidelberg
Institute of Computer Science

Heidelberg, Germany
{paech,huebner}@informatik.uni-heidelberg.de

Thorsten Merten

Bonn-Rhein-Sieg University of Applied Sciences
Dept. of Computer Science
Sankt Augustin, Germany

thorsten.merten@h-brs.de

Abstract—Application systems are often advertised with fea-
tures, and features are used heavily for requirements man-
agement. However, often software manufacturers only have
incomplete information about the features of their software.
The information is distributed over different sources, such as
requirements documents, issue trackers, user manuals, and code.
In this paper, we research the occurrence of feature information
in open source software engineering data. We report on a
case study with three open source systems. We analyze what
information about features can be found in issue trackers and
user documentation. Furthermore, we study the abstraction levels
on which the features are described, how feature information is
related, and we discuss the possibility to discover such infor-
mation semi-automatically. To mirror the diversity of software
development contexts, we choose open source systems, which are
quite different, e.g., in the rigor of issue tracker usage. The results
differ accordingly. One main result is that the user documentation
did not provide more accurate information than the issue tracker
compared to a provided feature list. The results also give hints
on how the management of feature relevant information can be
supported.

Index Terms—feature; requirements management; mininig
software repositories; issue tracker; user documentation

I. INTRODUCTION

In requirements management, features of application soft-
ware are heavily used to package requirements. At least for
the following three purposes: release planning in software
product management [1], software product line engineering
[2] and requirements feature interaction detection [3]. The
corresponding approaches typically assume a dedicated feature
and requirements representation. However, in industry features
often are managed implicitly. Typically, they are used within
a project to develop a part of a software product, but they
are not collected in a dedicated document and maintained
over time. The paper by Alspaugh and Scacchi shows that
open source software (OSS) development projects typically
do not have an explicit requirements or feature description
and stipulates that this might also be true for many com-
mercial software development projects [4]. In our work, we
reported about feature knowledge being implicit in answers
to requests for proposals [5]. We and others have reported on
a heterogeneous requirements pool being the basis for release
planning in industry [1], [6], [7]. Thus, in order to get a feature

view of a software product it is often necessary to detect
the features from data sources other than requirements or
feature documents. Three feature-related information sources
are typically available in software projects in industry:

• Bugs and feature requests in an issue tracker
• User documentation
• Code in a version control system

For feature location in code, typically the existence of docu-
mentation about features is assumed [8]. As we are interested
in deriving the features, we focus on issue trackers (ITS) and
user documentation (UD). UD has already been recommended
as a substitute for a requirements specification by Dan Berry
et al. in [9]. ITS are a well-known source for features, as
often issues are explicitly tagged as features. However, feature
tagging is not always reliable as has been shown by Herzig et
al. in [10]. For example, they found that only 40% to 72% of
Bugzilla issues are correctly classified as feature requests and
many issues classified as bugs or improvements do actually
contain feature requests.

Thus, it is necessary to analyze in more detail what infor-
mation about features can be found in these sources. Although
the Mining Software Repositories1 community does some
work about categorizing features and bug reports, there is
no work identifying the individual feature descriptions in the
ITS or UD data. The long term-goal of our research is to
develop an approach to semi-automatically derive a feature
representation from these data sources. As a first step, we
present an explorative study analyzing the feature information
of three different open source systems. The goal is to explore
the kind and quality of feature information in ITS and UD.

The rest of the paper is structured as follows. Section II
presents the planning and operation of the case study. Section
III presents the results of the study. Related work is discussed
in Section IV and an overall summary and outlook on future
work is given in Section V.

1http://msrconf.org.

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 119 / 679

II. CASE STUDY PLANNING AND OPERATION

In this section, we describe the definition and planning of
our study, the operation and the threats to validity.

A. Study Definition and Planning

We applied case study research, as this is an exploratory
study trying to understand a real-world phenomenon [11]. The
main research question is:

What information about software features can be found
in the user documentation and issue tracker of a software
product, and how well is this suited to derive a feature
representation of the software?

This question is detailed into the following research ques-
tions:

• RQ1: What feature information can manually be derived
from the issue tracker and the user documentation?

• RQ2: What are the commonalities and differences of
feature information from UD and ITS and how well does
the information fit to the feature list provided by the
developers themselves?

• RQ3: How easily could this information be derived semi-
automatically?

The study was conducted on open source project data, since it
is most easily available. Based on prior experience, the projects
were selected so that their combination fulfills the following
criteria (see Table I):

• Availability of ITS and UD and of an explicit feature list
compiled by the software developers themselves

• Different domains
• Different size of product and ITS and UD data
• Different user groups. We looked for projects with private

users and/or professional users.
• Different kinds of ITS. Radiant uses a lightweight ITS

(GitHub) with simple tagging possibilities to categorize
issues. OFBiz uses an industry standard ITS (Jira) which
supports multiple categorization options and status. Mixx
uses a heavyweight ITS (LaunchPad) which additionally
provides the option of connecting blueprints and user
questions to the issues.

• Diversity of the quality of the provided information in
the ITS. E.g., Mixxx uses the ITS systematically, whereas
Radiant uses it ad-hoc.

• Different completeness of our analysis. The large projects
could only be analyzed partially, but are more represen-
tative for the situation in industry.

TABLE I. SELECTION OF OSS PROJECTS

Mixxx OFBiz Radiant

Domain DJ software ERP CMS
Size large large small
User group private professional private and professional
ITS LaunchPad Jira GITHub
Use of ITS systematic systematic ad-hoc

B. Study Projects

This section provides characteristics of the three projects
utilized for the study. Mixxx is a disk jockey software which
implements basic features for managing and playing music
and advanced features like a virtual mixer to perform seamless
transitions between songs. Radiant is a content management
system which implements basic features to create websites or
blogs and advanced features like RSS feeds and an extension
system to add 3rd party functionality. OFBiz is an enterprise
automation software, where we studied the manufacturing
resources planning component.

Table II provides further details on the projects. For OFBiz,
only the manufacturing component and one corresponding
provided feature was studied. The LOC of Mixxx comprise
only the C++ code (excl. blanks and comments and XML
configuration files). The LOC of Radiant comprise only Ruby
and (r)html code (excl. blanks and comments). For Mixxx
all blueprints and randomly sampled issues (to identify the
quality of links between issues and blueprints) were analyzed,
for Radiant all issues. In Radiant the status “implemented”
was only identified for the feature-relevant issues.

TABLE II. PROJECT DETAILS

Mixxx OFBiz Radiant

features in list 22 1 10
Size (LOC) 94117 Not det. 33887
Programming
language

C++ (& QT) Java Ruby (&
Rails)

issues 2211 + 113 blueprints
+ 138 user questions

120 348

issues implemented 1239 + 59 blueprints 94 See text
issues analyzed 50 + 113 blueprints all all
analyzed issues
with feature
information

22 + 53 blueprints 19 50

issues implemented
and analyzed with
feature information

22 + 53 blueprints 16 43

subdivisions UD 14 chapters consisting
of 69 sections

343 120
pages

subdivisions UD an-
alyzed

all 36 all

subdivisions with
feature information

62 34 64

provided features
identified in ITS

21 7 12

provided features
identified in UD

24 12 12

C. Study Operation

This section provides a short overview of the indicators we
used for feature relevant information and describes how we
searched the ITS and UD of the projects. We analyzed the data
sources in February 2014. Moreover, we stored all analyzed
data locally for a reliable reproduction of our results.

1) Feature indicators: For the ITS we looked for issues
which describe a new functionality (F) or quality (Q). The
feature has to be already implemented and the issue mentions
F and Q or a component of F and Q. It was not always

98Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 120 / 679

easy to determine the implementation status of an issue. For
Radiant the status was not managed explicitly. Thus, the im-
plementation status was revealed by analyzing the comments
of an issue and associated commits. For Mixxx and OFBiz
we took the issues with the status “Implemented or Patch
Available”. We did not find any indication that the status for
those issues was set wrongly. However, there might be issues
which are implemented but the status is not set accordingly.
For the UD we looked at section and page titles containing
this kind of information and not only describing the operation
of the product. The exact rules and corresponding examples
are shown in Table III. We classified the feature information

TABLE III. INDICATORS OF FEATURE RELEVANT INFORMATION

ITS UD

The issue is implemented AND mentions
functionality or quality AND is not re-
lated to a bug AND is not only related
to refactoring AND the term X or a
component Xi of X is explicitly or
implicitly mentioned.

The item describes function-
ality or quality X and not
operation (such as installing
or getting help) AND the term
X or a component of X is
explicitly or implicitly men-
tioned.

Radiant (Quality Performance,
Component “Radius Parser” of
“Radius Template Language”):
“Speed up Radius parser”
Radiant (Functionality Asset
Management): “Integrate an
asset management solution”
Radiant Implementation Status by
comment: “Seeing as there’s a setting
for this now, this issue can be closed?”
Mixxx (Quality User Experience,
Functionality Vinyl Control):
“Improvements to the overall
vinyl control user experience”
Mixxx (Functionality, Component
Crates and Playlist): “Currently
Mixxx does not support
hierarchies for crates and playlists.
This, however, is possible”
OFBiz: (Functionality Production
Machines) “cover the case in which
many machines are used to complete
a production task”

Radiant Page Titles
(Quality Performance and
Caching) “Disable caching
in a radiant system”
Radiant Page Title
(Functionality Admin
UI) “Altering Tabs
in the Admin UI”
Mixxx (Quality
was not mentioned)
Mixxx Section (Functionality
Broadcast): “Live
Broadcasting Preferences”
OFBiz (Functionality
Routing Task): “Find
Routing Task”

according to their abstraction levels. It is well-known that
requirements and features are typically described on different
abstraction levels. Based on the work of Gorschek et al. [7],
we distinguish 3 levels of features:

• Requirements level (called feature level in [7]): the men-
tioned F comprises several functions or the Q affects
several functions

• Function level: F or Q only refer to one function which
a user can perform. Implementation details are not men-
tioned.

• Code level (similar to the component level used in [7], it
focuses on the HOW): F or Q only refer to one function
which a user can perform. Implementation details are
mentioned. For UD the levels were easy to identify. Page

or section titles referred generally to requirements, while
subpages and subsections referred to functions. Code
details were only mentioned in the UD of Radiant, as
here the user is required to change classes to setup a
certain functionality. Table IV shows examples for issue
texts on different abstraction levels.

TABLE IV. EXAMPLES FOR ISSUE ABSTRACTION LEVELS

Function Quality

Requi-
rements

Radiant: “Break Radiant into
several different extensions”

OFBiz: cf. Table III example
bottom left.

Radiant: Internationalization

Func-
tion

Radiant: “Errors when changing
your password should be shown”

Mixxx: “Implementation of
a traktor library feature
to allow professional DJs
the smooth migration [...].”

OFBiz: “Improve mrp to support
to products which have no orders
against them”

Radiant: “Make it so
that pages are only
cached for GETs”

Mixxx: “Smooth Wave-
forms” (relates to a
less stuttering display
for track visualization).

OFBiz: “There is a need
to be able to block viewing
info except that info that may
pertain to that login”

Code Radiant: “Javascript to stop
you from navigating away
from a page with changes”

Mixxx: “It would be nice to
be able to specify multiple
<option>s for MIDI controls
in XML mapping files.”

OFBiz: [...] accepts the partyId
as a parameter, but has been
commented [...] [however,
the] functionality is vital for
determining which employees are
responsible for rejects

Radiant: “[Add] Ruby
1.9.x compatibility”

Mixxx: “Distribute Launch-
pad translations with Mixxx
Releases”

In [9], Berry et al. distinguish typical section types of an UD:
the abstractions (objects) of the domain (O) and the use cases
(U). We use this distinction to classify the focus of a text.
O is used when the feature is directly part of the UI or the
software, while U is used when the feature requires some kind
of dialogue to be used. U is not applicable to quality features.
We also identified relationships between features. They are

Fig. 1. Legend for the Feature Graphs.

used particularly in visualizations, such as Figure 2 and 4.
Based on the information available to us, we determined the
following relationships between the identified features (see
Figure 1 for a legend of the relationships).

• Identical (features of different sources)

99Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 121 / 679

• Part of (features of different and same sources)
• Overlapping (features of different sources)

2) Procedure: The second and the third author conducted
the actual search, while the first author acted as a reviewer.
RQ1 was answered using thematic coding [12]. The second
author coded the UD pages and sections and derived a set of
codes characterizing the features described. Similarly, the third
author coded issues in the ITS. The identified two feature sets
were compared with the provided feature list on the project
website and with each other. RQ2 was answered by comparing
the different feature sets. The answer of RQ3 is based on the
experience of the two authors during the manual derivation of
the feature information.

D. Threats to Validity

We discuss the threats to validity according to Runeson
et al. [13]: Construct validity: The authors have not been
involved in the development of the sources. Thus, our view
of what constitutes a feature of the software is clearly an
external one, which might be different from what developers
consider a feature of their software. To mitigate this threat,
we used the feature list provided by the developers for com-
parison. External validity: The results are not representative
for application software in general, as we only looked at
three projects. For this exploratory study, we choose very
different projects to enlarge the possible insights. Reliability:
As only one researcher coded the ITS and the UD information,
we cannot claim that other researchers would reproduce the
coding. However, we used very explicit coding indicators and
discussed them explicitly to minimize the bias of the individual
coder. Moreover, the performed approach can be adapted to
any software development project which provides the required
data (ITS, UD and feature List).

III. RESULTS

In the following, we answer the research questions for
each project individually. The last subsection summarizes the
insights for all projects.

A. Results of Project Radiant CMS

1) Provided feature list: The Radiant website contains a
feature overview2 which depicts 10 features using a name and
a short one- or two-sentence description. As these features
are listed prominently, we stipulate that they are the most
marketing relevant for the developers. Table V shows these
features and our classification as F or Q and O or U. The
table also shows whether the feature was identified in the ITS
or UD. Brackets indicate that the corresponding ITS or UD
features are slightly different (see below).

2http://radiantcms.org/overview, accessed on August 8, 2014

TABLE V. RADIANAT FEATURES

Provided feature list Identified in

Built with Ruby on Rails (Q,O) ITS
Custom Text Filters (F,U) -
Flexible Site Structure (Q,O) -
Intelligent Page Caching (Q,O) ITS, UD
Layouts (F,O) (UD)
Licensed under the MIT License (Q,O) -
Pages (F,O) ITS
Radius Template Language∗ (F,O) ITS, UD
Simple Admin Interface (F,U) ITS, UD
Snippets (F,O) (ITS, UD)

∗ a special macro language (similar to HTML and Ruby).

2) Identification of feature information from UD and ITS
(RQ1): The UD is organized in a wiki. The starting page
of this wiki is a global table of contents. This table of
contents is divided into 11 chapters, 8 of which only deal
with administrative issues.

Thus, we identified the three chapters “The Basics”, “How
Tos” and “Extensions” as primarily relevant for further analy-
sis. “The Basics” contains seven links to top level UD pages.
Except for the links to “FAQs” and “Getting Started”, the
links point to pages describing Radiant features as mentioned
in the feature list (Pages, Layouts, Snippets, Radius Tags,
Customizing the Admin UI). In addition, there are six links
to details of the Radius Tag feature and two links to details
of the admin UI feature. Each top level UD page contains the
intent and summary of the feature, screenshot of the features
UI, and detailed descriptions of the feature use.

The “How Tos” chapter contains 29 links to top level
UD pages. As visible by the titles, those links point to
tutorials describing advanced features. The tutorials include
usage examples and reference the basic feature pages. The
Radius Template Language is referenced from almost all
pages. The “Extensions” chapter starts with 6 pages describing
the concept and usage of radiant extensions, followed by a list
of 27 common extensions, and 11 pages which describe how to
develop an extension for Radiant. According to the indicators
of Table III, we identified 64 relevant pages.

The boxes marked with UD on the right side in Figure 2
shows the 13 features identified from the UD. Content delivery
refers to different channels like RSS, content location to search
in a web page. Most pages are on the function level and many
describe layout. The number of pages related to a feature do
not signify the importance of that feature. The features listed
under “The Basics” can be seen as most essential, however,
they are described on 15 pages, only.

The Radiant project uses GitHub as ITS. It is used for
different aspects, such as Feature Requests, Bug Reports,
Discussions of the development process, Discussions about
refactorings and sometimes User Problems and Discussions
about Documentation.

GitHub provides optional labels to classify an issue. Since
the labels are optional, they are rarely used in the Radiant
project. This implies that issues related to features, bugs, or

100Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 122 / 679

other aspects of Software Engineering (SWE) are not labeled
accordingly by any means.

Therefore, we analyzed each of the 348 issues manually and
derived their category (feature, bug, refactoring, other SWE
aspects) by analyzing the descriptions and comments.

The boxes marked with ITS on the left side in Figure 2 refer
to the 11 features identified from the ITS. Asset management
refers to content different from the pages such as image files.
Development comprises support for developers, such as a
framework, Frontend refers to usability features. The issues
mostly deal with individual functions, half of them deal with
code (cf. Figure 3a). Many issues deal with the Simple Admin
UI. Here again, the number of issues does not signify the
importance of the feature. Furthermore, there are issues with
many comments, but, e.g., a very short implementation.

3) Commonalities and differences of UD and ITS and
provided features (RQ2): Figure 2 shows the relationships
between the identified features. As could be expected, the
description of the features in the ITS is quite often on the code
level, while the UD features are described on all three levels.
Almost a third is on the code level which is unusual for an UD.
This is due to the fact that code needs to be changed for some
functionalities. However, only 2 features are solely described
on the code level. Figure 3 shows that the feature sets have

Fig. 2. Radiant Feature Graph (transitive relationships are not shown)

some commonalities, but also differences. Almost half of the
ITS features (45%) are identical to the provided features, while
only a third of the UD features (31%) is identical (cf. Figure
3b). This might be due to coder differences, but also due to
the fact that the UD already provides a structure indicating
low-level features which are not mentioned on the marketing
level. Issues mention the features without any structure. Thus,
the developer and the coder are missing a structure when

referring to low-level features. Provided features not identified

34,4
46,0

54,7
44,0

10,9 10,0
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UD ITS

Radiant

Code

Funct.

Requ.

(a) Abstraction Level

50 30
45 45

23

38

20
30

18 18

46

31

30
40 36 36 31 31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ITS UD List UD List ITS

Feature from List Feature from ITS Feature from UD

PO

I

N

(b) Feature Relationships (N = Not Related, I
= Identical, PO = Partial Or Overlapping)

Fig. 3. Radiant Commonalities and Differences of UD, ITS and Feature List

from the ITS (18%) may be due to the fact that the ITS
was not used from the beginning of the development. The
basic functionality of the software was implemented before
the ITS was used. For ITS features not in the provided list
(31%), the content could be a reason. While Internalization and
Extensibility seem relevant as prominent features, Fronted and
Development issues might be too low-level. It is interesting to
note that all ITS features which do not have a relation to either
the list or the UD are quality-related. All features identified
from the UD seem relevant, although 31% of them are not in
the provided list. There is no pattern wrt F/Q or O/U in the
differences between UD and the other feature sets. The PO-
relationships between Pages, Layouts and more fine-grained
features, such as Blog or Comments, show that granularity
is a challenge. Only UD features have Part-of-relationships.
Again, this can be due to the more fine-grained structure of
the UD. UD features are more closely related to ITS feature
(45% identical) than the provided list, but there are almost as
many (36%) non-related features.

4) Automatic identification of feature information (RQ3):
Most feature-related information was identified in older issues.
34 feature-related information items could be found in issues
#1 to #68. 16 feature information items in #71 to #202 and
no feature-related information was found in #203-#384. This
suggests that a) older issues should be available for automatic
feature extraction and b) it might be best if the ITS is used
from the beginning of the development (e.g., design and
prototyping phases). In Radiant however, the ITS was only
used after a prototype of the software had already been built.

For the ITS we searched for text containing ‘*should*be*’,
‘*add*, ‘*would*be*’ and ‘*allow*user*’ in the issue title and
description. This revealed 27 of the 43 issues with feature
related information. However, the search added about the same
amount of noise and included refactoring- and bug-related
issues. Therefore, the precision of this approach is relatively
low. However, depending on the usage of an ITS, it might
be possible to extract more precise search terms. A pitfall in
automatic analysis are the tags of the Radiant ITS. As in [10],
manual categorizations are often wrong. Although tags like
bug, design, or javascript are introduced in Radiant, they are
not used consistently. Since tags are optional, we found that
most issues are not tagged at all. The bug tag is only used for

101Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 123 / 679

one issue, which is not reliable for any automatic extraction.
Further analysis, for example topic analysis [14], is necessary
to identify feature labels.

For the automatic identification of features from the UD,
the relevant pages need to be identified in a first step. For
Radiant the relevant pages were mainly contained in three
chapters, which can be identified more efficiently manually
than automatically. Additionally, some pages are only related
to system operation and do not contain feature information. To
some extent, these pages could be identified by searching for
operation-related terms such as installation in order to discard
these pages. Another input for the identification of relevant
pages is the linkage structure. Based on this, it is possible
to identify frequently referenced pages which most likely are
feature-relevant pages.

The identification of the feature labels could start from the
page titles. The nouns contained in the titles can be used as a
starting point to create a feature list.

B. Results of Project Mixxx

TABLE VI. RADIANT FEATURES

Provided features Identified in

Advanced Controls (F,U), Dual Decks (F,O) IST,UD
Decks: Beat Looping. Broad Format Support, Hotcues,
Intuitive Pitchbends, EQ and Crossfader Control, Time
Stretch and Vinyl Emulation (F,O)

(ITS, UD)

Designer Skins (F,O) ITS
Free Timecode Vinyl Control (F,U) ITS,UD
Microphone Input (F,U) ITS,UD
MIDI Controller Support (F,U) (ITS,UD)
Powerful Library: Auto DJ, BPM Detection and Sync,
Crates and Playlists, Disk Browsing, iTunes Integra-
tion (F,U)

ITS,UD

Quad Sampler Decks (F,O) UD
Recording (F,U) ITS,UD
ReplayGain Normalization (F,U) -
Shoutcast Broadcasting (F,U) (ITS,UD)

1) Provided feature list: Similarly to Radiant, the list of
provided features was taken from a website 3 with short mar-
keting descriptions. The feature list contained 20 functional
features (see Table VI). Features which are part of a more
general feature (e.g. library or deck) are listed in one row.

2) Identification of feature information from UD and ITS
(RQ1): The UD is part of a general documentation WIKI
which also contains developer documentation and documenta-
tion for special users, like artists. We focused on the user
manual. The manual contains 14 chapters, 9 of which are
feature relevant. These 9 chapters contain 69 sections. Since
the chapters contain an introductive text, we assigned fea-
ture labels (abstraction level requirement) to 8 of them (one
chapter title was “advanced features”) and to the 54 sections
which satisfied our indicators of TABLE III (abstraction level
function). None were on the code level. The boxes marked
with UD on the right side in Figure 4 show 20 of the

3http://mixxx.org, accessed on August 8, 2014

Fig. 4. Mixxx Feature Graph (identical, not related features, and transitive
relationships are not shown)

24 identified features and their classification (the features
DJing(F,U), Microphone (F,U), Recording (F,U) and Vinyl
Control (F,U) are not linked to the provided features and thus
have been omitted in the Figure). The feature Analysis refers to
the preparation of harmonic mixing, Controlling Mixxx allows
setting device specific options, and Vinyl control allows to
use records to control digital playback. All of the identified
features describe a functionality. The number of sections or
chapters corresponds to the complexity of the features. Music
Management is the only feature described in detail (7 pages)
which is not related directly to a chapter.

The Mixxx Project uses Launchpad as ITS. It contains 2211
issues (including bugs and feature requests), 113 so-called
blueprints and 138 questions. The issue classification in bugs
and features as made by the developers is very reliable for the
issues we analyzed. The blueprints describe refactorings and
higher level requirements for features. Blueprints and issues

102Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 124 / 679

are often linked, and issues are often linked with the code,
but not always. Since blueprints contain more feature-relevant
information than issues in the way Launchpad is used in the
project, we analyzed all 113 blueprints for feature information.
In our analysis, we included 59 blueprints with the status
implemented.

The boxes marked with ITS on the left side in Figure
4 refer to 15 of the 21 features identified from the ITS
(Development (Q,O), Internationalization (F,O), Microphone
Usage (F,U), Playback (F,U), Recording (F,U) and emphVinyl
Control (F,U) are not linked to the provided features and
thus have been omitted in the Figure). All of the identified
features describe functionality. Beat Detection analyzes the
speed of a track. Beat looping repeats a short part of the
track. Codecs are different digital formats. As for Radiant,
Development describes support for the developers. Skinning
refers to different UI looks. Syncing matches the speed of
different songs for the mix. Only few blueprints are on the
code level.

87,1

87,5

10,7

12,9 1,7
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UD ITS

Mixxx

Code

Funct.

Requ.

(a) Abstraction Level

60 60

38
48

63 58

40
30

38

38

25 33

10
24

14 13 8
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ITS UD List UD List ITS

Feature from List Feature from ITS Feature from UD

PO

I

N

(b) Feature Relationships (N = Not Related, I
= Identical, PO = Partial or Overlapping)

Fig. 5. Mixxx Commonalities and Differences of UD, ITS, and Feature List

3) Commonalities and differences of UD and ITS and pro-
vided features (RQ2): Figure 4 and 5 illustrate the common-
alities and differences of the UD, ITS, and provided feature
sets. The graph in Figure 4 does not show the identical features
AutoDJ, Microphone Input, Recording and Vinyl Control, as
well as the 3 features of ITS (Development, Internationaliza-
tion, Playback) and one feature each of UD (DJing) and List
(Replay) which are not related to other features.

There are fewer provided features (a tenth) compared to
Radiant (roughly a third) which have not been mentioned
by UD or ITS. This was expected from the fact that the
ITS blueprints and the UD seem to be well maintained.
Similar to Radiant, more features from the provided list were
directly identified from the ITS (40%) compared to the 30%
of the provided features identified from the UD. However, the
difference is smaller. Furthermore, there are more ITS features
(24%) which are not related to provided features. Two of them
are related UD features. There are many identical features
between ITS and UD (between 30 and 40%) and very few
non-related ones(< 10%). However, there are also many part-
of-relationships between ITS features and either UD (48%) or
the provided features (38%). And there are even more PO-
relationships from UD features to either the ITS (58%) or the

provided features (63%). This indicates that even when well-
maintained, the granularity in the different sources is different.
The distinction between F und Q is not relevant as no Q
features were involved. Again, no pattern wrt O/U could be
found.

4) Automatic identification of feature information (RQ3):
As the Mixxx ITS is maintained very systematically, the
possibilities to categorize the status (e.g. implemented, draft,
in progress) as well as the issue (e.g. bug, wishlist, blueprint)
could be used as indicators for feature relevant information.
The identification of the feature labels remains a problem.

The Mixxx UD is a well-structured document separated
into chapters and two section levels. 9 of the 14 chapters
are feature-relevant, compared to 3 out of 11 for Radiant.
Often the chapter and section titles directly contain feature-
relevant terms. As for Radiant the relevant chapters can be
identified just by manually looking at the chapter titles. For
the identification of features on the requirement abstraction
level, the chapter titles can be used. The section titles on the
first section level can be used for feature identification on the
function abstraction level.

C. Results of Project Apache OFBiz

1) Provided feature list: The project OFBiz was studied
only partially. As the project is very large a complete analysis
was not feasible. The feature page4 lists features on the
requirements level. We decided to look at the manufacturing
feature (one component) and the corresponding UD and issues,
only.

2) Identification of feature information from UD and
ITS(RQ1): The UD for OFBiz is organized as a wiki. How-
ever, the wiki only contains more or less empty pages and
some basic structures (e.g. sections for role specific documen-
tation, e.g., for managers). Based on this fact, we decided to
use the outdated Manager Reference for our UD analysis (last
updated in 2004, uploaded to the wiki as PDF attachment
between 2006-12 and 2007-01). Based on the experience
gained from the previously analyzed projects, we looked at
the chapter and section headings, only. The document contains

TABLE VII. OFBIZ MANUFACTURING FEATURES FROM UD AND ITS

Feature UD Feature ITS

Bill of Materials (F,U) Data Security (Q,O)
Bill of Mat. Simulation (F,U) Internationalization (F,O)
Calendar (F,U) Manage orders (F,U)
Job Shop (F,U) Manage Products (F,U)
Manufact. Res. Planning (F,U) Manage Production Machines (F,O)
Manufacturing Rules (F,U) Manage Production Runs ()
Production Run (F,U) Resource Planning (F,U)
Reports (F,O)
Requirement Verification (F,U)
Routing (F,U)
Routing Task (F,U)
Shipment Plans (F,U)
Status Report (F,U)

4http://OFBiz.apache.org, accessed on August 8, 2014

103Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 125 / 679

343 subdivisions organized into 4 hierarchy levels. We decide
to remove the sections on the 3rd and 4th hierarchy level, since
they only refer to single attributes, e.g. of specific input form
values. 8 chapters and 28 sections remained. From this we
could identify 13 distinct features (cf. Table VII, left column).
8 of the features are on the requirement abstraction level, based
on the chapters. The other 5 features are mostly additional
aspects of the requirement abstraction level features, i.e. they
have been identified in subsections of the respective chapters.
As expected for a manager reference, code details were not
mentioned. Also, quality features were not mentioned and only
one object of the domain.

The OFBiz Project uses Jira as ITS. It contains 5567 issues,
120 of these issues are related to the manufacturing component
which was determined by filtering the ITS. We analyzed all
120 issues of the manufacturing component and identified 7
features (cf. Table VII right column). Security was the only
quality aspect identified.

In OFBiz the issue feature descriptions are generally longer
(in terms of words) as in the other projects. Requirements, for
example are described in detail and often include multiple
solution ideas (though not mentioning concrete code), e.g.
“[...] this can be implemented in many ways: a) expanding
the concept of Fixed Asset groups [...] b) (more complex)
add new association entities to link a task [...]”. Although
this suggests a very accurate handling of the ITS, we found
multiple misclassifications of issues (e.g. bugs classified as
improvements). In addition, some features were distributed
over many issues. E.g. I18N included multiple issues for every
single language and one main issue describing the feature and
none of these were linked.

TABLE VIII. COMMONALITIES AND DIFFERENCES OF ITS AND UD

Feature ITS (7) Feature UD (13) Map

Data Security (Q,O), In-
ternationalization (F,O)
Manage Orders (F,U) Bill of Materials (F,U), Bill of Ma-

terials Simulation (F,U), Calendar
(F,U). Shipment Plans (F,U)

(O)

Manage Products (F,U),
Manage Production Ma-
chines (F,O)

Manufacturing Rules (F,U) (O)

Manage Production Runs
(F,U)

Production Run (F,U) I

Ressource Planning (F,U) Manufacturing Resource Planing
(F,U)

I

Job Shop (F,U), Reports (F,O), Requ.
Verification (F,U), Routing (F,U),
Routing Task (F,U) Status Report
(F,U)

3) Commonalities and differences of UD and ITS and
provided features (RQ2): As the descriptions of the UD were
coarse and we mainly looked at the headings, we did not derive
a full mapping. Table VIII shows a rough mapping of the
features of UD and ITS. Two features are identical and a few
have overlaps. However, almost half of the UD features were
not mentioned in the issues. This can be explained by the fact

that the UD was outdated.

4) Automatic identification of feature information (RQ3):
The OFBiz analysis did not reveal any new insights wrt
automatic identification. For the UD we only used the chapter
and section titles manually. Thus, this could be also the basis
for an automatic identification. As for Radiant, most feature
related information was identified in older issues. In the ITS,
we found a feature ratio over all issues from 10 to 18%
between 2006 and 2009 and only about 3 to 5% between 2009
and 2013.

D. Overall Results

1) Identification of feature information from UD and ITS
(RQ1): ITS as well as UD can serve to identify features. The
features, however, are described on different abstraction levels
[7] (cf. Figure 6). For both, Mixxx, and OFBiz the UD does
not contain features on code level and > 75% on function
level. In contrast, the UD of Radiant mainly contains feature
information on the code and function levels. In the ITS, feature
information is found on all three levels, but, similar to the UD,
there are only few features on the requirements level, and the
distribution of abstraction levels in the ITS is quite different
for each of the projects. Quality features are typically not

34,4
46,0

10,7

50,0

54,7
44,0

87,1

87,5

76,0

25,0

10,9 10,0 12,9 1,7
24,0 25,0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UD ITS UD ITS UD ITS

Radiant Mixxx OFBiz

Code

Funct.

Requ.

Fig. 6. Abstraction Levels

mentioned in the UD. Radiant and OFBiz UD’s mention few
quality features and Mixxx’s UD none. Most quality features
were found in the ITS.

2) Commonalities and differences of UD and ITS and pro-
vided features (RQ2): There is a noticeable overlap between
the feature information in the ITS, the UD, and the provided
feature list. In the Radiant project, roughly a third of the listed
features could not be identified by UD or ITS, in the Mixxx
project only a tenth could not be identified. Similarly, for
Radiant only a third and for Mixxx only a tenth of the features
was not related between ITS and UD. This indicates that,
both ITS and UD could be used to record feature information
systematically.

As the ITS is mainly important for the developers and the
UD is targeted to the users, it seemed more likely that the
UD better records the listed features [9]. However, it turned
out that UD and ITS record the listed features equally well.
It is interesting to note that in both projects 30-50% of the

104Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 126 / 679

features were identical (between List and UD, List and UD,
and ITS and UD). This means that in the case of Mixxx
there is a high percentage of overlapping features, while in
the case of Radiant there are few overlapping features. Thus,
even for a systematically documented project like Mixxx, a
feature representation generated from UD or ITS would be
different from the marketing feature list. Thus, different feature
representations are likely needed for different purposes.

3) Automatic identification of feature information (RQ3):
We have preliminary insights for automatic identification. It
seems feasible to manually delimit the relevant pages of the
UD and to focus on page or section titles to identify feature
labels. Also for the ITS, there are first ideas to delimit the
relevant issues, but the label identification will require more
sophisticated techniques. As neither ITS nor UD were a perfect
source, it seems likely that at least both sources must be
searched and combined to yield a complete feature set.

Although best practices in RE suggest to describe new
features as as-is and to-be situations, we found only one
issue which mentions both situations. Generally, the to-be
situation was described and the as-is situation was implicit.
Furthermore, the quality and use of language, the quality of
descriptions as well as categories and links differ from project
to project. An automatic identification therefore needs to be
“tuned” for each project.

From our experience, we see the following hints for using
ITS and UD to record features instead of setting-up a separate
feature documentation:

• The Mixxx project shows that feature information can
be explicitly managed within an ITS, if it is separated
from (but linked to) the usual stream of bugs and change
requests. Furthermore, it seems likely that issues in ITS
could profit from an abstraction classification or traces to
more abstract information.

• Berry et al. recommend structuring an UD into objects,
use cases and advanced features [9]. The UD of the
projects have some similarities to this structure, but this
could be improved. It might be helpful to structure the
feature list accordingly.

• Blueprints and issues are much simpler to allocate to soft-
ware components, because both have a technical nature.
Without detailed knowledge of the software architecture,
this is almost impossible for UD. Thus, if relationships
between features and software components are important,
ITS should be used as a source.

IV. RELATED WORK

In this section, we discuss related work which derives
feature information from diverse sources manually or semi-
automatically.

Ghazarian identified generic classes of software functional-
ity from 15 different requirement specifications in the domain
of web-based enterprise systems. The identified classes such
as data input or user interface navigation could potentially

be useful as indicators of feature information [15]. They also
describe that much feature-related information could be found
and categorized analyzing only a small amount of issues,
respectively only section and paragraph names in the UD.
Their classification, however, is very technical and uses low
abstraction levels. In contrast, our work classified features for
different abstraction levels.

Noll et al. analyze an open source project to identify by
whom and where requirements are proposed [16]. They select
13 given features and then trace them. In contrast we first
looked at our data sources to manually identify features and
then compared them with the given feature list. Thus, we
gathered more data about how features are described in detail.

The following approaches use text mining to derive feature-
like information from requirements specifications. Thus, their
data sources are much more elaborate than the feature de-
scriptions in ITS. Although the quality of UD and of the
requirements specifications could be comparable, requirements
specifications are rather structured than UD. Thus, results
from both document sources are not quite comparable. These
approaches can be used as a starting point for our future work
on a semi-automatic feature-derivation approach. Gacitua et
al. provide an approach for identifying abstractions from text
documents which outperforms the usual information-retrieval
methods [17]. In [18], Boutkova and Houdek describe an ap-
proach applied in industry to derive features from requirements
documents based on a list of nouns. In the study it provided
helpful input for experts.

Kuhn et al. recover topics from source code [19] and note
that some extracted clusters represent software features. Since
the features are extracted from source code, they are on
the functional level (for example handling text buffers). In
contrast, this paper is interested in feature descriptions on
different abstraction levels.

V. CONCLUSION AND LESSONS LEARNED

The exploratory study of the OSS projects has shown
commonalities and differences of feature information in UD
and ITS and provided feature lists. The results are promising
in the sense that ITS and UD provided relevant features. The
results also show that deriving a complete feature set semi-
automatically will be very difficult and will depend on the
project.

In the projects we studied, the feature information within the
project was consistent and some feature descriptions formed
patterns (e.g. headings in the UD often denoted features).
However, most of these patterns were not transferable to other
projects.

During our research, we found that feature information is
contained in only few issues of an ITS. Due to an ITS’s nature,
other issues like bugs are also tracked. Although many ITS
provide the option to categorize issues manually as feature or
bug, the quality of those manual categories depends largely on
the project. Therefore, an analysis of the natural language is

105Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 127 / 679

also needed to identify all feature information. Furthermore,
the feature information can be scattered all over the issue and
can be found in title, description or even comments (although
title and description are most common). Therefore, only a very
small part of the natural language in an issue contains the
feature description apart from rationale, solution ideas, social
interaction and so on.

For UD, the starting point to detect and extract feature
data semi-automatically is the structure of the respective
documents. The analysis of the projects in this study showed
that different structure levels in UD map to different feature
abstraction levels. Our first experiments in the direction of
using the UD headings and applying filter operation to remove
common conjunctions seems promising. Moreover, certain UD
parts, like administrative instructions, can be omitted for fea-
ture derivation since they do not contain feature-relevant data.
To create a feature list from ITS and UD data automatically,
a structured way of storing feature information would be
necessary.

In future work, we will develop semi-automatic feature
identification algorithms as well as guidelines for maintaining
feature information in UD and ITS. They will be applied
in industry to explore whether the identified features can be
successfully used in release management.

ACKNOWLEDGMENT

This work is partly funded by the Bonn-Rhein-Sieg Univer-
sity Graduate Institute. We thank the Open Source community
for the freely available data that was used in this research.

REFERENCES

[1] S. Fricker and S. Schumacher, “Release planning with feature trees:
industrial case,” in Requirements Engineering: Foundation for Software
Quality. 18th International Working Conference, REFSQ 2012, vol.
LNCS 7195. Essen, Germany: Springer Berlin Heidelberg, 2012, pp.
288–305.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feasibility Study Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Software Engineering Institute, Carnegie Mellon
University, Tech. Rep. November, 1990.

[3] P. Shaker, J. M. Atlee, and S. Wang, “A feature-oriented requirements
modelling language,” in 2012 20th IEEE International Requirements
Engineering Conference (RE). IEEE, Sep. 2012, pp. 151–160.

[4] T. a. Alspaugh and W. Scacchi, “Ongoing software development without
classical requirements,” in 2013 21st IEEE International Requirements
Engineering Conference (RE). Rio de Janeiro, Brazil: Ieee, Jul. 2013,
pp. 165–174.

[5] B. Paech, R. Heinrich, G. Zorn-Pauli, A. Jung, and S. Tadjiky, “An-
swering a Request for Proposal Challenges and Proposed Solutions,” in
18th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 12), vol. LNCS 7195. Essen,
Germany: Springer, 2012, pp. 16–29.

[6] G. Zorn-Pauli, B. Paech, T. Beck, and H. Karey, “Analyzing An
Industrial Strategic Release Planning Process A Case Study At Roche
Diagnostics,” in International Working Conference on Requirements En-
gineering: Foundation for Software Quality, vol. LNCS 7830. Springer,
2013, pp. 269–284.

[7] T. Gorschek and C. Wohlin, “Requirements Abstraction Model,” Re-
quirements Engineering Journal, vol. 11, no. 1, pp. 79–101, Nov. 2006.

[8] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code. A taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[9] D. M. Berry, K. Daudjee, I. Fainchtein, J. Dong, M. A. Nelson,
T. Nelson, and L. Ou, “User s Manual as a Requirements Specification
: Case Studies,” Requirements Engineering, vol. 9, no. 1, pp. 67–82,
2004.

[10] K. Herzig, S. Just, and A. Zeller, “Its Not a Bug, Its a Feature: How
Misclassification Impacts Bug Prediction,” in Proceedings of the 2013
International Conference on Software Engineering (ISCE). IEEE Press,
2013, pp. 392–401.

[11] R. K. Yin, Case Study Research: Design and Methods, 5th ed., ser.
Applied Social Research Methods. SAGE Publications, Inc., 2013.

[12] C. Robson, Real World Research, 3rd ed. Wiley, 2011.
[13] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, Dec. 2009.

[14] D. M. Blei, “Probabilistic topic models,” Communications of the ACM,
vol. 55, no. 4, p. 77, Apr. 2012.

[15] A. Ghazarian, “Characterization of functional software requirements
space: The law of requirements taxonomic growth,” in 2012 20th IEEE
International Requirements Engineering Conference (RE). Chicago,
Illinois, USA: IEEE, Sep. 2012, pp. 241–250.

[16] J. Noll and W.-M. Liu, “Requirements elicitation in open source software
development: a case study,” in Proceedings of the 3rd International
Workshop on Emerging Trends in Free/Libre/Open Source Software
Research and Development - FLOSS ’10. New York, New York, USA:
ACM Press, 2010, pp. 35–40.

[17] R. Gacitua, P. Sawyer, and V. Gervasi, “Relevance-based abstraction
identification: technique and evaluation,” Requirements Engineering,
vol. 16, no. 3, pp. 251–265, Jun. 2011.

[18] E. Boutkova and F. Houdek, “Semi-automatic identification of features in
requirement specifications,” in 2011 IEEE 19th International Require-
ments Engineering Conference. Trento, Italy: Ieee, Aug. 2011, pp.
313–318.

[19] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering: Identifying
topics in source code,” Information and Software Technology, vol. 49,
no. 3, pp. 230–243, Mar. 2007.

106Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 128 / 679

Towards Duplication-Free Feature Models when Evolving Software Product Lines

Amal Khtira, Anissa Benlarabi, Bouchra El Asri
IMS Team, SIME Laboratory, ENSIAS, Mohammed V Souissi University

Rabat, Morocco
amalkhtira@gmail.com, a.benlarabi@gmail.com, elasri@ensias.ma

Abstract—Since the emergence of Software Product Line
Engineering, the requirements evolution issue has been addressed
by many researchers and many approaches have been proposed.
However, most studies focused on evolution in domain engineering
while application engineering has not received the same attention.
During the evolution of a derived product, new features are added
or modified in the application model, which may cause many
model defects, such as inconsistency and duplication, both in
application model and between the latter and the domain model.
The aim of this paper is to propose a framework that enables to
avoid duplication when evolving software product lines.

Keywords—Software Product Line; Requirements Evolution;
Domain Engineering; Application Engineering; Duplication.

I. INTRODUCTION

The Software Product Line Engineering (SPLE) has
emerged as a paradigm whose main objective is to develop
software applications based on a core platform. The adoption
of this approach by companies enables them to reduce time to
market, to reduce cost and to produce high quality applications.
Another major advantage of the PLE is the reuse of core
assets to generate specific applications according to the need
of customers.

The SPLE approach consists of two processes, namely,
domain engineering and application engineering [1]. During
these processes, a number of artefacts are produced which
encompass requirements, architecture, components and tests.
Domain engineering involves identifying the common and
distinct features of all the product line members, creating the
design of the system and implementing the reusable compo-
nents. During application engineering, individual products are
derived based on the artefacts of the first process, using some
techniques of derivation.

Many issues related to SPLE have been addressed both
by researchers and practitioners, such as reusability, product
derivation, variability management, etc. The focus of our study
will be on SPL evolution. Evolution is defined by Madhavji
et al. [2] as ”a process of progressive change and cyclic
adaptation over time in terms of the attributes, behavioral
properties and relational configuration of some material, ab-
stract, natural or artificial entity or system”. This definition
applies to different domains, including software engineering.

In the literature, several studies have dealt with evolution
in Software Product Lines (SPLs). Xue et al. [3] presented a
method to detect changes that occurred to product features in
a family of product variants. In order to support agile SPL
evolution, Urli et al. [4] introduces the Composite Feature
Model (CFM), which consists of creating small Feature Mod-
els (FMs) that corresponds each to a precise domain. Other
approaches, such Ahmad et al.’s [5], focused on the extraction

of architecture knowledge in order to assess the evolutionary
capabilities of a system and to estimate the cost of evolution.
Some papers focused on the co-evolution of different elements
of SPLs [6].

Based on the literature, we have found that most of
the studies addressing software evolution focus on domain
engineering, while application engineering has not received
the same interest. However, the experience has proven in
many industrial contexts that systems continue to change even
after the product derivation. This change can be the source
of many problems in the product line such as inconsistency
and duplication. Indeed, the core assets of the product line
and the artefacts of derived products are most of the time
maintained by different teams. Moreover, developers under
time pressure can forget to refer to the domain model before
starting to implement the changes. For these reasons and
others, duplication in SPL can easily happen. We consider
Duplication the fact of adding to the application model features
of the same semantics, which means that they satisfy the same
functionality. In this paper, we propose a framework that deals
specifically with the problem of duplication when evolving
products in application engineering.

The remainder of the paper is structured as follows. Section
2 gives an overview of the background of our study and
describes the problem we are dealing with. In Section 3, we
present the basic concepts and the overview of the proposed
framework. In Section 4, we provide a formalization of the ba-
sic concepts before describing the algorithm of deduplication.
An application of the framework on a case study is presented
in Section 5. Section 6 positions our approach with related
works. The paper is concluded in Section 7.

II. BACKGROUND

In this section, we introduce the background of our study.
First, we present the SPLE paradigm, then we give an insight
on the problem of duplication when evolving products in
application engineering.

A. Software Product Line Engineering

A SPL is defined by Clements and Northop [7] as ”a set of
intensive-software systems sharing a common, managed set of
features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common
set of core assets in a prescribed way”. The main goals of a
SPL are to reduce the cost of developing software products,
to enhance quality and to promote reusability.

The domain engineering phase of the SPLE framework is
responsible for defining the commonality and variability of
the applications of the product line. Capturing the common

107Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 129 / 679

features of all the applications increases the reusability of
the system, and determining the variant features allows the
production of a large number of specific applications that
satisfy different needs of customers. In order to document and
model variability, many approaches have been proposed. Some
of them proposed to integrate the variability in the existing
models, such as UML models or feature models (FORM [8]).
Pohl et al. [1] preferred to define it separately in a dedicated
model, i.e., the orthogonal variability model. Another approach
proposed by Salinesi et al. [9] used a constraint-based product
line language. When the model is ready, the next step consists
of creating the design of the system which contains the soft-
ware components and their relationships. Those components
are then implemented and the code of the product line is
generated.

The process of creating a specific product based on a SPL
is referred to as product derivation or product instantiation.
Product derivation consists of taking a snapshot of the product
line by binding variability already defined in the domain
engineering and using it as a starting point to develop an
individual product. This process is applied during application
engineering phase and is responsible for instantiating all the
artefacts of the product line, i.e., model, design, components,
etc.

B. Duplication of Features during SPL Evolution

The goal of SPLE is to make an up-front investment to
create the platform. Indeed, during domain engineering, the
requirements of all the potential applications are captured, and
as far as possible, the scenarios of the possible changes have to
be predicted and anticipated. The evolution and maintenance of
the product line are conducted through several iterations until
the platform becomes as stable as possible. As new evolutions
arise, the domain artefacts are adapted and refined.

On the one hand, the team responsible for developing
and maintaining the product line studies the requirements of
each customer and derives specific applications that respond
to these requirements. On the other hand, a different team
takes in charge the maintenance of each application. Following
the logic of SPLE, the derived applications are not supposed
to change much, but the experience has shown that this
assumption is not always true. In fact, even after the derivation
of a specific product, new demands can be received from the
customer, either changes to existing features or addition of new
ones.

During the maintenance of a product, duplication of knowl-
edge can easily happen when evolving the model, the design
or the code. In [10], four categories of duplication are distin-
guished:

• Imposed duplication: Developers cannot avoid dupli-
cation because the technology or the environment
seems to impose it.

• Inadvertent duplication: This type of duplication
comes about as a result of mistakes in the design.
In this case, the developers are not aware of the
duplication.

• Impatient duplication: When the time is pressing and
deadlines are looming, developers get impatient and

tend to take shortcuts by implementing as quick as
possible the requirements of customers. In these con-
ditions, duplication is very likely to happen.

• Inter-developer duplication: Different people working
on one product can easily duplicate information.

In the context of SPLE, at least the three last categories
might occur. Indeed, when a derived application is shipped,
developers responsible for maintaining it do not have a clear
visibility of the domain model because another team conceived
it. Thus, developers of the application may add features which
are already satisfied in the domain model and have only to
be derived or configured. In addition, under time pressure,
developers do not refer to the application model and might
add features which are already implemented. To the best of
our knowledge, few attempts have dealt with duplication in
the application engineering. The aim and contribution of this
paper is to provide a framework that helps developers avoid
duplication in a SPL when evolving a specific product.

III. A FRAMEWORK TO AVOID DUPLICATION WHEN
EVOLVING DERIVED PRODUCTS

In this section, we first provide a short definition of the
basic concepts used in the framework, then we present the
overview of the framework.

A. Basic Concepts

Before going any further, we will give an insight of the
basic concepts used in the framework.

Domain Model: A domain is a family of related products,
and the domain model is the representation of all the different
and common features of these products. There are many types
of domain models, but the most interesting are the feature
model [8] and the variability model [1].

Application Model: The model corresponding to an indi-
vidual application. It is generated by binding the variability of
the domain model in a way that satisfies the needs of a specific
customer [1].

Feature: A feature is the abstraction of functional or
non-functional requirements that help characterize the system
and must be implemented, tested, delivered, and maintained
[8][11]. A feature is either:

• Mandatory: it exists in all products.

• Optional: it is not present in all products.

• Alternative (One Of): it specializes more general fea-
ture; only one option can be chosen from a set of
features.

• Or: One or more features may be included in the
product.

Variation Point: Variation points are places in a design or
implementation that identify the locations at which variation
occurs [12].

Variant: It is a single option of a variation point and is
related to the latter using a variability dependency [13].

108Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 130 / 679

Specification: Requirements specification is a description
of the intended behavior of a software product. It contains the
details of all the features that have to be implemented during
an evolution of the system.

Specific Variant or Variation point: We consider a variant
or a variation point as specific when they concern a particular
need of an application that belongs to the product line (e.g.,
features related to confidential data, features that need legal
authorization).

Generic Variant or Variation point: We consider a
variant or a variation point as generic if they can be demanded
by many applications of the product line (e.g., ergonomic or
utility features, non-functional features).

B. The Framework in a Nutshell

With the large number of features in the SPLs, the manual
checking of duplication becomes a complicated and an error-
prone task. In order to deal efficiently with the problem
of duplication during the evolution of derived products, we
propose the framework depicted in Figure 1 as an attempt to
set an automated deduplication tool.

Figure 1. The overview of the framework.

Initial Specification: In this framework, we take as an
input the specification of a new evolution related to a derived
product. This specification contains the requirements that have
to be implemented in this specific product. To use these
requirements, we need to express them as features using the
FODA feature model [14]. In the context of our framework, we
consider that a feature is the association of a variation point and
a variant. To create the feature model, we opt for FeatureIDE
[15]. This tool enables to graphically create the feature model
and the associated XML is generated automatically.

Domain and Application Models: The main prerequisites
of the framework are the domain model and the application
model. To create these models, we use the FeatureIDE tool in
order to generate the sources in the form of XML files.

Repository: The repository contains the features of the
domain model and also the set of all the possible synonyms
and alternatives for the concepts used in the product line.
The elements of the repository are defined using the Resource

Description Framework (RDF). RDF [16] is a W3C rec-
ommendation that supports semantic interoperability between
different resources on the web.

Deduplication Tool: This tool contains a set of algorithms
of features verification. In this paper, we focus on the algorithm
of deduplication. Before describing the algorithm, we need to
define some predicates.

Equivalence: We consider that a variation point (resp. a
variant) is equivalent to another variation point (resp. variant)
if they both implement the same functionality, which means
that they have the same semantics. We define the function
Equiv which can take three values:

Equiv(x) = x0 ⇒

{
x0 = x
x0 is equivalent to x and x0 6= x
x0 ∈ ∅

Example: The variant ”On-line Sales” associated to the
variation point ”Sales” is equivalent to the new variant ”e-
sales” (cf. Section 5).

Duplication: We consider that a feature of the specification
is duplicated if the associated variation point and variant have
equivalents in the application model or the domain model.

The aim of the algorithm is thus to verify the non-
duplication of all the features of the initial specification in
order to generate a new correct specification. Indeed, for
each feature of the initial specification, the algorithm verifies
whether the associated variation point and variant have equiv-
alents in the domain model and the application model. The
detection of equivalence is carried out based on the Repository
content. The steps of the algorithm are explained in details in
Section 4.

Duplication-Free Specification: The output of the frame-
work is a specification that does not contain features causing
duplication in the SPL.

IV. AN ALGORITHM FOR DUPLICATION-FREE SPL

In this section, we provide the formalization of the basic
concepts used in the framework, then we describe the dedu-
plication algorithm.

A. Formalizing the Basic Concepts

Prior to explaining the algorithm, a certain number of
predicates must be defined. We denote by D the domain model.
PD is the set of variation points of D, and VD is the set of
variants of D.

PD = {PD1, PD2, . . . , PDp}

V D = {V D1, V D2, . . . , V Dq}

Similarly, we denote by A the application model of a
derived application. PA is the set of variation points of A,
and VA is the set of variants of A.

PA = {PA1, PA2, . . . , PAs} with s ≤ p

V A = {V A1, V A2, . . . , V At} with t ≤ q

Thus:
PA ⊆ PD and V A ⊆ V D

109Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 131 / 679

We denote by S0 the specification of an evolution, i.e., the
set of new features to implement.

S0 = {F1, F2, . . . , Fn}

P and V are, respectively, the sets of variation points and
variants, which correspond to the features defined in S0.

P = {P1, P2, . . . , Pv}, V = {V1, V2, . . . , Vu}

It has to be noted that P and V are not subsets of PA and
VA. In our framework, we consider that a feature in S0 can
be defined as follows: Fk = (Pi, Vj).

B. The Deduplication Algorithm

To implement a new evolution, we propose an evolutionary
framework that verifies whether a feature of the specification
is duplicated in the model and generates in the end a new
verified specification. Figure 2 shows the relationship between
the specification of an iteration k-1, the feature Fk and the
resulting specification.

Figure 2. Relationship between Sk−1, Fk and Sk .

To verify whether a feature Fk is duplicated or not, the
algorithm distinguishes six different cases in each iteration (k-
1). These cases are represented in Figure 3.

Figure 3. The figure shows the different cases of variants and variation
points: Every pair (Pi,Vi) corresponds to a case i.

Case 1: The variation point associated to the feature Fk
has an equivalent in PA and the variant has an equivalent
in V A. Consequently, the feature is duplicated and must be
removed from the specification, but the domain model and the
application model do not change.

(Fk = (Pi, Vj)) ∧ (Equiv(Pi) ∈ PA) ∧ (Equiv(Vj) ∈ V A)

⇒ Sk = Sk−1 \ {Fk}

Case 2: The feature Fk consists of adding a new variant
to a variation point that has an equivalent in PA, where an
equivalent of the variant exists already in V D. Consequently,
the feature must be removed from the specification.

(Fk = (Pi, Vj)) ∧ (Equiv(Pi) ∈ PA) ∧ (Equiv(Vj) ∈ V D \ V A)

⇒ Sk = Sk−1 \ {Fk}

The variant Vj must be added to the application model.

Case 3: The feature Fk requires adding a new variant to a
variation point that has an equivalent in PA, and the variant
does not have an equivalent in V D. In this case, we assume
that V = VS ∪VG where VS is the set of variants of V that are
specific to the business of the application, and VG is the set of
variants of V that are generic. We distinguish two sub-cases:

Case 3.1: If the variant in question belongs to VS . In this
case, the specification does not change and the feature is added
directly to the application model.

(Fk = (Pi, Vj))∧(Equiv(Pi) ∈ PA)∧ (Equiv(Vj) = ∅)∧(Vj ∈ VS)

⇒ Sk = Sk−1

Case 3.2: If the variant in question belongs to VG. In this
case, the feature is removed from the specification.

(Fk = (Pi, Vj))∧(Equiv(Pi) ∈ PA)∧ (Equiv(Vj) = ∅)∧(Vj ∈ VG)

⇒ Sk = Sk−1 \ {Fk}

The variant Vj is added to the domain model and then to the
application model.

Case 4: The variation point related to Fk has an equivalent
in PD but not in PA, and the variant has an equivalent in V D
but not in V A. Consequently, the feature must be removed
from the specification.

(Fk = (Pi, Vj))∧(Equiv(Pi) ∈ PD\PA)∧(Equiv(Vj) ∈ V D\V A)

⇒ Sk = Sk−1 \ {Fk}

The variation point and the variant must be derived from the
domain model and added to the application model.

Case 5: The variation point related to Fk has an equivalent
in PD but the variant is new. In this case, the feature is
removed from the specification.

(Fk = (Pi, Vj)) ∧ (Equiv(Pi) ∈ PD \ PA) ∧ (Equiv(Vj) = ∅)

⇒ Sk = Sk−1 \ {Fk}

The variant is added to the domain model then to the applica-
tion model.

Case 6: The variation point related to Fk does not have an
equivalent in PD, and the variant does not have an equivalent
in V D. In this case, we assume that P = PS∪PG where PS is
the set of variation points of P that are specific to the business
of the application, and PG is the set of variation points of P
that are generic. We distinguish two sub-cases:

Case 6.1: If the variation point belongs to PS , the speci-
fication does not change and the feature is added directly to
the application model.

(Fk = (Pi, Vj)) ∧ (Equiv(Pi) = ∅) ∧ (Equiv(Pi) ∈ PS)

⇒ Sk = Sk−1

Case 6.2: If the variation point belongs to PG, the feature
is removed from the specification, added to the domain model
then to the application model.

(Fk = (Pi, Vj)) ∧ (Equiv(Pi) = ∅) ∧ (Equiv(Pi) ∈ PG)

⇒ Sk = Sk−1 \ {Fk}

110Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 132 / 679

Figure 4. The Domain Feature Model of the CRM.

Result:

In the end, when all the verifications are carried out for all
the features of S0, we obtain SN . This new specification is a
duplication-free specification which contains only the features
that have to be implemented directly in the application model.

V. CASE STUDY

To illustrate our framework, we propose a part of a feature
model of a CRM (Customer Relationship Management). The
Figure 4 depicts the domain feature model of the CRM. The
feature model is created using FeatureIDE as mentioned in
Section 3.

We consider a derived application with the feature model
depicted in Figure 5. Based on the XML source, we consider
that the tags ”and” correspond to variation points and the tags
”feature” correspond to variants.

Figure 5. The Application Feature Model in XML.

During a new evolution of this application, a number of
requirements are demanded by the customer. In our case study,
we will take into account only the following requirements:

1) Users can use the application in a disconnected mode.
2) The sector header can contact customers by setting

up an appointment.

3) The application must enable users to follow the
activity of competitors’ shops.

4) The system must manage e-sales.
5) The sector header can generate summary reports in

Excel.

We distinguish the following features:

• F1= (P1, V1)= (Connexion, Disconnected mode)

• F2= (P2, V2)= (Contacting Customers, Appointment)

• F3= (P3, V3)= (Shop, Competitor’s store)

• F4= (P4, V4)= (Sales, e-sales)

• F5= (P5, V5)= (Reporting, Excel Report)

with S0 = {F1, F2, F3, F4, F5}.

The list of equivalents of the variation points and variants
related to these features is described in Table 1.

TABLE I. The Equivalents of Features

x (VP or V) Equiv(x)
P1 Access

V1 Remote

P2 Contacting Customers

V2 RDV

P3 Store

V3 ∅
P4 Sales

V4 on-line sales

P5 ∅
V5 ∅

After applying the verification algorithm to this specifica-
tion, we came up with the results of Table 2.

∗: V3 is specific to this application, because following the
activity of competitors’ stores requires a legal authorization,
which is not possible for all companies.

∗∗: Generating reports (e.g., in Excel or Word) can be
considered as a generic feature, because it can be demanded
by other applications.

111Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 133 / 679

TABLE II. The Results of the Verification Algorithm

Feature Verification of VP and V Case Result

F1
(Equiv(P1) ∈ PA) ∧ Case 2 S1 = S0 \ {F1}
(Equiv(V1) ∈ V D \ V A)

F2
(Equiv(P2) ∈ PD \ PA) ∧ Case 4 S2 = S1 \ {F2}
(Equiv(V2) ∈ V D \ V A)

F3

(Equiv(P3) ∈ PA) ∧
Case 3.1 S3 = S2(Equiv(V3) = ∅) ∧

(V3 ∈ VS)
∗

F4
(Equiv(P4) ∈ PA)

Case 1 S4 = S3 \ {F4}(Equiv(V4) ∈ V A)

F5
(Equiv(P5) = ∅) ∧ Case 6.2 S5 = S4 \ {F5}
(P5 ∈ PG)∗∗

In the end, we obtain S4 = {F3}, which means that
developers have to implement only the feature F3 in the
application model. The other features are all sent to the team
maintaining the domain model in order to add the new features
and bind the existing ones then re-derive the model.

VI. RELATED WORK

In this section, we provide an overview of the studies most
relevant to our work by categorizing them according to the
issues addressed in this paper.

Evolution of feature and variability models: In order to
reduce complexity and improve the maintenance of variability
in large-scale product lines, Dhungana et al. [17] proposes to
organize product lines as a set of interrelated model frag-
ments that define the variability of particular parts of the
system, and presents a support to semi-automatically merge
the different fragments into a complete variability model.
The same approach is proposed by Pleuss et al. [18] for
feature models. Voelter et al. [19] proposes an approach which
consists of separating features in models and composing them
by aspect-oriented composition techniques. Cordy et al. [20]
defines two particular types of features, regulative features
and conservative features, and explains how the addition of
these features to the SPL can reduce the overhead of model-
checking. The common denominator of the cited studies is that
they all consider evolution in domain engineering, while our
approach deals with evolution in application engineering.

Model Defects in SPL: Several papers in the literature
have addressed model defects caused by SPL Evolution. For
example, Guo and Wang [21] proposes to limit the consistency
maintenance to the part of the feature model that is affected
by the requested change instead of the whole feature model.
Romero et al. [22] introduces SPLEmma, a generic evolution
framework that enables the validation of controlled SPL evo-
lution by following a Model Driven Engineering approach.
This study focused on three main challenges: SPL consistency
during evolution, the impact on the family of products and
SPL heterogeneity. In [23], Mazo provides a classification of
different verification criteria of the product line model that he
categorizes into four families: expressiveness criteria, consis-
tency criteria, error-prone criteria and redundancy-free criteria.
Redundancy can easily be confused with Duplication, but it is
completely different, because Mazo focuses on redundancy of

dependencies and not redundancy of features. The same study
defines also different conformance checking criteria, among
which two features should not have the same name in the
same model. This is also different from our approach which
is based on equivalence and not only equality of features.

Evolution in application engineering: Carbon et al. [24]
presents an empirical study which consists of adapting the
planning game to the product line context in order to introduce
a lightweight feedback process from application to family engi-
neering at Testo, but it does not provide a general approach that
is applicable to all SPLs. Hallsteinsen et al. [25] introduces the
concept of Dynamic Software Product Lines (DSPL), which
provide mechanisms for binding variation points at runtime
in order to keep up with fluctuations in user needs. However,
this approach does not explain in details how the variability is
managed between application and domain engineering. Thao
[26] proposes a versioning system to support the evolution of
product line and change propagation between core assets and
derived products. But this study also does not provide a method
to manage features in application engineering. Our approach
is different because it provides a feature-oriented approach to
manage the evolution of derived products in a way that insures
non-duplication in the SPL feature models.

VII. CONCLUSION AND FUTURE WORK

In the literature, many studies have addressed the evolution
in SPLs, but the majority of them focused on the domain
engineering phase, when application engineering has not been
thoroughly discussed. Based on industrial experience, products
are also likely to evolve even after their derivation, and this
evolution can cause many problems especially duplication in
the different artefacts of the product line. In this paper, we
provided a framework that deals specifically with duplication
in feature models. This framework uses a repository that
contains the set of domain features and alternatives of the
different concepts of the product line at the aim of verifying
the non-duplication of all the features of a new specification.
To illustrate the framework, we applied it to a case study
from the CRM field. In a future work, we intend to initiate
a tool based on the framework architecture, whose objective
is to automatize the algorithm of verification and to generate
automatically a duplication-free specification that contains
only the relevant features to implement.

REFERENCES

[1] K. Pohl, G. Böckle, and F. Van Der Linden, Software Product Line
Engineering Foundations, Principles, and Techniques, Berlin, Germany:
Springer-Verlag, 2005.

[2] N. H. Madhavji, J. Fernandez-Ramil, and D. Perry, Software Evolution
and Feedback: Theory and Practice, John Wiley & Sons, 2006, ISBN
978-0-470-87180-5.

[3] Y. Xue, Z. Xing, and S. Jarzabek, ”Understanding feature evolution in
a family of product variants,” Proc. WCRE’10, IEEE, Oct. 2010, pp.
109-118.

[4] S. Urli, M. Blay-Fornarino, P. Collet, and S. Mosser, ”Using composite
feature models to support agile software product line evolution,” Proc.
6th International Workshop on Models and Evolution, ACM, Oct. 2012,
pp. 21-26.

[5] A. Ahmad, P. Jamshidi, and C. Pahl, ”A Framework for Acquisition
and Application of Software Architecture Evolution Knowledge,” ACM
SIGSOFT Software Engineering Notes, vol. 38, no. 5, Sept. 2013, pp.
65-71.

112Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 134 / 679

[6] C. Seidl, F. Heidenreich, and U. Assmann, ”Co-evolution of models and
feature mapping in Software Product Lines,” Proc. SPLC’12, ACM, New
York, USA, 2012, Vol. 1, pp. 76-85.

[7] P. Clements and L. Northop, Software Product Lines - Practices and
Patterns, Boston: Addison-Wesley, 2002.

[8] K. C. Kang et al., ”FORM: A feature-oriented reuse method with domain-
specific reference architectures,” Annals of Software Engineering, vol. 5,
no. 1, 1998, pp. 143-168.

[9] C. Salinesi, R. Mazo, O. Djebbi, D. Diaz, A. Lora-Michiels, ”Constraints:
the Core of Product Line Engineering,” In. RCIS’11, IEEE, Guadeloupe-
French West Indies, France, May 19-21, 2011, pp. 1-10.

[10] A. Hunt and D. Thomas, The pragmatic programmer: from journeyman
to master, Addison-Wesley Professional, 2000.

[11] J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach, New York, USA: ACM Press/Addison-
Wesley, 2000.

[12] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse. Architecture,
Process and Organization for Business Success, Addison-Wesley, ISBN:
0-201-92476-5, 1997.

[13] S. Creff, ”Une modélisation de la variabilité multidimensionnelle pour
une évolution incrémentale des lignes de produits,” Doctoral dissertation,
University of Rennes 1, 2003.

[14] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, ”Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Technical Report
CMU/SEI-90-TR-21, Carnegie Mellon University, Software Engineering
Institute, Nov. 1990.

[15] C. Kastner et al., ”FeatureIDE: A Tool Framework for Feature-Oriented
Software Development,” Proc. The 31st International Conference on
Software Engineering, 2009, pp. 611-614.

[16] O. Lassila, R. R. Swick, Resource Description Framework (RDF)
Model and Syntax Specification, W3C Recommendation 22 Feb. 1999,
http: //www.w3.org/TR/1999/REC-rdf-syntax-19990222/ [retrieved: Au-
gust, 2014].

[17] D. Dhungana, P. Grünbacher, R. Rabiser, and T. Neumayer, ”Structuring
the modeling space and supporting evolution in software product line
engineering,” Journal of Systems and Software, vol. 83, no. 7, 2010, pp.
1108-1122.

[18] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski,
”Model-driven support for product line evolution on feature level,”
Journal of Systems and Software, vol. 85, no. 10, 2012, pp. 2261-2274.

[19] M. Voelter and I. Groher, ”Product line implementation using aspect-
oriented and model-driven software development,” Proc. SPLC’07, IEEE,
Sept. 2007, pp. 233-242.

[20] M. Cordy, A. Classen, P. Y. Schobbens, P. Heymans, and A. Legay,
”Managing evolution in software product lines: A model-checking per-
spective,” Proc. 6th International Workshop on Variability Modeling of
Software-Intensive Systems, ACM, Jan. 2012, pp. 183-191.

[21] J. Guo, and Y. Wang, ”Towards consistent evolution of feature models,”
In. Software Product Lines: Going Beyond, Springer Berlin Heidelberg,
2010, pp. 451-455.

[22] D. Romero et al., ”SPLEMMA: a generic framework for controlled-
evolution of software product lines,” Proc. 17th International Software
Product Line Conference co-located workshops, ACM, 2013, pp. 59-66.

[23] R. Mazo, ”A generic approach for automated verification of product
line models,” Ph.D. thesis, Pantheon-Sorbonne University, 2011.

[24] R. Carbon, J. Knodel, D. Muthig, and G. Meier, ”Providing feedback
from application to family engineering-the product line planning game
at the testo ag,” Proc. SPLC’08, IEEE, Sept. 2008, pp. 180-189.

[25] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, ”Dynamic
software product lines,” Computer, vol. 41, no. 4, 2008, pp. 93-95.

[26] C. Thao, ”Managing evolution of software product line,” Proc. 34th
ICSE’12, IEEE, Jun. 2012, pp. 1619-1621.

113Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 135 / 679

Quantum States in Bivalent Logic

Mikael Fridenfalk
Department of Game Design

Uppsala University
Visby, Sweden

mikael.fridenfalk@speldesign.uu.se

Abstract—Bivalent or two-valued logic is presently the foundation
of logic in mathematics and computer science, and a cornerstone
of software development. To address a number of classical logical
paradoxes, such as Russell’s, multi-valued logic, such as balanced
ternary logic has shown to be useful. Current methods lead
however to information loss. Thus, to theoretically improve the
robustness of bivalent logic, this paper proposes the use of
quantum states, followed by an example, where the proposed
method is shown to be successful in the solution of a problem
that is not directly solvable using contemporary methods.

Keywords-bivalent logic; propositional logic; quantum state;
Russell’s paradox; ternary logic

I. INTRODUCTION

On the topics of fundamentals in software development
and information modeling, the logical systems today are either
typically based on static bivalent logical values, such as true
and false, or static fuzzy logic values. This paper does not
address quantum logic [1], or quantum computing, where
the laws of logic are expanded for application in quantum
mechanics, but on the contrary, the application of results
from quantum mechanics to classical bivalent logic. In biva-
lent logic, contradictions, such as Russell’s paradox [6], or
Epimenides paradox [5] (which may be expressed as “this
statement is false”), cause an infinite loop of alternating values
such as:

true→ false→ true→ false . . . (1)

Russell’s paradox hypothesizes the existence of a set that does
not contain itself. Epimenides paradox may be expressed as:

x ≡ ¬x (2)

In the same way, that resonance may cause instability in control
theory, such contradictions may cause instability in machine
reasoning, e.g., machine interpretation of propositional logic.

To make a comparison with the field of robotics, it takes
in general less effort to program an industrial robot that works
in a highly structured environment, than a robot working in
an unstructured one, where for instance the precise position,
orientation, or the geometry of a workpiece are not always
known in advance. Similarly, if we wish to develop machines
that are able to handle and solve logical problems in the real
world, we need to strive towards the incorporation of a higher
level of flexibility in machine information processing, e.g., a
higher level of tolerance towards contradictions.

Presently, computer simulations of logical statements (us-
ing modern computer languages such as C++ or Java), that
include a paradox such as Epimenides or Russell’s, tend to
either cause the simulation to yield incorrect results, or the
program to fall into an infinite loop, why such problems are

presently solved manually. The aim of this paper is, therefore,
to propose a new method that makes the evaluation of logical
statements, that include a paradox (such as Epimenides para-
dox), intrinsically solvable to computers.

As a brief overview of this paper, Section II succinctly
reiterates the state of the art in paradox-tolerant logic. Sec-
tion III presents a proposal with the aim to further the methods
within this field, and in Section IV, the new proposal is
verified by computational experiments. Finally, in Section V,
an example is provided on the application of the new method
in comparison with current ones.

II. RELATED WORK

In context of paradox-tolerant logic, the design of a versa-
tile system was addressed by Lukasiewicz [3] in 1920, using
a balanced ternary (three-valued) logic. In this system:

1← true
0← unknown
−1← false (3)

With the definition of ¬x as −x, (2) is solved by:

x = −x⇒ x = 0 (4)

In addition to negation (not), see Table I, representing Boolean
logic [2], other logical connectives may be introduced as well,
such as conjunction (and), disjunction (or), implication (→),
and equivalence (↔).

In Lukasiewicz logic, conjunction (x ∧ y) may be defined
as min(x, y), and disjunction (x∨ y) as max(x, y), which, as
shown in Table II, produce reasonable results. The downside
of this approach is that by using zero to for instance represent
a logical wave, we have effectively lost information regarding
the phase of this wave for further analysis down the line.

TABLE I. BOOLEAN LOGIC

x y ¬x x ∧ y x ∨ y x→ y x↔ y

0 0 1 0 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 0 0

1 1 0 1 1 1 1

In this context, another system of interest is the four-
valued “Diamond” logic [4], which structurally has many
distinct similarities with the proposal presented in this paper. In
“Diamond” logic, in addition to the values true and false, two
new values are introduced, called i and j, where by definition
i ≡ ¬i and j ≡ ¬j. This definition resolves the contradiction
in (2), but leads from a perspective, to the generation of a new
set of contradictions, such as while i ∨ ¬i is expected to be a

114Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 136 / 679

TABLE II. A BALANCED TERNARY LOGIC WITH ¬x ≡ −x,
x ∧ y ≡ min(x, y), x ∨ y ≡ max(x, y), x→ y ≡ ¬x ∧ y, AND

x↔ y ≡ (x ∧ y) ∨ (¬x ∧ ¬y)

x y ¬x x ∧ y x ∨ y x→ y x↔ y

−1 −1 1 −1 −1 1 1

−1 1 1 −1 1 1 −1

1 −1 −1 −1 1 −1 −1

1 1 −1 1 1 1 1

0 1 0 0 1 1 0

1 0 −1 0 1 0 0

0 −1 0 −1 0 0 0

−1 0 1 −1 0 1 0

0 0 0 0 0 0 0

tautology, since i ≡ ¬i, instead i ∨ ¬i ≡ i, which is caused
by information loss.

III. PROPOSAL

In the new proposal, based on two quantum states, ψ and
ψ̄, using a 2D Boolean vector:

false = 0 = 002

ψ̄ = 1 = 012

ψ = 2 = 102

true = 3 = 112 (5)

false =

(
0
0

)
, ψ =

(
1
0

)
, ψ̄ =

(
0
1

)
, true =

(
1
1

)
(6)

In this system, all logical connectives are expected to operate
element-wise on the 2D Boolean vectors. Thus:

ψ̄ ≡ ¬ψ, ψ ≡ ¬ψ̄ (7)

Further on, the equation x ≡ ¬x is here regarded as a discrete
wave equation, in essence, similar to the time-dependent
Schrodinger equation in quantum mechanics [7]:

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m
∇2 + V (r, t)

]
Ψ(r, t) (8)

where any wave function that can satisfy this equation is called
a “quantum state”. A crucial point here is however that while
in Lukasiewicz logic, the relation x ≡ ¬x is fully satisfied (and
by mere definition in “Diamond” logic), in this new proposal,
x ≡ ¬x is only satisfied for ψ and ψ̄ by the substitution of x
with ¬x on the right hand side of the equation, thereby yielding
the solution x ≡ ¬(¬x). However, in this new approach, the
phase of the logical wave is in addition preserved.

IV. RESULTS

According to the results presented in Tables III-IV, the use
of quantum states appears to yield a truth table for the selected
connectives that preserves the phase of the wave function for
further calculations down the line. In this context, it seems
however that although the results for x ↔ y is technically
correct (which is equivalent to x ≡ y), it would be plausible
to define a stronger connective for equivalence as well. In
Tables III-IV, “strong” equivalence is denoted as an equivalent
sign with four lines instead of three.

TABLE III. FOUR-VALUED LOGIC BASED ON 2D BIVALENT LOGIC, WITH
x→ y ≡ ¬x ∧ y, AND x↔ y ≡ (x ∧ y) ∨ (¬x ∧ ¬y)

x y ¬x x ∧ y x ∨ y x→ y x↔ y |||
|

00 00 11 00 00 11 11 11

00 01 11 00 01 11 10 00

00 10 11 00 10 11 01 00

00 11 11 00 11 11 00 00

01 00 10 00 01 10 10 00

01 01 10 01 01 11 11 11

01 10 10 00 11 10 00 00

01 11 10 01 11 11 01 00

10 00 01 00 10 01 01 00

10 01 01 00 11 01 00 00

10 10 01 10 10 11 11 11

10 11 01 10 11 11 10 00

11 00 00 00 11 00 00 00

11 01 00 01 11 01 01 00

11 10 00 10 11 10 10 00

11 11 00 11 11 11 11 11

TABLE IV. SAME AS PREVIOUS TABLE, BUT HERE WITH 0← 002 ,
ψ ← 012 , ψ̄ ← 102 , AND 1← 112

x y ¬x x ∧ y x ∨ y x→ y x↔ y |||
|

0 0 1 0 0 1 1 1

0 ψ 1 0 ψ 1 ψ̄ 0

0 ψ̄ 1 0 ψ̄ 1 ψ 0

0 1 1 0 1 1 0 0

ψ 0 ψ̄ 0 ψ ψ̄ ψ̄ 0

ψ ψ ψ̄ ψ ψ 1 1 1

ψ ψ̄ ψ̄ 0 1 ψ̄ 0 0

ψ 1 ψ̄ ψ 1 1 ψ 0

ψ̄ 0 ψ 0 ψ̄ ψ ψ 0

ψ̄ ψ ψ 0 1 ψ 0 0

ψ̄ ψ̄ ψ ψ̄ ψ̄ 1 1 1

ψ̄ 1 ψ ψ̄ 1 1 ψ̄ 0

1 0 0 0 1 0 0 0

1 ψ 0 ψ 1 ψ ψ 0

1 ψ̄ 0 ψ̄ 1 ψ̄ ψ̄ 0

1 1 0 1 1 1 1 1

V. APPLICATION

As an example regarding the new proposal, we consider a
problem that is straightforward to figure out for a human, but
presently, relatively hard for a machine to solve without any
additional assistance.

Problem. A family consists of two parents and two children,
A and B. A child that has received the house key will use it to
unlock a door for both children. According to the statements
made by the parents, s1−s3, where the statements are assumed
to be mutually synchronized:

s1: All statements (s1 − s3) are false.

s2: Child A is in possession of the key.

s3: Child B is not in possession of the key.

The question is hence, are the children able to unlock the door?

Approach 1. Since s1 = ¬s1 (Epimenides paradox), the use
of quantum states, according to the proposal of this paper,
yields the solutions: {s2 = ψ, s3 = ψ̄} and {s2 = ψ̄, s3 = ψ}.

115Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 137 / 679

Since ψ̄ ∨ ψ ≡ ψ ∨ ψ̄ ≡ true, both solutions yield the correct
conclusion that the children are able to unlock the door.

Approach 2. Using Lukasiewicz logic, since s1 = ¬s1,
the (fuzzy-logical) value of s1 is equivalent to zero, since
according to (4), x = ¬x ⇒ x = 0. Thus, s2 = 0, and
since s2 = ¬s3, thereby, s3 = 0. Further, since s2 ∨ s3 = 0,
this yields that we are not able to establish whether any of
the children are in possession of the key, and therefore able to
unlock the door. No conclusion can thus be drawn.

Approach 3. Using “Diamond” logic, given s1 = ¬s1, we
are able to either define the solution of s2 as i or j. However,
since in the case s3 is equal to i (or alternatively j), and since
s2 = ¬s3, but i = ¬i (or alternatively j = ¬j), this creates
a new set of paradoxes, that yield both correct and incorrect
solutions. Thus, no univocal conclusion can be drawn.

VI. CONCLUSION

The results of this paper raise questions on the nature of
the fundamental building blocks of logic. The logical wave
functions ψ and ψ̄, as defined here, cannot be directly derived

by the static scalar values true or false, but the opposite holds,
since true = ψ∨ ψ̄, and false = ψ∧ ψ̄. Further on, while static
logical values seem to be the root cause of many contradictions
in logic, such as Russell’s paradox, as shown here, this issue
may instead be addressed using quantum states as the building
blocks of mathematical logic.

REFERENCES

[1] G. Birkhoff and J. non Neumann, “The Logic of Quantum Mechanics”,
Annals of Mathematics, Second Series, vol. 37, no. 4, 1936, pp. 823-843.

[2] G. Boole, An Investigation of the Laws of Thought (1854), Watchmaker
Publishing, 2010.

[3] L. Borkowski, “On Three-Valued Logic”, Selected works by Jan
Lukasiewicz, North-Holland, Amsterdam, 1970, pp. 87-88.

[4] N. S. Hellerstein, Diamond: A Paradox Logic, World Scientific, 1997.

[5] D. R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic
Books, 1979.

[6] B. Russell, Principles of Mathematics (1903), W. W. Norton., 1996.

[7] E. Schrodinger, “An Undulatory Theory of the Mechanics of Atoms and
Molecules”, Physical Review, vol. 28, no. 6, 1926, pp. 1049-1070.

116Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 138 / 679

An Approach for Modeling and Transforming
Contextually-Aware Software Engineering Workflows

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

roy.oberhauser@htw-aalen.de

Abstract—Software engineering environments (SEE) face
challenges for providing automated guidance for human-
centric software development workflows. Among the various
issues is the lack of a method to model software engineering
(SE) workflows, as commonly used business process modeling
notation is generalized and not conducive to context-aware
support for SEE, while available SE-specific process model
notation, such as the Software & Systems Process Engineering
Metamodel, is not executable. The solution approach in this
paper simplifies and validates the modeling of SE workflows
via graphical modeling capabilities that extend the Software
Engineering Workflow Language (SEWL). Model-based
transformation of workflow concepts to diverse workflow
management systems (WfMS), as well semantic transformation
of SE concepts to a contextually-aware process-centered
software engineering environment - CoSEEEK, is supported.
The results show the viability and practicality of such an
approach to graphically model, transform, and enact SE
workflows while transforming relevant SE concepts to an
ontology that supports contextual guidance capabilities.

Keywords-process-centered software engineering
environments; software engineering environments; software
engineering process modeling; software engineering process
model transformation.

I. INTRODUCTION
In order to be generally applicable to various software

(SW) development projects, most software engineering (SE)
process models remain abstract and require tailoring to the
specific project, team, and tool environment. Examples of SE
process models include VM-XT [1] (specified for all public-
sector IT development in Germany) and OpenUP [2].
Typical SE process models are documented in natural
languages and are thus not easily executable in an automated
form. Executable processes whose sequence can be
automated and modeled in a workflow management system
(WfMS) are called workflows. SE workflows can cover
some sequence of activities and steps related to
requirements, design, testing, etc., for instance Activity
Flows in VM-XT [3] or workflows in OpenUP [4].

Despite the potential of process-aware information
systems (PAIS) to provide automatic process assistance and
guidance for humans, this area has lacked satisfactory
assistance mechanisms and standards. While process-
centered software engineering environments (PCSEEs) have
attempted to address this area [5], they remain intrusive,

rigid, and inflexible [6], and fail to adequately support the
human, creative, and dynamics of SW development. Thus,
such systems are ignored or abandoned by SW engineers.

To address this challenge for such human-centric SE
processes, we created a PCSEE called the Context-aware
Software Engineering Environment Event-driven Framework
(CoSEEEK) [7]. Beyond SE tool sensors and other
contextual knowledge, it utilizes workflows to understand
the process context. That includes knowing which activities a
SW engineer performed, which activity is likely currently
being worked on, which activity is next, and associates these
with SE concepts of project, teams, persons, roles, tools, and
artifacts via an ontology and reasoner. While various facets
were investigated, including collaboration [8], quality
integration [9], and others, we still faced the problem of
providing an easy to use way for SW engineers to model and
transform SE workflows, integrating SE concepts without
vendor-lockin to a specific WfMS or its tools.

Considering possible SE workflow modeling notation,
the Software & Systems Process Engineering Metamodel
(SPEM) [10] is aimed primarily at defining a domain-
specific notation for the documentation of SE processes, and
does not completely address issues related to executable SE
processes so that automatic support and guidance for
software engineers in operational activities can occur. On the
other hand, a general workflow language notation such as the
Business Process Model and Notation (BPMN) [11], while
executable, lacks the inclusion and semantic meaning of
various SE domain-specific concepts.

To address the executable SE workflow language gap,
our team had created the text-based language SEWL [12]
and had targeted the adaptive WfMS AristaFlow [13] and
YAWL [14]. This paper contributes various extensions to the
original workflow concepts, including: a new graphical
representation for SE-specific workflows blending BPMN
and SPEM notation; a graphical editor for SE workflows;
details on the model-driven generation of tailored artifacts
that target the ontology and heterogeneous WfMS support,
specifically the common of-the-shelf (COTS) WfMS jBPM
[15] and Activiti [16]; and the workflow ontology generator,
which addresses the aspect of contextual-awareness support
for workflows in conjunction with CoSEEEK.

The summary of the paper is as follows: the next section
discusses related work; Section III describes the solution
concept; followed by implementation details; Section V
presents an evaluation, which is followed by a conclusion.

117Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 139 / 679

II. RELATED WORK
SPEM 2.0 [17] was approved without supporting full

process enactment. It proposes two possible approaches for
enactment: One proposes mapping to project planning tools.
However, this does not support automated adaptation to
changing project contexts during project execution. The
other proposal is to use the Process Behavior package to
relate SPEM process elements to external behavior models
using proxy classes. Both approaches lack full workflow
modeling and executability at the level of BPMN.

Other work related to enactment of SPEM includes
eXecutable SPEM (xSPEM) [17]. Process execution is
addressed via transformation to the Business Process
Execution Language (BPEL), while process validation is
addressed via transformation to a Petri net in combination
with a model checker. [18] maps SPEM to the UML
Extended Workflow Metamodel (UML-EWM) in order to
create a concretely executable workflow. [19] and [20]
investigate transforming SPEM to BPMN, while [21] maps
SPEM to XPDL. xSPIDER ML [22] is an extension profile
of SPEM 2.0 to enable process enactment.

The novelty of our solution is that, in contrast to the
above approaches, it targets a simple graphical as well as
textual SE process language and notation for modeling,
blending the strengths of BPMN and SPEM; it concretely
generates executable workflows on different WfMS targets;
and it generates an OWL-compliant ontology of SE concepts
for context-aware PCSEE tooling support. This addresses
prior hindrances and challenges for modeling and integrating
SE workflows in SEE.

III. SOLUTION
Figure 1 will be used to describe the solution concept.

The four SE process phases shown at the top will be
referenced in the solution description below. The basis of the
solution concept is the SEWL workflow. A SEWL workflow
is modeled, either with the graphical SEWL editor or a
textual editor, and provided as input for the Generator. To
transform the input, the Generator utilizes various adapters
that generate appropriate workflow templates tailored for a
specific WfMS while concurrently providing OWL-DL [23]
output of semantic concept instances. These templates are
then deployed. During operations, a Process Manager
Service abstracts, via an interface, the WfMS-specific
management and interaction details for CoSEEEK (thus
CoSEEEK doesn't need to be a PAIS but only extend one)
and the ontology is referenced internally during operations
by CoSEEEK.

Ontologies and semantic technology are advantageous in
providing a taxonomy for modeled entities and their
relations, a vocabulary, and supporting logical statements
about entities [24]. Automated consistency checking and
interoperability between different applications and agents
support reuse.

To support loose-coupling with CoSEEEK, a service-
oriented event-driven architecture was used in conjunction
with a tuple space [25] composed on top of a native XML
database eXist [26]. A Process Manager Service manages

and abstracts the peculiarities of each WfMS (such as jBPM
and Activiti), interacting via events indirectly with
CoSEEEK through the Space.

Deploy OperateTransformModel

SEWL Editor

SEWL
Template

Generator

Ontology

Activ iti
Workflow

jBPM Workflow

SEWL
Diagram

Process Manager Space

Activ iti EnginejBPM Engine

CoSEEEK

«generate»

«input»

«events»

«input»

«input»

«generate»

«generate»

«generate»

«generate»

«input»

«input»

«events»

Figure 1. Solution concept.

Model. One primary principle of the approach is that
SEWL workflows always remain the reference point of truth.
In the process modeling phase, a graphical SEWL Editor
assists the process modeler in creating the textual SEWL
workflows, which maintain the essence of workflow
concepts. Supplemental graphical diagram information
(position, font, color, etc.) is retained in separately
maintained diagram files, which are kept in sync with the
SEWL workflows during the Transform phase. Manual
editing of the XML-based SEWL format is thus also
possible, however, the Generator will remove all non-
applicable elements from the graphical diagrams. Further
details are provided in the next section.

Transform. In the Transform phase, workflow templates
for the WfMS are generated as shown in Figure 1. The
Generator also semantically transforms SE concepts in the
workflow to produce an OWL-DL compliant ontology that it
utilized for process contextual awareness by CoSEEEK.

Table I shows the mapping of concepts, whereby WUC
stands for Work Unit Container and WU for Work Unit. The
primary difference between jBPM and Activiti is that in
Activiti loops are typically expressed via inclusive gateways,
and in jBPM via exclusive gateways. E.g., any concurrent
tasks in an SE workflow would be modeled with the BPMN
parallelGateway, which activates all branches
simultaneously and, when merging, waits for all branches to
complete. Most WfMS support such basic features.

TABLE I. MAPPING OF SE AND WORKFLOW CONCEPTS

SEWL Activiti jBPM Ontology
Phase Service Task +

inclusiveGateway
Service Task +
exclusiveGateway

WUC + WU

Activity Service Task Service Task WUC + WU
Iteration Service Task +

inclusiveGateway
Service Task +
exclusiveGateway

WUC + WU

Task Service Task Service Task WU
Sequence - - -
Parallel parallelGateway parallelGateway -
Loop inclusiveGateway exclusiveGateway -
XOR exclusiveGateway exclusiveGateway -
Roles - - Role Template
Artefacts - - Artefact Template
Variables - - Workflow Variables

Template

To address and abstract the integration, communication,
and coordination details of the specific WfMS with the

118Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 140 / 679

Space, each Activity or Task is represented as a Service Task
and during generation wrapped with code that supports the
tracking or triggering of the start and finish of an activity or
task via event listening and generation.

Deploy. In the process deployment phase, workflows in
the WfMS-specific format are deployed into their respective
engine and the workflow ontology integrated into
CoSEEEK.

Operate. In the process operational phase, the indirect
interaction between a Service Task in a WfMS and
CoSEEEK via the Space and Process Manager is shown in
Figure 2.

WfMS Process Manager Space CoSEEEK
Start Process EventStart Process Event

Start Process

End Process End Process Event End Process Event

Service Task Start Event Wait for Task Finish Event

Task Finish Event
Task Finish Event

Service Task End Event
Node End Event

Node End Event

For each
Service Task

Figure 2. Primary runtime component interaction.

Events (e.g., Task ID 79 start) are written to the Space,
and any component can register for events using the Space.
As an aside, because all event history is kept in the Space,
CoSEEEK components coming online after an absence can
determine the context or catch up on any missed events.

IV. IMPLEMENTATION
Details on the implementation will now be discussed.

The Graphical Modeling Framework (GMF) and the Eclipse
Modeling Framework (EMF), which includes ecore, were
utilized. Figure 3 shows a simplified metamodel snippet for
implementing the model-driven approach.

Figure 3. Highly simplified metamodel used in ecore.

Transformation Adapters. Because the transformations
are XML-centric, the transformation adapters were coded
primarily in Scala. Unique IDs were be generated for every
element transformed and its target transformed element. This
permits a clear mapping association, useful also for logging.
The ontology adapter uses the Jena framework for
programmatic ontology access [27] to generate the ontology
instances for phases, activities, roles, artefacts, etc.

Figure 4 shows the code generated for the jBPM Service
Task, while Figure 5 shows that for Activiti.
<task id='2'name='RequestChange'tns:taskName='SEWL Task'>
 <extensionElements>
 <tns:onEntry-script
scriptFormat='http://www.java.com/java'>
 <script>StartEventListener listener = new
StartEventListener();
 kcontext=listener.writeNodeStart(kcontext);</script>
 </tns:onEntry-script>
<tns:onExit-script
scriptFormat='http://www.java.com/java'>
 <script>EndEventListener listener = new
EndEventListener();
 listener.writeNodeEnd(kcontext);</script>
 </tns:onExit-script>
 </extensionElements>
</task>

Figure 4. Listing of generated jBPM Service Task.

<serviceTask id='RequestChange' name='Request Change'
activity:class='Service'>
 <extensionElements>
 <activity:executionListener event='start'
class='StartEventListener'/>
 <activity:executionListener event='end'
class='EndEventListener'/>
 </extensionElements>
</serviceTask>

Figure 5. Listing of generated Activiti Service Task.

The generated OWL output was loaded into Protégé and
is shown for a work unit activity in Figure 6. Because the
entire XML is very verbose, it is not shown.

Figure 6: Generated OWL Ontology for CoSEEEK.

SEWL Editor. The textual language supports the
specification of SE elements a process may have. Multi-
lingual support for referencing the same SE concept instance
was implemented, supporting global software development
(GSD) processes and their documentation.

The graphical notation is extensible and can be adapted
or "skinned" with icons to suit the preferences of the user,
which can minimize notation confrontations between
different user "tribes", e.g., BPMN purists or SPEM purists.

119Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 141 / 679

In order to get the "best of both worlds", the SEWL Editor
currently applied a mix of graphical notation as follows:
- SPEM icons for all SE concepts (e.g., phase, activity,

iteration, task, role, artefact),
- BPMN icons for process notation, e.g., events, gateways,

and connections.
An OpenUP Inception phase workflow in the SEWL

Editor is shown in its graphical notation (Figure 7) followed
by its textual notation (Figure 8).

Figure 7. SEWL Editor showing OpenUP Inception Phase diagram.

<process base="default_process.xml" xmlns=...>
 <resources>
 <roles>
 <role id="1" name="Analyst" />
 <role id="2" name="Project Manager" />
...

 <elements>
 <element name="phase" base="container">
 <structure>
 <attribute name="repeatable">true</attribute>
 <rules>
 <contains element="activity" />
 <contains element="iteration" />
...

 <artifacts>
 <types/>
 <instances>
 <artifact type="Artifact">Project Plan</artifact>
...

 <tools/>
 <element type="sequence" name="OpenUP Process"
resource="6">
 <element type="phase" name="Inception"
milestone="Lifecycle Objectives">
 <element type="sequence">
 <element type="activity" name="Initiate Project">
 <element type="task" name="Develop Technical
Vision" resource="1">
 <output>
 <parameter name="vision"
tailoring="true">Vision</parameter>
 <parameter name="glossary"
tailoring="true">Glossary</parameter>
...

 <element type="parallel">
 <element type="activity" name="Identify and
Refine Requirements">
 <element type="sequence" resource="1">
...

 <element type="activity" name="Agree on
Technical Approach" resource="4">
...

 <element type="activity" name="Plan and Manage
Iteration" resource="2">
 <element type="sequence">
 <output>...
 </output>

Figure 8. Example OpenUP SEWL workflow snippets (end-tags omitted).

To retain graphical data of the layout of nodes and edges,
XMI [28] was used. See Figure 12 for an example.

An exemplary subset of the included constraints used to
validate the model is listed here, i.e., audit rules. These were
implemented in Java to allow usage outside of the GMF.
- Verify phase/activity element has an output and a

submodel
- Verify end element has no output
- Verify task does not target iteration/activity/phase
- Verify Loop has LoopEnd, Sequence has SequenceEnd,

XOR has XOREnd, And has AndEnd.

V. EVALUATION
The evaluation configuration consisted of an Intel Core 2

Duo CPU 2.26 GHz, 3 GB RAM, Windows XP Pro SP3,
JDK 1.6.0-31, Scala 2.91, Activiti 5.8, jBPM 5.2, Eclipse
EMT (Helios) SR2. Measurements used System.nano().

Feasibility. As to supporting a broad modeling spectrum,
the Eclipse Process Framework (EPF) was used as a
reference for modeling Scrum and OpenUP as was an
industry partner's internal SE development process. These
models were successfully modeled and transformed.
Although the complete OpenUP process was modeled, only
portions of the Inception Phase are shown below due to
space constraints.

Based on the Editor input, the generator was executed
and the following output was generated. Since there was no
mechanism in the jBPM editor at the time to automatically
arrange the elements, all elements are by default placed at
the upper left. Thus, Figure 9 was rearranged by hand.

Figure 9. jBPM generated output (arranged later by hand).

A snippet of the corresponding generated output for
jBPM is shown in Figure 10 and for Activiti in Figure 11.

Performance. To determine the generator performance,
an OpenUP process consisting of a sequence of five nodes
was used as the input to the Editor, measuring the
performance of each of the generators. For each round, a
loop of 1000 generations was averaged. The results are
presented in Table II.

120Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 142 / 679

TABLE II. GENERATOR PERFORMANCE (IN MILLISEC)

Round SEWL
template Ontology Activiti jBPM SEWL-Diagram

1 10.3 6701.6 25.2 28.8 65.3
2 10.5 6847.2 24.7 26.6 64.4
3 10.4 6976.9 22.1 27.7 66.4
4 10.1 6901.2 24 25.9 64.2
5 10.4 6945.8 23.2 28.6 65

Avg. 10.3 6917.8 23.8 27.5 65.1

The performance of the generators is satisfactory for
typical SE process transformation, except that the verbose
OWL generation consumes significant time and should be
considered for future optimization.

VI. CONCLUSION AND FUTURE WORK
A solution approach for an easy to use graphical

modeling capability for executable SE workflows that can
execute on COTS WfMS, while retaining SE semantic
information in a separate OWL file for contextually aware
PCSEEs, was described conceptually, implemented, and
evaluated. The results are indicative that model-based
support for transforming SE workflows to common WfMS is
both feasible and practical.

Future work includes case studies with industry partners
in live settings. Also, bidirectional workflow transformation
support between SEWL and an engine-specific workflow
format would allow editing in the workflow editor of choice.
This entails providing reverse transformation support for
engine-specific workflow templates, enabling engine-
specific usage of features and editing capabilities via
workflow engine-specific editors. For instance, changes
made to jBPM and Activiti workflows could be
automatically reflected in a SEWL template.

ACKNOWLEDGMENT
The author thanks and acknowledges Vitali Koschewoi

for his work on the implementation and diagrams and Gregor
Grambow for his assistance with CoSEEEK-related
adaptations.

REFERENCES

[1] S. Biffl, D. Winkler, R. Höhn, and H. Wetzel, "Software
process improvement in Europe: potential of the new V-
modell XT and research issues," Software Process:
Improvement and Practice, 11(3), 2006, pp. 229-238.

[2] P. Kroll and B. MacIsaac, Agility and Discipline Made Easy:
Practices from OpenUP and RUP. Pearson Education, 2006.

[3] http://v-modell.iabg.de/v-modell-xt-html-english/
[4] http://epf.eclipse.org/wikis/openup/
[5] V. Gruhn, "Process-Centered Software Engineering

Environments: A Brief History and Future Challenges,"
Annals of Software Engineering, 14(1-4), 2002, pp. 363-382.

[6] A. Fuggetta, "Software process: a roadmap," Proc. Conf. on
the Future of Software Eng., ACM, May 2000, pp. 25-34.

[7] R. Oberhauser, "Leveraging Semantic Web Computing for
Context-Aware Software Engineering Environments,"
Semantic Web, Gang Wu (ed.), In-Tech, Austria, 2010.

[8] G. Grambow, R. Oberhauser, and M. Reichert, "Enabling
Automatic Process-aware Collaboration Support in Software
Engineering Projects," Software and Data Technologies
(Editors: J. Cordeiro, M. Virvou, B. Shishkov), CCIS 303,
Springer Verlag, ISBN 978-3-642-29577-5, 2012, pp. 73-88.

[9] G. Grambow, R. Oberhauser, and M. Reichert, "Contextually
Injecting Quality Measures into Software Engineering
Processes," the International Journal On Advances in
Software, ISSN 1942-2628, vol. 4, no. 1 & 2, 2011, pp. 76-99.

[10] Object Management Group, "Software & Systems Process
Engineering Metamodel Specification (SPEM) Version 2.0,"
Object Management Group, 2008.

[11] Object Management Group, "Business Process Model and
Notation (BPMN) Version 2.0," 2011.

[12] G. Grambow, R. Oberhauser, and M. Reichert, "Towards a
Workflow Language for Software Engineering," Proc. of the
The Tenth IASTED Int'l Conf. on Software Engineering (SE
2011), ISBN 978-0-88986-880-9, ACTA Press, 2011.

[13] P. Dadam et al., "From ADEPT to AristaFlow BPM suite: a
research vision has become reality," in Business process
management workshops, Springer, Jan. 2010, pp. 529-531.

[14] W. Van Der Aalst and A. Ter Hofstede, "YAWL: yet another
workflow language," Information systems, 30(4), 2005, pp.
245-275.

[15] M. Salatino and E. Aliverti, jBPM5 Developer Guide, ISBN
1849516448, Packt Publishing, 2012.

[16] T. Rademakers, "Activiti in Action: Executable business
processes in BPMN 2.0," Manning Publications Co., 2012.

[17] R. Bendraou, B. Combemale, X. Crégut, and M. Gervais,
"Definition of an Executable SPEM 2.0," In Proc. APSEC
2007, IEEE, 2007, pp. 390-397.

[18] N. Debnath, D. Riesco, M. Cota, J. Garcia Perez-Schofield,
and D. Uva, "Supporting the SPEM with a UML Extended
Workflow Metamodel," Proc. IEEE Conf. on Computer
Systems and Applications, AICCSA, 2006, pp. 1151-1154.

[19] D. Riesco, G. Montejano, N. Debnath, and M. Cota,
"Formalizing the Management Automation with Workflow of
Software Development Process Based on the SPEM Activities
View," Proc. 6th Int’l Conf. on information Technology: New
Generations, 2009, pp. 131-136.

[20] M. Perez Cota, D. Riesco, I. Lee, N. Debnath, and G.
Montejano, "Transformations from SPEM work sequences to
BPMN sequence flows for the automation of software
development process," J. Comp. Methods in Sci. and Eng. 10,
1-2S1, (September 2010), 2010, pp. 61-72.

[21] Y. Feng, L. Mingshu, and W. Zhigang, "SPEM2XPDL:
Towards SPEM Model Enactment," Proc. of SERP, 2006, pp.
240-245.

[22] C. Portela et al. "xSPIDER ML: Proposal of a Software
Processes Enactment Language Compliant with SPEM 2.0,"
J. of SW Eng. & Applications, 5(6), 2012, pp. 375-384.

[23] D. McGuinness and F. Van Harmelen, "OWL web ontology
language overview," W3C recommendation, 2004.

[24] D. Gasevic, D. Djuric, and V. Devedzic, Model driven
architecture and ontology development. Springer, 2006.

[25] D. Gelernter, "Generative communication in Linda," ACM
Transactions on Programming Languages and Systems, 7(1),
1985, pp. 80-112.

[26] W. Meier, "eXist: An open source native XML database.
Web," Web-Services, and Database Systems, LNCS, 2593,
2009, pp. 169-183.

[27] B. McBride, "Jena: a semantic web toolkit," Internet
Computing, Nov. 2002, pp. 55-59.

[28] Object Management Group, "MOF 2 XMI Mapping Version
2.4," 2010.

121Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 143 / 679

APPENDIX

<process processType='Private' isExecutable='true'
id='WUC_Phase_1_Inception' name='Inception'>
 <extensionElements>
 <tns:import name='coseeek.workflow.process
.jbpm.extension.JBPMEventListener'/>
 </extensionElements>
 <startEvent id='_1' name='Start'></startEvent>
...
 <parallelGateway id='_3'
gatewayDirection='Diverging' />
 <parallelGateway id='_4'
gatewayDirection='Converging' />
 <task id='_5'
name='WU_Activity_2_IdentifyandRefineRequirements'
tns:taskName='SEWL Task' >
 <extensionElements>
 <tns:onEntry-script
scriptFormat='http://www.java.com/java'>
 <script>JBPMEventListener listener =
 new JBPMEventListener();
 kcontext=listener.writeNodeStart(kcontext);</script>
 </tns:onEntry-script>
 <tns:onExit-script
 scriptFormat='http://www.java.com/java'>
 <script>JBPMEventListener listener = new
JBPMEventListener();
 listener.writeNodeEnd(kcontext);</script>
 </tns:onExit-script>
 </extensionElements>
 <ioSpecification>
 <inputSet/>
 <outputSet/>
 </ioSpecification>
 </task>
<task id='_6' name='WU_Activity_3_AgreeonTechnicalApp...

Figure 10. Example jBPM workflow Snippet.

<process id='WUC_Phase_1_Inception' name='Inception'>
 <extensionElements>
 <activiti:executionListener event='start'
class='coseeek.workflow.process.activiti.extension.Proc
essStartEndListener'></activiti:executionListener>
 <activiti:executionListener event='end'
class='coseeek.workflow.process.activiti.extension.Proc
essStartEndListener'></activiti:executionListener>
 </extensionElements>
 <startEvent id='startevent1'
name='Start'></startEvent>
 <endEvent id='endevent1' name='End'></endEvent>
 <serviceTask id='WU_Activity_1_InitiateProject'
name='Initiate Project'
activiti:class='coseeek.workflow.process.activiti.exten
sion.DummyService '>
 <extensionElements>
 <activiti:executionListener event='start'
class='coseeek.workflow.process.activiti.extension.Even
tListener'></activiti:executionListener>
 <activiti:executionListener event='end'
class='coseeek.workflow.process.activiti.extension.Even
tListener'></activiti:executionListener>
 </extensionElements>
 </serviceTask>
 <parallelGateway id='parallelGatewayFork1' />
 <serviceTask
id='WU_Activity_2_IdentifyandRefineRequirements'
name='Identify and Refine Requirements'
activiti:class='coseeek.workflow.process.activiti.exten
sion.DummyService'>
 <extensionElements>
 <activiti:executionListener event='start'
class='coseeek.workflow.process.activiti.extension.Even
tListener'></activiti:executionListener>
 <activiti:executionListener event='end'
class='coseeek.workflow.process.activiti.extension.Even
tListener'></activiti:executionListener>

Figure 11. Activiti XML Snippet.

<graphicsystem:Graphicsystem
xmi:id='WUC_Phase_1_Inception'
parentDiagram='WUC_Process_OpenUPProcess.sewl_diagram'
>
 <newObjects xmi:type='graphicsystem:Start'
xmi:id='startevent1' ObjectToObjects='sequenceStart1'
/>
 <newObjects xmi:type='graphicsystem:Sequenz'
xmi:id='sequenceStart1'
ObjectToObjects='WU_Activity_1_InitiateProject' />
 <newObjects xmi:type='graphicsystem:Activity'
xmi:id='WU_Activity_1_InitiateProject' Name='Initiate
Project'
Reference='WUC_Activity_1_InitiateProject.sewl_diagram'
ObjectToObjects='parallelGatewayStart1' />
...
 </graphicsystem:Graphicsystem>
 <notation:Diagram xmi:id='id_WUC_Phase_1_Inception'
type='SEWL' element='WUC_Phase_1_Inception'
name='Inception.sewl_diagram' measurementUnit='Pixel'>
 <children xmi:type='notation:Shape'
xmi:id='shape_startevent1' type='2043'
element='startevent1'>
...
 </children>
 <children xmi:type='notation:Node'
xmi:id='shape_WU_Activity_1_InitiateProject'
type='2034' element='WU_Activity_1_InitiateProject'>
 <children xmi:type='notation:DecorationNode'
xmi:id='4e841147-2f14-445a-b0b4-30e714be504e'
type='5039'/>
 <children xmi:type='notation:BasicCompartment'
xmi:id='0b62527e-b592-4e3d-a367-541f17843fb9'
type='7011'/>
 <styles xmi:type='notation:DescriptionStyle'
xmi:id='1b9fea72-5856-4be5-9203-1ef5cc58d000'/>
 <styles xmi:type='notation:FontStyle'
xmi:id='3051a516-b9f4-42c6-9698-8072fbe9a301'/>
 <styles xmi:type='notation:LineStyle'
xmi:id='7ea4d238-14fc-4068-a4ce-ed6bb08820af'/>
 <layoutConstraint xmi:type='notation:Bounds'
xmi:id='11135191-6e30-4c7a-a803-dfd437a058bc' x='440'
y='185' />
 </children>
...
 <styles xmi:type='notation:DiagramStyle'
xmi:id='_avAfkaznEeGl_a7M295XCw'/>
 <edges xmi:type='notation:Connector' xmi:id='flow23'
type='4020' source='shape_startevent1'
target='shape_sequenceStart1'>
 <styles xmi:type='notation:FontStyle'
xmi:id='8712763c-8e17-4285-948b-0b78f41f90af' />
 <element xsi:nil='true' />
 <bendpoints xmi:type='notation:RelativeBendpoints'
xmi:id='71805553-c9c1-46ff-8d13-56c6a3ab24fc'
points='[20, 0, -125, 10]$[130, -14, -15, -4]'/>
 <sourceAnchor xmi:type='notation:IdentityAnchor'
xmi:id='63f1b22c-d2fd-408e-9b8a-99044df18ce6' id='EAST'
/>
 <targetAnchor xmi:type='notation:IdentityAnchor'
xmi:id='0fd5db1f-daac-468a-a457-2dcf6bf1ee43' />
 </edges>

Figure 12. Example SEWL diagram XMI code snippet.

122Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 144 / 679

A Software Category Model for Graphical User Interface Architectures

Stefan Wendler and Detlef Streitferdt
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

{stefan.wendler, detlef.streitferdt}@tu-ilmenau.de

Abstract — The development and maintenance of graphical
user interfaces (GUI) for business information systems is still
affected by software architectures lacking quality. Only basic
patterns and few reference architectures are available for GUI
development. There exist no standard architectures for reuse.
High efforts accumulate for the adaptation of patterns but the
resulting architecture quality often does not represent the
desired separation of concerns and is hard to maintain. In this
work, general GUI architecture design issues are analyzed. The
foundation of the analysis is elaborated as a software category
tree that represents the common responsibilities within GUI
architectures. As result, the major design issues of GUI
systems are summarized. To assess other GUI reference
architectures, the software category tree may be of value.

Keywords — GUI software architecture; software
architecture; user interface patterns; graphical user interface.

I. INTRODUCTION

A. Motivation
Domain. Business information systems represent a

domain that is largely influenced by software architecture
considerations. Especially the graphical user interface (GUI)
sub-system is likely to induce high efforts [1] for both
development and later maintenance. This applies for both
standard and individual software systems as a high demand
for individually designed GUI systems is actually present.

Problem. However, GUI architectures are not
standardized to the required detail, since historically applied
patterns have not converged towards a detailed standard
architecture governing every responsibility for change. In
addition, the higher degree of system integration into
business processes demands for explicit implementations of
comprehensive requirement artifact types like use cases,
tasks and business processes. Those have to be integrated
with rather old patterns like MVC [2] and its variants [3],
which did not consider such deep and vast requirements
basis. Reference architectures [1][4] and several patterns
(design and architectural) [5][6] have been suggested, but
have not been properly integrated with traceability [7][8]
concepts to keep track of requirements. Moreover, GUI
frameworks have a large impact on the structure and often
cannot be isolated properly to separate technical
implementations from domain or project specific
requirements.

Consequences. When systems have grown after several
maintenance steps, different concerns tend to be mixed up
within the GUI architecture the larger the requirements basis
is and the more complicated the integrated frameworks are.
For instance, application server calls, data handling, task and

dialog control flow can no longer clearly separated in the
software architecture. Finally, the GUI and application sub-
systems cannot be separated easily and the evolution of both
depends on each other. Business logic tends to be scattered
in the GUI dialogs [9] and the “smart UI antipattern” [10]
may become a regular problem. The architecture was layered
during design phase, but the encapsulation of components
and separation of concerns did not prove in practice [9]. This
is maybe due to used frameworks that expect a certain
architecture, which alters original design. More likely is the
phenomenon that the architecture was based on common
patterns and reference architectures that could not be refined
in time with respect to desired quality and extensibility.
Lastly, the two concluding points from Siedersleben [9] are
still of relevance: standardized interfaces between layers are
still missing and technical frameworks still dominate the
architecture and evolution. Currently, there are even more
than three layers in business information systems and the
segregation got even more complex.

User interface patterns. Current research is occupied
with the integration of a new artifact type in the development
of GUI systems. Being based on pattern concepts, user
interface patterns (UIPs) have been approached [11][12][13]
to facilitate the generative development of GUIs and highly
increase the reuse of proven visual and interaction design
solutions that originate from descriptive human computer
interaction patterns [14][15]. According to the generative
nature of these attempts, the development of GUIs shall be
shortened by model-based sources that specify both the GUI
system’s view instances and the coupling between functional
related and GUI-system-architecture components.

Current limitations. Currently, there are still design
issues within GUI patterns or reference architectures that
hinder the evolution and maintenance of existing systems. To
establish a target software architecture of high quality for the
implementation of UIPs, these issues have to be addressed in
the first place. In fact, UIPs need a clear basis of reuse: an
architecture with well separated concerns that permits the
flexible allocation and exchange of these greater units of
design. Whether UIPs will be generated, interpreted or
provided by a virtual user interface [16][17] the resulting
architecture will be at least as complex as for standard GUIs.
So, the common issues in design will prevail and affect UIP
based solutions.

B. Objectives
To prepare the integration of UIPs into GUI architecture

and at the same time preserve their reusability and variability
in different contexts, open issues in GUI architecture
development have to be identified and solved. Therefore, our

123Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 145 / 679

goal is to provide a detailed analysis of these open design
problems. Hence, we will have to identify the re-occurring
responsibilities of GUI architectures and their relationships.
On that basis, the frequent applied MVC pattern is reviewed.
In addition, we will analyze the Quasar client reference
architecture [1] that provides more detail than regular
patterns and was created especially for the domain.

C. Structure of the Paper
The following section provides descriptions of common

patterns and reference architecture considerations for GUIs.
In the third section, we will elaborate a general
responsibilities model for GUI architectures. In Section IV,
the GUI architecture patterns are reviewed. The results are
summarized in Section V, before we conclude in Section VI.

II. RELATED WORK

A. Architecture Patterns for Graphical User Interfaces
With the invention of object oriented programming

languages, a clear assignment of the cross-cutting concerns,
which are common for a GUI dialog, had to be enforced.
Eventually, the model view controller pattern was introduced
[2] that distinguishes three object types as abstractions to
accept defined responsibilities.

In Figure 1, we present a possible architecture application
diagram of the MVC pattern. Generally, the MVC pattern
promised a separation of concerns, flexibility and even reuse
of selected abstractions. From a practical point of view, the
classic MVC pattern misses many details that are essential to
fulfill these claims. In this regard, the pattern leaves the task
to decouple the three abstractions to be solved by the
developer. It is noteworthy that the Controller is in charge of
many responsibilities at once. Both the handling of technical
events (PresentationEvent) and the initiation of the final
processing of data by the application kernel
(ApplicationKernelService) are governed by the Controller.
Therefore, this design unit is closely coupled to the View, as
well as to the Model. As far as the View is concerned, the
structure of the Model has to be known to enable the update
of defined UI-Controls via DataRead.

There exist many sources of the MVC pattern [18][19]. A
widely accepted description can be found in [6].

cmp Classic MVC

Dialog

Model

InputDataQuery

GUI Framework

PresentationEvent

Notification

ApplicationKernelService

DataRead

ViewDefinition

Observer

DomainObject

View

Controller
DataEdit

«call»

«use»

«call»

«call»

«call»

«call»
«call»

«call»

«create»

Figure 1. A common MVC architecture pattern variant.

To cope with the close coupling and missing details,
several variations of the MVC have been discussed [3][20].
In general, the variations in design differ concerning the
distribution of responsibilities among the three abstractions.
Several more patterns [5][6][19] occurred that mainly altered
the control or introduced new concerns and abstractions.
Nevertheless, they fulfill the same purpose of guiding the
identification and modularization of classes in object-
oriented GUI architectures.

B. Graphical User Interface Event Processing Chain
To be able to discuss the GUI responsibilities with

increasing detail, we would like to refer to the conceptual
model of event processing within GUI architectures as
described by Siedersleben [21]. In Figure 2, a variation of
this model is displayed. Thereby, technical events will be
emitted from the operation system or later the GUI
Framework when the user has interacted with a certain GUI
element. Within the architecture, the event is either
processed or forwarded by the individual components
depicted in Figure 2.

It is notable that there is a distinction of events inside the
Dialog component. For reasons of separation of concerns,
and ultimately, better maintenance of systems, the
Presentation was assigned responsibilities with a closer
connection to the technical aspects of the GUI Framework.
Accordingly, the Presentation is in charge of governing the
layout of the current View and applies changes in layout, e.g.,
mark the UI-Controls where entered data failed the
validation or activate panels when current data state requires
for additional inputs. In contrast, the DialogKernel is to be
kept independent from any technical issues as far as this is
possible. So, the latter is assigned to communicate with the
ApplicationKernel and its components instead.

By flowing all the way from the Operating System
towards the Application Component, a tiny technical event
may result in the initiation of greater operations inside the
DialogKernel or even ApplicationComponent. That is why
Siedersleben speaks of a “value creation chain” [4][21].

sd Event Processing Chain

Operating
System

GUI Framework

Dialog
Presentation DialogKernel

ApplicationKernel

ApplicationComponent

Application
eventsDialog events

Presentation
eventsTechnical

events

Figure 2. Value creation chain of graphical user interfaces derived from

[21].

C. Standard Architecture for Business Information
Systems
Siedersleben and Denert tended to the issues of close

coupling and a better separation of concerns for GUI
architectures in [16]. The main goal of their attempts was to
improve the general quality of the software architecture of
business information systems. With respect to the GUI, they
made suggestions [16] that would prepare the standardization
of the architecture of the particular domain.

124Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 146 / 679

Quasar. Siedersleben pushed towards further
standardization attempts concerning the GUI architecture of
business information systems. His efforts culminated in the
creation of the quality software architecture (Quasar) [4].
Acclaimed design principles and architectural patterns, as
well as the vast usage of interfaces for decoupling in
combination with a new instrument for component
identification were incorporated into a single software
architecture manifest, which was intended to become the
domain’s standard.

Parts of a reference architecture [1] and the object-
relational mapper Quasar Persistence have been published.
Conversely, the main ideas of standardization were neglected
in [1] and reference architecture elements should fill the gap.

Software categories. As far as the component
identification is concerned, so called software categories
were introduced. They consist of the five categories 0, A, T,
R and AT. 0 designates elements that are reusable in any
domain like this is applicable for very basic data types a
programming language would offer. A software is dedicated
to implement a certain domain’s requirements, meaning
particular functions like the calculation of target costing or
the scheduling of production plans for a certain machinery.
In contrast, T software is responsible for the integration of
technical aspects like data bases and GUI frameworks. R
software is needed whenever a technical data representation
has to be converted for processing with A software types,
e.g., a GUI string type describing a book attribute is
converted to a ISSN or ISBN. In fact, R software also is AT
software per definition as both domain specific and technical
knowledge or types are mixed up. Thus, AT software should
be avoided and would be an indicator for the quality of the
implementation or architecture. Only the R software used for
type conversions would be permitted.

GUI reference architecture. Concerning the reference
architecture portions of Quasar, the GUI client architecture
[1][4] has to be mentioned for the scope of our work. The
main parts of that architecture are illustrated by Figure 3 that
is derived from [4], since this is the most detailed source
available. The interface names in brackets resemble the
original but not very descriptive designations. The unique
elements of the Quasar client architecture are the following
three aspects.

cmp Quasar client

Dialog
DialogManager

DialogEvent (DE)

InputDataQuery (A)

GUI Framework

PresentationEvent (PE)

DataUpdate (SY)

ApplicationKernelService (AF)

DialogActivity (U)

DialogCompletion (V)

ApplicationEventsRegistration (DA)

ViewDefinition (DP)

ApplicationEvents (AE)

Presentation

DialogKernel

DataRead (R)

ApplicationKernel

SessionControl

A
T
AT
0

Software categories

«call»

«use» «use»

«call»«call»

«call»

«call»

«call»

«call»

«create»

«create»

«call»

«call»

Figure 3. The Quasar client architecture based on [4].

Firstly, there was made a distinction of presentation and
application related handling of events; the basic concept of
the “value creation chain” introduced in Section II.B was
developed further. Thus, there are the two design units
Presentation and DialogKernel that resume original MVC
Controller tasks besides other ones. The software categories
mark both units according to their general responsibilities.
The Presentation possesses the knowledge how certain data
is to be displayed and how the user may trigger events. In
contrast, the DialogKernel determines what data needs to be
displayed and how the application logic should react to the
triggered events. The communication between them is
exclusively conducted via three A type interfaces.

Secondly, the Quasar client introduces relatively detailed
interfaces and communication facilities between components
compared to other GUI patterns. To be able to fulfill its
objectives, the Presentation relies on the ViewDefinition
interface to construct the visual part of the dialog. Via
InputDataQuery, the current data stored in the technical data
model of respective UI-Control instances can be altered or
read by the Presentation. Events emitted from UI-Control
instances are forwarded to the Presentation with the
operations of PresentationEvent.

The interfaces between Presentation and DialogKernel
are mainly concerned with event forwarding and the
synchronization of data between both components. In detail,
DialogEvent is called by the Presentation whenever the
DialogKernel has to be notified of an event relevant for
application logic processing, e.g., a command button like OK
or a search for available data was initiated. The Quasar client
foresees two options for data synchronization. This
communication step is essential, since both components
possess different knowledge, and thus, work with different
data structures, what is marked by the different software
categories. Either the Presentation could read current data
via DataRead or the DialogKernel would update the
Presentation by the means of DataUpdate. This design shall
decouple the application logic from technical aspects found
inside Presentation and its interfaces for interaction with the
current GUI Framework.

Thirdly, aspects that are concerned with surrounding
components are also described with the Quasar client. These
are interfaces dealing with the construction, deletion of
dialog instances (DialogActivity) and reporting of results
(DialogCompletion). Furthermore, a DialogKernel can
register for notification (ApplicationEventsRegistration)
about events (ApplicationEvents) originated from
ApplicationKernel. For creation of value relevant for
business logic, the interface ApplicationKernelService is
called by the DialogKernel. There are more interfaces
available for the coordination of transactions and the
checking of permissions via an authorization component. For
more details, interface specifications and a dynamic view on
the architecture, please consult [1].

III. GENERAL GUI RESPONSIBILITIES MODEL

A. Approach
As the basic GUI patterns and the Quasar client reference

architecture are too abstract and general to describe detailed
responsibilities required for implementation purposes, we

125Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 147 / 679

will establish a fine-grained responsibilities model based on
the software category instrument suggested by Quasar. The
software categories are intended to refine tasks and fill gaps
left open by the available patterns. Thereby, the categories
will represent an ideal model with least coupling that allows
for planning dependencies among potential units of design.

Consequently, we need to establish a basis for the
responsibilities that are regularly discovered in a GUI
architecture. Eventually, we follow the approach to
investigate on relevant responsibilities mainly from related
work, other known sources [2][3][4][6][16][18][19][20][21]
[22] and own experiences. In fact, we do a decomposition of
GUI architectures to rather atomic functions. These functions
will be separated and delimited in order to establish a unique
software category tree. We examine, what can be solved with
0 or A software and what concerns are definitely dependent
on GUI framework code.

When common GUI architecture responsibilities have
been identified and systematically analyzed concerning their
dependencies, the potential interfaces for communication
between components or classes can be derived. According to
Quasar [4], an interface ideally should be defined on the
basis of a software category that serves as a parent for both
categories to be linked. Thus, the identification of design
units and their interface structure requires some planning.

B. Quasar Software Categories Reviewed
The concept of the Quasar software categories is

ambiguous. They promise to be an instrument for component
identification and quick software quality assessments.
Nevertheless, they were not provided along with a clearly
defined method for their proper definition or application.

The software category types defined by Quasar can be
applied for the very basic valuation of architectures, since
they symbolize a very rudimentary separation of concerns
between neutral, domain and technical related concepts. The
further and project relevant refinement of the basic
categories will eventually lead to a much more powerful
representation of design criteria like cohesion and coupling
or design principles like modularization as well as hierarchy.
In this regard, “concerns” represent heavily abstracted
requirements and related functions. Siedersleben [4] states
that each software category ideally acts as a representative
for a certain delimited topic. Consequently, the preparation
of components with the aid of software category trees shall
help to create high cohesive and encapsulated design units.

Traceability. On that basis, software categories will be
used to judge the purity of traceability-link [7][8] targets,
meaning that the artifacts will be examined with respect to
their responsibilities. When a target is made up of a mixed
category, in the worst case AT, then it will be considered
either as a model lacking detail or a design that is harder to
maintain, since the developers will eventually separate the
concerns during implementation by themselves. The latter is
a major aspect besides the identification of potential
components; that is why we consider software categories as a
relevant marker. In sum, software categories can be useful to
reduce the complexity while tracing requirements to design:
the categories could be kept in order to mark certain design
elements inside traceability-metamodels, which are outlined

in [8]. Thus, the general or refined responsibilities of design
elements will be visible, so traceability-link targets can be
more detailed.
A major problem lies in the definition and segregation of
software categories. It was not clearly defined what elements
drive the creation and delimitation of a software category.
According to known sources [4][9], this might either be
specialized knowledge how to handle certain algorithms and
data structures or dependencies of an entity.

C. Rationale on Software Category Practical Application
Basic software categories. As the software categories

are not clearly defined in original sources, we will have to
point out how to create new and delimit existing software
categories. On the root level, we will comply with Quasar
and use the basic categories 0 (white), A (light grey), T
(medium grey with white caption) and AT (dark grey with
white caption). The basic category Construction and
Configuration was added to represent the creation of new
objects as well as the configuration of interfaces with
implementing objects. On the next level, layers and
technological boundaries of the application architecture are
represented. Presentation and Dialog Logic were separated
as categories according to the event processing of Figure 2.
Our aim was to provide a software category tree with
separated concerns to describe a complete decomposition of
GUI architecture aspects.

As the tree gets more detailed, categories will become
very fine grained and embody components, classes or even
operations. Since the categories can distinguish components
and their dependencies, they could be applicable for the
delimitation of the smaller units of design, too.

Category identification. To identify each of the
following categories, we applied several rules of thumb.
During the analysis of GUI architectures, we derived
categories from the different families of operations that
regularly occur. In general, these were the definition or
modification of new entities or their properties, event
triggering or processing, as well as forwarding of both data
and events. These kinds of operations occur for different
contexts like technical or application related objects of
general GUI pattern components that are common for MVC
or the Quasar client. The different contexts symbolize certain
levels in the software category tree and were derived from
reasonable abstractions like application logic, abstract
presentation and presentation technology. We distinguished
the belonging operations and data structures according to the
knowledge and types required for their processing. When
operations demanded for the usage of certain types in a
context that was not in scope of the originator, then
categories were definitely of a mixed kind. In contrast,
categories were left pure when interfaces using neutral 0
types could be used for delegations. A hint close to
implementation considers what would be the import
declarations in a unit of design with respect to Java language.
If the import was based on interface types using neutral 0
types, the category would remain pure. The category would
be mixed, if the imports will demand for the addition of
types defined exclusively in the imported unit of design.

126Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 148 / 679

D. Graphical User Interface Software Category Model
The resulting software category tree is depicted in Figure

4 and will be developed in the following paragraphs. It has to
be considered that the categories do model dependencies
between units of design and no flow of events or algorithms.
Although there will be interfaces between categories for later
implementation, these cannot be illustrated by the category
tree but will be determined concerning the possible type.
According to Quasar [4], two different categories may
communicate via types that originate from a shared parent
category.

The main categories Application Kernel, Dialog Logic,
Presentation are A category children, since they depend on
the individual requirements of a software system.

Presentation. The categories derived from Presentation
are closely related to the view and controller of the MVC
pattern [6] and detail both their responsibilities.

Presentation is marked with FUI (final user interface)
[23] given that this category symbolizes the certain
knowledge required for creating the specific view part of a
given GUI system. This category is further branched into
View Definition and Presentation Event Handling. The
involved categories have to comply with project specific
dialog specifications and at the same time need to possess
knowledge about the types and operations the involved GUI
Framework offers. Hence, all sub-categories heavily depend
on technical aspects. They each constitute a mixed category.

The View Definition category is detailed with the
responsibilities required for the initial creation of the visual
parts of a dialog and the declaration of layout specific
elements. We separated the Layout Definition and UI-
Control Configuration as the layout aspects often involve the
usage of dedicated objects and operations that considerable
differ from the instantiation and configuration of UI-
Controls. For the reasons that events require dedicated
operations and not all created UI-Controls have to be bound
to certain events, the category Action Binding was separated
as a specialization of the UI-Control Configuration.

The Presentation Event Handling category serves the
task to deal with Presentation events according to Figure 2
and is branched into Presentation Data Handling, View State
Changes and Event Forwarding. The first child handles both
the reading (Model Data Observer) and editing (Model Data
Edit) of dialog data from the Presentation perspective. The
changes in layout, properties and arrangement of active UI-
Control instances during runtime are optional tasks that are
embodied by the category View State Changes and its
children. Certain events cannot be further processed by the
visual dialog units, so that they need to notify the next unit in
the chain of responsibility. This rationale is based on Figure
2. The required knowledge about the respective events and
forwarding commands is encapsulated by Event Forwarding.

GUI Framework. As far as the GUI Framework is
concerned, we decided for the distinction of layout and UI-
Control specific knowledge or types. The UI-Control
Library implements all operations and types that are required
for the instantiation of any available UI-Control, the
modification of its properties (UI-Control Properties) and
the definition of its data content (Technical Data Models).
Often there are various data types with different complexity

associated to the available UI-Controls of a framework. They
need to be handled by the Presentation Data Handling
category in order to store and retrieve data in the specific
formats like lists, trees, text areas or table grids.

Dialog Logic. The last main category that is to be placed
in the vicinity of a dialog is the Dialog Logic. Categories that
are involved in the data structure definition and its logical
processing refine the Dialog Logic. The basis of these
categories is provided by the Quasar client [1][4] and the
model part of the MVC pattern [6]. In analogy to the
Presentation category, we distinguish the definition of data
objects (Dialog Data Model) with associated operations and
the event handling (Dialog Event Handling).

The category Dialog Data Model depends on knowledge
about the Domain Data Model defined by the Application
Kernel as well as Data Queries that may deliver the
composition of selected attributes from different entities in
order to create new aggregates relevant for display. The Data
Queries category belongs to the Application Server Calls
category, which encapsulates knowledge about the available
application services, their pre-conditions, invariants and
possible results with respect to the dialog logic.

The Dialog Logic category graph mostly constitutes pure
A category refinements. However, the Data Conversion
category is of mixed character. To define data structures that
can be used in close cooperation with the Application
Services, it needs to know about Dialog Data Model, and
thus, incorporates its dependencies to the Data Queries and
Domain Data Model. Besides, the Data Conversion category
has to be aware of the current Technical Data Models in
order to provide access for Presentation Data Handling. The
latter has to know about the structure of defined data models
(Dialog Data Model and Technical Data Models) to be able
to delegate proper updates in both directions.

Event processing. The entire event processing chain and
its association to software categories was challenging; our
rationale will be explained as follows. Foremost, logical and
presentation states were separated: Application logic tends to
be stable (enter data, evaluate, present suggestions, make a
choice and confirm), is traced to functional requirements,
and thus, should be decoupled from GUI specifications.
Although the flow of application logic is unaffected, the GUI
and its technology supporting the user in his tasks may be
altered several times starting with updated specifications and
ending with the deployment of different GUI Frameworks.
Additionally, the Presentation can be further differentiated
into abstract visual states that have a close connection to the
current application state and technological or concrete
presentation states, which implement the former. The latter is
translated to GUI UI-Controls via GUI Framework and its
sub-categories. As result, we identified three major
categories for state control to be considered below.

The Dialog Event Handling tree governs the application
logic part of a dialog and has no concrete visual
representations or related tasks. In contrast, it assumes the
Presentation to maintain appropriate visual representations,
but these remain abstract for the Dialog Event Handling,
e.g., a view for data input is activated, data input was
completed or current data leads to another view state for data
input.

127Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 149 / 679

cmp GUI Software Categories

TA

View
Definition

Presentation
Event Handling

Presentation
(FUI)

Arrangement of
UI-Controls

Layout
Definition

UI-Control
Configuration

View State
Changes

Construction of
UI-Controls

Re-Arrangement
of UI-Controls

Technical Data
Models

Model Data
Edit

Modification of
UI-Control Properties

Addition and Removal of
UI-Controls

Dialog Logic

Data
Validation

Application
Logic

Application
Server Calls

Dialog
Navigation

Dialog Data
ModelDialog Lifecycle

Actions

GUI
Framework

UI-Control
Library

Layout
Manager

Event
Forwarding

Action
Binding

Dialog Event
Handling

Domain Data
Model

Data Types and
Validation Rules

Data
Conversion

0

Construction and
Configuration

UI-Control
PropertiesPresentation

Data Handling

Model Data
Observer

Data
Queries

Application
Services

Event Listener
Definition

Dialog State
Changes

Presentation
State Update

Figure 4. GUI responsibilities arranged as a software category tree.

From the application’s perspective, a dialog may adopt
different states during runtime. The required knowledge to
control these states is represented by the category Dialog
State Changes. Furthermore, this category is separated into
categories, which either interact with the ApplicationKernel
or the Presentation. Both its categories reflect the two
general situations that may occur in any dialog: Application
Server Calls may be initiated or a Presentation State Update
can be triggered. The parent category Dialog State Changes
possesses the knowledge how to react in a given situation. Its
children are dedicated to solely trigger the required change
of state that either addresses the Application Server or
Presentation, which provide the state change execution.

Figure 5 provides an overview of possible interface
connections between software categories involved in event
processing. Please note that the interfaces need to be of the
basic A category type as this is the common parent category
of the displayed interacting categories.

The general flow of events is the following: initially, the
user triggers some events that may be forwarded to Dialog
Event Handling for further evaluation. Depending on the
current state of the dialog, Dialog Lifecycle Actions (creation
and deletion of dialogs and their objects), Application Server
Calls (commit a sequence of service calls), a Dialog
Navigation (change of current view or the instantiation of
sub-dialogs) or a Presentation State Update (change of the
visual representation) may be delegated. In this regard, the
key design issue is that the Presentation has no knowledge in
its sub-categories how to decide on a proper reaction for
events relevant for dialog logic. Therefore, the event firstly is
forwarded via the topmost interface in Figure 5. Then, the
Dialog Event Handling evaluates the event and delegates to
one of its children, which further delegates to the displayed
interfaces in Figure 5 and initiates the final change of state.
Concerning the Presentation State Update in Figure 5, either
a Dialog Navigation (separate dialogs or an auxiliary search
dialog are instantiated) or View State Changes (panels,
wizard steps or tabs are switched) are committed via
interfaces. In this context, the knowledge when to trigger any
of the interface operations is kept in the children of Dialog
Event Handling with a white border in Figure 5. In contrast,

the execution of the respective state change is encapsulated
in the categories that implement the interfaces. At last, the
state changes are completely decoupled from the point in
time when they are requested. Finally, the Presentation
Event Handling is separated into event processing that is
either concerned with data or the visual structure. Mostly the
data relevant events can be processed locally by the
Presentation if no forwarding is registered. However, the
View State Changes do require the forwarding of events to
the Dialog Event Handling first, before they can be
committed. This is due to the decoupling of view states and
their better exchangeability. Moreover, the differentiation of
event evaluation, triggering and state change execution
supports the reuse and change of views as they are better
decoupled from dialog logic components. In this regard,
view states are relevant for the Dialog Logic but not their
concrete appearance, which can be adapted frequently.

cmp Event handling categories and interfaces

View State
Changes

Application
Server Calls

Dialog
Navigation

Event
Forwarding

Application
Services

Presentation
State Update ViewStateOperations

View
DefinitionViewConstructionOperationsNavigationOperations

Dialog Event
Handling DialogEventHandlingOperations

Dialog State
Changes

Presentation
(FUI)

Dialog Logic

ServerOperations

Dialog Lifecycle
Actions

Figure 5. Software categories relevant for event processing and possible

interfaces.

IV. REVIEW OF GUI ARCHITECTURE PATTERNS
In this section, we review the presented GUI patterns of

Section II in the light of the elaborated software categories.

A. MVC Variants
For the review of classic GUI architecture patterns, we

would like to refer to exemplary and valuable work
published in [3] and [20], which is valuable for filling gaps
and giving directions for related design decisions. Therein,

128Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 150 / 679

options for refinement and customizing MVC based
architectures are proposed and discussed. It is still up to the
developer to decide on the several choices. In contrast, the
Quasar client architecture presents a reference for our
domain that already has some refinements incorporated.

Positive aspects. Both patterns and Quasar client share
two positive aspects that motivate their application. Firstly,
the data storing component does not depend on any other of
the components, and so, can independently evolve. Secondly,
only one of the components resumes the task to call
ApplicationKernel services. This aspect eases the design
efforts for interfaces and data exchange formats between
dialogs and ApplicationKernel.

Issues. According to the MVC variants, we see two
major issues that will be described as follows.

Separation of concerns. Firstly, the degree of
encapsulation and separation of concerns of MVC variants is
very limited. There is no variant that is able to reduce the
dependencies of all three abstractions altogether. Solely, the
distribution of tasks is altered, and so, the visibility among
components changes accordingly. In the end, one component
will be assigned responsibilities that originate from the two
other components as they are defined by classic MVC.
Therefore, the component with concentrated tasks tends to be
overburdened, and finally, can end up as the bottleneck from
a maintenance perspective. Additionally, in certain variants
the altering the tasks of the three components may result in a
simplification of one component that can only be employed
for stereotype tasks. There seems to be no ideal separation of
concerns among three components.

In general, there are no hints given how the business
logic and its related display can be decoupled. More
precisely, the View part is directly coupled to the GUI
Framework. In addition, the knowledge of the View has to
constitute of how to operate the GUI Framework facilities
(to construct the visual dialog parts) and what layout as well
as what selection, order and arrangement of UI-Controls are
needed to embody the domain and the current service in use.

Event differentiation. With regard to the event
processing chain of Section II.B, the patterns do not
distinguish clearly between events related to technical or
application related concerns. In general, a guideline is
missing for the decision when to shift between presentation
or application related processing of events. So, the developer
has to refine the architecture by himself. The reuse may be
affected, since the Controllers end up processing both types
of events for the sake of quick release cycles.

Cohesion. Concerning the identification of possible
instances and their proper size, there are hardly any hints
when to create new dialog instances or MVC-triads. Thus,
the modularization of dialog components is to be done on
behalf of the developer. Only the HMVC [24] gives some
rudimentary hints. The general size and scope of MVC units
is not clear. According to Karagkasidis [20], a View may
constitute of single UI-Controls (widgets), containers like
panels with a certain set of UI-Controls or whole dialogs.

Coupling. With respect to the limited separation of
concerns more issues arise. The control of Presentation
states and the handling of application related events to
initiate ApplicationKernel service calls are closely coupled to

View elements. Usually, in many MVC variants Controller
and View maintain a strong dependency where the Controller
is fully aware of the UI-Controls of the View. In fact, both
components build an aggregated unit of design that cannot be
reused and is harder to maintain. Eventually, a Controller
can only interact with Views that comply with a certain set of
states. Whenever the set of UI-Controls changes the possible
states of the dialog alter as well, so that the Controller
implementation may have to be revised each time.

To partly resolve this issue and decouple the Controller
from application aspects, a developer could revert to the
“Model as a Services Façade” [3] MVC variant. The Model
would be assigned both data structures and related service
calls for interaction with the ApplicationKernel. This step
would raise a comparative discussion as whether it is
favorable to build a separate service layer [25] or use the
domain model pattern [19] exclusively for the structuring of
the ApplicationKernel. In our opinion, the Model should not
act as a service façade, since it would make parts of an
ApplicationKernel service layer obsolete. According to the
resulting dependencies to functional requirements, the
traceability-links of use cases or tasks would be scattered
among different Models and parts of the ApplicationKernel.
Furthermore, the operations of the Model would be closely
coupled to a certain data structure so that a Model cannot be
easily combined with other application services in the future.
Lastly, services should prevail, since there might be other
clients besides a particular GUI to rely on services. There are
more disadvantages with that solution like the stereotype
character of the Controller [3], which will only serve a
certain pattern of interaction. Thus, the Model should only
contain data-relevant operations (getter, setter, aggregation
and conversion, a state of current selection state, validation)
and be reusable with other services. In this regard, the Model
should act as a mere preparation of a data structure that is
useful in the context of View.

Summary. The MVC and its derivates require much
adaptation in order to be prepared for implementation [22].
The above mentioned issues considerably may have a
negative impact the resulting architecture quality. The
available patterns are definitely not easy to interpret with
respect to the much more responsibilities illustrated by the
software category tree in Figure 4.

The tracing of functional requirements to the parts of the
GUI which coordinates ApplicationKernel will largely
depend on the refinements the developers have incorporated.
The resulting architectures will be heterogeneous and may
add complexity to quickly provide an adapted solution for
the particular domain. As long as there are no standard
architectures or standardized responsibilities available, the
developer is left with many choices that potentially will lead
to vast differences in software architecture quality. The
improved segregation of software categories in component
architectures is goal hard to achieve with available patterns.

B. Quasar Client Reference Architecture
1) General Valuation

The Quasar client architecture provides the most detailed
architecture view on GUI systems published so far and can
be regarded as a refinement of the common GUI patterns.

129Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 151 / 679

Positive aspects. In contrast to the MVC variants, the
Quasar client separates Presentation and DialogKernel as
principal dialog components. This separation is the main
source for its virtues, since more clearly distinguished
Controller tasks are achieved. In this regard, the
Presentation is required to handle technical events and the
DialogKernel will process application related events in close
cooperation with the ApplicationKernel services.

States and control. According to Siedersleben [4], the
Presentation and DialogKernel components share a common
structure: both possess memory for storing data, states and a
control. Thus, both components are able to manage their
states independently. A change of layout aspects in the
Presentation would not affect the DialogKernel accordingly.

In theory, the changes of states are implemented in each
component individually and can be triggered by A typed
interfaces that may be designed on the basis of a command
[5] pattern [22]. Consequently, the DialogKernel does not
require knowledge about the inner structure of the
Presentation and vice versa. Thereby, the Presentation may
provide a set of operations that alter the layout of a dialog
depending on the current content of data collected via
DataUpdate interface. The triggering of visual state changes
on behalf of the DialogKernel (Presentation State Update)
may be possible but is not considered. For instance, a
DialogKernel was notified via DialogEvent that the user has
selected an item in a table listing available products. But the
product is on back-order, so the Presentation should receive
the command to display a certain state of the button bar, e.g.,
deactivate the “add to cart” button. Besides, a DialogKernel
could be able to coordinate the inputs of a user working with
two Presentations simultaneously.

2) Traceability-Links to GUI Software Categories
To be able to better valuate the Quasar client architecture,

we traced the identified software categories of Section III.D
to its structural elements. Figure 6 displays the resulting
traceability matrix. The sources for traceability-links
constitute software categories of varying detail arranged on
the left hand side. Please note that the general parent
software categories were excluded, since all child categories
are presented in the matrix. On top of the matrix, the
traceability-link targets are represented either by the
components or interfaces of the Quasar client. Components
not relevant as traceability-link targets were excluded.

Interpretation. We need to provide directions about the
treatment of interfaces and connected dependencies, which
are depicted in Figure 3. A client that imports and calls a
foreign interface must have knowledge about the proper
usage and sequences of operations. In fact, the deeper and
more chained the commands are the more likely is the
mixture of categories. Finally, the client will be dependent
on the same software category the interface is composed of.
This particularly applies to the Presentation (obviously an
AT component) that extensively uses the GUI Framework
interfaces, which are to be included in the traceability matrix.
In contrast, single commands of abstract or stereotype nature
like notify calls can be realized with a 0 type interface. Yet,
the interfaces pose hard to valuate concepts as they inspire a
dynamic view on the architecture like the sequences of
commands or flow of algorithms. Ultimately, the interface

operations would need further refinement for a final
valuation. Partly, the Quasar reference architecture provides
basic sequences for interfaces in [1].

Figure 6. The GUI software categories traced to Quasar client

components and interfaces.

Separation of concerns. For the valuation of both
cohesion and separation of concerns two directions inside the
traceability matrix of Figure 6 have to be considered.

Horizontal. The horizontal direction displays a number
of marks for the realization of software categories though
components or interfaces. For a high cohesion and well
separated concerns, there should be categories realized only
by components or interfaces that belong to one unit of
design. In sum, Application Server Calls, Data Queries,
Data Validation, Dialog Lifecycle Actions, Dialog
Navigation and Model Data Observer are realized by several
Quasar elements, and thus, different units of design. The first
three categories are shared among the ApplicationKernel and
DialogKernel. Thus, the resulting coupling between these
design units will largely depend on the refinement of
interfaces between both components.

Eventually, a mixture of A software categories can be a
probable result when no 0 interfaces can be invented. The
details of this client and server communication remain an
open issue as well as the construction of data queries.

Besides, Model Data Observer is presented with two
options that are either implemented by the DialogKernel
(DataRead) or Presentation (DataUpdate). However, the
complementary task of Model Data Edit is only briefly
mentioned. Siedersleben states that the Presentation knew
about the DialogKernel but not vice versa [4]. How the
important task of changing dialog data is performed by the
Presentation and what interfaces are required is left open.

130Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 152 / 679

Moreover, Dialog Lifecycle Actions are of less
importance. They are rather stereotype operations that could
be detailed by 0 type software. For the Dialog Navigation,
there may be missing directions in the Quasar client
reference architecture, so that responsibilities have to be
refined on behalf of the developer. We wonder how dialog
sequences resulting from task model specifications would
affect the software category assignments. Maybe the Session
cannot be marked as 0 software anymore, since it needs
knowledge of the proper sequence of dialogs, which may
finally be reused for different task model instances.

Vertical. A further assessment considers the vertical
direction that reveals targets with many traceability-links.
This can be a marker for lacking detail or even low cohesion.
Those targets would take on too many responsibilities at
once. There are multiple candidates that awake our attention.

As already stated above, the ApplicationKernelService
needs further refinement, so that the way how calls and
queries are performed by the DialogKernel are both detailed
and differentiated concerning allowed data types and
resulting coupling. Consequently, another major issue is the
DialogKernel itself. This component is relatively vague in
definition, so that tasks like calls to the ApplicationKernel,
queries, the dialog data definition, data validation and the
control of states need to be elaborated from scratch.
Concerning functional requirements tracing, the
DialogKernel’s internal structure and state control are
important issues that affect the resulting dependencies to
requirements. For instance, it has to be decided what portions
of a use case will be exclusively realized by the Application
Services and what parts the DialogKernel is in charge of.
Above all, the DialogKernel is likely to depend to some
considerable extent on the ApplicationKernel and its Domain
Data Model. In this regard, it has to be cleared how queries
are to be handled from the Dialog Data Model’s point of
view. The Dialog Data Model can either be composed of
pure entities, which may be embedded as interfaces or data
transfer objects, or aggregations that are sourced from
selected attributes of several entities retrieved by a query.

Furthermore, the Presentation also requires further
elaboration in design. Being the complementary part of the
DialogKernel in a dialog, the Presentation is declared as
having its own data model in parallel to the DialogKernel in
order to perform conversions to the Technical Data Models.
The main data definition is assigned to the DialogKernel,
since this component is in charge of any data retrieval from
the ApplicationKernel. How the data related communication
(read and edit) besides the notification of updates between
Presentation and DialogKernel is originally intended
remains another open issue. In this regard, design decisions
on both interfaces and data types as well as their connection
to the Domain Data Model have to be considered. Moreover,
details about the triggering (Presentation State Update) and
execution of View State Changes are missing. This is due to
the unclear connection between Presentation and
DialogKernel. When decisions about reactions on events are
bound to Presentation, logical behavior will be closely
coupled to views, so that they are less flexible for change and
reuse. In addition, events can only be emitted by view
elements and can not be triggered by the evaluation of

gathered dialog data alone, since there is no link for the
DialogKernel to initiate a View State Change via
Presentation State Update when an event was forwarded.

Lastly, the ViewDefinition interface and related
implementations inside the Presentation need more
refinement. The coarse grained interface is employed for
both handling view states and their initial construction. In
this context, a developer would have to decide on how the
DialogKernel may trigger the visual state changes as a result
of its own states defined by Dialog State Changes.

3) Summary
Our review of the Quasar client revealed that this

reference architecture is more advanced than common GUI
patterns. Its main advantage lies in the division of Controller
tasks among the Presentation and DialogController, so a
better separation of concerns can be achieved. However, this
results in increased complexity concerning the number and
type of interfaces to be implemented.

In comparison to other architectural patterns, the Quasar
client provides more detail and descriptions that give hints to
many design decisions, but these are scattered among several
sources [4][16][21][22] only available in German language.
There was no comprehensive description published, which
would provide every needed implementation detail. In the
end the Quasar client remains vague with many important
issues to solve by individual design decisions. Nevertheless,
we learn from the traceability matrix in Figure 6 that there
are already hints, which component is to take on what
responsibility. In practice, this would yield only a partial
improvement with respect to the common GUI patterns. In
[1], Haft et al. state that the Quasar client could not be
standardized, since most software projects required specific
adaptations. The many individual refinements would affect
the marking of software categories, so that the purity of them
and the separation of concerns may not be maintained as
intended. Even the Quasar client assumes that some portions
of AT software cannot be avoided with conventional
architectures relying on invasive frameworks.

 To conclude, the Quasar architecture is not suitable for a
straight forward implementation. As we see, there are still
gaps in the reference architecture and the developer has to
incorporate own thoughts in order reach the desired quality
architecture. The separation of concerns can be improved
with a customized Quasar client architecture, but this largely
depends on the skills of the architect. In the end, the Quasar
client may be a better, and foremost higher detailed, basis for
reuse of architectural knowledge than the MVC variants.

V. RESULTS AND DISCUSSION
1) General Considerations

We derived a software category model that structures the
dependencies among common responsibilities of GUI
architecture design units. This set of categories can be of aid
for the valuation of both the detail and separation of concerns
of reference architectures or patterns. In the context of GUI
design, the categories resemble different and delimited
packages of knowledge, which are used to identify and map
components. Later on, the dependencies among the
categories will lead the design of interfaces between
components [4] to achieve a minimum of coupling. Thus, the

131Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 153 / 679

proper distribution of identified categories among design
units has an enormous impact on software quality.

Concerning the actual shape of the software categories
tree, there might be different structures or aggregations
possible (intermediate categories) but the final child
elements clearly mark the occurring responsibilities.
Currently, concerns like user profiles, additional assistance
and authorization are not included. In general, terms in the
field of GUI architecture are not used uniformly, so we rely
on our category model that provides a clear description of
tasks. Furthermore, the software categories may be adapted
to fit other domains, since the separation of concerns is
essential in most software architectures.

2) Major Issues in GUI Architecture Design
The available architectural patterns differ in structure as

well as the encapsulation of concerns. Finally, there is no
standardized GUI architecture ready for implementation.
This is an issue here but also for mobile devices [26]. We
analyzed the differences or missing details of presented
architectural patterns and identified three major design issues
that may have a considerable impact on GUI maintenance.

Firstly, a design decision has to treat the question what
and how much application logic is being processed by a
single dialog, or particularly its DialogKernel. Thus, the
coordination and division of labor between dialog and
application related components should clearly define what
portions of the event processing chain will just be handled by
the DialogKernel. As the primary controlling entity of a
dialog, the DialogKernel acts as a client of the
ApplicationKernel and its services [4][22]. The architect has
to decide how much control flow will be implemented by the
client and what operations or services are to be integrated in
the controlling object’s flow definition. For instance, the
business logic can be separated by different layers like
services, auxiliary services, domain model entities and data
types [27]. The coordination of the various algorithms,
which is essential to achieve the goals defined by use cases,
can either be performed by the ApplicationKernel or the
DialogKernel may govern the sequence of service calls and
their combination. The so called orchestration of services to
realize a certain use case is an option for the DialogKernel,
since this design unit determines the data structure for user
interaction. In this context, the DialogKernel directly can
react to valid user inputs and may decide on the further
processing via services or may even trigger corresponding
state changes for the Presentation. How the latter is to be
designed remains an open issue. Siedersleben states that the
ApplicationKernel components constitute of use case
realizations [4]. However, these components would
definitely be incomplete use cases realizations, since the
latter regularly require much user interaction. To conclude,
the question arises how use case realizations are sub-divided
among ApplicationKernel services (management of data
structures and relationships), DialogKernels (logic for dialog
flow and control of user interaction) and finally
Presentations (visual part, in- and output UI-Controls).
Ultimately, this design decision depends on the navigation
structure and whether one DialogKernel may control a
composition of Presentation units or sub-dialogs that form a
complete dialog unit for the sake of one use case realization.

This leads us to the second issue that is concerned with
the flow of dialog units or navigation among them. Recent
research [28][29] investigated on the role of task models for
structuring the flow of dialogs. In analogy to the above
described issue of division of labor for use case realizations
between ApplicationKernel and DialogKernel, the architect
has to decide on the responsibilities of a single DialogKernel
concerning the flow of dialogs. The question arises what part
of the navigation is governed by higher situated components,
e.g., a dedicated task controller, and what view changes are
in the responsibility of the DialogKernel.

Thirdly, the Quasar software categories serve a main
purpose to separate application from technical aspects, and
thus, avoid AT software. As far as the GUI architecture is
concerned, we identified two aspects where AT software
does occur. The Presentation communicates with both the
GUI Framework and DialogKernel in order to retrieve data
inputs from the user. Eventually, the Technical Data Models
of the GUI Framework and the Dialog Data Model have to
be converted in the respective formats to enable information
exchange. There may be a second conversion necessary
between Dialog Data Model and Domain Data Model when
the DialogKernel has to use a different data format. Another
aspect of AT software is the transformation of the Dialog
Data Model to visual representations, which are constructed
by the Presentation. Accordingly, the Presentation needs to
possess knowledge of both the proper selection, arrangement
of UI-Controls and the usage, creation of the latter via the
specific GUI Framework facilities. Besides the first two
issues, these two AT software aspects can additionally
increase maintenance efforts. To solve the third issue,
conventional architectures will not suffice and specific
designs for additional decoupling have to invented. An initial
approach was formulated by Siedersleben and Denert in [16].

3) User Interface Patterns
Before we draw our conclusions, we briefly note how the

incorporation of UIPs for the Presentation component may
resolve the mixture of application and technical aspects.
UIPs promise the reuse of visual layout and related
interaction. The Presentation could be composed of these
pattern units and would specify their contents via parameters.
The UIP implementations would directly depend on the GUI
Framework and no longer each Presentation unit. Therefore,
fewer efforts would have to be spent on programming with
GUI Framework facilities in the long run when UIPs could
be reused extensively. The development could be focused on
the DialogKernel design issues instead.

To integrate UIPs in the Presentation, the differentiated
software categories for event processing will be of great
value as they prepare the better adaptability and even
exchange of Presentation units. Responsibilities would be
centered in the DialogKernel to raise the flexibility of UIPs.

VI. CONCLUSION AND FUTURE WORK
The scope of this work is a study of the prevailing issues

of GUI architecture design. A software category tree on the
basis of Quasar was elaborated, which displays common
responsibilities for GUI architectures and their dependencies.
With the aid of the software categories, we have analyzed the
common GUI MVC pattern and the Quasar client reference

132Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 154 / 679

architecture. As result, we identified pattern specific and
general issues of relevance for design decisions within GUI
architecture development. The herein applied method with a
decomposition of software categories and the tracing to an
architecture model can be applied for other domains to assess
the separation of concerns, cohesion and coupling.

Future work. The findings of this work will influence
our further research into the implementation options for
UIPs. The Quasar client proved to be the most advanced
architecture publicly available. On the basis of the identified
issues of that architecture, we will have to develop dedicated
solutions to prepare a suitable target architecture for UIPs.
We need to further assess the architecture variants outlined
in our previous work [17]. The software categories will help
us to plan and evaluate possible solutions. Whatever
architecture variant will be favored, it definitely needs a
software architecture of high quality with well separated
concerns to accept UIPs as additional artifacts. The solution
must resolve the identified GUI design issues to integrate
UIPs in order to reduce the efforts for adaptation of GUIs.

REFERENCES
[1] M. Haft, B. Humm, and J. Siedersleben, “The architect’s

dilemma – will reference architectures help?,” First
International Conference on the Quality of Software
Architectures (QoSA 2005), Springer LNCS 3712, Sept.
2005, pp. 106-122.

[2] T. Reenskaug, “Thing-Model-View-Editor. An example from
a planningsystem,” Xerox PARC technical note, 1979.05.12.

[3] S. Alpaev, “Applied MVC patterns. A pattern language,”
The Computing Research Repository (CoRR), May 2006,
http://arxiv.org/abs/cs/0605020, 2014.08.14.

[4] J. Siedersleben, Moderne Softwarearchitektur [Modern
software architecture], 1st ed. 2004, corrected reprint.
Heidelberg: dpunkt, 2006.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Software.
Reading: Addison-Wesley, 1995.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stahl, Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns. New York: John Wiley & Sons, 1996.

[7] M. Lindvall and K. Sandahl, “Practical implications of
traceability,” Software - Practice and Experience (SPE), vol.
26, issue 10, Oct. 1996, pp. 1161-1180.

[8] P. Mäder, O. Gotel, and I. Philippow, “Getting back to basics:
promoting the use of a traceability information model in
practice,” The Fifth Workshop on Traceability in Emerging
Forms of Software Engineering, IEEE, May 2009, pp. 21-25.

[9] J. Siedersleben, “An interfaced based architecture for business
information systems,” The Third International Workshop on
Software Architecture (ISAW '98), ACM, Nov. 1998, pp.
125-128.

[10] E. Evans, Domain-Driven Design: Tackling Complexity in
the Heart of Software. Boston, MA: Addison-Wesley, 2004.

[11] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
support for an evolutionary design process using patterns,”
Workshop on Multi-channel Adaptive Context-sensitive
Systems (MAC 06), May 2006, pp. 71-80.

[12] J. Engel and C. Märtin, “PaMGIS: A framework for pattern-
based modeling and generation of interactive systems,” The
Thirteenth International Conference on Human-Computer
Interaction (HCII 09), Part I, Springer LNCS 5610, July 2009,
pp. 826-835.

[13] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient generation of ambient intelligent user

interfaces,” The Fifteenth International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 11), Springer LNCS 6884, Sept.
2011, pp. 136-145.

[14] M. J. Mahemoff and L. J. Johnston, “Pattern languages for
usability: an investigation of alternative approaches,” The
Third Asian Pacific Computer and Human Interaction
Conference (APCHI 98), IEEE Computer Society, July 1998,
pp. 25-31.

[15] J. Borchers, “A pattern approach to interaction design,”
Conference on Designing Interactive Systems (DIS 00),
ACM, August 2000, pp. 369-378.

[16] J. Siedersleben and E. Denert, “Wie baut man
Informationssysteme? Überlegungen zur Standardarchitektur
[How to build information systems? Thoughts on a standard
architecture],” Informatik Spektrum, vol. 23, issue 4, Aug.
2000, pp. 247-257, doi: 10.1007/s002870000110.

[17] S. Wendler, D. Ammon, T. Kikova, I. Philippow, and D.
Streitferdt, “Theoretical and practical implications of user
interface patterns applied for the development of graphical
user interfaces,” International Journal on Advances in
Software, vol. 6, nr. 1 & 2, pp. 25-44, 2013, IARIA, ISSN:
1942-2628, http://www.iariajournals.org/software/.

[18] J. Dunkel and A. Holitschke, Softwarearchitektur für die
Praxis [Software architecture for practice]. Berlin: Springer,
2003.

[19] M. Fowler, Patterns of Enterprise Application Architecture.
New Jersey: Addison-Wesley Professional, 2003.

[20] A. Karagkasidis, “Developing GUI applications: architectural
patterns revisited,” The Thirteenth Annual European
Conference on Pattern Languages of Programming
(EuroPLoP 2008), CEUR-WS.org, July 2008.

[21] J. Siedersleben (ed.), “Quasar: Die sd&m Standardarchitektur
[Quasar: The standard architecture of sd&m]. Part 2, 2. edn.
sd&m Research: 2003.

[22] M. Haft and B. Olleck, “Komponentenbasierte Client-
Architektur [Component-based client architecture],”
Informatik Spektrum, vol. 30, issue 3, June 2007, pp. 143-
158, doi: 10.1007/s00287-007-0153-9.

[23] J. Vanderdonckt, “A MDA-compliant environment for
developing user interfaces of information systems,” The
Seventeenth International Conference on Advanced
Information Systems Engineering (CAiSE 2005), Springer
LNCS 3520, June 2005, pp. 16-31.

[24] J. Cai, R. Kapila, and G. Pal, “HMVC: The layered pattern for
developing strong client tiers,” JavaWorld Magazine,
http://www.javaworld.com/javaworld/jw-07-2000/jw-0721-
hmvc.html (2000), 2014.08.14.

[25] R. Stafford, “Service Layer,” in [19].
[26] K. Sokolova, M. Lemercier, and L. Garcia, “Android passive

MVC: a novel architecture model for the android application
development,” The Fifth International Conference on
Pervasive Patterns and Applications (PATTERNS 2013),
IARIA, May 27 - June 1 2013, pp 7-12.

[27] S. Wendler and D. Streitferdt, “An analysis of the generative
user interface pattern structure,” International Journal On
Advances in Intelligent Systems, vol. 7, nr. 1 & 2, pp. 113-
134, 2014, IARIA, ISSN: 1942-2679,
http://www.iariajournals.org/intelligent_systems/index.html.

[28] F. Radeke and P. Forbrig, “Patterns in task-based modeling of
user interfaces,” The Sixth International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
07), Springer LNCS 4849, Nov. 2007, pp. 184-197.

[29] V. Tran, M. Kolp, J. Vanderdonckt, and Y. Wautelet, “Using
task and data models for user interface declarative
generation,” The Twelfth International Conference on
Enterprise Information Systems (ICEIS 2010), vol. 5, HCI,
SciTePress, June 2010, pp. 155-160.

133Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 155 / 679

The Impact of User Interface Patterns on Software Architecture Quality

Stefan Wendler and Detlef Streitferdt
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

{stefan.wendler, detlef.streitferdt}@tu-ilmenau.de

Abstract — Current research suggests user interface patterns
(UIPs) to lessen efforts for the development and adaptation of
graphical user interfaces (GUI). UIPs shall enable the reuse of
both layout and interaction definitions that can be instantiated
for any desired context. Most approaches are based on
generative development. However, no details about target
architectures or examples that prove the variability and proper
structuring of UIP artifacts have been published yet.
According to conventional GUI architecture development,
major design decisions have to be solved individually, since no
standard architectures are presently available. This applies to
UIP based solutions as well, so that the target architectures are
both hard to establish and maintain. On the basis of a general
GUI responsibilities model, prevailing GUI design issues will
be analyzed according to their impact on UIP based solutions.
Furthermore, UIP specific responsibilities are identified and
modeled as a software category graph. With this work, the
implementation options of UIP architectures are discussed.
Finally, we draft a possible solution architecture on the basis of
these generalized concerns.

Keywords — user interface patterns; model-based user
interface development; HCI patterns; user interface generation;
GUI software architecture; graphical user interface.

I. INTRODUCTION

A. Motivation
Domain. Nowadays, business processes build on the vast

support of business information systems. These systems have
to realize a large set of requirements that presume a
multitude of services that are requested to handle thousands
of data sets with a clearly defined stereotype structure.
Depending on the domain and specialization of business
processes, standard software for customizing to specific
requirements or software that has to be developed
individually remain as options for their IT-support.

Individual GUIs. Regardless of the chosen solution, the
demand for individually designed graphical user interfaces
(GUI) has to be considered as a great impact on software
architecture. Proven human computer interaction (HCI)
patterns [1] enable usability traits that can be essential for
both user acceptance and productivity. Therefore, those
patterns are to be applied to the context of dialogs, which
will be coupled to the application services and data structures
the users need to interact with according to business process
definitions. In this context, standard software quickly is
pushed to its limits concerning customization options for
individual dialogs. As far as individual software is
concerned, generative and model-based development has

greatly advanced with respect to the creation of stereotype
structures within a software architecture.

User interface patterns. However, the development and
maintenance of GUI dialogs still implies high efforts. To
achieve a higher efficiency on the basis of increased reuse,
HCI patterns are to be formalized in order to apply them for
effective generation of dialog views. On that basis, user
interface patterns [2][3] (UIPs) have emerged that shall
model essential HCI pattern structures. In addition, the new
kind of pattern offers parameterization options in order to
apply the corresponding HCI pattern to any suitable context.
In sum, the application of UIPs promises many feats for
future generative development

Limitations. Currently, two major issues obstruct the
vast deployment of UIPs.

Primarily, the UIP concept itself has not gained sufficient
maturity: the current state of formalization for UIPs is still
not adequate with respect to UIP variability requirements [3],
which are essential for a general application of UIPs as
versatile patterns. The design of a dedicated UIP language
could be initiated as an option and already was attempted [4]
or is work in progress [5]. Nevertheless, high efforts are to
be considered for that approach.

Besides, UIPs require a software architecture of high
quality due to their high reusability and variability traits. The
architecture has to be composed of a stable set of
components with standardized interface structures to allow
the reuse of UIPs within and among different software
projects. Thus, UIPs need to be integrated into an
encapsulated structure within the GUI sub-system, so that the
realization of workflows, functional requirements and related
application components is not affected. Ultimately, UIPs
have to be decoupled from their application context. The
current research into GUI architectures does not provide such
an architecture and approaches that are already based on
UIPs have not published details of target architectures yet.
We will briefly reason about that architecture concerns.

Architecture concerns. Available patterns [6] and
related sources [7][8] provide valuable aspects for design
decisions, but they are rather isolated and have to be
integrated into one comprehensive reference architecture that
allows the seamless integration of UIPs. In this respect,
common MVC variants and the Quasar client reference
architecture [9] are too general in concept [10], so that major
design decisions are still to be elaborated in order to allow
the effective deployment of UIPs.

Moreover, the technical GUI frameworks already define
some architecture constraints for action- and data-binding, as
well as control facilities. So, the architect has to find ways to
limit their influence on the variability of UIPs, otherwise

134Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 156 / 679

UIPs would only be applicable in a certain technical
environment.

Ultimately, the development of a high quality software
architecture on the basis of a clearly defined requirements
structure takes considerable time and has to mature by the
experience gained during several projects. Often budgets are
just as high to barely exceed break-even or reuse is not
envisioned or planned [11], and so, hardly any efforts remain
to build and refine reference architectures in the aftermath. In
the end, this tasks remains for academic research.

B. Objectives
With our previous work on UIPs [12][3][13] and general

GUI architecture responsibilities [10], we have a solid
foundation to approach the above introduced UIP- and GUI-
architecture limitations.

Firstly, we have to consider that UIP based solutions
heavily rely on a pre-defined architecture to accommodate
code structures build from both the pattern and instance or
configuration information. Consequently, we have to analyze
the major GUI design decisions and identify additional
responsibilities required for the implementation of UIPs.

Since model-based approaches are already work in
progress, we will have to critically discuss the principal UIP
implementation architectures. Accordingly, we will criticize
the general formalization approach and argue for an
alternative solution. As a consequence, we draft a suitable
GUI reference architecture based on the new UIP concerns.

C. Structure of the Paper
In the following section, related work that is relevant for

our objectives is presented. The third section presents our
analysis of the impacts UIP based solutions have on the
general GUI design issues. In addition, a software category
model is described that details the UIP specific
responsibilities of a GUI architecture. In Section IV, the
principal UIP implementation alternatives are discussed. A
UIP based architecture is drafted in Section V, before we
present our results in Section VI. Finally, we draw our
conclusions and state future work in Section VII.

II. RELATED WORK

A. Standard GUI Architecture for Business Information
Systems
Siedersleben and Denert [14] already tended to the

missing GUI architecture standardization issue outlined in
the introduction. To enable a more effective design with
respect to separation of concerns and increased adaptability
to changes, business information systems had to be designed
on the basis of a standard architecture, which would
incorporate a defined set of patterns and interfaces.

One of those patterns of the envisioned standard
architecture was the Virtual User Interface (VUI) that is
depicted in Figure 1. The VUI should allow a developer to
implement dialogs with a high independence from the
rendering GUI Framework. In detail, a Dialog and its events
should be implemented with the aid of the technical
independent, abstract interfaces WidgetBuilder and
EventListener rather than using certain interfaces and objects
of the imported GUI Framework directly. The primary goal

was to preserve the interchangeability of the GUI
Framework without affecting existing dialog
implementations. Solely the component Virtual User
Interface would interact directly with the GUI Framework,
and thus, would depend on technological aspects.

The basic concepts worked as follows. A Dialog would
create and even adapt its view at runtime with the operations
provided by WidgetBuilder. The VUI could be delegated by
the Dialog in order to construct and configure a new status
and button bar inside a specified frame. Moreover, the VUI
would notify the Dialog via the interface EventListener when
events would have been induced by UI-Controls. More
details are not known.

cmp VUI

GUI
Framework

Virtual User
Interface

DialogApplication
Kernel

EventListener

WidgetBuilder

«use»

«call»

«call»

«use»

Figure 1. Virtual user interface architecture as introduced in [14].

B. GUI Software Categories and Design Issues
No further ideas for the standardization of an architecture

for the domain have been published. A GUI reference
architecture [15][9] (Quasar client) and a concept for the
identification of components as well as their interface design
[15] were presented instead. The latter was based on
software categories that would mark the responsibilities and
dependencies of a given component. These categories could
be used to valuate the cohesion of a given modular structure
according to the separation of concerns principle of design.

In [10], we applied the software category concept for the
identification and delimitation of general GUI
responsibilities. In this regard, the common MVC variants
[16][17] and the Quasar client architecture [9][15] were
considered both for analysis, and besides other sources, the
derivation of software categories. The resulting software
category hierarchy and their dependencies are illustrated in
Figure 2. The related sources mostly separate the very basic
categories 0 (a programming languages’ reusable
foundations), A (application, domain) and T (technical
aspects, frameworks) without any refinement. Being based
on these general software categories, each refined software
category of Figure 2 represents the knowledge required for
implementing the operations, their proper sequence and
required data structures for the respective responsibility they
are entitled with.

As a result of our analysis, we derived three major GUI
design issues. Firstly, the architect has to decide on how
much application control flow is assigned to GUI dialogs and
how they coordinate the interaction with the application
kernel. This would also influence the application related
event processing, and in particular, the update of presentation
view states due to changed application data (another view for
a certain use case step). Secondly, for the navigation among
dialogs and flow of the sub-dialogs a dedicated controlling
component has to be allocated. Thirdly, the transformation of
application aspects like data models and the visual
representation of domain model entities have to be solved. In
this regard, a tight coupling to technical frameworks should
be limited. For details, [10] can be consulted.

135Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 157 / 679

cmp GUI Software Categories

TA

View
Definition

Presentation
Event Handling

Presentation
(FUI)

Arrangement of
UI-Controls

Layout
Definition

UI-Control
Configuration

View State
Changes

Construction of
UI-Controls

Re-Arrangement
of UI-Controls

Technical Data
Models

Model Data
Edit

Modification of
UI-Control Properties

Addition and Removal of
UI-Controls

Dialog Logic

Data
Validation

Application
Logic

Application
Server Calls

Dialog
Navigation

Dialog Data
ModelDialog Lifecycle

Actions

GUI
Framework

UI-Control
Library

Layout
Manager

Event
Forwarding

Action
Binding

Dialog Event
Handling

Domain Data
Model

Data Types and
Validation Rules

Data
Conversion

0

Construction and
Configuration

UI-Control
PropertiesPresentation

Data Handling

Model Data
Observer

Data
Queries

Application
Services

Event Listener
Definition

Dialog State
Changes

Presentation
State Update

Figure 2. General GUI responsibilities modeled via software categories.

C. User Interface Pattern Aspects
Past work in the field of HCI resulted in the combination

of the specification of reusable GUI visual design and
interaction solutions with a pattern-based description.
Several pattern languages emerged [18]. Current research is
trying to exploit these patterns for the automated generation
of GUIs. As a consequence, UIPs are based on the idea to
formalize HCI visual designs into software patterns that can
be reused in any desired application context.

In [12], we elaborated the theoretical and practical
implications of that kind of pattern applied within the general
transformations from domain requirements to a final user
interface specification. As result, UIPs are very promising
for bridging the gap between pure requirements and potential
GUI specifications, since they define many aspects like used
UI-Controls and their interaction designs. Particularly, the
latter can be reused to imagine and prototype GUIs of high
usability. Moreover, we presented and discussed general
architectures for the practical application of UIPs.

With our contributions [2][19], first criteria and aspects
for the UIPs to be deployed for variable GUI dialog
generation were introduced. Based thereupon, we formed a
drafted definition of that particular artifact. The UIP
requirements were considerably refined in [3] by the
description of an influence factor model. Particularly, the
abilities of UIPs were defined by the three aspects view
(visual elements, layout), interaction (view states, events and
data-binding) and control (composition and interaction of
UIPs, binding to application relevant events).

Lastly, the UIPs aspects were further detailed by an
analysis model [13], which was derived from the impacts of
the influence factor model and describes the resulting
structure of a UIP. The elaborated structure could be
positively evaluated with UIP examples illustrated by object
models. With that last step, basic foundations of UIPs and
many aspects that are essential for the formal expression of a
UIP are available now.

D. Model-based Frameworks on the Basis of UIPs
Past research has put considerable efforts into the

deployment of UIPs or closely related patterns within model-
based developments processes.

The University of Rostock [20] mainly worked on the
derivation of dialogs from task models and included UIP-like
artifacts called PICs (pattern instance components) for the
generation of final views. A dedicated UIP formalization
language on the basis of UsiXML [21] called UsiPXML [4]
was created in parallel. A continuation is not known.

The University of Augsburg presented research into UIPs
with the introduction of an own modeling framework called
PaMGIS [5]. To express UIPs, a dedicated DTD was partly
presented in [5]. The work is still in progress.

The University of Kaiserslautern focused on the
application of UIPs for the domain of production
environments [22] and sought a way of enabling GUI
devices to be able to adapt their view at runtime [23]. In their
approach, UIML [24] as a basic GUI specification language
is used and augmented with a pattern interface and
configuration facilities to be interpreted at runtime. There are
only few details of the modeling framework [25] published.

In sum, all approaches suggest individual modeling
frameworks that rely on specific formalization formats of
UIPs and produce different outputs. A detailed review of
these approaches compared to our UIP requirements model
is provided in [3].

III. USER INTERFACE PATTERN ARCHITECTURE IMPACTS
AND RESPONSIBILITIES

A. Approach and GUI Software Categories
Due to the prevailing issues in GUI architecture design,

the development of a new reference architecture for UIPs is
most likely to be approached. The interfaces between
components need to be harmonized to fit UIPs as reusable
entities that may be exchanged to allow the quick adaptation
of GUI dialogs. In addition, the event processing has to be
prepared to allow the exchange and re-configuration of UIP
instances. Finally, UIPs will require a new quality of the
software architecture with additional responsibilities.

Category refinement. For the design of such a reference
architecture, it is of the essence to consider the separation of
concerns. To prepare a proper component identification in
this context, the software categories presented in Section II.B
will be of great value. They already incorporate the basic

136Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 158 / 679

separation of application and technology as requested in
[9][11][14][15] as far as possible. In addition, they feature
fine-grained refinements of both areas of knowledge. This is
essential to avoid coarse grained software categories that
concentrate too many responsibilities and would not improve
traceability. With coarse grained software categories the
component identification would not guarantee separated
concerns, since components eventually would have to be
refined on the fly during implementation. So, the creation of
traceability-links would rely on the coarse grained
architecture models, and most likely, would not result in a
detailed impact analysis. In contrast, the categories of Figure
2 were separated to a more fine grained level that is able to
guide the decisions for GUI design issues. Especially the
event processing was differentiated concerning the context
(Presentation, DialogLogic), triggers (Dialog Event
Handling and children) and execution (Application Server
Calls, Dialog Navigation, View State Changes) of state
changes. Furthermore, our analysis of the Quasar client with
the aid of the software categories in [10] revealed several
open issues that were due to lacking details or cohesion.

B. The Impact of User Interface Patterns on GUI Design
Issues
We discuss how UIPs will impact the GUI design

decisions and ultimately affect the identified responsibilities.
A-T-separation. Foremost, UIPs will stress the

separation of A and T categories due to their variability: If
UIPs are bound to a certain GUI Framework, they will be
virtually rendered useless for architectures employing other
technical environments.

Besides this very basic separation, an additional
separation has to be considered between Dialog Logic and
Presentation design. To allow the quick adaptation of
dialogs, the logical part of a dialog (dialog kernel) has to be
able to interact with a presentation that may be altered in
design frequently. The former should not be affected when
the presentation design was changed to an alternative set of
UIP instances. For instance, two large panels for editing data
in a single dialog were re-structured into a dialog featuring
two tabs instead. Thus, both logic and visual dialog parts
have to be decoupled for the adaptation of UIPs.

Flow of application logic. Concerning the division of
labor between application and dialog kernel, UIPs need a
single basis for coupling of their generic events to context
specific behavior. The OutputActions of a UIP [13] should
be processed centralized by a single component like the
dialog kernel to preserve the exchangeability of UIPs
emitting those events from the variable presentation part. In
this regard, the category Presentation State Update gains
importance and shall enable a dialog kernel to govern visual
changes regardless of the concrete Presentation
implementation and its UIP instances. The further rationale
is to decouple application-independent UIP events from
application specific interpretation and processing. In
principle, a UIP may be configured to emit an event that may
be interpreted very differently in various dialog kernel

contexts. With respect to UIP combinations that form one
Presentation in interaction with the dialog kernel, the
individual UIPs have to be kept independent from each other
to allow for flexible combinations. One UIP shall not limit
the flexibility and change of states of another. In return, a
UIP needs a standardized interface to application related
artifacts for Event Forwarding.

Besides event handling, this also applies for the Data-
binding impact [3] UIPs require. Obviously, the dialog
kernel will become a direct interaction partner for both
events and data of a number of UIP instances that are to be
integrated together instead of a single view or Presentation
unit. Therefore, the context for UIPs has to be kept rather
isolated from application kernel components, what allows
versatile combinations between both. Finally, it has to be
considered to centralize the flow of interaction specified by
use case models [26] in order to keep an implicit but
recognizable connection between UIPs and those functional
requirements. In this regard, the dialog kernel may serve
once again as central unit that coordinates both Application
Server Calls and Presentation State Updates. The latter
establish the implicit connection between UIPs, their states
or instantiation and use case steps.

Navigation. The scope of UIPs can be limited to visual
elements within dialogs or can even span entire dialog types
and their navigation. The different UIP abstractions are
symbolized by the various pattern types defined in model-
based frameworks [5][23][27]. For the implementation of
UIPs that trigger and design dialog navigation like wizards
or tabs [28], a dedicated component will be needed that
translates the events emitted from these UIPs into the desired
change of views or dialogs. The rationale for the
centralization is that UIP instance combinations can be very
versatile, though UIPs only define the UI-Controls that can
be assigned to trigger navigation events. Finally, the
evaluation of these events has to be governed by the same
component that implements the navigation for non-UIP
dialogs in order to allow the seamless integration of UIPs
with ordinary dialogs. According to the software category
tree, the respective responsibility belongs to the task set of
Dialog Event Handling, since the navigation is restricted by
validation results. For instance, each wizard dialog needs
valid inputs to allow the navigation to the next step.

UI-Control set. A further aspect raised by UIPs is the
availability of certain UI-Control implementations. For every
domain or project, a range of certain UIPs is of relevance.
These are to be defined on the concrete user interface (CUI)
level of abstraction [12] with reference to [29]. Therefore,
the UIPs have to be transformed into UI-Control
compositions on the final user interface (FUI) level [29] of
abstraction. The CUI based implementation of UIPs ensures
their platform independent application and decouples them
from GUI Framework specific concepts. However, UIP basic
elements must be covered by the favored GUI frameworks.
For instance, one cannot expect to develop UIPs on the basis
of Java AWT due to the very limited set of UI-Controls.

137Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 159 / 679

cmp UIP Software Categories

TA

View
Definition

Presentation
Event Handling

Presentation
(FUI)

Layout
Definition UI-Control

Configuration
View State

Changes

Construction of
UI-Controls

Technical Data
Models

Model Data
Edit

Dialog Logic

Dialog Data
Model

GUI
Framework

UI-Control
LibraryLayout

Manager

Event
Forwarding

Action
Binding

Dialog Event
Handling

0

UI-Control
Properties

Presentation
Data Handling

Model Data
Observer

Event Listener
Definition

Presentation
(CUI)

UIP Configuration

UIP View
Definition

UIP States
Definition

UIP
Layout

UIP Elements
Definition

StyleView
Parameters

Dialog Action
Binding

Presentation
Action Binding

UIP Data
Binding

UIP
Rendering

View States
Definition

View Structure
Changes

UI-Control
Rendering

UIP
Definition

UI-Control
Definition

Re-Arrangement
of View Elements

Modification of View
Element Properties

Addition and Removal
of View Elements

Arrangement of
View Elements

Figure 3. GUI software categories enhanced with UIP based responsibilities.

C. User Interface Pattern Responsibilities Model
From the basic foundations of our previous work and the

above mentioned design aspects, the UIP related
responsibilities of a GUI architecture will be developed.

Factor model. The influence factor model for UIPs [3]
describes additional requirements besides the general GUI
architecture responsibilities. As a consequence, the software
categories have to be enhanced to reflect the configuration
and variability aspects of UIPs. The resulting software
category tree is essential for the identification of components
of the UIP implementation, the planning of their
dependencies and the consideration of UIP requirements.
Finally, the category model will translate the factor impacts
to comprehensive categories of software component design.

Analysis model. The UIP analysis model [13] represents
detailed structures that refine the impacts of the influence
factor model. In detail, the analysis model describes coupling
points between GUI architecture and UIP configuration
facilities, basic structures for UIP units and detailed
parameters for visual and behavior aspects. According to the
software category identification, the information is useful to
mark dependencies to existing basic GUI responsibilities.
Afterwards, the analysis model will drive the design of the
final UIP representations rather than the software categories.

A-T-separation. The enhanced software category tree is
depicted in Figure 3. It is apparent that the UIP software
category tree is largely influenced by the mandatory A-T-
separation impact. This results into a new hierarchy of 0
software categories. The Presentation (CUI) defines the
view elements to be reusable in any project. In detail, the UI-
Control Definition is essential to provide a generally
available set of UI-Controls as building blocks for the
definition of UIP units. Therefore, UIP Definition is
dependent on the former. The other categories that refine
UIP Definition are directly derived from the impacts of the
influence factor model. In general, the 0 based categories
only define the reusable elements, their properties and
abstract behavior, but no final user interface is implemented.

Furthermore, the new 0 category elements can be
declared to be used for the Presentation (FUI) via UIP
Configuration, but the rendering has to be implemented for
the chosen platform individually. Therefore, the T software
categories UI-Control and UIP Rendering were added. These
depend on GUI Framework sub-categories like this is the
case for the conventional Presentation (FUI) categories [10].

The ordinary Presentation (FUI) composition usually
consists of four basic operations: The construction of new
UI-Controls and the setting of their properties (UI-Control
Configuration), the addition of the new UI-Control to a
superior container like a panel or frame (Arrangement of
View Elements) and the optional definition of an event
listener (Action Binding). All these operations are bundled
into respective AT software categories, which directly
combine domain specific knowledge (content, properties and
placement) with technical operations (construction, auxiliary
objects like layout constraints or scroll panes) later in code.

When UIPs are instantiated, the above basic operations
are distributed among reusable pattern information (UIP
Definition, UI-Control Definition), context specific
configuration (UIP Configuration) and the technical
rendering (UIP and UI-Control Rendering). The Renderings
do not depend on the respective Definitions, since they are
solely in charge of either the construction of new UI-
Controls (UI-Control Rendering) or the arrangement of a
specific layout (UIP Rendering). For that purpose, the
Definitions define and use basic parameterized operations for
their content that are finally implemented by the respective
Renderings. The Definitions contain operations of higher
order and the Renderings consist of rather atomic ones,
hence a Definition command will be translated by the
Renderings into multiple GUI Framework calls. Thus, the
technical details that are usually present in the ordinary View
Definition sub-categories are encapsulated by the
Renderings. The UI-Control Rendering will be called with
complete information based on the UIP instance parameters,
so that only complete units can be created with the Definition
commands. In this context, the UIP Configuration gathers

138Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 160 / 679

parameter data with knowledge about the UIP Definition
(what parameters are exactly present). After the parameters
have been configured, they are passed to the UIP Definition,
which contains all necessary commands in proper order for
UIP instantiation and finally delegates the Renderings. The
latter will implement the abstract operations of the UIP or
UI-Control Definition. The UIP and UI-Control Rendering
are in analogy to View Definition sub-categories UI-Control
Configuration and Layout Definition: UI-Controls do not
define the gross layout. This instead is a task of the higher
situated category Layout Definition. Accordingly, there is the
distinction between both Renderings.

This order of operations is not obvious from the software
category graph, since this kind of modeling lacks a runtime
or sequence view. In this regard, the dependencies of Figure
3 do not describe calling sequences. The dynamic aspects of
calls and the purity of categories will be better visible with
component diagrams that describe interfaces and feature the
assignment of categories to components. Eventually, the
component and interface modeling will refine and verify the
software category model.

Changes were applied to sub-categories of View
Definition and View State Changes of Presentation (FUI) to
reflect the widened set of available view elements. The
responsibilities now apply both for UI-Controls and UIP
instances.

Flow of application logic. Concerning the flow of
application logic and the integration of UIPs, the Dialog
Action Binding is dependent on Event Forwarding, since the
ordinary facilities of the event processing chain [10] have to
be reused by UIPs and shall not be influenced by a
conflicting solution. With respect to the Quasar Client
reference architecture [15], the dialog kernel is likely to
receive UIP application events in parallel to events from
ordinary Presentations. In principle, for any UI-Controls of a
UIP PresentationEvents can be defined [13]. During
configuration of UIP instances, application relevant
OutputActions can be assigned to these events [13]. To
preserve this variable binding of UIPs and their events to
application behavior (Dialog Logic), UIPs have to be
decoupled from application logic. This is achieved by the
following concepts. Initially, PresentationEvents have to be
configured for UI-Control instances to be deployed within a
particular UIP instance. These can be used to model a trigger
for either ViewStateActions or ViewStructureActions that
may add or remove view elements during runtime [13]. In
addition, particular PresentationEvents can be linked to
OutputActions that are relevant for application logic (Dialog
Event Handling) outside the UIP instance. A further
decoupling is achieved by the separation of Event
Forwarding (notification of an event), the decision of a
proper reaction by Dialog Event Handling, and finally, the
implementation of resulting state changes, e.g., View State
Changes of the Presentation [10]. In other words, two states
of knowledge are separated: Firstly, what and when events
are to be reported. Here, the OutputActions mark those
events of relevance. Secondly, how will be the reaction
implemented that corresponds to reported events. Ultimately,
this separation of concerns will allow either the integration
of UIPs or ordinary Presentations as sender of events

relevant for application behavior. This design will allow the
versatile configuration of UIPs and their exchangeability.
However, a dedicated receiver is essential, which processes
events and interacts with application components.

Navigation. In analogy, the navigation design has to
follow the same concept: a UIP may emit events that are
translated into resulting navigation by a dedicated
component. Both concepts preserve the later exchangeability
of UIP instances, and thus, allow the decoupling of
Presentation (FUI) and Dialog Logic.

Summary. Finally, UIPs require a GUI architecture that
provides a working infrastructure for Application Server
Calls, Dialog Navigation, platform-specific implementations
of their UI-Controls and facilities for event as well as data
binding. In fact, UIPs can only be applied to describe certain
configurations. Thus, the situational meaning of this
information is out of the scope of reusable UIP Definitions
but is to be processed by existing GUI components based on
common responsibilities like those modeled in Figure 2.
Accordingly, UIP solutions will be based on many common
GUI software categories. Therefore, the basic GUI design
decisions presented in [10] and discussed here for UIPs in
the previous section have to be solved prior to any UIP
implementation. Ultimately, UIPs need an elaborate GUI
reference architecture with a clearly defined component
structure as suggested by the software category model of
Figure 2: the new responsibilities are merely enhancements
with many dependencies to the basic categories. Particularly,
the differentiated categories for event processing [10] will be
an essential basis for flexible UIP integration.

The categories partly may be too fine grained, but these
serve their purpose better than coarse grained ones that lead
to less cohesion and less effective tracing. In contrast, the
fine grained categories may later serve as units for lower
level design like classes or even operations.

Anyway, the control aspects of UIPs [3] are not modeled
here besides Dialog Action Binding. This is due to these
aspects are cross-cutting concerns that need further
elaboration on the basis of detailed examples.

D. Virtual User Interface reviewed
To solve the A-T-separation and maintain the purity of

software categories, the virtual user interface from Section
II.A is considered.

The main idea of Siedersleben and Denert [14] was to
abstract common operations needed for the communication
with technical GUI components into lean and easy to reuse
interfaces that would considerable simplify the usage of
complex APIs or associated frameworks. This concept could
yield several benefits when applied for UIP instantiation.

Firstly, the VUI allows the implementation of styleguide
rules [14] and other related layout specifics. Therefore, the
created layout corresponds to specified rules and could be
augmented by standard presentation elements like status or
button bars whenever UI-Controls or entire dialogs are
requested to be build. This scope of pre-defined GUI layout
and selection of UI-Controls can be extended to enable the
creation of UIPs. For given UIPs, common UI-Control
elements or even nested UIPs that occur regularly as children
can be realized as ready to reuse compositions as well.

139Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 161 / 679

Secondly, the VUI is worth a consideration for UIPs,
since its suggested way of dialog implementation conforms
to the concrete user interface model level (CUI) of the
Cameleon reference model [29]. This level of GUI modeling
foresees certain types of UI-Controls, which may be a
common intersection of the ones that are offered by several
popular GUI frameworks. Besides, these UI-Controls remain
independent from a platform specific implementation as this
is the main emphasis of the VUI. Ideally, available UIP
implementations could be reused together with alternative
GUI-Frameworks.

Thirdly, when the main idea behind the VUI and its
interface operations are fully complied with, both basic UI-
Control creation and UIP instantiation will have to be
realized resulting in a hierarchy of GUI building operations.
Therefore, the basic VUI interfaces are relevant for the
bottom-up composition of UIPs. Additionally, non-UIP
based dialogs could be created at the same time.

However, no details and implementations have been
published for the VUI yet. It remains as a general pattern
only and solutions must be drafted individually. In particular,
the involved interfaces have to be standardized for a GUI
system and its dialog types. This step is of the essence, since
it permits the reuse of reoccurring functionality such as the
creation of views with common UI-Controls and their
binding to events. To conclude, the essential elements the
GUI system presentation component will constitute of have
to be abstracted very clearly and completely in order to
provide a CUI level model suitable for the domain.

IV. DISCUSSION OF USER INTERFACE PATTERN
IMPLEMENTATION OPTIONS

A. Criteria
The principal architecture concepts for UIP

implementation were briefly outlined in [12]. Accordingly,
we distinct the two concepts of model-based generation and
a solution being based on the virtual user interface
architecture described in Sections II.A and III.D. We will
discuss these alternatives in the light of the GUI design
issues and more recent state of the art. The criteria to be
considered are presented below.

The primary criterion is the UIP formalization and its
completeness. All structural properties and variability
aspects of these patterns [13] should be expressed by the
chosen notation. Finally, UIPs should be expressed by a CUI
model to preserve the platform independent specification.

The second criterion considers the target architecture and
respective assumptions. In detail, the integration of UIP
instances with other architecture artifacts, which affects the
major GUI design issues, is reflected. Since UIPs mostly
assume presentation responsibilities, their interface to
application logic has to be lean to ensure a variable
presentation without affecting application components. For
the sake of adaptability, the Dialog Logic and associated
navigation control should be decoupled from specific UIP
instances, too. To preserve the option to integrate non UIP-
based dialogs, the decoupling is essential.

A third criterion considers the required tools, and lastly,
the coupling to a certain platform and potential reuse of
concepts are considered.

B. Model-based Generation
Formalization of UIPs. The model-based frameworks

introduced in Section II.D employ their specific format for
expressing UIPs for the generation of GUIs. It is noteworthy
that the capabilities of the applied notations are not published
completely or mentioned at all. In addition, no detailed
examples that proof the variability, composition ability and
reuse of formalized UIPs have been published yet.
Therefore, the maturity of the generation based UIP
approaches surveyed in [3][13] was valuated as insufficient.
The model-based generative frameworks still seem to be
challenged by the full expression of all required UIP aspects
and are obliged to deliver a proof of concept by the
evaluation of a set of representative UIPs.

Target architecture. Currently, there are no details
available of the assumed architecture and integration of UIPs
therein for the model-based generation. The task modeling
and derivation of dialog structures often is focused by
examples. In this regard, we wonder how complex Dialog
Logic can be implemented, which demands for a number of
branches due to user choices and results in different
navigation options among UIP instances. Thus, it is not
certain how closely task models and chosen UIPs for
presentation of dialogs are coupled. In general, the complete
configuration process of all related artifacts (tasks, dialogs,
UIPs, application data and services) for the realization of a
use case remains unknown. Lastly, it is uncertain whether
manually implemented dialogs can be integrated among
generated code or if every dialog specification results in the
mandatory formalization of UIPs that may be used only
once.

Tools. The generator based solutions require vast tool
support for formalization, configuration or instantiation and
finally transformations of UIPs. For the latter, two steps are
necessary as UIPs and their parameters have to be
transformed to a CUI model first, which is later used for final
code generation or interpretation. There will be high efforts
for maintaining the tool chain as well as related overhead for
the definition of metamodels, rules and syntax validation. To
integrate non UIP-based dialogs the developers will have to
provide additional CUI specification facilities.

Platform. By using platform-independent models, the
coupling of generation based solutions to certain
infrastructures is generally low. Mostly, the paradigm of the
GUI may be fixed to WIMP [2]. Thus, the UIP formalization
is highly reusable. However, for each target platform suitable
architectures and code templates have to be developed. Most
parts of the generator code will be platform-specific
transformations that are unlikely to be reused.

C. Virtual User Interface
Formalization of UIPs. In contrast to the generative

approach, the VUI based solution does not necessarily
depend on a separate notation for formalization. The
formalization is realized by object-oriented CUI level code
of the target platform programming language instead. We are
inclined that an object-oriented language offers strong
concepts that permit the vast flexibility of UIP expression.
For instance, abstract classes with partly implemented
operations may serve as ideal templates for UIP definitions.

140Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 162 / 679

The parameters for context adaptation can be set by
operation parameters or separate setter operations.
Furthermore, both structural and behavioral aspects can be
combined in one specification unit. These basic facilities
would have to be re-created by an external notation for a
generation based solution. In this regard, even the template
offering UIML 4.0 [24] GUI specification language lacks
sufficient parameterization for UIPs [12] and would have to
be extended.

In contrast, an OO programming language offers
elementary functions to express any purpose or structure that
may be improved by architectural or design patterns.
Furthermore, the usage of an OO language for UIP
expression is comparable to directly programming with a
certain GUI framework to fulfill a certain domain’s GUI
requirements. Similar elementary facilities can be
incorporated with the identified software categories for UIP
expression, so that a high flexibility is achieved. The basic
operations for presentation definition are based on the CUI
level [29] and represent abstractions of common GUI
framework facilities. They will both enable an accurate and
abstract UIP formalization with a high flexibility due to the
full range of OO language capabilities.

Initially, the UIP expression can be probed on the basis
of the UIP analysis model [13]. The conceptual UIP
modeling can be improved gradually without the need to
adapt a specific notation and associated tools. With the basic
foundations of factor [3] and analysis model [13], a rich
information basis for UIPs is available that can be
successively translated to code with the aid of the software
category tree of Figure 3.

Target architecture. The VUI architecture is limited to
presentation related tasks and does not include any
assumptions concerning application integration. That means,
each GUI design issue has to be solved from scratch or by
the adaptation of available reference architectures. A solution
tailored for UIP integration induces additional efforts but
may result in an appropriate and reusable architecture.

Tools. The VUI needs no tools at all besides a compiler
and an IDE that partly does the checking of programming
language syntax. For visual impressions of defined UIPs,
default configurations can be implemented, which may be
used as test cases, too. The testing of UIP instances does not
require additional inputs from external tools. The
combination of UIPs and ordinary dialogs is possible without
further adaptations.

Platform. For the VUI solution, the target platform
language is fixed. There may be additional frameworks
required, which permit the integration with different
languages or even paradigms. But with each change of target
language or GUI frameworks, the specific code for rendering
has to be re-implemented. Therefore, the UIP formalization
appears to be less reusable like the format used for the
generation-based approach. But it may be ported to OO
languages with comparable facilities, since the architecture is
the key reusable artifact. In this regard, the architecture is
based on interfaces and object-orientation, so that the VUI
CUI components may partly be ported among different OO
languages. Moreover, the formalization of UIPs is solely
based on architecture components, interfaces and their

interaction, so that no notation has to be adapted. In the end,
the VUI solution may promise more reusable concepts, since
they are not platform-specific like the transformations of a
generator basis.

D. Outlook
The model-based generation approach raises many open

issues concerning the UIP formalization and target
architecture details. It is not certain when and what solutions
are to appear. So, we opt for an alternative solution that is
based on the VUI architecture.

V. VIRTUAL USER INTERFACE ARCHITECTURE DRAFT
As a result of the positive appraisal of the virtual user

interface architecture, we will elaborate an architecture draft
in the following paragraphs. The primary basis for the
identification of components and their dependencies are
provided by the software category models of Figure 2 and
Figure 3. These categories need to be assigned to new
components and their interfaces. The latter will clarify the
dynamic behavior, which was not obviously described by the
category trees. For the sake of keeping reference to the
category trees, a similar naming of components was applied.
In Figure 4, the structural architecture model is presented.
Please note that not every software category will be
represented as a component. The granularity of categories
differs, so that some are assigned to components, classes (not
visible here) or a set of operations modeled by interfaces.

A main component is modeled by the Dialog, which
initiates application related behavior (Dialog Logic) and
handles domain data (Dialog Data Model). Concerning the
configuration of instances and initialization of visual
components, the Dialog Lifecycle Actions are in charge.

Another main component is embodied by the
Presentation (FUI) that serves as the final user interface with
visual appearance and respective event handling. There exist
two options for the instantiation of visual elements: Either
simple UI-Controls can be initialized by the UI-Control
Configuration or UIPs can be configured by UIP
Configuration. Both components are associated to
Presentation Event Handling to be able to have their
elements linked to event processing. Triggers and state
changes are decoupled by the separation of Presentation
Event Handling and View Definition. The interfaces called
by View State Changes represent operations that implement
the results of visual state changes. When the received event
is out of scope of the Presentation (FUI), the Event
Forwarding will call Dialog Event Handling. Moreover, the
Presentation Data Handling is realized by the observer [31].

The Virtual User Interface component consists of one
reusable (Presentation (CUI)) and one technical dependent
(Rendering) component. As a consequence, there are always
two representations of one UIP or UI-Control. The CUI level
components of the Presentation (CUI) define the logical part
of instances. In contrast, the Rendering creates
corresponding technical instances that depend on the current
GUI Framework. To decouple the CUI components from
technical aspects, the UIP Elements Definition and UIP
Rendering interfaces define the atomic operations required
for both UI-Control Definition and UIP Definition.

141Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 163 / 679

cmp VUI

Virtual User Interface

Presentation (CUI)

UIP Definition

Rendering

Presentation (FUI)
Dialog View Definition

Presentation Event Handling

Layout Definition

UI-Control Configuration

View State Changes

Construction of UI-Controls

Technical Data Models

Model Data Edit

Dialog Logic

GUI Framework

UI-Control
Library

Layout
Manager

Event Forwarding

Action Binding

Dialog Event Handling

UI-Control Properties

Presentation Data
Handling

Model Data Observer

Event Listener Definition
UIP Configuration

UIP View
Definition

UIP States
Definition

UIP Layout

UIP Elements Definition

Dialog Action Binding

UIP Data Binding UIP Rendering

View States Definition

View Structure Changes

UI-Control Rendering

UI-Control Definition

Re-Arrangement of View Elements

Modification of View Element Properties

Addition and Removal of View Elements

Arrangement of View Elements

ATAT0

Software categories

Dialog Data Model

Dialog Lifecycle Actions

UIP Rendering

Presentation State
Update

View State Execution

Figure 4. Virtual user interface architecture based on the UIP software categories.

These may be implemented by different Rendering
components, which are specific for a certain GUI
Framework. The versatile UIP formalization options are
mostly assigned to UIP Layout and UIP View Definition.
Depending on the current UIP instance configuration UIP
States Definition may call the former components to trigger
changes in visual or structural state.

VI. RESULTS AND DISCUSSION
The vision to employ UIPs as reusable assets for a

reduction of GUI implementation efforts cannot be realized
by recent approaches because of the limited formalization of
UIP aspects and variability. Besides, the general GUI design
issues presented in Section II.B still persist due to the lack of
detailed reference architectures and standardization. In
Section III.B, we clearly pointed out how these issues impact
the architecture for seamless UIP integration. A tight
coupling to GUI frameworks can limit the UIP applicability.
Also, important architecture concerns UIPs are connected
with are without standardized solutions: navigation and
application logic flow. Eventually, the integration of UIPs
into GUI architectures has to overcome these issues.

Since UIP based solutions largely depend on reuse of
basic GUI architecture concepts, UIP specific concerns have
to be integrated and separated to reduce dependencies. In this
context, we presented an enhanced software category model
that addresses the prevailing GUI design issues and models
typical UIP responsibilities. These categories can be used to
identify a component based architecture for UIP
implementation with separated concerns and limited
dependencies. The identified 0 categories can be either
generative sources or CUI level code of a VUI. In the end,
the UIP category tree can also be helpful for generative
development as it may identify aspects or components and
separate them in order to enable a better maintenance of
generator architectures.

As result of our comparison of general UIP
implementation approaches, we opted for the unique VUI
solution. The VUI solution promises a high flexibility of UIP
formalization, platform independence and no additional tools
or notation development efforts. On that basis, simple and
complex UIPs can be relatively quickly probed for
implementation. Please note that our analysis of mature

XML GUI specification languages [12] revealed major
limitations concerning UIP formalization that are hard to
solve. UIP definitions may be better approached with OO
language code.

Our VUI draft left the impression that much CUI based
abstraction of common GUI framework concerns is required
and that a complex architecture is anticipated. Representative
UIPs have to be implemented to prove the VUI concept and
refine its foundations. Due to UIP rendering needs of the
VUI, the non UIP-based UI-Control compositions can
benefit from the platform-independent rendering, too. In the
end, the AT software character of View Definition
components may be completely avoided.

The primary limitation of a VUI based solution will be its
dependence on a strong OO language. One can argue that a
VUI architecture is hard to establish for web-clients relying
on browser based languages, such as JavaScript and popular
frameworks like JQuery, due to lacking object-orientation.
Frameworks like GWT [30] that are able to accept OO code
and compile it to JavaScript may be a promising option for a
VUI but can be limited due to the available set of UI-
Controls. In the end, the CUI based code would need further
enhancements to represent alternative definitions of UIPs
currently not covered by present UI-Controls.

Finally, a VUI based approach will not be achieved
without obstacles. The abstraction of common GUI
framework operations to CUI level code for reuse by UIP
definitions is not an easy task. Moreover, the design of
interfaces and their operations has to suit current and future
UIP definitions. The software category tree will help us to
limit framework dependencies and plan the distribution of
responsibilities among components.

VII. CONCLUSION AND FUTURE WORK
In the future, UIPs are likely to become complementary

assets for reuse in comparison to design patterns [31]. With
the incorporation of UIPs as valuable assets for the reuse of
parts of the implementation code, the complexity of GUI
artifacts to be designed and developed manually would be
reduced. Much of the former GUI programming would be
replaced by configuration of chosen UIP instances. As a
consequence, the developers could focus more on application
relevant design. However, current approaches that employ

142Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 164 / 679

UIPs on the basis of model-based generation are still
challenged by formalization issues and have not proven their
UIP variability concepts yet.

Future work. The alternative VUI based approach will
be further elaborated in our future work. At first, the
common GUI design issues have to be solved by a detailed
GUI reference architecture. On the basis of the presented
software category models and our VUI draft, we will be able
to identify a suitable component based architecture. The
requirements for a VUI based solution will be complemented
by example UIPs and implementations. During that process,
both category and UIP requirements models will be updated.
Finally, we will investigate on the impacts of UIPs on other
architecture artifacts and their traceability connections.

REFERENCES
[1] J. Tidwell, Designing Interfaces. Patterns for Effective

Interaction Design. Beijing: O’Reilly, 2006.
[2] D. Ammon, S. Wendler, T. Kikova, and I. Philippow,

“Specification of formalized software patterns for the
development of user interfaces,” The Seventh International
Conference on Software Engineering Advances (ICSEA 12)
IARIA, Nov. 2012, pp. 296-303, ISBN: 978-1-61208-230-1.

[3] S. Wendler, D. Ammon, I. Philippow, and D. Streitferdt “A
factor model capturing requirements for generative user
interface patterns,” The Fifth International Conferences on
Pervasive Patterns and Applications (PATTERNS 13),
IARIA, May 27 - June 1 2013, pp. 34-43, ISSN: 2308-3557.

[4] F. Radeke and P. Forbrig, “Patterns in task-based modeling of
user interfaces,” The Sixth International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
07), Springer LNCS 4849, Nov. 2007, pp. 184-197.

[5] J. Engel and C. Märtin, “PaMGIS: A framework for pattern-
based modeling and generation of interactive systems,” The
Thirteenth International Conference on Human-Computer
Interaction (HCII 09), Part I, Springer LNCS 5610, July 2009,
pp. 826-835.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stahl, Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns. New York: John Wiley & Sons, 1996.

[7] M. Fowler, Patterns of Enterprise Application Architecture.
New Jersey: Addison-Wesley Professional, 2003.

[8] M. Fowler, “Development of Further Patterns of Enterprise
Application Architecture,” http://martinfowler.com/eaaDev/
index.html, 2014.08.14.

[9] M. Haft, B. Humm, and J. Siedersleben, “The architect’s
dilemma – will reference architectures help?,” First
International Conference on the Quality of Software
Architectures (QoSA 2005), Springer LNCS 3712, Sept.
2005, pp. 106-122.

[10] S. Wendler, “A software category model for graphical user
interfaces,” The Ninth International Conference on Software
Engineering Advances (ICSEA 2014), IARIA, in press.

[11] S. Siedersleben, Ed., Softwaretechnik: Praxiswissen für
Software-Ingenieure [Software engineering: practical
knowledge for software engineers], 2nd ed. München: Hanser,
2003.

[12] S. Wendler, D. Ammon, T. Kikova, I. Philippow, and D.
Streitferdt, “Theoretical and practical implications of user
interface patterns applied for the development of graphical
user interfaces,” International Journal on Advances in
Software, vol. 6, nr. 1 & 2, pp. 25-44, 2013, IARIA, ISSN:
1942-2628, http://www.iariajournals.org/software/.

[13] S. Wendler and D. Streitferdt, “An analysis of the generative
user interface pattern structure,” International Journal On
Advances in Intelligent Systems, vol. 7, nr. 1 & 2, pp. 113-

134, 2014, IARIA, ISSN: 1942-2679,
http://www.iariajournals.org/intelligent_systems/index.html.

[14] J. Siedersleben and E. Denert, “Wie baut man
Informationssysteme? Überlegungen zur Standardarchitektur
[How to build information systems? Thoughts on a standard
architecture],” Informatik Spektrum, vol. 23, issue 4, Aug.
2000, pp. 247-257, doi: 10.1007/s002870000110.

[15] J. Siedersleben, Moderne Softwarearchitektur [Modern
software architecture], 1st ed. 2004, corrected reprint.
Heidelberg: dpunkt, 2006.

[16] S. Alpaev, “Applied MVC patterns. A pattern language,”
The Computing Research Repository (CoRR), May 2006,
http://arxiv.org/abs/cs/0605020, 2014.08.14.

[17] A. Karagkasidis, “Developing GUI applications: architectural
patterns revisited,” The Thirteenth Annual European
Conference on Pattern Languages of Programming
(EuroPLoP 2008), CEUR-WS.org, July 2008.

[18] A. Dearden and J. Finlay, “Pattern languages in HCI; A
critical review,” Human-Computer Interaction, vol. 21, issue
1, 2006, pp. 49-102.

[19] S. Wendler and I. Philippow, “Requirements for a definition
of generative user interface patterns,” The Fifteenth
International Conference on Human-Computer Interaction
(HCII 13), Part I, Springer LNCS 8004, July 2013, pp. 510-
520.

[20] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
support for an evolutionary design process using patterns,”
Workshop on Multi-channel Adaptive Context-sensitive
Systems (MAC 06), May 2006, pp. 71-80.

[21] UsiXML website, http://www.usixml.org/, 2014.08.14.
[22] K. Breiner, K. Bizik, T. Rauch, M. Seissler, G. Meixner, and

P. Diebold, “Automatic adaptation of user workflows within
model-based user interface generation during runtime on the
example of the smartmote,” The Fourteenth International
Conference on Human-Computer Interaction. Design and
Development Approaches. (HCII 2011), Part I, Springer
LNCS 6761, July 2011, pp. 165-174.

[23] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient generation of ambient intelligent user
interfaces,” The Fifteenth International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 11), Springer LNCS 6884, Sept.
2011, pp. 136-145.

[24] UIML 4.0 specification, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=uiml, 2014.08.14.

[25] G. Meixner, M. Seissler, and K. Breiner, “Model-Driven
useware engineering,” Model-Driven Development of
Advanced User Interfaces, Studies in Computational
Intelligence, vol. 340, H. Hussmann, G. Meixner, and D.
Zuehlke, Eds., Berlin, Heidelberg: Springer, pp. 1-26.

[26] K. Bittner and I. Spence, Use case modeling, 8th print. Boston
(Mass.): Addison-Wesley, 2006.

[27] M. Seissler, K. Breiner, and G. Meixner, “Towards Pattern-
Driven Engineering of Run-Time Adaptive User Interfaces
for Smart Production Environments,” The Fourteenth
International Conference on Human-Computer Interaction
(HCII 11), Springer LNCS 6761, July 2011, pp. 299-308.

[28] M. van Welie, “A pattern library for interaction design,”
http://www.welie.com, 2014.08.14.

[29] J. Vanderdonckt, “A MDA-compliant environment for
developing user interfaces of information systems,” The
Seventeenth International Conference on Advanced
Information Systems Engineering (CAiSE 2005), Springer
LNCS 3520, June 2005, pp. 16-31.

[30] Google Web Toolkit, http://www.gwtproject.org/, 2014.08.14.
[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-oriented Software.
Reading: Addison-Wesley, 1995.

143Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 165 / 679

A Guideline for Supporting Agile Process Assessments

Teresa M. M. Maciel
Department of Statistic and Informatics
Federal Rural University of Pernambuco

Rua Dom Manoel de Medeiros, s/n,
Recife, Brazil

tmmaciel@gmail.com

Silvio R. L. Meira
Informatics Center

Federal University of Pernambuco
Av. Jornalista Anibal Fernandes, s/n

Recife, Brazil
srlm@cin.ufpe.br

Abstract—A critical factor in determining whether a company
achieves competitive advantage in the market is its ability to
deal with unexpected and continuous changes. This critical
determinant is addressed by the term “agility”. The current
paper proposes a methodology for assessing agility at the
organizational level, based around a reference model governed
by a set of agile capabilities. The capabilities were selected
from a review of the relevant literature in the manufacturing
and software development fields. Along with this capability set,
the reference model identifies an array of enablers and metrics,
which facilitate their implementation. Finally, a case study
discusses the experience of applying the proposal in the real
environment of an established software company.

Keywords: software agility evaluation; agile assessment.

I. INTRODUCTION

A critical factor in determining whether a company
achieves competitive advantage in the market is its ability to
deal with unexpected and continuous changes. This critical
determinant is addressed by the term “agility”. Companies
must reconfigure all the various elements of which they are
composed (human, managerial, and technological) in order
to successfully adopt agile methodologies.

Both the manufacturing and software development fields
have faced similar challenges in recent years. Indeed, due to
the commonalities between the fields some authors assign
the core ideas in agile software development to trends in the
manufacturing area [4][6][23].

The concept of agility was first formalized in a report
entitiled ‘21st Century Manufacturing Enterprise Strategy’,
published by the Iacocca Institute in 1991 [3][11][10][15]. In
this work agility is defined as a strategic ability, suggesting
that being agile means being proficient at change.
Consequently, a number of works were published in the
literature which focused on refining the meaning of the term
[14][8][10][20][21]. In software development context, new
proposals emerged in the 90s as Scrum [18], XP [1], Crystal
Clear [2], FDD [13], and DSDM [19].

Some authors promote ways for assessing agility, as in
[17]. However, few are concerned with assessing agility
from software organizations perspective.

This paper presents a model to support software
organizations assess their agility status. Section II shows a
brief overview about agility evaluation. Section III describes
a reference model proposed to serve as a basis to the

assessment process. Section IV reports a study applied in a
real organization. Finally, Section V presents the conclusions
of this work.

II. AGILITY EVALUATION

Several efforts have been published in order to propose
ways to evaluate organizational agility. Sharifi and Zhang
[28][29] proposed a conceptual model with agility drivers,
capabilities and providers.

Meredith and Francis [6] defined a set of agility
components organized into four categories: agile strategies,
agile processes, agile linkages, and agile people. Maskell
[12] defined four elements of Agile Manufacturing: customer
prosperity; people and information; cooperation; and fitness
for change. Jin-Hai et al. [10] proposed a concept they called
“real agile manufacturing” based on the critical aspects of
strategic processing, multiple winners, integration, core
competence, and IT. Ramesh [15] presented a literature
review by identifying a set of criteria for attaining agility and
also suggested a procedure for its successful implementation.
Dove [4][27] stated that “Being Agile means being proficient
at change – and allows an organization to do anything it
wants to do whenever it wants to do”. Plonka [14] specifies
the critical attributes of an agile workforce: an attitude
towards learning and self-development; problem-solving
ability; being comfortable with change, new ideas and
technologies; the ability to generate innovative ideas; along
with the readiness to accept new responsibilities.
Gunasekaran [8] defined a set of characteristics for agile
teams: self-directed, containing IT-skilled workers with
knowledge of team working, negotiation, advanced
manufacturing strategies and technologies, who are also
empowered, multifunctional and multilingual.

The assessment process proposed by this work is set
within the context of software development at an
organizational level, and comprises the reference model,
assessment team, the company, and the evaluation process.
Figure 1 illustrates the assessment environment.

144Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 166 / 679

Figure 1. Assessment Environment

III. THE REFERENCE MODEL

As shown in Figure 1, the team assesses the software
company guided by the reference model and the evaluation
process, making discoveries and recommending actions to
increase agility levels within the company. Figure 2
illustrates the model in detail and lists the specific agile
attributes, enablers, and indicators on which the assessment
process is based.

Figure 2. The Reference Model

As listed in the figure, the set of agile attributes includes
the following characteristics: responsiveness, learning and
improvement oriented; adaptability; lean; focus on people;
commitment to high quality; driven by customer needs; and
self-organization. It is this set of attributes that propels the
enablers to implement and improve the agile capabilities of
the company. At the same time, they establish the indicators,
which are first obtained from metrics or evaluation results
and then executed by accepted practices and tools.

A. Software Agility Capabilities

To identify the common capabilities and attributes that
define an agile company, a literature review was conducted
in both the manufacturing and software fields. The review

considered works that contained the following keywords;
‘agile attribute’, ‘agile criterion’, ‘agile concept’, ‘agile
definition’, or ‘agile capabilities’. The search process
focused on articles from the following sources: ACM Digital
Library; IEEE Computer Society Digital Library; and
Google Scholar (in order to widen the search). The results of
the search, the majority of which came the manufacturing
research field, were combined to construct Table I, which
shows that agility converges into six common capabilities.

1) Responsive
The quality of responsiveness can be defined as the

capability to easily accept and deal with changes; to identify
changes and respond to them both reactively and proactively;
and to recover from them [28].

2) Fast
Since agility is a rapid and proactive adaptation to

continuous and unpredicted changes, speed is an essential
attribute of an agile organization. A fast organization gets to
the market quickly, with a production time that guarantees
the fast delivery of products and services. However, this
capability should not be limited to the time of production: it
must be evident throughout the company. Some authors,
Breu et al. [21] for example, cite the speeds of skill
development, adaptation to new work environments, and
information access as indicators for evaluating the agility of
a workforce.

TABLE I. SOFTWARE AGILE ATTRIBUTES

Agile Capability Author

Responsive [1]; [3]; [4]; [9]; [12]; [18]; [21]; [23];
[24]; [26]; [28]; [30].

Fast [1]; [3]; [4]; [7]; [9]; [18]; [21]; [24];
[27]; [28]; [30].

Adaptable [1]; [3]; [4]; [18]; [23]; [24]; [27]; [28];
[30].

Knowledge-driven [7]; [18]; [21]; [23]; [24]; [25]; [28]; [30].

Self-organized [7]; [9]; [12]; [18]; [23]; [24]; [28]; [30].

Quality and
Improving
Committed

[1]; [7]; [9]; [18]; [23]; [24]; [30].

Management way
People profile

Processes
Client relationship

TEAM

ORGANIZATION

REFERENCE
MODEL

Agile atributes, enabels and indicators

EVALUATION
PROCESS

Lessons learned

Finds
Improvement
actions

INDICATORS

AGILE ATTRIBUTES

ENABLES

MANAGEMENT
PEOPLE
CLIENT

PROCESS

RESPONSIVENESS
LEARNING & IMPROVING

ADAPTABILITY
LEAN

PEOPLE FOCUS
HIGH QUALITY COMMITMENT

CUSTOMER NEEDS DRIVEN
SELF-ORGANIZATION

METRICS
SELF-EVALUATION

Direction

Improving

DirectionVisibility

Goals

Data

145Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 167 / 679

3) Adaptable
Adaptability is commonly related to flexibility. To adapt

itself to the demands of the market, a company requires
flexible processes and structures, as well as flexible people.
The concept of organizational adaptability originated from
the contingency approach in organizational research, and the
theory that the organizing style is dependent on the
situational constraints of the environment in which the
company operates [30].

4) Knowledge-Driven
According to the literature review, a focus on knowledge

represents a critical aspect of agility. Goldman et al. [25] for
example, link competitive agile environments to knowledge
and experience. Yusuf et al [23] cite that the best practices of
a knowledge-rich environment provide the means to produce
customer-driven products in a fast changing environment.
Sherehiy [30] states decentralized knowledge as a
characteristic of an organic organizational design.
Knowledge management and change proficiency are co-
dependent relationships, and the enabling competencies of an
agile company [5]. The emphasis on short development
cycles, reviews, collaborative work and retrospectives found
in the Agile Manifesto, also agile practices such as XP and
Scrum, reflect the importance given to organizational
knowledge in software development.

5) Self-organized
Organizational agility demands proactive and adaptive

responses, and thus certain key skills are required in an agile
workforce. Based on the evidence from the review, these
skills are directly linked to empowered and self-organized
teams. Particularly considering the environment of agile
software development, the requirement for a high level of
both individual and team autonomy is viewed as a
prerequisite attribute.The Agile Manifesto explicitly includes
this aspect in one of its 12 agile principles, affirming that the
best architectures, requirements, and designs emerge from
self-organizing teams.

6) Quality and Improving Committed
As agility is a dynamic and competitive ability, its

institutionalization demands high quality with decreasing
lead time [4]. Retrospectives are recommended by agile
methods as a mechanism to discover means to increase
effectiveness. According to the Agile Manifesto, a team
tunes and adjusts its behavior driven by the desire to improve
its performance.

B. Supporting Enablers

Agile capabilities represent the direction of
organizational improvement, and are achieved through the
implementation of accepted practices and tools (enablers).
Institutionalized agile enablers are the clear indicators of the
agility journey during an agile assessment evaluation,
therefore agile companies must understand and identify

which enablers are appropriate for each project or program.
Table II presents a set of common enablers selected from the
results of the literature review and connects each capability
with its relevant agile capability as stated by the Agile
Alliance in its Agile Practices Guide [31].

TABLE II. AGILE CAPABILITIES AND SUPPORTING
ENABLERS

Capabilities Enablers
Responsive Continuous deployment, Frequent

releases, Daily meeting, Incremental
development, Rules of simplicity

Fast Automated build, Automated test,
Continuous delivery, Continuous
integration, Incremental development,
Planning Poker, Rules of simplicity

Adaptable Automated test, Continuous
integration, Daily meeting, Frequent
releases, Incremental development,
Pair programming, Rules of simplicity

Knowledge-driven Pair programming, Retrospectives,
reviews, Collective ownership,
Incremental development, Kanban
boards, Refactoring

Self-organized Daily meeting, Retrospective, Kanban
boards, Planning Poker

Quality and
Improving Committed

Acceptance test, TDD, Daily meeting,
Retrospective, Incremental
development, INVEST, Kanban
boards, Pair programming, Refactoring,
Usability tests

C. Supporting Metrics

In order to evaluate the improvement of agility, the
assessment guideline considers a set of metrics to be
monitoring. Table III shows the list of metrics adopted.
Besides, the table presents the mapping between each
capability and the supporting metrics.

Table III helps software organizations to identify what to
consider to measure in order to monitoring its agile way.
Metrics listed should be collected and tracking at the
organizational level, and it can be a team, a project, a
department or the whole company.

Some of the metrics support directly one specific
capability. For example, Lead Time (the time between the
initiation and completion of a production process) is related
directly to capability fast. Throughput, on the other side, is
related to self-organized indirectly.

The evolution of each metric should be closely monitored
and analyzed during the assessment to identify both the
capabilities that are improving and the key areas that require
further work.

146Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 168 / 679

TABLE III. AGILE CAPABILITIES AND SUPPORTING METRICS

METRIC

CAPABILITIES

R
E

S
P

O
N

S
IV

E

F
A

S
T

A
D

A
P

T
A

B
L

E

K
N

O
W

L
E

D
G

E
-D

R
IV

E
N

S
E

L
F

-O
R

G
A

N
IZ

E
D

Q
U

A
L

IT
Y

A
N

D
IM

P
R

O
V

E
M

E
N

T
C

O
M

M
IT

E
D

Cost of change (effort) X X X X

Time to change X X X X

Improvement frequency X X X

Lead Time X X

Throughput X X X

Takt time X X

Team building speed X X X X

Client Satisfaction X X

Requirements or BV burn downs X X X X

Role variety X X X X

Cumulative Flow X X

Re-work measurement X X

Technical Debt X X

Defect Density X X

IV. ASSESSMENT PROCESS APPLIED IN A REAL
CASE STUDY

The goal of the case study was to validate the suitability
of the proposal in a real situation. The assessment process
was applied to a small Brazilian company that produces
software in the industrial automation area and first adopted
agile and Lean approaches in 2011. At the beginning of the
process, the complete team consisted of 20 employees, of
whom 15 were directly involved in software development
and the remainder in administration, marketing and sales.
During the assessment period of 3 months a set of metrics
was collected at monthly intervals to verify the degree of
improvement in agile capabilities.

An analysis of the data available in the company was
performed to define a set of suitable metrics. These were:
lead time (the period of time between the beginning and the
end of user story development); throughput (number of user
stories divided by total time); takt time (the total time
divided by the number of user stories); improvement
frequency (the number of actions implemented as a result of
retrospectives); and client satisfaction (collected from a
systematic monthly survey made by the organization). Figure
3 is a selection of metrics for one small project over the three
month period.

According to Figure 3, throughput, takt time and lead
time all demonstrated improving curves during the study. 59
user stories (attributed by the team as smalls) were collected
and developed. In the first month, the team produced a
thoughput of 0.5 user story, improving to 0.7 and 0.8 in the
consecutive months. Takt time values demonstrated a similar
improving behavior. This represents a good indicator of
capabilities as being responsive and quality and
improvement committed. Similar results were found in the
other collected metrics. It is important to state that during
this period the organization applied enablers in order to
improve its results.

Each metric was analyzed in terms of its
institutionalization as well as its application for
improvement. Parallel observation and self-evaluation was
performed by the team to verify the level of
institutionalization of each agile metric or practice. Table IV
gives the results of the evaluation, where each agile enabler
or metric was evaluated by the team as Institutionalized (I),
In Progress (P), or Not Worked (N).

Figure 3. Throughput, Lead Time and Takt Time collected from case
study

Figures 4 and 5 give a graphical view of the evaluation
results in terms of the degree of institutionalization for each
agile practice and the attendance of a capability.

The case study results highlight areas of improvement,
demonstrating the impact of these improvements in terms of
agile capabilities. It should be stated that it is not mandatory
for a company to implement all the recommended agile
practices. That is the reason that an agile capability being
worked through at least one enabler and metric was
classified as ‘In Progress’ in the evaluation.

0

5

10

15

20

25

0 10 20 30 40 50 60

Lead Time in 3 months (item x hour)

0,0

1,0

1 2 3

Througput (demand/day)

Througput

0,0

5,0

1 2 3

TaktTime (30days/demand)

TaktTime

147Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 169 / 679

TABLE IV. AGILE CAPABILITIES ATTENDANCE ANALYSIS

METRIC

CAPABILITIES

R
E

S
P

O
N

S
IV

E

F
A

S
T

A
D

A
P

T
A

B
L

E

K
N

O
W

L
E

D
G

E
-D

R
IV

E
N

S
E

L
F

-O
R

G
A

N
IZ

E
D

Q
U

A
L

IT
Y

A
N

D
IM

P
R

O
V

E
M

E
N

T
C

O
M

M
IT

E
D

Cost of change (effort) N N N N

Time to change N N N N

Improvement frequency P P P

Lead Time P P

Throughput P P P

Takt time P P

Team building speed N N N N

Client Satisfaction I I

Requirements or BV burn downs P P P P

Role variety N N N N

Cumulative Flow P P

Re-work measurement N N

Technical Debt N N

Defect Density P P

How we monitoring the agile capabilities

attendance?
P P P P P P

ENABLER

Continuous deployment P P P

Frequent release I P I

Continuous delivery I I I

Daily meeting I I I I I

Incremental development I I I

Rules of simplicity N I N

Pair programming N N N N N

Retrospectives, reviews P P P

Collective ownership P P P

Kanban boards I I I

Refactoring N N

Automated test P P P

Continuous integration N P N

Acceptance test I N I

TDD N N

INVEST N N

Planning Poker P P P

Automated build P P P

Usability tests P N N
How we apply enablers to intensify agile
capabilities attendance? P N P P P P

Figure 4. Agile Practices Institutionalization

V. CONCLUSION

A proposal was presented for assessing organizational
agility which could be applied at company, department, and
team levels. The basis of the proposal is a reference model
that is driven by a set of agile capabilities selected from a
literature review carried out in the manufacturing and
software development fields. To accompany this set of
capabilities, the model offers an array of enablers and
metrics that can facilitate a company to achieve these agile
capabilities. Each agile enabler was linked to the capability
it supported and demonstrated the relationship between each
capability and its supporting metrics. Finally, a case study
was included to illustrate the experience of the proposal
being applied to a small Brazilian software company.

ACKNOWLEDGMENT

This work was (partially) supported by the National
Institute of Science and Technology for Software
Engineering (INES1), funded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08.

REFERENCES

[1] K. Beck, “Extreme Programming Explained: Embrace Change”,
Addison-Wesley, ISBN 0-201-61641-6, 2000.

[2] A. Cockburn, “Crystal Clear: A Human-Powered Methodology for
Small Teams”, Addison-Wesley, ISBN 0-201-69947-8, 2004.

[3] R. Dove and R.N. Nagel, “21st Century Manufacturing Enterprise
Strategy: An Industry Led View”. Iacocca Institute, Lehigh
University, Bethlehem, PA, 1991.

[4] R. Dove, “Lean And Agile: Synergy, Contrast, And Emerging
Structure”. Proceedings of the Defense Manufacturing
Conference’93, San Francisco, CA, 1993.

1 www.ines.org.br

Status of Practices Institutionalization

I

P

N

148Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 170 / 679

[5] R. Dove, “Response Ability: the Language, Structure, and Culture of
the Agile Enterprise. Wiley, New York, , 2001.

[6] S. Meredith, D. Francis, "Journey towards agility: the agile wheel
explored", The TQM Magazine , 2001, vol.12 iss: 2, pp.137 – 143

[7] M. Fowler and M. Highsmith, “The Agile Manifesto,” Software
Development, Aug. 2001, pp. 28-32.

[8] A. Gunasekaran, “Agile Manufacturing: A Framework for Research
and Development”. International Journal of Production Economics,
1999, vol.62, pp.87–105.

[9] J. Highsmith, A. Cockburn, “Agile Software Development: The
People Factor”, IEEE Computer Magazine, 2001, pp. 133-136.

[10] L. Jin-Hai, A. R. Anderson, and R. T. Harrison, “The evolution of
agile manufacturing”, Business Process Management Journal, 2003,
vol.9 No. 2, pp. 170-89.

[11] S. Izza, R. Imache, L. Vincent, and Y. Lounis, “An Approach for the
Evaluation of the Agility in the Context of Enterprise
Interoperability”, Enterprise Interoperability III, Springer, ISBN 978-
1-84800-220-3, 2008.

[12] B. Maskell, “The age of agile manufacturing”, Supply Chain
Management: An International Journal, 2001, vol.6 No. 1, pp. 5-11.

[13] S. R. Palmer, Felsing, J.M., “A Practical Guide to Feature-driven
Development”, Prentice Hall, Upper Saddle River, NJ, ISBN 0-13-
067615-2, 2002.

[14] F. S. Plonka, “Developing a lean and agile work force”. Human
Factors and Ergonomics in Manufacturing, 1997, vol.7 No.1, pp.11–
20.

[15] C. Ramesh, “Literature review on the agile manufacturing criteria”,
Journal of Manufacturing Technology Management, 2007, vol.18 No.
2, pp. 182-201.

[16] D. J. Reiffer, “How Good are Agile Methods?”, IEEE Software, 14–
17, 2002.

[17] B. Rumpe and A. Schroder, “Quantitative survey on extreme
programming projects”, Proceedings of International Conference on
Extreme Programming and Flexible Processes in Software
Engineering (XP2002) Alghero, Italy, (2002, pp. 95–100.

[18] K. Schwaber, M. Beedle, “Agile Software Development with Scrum”,
Prentice Hall, Upper Saddle River, 2001.

[19] J. Stapleton, “DSDM: Business Focused Development”, Second Ed.,
Pearson Education, ISBN 978-0321112248.Version 2.3, Keele
University and University of Durham, EBSE Technical Report, 2007.

[20] J. Sarkis, “Benchmarking for agility”, Benchmarking: An
International Journal, MCB University Press, vol.8 No. 2, 2001, pp.
88-107.

[21] K. Breu, C. Hemingway, M. Strathern, “Workforce agility: The new
employee strategy for the knowledge economy”. J. Information
Technology, 2001, pp. 17 21–31.

[22] P. Kentunen, “Adopting key lessons from agile manufacturing to
agile software product development—A comparative study”,
Technovation, 2008, vol.29 (2009) 408–422.

[23] Y. Yusuf, M. Sarhadi, A. Gunasekaran, “Agile manufacturing: the
drivers, concepts and attributes”. International Journal of Production
Economics, 1999, vol.62, pp. 33–43.

[24] P. T. Kidd, “Agile Manufacturing: Forging New Frontiers”. Addison-
Wesley Reading, 1994.

[25] S. L. Goldman, R. N. Nagel, and K. Preiss, “Agile Competitors and
Virtual Organizations: Strategies for Enriching the Customer”, Van
Nostrand Reinhold, 1995.

[26] A. Nelson and F. A. Harvey, “Technologies for Training and
Supporting Your Agile Workforce”, Proceedings 4th Agility Forum
Annual Conference, Bethlehem, PA, 1995.

[27] R. Dove, “The Meaning of Life and the Meaning of Agile”,
Production Magazine, 1994.

[28] H. Sharifi and Z. Zhang, “A Methodology For Achieving Agility In
Manufacturing Organisations: An Introduction”, International
Journal of Production Economics, 1999, vol.62, pp. 7–22.

[29] Z. Zhang and H. Sharifi, “A Methodology for Achieving Agility in
Manufacturing Organisations”, International Journal of Operations &
Production Management, 2000, vol.20, pp. 496-512.

[30] B. Sherehiy, K. Karwowski, J. K. Layer, “A Review of Enterprise
Agility: Concepts, Frameworks, and Attributes, International Journal
of Industrial Ergonomics”, 2007, vol.37, pp. 445–460.

[31] Agile Alliance, “Agile Practices Guide”, accessible through
http://guide.agilealliance.org/.

149Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 171 / 679

Usage of Kanban in Software Companies

An empirical study on motivation, benefits and challenges

 Muhammad Ovais Ahmad, Jouni Markkula, Markku Oivo, Pasi Kuvaja

Department of Information Processing Science

University of Oulu

Finland

e-mail: {Muhammad. Ahmad, Jouni. Markkula, Markku. Oivo, Pasi. Kuvaja}@oulu.fi

Abstract— There is a growing interest in applying Kanban in

software development to reap the proclaimed benefits

presented in the literature. The goal of this paper is to provide

up-to-date knowledge of the current state of Kanban usage in

software companies, regarding the motivation for using it as

well as the benefits obtained and challenges faced in its

adoption. In addition, we investigate how the challenges

identified in the study can be addressed. For this purpose, an

empirical study was conducted consisting of a survey and

complementing thematic interviews. The empirical study was

carried out in November-December 2013 within large Finnish

software companies, which extensively use Agile and Lean

approaches. The obtained results are largely in line with the

findings of earlier research reported in the literature.

Generally, the experiences of using Kanban are rather

positive; however, challenges in adoption identified include a

lack of specialised training and usage experience, and a too

traditional organisational culture.

 Keywords- Kanban; Lean; Agile; Software development.

I. INTRODUCTION

Today, Agile and Lean are used in most global industries
including the software industry. The Lean approach has been
developed and found successful in the manufacturing
industry [1], and it was later adopted by the software
engineering field.

The key trait of Lean is to eliminate all kinds of waste
from the development. Poppendieck and Poppendieck [1]
transformed Lean manufacturing principles for use in the
software engineering field. In order to eliminate and manage
waste Poppendieck and Poppendieck [1] proposed the
following set of principles:

 Build quality in

 Create knowledge

 Defer commitment

 Deliver fast

 Respect people

 Optimise the whole

In software development, all things that do not produce

value for the customer are considered “waste”. For example,
partially completed work, extra processes, extra features,
task switching and defects are also considered a waste [1].

Kanban is one way to execute Lean thinking, used for
decades in managing production operations at Toyota [2]. It
is the most recent addition to the Agile and Lean software
development. In recent years, Kanban has become more
popular in software development. A strong practitioner-
driven movement emerged to supporting it [3][4]. Currently,
Kanban method is being increasingly adopted to complement
Scrum and other Agile methods in software processes.

Despite the recent increasing interest in Kanban among
practitioners, existing scientific literature addresses it
infrequently in the context of software development. Only a
few studies on Kanban usage, how it is carried out in practice
and its effects in software development have been published
[5]. With the goal of providing up-to-date results that can be
utilised by organisations implementing or planning to
implement Agile and Lean methods, we have conducted an
empirical study on the current state of Kanban usage in
software companies. We carried out the study in the Cloud
software and Need for Speed program, which is a large
Finnish national program aiming at improving the
competitive position of the Finnish software intensive
industry in global markets by pioneering the building of new
cloud business models, a Lean software enterprise model and
open cloud software infrastructure. The program involves
more than 30 research organisations and enterprises,
including most of the major Finnish software companies that
are actively using and researching Agile and Lean [5]. We
conducted a survey and a set of interviews addressing the
following questions:

 Why is Kanban used in software companies?

 What are the benefits, of using Kanban?

 What are the challenges in adopting Kanban and its
solutions?

The rest of the paper is structured as follows: Section II

reviews the current literature on Kanban usage. Section III
describes the research setting, including the process for
collecting the empirical data as well as the design of the
survey and interviews. Section IV present the results of the
study and compares them with the findings from earlier
research. Finally, Section V concludes the paper
summarising the results and discussing the limitations of the
study.

150Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 172 / 679

II. KANBAN BACKGROUND

Kanban, developed by Taiichi Ohno, was introduced in
the Japanese manufacturing industry in the 1950s. Kanban
literally means signboard or visualisation of inventory used
in the scheduling system for just in time (JIT) production.
The idea behind the development of Kanban was to find a
system to maintain and improve production. It is a flow
control mechanism for pull-driven JIT production, in which
the upstream processing activities are triggered by the
downstream process demand signals [2][7]. Kanban runs the
production system as a whole, and it has proven an excellent
way of promoting improvement. It was successfully used in
practice by Toyota. The basic idea behind Kanban usage is to
execute Lean thinking in practice; however Lean is more
than Kanban [7][8][9].

Present-day understanding of Lean and Kanban in
software development is largely driven by practitioner’s
books [1][6][10]. The Lean and Kanban principles appear to
be largely overlapping, reflecting the same grounding. Table
I shows the Lean software development principles [1] and
Kanban principles [10], which are known to the Agile
community.

TABLE I. LEAN AND KANBAN PRINCIPLES

Lean software development

principles [1]
Kanban Principles [9]

Eliminate waste
Build quality in

Create knowledge

Defer commitment
Deliver fast

Respect people

Optimise the whole

Visualise the workflow

Limit work in progress

Measure and manage flow
Make process policies explicit

Improve collaboratively

Kanban in software development originated in 2004,

when David J. Anderson [10] was assisting a small IT team
at Microsoft that was operating poorly. Anderson [10]
introduced Kanban to the team to help the team members
visualise their work and put limits on their work in progress
(WIP). The motivation behind visualisation and limiting
WIP was to identify the constraints of the process and focus
on a single item at a time. This technique promotes the pull
approach. In traditional software development, the work
items are given i.e. “pushed” to each team member, who are
then instructed to finish as many of them as quickly as
possible. The traditional development work is in the form of
a chain in which one team member’s work item is handed
over to another i.e. from developer to tester. This causes
delays in the whole process when the next member in the
line is overloaded or has a problem with his/her work.
Kanban works in an alternative way. Instead of pushing
work items, it promotes a pull system. Each member of a
team has one item to work on at a time. When he/she finishes
it, he/she will automatically pull the next item to work on.

In brief, Kanban aims to provide visibility to the software
development process, communicate priorities and highlight
bottlenecks [5], which results in a constant flow of releasing
work items to the customers, as the developers focus only on
those few items at a given time [6]. Figure 1 shows the

typical structure of a Kanban board and its principles in
action.

Figure 1. Kanban board and principles in action [12]

The Kanban method in software development drives

project teams to visualise the workflow, limit WIP at each
workflow stage, and measure the cycle time [11]. The key
motivation for the usage of Kanban is to focus on flow and
the absence of obligatory iterations.

Kanban implementation has been relatively successful in
the manufacturing industry yielding various advantages.
Successful histories of the manufacturing industry have
convinced software engineers to adopt this approach; thus,

151Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 173 / 679

the adoption of Kanban in software development has gained
strong practitioner-driven support.

The proliferation of the Kanban method in software
engineering boomed after the first books were published
[10][12]. The most popular of these books include David J.
Anderson’s “Kanban” [10], in which he introduced the
concept of Kanban in systems and software development,
and Corey Lada’s “Scrumban” [12], in which he discusses
the fusion of Scrum and Kanban.

A recent systematic literature review [6] on Kanban in
software development shows certain benefits and challenges
in the adoption of Kanban. The main benefits of using
Kanban in software development are a better understanding
of the whole process, improved quality of team
communication and coordination with stakeholders, and
better coverage of customer satisfaction [14][15][16].
According to [17], the use of Kanban in software
development improved the lead-time to deliver software by
37%, the consistency of delivery rose by 47%, and defects
reported by customers fell by 24% compared to the
previously used Agile method. Because of the WIP limit,
highest priority items are pulled to optimise value, resulting
in improved customer satisfaction [14][15][17]. As Kanban
does not involve any fixed plans, it helps to avoid
requirement cramming.

According to [6], Kanban needs other supporting Agile
practices to work effectively. However, this mixed approach
has been problematic for many teams [18]. Motivating staff
members to use Kanban has been challenging because of
organisational culture and the stickiness of people to other
familiar software development methodologies [14][16][18].
Additionally, a lack of specialised skills and training, and the
misunderstanding of core principles have been reasons for
failing to adopt Kanban [14][16][18].

III. RESEARCH SETTING

Empirical data was collected from software companies
participating in a Cloud Software program. The empirical
study was carried out in two stages. In the first stage, the
Kanban usage survey was conducted among the participant
companies’ representatives. The survey was conducted in
November 2013 using an Internet survey tool. The survey
included questions on Kanban usage, motivation to use it,
benefits achieved through its usage, and challenges faced in
the Kanban adoption stage.

In the second stage, the survey results were
complemented with semi-structured thematic interviews in
December 2013, for which the survey respondents
volunteered. The themes in the interview consisted of
benefits and challenges of Kanban usage and methods to
address and tackle the faced challenges.

In the first stage, an Internet survey request was emailed
to the company representatives to identify and rate the
importance of their usage motivations, the benefits achieved
and challenges faced, while adopting Kanban in their unit. A
five-point scale was used to assess the rate. The survey was
open for two weeks. During this time, 21 persons,
representing 10 different large software intensive companies,
responded to the survey.

 In the second stage, eight managerial level company
representatives were interviewed. The purpose of the
interviews was to complement the survey results by
discovering the interviewees’ views on Kanban usage in
their teams or units. The duration of the interviews varied
between 60 and 90 minutes (average 70 minutes). All
interviews were recorded and transcribed by the
interviewers, and the transcriptions were checked by the
interviewees to ensure consistency.

IV. RESULTS

This section presents the results of the Kanban usage
survey and the thematic interviews. The results of the survey
are compared with results of earlier studies on Kanban.

A. Survey results

Table II and Table III present the positions of the
respondents in their organisations and the respondents’
experiences in software development.

TABLE II. RESPONDENTS BACKGROUND

Positions n

President/CEO/CTO/Director 1

Program Manager/R&D Manager 3

Project Manager/Product owner/Agile coach 7

Analyst/Developer/Designer 8

Consultant/Trainer 2

Total 21

TABLE III. EXPERIENCE IN SOFTWARE DEVELOPMENT

Years of experience n %

1-5 4 19

6-10 1 5

More than 10 16 76

Total 21 100

The respondents were working in various positions in

their organisations. The main organisational roles of the
respondents were mid-level management (project managers,
program managers, agile coaches, and analysts), and 76%
had more than 10 years of software development experience.
The typical sizes of working teams in the respondents’
organisational units are presented in Table IV below.

TABLE IV. TEAM SIZE

Team size n %

1-3 1 5

4-6 5 24

7-9 11 52

10-12 3 14

13 and above 1 5

Total 21 100

The teams mostly comprise less than 10 persons. Only

one company has teams with more than 13 persons.
Of the respondents, 57% reported that Kanban was used

in their organisation. Most of the organisations using Kanban

152Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 174 / 679

had been using it for more than one year. The respondents of
these organisations considered themselves competent in their
knowledge of Kanban.

The Kanban users were requested to identify and rate the
importance of motivation factors, achieved benefits and
faced challenges while adopting Kanban in their unit. The
results are presented in Tables V–VII.

TABLE V. KANBAN USAGE MOTIVATION

Motivation for choosing Kanban Mean Median

To improve team communication 4.4 5

To reduce development cycle times & time-to-market 4.2 5

To improve development flow 4.1 4

To increase productivity 4.1 4

To create transparency within the organisation 3.8 4

To improve product and service quality 3.8 4

To improve understanding of the whole value stream 3.5 4

To improve process quality 3.5 4

To improve stakeholders' satisfaction 3.3 4

To remove excess activities 3.3 3

To increase the ability to adapt to changes in the
business environment

3.8 3

To decrease development costs 2.9 3

To improve organisational learning 2.6 3

To improve the management of business/ product value 2.5 3

To improve customer understanding 2.6 2

The results in Table V show the highest motivation

factors in Kanban adoption are to improve team
communication, reduce development cycle times and time-
to-market, improve development flow, increase productivity,
and create transparency within the organisation (with means
of 4 or higher). According to [11], Kanban usage is
motivated by its adaptability, ease of management by
visualising the progress, and driving team members to
cooperate and communicate. The motivation factors for
using Kanban in software processes are aligned with what
Anderson explained [6][10].

The respondents were also requested to indicate the
achieved benefits of using Kanban. Those benefits are
presented in Table VI.

TABLE VI. ACHIEVED BENEFITS OF USING KANBAN

Achieved benefits Mean Median

Better visibility of work 4.9 5

Improved transparency of work 4.5 5

Improved communication 4.3 4

Better flow controls 4.2 4

Better focus on your work 4.1 4

Better control on WIP 4.0 4

Enhanced efficiency 3.9 4

Better understanding of the whole process 3.7 4

Help in building trust 3.6 4

Help in predictability 3.6 4

Decrease in context switching 3.5 3

Enhanced quality 3.1 3

Assist leadership in strategic decision making 2.7 3

Table VI shows that the achieved benefits of using

Kanban are similar to those in the literature. Better visibility,
improved transparency of work and communication, better
control of flow and WIP were the most common benefits
experienced by the respondents of the survey. Such positive
results correspond to the literature [4][6][7][10][12][19].

The results in Table VII show the order of significance of
various challenges in Kanban adoption.

TABLE VII. CHALLENGES IN KANBAN ADOPTION

Challenges Mean Median

Lack of experience with the Kanban method 4.0 4

Hard to manage WIP limit 3.9 4

Hard to select tasks according to priority 3.3 3

Organisational culture was too traditional 3.2 3

Lack of knowledge and specialised training 3.1 3

No clear vision/roadmap for product(s) 3.0 3

Team members tend to fall back on using old methods 2.9 3

Teams were lacking decision-making ability & authority 2.6 3

Lack of customer/supplier collaboration 2.5 3

Unwillingness of team to follow Kanban 2.5 2

Incomplete planning for Kanban method adoption 2.4 2

Lack of management sponsorship 2.4 3

Decreased predictability 2.4 3

Burden of communication between teams or with in team 2.3 3

Inappropriateness of existing Kanban technologies/tools 2.3 3

Lack of customer presence 2.3 3

Lack of support from the management 2.2 2

Customer was not ready for increased communication 2.2 2

Incompatibility of business domain with Kanban method 1.9 2

153Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 175 / 679

Lack of experience with Kanban is the main challenge in
adopting Kanban. Other major challenges are the difficulty
managing the WIP limit and selecting tasks according to
priority. Organisational culture, no clear vision or roadmap
for product and team members tending to fall back on using
old methods are other challenges that software companies
face when adopting Kanban. All these challenges could be
linked to one challenge: a lack of knowledge and specialised
training.

B. Interview results

In this section, the results obtained from the interviews
are described. The results of the thematic interview analysis
can be classified into three main themes: benefits obtained,
challenges faced, and solutions to the challenges in Kanban
usage.

1) Benefits obtained
All of the interviewees reported that Kanban works well

in their teams. Referring to the achieved benefits claimed in
the survey, one interviewee mentioned, “In our company,
this is the default way of working in any team that has any
support or operations type of work when the next two weeks
just cannot be planned beforehand. I see the enhanced
customer feedback loop as one of the main benefits”.

In line with the survey results regarding Kanban effects
on their teamwork, an interviewee elaborated, “Kanban
works perfectly; the team can see the bigger picture of work
and it brings realism to the work. Many tasks become
clearer, especially high priority ones, and easier to justify,
and we always find the balance between the demand and the
capability. The team analysed their performance and
velocity quite well, they understand the WIP limit and now
they avoid taking too much work on”.

To explain the benefits of Kanban and the areas of
successful implementation, one interviewee mentioned that
in their “testing team”, “Kanban is beneficial because it puts
limits on various things in each release and makes certain
things visible which were not visible before Kanban
adoption. Kanban makes work visible inside and outside the
team and visualises customer needs. It helps in collecting
new kinds of issues and a good example is the test area”.

All the interviewees reported that, with Kanban usage,
the essence of collaborative work is visible and more and
more work is collectively completed in the development
team. Interviewees reported, “Kanban helps to make bonds
in teams and to start getting things done successfully.
Kanban helps those team members who are in trouble to get
the work done collaboratively”. Additionally, “the team
starts looking to where more and more things are actually
waiting, and they start identifying root causes of why the
flow is not working and make those blockers visible. To
maintain the flow, the whole team starts solving them”.
Furthermore, one interviewee mentioned, “Kanban helps
with flexibility when organising the work and efficiency, and
so on”.

2) Challenges in Kanban usage
One of the bigger challenges found in the survey was the

lack of experience using Kanban, which leads to some other
challenges, e.g., difficulty managing the WIP limit and
selecting tasks according to priority. An interviewee
explained these challenges in this way: “In a company, not
all business lines and top level management are familiar
with Kanban. There are a few people who have knowledge
but they also like to build their confidence to use the new
Kanban approach. So, there is much resistance to change.
The company lacks awareness about the existing mind-set
issue. For example, for us, the release cycle is quite big; we
are dealing with a huge requirement. In such a scenario, we
need confidence that this can be done and delivered
efficiently with this new Kanban thing. Nobody is willing to
take the risk and start doing things the Kanban way.
Everyone in the company knows that if we lose one release,
we are out of the market, which means there's no company.
The risk level is clear. It makes you feel safer to stay with
what you already have.”

Additionally, an interviewee agreed and reported “The
lack of training is a big challenge while using Kanban at
both the portfolio and team level. The purpose and theory
behind Kanban is misunderstood. The common question is
raised, what is the problem we are trying to solve with
Kanban?” That is the reason why, when Kanban was
implemented in the work without proper knowledge and
training, an interviewee mentioned, “Many times you don't
actually necessarily look at the flow (of inflow and outflow of
things) and the team don't actually use the WIP limits. When
asking from where these WIP limits come, they guessed that
the WIP limits were set without any planning.”

Apart from knowledge and proper training, mind-set is

equally important for the adoption of Kanban. With limited

knowledge and experience, it is hard to motivate and change

people’s mind-sets to work using the Kanban method. This

is also a reason for teams reverting to their previous way of

working. Most of the companies interviewed agreed on this

issue. One interviewee mentioned, “People always want to

stick with the way they work; it requires a lot of effort to

change the mind-set”.

3) Solutions to challenges
The interviewees were asked what kind of solution they

would propose or use to tackle the challenges they are facing
in adopting Kanban. From the study, the following solutions
were obtained to cope with the challenges:

 Provide proper training to the teams.

 Allow teams to experiment or pilot the method and
get some experience using Kanban. Such piloting
helps to learn the Kanban way of working by doing.

 Educating people help to change the mind-set so that
the resistance to change will be easier to tackle.
When people are educated and the expected benefits
of Kanban are communicated, they will more likely
be convinced to adopt it in their work.

154Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 176 / 679

 Commitment and awareness is required from the
top-level management down through the company.

V. CONCLUSION

The goal of this study was to investigate the adoption and
usage of Kanban in large software companies. The study was
conducted in large multinational Finnish companies that
have premises in several other countries. Using a survey and
thematic interviews, the study aimed to analyse the
motivations of Kanban usage, the obtained benefits, and the
faced challenges when adopting Kanban. Additionally,
solutions to the challenges were identified.

In this study, the identified main motivation factors for
adopting Kanban were to improve team communication, and
development flow, reduce time to reach the market, increase
productivity, and create transparency in organisation.
Furthermore, the most common achieved benefits of using
Kanban were better visibility of work, improved
transparency of work and communication and better control
of flow.

Regarding the challenges faced, the most common one is
lack of experience with Kanban, which makes it hard for
teams to manage WIP limits and select tasks according to
priority. Furthermore the traditional culture of the
organisation was reported a challenge in the adoption of
Kanban. Because of these challenges, team members tend to
fall back on using old methods or previous ways of working.
The literature and the results indicated that with proper
training, the challenges could be handled to some extent.

The study subjects were representatives of large Finnish
software companies, which provide a good general view of
Kanban usage in advanced software companies utilising
Agile and Lean approaches. However, the subjects of this
study represent only a limited view of the participant
companies. Therefore, to study more comprehensively the
usage of Kanban throughout organisations, more extensive
research involving all teams using Kanban in the
organisation should be conducted. Future investigation
would also be needed to gain a better understanding of the
application of Kanban at different levels in the organisations,
e.g., at the portfolio and team levels.

Despite a limited view of the participant companies, this
study provides valuable descriptive information about the
contemporary state of Kanban usage in software companies.
The contributions of this paper are 1) up-to-date results on
the current state of Kanban usage, based on first-hand
industry insight on why Kanban is being used in software
development as well as its benefits and challenges, 2) the
first explorative study analysing the Kanban usage in
software development, and 3) grounding for future research
based on the identified main benefits and challenges on using
Kanban.

ACKNOWLEDGMENT

The authors would like to thank the companies and their
employees for participating to this research. This research
has been carried out in Digile Need for Speed program, and

it has been partially funded by Tekes (the Finnish Funding
Agency for Technology and Innovation).

REFERENCES

[1] M. Poppendieck and T. Poppendieck, Lean Software
Development: An Agile Toolkit, Addison-Wesley
Professional, 2003.

[2] J. Liker, The Toyota Way, USA: McGraw-Hill, 2004.

[3] K. Hiranabe, Kanban applied to software development: From
agile to lean, InfoQ. [Online] Available from: http://www.
infoq. com/articles/hiranabe-lean-agile-kanban 2014.05.04

[4] A. Shalloway, B. Guy, and R. James Trott, Lean-agile
Software Development: Achieving Enterprise Agility,
Pearson Education, 2009.

[5] Cloud Software Finland, General Brochure. [Online]
Available from: http://www.n4s.fi/en/ ,
http://www.cloudsoftwareprogram.org/general-brochure
2014.05.13

[6] M. O. Ahmad, J. Markkula, and M. Oivo, “Kanban in
Software Development: A Systematic Literature Review,”
39th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), 2013, pp. 9-16.

[7] L. Chai, “E-based Inter-enterprise Supply Chain Kanban for
Demand and Order Fulfilment Management,” International
Conference on Emerging Technologies and Factory
Automation, 2008, pp. 33-35.

[8] M. Becker and H. Szczerbicka, “Modeling and Optimization
of Kanban Controlled Manufacturing Systems with GSPN
including QN,” International Conference on Systems, Man,
and Cybernetics, 1998, vol. 1, pp. 570-575.

[9] M. Ikonen and P. Abrahamsson, “Anticipating Success of a
Business-Critical Software Project: A Comparative Case
Study of Waterfall and Agile Approaches", In Proc. ICSOB,
2010, pp. 187-192.

[10] D. Anderson, Kanban – Successful Evolutionary Change for
Your Technology Business. Blue Hole Press, 2010.

[11] H. Kniberg and M. Skarin, “Kanban and scrum – Making the
most of both,” InfoQ, 2010.

[12] C. Ladas, Scrumban – Essays on Kanban Systems for Lean
Software Development, Modus Cooperandi Press, 2009.

[13] J. Boeg, Priming Kanban, A 10 Step Guide to Optimizing
Flow in Your Software Delivery System, Trifork Agile
Excellence Mini Book Series, 2nd ed., Denmark at
Chronografisk A/S, 2012.

[14] M. Senapathi, P. Middleton, and G. Evans, “Factors Affecting
Effectiveness of Agile Usage – Insights from the BBC
Worldwide Case Study,” In Proc. XP, 2011, pp. 132-145.

[15] M. Ikonen, E. Pirinen, F. Fagerholm, P. Kettunen, and P.
Abrahamsson, “On the Impact of Kanban on Software Project
Work: An Empirical Case Study Investigation,” In
Proceedings of ICECCS, 2011, pp. 305-314.

[16] N. Nikitina and M. Kajko-Mattsson, “Developer-driven big-
bang process transition from Scrum to Kanban,” In
Proceedings of ICSSP, 2011, pp. 159-168.

[17] P. Middleton, and D. Joyce, “Lean software management:
BBC Worldwide case study,” IEEE Transactions
on Engineering Management, 2012, vol. 59(1), pp. 20-32.

[18] V. G. Stray, N. B. Moe, and T. Dingsøyr, “Challenges to
Teamwork: A Multiple Case Study of Two Agile Teams,” In
Proceedings of XP, 2011, pp. 146-161.

[19] M. O. Ahmad, K. Liukkunen, J. Markkula, “Student
perceptions and attitudes towards the software factory as a
learning environment,” In Proceedings of IEEE EDUCON,
2014, pp. 422,428.

155Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 177 / 679

Scaling Agile Estimation Methods with a Parametric Cost Model

Carl Friedrich Kreß

Scientific Services

Cost Xpert AG

Augsburg, Germany

carl.friedrich.kress@costxpert.de

Oliver Hummel

Software Design and Quality

KIT

Karlsruhe, Germany

hummel@kit.edu

Mahmudul Huq

Scientific Services

Cost Xpert AG

Augsburg, Germany

mahmudul.huq@costxpert.de

Abstract— Estimating the likely cost of a software development

project is important with every process model. In agile settings,

story points have proven being a useful tool to predict effort

for small and medium sized projects or a few iterations.

However when projects grow larger, their effort usually grows

faster than a linear projection with story points would suggest.

This can be attributed to so-called diseconomies of scale, e.g.,

caused by the growing communication overhead and need for

refactoring in large projects. Although these effects are sup-

ported by all long-established parametric cost models, such as

COCOMO, they are not yet taken into account with agile story

point estimation. In this paper, we show how to calculate the

magnitude of these non-linear effects to create awareness for

this problem in the agile community. As a remedy, we propose

three solutions to combine story points with COCOMO II in

order to create advanced estimation methods that can be

applied to large agile projects.

Keywords-software cost estimation; COCOMO; agile; Scrum.

I. INTRODUCTION

Agile development approaches were initially aiming on
software projects with manageable size and complexity. Due
to their iterative and priority-driven implementation
approach, they have become popular in many organizations.
Even though – to our knowledge – there has been no
scientific evidence that agile development projects are more
successful than traditional approaches [1] so far, agile
methods – like every other method or technique in software
engineering – only seem to be helpful when conditions are
right [2]. Nevertheless, it is not yet clear whether their
perceived success is caused by increased development
efficiency or just by the ability to steadily deliver working
increments of a system under development. Nevertheless,
this perceived success after decades of failed waterfall
projects has raised the demand for scaling agile development
approaches for larger undertakings. The scaling of agile
projects is usually done organically, i.e., in a stepwise
manner by splitting one team after a sprint to form the nuclei
for two new teams that can then be filled with new additional
people. As often reported in literature (see, e.g., [3]), this
approach seems to work reasonably well in practice.

At the time being, agile approaches seem quite successful
when it comes to estimating and planning two or three
sprints ahead by analyzing the remaining user stories with
the next highest priorities. Estimating the effort for complete
agile projects, however, is a non-trivial challenge for various
reasons. Many agile practitioners hence argue that it does not
make sense to estimate a moving target (i.e., steadily

changing requirements), but advocate to utilize a best effort
design to cost approach that delivers as much functionality as
the budget allows, billed on a time and material basis.
Clearly, however, this is not satisfying from a management
and controlling point of view: thus, it has led to the
recommendation to elicitate and analyze more requirements
in early iterations than can be implemented in order to
quickly gain a coarse overview after a project has started [4].
Assuming that the size of each user story has finally been
estimated in so-called story points [14], this would allow the
prediction of a project’s overall effort with the help of a
burndown chart as soon as an initial velocity of the develop-
ment team has been established after some initial sprints. The
underlying estimation approach is similar to so-called expert
judgments [9] that are a popular estimation method in non-
agile environments.

From the perspective of large projects, however, both
approaches suffers from a severe limitation that has only
rarely been considered so far, especially in agile contexts:
story points (as well as expert judgments) are a form of
bottom-up estimation that predicts the overall project effort
based on a linear projection ignoring so-called diseconomies
of scale. The latter term describes the fact that larger
development projects usually require disproportionally more
effort than smaller projects, which can mainly be attributed
to the growing communication and coordination overhead in
larger undertakings [5]. Thus, although story-point-based
estimation has proven to work reasonably well for projects of
manageable size, it comes with significant drawbacks when
it should be put to use in larger development efforts. Another
issue that has recently been reported by practitioners is the
increasing amount of refactoring required in growing agile
projects. Although common sense clearly suggests that an
incrementally extended system will require regular refac-
torings in order to remain maintainable and extensible, this
continuously increasing technical debt [6] is ignored by the
current, linear effort prediction via story points.

In order to highlight and overcome these limitations, the
remainder of this paper is organized as follows: after going
into more detail on the problem of diseconomies of scale and
technical debt in Section II, we propose a set of three
enhancements for agile estimation in Section III that will
support agile developers in overcoming this challenge. The
basic idea is to use some mathematics of the parametric
estimation method COCOMO II in combination with the
story point method to achieve more reliable effort estimates.
Since our proposals can be used in different project contexts,

156Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 178 / 679

we briefly highlight their intended area of application in
Section IV before we conclude our paper in Section V.

II. BACKGROUND

Various surveys have shown that even companies that
adopted agile development methods still rely on traditional
upfront project estimation and planning in many cases for
business reasons. This is mainly because of the need to
provide a project budget and status reports to customers or
middle and top management, as, e.g. discussed by Sillitti and
Succi [7]. We suppose that this necessity is not going to
change anytime soon since project management standards
like, PRINCE2 [17], that demand for a business justification,
i.e., a cost-benefit analysis become more and more
mandatory. Hence, even if the “domestic policy” of a
development team is a settled agile methodology, in large
enterprises and most customer relationships there will always
be the need for a plan-based “foreign policy” justifying the
expected effort to stakeholders outside the development
team. The same need for planning in advance holds true from
a strategic point of view. Assume, for example, that a
company wants to evaluate a time-to-market strategy for a
certain product. This again underlines the necessity for an
estimation that quickly enables strategic planning before or
at least soon after project start.

The practical need for dependable estimation in large
agile projects is also enforced by emerging agile develop-
ment models like the so-called agile fixed price. The clue is
already in the name: in this model, a fixed price is agreed
upon by suppliers and customers before or soon after the
project is started [8]. Obviously, in order to be able to fix a
price, the entire project scope must be determined in
advance. Within the fixed price project the customer can then
still decide what parts of the whole Information Technology
(IT) product are to be developed with higher priority in an
agile manner. This combination allows minimizing risks by
setting a clear scope while at the same time providing a
flexible –that is agile– project environment.

A. Diseconomies of Scale

As mentioned previously, agile estimates for the whole
product backlog are relying on a linear effort projection:
Agile teams measure how many story points they can deliver
within a sprint and how much effort is required to do so. If,
for example, a team can deliver 50 story points with 10
Person Month (PM) of effort, it can be concluded that, e.g.,
300 remaining story points will roughly require 60 PM. Of
course, one needs to steadily live with the risk that changing
or misunderstood requirements will permanently disrupt this
prediction and hence, most agile practitioners limit their
estimations on the next two or three sprints. However,
especially the management in larger organizations, usually,
requires an upfront or early estimation of the whole project
effort. The important aspect from an estimation point of view
is that the pragmatic approach described above fully ignores
the non-linearity of the size-effort relation in large software
development projects, as already pointed out by Brooks [5]
and Boehm [13]. This so-called diseconomy of scale has
been confirmed subsequently by the regression analyses of

every major parametric cost estimation model in use today,
such as COCOMO II, REVIC, PRICE, and SEER [10].
However, it has to be acknowledged that there has been
some controversy around this issue (see, e.g., [11]). Results
that indicate slight economies of scale in smaller projects
[12] are reflected in the COCOMO II model, which allows
exponents smaller than 1 (see next section). But, even if such
economies of scale can be reached in smaller projects, this
amplifies schedule risks when projects need to scale as it
could mean switching from economies of scale to
diseconomies of scale.

The following Figure 1 demonstrates how an “over-
linear” effort increase in large projects can indeed become a
severe risk for the accuracy of agile effort estimations. It
illustrates this graphically by contrasting a linearly growing
effort curve (red lines), where effort is growing proportional
to the expected size, with a nominal effort curve (shorter
purple lines) calculated with Boehm’s COCOMO II model
[9]. Moreover, we have added two curves showing
COCOMO II estimates under more and less complex project
settings.

Figure 1. Linearly projected effort estimate against non-linear estimates

using COCOMO II.

Clearly, in large projects the inherent empirical process
control of agile methods would detect a decrease of develop-
ment velocity over the course of the project (or at least the
increasing refactoring efforts that have been reported by
many practitioners once the code base has reached a
significant size) and hence will better approximate the real
effort over time. However, as described above the driver for
estimation is the need to look ahead into the future for a
significant amount of time and to present a realistic estimate
for the overall effort expected for a project. This is where
agile estimation as just presented has its weaknesses,
especially when projects become larger. Ignoring this non-
linear effort growth may lead to a dangerous underestimation
of effort and in turn project duration that can endanger at
least the business case of a project, if not the whole project
itself.

0

500

1000

1500

2000

2500

3000

0

Ef
fo

rt
 in

 P
M

Project size in kSLOC

Linear
projection

Non-
complex
estimate

Nominal
estimate

Complex
estimate

 100 200

157Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 179 / 679

B. Parametric Cost Models

Parametric cost models, like COCOMO II that we
exemplarily present in this section, are based on a regression
analysis of numerous projects. They usually require the
estimated size of a project under consideration in kilo Source
Lines of Code (kSLOC) and various complexity factors as
input parameters. As soon as these are determined, the
following formula (1) can be applied to calculate the
expected development effort in person months:

 ∏

 (1)

with A being a calibration constant describing the
productivity, the expected size of a system is usually derived
with the help of a functional size measure for the
requirements, such as Function Points [9]. The other factors
need to be determined by analysts from a project’s context.
Values and explanations for the Scale Factors (SF) required
for calculating E and the Effort Multipliers (EM) can be
looked up in the COCOMO II model definition [9].

However, function points, the conversion to Lines of
Code, and the determining of the project parameters all bear
an inherent inaccuracy so that estimation is also not a trivial
task for traditional (i.e., non-agile) development approaches.
As is visible in formula (1), COCOMO directly reflects non-
linear growth through the exponent E (which is usually
larger than one, but can also be slightly smaller, cf. Banker
et al. [12]). Moreover, it also distinguishes between effort
caused by the functional size (in kSLOC) with its exponent E
on the one hand and the effort caused by the product of
various so-called EMs, on the other hand. The effort
multipliers represent the difficulty caused by non-functional
requirements such as reusability needs or constraints in
execution time as well as cost drivers such as overall product
complexity or a desired internationalization. This distinction
is nevertheless important since COCOMO II assumes that
effort caused by the functional size grows in a non-linear
fashion while the effort multipliers (although they
themselves are discrete values) have a linear effect on the
effort projection, as they just multiply the effort without an
exponent.

As mentioned before, COCOMO II requires rating
several scale factors that are deemed responsible
fordiseconomies of scale. The following list gives a brief and
simplified summary of these ratings:

 Precedentedness: rates if the product or project type
is similar to previous ones.

 Development Flexibility: rates the software
conformance to requirements and external
interfaces.

 Team Cohesion: accounts for communication
overhead because of difficulties in synchronizing
stakeholders.

 Process Maturity: rates the maturity of the
development process according to CMMI levels.

 Architecture / Risk Resolution: rates the maturity of
the risk management concerning development risks

as well as the percentage of development schedule
devoted to establishing the software architecture.

Even though COCOMO II [9] was not developed with

agile projects in mind, especially the last parameter reflects a
circumstance that all software development projects do have
in common, and that agile project are especially prone to: not
putting (enough) upfront effort into the development of a
decent software architecture can drastically increase the
technical debt of a project and will increase refactoring
overhead over the course of the project.

C. Error Calculation

The COCOMO II model can also be used to calculate the
magnitude of error of a story point estimate like it was
depicted in Figure 1 before. For that purpose, we assume that
the functional size of the project simply increases by an
arbitrary factor , for the moment. Thus, the linear model
used by agile teams would estimate the expected effort as:

Here, velocity is given as story points per person month.
There is no normalization factor that describes how to
measure a single story point. This means, the number of
story points can be of arbitrary size, depending on the habits
of the agile team and it will only become meaningful when
set in relation to person month needed per story point, thus
describing the velocity of a specific team [15]. On the other
hand, integrating the growth factor into the COCOMO II
formula causes a non-linear effort increase. This is shown in
the following formula: since g is multiplied to the size it is
under the influence of the exponent E:

 ()

To better illustrate the difference, we calculated the error
as the fraction between both calculations. A 10 PM reference
project would match a functional size of about 3.25
 This value is determined by “backward
calculation” of COCOMO II for an effort of 10 PM, with
scale factors set to high and all effort multipliers set to
nominal, see (5). If, for example, the functional size growth
factor between the reference project and another one is
 the difference between the linearly interpolated
estimate of 100 PM and the non-linear nominal scaling
estimate equates to:

 (

)

In other words, the calculation in (4) demonstrated that
even for a relatively small project a story point based effort
prediction is prone to underestimate effort about one third.

III. SCALING AGILE ESTIMATION METHODS

In this section, we propose three solutions with
increasing accuracy to better represent the growing

158Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 180 / 679

communication overhead in large agile projects. They all
work by combining the parametric cost model COCOMO II
with common agile estimation practices. As such they are
simply based on the common agile artefacts like user stories
and story points. However, since there is no absolute size
reference for one story point, it is not possible to simply use
absolute story point counts in the formulas that we are
suggesting in the following three solutions. In order to
circumvent this problem, we have to work with the relation
between story points and not the story points themselves.
The same issue and solution must be considered for even
simpler user story based estimates.

 All presented solutions make use of the following data
points. This reference data can be gathered during regularly
sized projects (or initial sprints before scaling up the team)
and allows determining the regular productivity of the team.
In the following Sub-sections III.A, III.B and III.C, we will
show three ways how to use this information to calculate the
productivity of the upcoming larger project, that is, when the
overall team size is scaled up. The following reference data
is needed to determine the initial productivity:

 Story points delivered,

 Number of user stories and

 Effort in person month needed or kSLOC
written.

A. Analogy-based Estimation using the Number of User

Stories

If only a ballpark figure is needed (e.g., early in a
project), we suggest the following simple approach to derive
a coarse estimate that is merely based on the number of user
stories and an analogy to a previous project or an initial
increment. Using the COCOMO II formula presented above
and the effort actuals of the previous project/increment, a
functional size analogue for the functionality that the team
delivered before can be derived by rearranging the
COCOMO II formula using kSLOC:

 (

)

When we consider the separation between growth caused
by functional size and effort multipliers as explained before,
this approach can only be applied under the following
circumstances: 1) The user stories of the reference and the
current project are of comparable size, that is their size
differences are small for both projects. 2) The stories for the
upcoming project are written in the same manner as in the
reference project, especially in terms of the average size of a
user story. 3) The effort multipliers do not change between
the reference project and the current project, which is
implicitly given when the reference data is coming from the
same project.

Usually, these conditions will hold true when the
upcoming project refers to the same class of products as the
last project, e.g., when building a company’s standard
product like an interactive web application merely for a
different customer. In these cases it is usually not necessary

to rate the effort multipliers again. Combined with the
assumption that the user stories are similar in size, the ratio
between the number of user stories of the reference project
()and the number of user stories in the upcoming
project () would then represent the change in
functional size:

This calculated value can then be used for effort
estimation with the help of the COCOMO II equation:

Although we are omitting a potential change of effort
multipliers between the reference project and the upcoming
project for sake of a quick estimate (i.e., EMnew = EMref), we
do take the non-linear scaling factors (SFj included in E) into
account that are responsible for non-linear effort growth.

B. Analogy-based Estimation using Story Points

In order to improve the accuracy of the previous
approach, it should be obvious that user stories weighted
with story points produce better results as they also take size
and complexity of the requirements into account. Concerning
the distinction between functional size and effort multipliers
discussed before, we can assume that a story point estimate
is actually an amalgam of the functional size of the IT
product and effort multipliers corresponding to the IT
product.

Since the agile team judges effort multipliers implicitly
when assigning story points, COCOMO II’s effort multiplier
ratings can be used to make this explicit as explained in the
following. First, in order to eliminate this effect from the
story point estimate and to gain a value for the pure
functional size of the product we need to determine the effort
multipliers [9] and “remove” them from the story point value
through the following division:

Second, based on these considerations we suggest the
following steps to combine the “purified” story point
estimate with the COCOMO II model in order to gain a
reliable estimate for larger projects that also incorporates
non-linear scaling effects:

1. Determine the functional size a team is able to deliver

using kSLOC by backward calculation of COCOMO II
(5).

2. Again it is necessary to determine how the functional size
of the upcoming project changes in relation to the
reference project. Thus, in order to merely relate the
functional size of both projects with each other, we need
to eliminate the effort multipliers from both story point
estimates. The new functional size can then be derived
as:

159Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 181 / 679

 (

)

3. Now, these values can be used to calculate the expected
effort, this time including the effort multiplier rating for
the new product EMnew as well as a new evaluation of the
scale factors Enew depending on the new team
constellation and product environment:

 (10)

C. Parametric Estimation Measuring SLOC

The previous two approaches are simple in the regard
that they only use parameters well known to every agile
developer and some algebra. However, the “backward”
calculation (5) of the functional size of the reference system
may lead to an additional estimation uncertainty that can
actually be avoided. When reference code (or an initial
increment of a new project) is available, it becomes possible
to directly measure the size of the existing code base with
some metric tool, ideally the COCOMO II code counting
tool of Boehm’s group at the University of Southern
California [16]. This will increase the accuracy of the
estimates with concrete numbers.

Based on such a concrete SLOC measure, it becomes
possible to project the expected size of the new project again
using the rule of three and the ratio of story points and effort
multipliers as before (9). As shown above, it is then merely
required to determine the scale factors and effort multipliers
for the reference project and the new project. The result can
then be easily used to estimate the overall effort required for
the project by using the COCOMO II formula already used
in (10). In other words, this third approach predicts the non-
linear effort portion to be expected in a large development
project with the COCOMO II model, based on a typical agile
size measurement with story points.

IV. DISCUSSION

As the number of user stories is usually available before
a concrete story point estimate, the method from III.A can be
used in quite early stages, perhaps even before a project is
actually started. When presenting the solution above, we
suggested that the effort multipliers would not change
between the reference project and the upcoming project. This
makes sense as it might be difficult to rate the effort
multipliers at such an early point in time. However, if time,
resources, and the necessary information are available, this
solution can even be refined by rating the effort multipliers
and integrating them into the estimate as in the story-point-
based solution (analogue to (9)).

The latter was designed with the goal in mind to be easily
applicable by any agile team while providing good
estimation results. It can be used after all user stories have
been written and assigned a story point value. This,
obviously, requires analyzing all user stories close to the
beginning of a project even when they merely have a low
priority. While analyzing more requirements than can be
implemented in order to gain an overview of a project

quickly is sometimes recommended in literature [4], many
agile practitioners merely look ahead for two or three sprints
and leave further stories untouched until they become
relevant for short term planning. This approach obviously
clashes with the business need of effort prediction. We do
not see a simple solution for this dilemma, but regard the
upfront analysis of user stories as a viable compromise that
allows effort predictions without generating too much
overhead.

Besides the value that the estimate provides from a
business point of view for reliable product planning, we see
an even higher value for agile teams: When asked to come
up with an estimate, traditional agile estimation methods do
not provide the means for anything else than a linear scaling.
Thus, early in a project when the team size is still small,
agile teams may be trapped by the self-created benchmark
without a chance to predict reduced productivity when the
project is scaled up later. Using our solution they can make
the diseconomies of scale transparent and understandable to
management by rating the COCOMO II scale factors and
using the non-linearity of this model.

As mentioned above, we currently assume that a direct
SLOC measurement would yield the most promising esti-
mation results (although this measure is admittedly not
undisputed itself it is probably the most accurate approach
that is available today). This is because the SLOC that have
been delivered during a reference project or a number of
reference sprints best describe the actual productivity of a
team. In addition the SLOC value could for example allow
gathering historical data to determine a mean productivity
factor. It could thus also be used to do a full COCOMO II
calibration as described by Boehm et al. [9] in order to match
a team’s productivity even better. Thus, the SLOC-based
solution is probably best suited for advanced agile teams that
want to further improve their estimation accuracy.

Moreover, since COCOMO II defines SLOC very
carefully, it should be made sure that the tool used to
measure the reference SLOC complies with this definition in
order to reduce sources of potential deviations. Whether the
measurement of SLOC conducted with an organization’s
code metrics tool largely differs from the original COCOMO
II SLOC counting definition can easily be verified by cali-
brating it with values delivered by the COCOMO II counting
tool mentioned in Section III.C at least once or by directly
using the latter to measure the SLOC.

Another interesting question that should certainly
become subject of future research is the question how “pure”
story point estimates reflect the functional size of a user story
or how far they are “polluted” with the extra functional effort
multipliers identified in COCOMO II. In Section III.B we
have made the latter assumption, however, a closer look in
the COCOMO II manual [9] suggest that some may be
implicitly considered during story point estimation and
others may be ignored. Hence, we feel that even common
story point estimation could benefit from explicit consider-
ation or exclusion of these factors. As our mathematical
solution only evaluates the change between the effort multi-
pliers of the reference project and the upcoming project, our

160Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 182 / 679

model should fortunately not be directly affected by the
outcome of this future work.

V. CONCLUSION

The Agile Manifesto’s intention [18] was not to create a
reliable estimation method. It was about values and work
culture, thus hit the nerve of the time and has inspired several
successful agile development approaches. However,
basically all agile methodologies were initially aiming on
smaller projects with small teams and only recently ideas for
scaling them in a stepwise manner have been added. As we
have described in this paper, even agile projects are often
under a significant outside pressure to deliver reliable effort
estimates. The larger projects, the larger this pressure will
usually become. Exactly such larger software development
projects have to deal with so-called diseconomies of scale
caused by the growing need for communication and
coordination amongst their personnel due to the growing size
and complexity of the software system. This non-linear
increase of development effort with project size, is not
reflected in current agile estimation techniques based on
story points and hence poses a serious risk of under-
estimation for larger projects.

In this paper, we described three advanced ideas to better
deal with this challenge by combining agile estimation
techniques with elements from the proven parametric cost
model COCOMO II, as initially developed by Barry Boehm.
Although in this early stage, the ideas look promising; it is
obvious that the next step must be an investigation of their
practical relevance. To our knowledge, there is no study that
would have looked into the non-linear effort increase in large
agile projects and hence no empirical data is readily
available that could be used to validate our model. However,
well managed agile projects that have tracked their develop-
ment efforts should allow applying all three proposed
approaches in retrospect so that predicting their overall effort
based on the velocity of, e.g., the first three sprints and
COCOMO II should become possible.

Even though a lot of work still needs to be done, we
conclude that the combination of agile estimation methods
and parametric cost models can be seen as a promising way
for agile estimation in the 21st century software engineering
that might help better predicting the growing communication
and refactoring overhead in large agile projects.

VI. REFERENCES

[1] T. Dyba and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review.”, Information and
Software Technology, vol. 50, iss. 9–10, August 2008, pp.
833-859.

[2] T. Chow and D.B. Cao, “A survey study of critical success
factors in agile software projects”, The Journal of Systems
and Software, vol. 81, iss. 6, June 2008, pp. 961-971.

[3] Paasivaara, S. Durasiewicz, and C. Lassenius, “Distributed
agile development: Using Scrum in a large project”, Proc.
IEEE International Conference Global Software Engineering,
2008, pp. 87-95.

[4] C. Larman, Applying UML and Patterns, Prentice Hall, Upper
Saddle River, 2005.

[5] F. Brooks, The Mythical Man Month, Essays on Software
Engineering, Addison-Wesley, 1975.

[6] P. Kruchten, R.L. Nord, I. Ozkaya, “Technical Debt – From
Metaphor to Practice”, IEEE Software, vol. 29, iss. 6,
November/December 2012, pp. 18-21.

[7] A. Sillitti and G. Succi, “The Role of Plan-Based Approaches
in Organizing Agile Companies”, Cutter IT journal, vol. 9,
iss. 2, 2006, pp. 14-19, URL: http://goo.gl/CYRvJK
(retrieved: January 2014).

[8] A. Opelt, B. Gloger, W. Pfarl, and R. Mittermayr., Agile
Contracts: Creating and Managing Successful Projects with
Scrum, Hoboken, 2013.

[9] B.W. Boehm et al., Software Cost Estimation with COCOMO
II, Prentice Hall, Upper Saddle River, 2000.

[10] R. Jensen, A.W. Armentrout, and R.M. Trujillo, “Software
Estimating Models: Three Viewpoints.”, CrossTalk, February
2006, pp. 23-29, URL: http://goo.gl/ACfzDk (retrieved:
January 2014).

[11] B.A. Kitchenham, “The Question of Scale in Software – why
cannot researchers agree?”, Information and Software
Technology, vol. 44, iss. 1, January 2002, pp. 13-24.

[12] R.D. Banker, H. Chang, and C.F. Kemerer, “Evidence on
economies of scale in software development”, Information
and Software Technology, vol. 36, iss. 5, May 1994, pp. 275-
282.

[13] B.W. Boehm, Software Engineering Economics, Prentice
Hall, 1981.

[14] R.L. Nord and J.E. Tomayko, “Software Architecture-Centric
Methods and Agile Development”, IEEE Software, vol. 23,
iss. 02, March-April 2006, pp. 47-53.

[15] M. Cohn, Agile Estimating and Planning, Prentice Hall,
Upper Saddle River, 2005.

[16] URL: http://sunset.usc.edu/research/CODECOUNT
(retrieved: January 2014).

[17] Great Britain. Office of Government Commerce: “Managing
successful projects with PRINCE2”, TSO 2009

[18] URL: http://agilemanifesto.org/ (retrieved: January 2014).

161Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 183 / 679

AP3M-SW – An Agile Project Management Maturity Model for Software
Organizations

Felipe Santana Furtado Soares
UFPE/CIn – Informatics Center – Federal University of PE

C.E.S.A.R - Recife Center of Advanced Studies and
Systems

Recife, Brazil
furtado.fs@gmail.com

Silvio Romero de Lemos Meira
UFPE/CIn – Informatics Center – Federal University of PE

Recife, Brazil
srlm@cin.ufpe.br

Abstract—Applying agile methodologies in organizations

whose processes are based on maturity models, such as
Capability Maturity Model Integration (CMMI) or
Organizational Project Management Maturity Model (OPM3)
has been the focus of much controversy in the academic and in
the software industry environment. The two approaches
apparently have some fundamental principles and different
bases, but on the other hand, adopting them jointly has
increasingly become a reality for software organizations.
However, the rush to reach maturity levels within deadlines that
are shorter and shorter and the definition of heavy and inflexible
processes, result in improvement projects with unique objectives
of adherence to such models, often reflected in carrying out
unnecessary activities and generating excessive documentation.
In this context, agile methodologies are more appealing as they
are lighter and this is inevitably related to their apparently
offering a faster development at a lower cost of human effort. In
this scenario, this paper puts forward a definition of an agile
project management maturity model for software development
organizations.

Keywords—Project Management; Agile Methodologies;
Maturity Model; APM; OPM3; CMMI.

I. INTRODUCTION
Currently, one of the challenges of software organizations

is to acquire maturity in their development processes by means
of implementing improvement projects based on
recommendations of quality models recognized worldwide,
such as Capability Maturity Model Integration (CMMI) [1].

At the same time, applying agile methodologies in
organizations whose processes are based on maturity models,
such as CMMI or the Organizational Project Management
Maturity Model (OPM3) [2] has been the focus of polemical
debate both in the academic world and in the environment of
the software industry. The two approaches seem to introduce
some fundamental principles and bases that diverge from each
other but, on the other hand, adopting them jointly has become
a reality for software organizations [3].

According to the The Chaos Report [4] between 2008 and
2010, the rate of projects categorized as 'Success' increased
from 32% to 37%, while the rate of projects categorized as
'Cancelled' decreased from 24% to 21%. The rate of
'Challenged ' projects decreased from 44% to 42%. Among the
reasons that the Report gives for this significant improvement
found in 2010, in relation to 2008, the following can be
highlighted:

• The use of agile processes has been growing.
Currently, they represent 9% of all Information
Technology projects and have been adopted in 29% of
new applications under development. The Institute
concludes that the growth in the rate of 'Success' is
directly related to the increase in adopting agile
methodologies;

• The reduction in the use of the processes that follow
the ‘Waterfall” lifecycle, known as traditional
methods, has already accounted for nearly 50% of the
number of new implementations. However, some
companies are still having difficulties in implementing
the methodologies, sometimes for lack of knowledge,
sometimes because of the difficulty in adapting such
methodologies to the context of their projects [6].

Nowadays, the competitive differential no longer lies in
using such methodologies but rather in overcoming the
challenges implementing them correctly and in the search for
continuous improvement in software development processes
[6]. Scrum, one of the methodologies that has gained most
popularity, has been used in different ways, sometimes for lack
of knowledge in its use, sometimes because it does not
completely fit into the needs of companies. Other approaches
are available, for example, the use of Kanban in software
maintenance projects, in which features such as fixed iterations
may not make sense for all projects [14].

Several studies report the adoption and growth of the use of
agile methodologies in recent years. What can be perceived
already is that organizations have consolidated their interest in
them, the growth of the agile community, the high level of
discussions, events, etc. [6].

Mike Cohn [6] states that seeking knowledge of agile
methods has grown and that this cannot be considered a simple
fad. However, what is observed is the difficulty that
organizations have in implementing them, sometimes due to
badly conducted adaptations, which strike at agile values and
principles, sometimes due to the excessive restrictions that a
methodology has and which cannot be fitted into the needs of
certain projects.

According to Sidky et al. [15], it is observed that even with
the growing number of companies that are seeking to adopt
agile processes, there are still few studies that guide companies
in this adoption. When organizations attempt to implement
agile methodologies in a non-systematic way, projects end up
having the same problems previously found in traditional
methodologies.

162Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 184 / 679

At the same time, the adoption of maturity models in
project management has been growing in the world [2].
However, none of them is exhaustively focused on
implementing an agile project management in software
development organizations, even the CMMI is sufficient with
all processes well defined because it doesn’t address agile
methods directly. Some of the most widely used models for
example are: OPM3 (Organizational Project Management
Maturity Model) [2], KPMMM (Project Management Maturity
Model) [22], CMMI (Capability Maturity Model Integration)
[1], PMMM Project Management Maturity Model) [24],
MMGP (Maturity Model for Project Management) [23] and
P2MM (PRINCE2 Maturity Model) [24].

However, if there is a clear motivation for using
methodologies that promote agility in development, the search
for certifications and adherence to maturity levels continues.
Accordingly, strategies that result in maturity of processes
based on agile principles have been a common target among
software companies.

In this context, this paper aims to answer the following
question-problem: with a view to increasing the success rate of
software development projects, is a maturity model effective as
part of the organizational strategy of implementing agile
project management gradually and in a disciplined way?

To answer this question, this paper presents a maturity
model that can guide software development organizations in
implementing agile project management projects based on the
existing main maturity models (CMMI and OPM3), while
making use of the best practices of APM (Agile Project
Management) [17] and Agile Methods (Scrum [7], FDD –
Feature Driven Development [12], Lean [16] Kanban [14],
Crystal [8] XP – Extreme Programming [11]), in a disciplined
and gradual manner.

The paper is divided as follows: Section 2 presents the
background overview of project management maturity model,
agile methodologies and agile project management; Section 3
presents an initial discussion about an agile project
management maturity model, showing the benefits of agile
methodologies and the model components; The last section
concludes this work in progress and presents the future studies,
including the model validation research methodology.

II. BACKGROUND OVERVIEW

A. Project Management Maturity Model
Over the years, organizations have been increasingly

motivated to adopt quality models focused on the maturity of
the software process. One of the reasons for this is associated
with the fact that the improvement in the quality of software is
widely associated with the adequacy and adherence of their
processes to the high levels of this model [19].

Maturity may be defined as "a form of measuring the stage
of an organization's ability to manage its projects" [23]. A
maturity model, in accordance with OPM3 (2003) [2] is a
conceptual framework, with consistent parts, which defines the
maturity of an area of interest, for example, the organizational
management of projects.

Figure 1 shows the timeline with reference to the main
maturity models.

Fig. 1. Timeline with reference to the main maturity models.

The Capability Maturity Model (CMM) was originally
developed by Watts Humphrey [20] and first appeared in his
book 'Managing the Software Process'. He was inspired by the
20th century movement of manufacturing and quality
assurance of the work of Juran, Deming and Crosby. The term
"maturity model" and the five levels were inspired by Crosby’s
manufacturing model [28].

The CMMI is a process improvement approach that
provides elements that are essential to an effective process. It
brings together best practices that address development and
maintenance activities, and covers the entire lifecycle of
products from their conception to delivery and maintenance
[1].

The KPMMM was created by Harold Kerzner and is set at
five levels (Common Language, Common Processes, Unique
Methodology, Benchmarking, and Continuous Improvement).
It defines the current stage, planning and actions for
implementing and gradually developing the management of
projects [22].

The MMGP was created by Darci Prado and uses the same
levels as the CMM Model. It possesses simplicity and
universality (it is applicable to all types of organizations and to
all categories of project) [23].

The PMMM of PM Solutions was created by Crawford also
has five maturity levels and nine knowledge areas [24].

The OPM3 was established by the PMI (Project
Management Institute). It is a model that aims to provide a path
so that organizations understand their organizational
management of projects and to measure the maturity based on a
set of best practices in organizational project management. It
describes a process in which the organization can develop or
find a set of skills or good practices [2].

The P2MM was created by the Office of Government
Commerce in 2006 and is based on the Project In Controlled
Environments methodology [25].

B. Agile Methodologies
In the last decade, agile methodologies have been gaining

space in the Information Technology and Communication
market. Many studies show good results achieved by these
companies, for example, research conducted by Scott Ambler
reported a 55% success rate of projects, which used agile
methodologies [26].

163Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 185 / 679

Fig. 2. Timeline referring to the main milestones which involve agile.

Figure 2 shows the timeline with reference to the
milestones involving agile methods: Dynamic Systems
Development Method (DSDM) [10], Crystal [8], Scrum [7],
Extreme Programming (XP) [11], Adaptive Software
Development (ASD) [9], Feature Driven Development (FDD)
[12], Agile Project Management (APM) [17], the Agile
Manifesto [27], Lean Software Development [16], Open
Unified Process and Kanban [14].

Scrum is a framework established in 1996 by Schwaber and
Sutherland and brings together monitoring and feedback
activities, in general, in quick, daily meetings with the entire
team, thus aiming to identify and correct any deficiencies
and/or impediments to the development process [7]. Among
the most used methodologies, Scrum appears as one of those
that organizations most prefer (56%). In this same survey, the
joint adoption with Kanban begins to be perceived [13].

XP was created by Kent Beck [11] in 1996 and seeks to
enhance a software project using five essential values:
communication, simplicity, feedback, respect and courage.
Practices such as pair programming, rapid changes, constant
feedback are core elements of the culture of this community.

FDD was created in 1997 in a large project in Java in
Singapore. It arose from Coad’s experience of object-oriented
analysis and modeling, and Project management by De Luca. It
is an agile methodology for managing and developing
software, which combines the best practices of the agile
management of projects with a complete approach to object-
oriented Software Engineering [12].

Lean emerged in Toyota based on the idea that an increase
in productivity is related to stopping doing anything that does
not add value to the customer. Lean makes us think in a fast,
uniform and quality flow without extra work that does not need
to be done, without added defects [16]. Kanban brings the
philosophy of Just in Time (JIT), which means producing only
what is necessary, in the necessary time, in the necessary
amount, and in the necessary location, and to do so with quality
and the involvement of people, thus eliminating waste, and
ensuring the continuous flow of production [14].

C. Agile Project Management (APM)
APM uses an empirical process model based on inspection

and adaptation in order to promote exploration and an adaptive
culture, to allow self-organization and self-discipline, to
promote the reliability and consistency possible, given the
degree of uncertainty and complexity inherent in the project, to
be flexible and easily adaptable, allowing visibility throughout
the process, to embed the learning, to encompass the specific
practices of each stage and to provide points of verification
[17].

According to Highsmith [17], “[...] APM brings in itself a
new focus on systems development, founded on agility,
flexibility, communication skills and the ability to offer new
products of value to the market, in short periods of time."

The five stages of APM (Vision, Speculation, Adaptation,
Exploration and Closure) were defined in order to promote the
continuous delivery of value and to allow reflection that
promotes learning. APM discards the anticipatory posture,
based on prior planning actions and activities, characteristics of
traditional project management, and seeks to develop a vision
of the future and the ability to perform through situational
exploration.

III. AP3M-SW – AN AGILE PROJECT MANAGEMENT
MATURITY MODEL

According to Cohn [6], agile methodologies are generating
significant gains in productivity with reductions in equivalent
costs. This is due to several reasons: the adoption of these
methods, which have mechanisms to release products on the
market with much greater speed and to the satisfaction the
client. In addition, they make it possible to visualize the
development process better, which leads to greater
predictability.

A. Benefits of Agile Software Development
Cohn [6] consolidated four surveys conducted in 2008 on

the benefits of adopting the agile development of software
related to the following aspects: productivity; time-to-market;
and product quality: Mah [18] of QSMA, Rico [21], Version
One [13] and Ambler [26].

Regarding the comparison on productivity, research by
Mah [3] reports that agile projects are 16% more productive
with a confidence level, which is statistically significant.

Regarding the time-to-market, agile teams tend to launch
their products faster than traditional teams. VersionOne [13]
reported that 64% of participants stated that the time-to-market
improved (41%) or significantly improved (23%). Mah [18]
compared 26 agile products to the QSMA database with 7,500
projects and showed that their time-to-market is 37% faster.

Regarding the quality of the product, Rico [21] states that
agile teams develop higher quality products, based on 51
published studies on agile projects: a minimum improvement
of 10% in quality and an average increase of 63%. According
to Version One [13], 78% of participants responded that agile
development improved (44%) or significantly improved (24%)
software quality. In addition, 84% of the participants thought
that the number of defects reduced by 10% or more.

However, according to Anderson [28], transition initiatives
to agile methods may fail because prescriptive processes are
powered by an organization to the delivery of the program as a
part of the initiative and conducted by a process improvement
group, an agile training group or a form of external
consultancy. The workforce appears to tolerate the initiative,
but actually passively resists this, because they believe that
their unique situation does not fit into a standard process and
the change is being forced, often without consultation or
consensus.

In this scenario, the need therefore emerges to define a
model that assists companies in implementing an agile

164Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 186 / 679

management of projects in a more structured and mature
manner.

B. Model Components
The way to achieve greater agility with the maturity model

is to realize that the practices are primarily advisory or
indicative, and that to correspond to an evaluation, an
organization must demonstrate that the goals of a process area
are being reached through evidence practice [28].

In this context, and based on the main models, frameworks
and methods listed below, this study defines a maturity model
for implementing the agile management of projects, the AP3M-
SW, with the following features:

• It is based on CMMI to define five project
management process areas with their respective
specific goals and practices of software development,
namely: Project Planning (to establish estimates,
develop a project plan and obtain commitment to the
plan); Project Monitoring and Control (to monitor
the project against the plan and manage corrective
action to closure); Requirement Management (to
manage requirements); Risk Management (to prepare
for risk management, identify and analyze risks and
mitigate risks); and Integrated Project Management
(to use the project's defined process and coordinate and
collaborate with relevant stakeholders);

• It is based on the OPM3 to define the domains of
organizational project management (Project, Program
and Portfolio) and the stages at which the organization
is to be found (Standardized, Measured, Control
and Continuously Improved);

• It is based on the APM phases so as to define the
project management process groups: Vision,
Speculation, Adaptation, Exploration and Closure;

• It is based on Agile Methods (Crystal, Scrum, FDD,
XP, Lean, and Kanban) so as to define practices and
work products of each of the process areas.

Figure 3 illustrates the main components of AP3M-SW.

Fig. 3. Main components of the AP3M-SW Model (Adapted from [2]).

IV. CONCLUSION AND FUTURE STUDIES
The transition from traditional methods to agile methods

and the changes necessary to obtain their real benefits are
difficult to achieve. The change affects not only the software
development team, but also various areas of the organization
and, above all, this requires a cultural change.

Aligned to this context of the growth of the agile methods,
the adoption of various maturity models in project management

is growing worldwide. The challenge becomes how to combine
these two approaches without losing their main features.

Various studies have already been conducted showing the
possibility of getting on peacefully with agile and mature
approaches [5]. If, on the one hand, it is possible to add
practices of the maturity model not considered in agile
methodologies, values and principles should not be
compromised.

To guide companies who experience this scenario, this
paper defined a maturity model that gives support in a
disciplined and gradual manner when implementing agile
project management based on relevant models, frameworks and
already validated methods and on the community´s growing
use of software development methods.

Future work is expected to detail all models’ components
and validate it. The main challenge of this validation is related
to the possibility of applying the model in a software
development company, through a case study methodology
[29][30], and defining what metrics may be collected before
and after adopting the model. Furthermore, isolating the
variables before and after measurement to be able to assess if,
indeed, the use of the model contributed to the success of
implementing agile project management and, consequently,
measuring the impact of this on the results of projects in
relation to complying with the costs, time, scope, quality and
satisfaction of the client and team. The time needed for
implementation also presents a strong constraint, bearing in
mind that maturity models need to be used gradually.

REFERENCES
[1] CMMI-DEV, CMMI for Development, V1.3 model, CMU/SEI-2010-

TR-033, Software Engineering Institute, 2010.
[2] Organizational Project Management Maturity Model (OPM3®)

Knowledge Foundation do Project Management Institute (PMI). 2003.
[3] F. S. F. Soares and S. R. L. Meira, “An Agile Maturity Model for

Software Development Organizations”, ICSEA, Venice, Italy, October,
2013, pp. 324-328.

[4] Standish Group. The Chaos Report. 2009, 2011. Available at:
http://www.standishgroup.com. Last access: 08/2014.

[5] A. Marçal, B. Freitas, F. Furtado, T. Maciel, and A. Belchior,
“Extending Scrum according to the CMMI Project Management Process
Areas”. CLEI, San José, 2007. Portuguese Version Only.

[6] M. Cohn, “Succeding with Agile: Software Development with Scrum”,
Bookman, 2011.

[7] K. Schwabber, “Agile project management with Scrum”. EUA,
Microsoft, 2004.

[8] A. Cockburn, “Crystal Clear: A Human-Powered Methodology for
Small Teams”, 1st edition, Addison-Wesley Professional, 2005.

[9] J. A. Highsmith, "Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems", New York, NY, Dorset
House Publishing, 2000.

[10] J. Stapleton, "DSDM: Dynamic Systems Development Method: The
Method in Practice", Addison-Wesley, Boston, MA, 1997.

[11] K. Beck, "Extreme Programming Explained: Embrace Change", 2nd
Edition, Boston, MA, Addison-Wesley Professional, 2005.

[12] S. R. Palmer and J. M. Felsing, "A Practical Guide to Feature-Driven
Development", NJ, Prentice Hall, 2002.

[13] VersionOne, "State of Agile Development Survey Results", Available
at: http://www.versionone.com, 2008, 2013, Last access: 08/2014.

[14] D. J. Anderson, “Kanban – Succesful evolutionary change for your
technology business”. Blue Hole Press, Washington, 2010.

[15] A. Sidky, J, Arthur, and S, Bohner, “A disciplined approach to adoption
agile practices: the agile adoption framework. Innovations In Systems

165Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 187 / 679

and Software Engineering, 2007, Volume 3, Number 3, pp. 203-216
(14).

[16] M. Poppendieck and T. Poppendieck, “Lean Software Development: An
Agile Toolkit”, Addison-Wesley, Longman P. Co., Boston, MA, 2003.

[17] J. Highsmith, “Agile Project Management – Creating Innovative
Products. EUA: AddisonWesley, 2004.

[18] M. Mah, “How agile projects measure up, and what this means to you”.
Cutter Consortium Agile Product & PM Executive Report 9, 2008.

[19] D. Goldenson and D. Gibson, “Demonstrating the impact and benefits of
CMMI: An update and preliminary results”, CMU/SEI-2003-SR-009.
SEI. Pittsburgh, PA: SEI, 2003.

[20] W. S. Humphrey, “Managing the Software Process”. EUA: Addison-
Wesley Professional, 1989.

[21] D. F. Rico, “What is the ROI of agile vs. traditional methods? An
analysis of extreme programming, test-driven development, pair
programming and Scrum”. TickIT International, 2008, 10(4), pp. 9-18.

[22] H. Kerzner, “Kerzner Project Management Maturity Model
(KPMMM)”. Wiley, 2o edition. 2005.

[23] D. Prado, “Project Management Maturity Model (MMGP)”, Belo
Horizonte: EDG, 2008. Portuguese Version Only.

[24] J. K. Crawford, “Project Management Maturity Model (PMMM)”, PM
Solutions., 2o Edition, Center for Business Practices. 2007.

[25] PRINCE2 Maturity Model: Office of Government Commerce. 2006.
[26] S. Ambler, “Agile adoption rate survey”. Available at:

http://www.ambysoft.com/surveys/, 2008, 2010. Last access: 08/2014.
[27] K. Beck et al. “Manifesto for agile software development”. Utah, 2001.

Available at: http://agilemanifesto.org/. Last Access: 21/02/2012.
[28] D. J. Anderson, "Stretching Agile to fit CMMI Level 3", Agile 2005

Conference, Denver, July, 2005.
[29] B. A. Kitchenham and L. M. Pickard, “Evaluating software engineering

methods and tools: part 9: quantitative case study methodology”. ACM
SIGSOFT Software Engineering Notes, 1998, 23(1), pp. 24–26.

[30] R. K. Yin, “Case Study Research: Design and Methods”, EUA: Sage
Publications, 2001, 200p.

166Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 188 / 679

Cybernetic Aspects in the Agile Process Model Scrum

Michael Bogner, Maria Hronek, Andreas Hofer, Franz Wiesinger

University of Applied Sciences Upper Austria
Department of Embedded Systems Engineering

Hagenberg, Austria
Email: [michael.bogner, maria.hronek, andreas.hofer, franz.wiesinger]@fh-hagenberg.at

Abstract—Agile process models provide guidelines for modern
software development. As one of their main purposes is to
complete projects under external influences as successfully as
possible, the question arises as to how reliably and routinely
given project goals can be achieved by means of such process
models. This is all the more relevant as today, unfinished software
projects frequently lack certain functionality, or missed project
deadlines are still on the daily agenda in software development.
Therefore, research has been done to identify the coherences
between agile process models and cybernetics. Cybernetics is a
natural science based on biocybernetics which forms the basis
for well-functioning processes. It was analysed how it helps to
cope with complexity, thus allowing for viable complex systems or
processes. Cybernetics, as a science of functioning, is also relevant
for agile process models. Once the basic cybernetic aspects are
applied, processes are kept under control and organized in ways
that ensure long-term viability. This paper reports the results of
the selected agile representative Scrum. It shows that although
some major cybernetic aspects like communication, feedback
and circularity are covered, other basic cybernetic principles are
missing in Scrum. Yet, these shortcomings can be compensated in
order to get essential reliability, especially in critical situations.

Keywords–agile software development; Scrum; cybernetics; bio-
cybernetics.

I. INTRODUCTION

A major challenge of today’s project management is the in-
creasing complexity and the dynamics of changing conditions.
Project requirements are getting more and more complex and
therefore often cause serious problems for project managers.
To meet these requirements in modern software development
and to cope with complexity we use process models like the
agile model Scrum [1]. It is easily understandable but not
absolutely easy to use. In some cases, complex problems can
result in loss of control [2]. To counteract this, we typically
try to eliminate one problem after the other arising during the
development cycle. But this leads to higher costs and missed
project deadlines. As a result, the product quality is strongly
affected and the project goals will be missed in some cases.

We often overlook that there is a science that can help
to cope with complexity. It helps to lead a project in the right
way from the beginning to the end. It shows how to survey the
complexity and how to deal with it without fighting against it.
This science is called cybernetics. It is a natural science which
is the basis of many well-functioning processes. Processes and
procedures can be kept under control with this science [3].
Cybernetics is an integrative multidisciplinary meta-science.

It comprises various theories, primarily the theories of infor-
mation and communication, and the theory of regulation and
control. Without the laws of cybernetics, almost nothing would
work - no aircraft, no computer, no large city and no organism
[4]. As one of the most fundamental and powerful sciences,
cybernetics incorporates the essential mechanisms in order to
cope with complexity: self-control, self-regulation and self-
organization. In our world of increasing complexity, cyber-
netics provides the invariant laws of functioning. This holds
true for biological, technical, physical, social and economic
systems, but most people are not aware of that [5] [6].

As cybernetics is the powerful meta-science which helps
to accomplish complex processes successfully, the question
arises, whether agile software process models fulfill the basic
requirements of cybernetics to reliably guide the entire devel-
opment cycle. This question addresses not just certain business
cases, but is effectively a fundamental question. Cybernetics
defines the basic laws, which have to be fulfilled otherwise
the development process could get out of control [3]. We have
started our research activities with the agile process model
Scrum. Scrum is not only well-known, but also widely used.
Therefore, we have selected it as our first research candidate.
The cybernetic aspects in Scrum have been worked out and
they will be described and discussed below to show if they
keep the development process under control. The results are
presented in this paper.

In addition, we have analysed the aspects of biocybernetics
to see if the process model meets the requirements to be
long-term viable. Whether certain processes or systems will
be viable and capable of ”surviving” permanently depends on
how far they obey certain basic principles of biocybernetics
[7]. These principles and the results of our research have been
summarized and are also included in this paper.

This paper is divided as follows: Section II briefly presents
the main aspects of Scrum being relevant for this paper. Section
III introduces cybernetics in order to make a comparison
afterwards in Section IV. Biocybernetics with its basic rules
is introduced in Section V. Each rule is discussed with regard
to Scrum. Finally, Section VI summarizes the relationship of
Scrum and cybernetics and concludes the paper.

II. SCRUM

Scrum is a lightweight agile process model developed
by Ken Schwaber and Jeff Sutherland [1]. It provides a
framework to manage complex product development and it
has clearly defined rules and regulations. The development

167Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 189 / 679

process remains flexible and transparent all the time. Scrum
is based on iterations where each one usually lasts one to a
maximum of four weeks. This iteration is called a Sprint. In
the beginning, basic product requirements must be known and
committed to the Product Backlog. The requirements are split
into tasks and stored in the Sprint Backlog in order to start
a Sprint. This process is shown in Figure 1. These tasks are
the most important tasks which should be handled during the
next iteration. The intention is to have a potentially executable
product at the end of a Sprint, called the product increment.
The functionality grows from Sprint to Sprint.

Product
Backlog

Sprint
Backlog

Product Owner

Product
Increment

Sprint

Daily Scrum
Meeting

Scrum Master

Team

Figure 1. The Scrum Process

There are three essential roles that bring Scrum to life.
The Scrum Team consists of a group of seven plus/minus two
people. They execute the tasks from the Sprint Backlog. The
team works in a self-organized fashion. Another important role
is the Scrum Master. He or she has to see that impediments
to the team’s progress are removed. The Scrum Master also
has to ensure that the process model is proceeded correctly.
The Product Owner is the third defined role. He or she argues
the project goal and defines and prioritizes the single work
packages in order to maintain the Product Backlog.

Communication in Scrum is essential. Therefore, there
are four significant meetings. During the Planning Meeting
all three roles decide together which requirements from the
Product Backlog should be processed during the next Sprint.
They move all tasks to the Sprint Backlog. In the Daily Scrum
Meeting, the team meets the Scrum Master for some short
feedback. The Product Owner can participate. In the end of
a Sprint there is the Review Meeting where the team shows
the Product Owner what they have done. And there is also
the Retrospective Meeting that acts as a feedback meeting for
the team and the Scrum Master. In this meeting, they evaluate
the last sprint and discuss what could be improved in the next
sprint [8] [9] [10].

III. CYBERNETICS

According to Norbert Wiener, cybernetics is the science
of control and the regulation of systems under real-time
conditions. This also includes the automation and information
processing of such systems. It is important to note regularities
and to recognize the functional patterns of complex systems
instead of specific details [3]. The real origin of cybernetics lies
in nature and not - as often mistakenly assumed - in computer
science. The most important factors of cybernetics are control,

regulation and feedback. It can be referred to as a science of
functioning [5].

This section provides a brief overview of the characteristics
of complex systems and the fundamentals of cybernetics. At
the end of this section, all the essential and relevant aspects for
the comparison with the process model Scrum are summarized.

A. Characteristics of complex systems

In general, we have to distinguish between simple and
complex systems. Simple systems are easily predictable. They
are also easily applicable even without having knowledge of
cybernetics. Complex systems can cause substantial problems
if not held under control as they are much more interconnected
and highly dynamic. It is not possible to intervene easily
because this can result in unpredictable side effects [5].

The term ”system” regarding cybernetics always means
open systems, which interact with the environment and adapt
to it over time. In contrast, closed systems do not interact and
are self-contained. In such a given open and complex system,
we cannot reduce complexity in order to simplify it, as it is
often claimed. Complexity means variety. It is inevitable if
the system has to accomplish all of its tasks reliably. If the
complexity would be reduced, also variety would be reduced.
Under certain conditions the system would fail. So we have to
master complexity and to make use of it instead of eliminating
it [2].

B. Importance of feedback

Due to cybernetics, ”information” was recognized as third
essential basic item supplementing the two basic elements
”energy” and ”matter”, which both are not sufficient to explain
how a system behaves. Information is the key which describes
how things are organized in a dynamic system [2]. And to
handle and manage such systems reliably, a special kind of
information is needed, namely feedback. Without feedback it
is simply impossible to hold a complex system under control
[3].

C. Basic rules to control complex systems

Cybernetics presents the laws of nature which are respon-
sible for the reliable functioning of complex systems. Relevant
rules are mentioned below:

1) Circularity: Circularity is gained by regular feedback. A
cybernetic system works because of control loops, circularity
and feedback. That means that the system gives itself feedback.
Through that process, the systems can excuse errors and are
very robust [7]. The technical representation of this aspect
is the well-known feedback control loop in Figure 2. It uses
the cybernetic terminology and shows that the regulator com-
pensates the influences of any disturbance keeping the system
under control. Such systems follow an evolutionary approach.
They are self-adjusting. And this is why such systems are
viable in the long-term.

2) Self-organization and self-regulation: The mentioned
self-adjusting aspect includes also self-organization and self-
regulation. A cybernetic system is not externally directed.
Instead, it is autonomous in the context of the whole system.
It directs and controls itself in order to cope with complexity.

168Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 190 / 679

regulator

control factor

guide factor

exchange value

disturbance factor

sensoractuator

environment

 current valuecontrol value

target value

Figure 2. Feedback control loop according to Vester [7].

3) Theory of recursive systems: Cybernetic systems are
long-term viable if they consist of interconnected self-adjusting
subsystems building a recursive structure. The single systems
interact with each other to represent the whole system.

4) Law of requisite variety: If we want to control a
complex system, we need at least as much complexity and
variety in the control mechanism as the controlled system itself
has. If there is too less variety in the control system then
the controlled system will sooner or later get out of control,
as under certain conditions the control system cannot react
properly to dominate the situation. The British cyberneticist
and neurophysiologist W. Ross Ashby discovered the law of
requisite variety, also called ”Ashby’s Law” [11]:”Only Variety
can destroy Variety”. It is the basic law of complexity. In
simple terms, consider a switch with the two possible states
”0” and ”1”. It is obvious that it is not able to control a system
having three or more states. In order to control a system, we
need as much variety (which means complexity) as the system
itself [2].

D. Patterns and interconnections instead of details

To understand a complex system, it is not necessary to
know as many details as possible. An abstract consideration
and the recognition of patterns is the right way to understand
a system. Interconnected thinking is extremely important. It
is not the details that are important in a system but the
coherences. The interconnections between the individual parts
are important.

E. Cybernetic aspects put together

To summarize, complexity cannot be reduced but domi-
nated. It is important that we work with it instead of fighting
against it. To master complexity we need:

• self-regulation and self-organization,

• circularity for repeated and continuous operation,

• regular feedback in real-time for deterministic adjust-
ments,

• communication and interconnectedness for a proper
and continuous flow of information,

• autonomy allowing self-organization and self-control,
and an

• evolutionary approach for possible adaptation due to
changing conditions in the environment over time.

IV. CYBERNETICS AND SCRUM

Having shown the fundamental concepts, we will now
compare Scrum with the essentials of cybernetics to verify
whether it supports all the requirements of a sustainable and
functional process. This includes mastering complexity, circu-
larity, feedback, communication, real-time aspects, intercon-
nectedness, autonomy, evolutionary approach, self-organizing
and self-adjustment.

Circularity: The process model Scrum works in iterations.
Scrum is already cyclically arranged since Sprints recur after
a certain amount of time. During the Review Meeting the
Product Backlog can be filled with new requirements from
the customer as well. The result of the Retrospective Meeting
is that the team can work better than in the Sprint before
because they have reviewed the problems and obstacles. All the
meetings improve the effectiveness of the team and the product
quality. Therefore, the behaviour of the next Sprint is positively
influenced. The iterations in Scrum represent the circularity
required by cybernetics. It is the basis for continuous adaption
and optimization and forms the control loop to keep the system
under control.

Feedback in real-time: Feedback is established in various
ways in Scrum. Considering the Sprint, which is determined
by a duration of up to four weeks, there is the Sprint Backlog,
which should be executed in order to get the product increment.
At the same time, the Scrum Master gets the feedback of the
team from a technical and a personal point of view out of
the Review and Retrospective Meeting. Equally important is
the feedback from the Product Owner and the customer which
plays a minor role in Scrum. It is essential in order to detect
problems early and to reach the goal in time. The Daily Scrum
Meeting can also be seen as a feedback loop. This is real-
time feedback. The Scrum Master can immediately react and
appropriately guide the project if a team member is blocked by
an obstacle and not able to work. Also, the team gets feedback
from the outside world representing an open system.

Communication: Communication occurs between all the
roles. In the Daily Scrum, regular communication takes place
every single working day and also during all the other meet-
ings. Through this constant communication, decision making
processes improve. The purpose is that information flows
between all stake holders. This is achieved in Scrum.

Interconnectedness: All the roles in a Scrum project are
working together. All are interconnected, and this leads to a
simplified coordination and a higher product quality as there
are short communication paths. This is very important for
direct information exchange.

169Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 191 / 679

Autonomy: The guidelines of Scrum let all team members
work independently. They are free to act and decide during
a sprint. This allows the team to do the right things right, as
they are the experts in their specific domain. Autonomy also
happens at the beginning of a Sprint when the development
time of each work package has to be estimated. Every member
estimates his task for the next sprint autonomously, which
ensures much higher accuracy. Autonomy comes through the
self-organizing teams, which means that they bear a great
responsibility to work in a disciplined manner. Despite the
autonomy, Scrum functions as a superior guideline.

Evolutionary approach: An evolutionary approach is in-
herent in every cybernetic system. It ensures a continuous
development and adaption to changing conditions surrounding
the system. So, the evolutionary approach keeps the cybernetic
system viable. Looking at Scrum, it shows that changes of the
agile process model are basically possible. Change proposals
can be submitted. But one has to bear in mind that it is
at the sole discretion of Jeff Sutherland and Ken Schwaber
to apply any changes to the process model itself. Strictly
speaking, this follows not the idea behind an evolutionary
approach. Cybernetic systems are free to adapt to changing
conditions as soon as they appear. Such systems do not have
to wait for anything or anyone and are in an continuous
process of adaption. In contrast, Scrum argues that it changes
its framework infrequently.

From the strict cybernetic point of view, the process itself is
not designed to change or adapt itself according new require-
ments appearing from the outside world. This is a missing
aspect in scrum that cybernetic systems must inherently have.
It means that the process model will support today’s projects
but unless adaptions it is uncertain if it will fit in future
projects.

Self-organizing and self-adjusting: For the members of
the Scrum Team, there is no precise formal rule or guideline
how they have to do their job. Therefore, they can freely adapt
to unknown complex project in the required way. They adjust
independently to the task to be solved. That means that Scrum
Teams regulate and organize themselves. So, they are working
more efficiently, more motivated and more effectively because
they have no precise rules to which they must adhere. Due
to all these characteristics, the productivity can be sustainably
increased.

So far we see that Scrum serves well as a lightweight agile
process model, which helps to cope with the development of
products with a complex scope. The structure of the agile
process model combined with the distribution of the different
roles overcomes the challenge of complexity and delivers
a satisfactory result. If it comes to mastering complexity,
everything collaborates including iterations, communication
and regular feedback, self-organization and self-regulation. As
Scrum supports todays projects well, we identified a lack
in Scrum itself. It is not designed to adapt itself to new
requirements.

V. BIOCYBERNETICS AND SCRUM

Cybernetics has its origin in biocybernetics. As a natural
science, biocybernetics represents the fundamentals of the way

living systems and organisms in the nature function success-
fully. Most natural systems have to deal with substantially
more complexity than any technical system made by humans.
Since billions of years, nature functions reliable and most
efficient [12]. Frederic Vester, the founder of biocybernetics,
defined eight basic rules every complex biological system
has to fulfill in order to survive. Simply, these rules are
principles of nature [7]. They can guarantee a successful
evolutionary existence as they present possibilities for long-
lasting development and survival of any living system - if it is
a human being, an ecological system, a company or a city [13].
So biocybernetics represents the natural basis of cybernetics,
which means that cybernetics comprises the corresponding
science. Therefore, every technical system or process has to
fulfill this eight rules of biocybernetics to be long-term viable.

As this is rather important, research has been done to
analyse the biocybernetic aspects of Scrum. As an in-depth
discussion of biocybernetics goes far beyond the scope of this
paper, we give a short introduction to each of the eight rules
and present our results afterwards. We recommend Vester’s
book, The Art of Interconnected Thinking, [7] for a compre-
hensive discussion of biocybernetics.

1st rule: Negative feedback cycles must dominate over
positive feedback: In cybernetics, this means that for a system
it is very important to be stable against interfering influences.
To explain the principle briefly, an example for negative
feedback is the control loop of the thermostat of a heating
system. If a certain temperature is reached the energy input
has to be decreased in order to not exceed the temperature
value. If the temperature is too low, the energy input would
be elevated. Negative feedback can also be found in nature.
In general, there is almost exclusively negative feedback in
order to keep the system stable. Positive feedback in nature
appears in avalanches or steppe fire, for example. They build
up continuously and achieve a new order at the end, which is
exactly not desired in stable systems. That is why negative
feedback has to dominate positive feedback, otherwise the
system would collapse.

Negative feedback is therefore based on a control or
feedback loop balancing the system. In terms of the Scrum
model, this feedback control system means that the control
factor would be the project and the regulator can be seen as
Product Owner and Scrum Master. The guide factor leading
the way would be the customer together with the market who
will specify the product requirements. The team represents the
actuator, which adjusts the actual and the desired condition.
The current value is reported through direct communication
and through test results of the product increment. Misconcep-
tions can be critical for the process. They are reflected by the
disturbance factor in the control loop. Misunderstandings can
arise between the individual developers or between the team
and the Product Owner or the Scrum Master. Also, longer
absences due to illness or information deficits and wrong
assumptions or misinterpretation of the requirements can lead
to problems, which are solved through communication and
correcting feedback during the sprint. And the feedback of
the team at the end of a sprint leads to improvements that will
be implemented in the next sprint.

In Scrum, the negative feedback mechanism is represented
by this inherent control loop. It reliably prevents the process

170Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 192 / 679

to run out of control.

2nd rule: The function of the system has to be inde-
pendent of quantitative growth: A system passes through
metamorphoses while growing in order to survive. Based on
the self-organization of cybernetic systems it does not have to
be dependent on growth. Instead, there must be a restructuring
step during the growth in order to move from one stable state
to the next. After growth, the system is ready to get into the
next phase. Therefore, the growth resembles a sustained ”S”-
shaped curve. But if a system suffers from unrestricted linear
growth without proceeding to a stable state, it will lead to a
collapse in the end. A butterfly would be the best example for
growth and metamorphoses. The butterfly caterpillar pupates
after a certain growth and envelopes itself in its cocoon to
become a butterfly. At the hands of this transformation the
linear growth is stopped, and continues as a butterfly in the
next phase [7]. For complex systems, it can be deduced that
reconstruction and metamorphoses are not replaceable by pure
growth.

At this point the size of a Scrum Team matters. If a project
gets bigger and more than five to nine people must work in
a team, this team may not grow linearly. The project has to
be split in order to get smaller teams that can work more
effectively. This split is supported by the process model as
Scrum is scalable for larger development teams. It is called
Scrum-of-Scrums. It is important that the new sub-groups
have superior coordination. There is a so-called Scrum-of-
Scrums Meeting where all Scrum Masters of the single teams
come together and can take over coordination [14]. If teams
would grow linearly, communication would be very difficult
because the communication channels rise exponentially with
the number of people. The organizational overhead scales up
and effectiveness and efficiency degrades. Finally, the system
will run out of control and end in chaos. Therefore, linear
growth should always be avoided. It needs ”metamorphoses”
for the purpose of a division in sub-projects.

3rd rule: The system must operate in a function-
oriented, not product-oriented manner: The environment
is constantly changing and that is why product requirements
also vary. All products have a certain life cycle and will
sooner or later disappear. On the other hand, the basic
needs will not disappear and remain existent. The functional
requirements of a product usually remain for a long time
whereas products themselves change very often. For example,
horse-drawn carriages are substituted by cars, telephones by
modern smartphones, while mobility and communication as
basic human needs further exist. Hence, it is always important
to think function-oriented.

Scrum works without dedicated products. It works re-
gardless of whether a database application, a smartphone
application, a server application or a desktop application is
the product. Scrum is detached from products and represents
the ”function”.

4th rule: Exploiting existing forces (Jiu-Jitsu-Principle):
Normally, Jiu-Jitsu is a Japanese martial art, which is used for a
self-defence. The main principle in Jiu-Jitsu is that the force of
the opponent should be utilized instead of defending against it.
In systems this energy serves as control-energy. Applied here
it means that the existing force and energy should be used

instead of rejecting it.

This rule can be reflected in Scrum. Scrum uses the
customer and the market with its requirements and wishes
as external energy. They call the shots and decide what will
happen next, so they are the driving force for the project.
All changes that they bring along are very important for
the quality of the final product and their competitiveness, as
already the Agile Manifesto states [15]: ”Welcome changing
requirements”.

5th rule: Multiple use of products, functions, and
organizational structures: Viable systems put emphasis on
reusability. If every product would be designed, produced, sold
and used on its own, the costs and energy input would increase
considerably. The efforts of energy, matter and information can
be reduced substantially gaining a synergy effect.

In every project guided by Scrum, the organizational struc-
ture is intentionally left identical. Meetings are at the same
time, at the same place, and have the same structure. This
leads to more efficiency as stable conditions makes it a routine
work. Another aspect is the specific knowledge of the Scrum
Team. This knowledge and also existing software products,
like libraries or frameworks, can be used in other projects.
This makes multiple use of products and functions very easy
and comfortable in Scrum.

6th rule: Recycling: Nature never produces garbage. Due
to its cyclic and interconnected processes, waste does not exist
and is used elsewhere as important resource. Recycling is one
of the most important rules humans should revert to in order
to keep a system alive.

It is hard to incorporate this rule into the process model
Scrum because a Scrum Team will not produce waste in terms
of material waste. Maybe, functions which are implemented in
the actual Sprint and will not be used in the end can be seen
as trash. But they do not have to be recycled. They can, for
example, be provided for other teams or taken as features. The
development is usually consumer-market-controlled so there is
no real overproduction.

7th rule: Symbiosis: This usually means the cohabitation
of two or more species in a common environment, which
benefit from each other. In order to enable symbiosis, diversity
in a small space is required. That means that many different
elements within a system can share resources and functions
in order to help other elements accomplishing their work in a
more effective way.

The members of a Scrum Team should be located in close
proximity to each other. This enables better communication
and cohabitation through symbiosis. They benefit from each
other if there are any problems. Here, especially the Scrum
Master takes action and eliminates any obstacles or issues so
that the team can work efficiently. And arising requirements
not discussed so far can be cleared by the Product Owner,
which itself benefits from much higher product quality. They
complement each other.

8th rule: Biological Design: All systems, products, func-
tions or organizations should be developed in respect of the
nature. Building anything against nature is plain unnatural. So,
nature always matters as it defines what is right or wrong.

171Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 193 / 679

Scrum has to correspond to the structure of a viable system
and may not be unnatural in its structure and process. This
sounds abstract but means nothing else than Scrum has to
follow natural processes if it wants to act viably. Scrum
fulfills this requirement of rule eight as it follows biological
design and not an artificial one. It brings along all these
preconditions of biological design with circularity, feedback,
autonomy, self-organization, recursive structure and all other
mentioned aspects satisfying this last rule of biocybernetics.

In summary, the fundamental eight biocybernetic rules are
met in different degrees. From the perspective of our research
activity, basically most of them can be seen as fulfilled.
Looking at the third rule where functions dominate products,
shows that the point of view is essential: as Scrum is not
focused on special products and therefore flexible for software
projects and applications of different kinds, it fulfills this
rule quite good. In contrast, if we look at Scrum itself, it
shows some shortcomings in continuous adaption to changing
conditions. The sixth rule, which means recycling to avoid
waste, is applicable only partly due to the immaterial nature
of computer science.

VI. CONCLUSION AND FUTURE WORK

Even if Scrum fulfills most of the requirements cybernetic
systems must have, we come to the conclusion that it is not a
true cybernetic process. Not only that Scrum does not claim
itself to be cybernetic. The history of Scrum begins in lean
management strategies of Japanese companies. It incorporates
a lot of best practices and has not been designed with cyber-
netics in mind.

Nevertheless, Scrum is of course very suitable for today’s
software development projects. As responding to change is an
important aspect in Scrum, it addresses a fundamental concept
of cybernetics to hold a system under control. And there
are quite more major principles in Scrum beside circularity
and feedback, namely autonomy, self-organization and self-
adjustment within the context of the overall process structure.

Scrum guides the project management process in the
right way and successful projects are no accident. Also the
biocybernetic requirements are largely fulfilled, which leads
to the same conclusion. Although, some of the rules are
not directly applicable due to the immaterial speciality of
Computer Science, we consider them as satisfied, as we have
not discovered major inconsistencies or conflicts.

If we do not look at today’s projects but on projects
in the distant, or maybe, not so distant future, the missing
evolutionary approach must be mentioned. Submitting change
proposals differs from a cybernetic way. But at this point,
Kanban can be deployed [16]. Kanban is a management
technique for software development incorporating continuous
improvement of the process itself in small steps. So with Scrum
and Kanban combined, this essential cybernetic aspect can also
be satisfied, which keeps the system long-term viable.

Beside the overall process, which has been analysed here,
shortcomings can be discovered in some other areas. For
example, Scrum defines ”roles” although cybernetics requires
”functions”. The process model uses this term in order to
determine key tasks and to define responsibilities. So, every

role has a certain focus as already mentioned, but Scrum
does not explicitly forbid additional tasks arising during the
development process. In practice, it is often seen that additional
tasks are carried out in order to get a product with the required
quality. Therefore, autonomy and self-organization are the key
aspects to get this done right, although this is not noted in
Scrum.

Another issue concerning autonomy and self-organization
is the Scrum Team. Scrum does not define any cybernetic
approach the team has to follow. Therefore, it can be com-
pletely ignored meaning that the recursive cybernetic structure
is broken. As before, it is the responsibility of the autonomous
team to do the things right. The prerequisites are met as
both, Scrum Master and Product Owner, can be present during
the Daily Scrum Meeting in order to support a cybernetic
approach.

After this analysis of the coherences between Scrum and
cybernetics it can be seen that many cybernetic aspects are
already covered in Scrum. So far, our recommendation is to
additionally apply Kanban and basic cybernetic principles in
order to overcome the mentioned shortcomings. In future work,
we will analyse this promising combination in more detail.

REFERENCES

[1] J. Sutherland and K. Schwaber. The Scrum Guide.
[Online]. Available: https://www.scrum.org/Portals/0/Documents/Scrum
Guides/2013/Scrum-Guide.pdf (2014.05.23)

[2] F. Malik, Komplexität - was ist das?(Complexity - What is this?).
Cwarel Isaf Institute, 1998.

[3] N. Wiener, Cybernetics: or Control and Communication in the Animal
and the Machine. New York: Wiley, 1961.

[4] F. Malik, Strategy: Navigating the Complexity of the New World.
Campus, 2013.

[5] ——, Strategie des Managements komplexer Systeme: Ein Beitrag zur
Management-Kybernetik evolutionärer Systeme (Management Strategy
of Complex Systems: A Contribution of Management Cybernetics of
evolutionary Systems). Haupt, 2008.

[6] ——, “The six cultural values for the reliable functioning of an
organization,” Malik on Management, Volume 22, 2014.

[7] F. Vester, The Art of interconnected thinking. Mcb, 2013.
[8] A. Cockburn, Agile Software Development. Addison Wesley, 2006.
[9] H. Wolf and A. Rock, Agile Softwareentwicklung: Ein Überblick (Agile

Software Development: An Overview). dpunkt.verlag, 2011.
[10] K. Schwaber, Agile Project Management with Scrum. Microsoft Press,

2004.
[11] R. Ashby, An introduction to cybernetics. Chapman Hall, 1956.
[12] F. Vester, “The biocybernetic approach as a basis for planning our

environment,” System Practice, Volume 1, No. 4, 1988.
[13] G. R. M. Harrer, “The biocybernetic approach as a basis for planning

and governance,” Proceedings of the 54th Meeting of the International
Society for Systems Sciences (ISSS), Waterloo, Canada, 2010.

[14] U. Biberger, Gestaltungshinweise für agile Software-
Entwicklungsprojekte unter dem Blickwinkel der Kybernetik (Design
Guidelines for agile Software-Development Projects from the Viewpoint
of Cybernetics), 2009.

[15] Agile Alliance. Manifesto for agile software development. [Online].
Available: http://agilemanifesto.org/principles.html (2014.05.23)

[16] D. Anderson, Kanban. Blue Hole Press, 2010.

172Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 194 / 679

Can Functional Size Measures Improve Effort Estimation in SCRUM?

Valentina Lenarduzzi
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell'Insubria

Varese, Italy

valentina.lenarduzzi@gmail.com

Davide Taibi
Software Engineering Research Group

University of Kaiserslautern

Kaiserslautern, Germany

taibi@cs.uni-kl.de

Abstract—In SCRUM projects, effort estimations are carried

out at the beginning of each sprint, usually based on story

points. The usage of functional size measures, specifically

selected for the type of application and development

conditions, is expected to allow for more accurate effort

estimates. The goal of the work presented here is to verify this

hypothesis, based on experimental data. The association of

story measures to actual effort and the accuracy of the

resulting effort model was evaluated. The study shows that

developers’ estimation is more accurate than those based on

functional measurement. In conclusion, our study shows that,

easy to collect functional measures do not help developers in

improving the accuracy of the effort estimation in Moonlight

SCRUM.

Keywords: Software Effort Estimation, Agile Development,

SCRUM effort estimation, Functional measurement.

I. INTRODUCTION

Agile methodologies call for different and possibly more
complex effort estimation techniques than other
methodologies [10]. This is due to the iterative nature of
projects that use agile methods and the lack of detailed
requirements and specifications at the beginning of the
project.

Several effort estimation models have been defined based
on user experience or on previous project results but, due to
the differences between different development
methodologies, the applicability of those estimation models
appears to be limited.

In this work, we focus on SCRUM [13] as reference
process (see Figure 1).

Figure 1: SCRUM Development Process

Requirements in SCRUM are collected in the “product
backlog” and described as “user stories”.

During the Sprint Planning Meeting, the team estimates
the effort for the user stories in the product backlog based on
their experience on implementing similar user stories. Then,
they predict the amount of user stories they believe can
develop in the upcoming sprint. The consequence is that
teams need to adjust their project plan, during each sprint
meeting.

SCRUM does not prescribe a unit of measure to estimate
the effort. Common estimating methods include numeric
sizing, t-shirt sizes, and story points.

In this work, we investigate if it is possible to use
functional measures to help developers increase the accuracy
of the effort estimation in SCRUM.

For this reason, we conducted an empirical study on a
SCRUM project developed with Moonlighting SCRUM [7],
a version of SCRUM slightly adapted for part-time
developers working in non-overlapping hours.

The remainder of this paper is organized as follows:
Section 2 describes related work. Section 3 presents the
context where we applied this study. Section 4 first
introduces the research questions and derive goals and
hypotheses, then elaborates on the measurement instruments
and study design. Section 5 presents the results of the study.
Section 6 describes the threats to validity and finally Section
7 draws conclusions and gives an outlook on future work

II. RELATED WORKS

Several empirical studies report that developers usually

underestimate their effort in agile processes, compared to

other methodologies [10]. Other studies analyzed the

accuracy of the effort planned and spent for implementing

user stories, reporting overoptimistic and sometimes

unrealistic initial estimates [4][11]. Moreover, a case study

run by Chao also reported that the effort estimation does not

improve over time [4].
One of the first attempts to help developers improve the

estimation in SCRUM has been published by Jamieson in
2005 [1]. Jamieson identified a set of estimation problems in
SCRUM such as the need of budget reallocation due to the
requirement volatility resulting in heavy and costly change
management.

Lavazza [8] identified a set of potential problems such as
the different nature of the user stories, the size of a sprint and
velocity. Moreover, he also highlighted the importance of
choosing the correct granularity level for measures and
collect historical data.

Buglione et al. [6] proposed to apply functional size
measurement methods in a late stage of the process, when
requirements become available and are more stable.

173Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 195 / 679

Ziauddin et al. [14] propose an early estimation model
for SCRUM based on historical data. They calculate the
effort based on the number of user stories, the team velocity,
the sprint duration adjusting the results based on a set of
influencing factors such as the team composition,
environmental factors and team dynamics. The model has
been calibrated on 21 SCRUM projects and provides a good
accuracy. However, the model is only suitable for projects
where the requirements are clear and fixed at the beginning
of the project.

Fuqua [16] ran a controlled experiment with the goal of
understanding if functional measurement in XP-Projects can
help to produce a more accurate schedule, and if functional
measurement can help to predict how long it will take to
implement a story. Results show that Function Points (FP)
are unable to estimate the required effort. Moreover, FP have
a too fine granularity and require sizeable measurement
effort due to the complexity of the FP measurement process.

Finally, a recent work published by Popli and Chauhan
[12], proposes to use a new unit of measure: the “sprint
points”. Sprint Points are calculated combining information
related to the project type, requirement quality, hardware and
software requirements, requirements complexity, data
transactions and number of development sites.

III. CONTEXT

In this section, we describe the development process we
analyzed in our study and the application that was developed.

This work is based on the development of Process
Configuration Framework (PCF), an online tool to classify
software technologies and identify tool chains in specific
domains [15]. PCF is a relatively small application,
composed of 12,500 effective lines of code, calculated
without considering comment lines, empty lines, and lines
containing only brackets. The development started in
February 2013, based on an existing prototype, and the first
version of the tool was released at the end of May 2013.

PCF is developed in C#/Asp.net with a simple 3-tier
architecture that allows the development of independent
features among developers. This allows developers to work
independently on the data layer, on the business layer and on
the presentation layer.

We deal with a special case of SCRUM process. In fact,
special development conditions called for some changes of
the SCRUM process.

The development was carried out by four part-time
developers (Master‟s students) with 2 to 3 years‟ experience
in software development. Developers work in non-
overlapping hours and, to manage a good level of
communication, an online forum is used for the daily
meeting, as prescribed by Moonlight SCRUM [7]. Moreover,
sprint retrospectives, planning, and retrospective discussions
are led by means of an online integrated tool
(http://www.rallydev.com), which allows us to record sprint
reports, manage product backlog, and draw burn-down
charts.

The development process was organized as follows.

a) The duration of each sprint is three weeks

b) Daily meeting are replaced by reporting on an

online forum twice a week

c) A user story can be assigned only to a single

developer

d) Every developer works in isolation.

The work is coordinated by the SCRUM master via the
weekly meetings.

IV. THE CASE STUDY

We formulate the goal for our study following the Goal
Question Metric approach [5] as:

analyze the development process for the purpose of
evaluating the effectiveness of estimation measures from the
viewpoint of the developers in the context of a moonlight
SCRUM development process

A. Metrics

Since measures are collected to estimate effort, a
characteristic of these measures is that they can be measured
before development. So, in principle we expect that it is
possible to build a model that, by linking the development
effort to the measures, provides an estimation tool that can
be used in conjunction with (and possibly even in place of)
the usual agile estimation techniques.

Another characteristic of the measures is that they must
be fast and easy to collect, since they have to fit in an agile
process, where little time and effort can be dedicated to
measurement activities. Moreover, the proposed measures
are easy to collect, so that any developer can perform the
measurement without problems.

To measure user stories, we considered the usage of
traditional functional size measures, possibly adapted to the
agile context. However, plain function points such as IFPUG
(International Function Point User Group)[18] or COSMIC
function point [19] measures could not be used. In fact, we
noticed several problems, including the following:

 The most popular functional size measures use
processes (Elementary process or Functional
process) as the element to be measured. This is
reasonable when the smallest development step (for
instance, a sprint in a regular SCRUM process, or
an iteration in a RUP process) addresses several
processes.
However, in our case the development of a single
process could span multiple sprints. Accordingly,
knowing the size of a process could hardly help
estimate the work to be done in a single sprint.

 Several sprints involved working mainly on the
Graphical User Interface (GUI) of the application.
So, functional size measures would not help
estimate the effort required.

 Implementation-level details (like the number of
interactions with the server or the number of
database tables involved in the operations) appeared
to affect the required effort.

174Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 196 / 679

Based on the aforementioned constraints, we defined the
following measures to be collected during the planning
game:

 Actual effort: number of hours spent per user story.
This information is tracked by developers and
collected at the beginning of each spring.

 Story Type: we collect this information so as to
classify the user stories based on the type of
development.
o New feature: user stories that involve the creation

of a new feature.
o Maintenance: bug fixing or requirement changes for

an existing feature.

 Functional measures. Since standard Function Points
such as IFPUG or FISMA require a lot of effort to be
collected, and most of required information is not
available in our context, we opt for the Simplified
Function Points (SiFP) [17]

SiFP are calculated as SiFP= 7 * #DF + 4.6 * #TF
where #DF is the number of data function (also known as
logic data file) and #TF is the number of elementary
processes (also known as transactions).

We collect SiFP instead of IFPUG Function Points, since
SiFP provides an “agile” and simplified measure, compatible
with IFPUG Function Points [17].

Moreover, before running this study, we asked our
developers what information they take into account when
estimating a user story. All developers answered that they
consider four pieces of information, based on the complexity
of implementing the GUI and the number of functionalities
to be implemented. They usually consider each GUI
component as a single functionality that requires the sending
or receiving of the information to the database. The
complexity of the communication is related to the number of
tables involved in the SQL query.

For these reasons, we also consider the following
measures:

 GUI Impact: null, low, medium, high: complexity of
the GUI implementation identified by the developers.

 # GUI components added: number of data fields
added (eg. Html input fields)

 # GUI components modified: number of data fields
modified

 # database tables: number of database table used in
the sql query.

We can consider this last measure as a functional size
measurement with a very low level of granularity, even
though not directly comparable to SiFP or IFPUG Function
Points.

B. Study Procedure

The measures identified are collected during each sprint

meeting by the SCRUM master, in an Excel spreadsheet.

After each sprint we collect the actual effort spent for

each story, in order to validate results.

Measures must be collected in a maximum of 5 minutes

per user story, at the end of the usual SCRUM planning

game, so as to not influence the normal execution of the

required SCRUM practices.

Developers were informed, through an informed consent

that the information is collected for research purposes and

will never be used to evaluate them.

V. RESULTS

We ran the study analyzing the data for 4 months. We ran
6 sprints of three weeks each with 4 developers working
part-time for the entire period.

Table I reports descriptive statistics on the user stories
per story type. As shown in this table, the vast majority of
the user stories are related to the development of new
features (65%) while only 35% on maintenance.

Considering GUI impact (Table II), we can see that most

of the user stories are related to the development of

graphical features with high or medium complexity.

Functional measures have been collected only for 55 user

stories (40.4%) since the remaining user stories do not

contain enough information for functional size measurement

(e.g., GUI features do not deal with data transactions).

As expected, the number of GUI components added or

modified increase paired with the GUI impact while

unexpectedly, the higher the GUI impact, the lower is the

number of hours required for implementing a user story.

TABLE I. ACTUAL EFFORT PER STORY TYPE

 All New Feature Maintenance

User stories 136 99(73%) 37 (27%)

E
ff

o
rt

 p
e
r

u
se

r
 s

to
r
y

(h
o

u
r
s)

 Avg 3.16 3.68 1.96

Median 2.00 2.00 2.00

Std. Dev 2.91 3.28 1.01

TABLE II. EFFORT AND GUI COMPONENT ADDED OR MODIFIED

(GUI_COMPONENTS) PER USER STORY PER GUI IMPACT

GUI

Impact

Story Type

All New Feature Maintenance

Null

#User Stories 11 6 5

AVG (hours) 3.12 1.91 1.6

AVG (GUI_Comp) 5.27 3.67 0.2

Low

#User Stories 30 26 4

AVG (hours) 3.68 2.46 1

AVG (GUI_Comp) 1.33 1.44 1

Medium

#User Stories 40 30 10

AVG (hours) 1.96 3.50 1.70

AVG (GUI_Comp) 5.02 6.13 0

High

#User Stories 55 37 18

AVG (hours) 1.30 4.90 2.20

AVG (GUI_Comp) 8.28 7.89 9.05

175Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 197 / 679

Descriptive statistics for the SiFP collected for the user

stories (see Table III) show that user stories with a null GUI

Impact (user stories that do not deal with the user interface)

have the higher number of SiFP, followed by the stories with

a high GUI impact.

TABLE III. SIFP PER USER STORY PER GUI IMPACT

GUI

Impact

Story Type

 All New Feature Maint.

All
#User Stories 55 47 8

AVG (SiFP) 6.1 5.76 8.58

Null
#User Stories 7 2 5

AVG (SiFP) 9.12 6.4 12.51

Low
#User Stories 19 18 1

AVG (SiFP) 4.66 4.8 2.2

Medium
#User Stories 22 20 2

AVG (SiFP) 5.69 6.06 1.96

High
#User Stories 7 7 0

AVG (SiFP) 8.79 8.79 /

After the analysis of descriptive statistics, we
investigated the correlations from actual effort and:

 SiFP

 GUI components (Added + Modified)

 GUI components added, modified and database
tables

Here, we report the results for all user stories and for
each GUI impact and story type, so as to understand if this
information can improve the estimation accuracy.

The analysis of correlations among SiFP and effort
reported in all user stories does not provide any statistical
significant result (Table IV – column “All Projects” and
Figure 2), showing a very low goodness of fit
(MMRE=81.4%, MdMRE=135.3%).

The analysis was then carried out by clustering stories
per story types and GUI impact. Results obtained after the
clustering show the same behavior, except for stories
implementing new features with a low GUI impact (Table IV
– Column “GUI Impact Low – Features”). In this case,
results are statistically relevant but with a very low goodness
of fits. (MMRE=147%, MdMRE=111%).

The correlation between the actual effort and the number
of GUI components added or modified shows a similar
pattern to the previous one in Table V and Figure 3. Only the
analysis of stories with a medium GUI impact provides
statistically significant results but, together with the analysis
of the other types of stories, there is a very low correlation
with a very low goodness of fit. (MMRE=71.3%,
MdMRE=140.1%). Results are also confirmed by grouping
user stories by story type and impact.

Finally, the multivariate correlations among GUI
components added, modified and database tables provides
statistically significant results paired with a low correlation.
Moreover, also the multivariate correlation does not increase
the goodness of fit (Table VI and Figure 4).

TABLE IV. CORRELATIONS AMONG EFFORT AND SIMPLIFIED FUNCTION POINTS

All

Projects

GUI Impact

Null Low Medium High

Story Type All Feat. Maint. All Feat. Maint. All Feat. Maint. All Feat. Maint.

#User Stories 55 7 2 5 19 18 1 22 20 2 7 7 0

pearson 0.065 0.391 / 0.383 0.660 0.669 0 -0.068 -0.073 / -0.370 -0.370 0

p-value 0.320 0.193 / 0.262 0.001 0.001 0 0.382 0.380 / 0.207 0.207 0

R2 0.004 0.153 / 0.147 0.436 0.448 0 0.005 0.005 / 0.137 0.137 0

TABLE V. CORRELATIONS AMONG EFFORT AND GUI COMPONENTS ADDED OR MODIFIED

All

Projects

GUI Impact

Null Low Medium High

Story Type All Feat. Maint. All Feat. Maint. All Feat. Maint. All Feat. Maint.

#User Stories 136 11 6 5 30 25 5 40 30 10 55 36 19

pearson 0.071
-

0.138
0.146 -0.211 0.191 0.190 0 0.436 0.396 0.588 -0.196 -0.217 0.040

p-value 0.207 0.343 0.391 0.366 0.156 0.181 0 0.002 0.015 0.037 0.076 0.102 0.437

R2 0.005 0.019 0.021 0.045 0.037 0.036 0 0.190 0.156 0.346 0.038 0.047 0.002

176Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 198 / 679

 Figure 2: Actual Effort vs Estimated Effort with SiFP

Figure 3: Actual Effort vs Estimated Effort with

GUI components added + modified

Figure 4: Actual Effort vs Estimated Effort with GUI components added,

modified and database tables involved

Figure 5: Actual Effort vs Developers‟ estimated effort

TABLE VI. MULTIVARIATE CORRELATION AMONG ACTUAL EFFORT

AND GUI COMPOMENTS ADDED, MODIFIED AND DATABASE TABLES.

GUI Comp

Added

GUI Comp

Modified

Database

Tables

#Projects 138 138 138

P
e
a
r
so

n

Actual Effort 0.212 -0.033 0.130

GUI Comp

Added
1.000 0.272 0.391

GUI Comp

Modified
0.272 1.000 0.377

Database

Tables
0.391 0.377 1.000

p
-v

a
lu

e

Actual Effort 0.006 0.351 0.0064

GUI Comp

Added
 0.001 0.000

GUI Comp

Modified
0.001 0.000

Database

Tables
0.000 0.000

R2 0.061

In order to understand if the results are due to errors in
the effort estimation made by our developers, we finally
analyze the accuracy of the effort estimation carried out by
our developers. We compared the actual effort with the effort
estimated before implementing the user story (see Figure 5).
Results shows a very accurate estimation, with a very low
average error (MMRE=13.5% MdMRE=9.35%). The low
error is probably due to the nature of the user stories in
Moonlight Scrum, usually smaller than common user stories
in SCRUM. However, as expected, the accuracy decreases
when the effort planned per user story is higher.
This confirms that in our project context, expert estimation is
still much better than data driven estimation, based on
functional measurement.

177Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 199 / 679

VI. DISCUSSION

The immediate result of this study is the low prediction

power of functional size measures in SCRUM.

Unexpectedly, the prediction accuracy of SiFP compared

to the accuracy of experience-based predictions is

dramatically low.

Since SiFP can easily replace the more common IFPUG

function points with a very low error [17], it appears that

functional size measures are not suitable for predicting the

effort in Moonlight Scrum.

Moreover, no correlations are found between the effort

and the information commonly used by our developers to

estimate user stories (GUI components and database tables).

Again, the lack of correlation is probably due to the low

complexity and the small effort needed to implement a story.

Results are based only on the analysis of one development

process, based on a relatively small codebase (12500

effectives lines of code).

Concerning internal validity of the study, developers are

master students, with a limited experience (2-3 years) in

software development with at least one year of experience in

SCRUM.

As for external validity, this study focuses on Moonlight

SCRUM, a slightly modified version of SCRUM. We expect

some variations in applying the same approach to a full time

development team, working on a plain SCRUM process.

Regarding the reliability of this study, results are not

dependent by subjects or by the application developed. We

expect similar results for the replication of this study with a

Moonlight SCRUM process.

VII. CONCLUSIONS

In this work, we analyzed the development of a

Moonlight SCRUM process so as to understand if it is

possible to introduce agile metrics to the SCRUM planning

game.

With this study, we contribute to the body of knowledge

by providing an empirical study on the identification of

measures for Agile, and in particular SCRUM, effort

estimation.

Therefore, we first gave an overview of the few existing

empirical studies in the field agile and SCRUM effort

estimation, then we introduced the context of this study and

the case study we ran.

Results of our study show that SiFP do not help to

improve the estimation accuracy in Moonlight SCRUM.

Moreover, the accuracy does not increase considering other

measures usually considered by our developers when they

evaluate the effort required to develop a user story.

Since SiFP can easily replace the more common IFPUG

function points with a very low error [17], we can conclude

that, based on our case study, it appears that functional size

measures are not suitable for predicting the effort in

Moonlight Scrum.

Future work includes the replication of this study in an

industrial context with a plain SCRUM process.

REFERENCES

[1] D. Jamieson, K. Vinsen, and G. Callender, “Agile
Procurement to Support Agile Software Development”,
Proceedings of the 35th IEEE International Conference on
Industrial Informatics, pp. 419-424, 2005.

[2] T. Sulaiman, B. Barton, and T. Blackburn, “AgileEVM -
Earned Value Management in SCRUM Projects”,
Proceedings of AGILE Conference , pp. 10-16, 2006.

[3] N. C. Haugen, “An empirical study of using planning poker
for user story estimation”, Proceedings of AGILE
Conference , pp. 9-34, 2006.

[4] L. Cao. “Estimating Agile Software Project Effort: An
Empirical Study” Americas Conference on Information
Systems (AMCIS), paper 401, 2008

[5] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal
question metric approach.” Encyclopedia of software
engineering, pp. 528–532, 1994.

[6] L. Buglione and A. Abran. “Improving Estimations in Agile
Projects: Issues and avenues” Proceedings of the 4th Software
Measurement European Forum (SMEF) Rome (Italy), 2007

[7] D. Taibi, P. Diebold, and C. Lampasona. “Moonlighting
SCRUM: An Agile Method for Distributed Teams with Part-
Time Developers Working during Non-Overlapping Hours”
Proceedings of the Eighth International Conference on
Software Engineering (ICSEA), pp. 318-323, 2013

[8] L. Lavazza. “Managing Performance Impact Factors for
Effort Estimation in Agile Projects”. PIFPRO'12 workshop.
Collocated with IWSM/Mensura, 2012

[9] R. Meli, “Simple Function Point: a new Functional Size
Measurement Method fully compliant with IFPUG 4.x”,
Software Measurement European Forum, 2011

[10] B. Ramesh, L. Cao, and R.Baskerville. "Agile Requirements
Engineering Practices and Challenges: An Empirical Study,"
Information Systems Journal. Vol. 20, Issue 5, pp 449–480,
2007.

[11] V. Mahnic. „A Case Study on Agile Estimating and Planning
using SCRUM” Americas Conference on Information
Systems (AMCIS), pp 123-128, 2008

[12] R. Popli and N. Chauhan. ”A Sprint-Point Based Estimation
Technique In SCRUM” Information Systems and Computer
Networks, pp.98-103, 2013

[13] K. Schwaber. “Agile Project Management with SCRUM”
Microsoft Press, ISBN 9780735619937, 2004

[14] K. Z. Ziauddin, K. T. Shahid, and Z. Shahrukh. “An Effort
Estimation Model for Agile Software Development”
Advances in Computer Science and its Applications Journal.
Vol. 2, No 1, pp 314-324, 2012

[15] P. Diebold, L. Dieudonné, and D. Taibi, “Process
Configuration Framework Tool”, Euromicro Conference on
Software Engineering and Advanced Applications , 2014.

[16] A. M. Fuqua. “Using function points in XP – considerations”
International conference on Extreme programming and agile
processes in software engineering, pp. 340-342, 2003

[17] L. Lavazza and R. Meli, “An Evaluation of Simple Function
Point as a Replacement of IFPUG Function Point”, IWSM -
Mensura 2014, Rotterdam, October 2014.

[18] International Function Point Users Group. “Function Point
Counting Practices Manual”, 2004

[19] COSMIC - Common Software Measurement International
Consortium. “The COSMIC Functional Size Measurement
Method - version 3.0 Measurement Manual” September 2007

178Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 200 / 679

On Some Challenges in Assessing the Implementation of Agile Methods in a

Multisite Environment

Harri Kaikkonen

Department of Industrial Engineering and Management

University of Oulu

Oulu, Finland

harri.kaikkonen@oulu.fi

Pilar Rodríguez, Pasi Kuvaja

Department of Information Processing Sciences

University of Oulu

Oulu, Finland

{pilar.rodriguez, pasi.kuvaja} @oulu.fi

Abstract—Organizations utilize agile development methods

and multisite environments with the intent to reduce costs and

development time. Assessing the results of utilizing and

adopting such methods is also frequent. An assessment survey

instrument was used to analyze the transformation of a

multisite software development organization from waterfall-

type development into agile development. The transformation

was done in two globally distributed sites in Finland and India

around 12 months apart. The assessment survey was

conducted in the Finnish site 6 months after it had changed its

working methods and again 12 months later in both sites. The

site in India had adopted similar methods after the previous

assessment survey was conducted. The results of the

assessment survey in the Finnish site indicated regression

between the two assessment rounds, while the results in India

appeared to be better compared to Finland in the second

round. Analysis of the results suggests that cultural differences

and time elapsed from the organizational transformation may

have influence in the assessment results and should be taken

into account when assessing the implementation of

development methods.

Keywords-organizational change; global software

development; agile methods; Scrum; process assessment.

I. INTRODUCTION

Adopting agile development methods like Scrum [1] and

extreme programming (XP) [2] have seen a great deal of

interest in the software development community because of

their intended benefits of delivering working software and

being more responsive to changes, among other reasons [3].

However, scaling agile methods into larger organizations

than a single or a few teams has its difficulties and there

have been several descriptions of how to do that (e.g.,

[4][5]).

As development organizations become larger, they are

often also spread out globally out of necessity or because of

their business environments [6], which causes a whole other

array of issues to be considered in managing development

work.

This publication describes selected results of a

quantitative process assessment conducted at a medium-

sized software development organization. The organization

adopted a Scrum-based software development process in

their multi-site organization. The adoption and the

assessment were done in two phases. First, the process was

adopted by a smaller unit in Finland with approximately 30

people, who were assessed approximately six months after

the adoption. Then, with the experience gathered from the

first site, similar processes were adopted in the same

organization‟s site of about 50 people in India and the

assessment was repeated in both sites. The adoption was

also planned to be further expanded to other sites.

The aim of this publication is to provide evidence of

issues in assessing the implementation of organizational

changes such as new development processes in a global

software development (GSD), or other multisite

organization.

The remainder of the publication is organized as follows.

Section II contains a description of related work as theory of

agile development methods and global software

development. Section III presents a description of the

assessment process and Section IV a description of the

organization in which the assessment was conducted.

Section V presents the relevant results of the assessments.

Section VI includes discussion based on the results and the

paper concludes in Section VII.

II. RELATED WORK

The agile movement gained publicity within the

community during the 1990‟s, and was later epitomized in

the agile manifesto, published in 2001 [3]. The manifesto

was a collaborative agreement of what practitioners saw as

the values and principles of agile software development. In

addition to the actual manifesto, the authors also described

twelve principles behind it. The twelve principles were

agreed as common to the agile practitioners, although agile

methods had already been described and were in use in

many different settings. „Agile methods‟ is an umbrella term

for a wide different set of approaches (e.g., Scrum, XP and

kanban [7]), that have challenged the traditional waterfall

model of software development and introduced a more

lightweight process of producing software. Key differences

between agile methods and traditional software

development include iterative development and promoting

empowered teamwork. However, a common

misinterpretation of agile software development is that

agility is achieved with practices and tools, although the

focus should be on being agile, instead of doing it [4].

179Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 201 / 679

During the same time that agile methods started to

become increasingly prevalent in software development,

globalization of high-technology businesses have increased

the need for GSD. Software and its use as both products and

services has become a competitive weapon which must be

utilized efficiently to stay ahead in high-technology

competition [6].

The challenges of GSD have been clear from the start

and have been described in several sources (e.g., [8][9][10]).

Issues range from strategic level issues like how to divide

work between different sites, to more tactical level problems

like how to arrange effective daily communication channels,

to more complex systems like cultural differences and their

effect on project and process management [6]. It is clear that

many types of issues become apparent when dividing any

kind of work globally, and with development work that

often realizes inside developers‟ and designers‟ heads, the

problems can be all the more difficult. Methods have also

been proposed to reduce the effects of the challenges

involved with GSD. These methods range from the use of

maturity models [11] to suggested practices and techniques

[10].

As organizations try to improve their processes and

products, they often turn to assessments to get further

understanding of their processes. Many of these assessments

have also been conducted in global development

environments (e.g., [12]). Similarly to the identified

challenges with GSD, analyzing assessment results from

GSD organizations may also contain challenges that are

unknown. This is true for assessment results in any multisite

organization, not just for GSD organizations.

III. RESEARCH METHOD

One of the challenging things in any organizational

transformation towards a new way of working is how to

assess the transition process and guide the next steps. This

research was conducted using the Lean and Agile

Deployment Survey, which is an assessment instrument

developed by the University of Oulu in collaboration with

industrial partners in the Cloud Software Program [13] in

Finland. The instrument is specifically designed for

enabling an effective transformation to a lean and agile way

of working. The survey is based on a generic structure of

three organizational levels; portfolio, program and project

[5], and focuses on four main dimensions: organizational

set-up, practices, outputs and culture/mindset. The survey

was part of a larger effort that University of Oulu was

performing in identifying the right agile practices to adopt

and to determine whether organizations are ready for lean

and agile. Additionally, the approach is meant to provide

information for deciding what necessary preparations and

potential difficulties may be faced during the adoption

process.

The conducted survey contained four context

information questions for analyzing purposes, and over 70

statements that described the organization‟s agile

development process as it had been planned and taken in use

internally. The statements were tailored from general

statements in the Lean and Agile Deployment Survey to

correspond with the terminology and processes of the case

organization. Some generic examples of the statements are

presented below:

 The product backlog prioritization is clear

 The product owner guides the Scrum team by

prioritizing the user stories

 I understand when the user stories are complete

and can be accepted within the sprint

IV. CASE ORGANIZATION

The case organization designs software for network

protocol analyzers. One of the organization‟s sites in

Finland started their agile transformation with pilots during

the spring of 2010. They further changed that site‟s

organization of around 30 employees to an agile way of

working in the beginning of fall of the same year by starting

to follow the methods of Scrum development [1]. During

2011, after initial results and experiences in Finland, similar

processes were taken in use at a development unit in India

and were planned to be taken in use in other sites as well.

The Lean and Agile Deployment Survey was conducted

twice in the organization. The first survey took place after

the agile methods had been taken in place in Finland and

had been in place for about 6 months. The second survey

was conducted 12 months later and was expanded to include

the site in India, which had adopted similar agile practices

during that time.

The targets of the survey assessment were i) to review

the current status of agile adoption at two of the case

organization‟s sites, ii) to see how the unit in Finland had

been progressing with agile methods between the two

survey rounds, iii) to identify focus areas for continuous

improvement efforts and iv) to receive feedback on the

impressions and assumptions on agile and Scrum processes

in other sites of the organization.

To obtain results for the last goal, the survey was also

conducted in a third site, which had not yet fully adopted

similar processes as the two case sites. The responses of the

third site are omitted from the results presented in this

publication.

The total number of respondents for the first round in

Finland was 25. For the second round, there were 62

responses in total, 25 responses from Finland and 37 from

India.

V. RESULTS

The survey was very successful in terms of response

rate, which was a full 100 percent in the first round and 80.5

percent in the second round. The high response rate was

180Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 202 / 679

attributed to the close collaboration between the case

organization and researchers and extensive communication

to the survey participants. Personnel of the case organization

also sponsored the survey noticeably, so its conduction was

well received.

TABLE I. RESPONDENT EXPERIENCE

How many years of experience in software

industry do you have?

Round 1

(Finland)

Round 2

(Finland)

Round 2

(India)

Round 2

(Total)

None 0 0 0 0

Less than 2 1 0 6 6

2-5 4 2 13 15

5-10 5 5 16 21

10-20 13 16 2 18

More than

20
2 2 0 2

Total 25 25 37 62

A comparison of the respondents‟ experience shows that

the personnel that participated in the survey were generally

very experienced in software development (see Table I).

There is also some difference between the experiences

between the two sites. Many respondents in Finland had

over a decade of experience in software development, which

may amount to some opinions reflected in the survey

results.

TABLE II. RESPONDENT ROLES

 Round 1

(Finland)

Round 2

(Finland)

Round 2

(India)

Round 2

(Total)

Developer 13 16 18 34

Tester 4 1 10 11

Product

owner
4 4 2 6

Scrum
master

3 2 6 8

Other 1 2 1 3

Total 25 25 37 62

Most of the responses in the survey came from

developers and testers (see Table II). The other roles with

significant number of responses were the product owner and

Scrum master. As the focus of the survey was at the

implementation of agile development process, the responses

from these roles also provides a solid basis for the analysis

of the results.

Because of the case organization‟s preference, the

statements were evaluated by the respondents on a four-

point scale, with an additional option of „I don‟t know‟

instead of a 5-point Likert-type scale [14] usually utilized

with the Lean and Agile Deployment Survey. The answering

options with corresponding weights used in average

calculation in the following results section were as follows

(see Table III).

TABLE III. SURVEY ANSWERING OPTIONS

Option Option weight

Disagree 1

Partially agree 2

Largely Agree 3

Fully Agree 4

I don‟t know -

The following tables and figures present selected

findings from the survey which may be interesting in the

context of multi-site agile adoption. The results for

individual statements (see Figures 1-10) are presented as the

distribution of responses and an average result in the

statements in four separate rows. The first row presents the

results received in the first survey that was conducted

around 6 months after the agile adoption had taken place in

the Finland unit. The second and third row include

responses 12 months later from the Finnish and Indian units,

respectively. The final row shows the combined answers in

the second survey round from both sites (Finland and India).

Please note that the „I don‟t know‟ –answers are not

included in the average calculations. However, in some

statements the amount of „I don‟t know‟ –responses itself is

significant.

Firstly, a very interesting finding can be made by

looking at the collective average of the overall responses

between the two survey rounds (see Table IV).

TABLE IV. SURVEY AVERAGE

 Round 1

(Finland)

Round 2

(Finland)

Round 2

(India)

Round 2

(Total)

Response

average
3,04 2,76 3,28 3,07

The fact that the average score in Finland in the second

survey is lower than 12 months earlier is an alerting sign, as

the statements were formed in a positive form in accordance

of the case organization‟s process description. There was

some indication from the case organization that they had not

had sufficient resources to actively react to issues raised in

the first survey and subsequent retrospectives during the 12

month period between the two surveys. A possible cause for

the reduction in the average results may also be increased

experience and awareness in the agile methods. This could

affect the results as people become more aware of their

processes and the issues concerning them than before.

Also, perhaps surprisingly, the average score in India

was much higher than it was in Finland as seen from the

second round average scores. Several reasons may affect

this difference, with cultural reasons perhaps being the most

obvious explanation.

181Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 203 / 679

Reasons for the drop in score are evident in some survey

results. One main improvement area for the case

organization based on the first survey was the lack of

identified value of continuous improvement activities (see

Figures 1 and 2).

Figure 1. Scrum teams change their ways of working based on

retrospectives.

Figure 2. We reduce wasteful activities frequently.

The lack of resources assigned for following up on this

improvement area show as reduced results in the second

round in the Finland unit. Again, results on the topic are

higher in the India site.

A second major improvement area identified based on

the first survey round was the lack of measured and

communicated evidence of the benefits of the agile methods

for the organization (see Figures 3-6).

Figure 3. I am more productive with the agile way of working.

Figure 4. We are more productive as a Scrum team.

Figure 5. Product quality has been improved by applying agile

development.

Figure 6. Development time has decreased by applying agile

development.

An action point after the first survey round was to

provide the teams more information on the benefits of agile

in comparison with earlier working methods. This issue had

apparently not received enough attention because the second

survey round indicated some decrease in results on the

matter as well as an increase in „I don‟t know‟ –responses in

Finland. Another possibility for the results is that the quality

and productivity have actually not been improved with the

new methods. The measuring of the benefits of agile is a

very interesting and difficult topic among all organizations

implementing the methods, but high consideration should be

used on how to provide teams more information on actual

benefits of agile.

There was also possible need for further training within

the organization (see Figures 7 and 8).

Figure 7. I have received enough training for carrying out my work.

Figure 8. I feel confident with myself with the agile way of working.

When comparing the results between the sites in Finland

and India, it can be seen that the training needs appear to be

equally divided between the two sites. However, there is a

noticeable difference between the sites in the confidence in

individual capabilities. This can possibly again be explained

by cultural differences.

There was also some difference in statements about the

preference of team co-location between the sites. There is a

noticeable change in the answers between Finland and India

(see Figures 9 and 10).

182Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 204 / 679

Figure 9. I prefer to work in a multisite Scrum team.

Figure 10. I prefer to work in a local Scrum team.

Differing from the answers in India, there seems to be a

clear preference to co-location of team members in Finland.

The co-location in generally viewed as an important part in

Scrum processes and the results in Finland show the

preference that has come by experience in that site. The

conflictingly high results of India in both of the two tables

above may involve cultural influences, but also some lack of

experience since the agile methods had been in use there for

a shorter period of time.

An additional interesting comparison was made between

the two survey rounds in the overall amount of „I don‟t

know‟ –answers (see Table V).

TABLE V. PERCENTAGE OF „I DON‟T KNOW‟ RESPONSES IN ALL

STATEMENTS

Round 1

(Finland)

Round 2

(Finland)

Round 2

(India)

Round 2

(Total)

9,8% 12,7% 7,62 % 9,8%

In the second survey round, the amount of „I don‟t know‟

-answers in Finland is quite a lot higher than in India. When
results between the two rounds are compared, we find that
the percentage in Finland has increased between the two
rounds and that the percentage in India is even lower than
Finland in the first round. There was a similar amount of
time elapsed from the agile adoption in Finland in the first
round and India in the second. This could indicate that the
amount of knowledge acquired during the 12 months
between survey rounds in Finland lead to an increase in
awareness of issues, or to some other reasons which lead to
this result.

VI. DISCUSSION

Based on the survey results, the main improvement areas

identified in the first survey round were not given enough

attention after conducting the survey. This was also

admitted by the case organization because of reduced

resources for the improvement efforts. This is one of the

main reasons why the results in the Finland site appear

lower in the second round.

However, the other main reason for the reduction in

response averages in some statements is believed to be

increased awareness on the topic of agile methods and

possible issues related to them. The combined average result

in all statements between Finland in round 1 and India in

round 2 are similar. The amount of time that these two sites

had been using the agile development methods before their

first respective survey rounds was also similar.

The first important improvement suggestion for the case

organization in the opinion of the researchers was to

improve the resources currently utilized for change

management and improvement efforts. The teams may need

more support and resources for successful organizational

transformation. This should include more support for

continuous improvement activities and the follow up of

these activities, since there were no definitive improvements

that could be identified from the first assessment round.

The identified decrease in results should be taken

seriously to see what kind of improvement actions could be

taken. This should also include very active participation

from all members of the development organization, since

they will be most aware of the issues regarding their daily

work. The practices and processes that do not work should

be adapted according to the organization- or unit-specific

preferences while remembering to include the agile

principles and mindset.

Continuous improvement activities should have a strict

process to follow, which includes communication to all

interested stakeholders on the progress of the activities and a

responsible individuals who have allocated time to conduct

the activity. Many additional success factors can support the

sustainability of improvement activities as well, which

should be kept in mind when implementing changes [15].

The follow-up of the activities should also include a

larger scale follow-up of the adoption of agile methods.

Some forms of quantitative or qualitative measurements of

the possible benefits of agile (in productivity, quality, etc.)

should be measured and communicated in all units,

including the sites that may take the agile methods into use

in the future. This shows that the organization is committed

to the changes and that the activities that are requested of

the members of the organization have justifications behind

them. There was already some evidence of doubt in the agile

methods in the first survey round and these doubts should be

addressed properly through discussion.

In addition to the assessment results changing with time

elapsed between the organizational change and the

assessment, the results of the survey also indicate bias in the

results based on cultural differences. When assessing the

success of multisite organizational changes, it should be

noted that the results may vary between locations for

reasons that may not be possible to affect with any change

management processes. Therefore, it may be useful in some

183Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 205 / 679

cases to assess different global sites individually, instead of

comparing the results of sites between each other.

VII. CONCLUSION

The results of this research can be used by researchers

and practitioners when assessing organizational changes.

Assessment results between geographically distributed sites

may not always be directly comparable between each other.

Cultural differences in results and the difference in elapsed

time from the organizational change may also affect

assessment results and should be noted when analyzing data.

It would also be beneficial to compare results of a

similar assessment with a different scaling method, like e.g.,

the Likert-type scale. The scaling itself should not be a

contributing factor in this study, but additional assessment

cases with similar backgrounds could be used to validate the

influence of the used survey scale.

The assessment process could be repeated in the case

organization for a third time to analyze further progress of

the organizational change. The findings of this assessment

were used to focus future improvement efforts in the case

organization and to provide feedback on how they

understand their agile transformation so far. The results

were presented to all participants through an open

discussion session by the researchers and a written report

was communicated openly inside the organization. The

report was also brought into general knowledge by giving

access to it within the organization.

ACKNOWLEDGMENT

The authors would like to acknowledge the contribution

of the Finnish Cloud Software Program [13] for the funding

received for this research.

REFERENCES

[1] K. Schwaber and M. Beedle, “Agile Software Development with

SCRUM”, Prentice Hall, 2001.

[2] K. Beck, “Embracing change with extreme programming” Computer,
Volume 32, Issue 10, pp.70-77, 1999.

[3] K. Beck, et al., “Principles behind the agile manifesto” [Online]
Available from: http://agilemanifesto.org/principles.html 2014.08.12.

[4] C. Larman and B. Vodde, “Scaling Lean & Agile development.
Thinking and Organizational tools for Large-scale Scrum. “ Addison-
Wesley, USA. 2009.

[5] D. Leffingwell, “Scaling software agility: Best practices for large
enterprises.” Pearson Education, USA, 2007.

[6] J.D. Herbsleb and D. Moitra, “Global software development”. IEEE
Software, Volume 12, Issue 2, pp.16-20, 2001.

[7] D. Anderson, “Kanban - Successful Evolutionary Change for your
Technology Business”, Blue Hole Press, USA, 2010.

[8] J. Bosch and P. Bosch-Sijtsema, “From integration to composition:
On the impact of software product lines, global development and
ecosystems”, The Journal of Systems and Software, Volume 83, Issue
1, pp. 67-76, 2010.

[9] P.J. Ågerfalk, et al., “A framework for considering opportunities and
threats in distributed software development.”, Proceedings of the
International Workshop on Distributed Software Development, Paris,
France. Computer Society, 2005. pp. 47-61

[10] A. S. Alqahtani, J. D. Moore, D. Harrison, and B. Wood, “Distributed
agile software development challenges and mitigation techniques: A
case study.” The Eight International Conference on Sofware
Engineering Advances, (ICSEA 2013) IARIA pp.352-358, ISBN:
978-1-61208-304-9.

[11] T. Oliveira and M. Silva, “Method for CMMI-DEV Implementation
in Distributed Teams” The Sixth International Conference on
Software Engineering Advances (ICSEA 2011) IARIA pp.312-317,
ISBN:978-1-61208-165-6.

[12] S. Misra and L. Fernández-Sanz, “Quality Issues in Global Software
Development”, (ICSEA 2011) IARIA pp.325-330, ISBN: 978-1-
61208-165-6.

[13] Cloud Software Finland. [Online]. Available from:
http://www.cloudsoftwareprogram.org/cloud-software-program
2014.08.12.

[14] R. Likert. "A Technique for the Measurement of Attitudes". Archives
of Psychology Vol. 140, pp. 1–55, 1932.

[15] N. Nikitina and M. Kajko-Mattson, ”Success factors leading to the
sustainability of software process improvement efforts.” The Sixth
International Conference on Software Engineering Advances (ICSEA
2011) IARIA pp. 581-588, ISBN: 978-1-61208-165-6.

184Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 206 / 679

Towards Agile Composition of Service Oriented Product Lines: A Mashup-based

Approach

Ikram Dehmouch, Bouchra El Asri, Zineb Mcharfi

IMS Team, SIME Laboratory
ENSIAS, Mohammed V Rabat University

Rabat, Morocco

{ikram.dehmouch@gmail.com, elasri_b@yahoo.fr, zineb.mcharfi@gmail.com}

Abstract—Large scale product lines cover multiple domains

with different concepts and concerns. Thus, involving domain

users in the development life cycle is a key factor for the success

of the composition process combining the different subdomains of

the intended resulting large scale system. In fact, domain users

master the domain concepts, the scope of each subdomain and

the interactions between the different subdomains to be

composed. This makes them key actors in the composition

process. Adopting agile principles is then required to offer

intuitive and simple composition techniques for end-users. One of

these emergent techniques is Mashup, which is mainly concerned

with web service composition in an ad hoc way. This paper

proposes using a Mashup component as an underlying

composition technique for large scale service oriented product

lines in order to bring agility to the process of composing the

different subdomains services. The proposed Mashup component

in allows incremental composition to achieve agility and to

address scalability issue as well.

Keywords—Product Line Engineering; Feature Model; Agile

Software Development; Service Oriented Computing; Mashup

I. INTRODUCTION

The Product line approach has been already successfully

applied to various industrial domains, such as avionics [1] and

automotive systems [2], etc. With regard to software

engineering, Software Product Line Engineering (SPLE)

constitutes a major advance, as it allows building software

from a set of previously developed and tested parts, based on

the domain knowledge. This generates considerable benefits in

terms of time, quality and resources [3].

However, traditional SPLE is no more enough to face

modern applications, which tend to be cross-industry and to

cover multiple domains simultaneously. This has led to the

advent of the large scale product lines concept combining

various subdomains with heterogeneous crosscutting concerns

such as health, telecommunication, transport, etc. Thus,

composing these subdomains to generate the intended large

scale system is becoming a crucial concern [4]. The

composition process in such systems becomes more

problematic, since it should scale to big development projects

sizes with hundreds of users/developers from several fields.

On the other hand, domain users are an important ingredient

of this composition process success, since they master the

scope and the different concepts within the subdomains to

compose. Thus, one possible way to address the scalability

issue is to involve end-users in the composition process.

Consequently, opting for Agile Software Development

(ASD) in combination with SPLE is the key to make the

composition process simple and intuitive for end-users, solve

possible conflicts that may occur in such heterogeneous

crosscutting environments and allows incremental

development, which meets the scalability issue.

In fact, ASD put end-users at the heart of the software

development process, since it is based on constant interaction

with customers [5].

In this context, we propose in this article an agile

composition approach for large scale product lines based on a

consumer-centric technique called “Mashup”. In fact, Mashup

is an extremely consumer-centric and lightweight service

composition technology [6], which can be exploited to address

scalability issue throughout bringing agility to the proposed

product line composition approach.

To explore how Mashup facilitates this service

composition, this paper is organized as follows: In Section 2,

we present some basic concepts related to two main paradigms

involved in our work, which are SPLE and ASD. Section 3

draws up the motivations of our work. Section 4 discusses

about the related work. Section 5 presents an overview of our

approach. A motivating scenario showing the interest of our

approach is described in Section 6. Finally, Section 7

concludes the paper.

II. BASIC CONCEPTS

 SPLE

SPLE is an emergent paradigm which is the result of

bringing the reuse-based product line concept, adopted mainly

in industry, to software engineering development process [7].

It consists of constructing software products from reusable

core assets. This results in lower costs, shorter time-to-market,

and higher quality, since a family of products is generated

instead of developing them one by one from scratch [8].

According to Kang et al. [9], the product line is defined as a

set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a

particular market segment or mission, but that still show

distinct and different characteristics.

The SPLE process is usually divided in two main

complementary phases: Domain engineering and Application

engineering [3]. While the first one deals with the

development and maintenance of reusable core or domain

assets, the second one is about using those assets in order to

build individual software products. The first step in domain

engineering is business scoping which is performed using

specific models called Feature Models (FM). The notion of

FM was proposed by Kang et al. [9] to represent

commonalities and variabilities among the products within the

same domain. In fact, FM is a tree structure representation of

features—“a prominent or distinctive user-visible aspect,

quality or characteristic of a software system or systems—[9]

and the relationships between them. A feature can be either

mandatory, optional, alternative (Xor group) or part of an Or

group. Thus, multiple products can be built form a set of

reusable assets depending on which alternative was selected

185Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 207 / 679

during product configuration. This leads us to a core principle

in SPLE, which is Variability [3].

Domain engineering includes also the definition of a

reference architecture, and the development of Software

reusable components. At application engineering level, the

FMs, reference architecture and software reusable components

are then used as a basis for deriving a specific domain

application to meet needs of a specific end-user.

Thus, profitable SPLE requires an extensive up-front

investment to develop reusable domain assets for later

efficient use in products. This carries the risk of not getting a

viable return on investment if the pre-developed assets are not

sufficiently reused [10]; hence the need to resort to ASD.

 ASD

Most of today’s systems are evolving towards community-

driven development approaches where the end-users are

involved in the whole development life cycle. This kind of

software approach is known as ASD.

According to Larman [11], ASD is based on short

iterations. Each one is a self-contained, mini-project with

activities that span requirements analysis, design,

implementation, and test. This allows taking into account

feedback from users in iteration N so that needed refinements

and adaptations are made in iteration N+1. Hence, ASD give

mush importance to people and put them at the heart of the

development process.

Besides, research has shown that shorter iterations have

lower complexity and risk as they are concerned with small

fragments of the system, and allow then better feedback,

higher productivity and higher success rates [9]. One other

major characteristic of ASD is that it is basically built on

response to change rather than change prevention [5], which

fits the changing nature of software development in which

requirements, technology and development team are in

constant change.

ASD is based on four fundamental values and twelve

principles as presented in The Manifesto for Agile Software

Development written by a group of software consultants in

2001 [5]. Most of agile methods such as Extreme

Programming (XP) and Scrum [12] share these principles,

which are basically about frequent communication, frequent

deliveries of working software increments, short iterations and

active customer engagement throughout the whole

development life-cycle.

III. MOTIVATIONS

The wide scope covered by large scale Software Product

Lines (SPL) makes their management a very complex and

tedious task. One efficient way of making this task easier and

better mastered is the decomposition of these large scale

systems in smaller subdomains, each one covering a specific

field and involving only business users concerned with this

field. To get a final product variant of the large scale product

line, the corresponding feature models of the different

subdomains should be composed.

This composition process has several limitations when it

comes to cross-domain large scale systems. One major

limitation is that it would not be obvious to adopt a traditional

SPLE approach based on up-front development to assure valid

compositions. Thus, scalable product line composition

represents a central motivation for our work.

We believe that adopting ASD in this composition process

is the key to address the scalability issue. Three arguments

motivate our choice:

- ASD allows incremental composition: this meets the

modularity logic consisting of decomposing the large scale

system into many subdomains and then recomposing them in

an incremental way to get a specific product variant.

- ASD is consumer-centric: this allows better management

of the different stakeholders regardless of their heterogeneity.

Besides, users are involved in the whole development life

cycle which reduces the extensive up-front investment.

- ASD and SPLE combination generates many benefits: On

one hand, some of the central agile practices may increase

flexibility and customer collaboration. On the other hand, the

concepts of SPLE are needed in order to manage the diversity

of products, the large customer base, and the long-term

perspective, which are the characteristics of managing and

developing a product line over time.

IV. RELATED WORK

At first sight, ASD and SPLE seem to be contradictory

approaches, since SPLE is a proactive approach which

requires planning the development of assets in advance for

later reuse, in contrast to ASD, which is a reactive approach

that avoids up-front planning and development throughout

perpetual interactions with end-users.

Though, several experimentations showed that there is a

great interest in combining SPLE and ASD approaches [13].

Two case studies driven by Ghanam and Maurer [14][15]

show that, besides being practically feasible, the combination

of some XP practices and SPLE reduces rework and the cost

of producing customized solutions, since it enables customers

involvement.

Composite Feature Models (CFM) is another concept

combining SPLE and ASD. According to Urliand et al. [16],

CFM are an extension to classic Feature models, since these

latter are not powerful enough to handle agility challenges.

Separation of concerns is one of the main pillar on which

CFM are built. It offers end-users simple views on the system,

since they focus only on their domain concepts without being

overwhelmed by the other domain concepts. CFM concept is

also based on bottom-up modeling. In fact, users have the

possibility to change their requirements at any point of the

development life cycle. This modification is then introduced in

the corresponding partial feature model and an automated

algorithm is used to merge the modified partial FM into the

CFM [17]. Finally, automated refactoring allows CFM

handling vocabulary mismatch due to the heterogeneity in face

to face conversations with different groups of users, which is

an important agility issue.

On the other hand, some other researches show a growing

interest in how Service-Oriented Computing (SOC) [24] can

be adopted as a mean for enhancing agility and flexibility in

SPLE. Kotonya et al. [18] propose a consumer-centered

approach combining SPLE and SOC through the two

following main steps which are Feature analysis for

representing different services involved into a family of

Business Processes, and Service analysis in which dynamic

services are selected depending on whether the corresponding

features are selected or not in the FM configuration relevant to

a specific Business Process (BP). Cubo et al. [19] have also

developed DAMASCo framework (model-based service-

oriented architecture approach that makes the design,

186Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 208 / 679

development and deployment of processes more agile) in

combination with feature models to safely handle the

variability in the service composition at runtime. Thus, if the

client request changes, a new valid configuration of the

product family containing the required features is

automatically created.

Dynamic adaptation is another advantage of combining

SPLE and SOC. In fact, Alférez et al. [20] propose a

framework that uses variability models to support the dynamic

adaptation of service composition. These variability models

describe the dynamic configurations of the service

composition in terms of activation or deactivation of features.

The information captured in these models is combined with

context model, which collects context knowledge, and

composition model describing the service composition. This

combination is performed through the weaving model, which

connects the variability model to the composition model based

on the context model.
Some other works deal more with the scalability issue in

SPLE regardless of the agility aspect such as Dhungana et al.’s

work [21], which is about the System of Systems (SoS)

paradigm [4] (i.e., systems designed and constructed by

combining several heterogeneous subsystems that are

themselves composed of many components, data structures

and service, etc.) The composition process proposed in this

approach is performed through two injection mechanisms push

and pull that allow generating in a flexible way a conjoint

model representing a common model of the selected

components in the SoS, which can be deployed in a target

platform.

Table 1 shows a comparative assessment of works above

based on our motivations:

TABLE I. COMPARATIVE ASSESSMENT

V. AN AGILE MASHUP-BASED COMPOSITION APPROACH

FOR LARGE SCALE PRODUCT LINES

A. Approach overview

To address the scalability issue in the SPL composition

process while taking into account the ASD principles, our

approach uses a mix of both SPLE and SOC paradigms. On

one hand, SPLE brings a valuable knowledge about variability

within the large scale product line throughout the whole

development lifecycle. Consequently, late variability is also

handled allowing users to specify the services to compose

even at runtime. On the other hand, SOC allows loose

coupling among interacting services, which enables flexible

and agile service composition. Besides, its dynamic nature can

be exploited to guide dynamic adaptations at runtime in order

to fulfill specific business objectives according to context

information especially in terms of availability of dynamic

services, i.e., services that can be invoked only at runtime

(e.g., real-time information services about current weather).

As our approach is an SPL-based one, it should cover the

two main phases of SPLE, which are domain engineering and

application engineering.

From a domain engineering view, our approach proposes to

use a specific FM notation to distinguish dynamic services

from static ones in order to define the scope of dynamic

adaptations, which can take place at runtime. To this, features

corresponding to dynamic services are represented within a

dotted box in the FM. One other major information that should

be also captured at this level of SPLE is the standard business

workflow of service orchestration. We propose to represent

this information using a BPMN 2.0 model [22], as it is a

widely used standard for BP definition, not only as a graphical

representation, but also as an execution language. Besides, it is

a user-friendly model, which consolidates best practices from

different modeling techniques such as UML Activity Diagram,

IDEF, ebXML BPSS, Activity-Decision Flow (ADF)

Diagram, etc. As covering all possible cases in this generic

workflow is a very tedious task, we propose to use FM in

order to represent all the variation points of the BPMN 2.0

model using alternative features. Besides, domain engineering

includes also the definition of a service oriented reference

architecture and the development of reusable BPEL fragments

corresponding to the reusable parts of BP.

From an application engineering view, as our contribution

is a user-centered approach, it is the end-user who defines the

desired product configuration based on his needs. Thus, the

generic BPMN 2.0 model is refined according to this specific

need, the variation points are resolved, and the corresponding

BPEL code and the applicative architecture are generated. In

the following section we give more details about how our

approach brings agility to the composition process of service

oriented product lines.

B. Agility and Mashup

Agility is the central added value of our contribution. To

fulfill this, we propose using Mashup as an underlying service

composition technique, since it is a lightweight and quick way

to integrate multiple sources of applications into a single one,

supporting programming for end-consumers without complex

environment. In fact, we can take advantage from the Mashup

component proposed by Liu et al. [6]. It is composed of three

main parts, which are: User Interface (UI) component, Service

component and Action component. Adopting this Mashup

component allows bringing more agility to our proposed

approach through three main principles, which are: Separation

of concerns, Dynamic adaptation and Incremental

development. Hereafter, we develop each one of these

principles:

 Separation of concerns

As the large scale product line is a cross domain system, we

propose to decompose it into several subdomains. To

emphasize the agility principle, our approach involves end-

users from the earlier steps of the development lifecycle. As

depicted in Figure 1, each subdomain is represented using a

swimlane and it is managed by a group of domain users and

experts, as they are the best placed for defining domain feature

models configurations and BP instances, as explained in the

previous section. It is the UI component of the Mahsup

component who offers the end-users a user interface to

perform all those definitions and to transmit this information

about the services retained and the workflow orchestrating

them to the Action component.

Related work Handling
scalability

Handling
agility

Adaptability
to Service

Oriented

product line

Dynamic
adaptation

[14][15] - ++ - -

[16][17] + ++ - +

[18][19][20] - ++ +++ +

[21][4] +++ - - -

187Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 209 / 679

Besides being an agile principle, separation of concerns

allows also better control of large scale systems, which meets

our scalability issue.

Figure 1. Separation of concerns.

 Dynamic adaptation

Distinguishing dynamic services from static ones in FM

offers our approach the possibility of dynamic adaptation at

runtime according to context changes. In fact, in contrast to

static services, getting the accurate information about the

availability of dynamic services providers can only be

performed at runtime. Based on this information, the final

variant of the sub-product line (subdomain) is generated.

But, there are several previous steps before achieving this

generation:

a. Generation of an FXML file from the FM configuration:

Based on the information provided by the UI component about

the FM configuration (service selection), an XML file is

generated corresponding to the current user’s requirements

called FXML. In fact, we propose that each feature in the FM

configuration has its corresponding XML element. To

distinguish dynamic services from static ones in the FXML,

we propose to use two kinds of xml tags: <dynamic_service>

for dotted boxes in FM configuration and <static_service> for

solid ones.

b. Parsing FXML file: At this step, the Action component

takes as input the generated FXML file and the BPEL 2.0 code

corresponding to the generic BPMN 2.0 subdomain model

(developed at implementation phase of domain engineering

level). In fact, the Action component parses the FXML file

based on a specific mapping relating FXML elements to

<invoke> BPEL elements. If a service has its XML element

retained in FXML file, then its corresponding invoke BPEL

fragment is kept in the final BPEL file, else it is removed.

Besides, certain fragments of the generic BPEL might be

moved to respect the order required by the end-user. Thus, the

Action component defines three actions: add, remove or move,

which are used in order to invoke the right services in the right

order according to the user’s needs. The action component

eliminates the variation from the final BPEL. In fact, each

variation point is represented by a variable in the generic

BPEL. Once the needed service is selected in the FM

configuration, the variable is set to the selected value.

c. Checking service provider’s availability: Before generating

the final BPEL file, the Action component sends a request to

the Service component in order to check the service provider

availability at runtime. Thus, if the service provider is

available then the corresponding BPEL fragment is kept in the

final BPEL file else it is removed. Thanks to this, context

changes are handled by our approach allowing dynamic

adaptations at runtime.

d. Generation of the new variant of the sub-product line: Once

the final BPEL file is constructed, it is executed by the service

component in a specific execution engine and the result is sent

to the Action component. This latter updates the user interface

by returning the result to the UI component.

Figure 2 presents the details about the proposed Mashup

component and the different steps covered before the

generation of the sub-product line variant:

Figure 2. Intra-domain Mashup component.

 Incremental development

At this stage, we have a product variant at the output of

each swimlane. This output is validated by the domain users,

since it has been produced according to their definition of BP.

We propose that each one of these output is composed with

the following one in an incremental composition process until

covering all swimlanes, and thus, covering the large scale

product line, as depicted in Figure 3.

Figure 3. Inter-domain Mashup-based composition.

188Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 210 / 679

The underlying composition approach in this inter-domain

composition phase is the same Mashup component. However,

there is a slight difference, which is the adoption of design by

contracts [23] as a set of pre- and post-conditions annotating

the BPELs 2.0, relevant to the sub-product lines to be

composed, at the input of the inter-domain Mashup

component. In fact, design by contracts allows defining the

interconnection order rules between the different subdomains,

as their respective domain users are not intended to know

these cross domain rules. The Action component uses these

latter to apply the action move in order to put the services in

the right order in the output composite BPEL 2.0. In fact, if all

pre-conditions of a BPEL 2.0 fragment relevant to the first

subdomain are fulfilled, the appropriate BPEL 2.0 fragment,

relevant to the second subdomain, is invoked and placed at a

specific binding point in the resulting composite BPEL 2.0.

VI. MOTIVATING SCENARIO: DIABETES SELF-MANAGEMENT

SYSTEM

We choose as a motivating scenario to demonstrate the

results of our approach the Diabetes self-management system,

i.e., a system allowing diabetes patients to do a regular

monitoring of their health and of the different risk factors,

which may influence their disease and imply complications.

In the following, we present the three main steps of

applying our proposed approach to this example. These steps

are:

Separation of concerns: the first step consists of

decomposing the Diabetes self-management system in two

main subdomains, which are telecommunication domain and

health domain managed by patients and doctors respectively.

At this level, the UI component offers doctors a specific user

interface in order to define the objectives that should be

fulfilled throughout the daily treatment and monitoring

proposed to their patients based on their criticality degree.

These objectives are represented as features in the health

subdomain FM such as taking insulin injections or tablets,

performing health records (e.g., blood pressure, blood glucose,

etc.), walking during thirty minutes, note unusual symptoms,

etc. The doctor’s feature selection is then transmitted to the

Action component in order to determine which services to

invoke and in which order. In fact, once the treatment

objectives are selected, their corresponding order can be

retrieved from the generic BPMN 2.0 model as it has already

been defined by the doctors.

On the other hand, another user interface allows patients to

choose the most suited way of interaction with their doctors,

(e.g., Telephone, SMS, Interactive Voice Responder (IVR),

etc.), as a means of telecommunication. Besides, service

orchestration is also possible for patients throughout the

definition of the interaction frequency with their doctors via

the specified mean of telecommunication. For example, if a

patient chooses IVR as mean of interaction, he should define a

specific schedule of virtual home visits accomplished via IVR

based on his availability.

 Dynamic adaptation: at this level, FXML files

corresponding to both health and telecommunication

subdomains are generated based on the information provided

by the UI component. The action component then parses the

FXML files in order to update the generic BPELs files. For

example: for a specific patient, the daily treatment consists of

making a blood glucose record, sending the record result to the

doctor in charge, receiving response and applying doctor’s

recommendations (i.e., taking a tablet of a specific medicine,

walking during twenty minutes, visiting the doctor, etc.), etc.

The generic health BPEL is then updated according to this

order.

In order to send the appropriate recommendations to the

patient, doctors need the accurate values of health records.

These values could be transferred instantly to the system via

mobile recording devices such as Personal Digital Assistant

(PDA). According to our approach, the next step consists of

checking the availability of the service, which collects the

health records information from the mobile device at runtime

in order to generate the right health BPEL.

Incremental development: According to our approach, we

have as a result two BPELs, each one corresponding to one

subdomain. To generate the composite diabetes self-

management variant, we use the pre- and post-conditions

annotating the input BPEL fragment at the input of the intra-

domain Mashup component. For example, the BPEL fragment

corresponding to the IVR services cannot be invoked until the

patient notices an unusual symptom; else the system simply

sends SMS to remind the patient about medicines and regular

health records.

VII. CONCLUSION AND FUTURE WORK

Combining ASD and SPLE has proven to be a worth

exploring track as it generates many advantages in terms of

reduced time to market and valuable return on investment.

In this paper, we proposed to take advantage from this

combination in large scale product lines composition. The

main finding was that bringing agility to the composition

process throughout the Mashup component ensures the

scalability of our composition approach. In fact, the iterative

and incremental nature of ASD allows modularity and thus a

better control of each sub-system of the large scale system. On

the other hand, the user-centric nature of ASD involves only

domain users concerned with the appropriate subsystem,

which optimizes the time and cost of development.

As users are put at the heart of our agile approach, the main

challenge of our future work is dealing with the perpetual

changes reflecting the new user requirements. Our future work

will then emphasize on the definition of a weaving model

relating the FM to the BPMN 2.0 model, in our proposed

Mashup component, in order to ensure the repercussion of the

new user requirements on the resulting composite product

variant.

REFERENCES

[1] F. Dordowsky, R. Bridges and H. Tschope, “Implementing a software

product line for a complex avionics system”. In 15th International
SoftwareProduct Line Conference (SPLC), IEEE, 2011, pp. 241-250.

[2] S. Thiel, S. Ferber, T. Fischer, A. Hein, and M. Schlick, “A case study
in applying a product line approach for car periphery supervision
systems”, (No. 2001-01-0025), SAE Technical Paper, 2001.

[3] K. Pohl, G. Böckle, and F. Van Der Linden, “Software product line
engineering”. Springer, 10, 2005, pp. 3-540.

[4] M. Jamshidi, “Systems of Systems Engineering: Principles and
Applications”.Taylor & Francis, ISBN 9781420065893, 2010.

[5] M. Fowler and J. Highsmith,“The agile manifesto. Software
Development”,9(8), 2001, pp. 28-35.

[6] X. Liu, Y. Hui, W. Sun, and H. Liang, “Towards Service Composition
Based on Mashup,” 2007 IEEE Congr. Serv. (Services 2007), Jul.
2007, pp. 332–333.

189Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 211 / 679

 [7] F. J. Linden, K. Schmid, and E. Rommes. “Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering”.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[8] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review”, Information
Systems, 35(6), 615-636, 2010.

[9] K. C Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study” (No.
cmu/sei-90-tr-21). Carnegie-Mellon Univ Pittsburgh, Software
Engineering Inst, 1990.

[10] I.S. Jacobs and C.P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G.T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271-350.

[11] C. Larman, “Agile and Iterative Development: A Manager's Guide”.
Boston: Addison Wesley, 2004.

[12] R. C. Martin, “Agile software development: principles, patterns, and
practices”. Prentice Hall PTR, 2003.

[13] G. K. Hanssen and T. E. Fægri, “Process fusion: An industrial case
study on agile software product line engineering”. Journal of Systems
and Software, 81(6), 2008, pp. 843-854.

[14] Y. Ghanam and F. Maurer, “Extreme product line engineering:
Managing variability and traceability via executable specifications”
In Agile Conference, 2009. AGILE'09, August. 2009, pp. 41-48.

[15] Y. Ghanam and F. Maurer, “Extreme Product Line Engineering–
Refactoring for Variability: A Test-Driven Approach”. In Agile
Processes in Software Engineering and Extreme Programming ,
Springer Berlin Heidelberg, 2010, pp. 43-57.

[16] S. Urli, M. Blay-Fornarino, P. Collet, and S. Mosser, “Using composite
feature models to support agile software product line evolution”.
InProceedings of the 6th International Workshop on Models and
Evolution, ACM, October.2012, pp. 21-26.

[17] M. Acher, P. Collet, P. Lahire, and R. B. France, “Separation of
concerns in feature modeling: support and applications”. In Proceedings
of the 11th annual international conference on Aspect-oriented
Software Development, ACM, March. 2012, pp. 1-12.

 [18] G. Kotonya, J. Lee, and D. Robinson, “A consumer-centred approach
for service-oriented product line development,” 2009 Jt. Work.
IEEE/IFIP Conf. Softw. Archit. Eur. Conf. Softw. Archit., September.
2009, pp. 211–220.

[19] J. Cubo, N. Gamez, L. Fuentes, and E. Pimentel, “Composition and
Self-Adaptation of Service-Based Systems with Feature Models”,
In Safe and Secure Software Reuse, Springer Berlin Heidelberg, 2013,
 pp. 326-342.

[20] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz,
“Dynamic adaptation of service compositions with variability models”,
J. Syst. Softw., vol. 91, May. 2014, pp. 24–47.

[21] D. Dhungana, A. Falkner, and Haselböck, “Generation of conjoint
domain models for system-of-systems”. In Proceedings of the 12th
international conference on Generative programming: concepts &
experiences, ACM, October. 2013, pp. 159-168.

[22] T. Allweyer, “BPMN 2.0: introduction to the standard for busines
process modeling”. BoD–Books on Demand, 2010.

[23] T. Thüm, I. Schaefer, M. Kuhlemann, S. Apel, and G. Saake, “Applying
Design by Contract to Feature-Oriented Programming”. In Proceedings
of the International Conference on Fundamental Approaches to
Software Engineering (FASE), Springer, 2012, pp 255–269.

[24] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key
concepts and principles”. Internet Computing, IEEE, 9(1), 2005, pp.
75-81.

190Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 212 / 679

An Approach and a Tool for Systematic Review Research

Manuel Gonçalves da Silva Neto, Walquiria Castelo Branco Lins, Eric B. Perazzo Mariz

Recife Center for Advanced Studies and Systems (CESAR)

Recife – PE, Brazil

Emails: {manuel.pi, wcbl, eric.perazzo}@cesar.edu.br

Abstract— Systematic Reviews and Systematic Mappings are

widely used in medicine in an area called evidence-based

studies. Recently, these techniques have been adapted and used

in secondary studies in the area of Software Engineering and

Systems. Sorting and synthesizing information in a particular

research area by analysis of their primary studies, both involve

both extensive work and researcher dedication. Adapting

techniques applied in evidence-based studies in the medical field

to software engineering led to an approach, which divides

Systematic Review tasks into three main phases, namely,

planning, conduct of review itself and reporting the results.

Unlike in the area of medicine, in which there are many

research groups and methodologies to support these tasks,

researchers in the area of software engineering still lack tools

and methods that support the implementation of these

activities and, in general, they need to use software that was

not designed for this purpose. This paper presents an approach

based on Biolchini's proccess, using checkpoints techniques, to

assist in maintaining of the main objectives of the review

process; these tasks were supported by a management

software. The software facilitates the execution of repetitive

tasks of recording, quantifying and classifying of data in

accordance with a predefined research protocol in the planning

phase, thereby enabling studies to be better organized and an

overview to be obtained in the early stages of the review. We

used a Systematic Review theme to validate the approach and

supporting tool. This article shows that by visualizing and

classifying research data while still at the initial stages of a

Systematic Review, problems may be identified in the design of

the protocol (planning phase), which otherwise would only be

detected in the final stages, when results are being generated.

Keywords- Systematic Review; Systematic Mapping; Support

Tool.

I. INTRODUCTION

A Systematic Literature Review (SLR) is a way to
identify, evaluate and interpret all relevant research available
on a particular research question, study area or phenomenon
of interest. Individual studies that contribute to a Systematic
Review are known as the primary studies; a Systematic
Review is a kind of secondary study [1].

The term Systematic Review is used to refer to a specific
research methodology developed to obtain and evaluate
evidence in a particular topic or research area [2]. In general,
a Systematic Review involves three phases: i) Planning a
review or developing a research protocol, ii) Running or
conducting the review, and iii) Reporting the results [1]–[3].

The area of Software Engineering has shown interest in
evidence-based studies where the presence of experimental
software engineering is becoming more and more common
in large events of the area [2][5][6].

The main problem tackled in this article is in tasks related
to planning and conducting the research protocol, which
require the researcher to be extensively dedicated and highly
organized since he/she must catalog and classify the primary
research and perform quantitative and qualitative analyzes, in
order to get a broad view of the object of study which will
facilitate the generation of results [5][6].

This paper proposes an approach based on the process
proposed by Biolchini et al. [2] for the tasks of planning and
conducting Systematic Reviews. A computer system stores
the data progressively during the review and summarizes the
results by each research protocol. The system seeks to reduce
the time and effort needed for this process by eliminating the
need to transfer information between various software
programs, a situation that arises when these have not been
designed to support the review process appropriately.

This article shows that by visualizing and classifying
research data while still at the initial stages of a Systematic
Review, problems may be identified in the design of the
protocol (planning phase), which otherwise would only be
detected in the final stages when results are being generated.
In order to validate the approach and the software system,
these were used to conduct a Systematic Review of a
Masters Dissertation [9].

This paper is organized as follows: Section 2 presents the
theoretical framework for Systematic Reviews in the field of
software engineering and related studies; Section 3 presents
the approach, Section 4 presents a case study where the
approach and the system support were experimentally used
and Section 5 presents the conclusions and final
considerations.

II. SYSTEMATIC REVIEWS

This section presents the concepts that comprise the use
of Systematic Reviews in the field of software engineering
and related studies.

A. Systematic Reviews in the Context of Software

Engineering

Any consolidated research area ends up producing a lot
of papers and results, which require summarization and
classification, therefore, enabling a broader understandig of

191Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 213 / 679

the field [3]. Although Systematic Reviews are widely used
in medicine, they have only recently attracted the interest of
researchers in software engineering [1]–[3].

In brief, the difference between Systematic Reviews and
literature reviews can be seen in the way they are conducted.
In a Systematic Review, there are a rigorous methodologies
in which criteria for including or excluding a research study
and steps for conducting the research are pre-specified
through in a research protocol; unlike a literature review,
which presents the studies analyzed without details of how
they were chosen [2]. In literature reviews, there are no
explicit explicit criteria for including and excluding studies
in a review nor is other information given which wold enable
a Systematic Review to be scientifically replicated or
extended in a methodologically rigorous way.

The characteristic of Systematic Mappings is that they
mainly focus on generating results in visual form, mapping
itself being a particular area of research. On comparing
Systematic Reviews and Systematic Mappings, it can be
concluded that both involve the same methodological rigor,
and they are often used, loosely, as synonyms. The main
difference between them can be found in their goals and not
in their methods [4].

Kitchenham [1] adapted the guidelines given to conduct
reviews in medicine, including the best known one, “The
Cochrane Reviewer's Handbook” [10], to the specific area of
software engineering. Systematic Review were divided into
three phases, namely, i) Planning, ii) Conducting, and iii)
Reporting results. He also discusses the reasons for
conducting a SRL in the area of software engineering:

 Summarize existing evidence about a
technology.

 Identify gaps in current research in order to
suggest areas for future research.

 Provide knowledge on new research activities.
The tasks related to the production of secondary studies

by Systematic Reviews are carried out in three (3) distinct
phases in several papers in the literature: In [5], a model,
similar to those found in [1] and [2], was used. It is also
performed in three phases, namely, developing a research
protocol, conducting the research and reporting the results.

The model used by Montoni [5] was also used in the
Systematic Review by Barcelos [6].

The phases of planning and implementing research which
precede the step of generating the results, require greater
manual effort by the empirical researcher. These phases
involve defining of all the protocol items related to the
research questions; the stages of selecting the criteria and
excluding items. In addition, they include defining the
sources in which searches for studies will be conducted, the
primary language publications and the period the search will
cover. The research has to strictly maintain the criteria
defined in the protocol so as to avoid the search generating
biased results.

In [2], Biolchini et al. presents a template for performing

Systematic Reviews where the incremental use of the
following process is recommended.

Figure 1. Proccess Overview [2].

 The number of Systematic Reviews has grown

insoftware engineering. The literature contains studies that
propose solutions for problems found at various stages of the
review process. Dieste et al. [7] gives strategies and methods
for detecting relevant experiments, in particular draws
attention to creating effective keywords for searches.

Montoni [5] and Barcelos [6], their implementation phase
of the review, used a relational database to store information
gradually with regard to title, author (s), year of publication,
event, search source, classification and a brief summary of
each article published is made while conducting the search
so as to facilitate reaching the generation of the final results.
Laguna and Crespo [8] used the Mendeley [12] software for
managing data in review. Despite these studies having
guidelines proposed by Kitchenham [1] in common, note that
they use and adapt different tools and techniques for the
same purpose, besides which their level of detail and the
stages of the process are different in each study.

III. PROPOSED APPROACH

Based on three main steps, as in [1]–[3], wich comprise a
Systematic Review, our approach proposes to conduct the
review in compulsory and interdependent steps with the
presence of checkpoints to guide inexperienced reviewers in
a step-by-step style. We used a system for storing, retrieving
and classifying information and tasks; that comprise a
review, the revision manager [11].

The figure below shows an overview of the proposed
methodology. A tool to support the process allows the
insertion of checkpoints which enables the results of
alignment with the objectives of the review and modification
of the protocol for error correction to be aligned
incrementally.

Figure 2. Proposed Approach [9].

The planning phase includes the construction of the

research protocol itself, when its main items were defined. In
[5], Montoni recommends defining the following items in the

192Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 214 / 679

planning phase: Context of the study, objectives to be
achieved, research questions, research sources, languages,
methods used in the search for primary publications,
procedures and criteria for including studies, procedures for
data extraction and analyzing results. It should also establish
procedures and metrics for implementing the testing
protocol.

The implementation phase is when the pre-defined
protocol is followed so as to obtain primary research studies.
Finally, we make a quantitative and qualitative analysis of
the data in order to get an overview of the object of study
and publish the results.

A tool was developed to support the phases of the
Systematic Review. The Revision Manager (RM) [11], was
developed using the Django web development framework
[13], relational database MySQL [15] and a Javascript
library for creating graphical reports, the Hightcharts [14].

The central idea of the tool is to avoid change in the
working environment as well as to generate reports while
still in the early phases, thereby enabling problems to be
identified at an early stage.

IV. TOOL OVERVIEW

Currently in version 1.0, the Systematic Review
Supporting Tool [11] is able to store and manage data of the
review itself as well as information concerning the
evaluation of each article, including information regarding
the steps, research sources and selection criteria. This
information is used to clustering and classify articles. The
system is multi user, wich allows each user to access only
data related to his/her own work. There is also the isolation
of a review, where it is available only to the person who
conducted the review.

Each stored item has a Create, Read, Update and Delete
(CRUD) functionality to manage data thus allowing
information regarding the protocol to be refined during the

research. The figure shows the ERD (Entity Relationship
Diagram) system.

Based on the process used, here is an overview of the
workflow of the supporting tool:

Figure 3. Tool Flow.

Figure 3 shows the incremental use of the tool by

allowing reports to be generated at any point in the process.
This procedure facilitated the identification of errors and the
need to change the protocol.

Figure 4 reveals the presence of relationships which
permit information of each step of the review to be stored
and retrieved. This feature is essential so that reports can be
generated and actions performed during the search traced.

Figure 4. Entities and Relations Diagram.

193Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 215 / 679

V. USE CASE

We used the tool to support the management of a
Systematic Review methodology of a final Master's project
[9]. The planning phase followed the models of Systematic
Reviews present in [1][2][5][6], was adapted for specific
research items.

After proper registration in the review system, protocol
data were stored and alignment criteria were specified. These
criteria were evaluated at various points of the review. The
alignment criteria are defined taking into account
quantitative articles related to the theme and their relevance
with regard to answering the research questions of the
review.

In the planning phase of the protocol, it was decided that
conduct phase would be divided into 3 stages (not to be
confused with the general phases of the review). In each
subdivision, a set of inclusion and exclusion criteria were
applied to articles and every action was recorded by the
system. The following is a summary of each subdivision:

a) Step 1 (E1): Obtaining articles by applying the search
expression in research sources.

b) Step 2 (E2): Applying the selection criteria to the title
and summary.

c) Step 3 (E3): Applying the selection criteria when
reading the full text.

During the application of filters, checking every criterion
was checked for alignment with the protocol as proposed in
[6]. This action sought to identify if there was a need to
refine the protocol. There follows a summary of the rules for
alignment:

a) In relation to the number of articles before applying
the filters: A high number may indicate that the search
expression must be refined because it covers an area larger
than the one desired. On the other hand, a very small volume
may indicate the premature elimination of relevant
publications.

b) In relation to the number of articles after applying the
set of filters and selection criteria: A very high number or
one very close to the number obtained in the early stages
may indicate that there are unnecessary steps or that the
criteria are too close to the original search expression.

The following is a summary of the results obtained at the
beginning of the review:

TABLE I. SOURCES.

Source Address

Compendex(CPX)
ScienceDirect(SCD)

www.engineeringvillage.com
www.sciencedirect.com

Table I shows the digital sources used. In the first

iteration, we used the expression for searching databases.
The period used as a search criterion was from January 2009
to January 2014. The results obtained are shown in Table II
and Table III:

TABLE II. FIRST EXECUTION.

STAGE II
Source Articles Excluded Approved

CPX 152 50 102

SCD 483 433 50

Total 635 483 152

Due to the high rate of exclusions based on analyzing the

abstract and title (E2), we opted not to proceed immediately
to the next step, which comprises the full reading of the
articles approved. We, therefore, interrupted the process in
order to hone the search expression and selection criteria.

In the second iteration, after a terse expression search,
and modifying the search period so that it ran from January
2010 to January 2014 and include new criteria for inclusion
and exclusion the following quantitative data were yielded:

TABLE III. SECOND EXECUTION.

Stage (E1)

Source Articles Excluded Approved

CPX 94 0 94

SCD 188 0 188

Stage (E2)

Source Articles Excluded Approved

CPX 94 29 65

SCD 188 178 10

Stage (E3)

Source Articles Excluded Approved

CPX 65 36 29

SCD 10 10 0

Approved: 29

Due to all articles obtained from ScienceDirect being

excluded, we chose to remove it from the list of sources of
the research protocol and to make refinements before starting
a new implementation phase. Further details about the
refinements and overall results can be found in [9].

VI. THREATS TO VALIDITY

The following two itens sumarises the main threats to the
validity of the results of a this study:

(i) The proposed process was not measured, or no
empirical experiments were conducted (apart from it being
used in one case study). To further validate a process like
this others factors should be considered as the number of
articles in similar reviews. This can be used as a parameter.

(ii) The data in this study were not statistically analyzed
with the standard measurements (mean, standard deviation,
etc.) because the process was tested only once. Different
iterations will help to understand the process and how it
behaves.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented an approach for conducting
Systematic Reviews using checkpoints to check the
alignment of the results obtained and expected. We used a

194Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 216 / 679

tool to support data management and to generate quantitative
results in the early stages of the review.

Given the excessive number of manual and repetitive
tasks that are involved in this type of research it is believed
that this approach together with the software support
proposed contributes in particular to helping researchers who
have no experience in Systematic Reviews. The proposed
approach enable the researchers to focus their efforts on
tasks related to qualitative empirical analysis while the
quantitative analysis and classification is performed by the
software support system.

We intend to provide the system and its user manuals
available for use by the academic community. We also
intend to validate it by conducting other reviews. We hope
that users will add features they require, thereby contributing
to the improvement of the system and the approach.

REFERENCES

[1] B. Kitthenham, Procedures for Performing Systematic Reviews.
Technical Report TR/SE-0401: Keele University and National ICT
Australia Ltd, 2004, p. 33.

[2] J. Biolchini, P. G. Mian, Ana Candida Cruz Natali, and G. H.
Travassos, Systematic Review in Software Engineering, no. May.
Technical Report RT - ES 679/05: COPPE/UFRJ/Programa de
Engenharia de Sistemas e Computação/Rio de Janeiro-RJ, 2005, p.
31.

[3] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” 12th Int. Conf. Eval.
Assess. Softw. Eng., pp. 71–80, 2008.

[4] F. Q. B. da Silva, M. Suassuna, R. F. Lopes, T. B. Gouveia, a. C. a.
Franca, J. P. N. De Oliveira, L. F. M. De Oliveira, and A. L. M.
Santos, “Replication of Empirical Studies in Software Engineering:
Preliminary Findings from a Systematic Mapping Study,” 2011
Second Int. Work. Replication Empir. Softw. Eng. Res., pp. 61–70,
Sep. 2011.

[5] M. A. Montoni, Uma investigação sobre os fatores críticos de sucesso
em iniciativas de melhorias de processos de software. UFRJ/COPPE/
Programa de Engenharia de Sistemas e Computação, Rio de Janeiro -
RJ: Tese (Doutorado), 2010, p. 400.

[6] M. P. Barcelos, Uma estratégia para medição de software e avaliação
de bases de medidas para controle estatístico de processos de software
em organizações de alta maturidade. UFRJ/COPPE/ Programa de
Engenharia de Sistemas e Computação, Rio de Janeiro - RJ: Tese
(Doutorado), 2009, p. 433.

[7] O. Dieste and A. G. Padua, “Developing Search Strategies for
Detecting Relevant Experiments for Systematic Reviews,” First Int.
Symp. Empir. Softw. Eng. Meas. (ESEM 2007), pp. 215–224, Sep.
2007.

[8] M. a. Laguna and Y. Crespo, “A systematic mapping study on
software product line evolution: From legacy system reengineering to
product line refactoring,” Sci. Comput. Program., vol. 78, no. 8, pp.
1010–1034, Aug. 2013.

[9] M. G. da S. Neto, Uso de SOA na modernização de Softwares
Legados: Um Mapeamento Sistemático da Literatura. CESAR-
edu/MPES/Recife-PE: Dissertação (Mestrado), 2014, p. 163.

[10] Cochrane Collaboration. Cochrane Reviewers’ Handbook. Version
4.2.1. December 2003

[11] M. G. da S. Neto, (retrieved: 2014, August 20). Review Manager
Source Code [Online]. Available:
https://github.com/academicsgit/reviewmanager

[12] Mendely Inc., (retrieved: 2014, August 20). Mendeley Webpage
[Online]. Available: http://www.mendeley.com

[13] Django Home, (retrieved: 2014, August 20). Django Framework
Webpage [Online]. Available: http://www.djangoproject.com

[14] Hightcharts Home, (retrieved: 2014, August 20). Hightcharts
Webpage [Online]. Available: http://www.hightcharts.com

[15] MySQL Inc., (retrieved: 2014, August 20). MySQL Webpage
[Online]. Available: http://www.mysql.com

195Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 217 / 679

Productivity-Based Software Estimation Model: An Economics
Perspective and an Empirical Study

Alain Abran, Jean-Marc Desharnais
ETS, University of Québec

Montreal, Canada
alain.abran@etsmtl.ca

jean-marc.desharnais@etsmtl.ca

Mohammad Zarour
KAST

Saudi Arabia
mzarour@kacst.edu

Onur Demırörs
Middle East Technical University

Ankara, Turkey
demirors@metu.edu.tr

Abstract— Management interest is not limited to accurate
estimate of software projects, but also to being more
productive than your peers. This paper proposes an estimation
approach based on economics concepts, such as productivity
models with fixed/variable costs and economies/diseconomies
of scale. This paper also reports on an empirical study in a
Canadian organization that illustrates this approach.

Keywords-Software economics; productivity models; fixed
and variable cost; Function Points.

I. INTRODUCTION

Over the past 40 years, researchers have tackled software
effort estimation using different mixes of cost drivers as
well as various techniques to combine these costs drivers
using either expert opinions or mathematical models: their
main goal is to come up with ‘accurate estimates’, either
intuitively based on experts opinions, or through
mathematical models, derived from distinct broad strategies
for designing estimation models:
• Strategy 1: Statistical analyses taking into account only

the information from completed projects. They are
represented by multi-variable models with as many
independent variables as there are cost drivers taken
into account. Some examples are: linear and nonlinear
regressions techniques, neural network models, and
genetic algorithms. For an adequate statistical analysis,
it is generally accepted that there should be 20 to 30
observations for each independent quantitative variable.

• Strategy 2: Statistical analyses with a unique
independent variable (typically, size) combined with a
single adjustment combining the impact of multiple
cost drivers, which individual values come from fixed
pre-determined step-functions for each cost driver. This
can be observed, for instance, in the COCOMO-like
models [1][2].

Multi variables models built with insufficient data points
(strategy 1) or with models with an adjustment factor
bundling multiple categorical variables (strategy 2) do not
necessarily reduce the risks inherent in estimation: they may
lead managers to believe that the majority of important cost
drivers have been duly taken into account by the models but,
in practice, even more uncertainty has been created.

Although accurate estimation of a single project is
important, estimation is not the unique management
concern, nor the most important one for a specific project or

for a set of projects for an organization or a customer. For
example, greater productivity, profitability, and high quality
have often greater management relevance than accuracy of
estimates. In contrast to the traditional approaches in
software engineering focusing strictly on estimation, this
paper looks at an approach common in economics which
looks first at productivity, a single variable model, before
moving on to multi-variable models for estimation purposes
in specific contexts. Some of the concepts introduced in this
paper have been explored initially in [3] to identify a new
approach to software benchmarking and estimation. This
paper expands on these concepts and reports on an empirical
study that illustrates the contribution of these concepts from
economics in developing tailor-made estimation models
based on the performance of the organization studied.

The rest of this paper is organized as follows. Section II
presents the productivity concept as defined in economics to
represent the performance of a production process,
including fixed/variable costs and economies/diseconomies
of scale. Section III presents the context of an empirical
study in a Canadian organization. Section IV presents the
productivity analysis and the estimation models developed
for this organization on the basis of economic concepts.
Section V presents a summary and implication for
estimation purposes.

II. PRODUCTIVITY MODELS AND ECONOMICS CONCEPTS

A. A productivity model represents a ‘production’ process

A project, on the one hand, is typically set up to plan and
manage an unique event, with a start date, an end date, and a
unique outcome.

On the other hand, to improve the odds of meeting the
project targets, a project process is implemented to plan
activities, monitor project progress, and take remedial action
when something goes off track. Similarly, even though each
piece of software is different, its delivery is organized in a
structured manner and not left to randomness and individual
moods and intuitions of the day: to deliver the right outcome
on time and within the expected cost and level of quality, a
‘development process’ is implemented to meet the target
taking into account the set of priorities and within a
reasonable range of predictability.

The question is: How can the performance of a process
be estimated in the future if its current and past performance

196Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 218 / 679

and any variations in performance are not known? What are
the economic concepts at work in software projects? And,
when this is understood and quantified, how can these
economics insights be used for estimation purposes?

A software development project can be modeled as a
production process in its simplest form, with three main
components:
1) Inputs: to calculate productivity, the people involved in

the production process are considered as the inputs
from an economics perspective. In a software project,
the inputs are typically measured in work-hours (or
person-days/-weeks/-months).

2) Activities within the process itself: for productivity
calculation, all of the activities and constraints of the
process are considered as a black-box and are not taken
into account: they are therefore implicit variables, not
explicit variables in productivity calculations.

3) Outputs: the outputs are represented by the number of
functional units produced by the process. In a car
manufacturing plant, the outputs of the plant are the
number of cars produced (not the technical
characteristics of the car, such as the weight, colors,
shape, etc.). In comparison, the output of the software
development process is the set of functions delivered to
the users, which functions can now be quantified with
international standards of measurements, such as with
anyone of the relevant ISO standards on software
functional size [4][5][6][7].

The productivity of a process is its ratio of outputs over
the inputs used to produce such output. In software, the
productivity of a software project can be represented as 10
Function Points per work-month. It is to be observed that,
by convention, the productivity ratio ignores all process
characteristics: it is process and technology independent and
allows therefore objective comparison of the productivity of
a process across technologies, organizations and time.

B. Productivity models with fixed and variable costs

The use of productivity models has a long history that
can be traced back to a large body of knowledge developed
in the domains of economics and engineering [8][9]. This
section introduces some of these concepts which may also
be useful in modeling, analyzing and estimating the
performance of software projects.

A productivity model is typically built with data from
completed projects, that is, it uses the information of a
project for which there is no more uncertainty on:
• The outputs: i.e., all the software functions have been

delivered; and,
• The hours worked on the project: i.e., they have been

accurately entered into a time reporting system.
This illustrated in Figure 1 where:

• The x axis represents the functional size of the software
projects completed;

• The y axis represents the effort in number of hours that
it took to deliver a software project.

The straight line across Figure 1 represents a statistical
model of the productivity of the software projects. More
specifically, this single independent variable linear
regression model represents the relationship between effort
and size, and is represented by the following formula:
Y (effort in hours) = f (size)

= a x Size + b where:
• Size = number of Function Points (FP)
• a = variable cost = number of hours per function point

(hours/FP)
• b = constant representing fixed cost in hours

In terms of units, this equation gives:
Y (hours) = (hours/FP) x FP + hours = hours

Figure 1. Fixed and variable cost in a productivity model

Insights from economics have identified two distinct
types of costs incurred to produce different quantities of the
same types of outputs:
Fixed costs: the portion of the resources expended (i.e.,
inputs) that does not vary with an increase in the number of
outputs. In Figure1, this corresponds to b, the constant in
hours at the origin when size = 0.
Example of a fixed cost: a cost of b hours of project effort is
required for mandatory project management activities,
whatever the size of the software to be developed.
Variable costs: the portion of the resources expended (i.e.,
inputs) that depends directly on the number of outputs
produced. In Figure 1, this corresponds to the slope of the
model, that is: slope = a in terms of hours/FP (i.e., the
number of work hours required to produce an additional unit
of output).

It is to be observed that in productivity models, the
constant b does not represent the errors in the estimates as in
multi-variable estimation models: in productivity models, it
has a practical interpretation corresponding to the
economics concepts explained above, that is: the portion of
the cost that do not vary with increases in the production
outputs.

C. Economies and diseconomies of scale in productivity

In economics, various behaviors in productivity have
been observed as the number of outputs increases. For
instance, that are some processes where:
• As output increases, 1 additional unit of output requires

a smaller increase of inputs, and

197Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 219 / 679

• As output increases, 1 additional unit of output requires
a greater increase in input.

When the increase in output units requires a
correspondingly smaller increase in the number of input
units, the production process is said to have lower
sensitivity to size increases: this is referred to as ‘economies
of scale’ (i.e., the larger the number of units produced, the
more productive the production process).

By contrast, when an increase in output units requires a
larger increase in the number of units for each additional
output, then the production process is said to have
diseconomies of scale (i.e., it is highly sensitivity to
increases in size: for each additional unit produced, the less
productive the production process = diseconomies of scale).

The next question is, of course, what cause these
different behaviors? Of course, the answers cannot be found
by graphical analysis alone, since in productivity there is
only a single independent quantitative variable in a two-
dimensional graph. This single independent variable does
not provide, by itself, any information about the other
variables, or about similar or distinct characteristics of the
completed projects for which data are available. Efficiency
investigation with additional independent variable can help
identify which other variables cause variations in
productivity and to which extent for each.

When a data set is large enough (that is, 20 to 30 data
points for each independent variable), the impact of the
other variables can be analyzed by statistical analysis. In
practice, most software organizations do not have data set
large enough for valid multi-variable statistical analysis.
However, within a single organization the projects included
within a data set can be identified nominally by the
organizations that collected the data [3][10]. Each project in
each subset should be analyzed next to determine:
• Which of their characteristics (or cost drivers) have

similar values within the same subset; and
• Which characteristics have very dissimilar values

across the subsets.
Of course, some of these values can be descriptive

variables with categories (i.e., on a ‘nominal’ scale type: for
example, a specific Data Base Management System
(DBMS) has been used for a subset of projects, etc.). It then
becomes necessary to discover which additional
independent variables have the most impact on the
relationship with project effort. The different values of such
characteristics can then be used to characterize such
datasets, and for selecting which of these productivity
models to use later on for estimation purposes.

III. A PRACTICAL USE OF THESE ECONOMIC CONCEPTS: AN

EMPIRICAL STUDY

A. Context

A Canadian organization was interested in determining
its own productivity, in understanding some of the key
drivers behind its major productivity variations, and in using
the findings to improve its estimation process.

This organization, a government agency, provides
specialized financial services to the public, and its software
applications are similar to those of banking and insurance
providers. It has a software development methodology fully
implemented across all of its projects. The main objectives
of this empirical study were to:
1. Internal benchmarking, i.e., compare the productivity of

individual projects.
2. Develop estimation model(s) based on the data

collected.
3. Identify and explain significant productivity variations

across their projects.

B. Data collection procedures

The initial step was to identify the projects that could be
measured for the productivity and benchmarking analyses.
The selection criteria were:
• Projects completed within the previous two years, and
• Project documentation available for functional size

measurement.
For this study, all data were recorded using the data field

definitions of data collection questionnaire of the
International Software Benchmarking Standards Group [11]
[12].

C. Data Quality Controls

Quality control of the data collection process is
important for any productivity study. Here, two quantitative
variables are critical: the effort reported for each project,
and the project functional size:
A- Effort data: in this organization, the time reporting
system is considered highly reliable and is used for decision
making, including payment of invoices when external
resources are hired to complement project staffing.
B- Measurement of functional size: the quality of the
measurement results depends on the expertise of the
measurers and on the quality of the documentation available
for the measurement process. For this productivity study, all
functional size measurements were carried out by the same
measurer with years of 20 years expertise in both functional
size measurement methods used.

D. Descriptive Analysis

For this study, the 16 software development and
improvement projects completed between 2004 and 2006
were measured in terms of functional size, effort, and
various environment qualifiers. The staff who developed

198Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 220 / 679

these projects included both internal and external
developers, distributed equally overall. In summary:
• Project sizes vary from a minimum of 111 FP (project

7) to a maximum of 646 FP (project 2).
• Effort varies from 4,879 hours to 29,246 hours.
• Unit effort varies from 14 hours/FP for project 12 to up

to 98 hours/FP for project 6, a factor of approximately 8
between the least productive and the most productive
within the same organization.

• Duration varies from 10 to 35 months.
• Maximum development team sizes for 12 of the 16

projects were available, and ranged from 6 to 35
employees.

The descriptive statistics of this dataset are as follows:
• Average effort = 12,033 hours (or, 1,718 person-days at

7 hrs per day, or 82 person-months at 21 days per
month).

• Average unit effort is 41.5 Hrs/FP
• Average duration = 18 calendar months.

Figure 2. The organization’s overall productivity model – N = 16 projects

IV. PRODUCTIVITY ANALYSIS AND ESTIMATION MODELS

A. The overall productivity model for this organization

The dispersion of points for this organization is
illustrated in Figure 2 for all 16 projects, with functional
size on the x axis, and effort on the y axis: it shows also the
overall single-variable productivity model for this
organization, using a single regression model:

Effort = 30.7 hours/FP x project size + 2,411 hours
The coefficient of determination (R2) of this model is

relatively low, at 0.39.
The practical interpretation of the above equation is as

follows for this organization:
• Fixed effort = 2,411 hours
• Variable effort = 30.7 hours/FP

The possible reasons for the rather high fixed and high
variable unit effort figures have been discussed with the
managers, and the following observations provided in terms
of the development methodology deployed in this
organization:
A. It is highly procedural and time-consuming;

B. It included heavy documentation requirements;
C. It requires lengthy consensus building procedures

across stakeholders and development staff;
D. It requires a relatively high number of inspections.

From Figure 2, it can be observed that, for this
organization, 5 projects have costs 100% higher than
projects of comparable functional size:
• Project with 126 FP required twice as much effort as 2

other projects of similar size.
• Four large projects (between 400 and 500 FP) required

two or three times as much effort as similarly sized
projects: the effect of these projects is to pull up the
linear model (and corresponding slope) and to influence
both the fixed and variable costs considerably.

This data sample was therefore split into two groups for
further analysis.
A. A group of 11 projects which have the best productivity

(i.e., lower unit effort, and which are below the
regression line in Figure 2).

B. A group of 5 projects which have a much worst
productivity (i.e., a unit effort twice the unit effort of
the 11 other projects, and which are above the
regression line in Figure 2).

B. Organizational process capability: the most productive
projects

A productivity sub-model is built next with the 11
projects with a much lower unit effort per project that is, the
most productive ones. For these projects, the linear
regression model is:

Effort = 17.1 hours/FP x size of the project + 3,208 hours
The coefficient of determination (R2) of this model is

0.589, higher, relatively, than that for the overall model.
The practical interpretation of this equation is:
• Fixed costs = 3,208 hours
• Variable Costs = 17.1 hours/FP

C. Productivity model of the least productive projects

Another productivity sub-model is built with the 5 least
productive projects in group B. For these projects, the linear
regression model is:

Effort = 33.4 hours/FP x project size + 8,257 hours
The coefficient of determination (R2) of this model is

better, at 0.637. Of course, with a sample of only five
projects, this number is not statistically significant, but is
still interesting for this organization.

The practical interpretation of the above equation is as
follows:
• Fixed effort = 8.257 hours
• Variable effort = 33.4 hours/FP

This group of the five least productive projects is
characterized by a fixed cost which is almost 4 times higher
than that of the full set of projects (8,257 hours vs. 2,411
hours), and a relatively similar variable effort unit (33.4
hours/FP vs. 30.7 hours/PF).

199Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 221 / 679

The group of 11 most productive projects is
characterized by a fixed cost which is approximately 40%
lower than that of the least productive projects (3208 hours
vs. 8257 hours), and a variable unit effort which is almost
50% lower (17.1 hours/FP vs. 32.4 hours/FP); that is, with
interesting economies of scale and an R2 of 0.55.

A summary of each group is presented in Table I, where
these 11 projects represent the organization’s 'capability' to
deliver in normal conditions and the other five projects
illustrate how projects are significantly impacted in the
presence of factors which have not yet been identified
through this single independent variable (i.e., functional
size) analysis. Exploration of these additional impact factors
is discussed in Section V.

D. Qualitative causal analysis

Of course, a single independent variable model cannot
explain the causes of such variations. Furthermore, there are
often not enough data points within a single organization
(unless they have been collecting data for many years) to
rely on quantitative analysis with a dataset of only sixteen
projects: each additional independent typically requires 20
to 30 additional data points. In the absence of sample sizes
large enough for quantitative analysis, qualitative analysis
can help identify probable causes of increases. In the
context here, qualitative analysis will not attempt to quantify
precisely the impact of a cause (or cost drivers), but will
attempt to identify qualitatively which factor could have had
the greatest negative impact on productivity.

TABLE I. FIXED AND VARIABLE EFFORTS: CAPABILITY VERSUS
LEAST PRODUCTIVE PROJECTS

Samples/
Regression coefficients

All 16
projects

Most
productive:
11 projects

Least
productive:
5 projects

Fixed
effort (hours)

2,411 3,208 8,257

Variable effort
(hours/FP)

30.7 17.1 34.4

Off hand in the causal analysis of the productivity
variations in this organization, two candidate cost drivers
were eliminated since they were considered as constant in
both groups of productivity performance:
- Development methodology: in this organization the use

of the industry-tailored development methodology is
fully deployed across all software development
projects: none of the activities and controls can be
bypassed. Therefore, there was no development
methodology difference across all projects.

- Project managers’ expertise: some of the projects
managers had, within this same 2-year period,
supervised projects which were both among the most
productive and the least productive. Therefore the

project management expertise of specific project
managers could not explain large project productivity
differences.

The question is, what are the factors that led to such
large (i.e., +100%) increases in unit effort? What could have
been the major cause-effect relationships? To identify and
investigate these relationships, available project managers
were interviewed to obtain their feedback on what they
believed had contributed to either an increase or a decrease
in the productivity of their respective projects. The project
managers interviewed had managed 7 of the 16 projects:
A. 3 projects with the lowest productivity;
B. 2 projects with average productivity;
C. 2 projects with the highest productivity.

The aim of the interviews was to obtain qualitative
information from the project managers on the factors they
believed had contributed, or not, to the increase in project
effort compared to that of other projects of similar size
developed in the organization’s environment or elsewhere
during their project management practice. Their feedback is
summarized in the following factors:
A- The most productive projects had the following
characteristics:
1. Users familiar with both the business and software

development processes;
2. Users involved throughout the project;
3. Software developers working on the projects who were

experienced in the use of the development environment.
B. The least productive projects had the following
characteristics:
B1. Customer related issues:
1. Customer requirements that were poorly expressed, or a

customer representative who did not know his
environment (business area), leading to frequent change
requests during a project life cycle.

2. High turnover of users involved in the projects, leading
to instability in the requirements and delays in decision
making.

3. Customers not familiar with the software development
process in the organization, including their required
involvement in project activities, including activity
reviews.

B2. Project constraints:
1. Tight project deadlines for legal constraints or public

face-saving that led to compressed schedule and
resources being piled up to make the problem
disappear.

2. New technologies unknown to the developers.
B3: Product constraints:
1. Multiple links with other software applications of the

organization.
An example of negative product constraint was reported

for the project with the highest unit effort (98 hours/FP): the
software delivered by this project was of a small functional
size, but required twice as much effort to develop as another

200Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 222 / 679

of software of similar size because it interacted with almost
all the other software applications of the organization and
was dependent on other organizational units. Another
project had a very tight deadline, which led management to
‘throw’ resources at the problem to meet the deadline
irrespective of the total effort required.

It can be observed that, although it was possible to
identify ‘qualitatively’ some factors with major negative
impact, the sample size was much too small for statistical
tests to quantify such an impact.

V. SUMMARY AND IMPLICATIONS FOR MANAGEMENT

AND ESTIMATION PURPOSES

Taking into account the related performance concepts
from the field of economics, including fixed/variable costs
and economies/diseconomies of scale, this paper has
reported on the productivity analysis of software projects
developed by a governmental organization. For this
organization, three productivity models were identified
which represented respectively:
- An overall productivity of this organization. This

overall productivity model will be used later across
times periods to verify whether or not the productivity
of this organization is improving over time, and with
respect to external similar organizations.

- A productivity model built from the best productive
projects: it exhibit economies of scale in the
development process of this organization and represents
its capability to deliver a software project with a lower
fixed/variable effort structure, in the absence of major
disruptive factors.

- A productivity model based on the five projects with
the highest unit effort: in this organization, the presence
of disruptive factors has led to greater than 100%
increase in project effort in comparison to their
organizational process productivity capability.

Of course, the limited number of projects available in
these mathematical models does not permit generalization to
other contexts, but it is describing quantitatively and
objectively productivity facts: these models are

representative of the organization studied in which a unique
software development methodology is widely implemented
and represents well deployed corporate software practices,
not varying individual practices (i.e., a repeatable process
rather than unpredictable individual and ad-hoc practices).

For estimation purposes, the organization’s process
capability model represented by the best performing projects
should be used, provided that a risk analysis has not
detected the presence of any of the disruptive factors that
have in the past increased effort twofold in this
organization. Whenever such disruptive factors are
identified with a high probability of occurrence within an
estimation context, it justifies this organization to estimate
such projects using the productivity model derived from the
least productive projects. The use of these two single-
variable productivity models would be expected to provide
more accurate estimates that the overall productivity model
combining all previous projects.

In addition, interviews with project managers allowed to
identified, qualitatively for this specific organization, factors
having impacted, positively or negatively, productivity,
(such as: customer related issues, project constraints and
product constraints): these factors were integrated next as
risk factors into their revised estimation process.

This context of an organization having measured only a
small set of projects is representative of many organizations
without much historical data: this is a context where there
are not enough data points to build with high confidence
multi-variable estimation models representing local
conditions and related organizational performance.

The insights from productivity models developed from
an economic perspective are important since relevant
improvement actions may directly impact the productivity
of the organization, by lowering either of the fixed or
variable project costs.

REFERENCES

[1] B. W. Boehm, Software Engineering Economics, Prentice Hall,
Englewood Cliffs, NJ, 1981.

[2] B. W. Boehm et al. Software Cost Estimation with COCOMO II,
Prentice Hall, 2000.

[3] A. Abran and J. J. Cuadrado, "Software Estimation Models &
Economies of Scale," 21st International Conference on Software
Engineering and Knowledge Engineering - SEKE'2009. Boston
(USA), July 1-3, 2009, pp. 625-630.

[4] ISO/IEC 19761: Software Engineering – COSMIC - A Functional
Size Measurement Method. International Organization for
Standardization, Geneva, 2011.

[5] ISO/IEC 20926: Software Engineering - IFPUG 4.1 Unadjusted
functional size measurement method - Counting Practices Manual.
International Organization for Standardization, Geneva, 2009.

[6] ISO/IEC 24750: Software Engineering - NESMA functional size
measurement method version 2.1 - Definitions and counting

guidelines for the application of Function Point Analysis,
International Organization for Standardization, Geneva, 2005.

[7] ISO/IEC 20968: Software Engineering - Mk II Function Point
Analysis - Counting Practices Manual. International Organization
for Standardization, Geneva, 2002.

[8] N.G. Mankiw, Principles of Microeconomics, Ed. South-Western
Cengage Learning, Mason (OH) 2014.

[9] S.T. Hackman, Production Economics - Integrating the
Microeconomic and Engineering Perspectives, Springer-Verlag
Berlin Heidelberg, 2008.

[10] A. Abran, I. Silva and L. Primera, "Field Studies Using Functional
Size Measurement in Building Estimation Models for Software
Maintenance," Journal of Software Maintenance and Evolution:
Research and Practice, vol. 14, 2002, pp. 31-64.

[11] ISBSG R11, International Software Benchmarking Standard
Group, 2009 URL: http://www.isbsg.org/ last accessed date: July
26, 2014.

[12] L. Cheikhi, A. Abran, and L. Buglione "ISBSG Software Project
Repository & ISO 9126: An Opportunity for Quality
Benchmarking," UPGRADE vol. VII, no. 1, 2006, pp. 46-52.

201Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 223 / 679

Measuring a Software Production Line

with IFPUG-based Function Points

Volkan Halil Bagci, Umut Orcun Turgut, Ali Ciltik, Semih Cetin, Recep Ozcelik

Cybersoft Information Technologies R & D Center

Istanbul, Turkey

e-mail: {volkan.bagci, umut.turgut, ali.ciltik, semih.cetin,recep.ozcelik}@cs.com.tr

Abstract – Software Production Lines (SPLs) aim to manage

cost-based activities for product delivery. Our company has

been using SPL engineering for about 10 years and successfully

implemented cost-controlled production cycles for SPLs during

past two years, which are based on well-known Function Point

(FP) approach supported by International Function Point User

Group (IFPUG). Cost-based product delivery in SPLs requires

the complete transformation of requirements gathering, cost

estimation, time planning and productivity measuring steps. At

the maturity level reached so far, every contributing part of

the production line can be measured and cost-attached effec-

tively and new targets can be set accordingly. Moreover, pro-

duction bandwidth can be estimated precisely based on statisti-

cal productivity coefficients of every working team. This paper

introduces our cost-controlled SPL approach, the achieve-

ments so far and our future plans for improvement.

Keywords-Function Point; Software Measurement; Software

Production Lines; Productivity Coefficient.

I. INTRODUCTION

Software is encountered in every part of our daily life

nowadays. Consistent and cost-effective software products

certainly make our life much easier. The consistency and

cost-effectiveness of any product can be controlled by strict

measurements and software is not an exception in that

sense. In other words, software engineering is not an appro-

priate term unless the size, quality and productivity are

measured accurately since unmeasured variables cannot be

managed in any engineering discipline [1].

Software measurement enables the estimation of team

productivity and improvement of existing processes based

on recorded productivity metrics. Many researchers focus

on new metrics to measure productivity [2] while others

analyze software team productivity efforts and make empir-

ical assessments for evaluating measurement efforts in soft-

ware companies [3][4].

 In particular to SPLs, the factors that accelerate and

prevent team productivity can be statistically determined

and exploited to the maximum extend for setting feasible

targets. The approach explained in this paper has been used

for the past two years in the banking SPL of our company

and particularly implemented for a mid-scale bank in Tur-

key.

The rest of this paper is organized as follows: Section II

discusses about the related works. Section III provides an

overview of the organization and roles. Section IV describes

the function point and its standard in the context of software

evolution. Section V introduces the cost estimation process

that is currently being held in our company. This section

also describes the results obtained in the last period. Section

VI discusses about the future work so as to improve the

processes as a whole. Finally, Section VII concludes this

paper.

II. RELATED WORKS

In the last decade many cost estimation models for soft-

ware production lines have been proposed. Some repre-

sentative proposals are: [5][6][7][8] and [9]. Poulin [5] pre-

sented a reuse metric and economics model that utilizes

systematic reuse method. Poulin’s model has two parame-

ters: the relative cost of reuse (RCR) and the relative cost of

writing for reuse (RCWR). Using these two parameters

Poulin calculates the costs of product line development, thus

provides extensive insight for the economics of software

production lines.

Clements, McGregor, and Cohen [6] proposed the struc-

tured intuitive model for product line economics (SIMPLE)

a general-purpose business model that supports the estima-

tion of the costs and benefits in a product line development

organization.

Lamine, Jilani, and Ghezala [7] proposed a new software

cost estimation model for product line engineering that is

based on integrated cost estimation model for reuse in gen-

eral and Poulin’s model of product line engineering. New

tool supporting the model is described along with UML

presentation.

Nóbrega, Almeida, and Meira [8] proposed integrated

cost model for product line engineering (InCoME). As well

as a new model is introduced along with its case study with

results, the paper highlights important factors to acquire an

effective model in terms of cost-benefit.

Nolan, and Abrahão [9] mentions about the experiences

gained by using of estimation tools for the software product

lines. It is clearly stated that a model is not only used for

estimating cost and schedule but also for estimating and

validating risks and opportunities. Future discussions about

how a new cost model should be built are given for projects

represented as number of Lines of Code (LOC).

202Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 224 / 679

III. MOTIVATION

Software Production Line is the adapted version of an

industrial product line for developing software product

families with the vision of managing cost and time-to-

market concerns, which are based on structured reusability

techniques [12]. The main supplier has its own SPL infra-

structure so-called Aurora that is used for the production of

different product families ranging from banking to insurance

and tax administration to Enterprise Resource Planning

(ERP) [10][11].

The customer bank decided to outsource the develop-

ment and maintenance of its own banking software to the

main supplier over its sister company the main contractor.

In this setup, the main supplier is the main banking products

supplier for many banks including the customer bank, and

the main contractor company is the main contractor for

customizing and maintaining the main supplier’s banking

products, particularly for the customer bank.

In order to provide high quality services to the customer

bank, the main supplier and the main contractor decided to

have a new unit called Product Management Department

(PMD) in their joint organization chart. New organization

chart including the PMD is given in Figure 1. PMD has a

sub-unit so-called Product Improvement Group (PIG),

which is responsible for inspecting and improving banking

products (called product restructuring) using modern soft-

ware engineering techniques as well as implementing cor-

rective actions on existing modules (called product refactor-

ing). Another sub-unit in PMD is Production Planning

Group (PPG), which is responsible for cost-estimation of

new inquiries, planning implementation tasks, and monitor-

ing the production cycles. The contract between the custom-

er bank and the main contractor is based on FP and inquiries

are implemented with FP-based cost. FP-based cost antici-

pates the cost model based on software product functionali-

ty.
Pricing a single FP is not a trivial task in contractual

terms since buyer and supplier do have different point of
views. In case of the customer bank, a well-known interna-
tional consulting group worked both with buyer and supplier
teams to set the price for an FP, based on existing implemen-
tation costs and pricing models [13]. Working timesheets
were examined, hourly and daily efforts were calculated and
an average cost for an FP has been determined. Additionally,
the FP-based cost estimation approach and related formula
have been double-checked by the consulting group. The
approach has been monitored for a while in real cases and
finally approved both by the customer bank and the main
contractor.

Figure 1. Organization schema of Product Management Department.

In this model, the customer bank Project Office (PO) on-
ly deals with the PPG as the single contact point of the main
contractor and the main supplier. Once PO forwards inquir-
ies, PPG prepares the Approximate Cost Form (ACF) for
each inquiry, including the estimated starting and finishing
dates of implementation. PO goes through each ACF and
approves accordingly. The approval of ACF initiates the real
planning of each inquiry with exact dates of implementation.
PPG is also responsible for allocating necessary resources for
the software development efforts. During the course of im-
plementing every inquiry, PPG keeps certain Key Perfor-
mance Indicators (KPI) to measure the effectiveness of every
conveyor in the software production line. Using these SPL
KPIs, PPG is expected to coordinate software development
teams, business analysts, and test units throughout the lifecy-
cle of a request.

IV. FUNCTION POINT

FP is a metric for measuring the functionality provided to
the user of an information system. The concept was intro-
duced by Albrecht in 1979 [14], and used widespread in the
world as of today in a variety of 6 different standards, such
as COSMIC FSM, FiSMA FSM, IFPUG FSM, MK II FPA,
NESMA, and the automatic FP supported by Object Man-
agement Group (OMG) [15][16][17][18][19][20]. The OMG
automatic FP standard is based on IFPUG approach in such a
way that it determines functions, differentiates internal and
external files, and calculates the FP accordingly.

IFPUG initiated the standardization of measuring soft-
ware projects, which is accepted by the International Stand-
ards Organization (ISO) with most up-to-date version 4.3. As
stated in IFPUG Counting Practices Manual (CPM) 4.3, FP
is the unit of measurement to express the amount of business
functionality [21]. IFPUG FP is calculated based on counting
the factors, including internal and external information
sources, external inputs, outputs, and queries. We particular-
ly prefer to use IFPUG FP within other FP approaches as
being the most widely used approach, being in line with
banking domain, providing access to an extensive database
of more than 5000 International Software Benchmarking
Standards Group (ISBSG) project performance cases, having
large volume of industrial data in management information
systems, and enabling the official certification option
[23][24].

203Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 225 / 679

V. COST ESTIMATION PROCESS

In this section of the study, cost estimation process is ex-
plained in detail while post process observations and out-
comes are shared in later parts of the section.

Works that are being performed by the main contractor
are handled via requests. Each request has a request type that
might have impact on cost estimation as given in detail in
Section A.

Figure 2. The view of a software application from the eyes of an FP practi-
tioner [22].

Our FP practitioners examine requests to identify data
and transaction functions using IFPUG FSM with similar
view of a software application as shown in Figure 2. Once
the initial examination of request is complete, project type
and request size is decided as explained in section B and
section C respectively. FP practitioners estimate cost of the
request by using the process factor and calculation method as
explained in section D.

After cost estimation is complete, planning and product
phase starts as explained in Section E. Observations and
importance of scope meeting are mentioned in Sections F
and G respectively.

A. Request Type

Prior to our cost estimation process implemented, when

a request is entered in the system, it is given a request type

based on the expected application size and application type.

In order to support these request types, general system char-

acteristics (GSC) [21] are decided for these request types,

making cost estimation balanced for a given type of request.

Thus, there are three request types given in our system;

which are project, improvement, and report.

Project and improvement types are both software appli-

cations that might involve brand new functionality and/or

modifications over existing application. Main difference is

the size of the application; for example, an estimated cost

threshold of 62 FP or less is being used as improvement

request type within our process. Any request that has esti-

mated cost size of 62 FP is of project request type.

TABLE I. CALCULATED VAF VALUES FOR REQUEST TYPES.

In our cost estimation process, request types can affect

variable adjustment factor (VAF) as shown in (2), thus have

impact on final cost estimation. VAF for project and im-

provement request types are set to 35 Total Degree of Influ-

ence Points (TDI), making VAF of these request types equal

to 1.0.

 65.0)01.0*(TDIVAF [21] (1)

Report is a special request type that addresses infor-

mation retrieval using offline databases via quick third party

development tools. VAF of report project type is calculated

as 0.65 once all TDIs of the GSC are set to 0 due to the

simple development efforts required for reports.

B. Request Requirements Category

Each request is represented by one or many require-

ments. These requirements can be identified as functional or

non-functional ones. In our cost estimation process, while

IFPUG FSM is used for functional requirements in terms of

cost estimating, estimating cost of non-functional require-

ments handled using our non-functional point system. In

order to cover a cost estimation process that would address

requests with different possibility of requirement types, a

request requirements category (RRC) is introduced as an

element of decision node in our cost-estimation flow-chart,

which is shown in Figure 3.

Based on the possible combination of the request re-

quirement varieties, there are three RRCs as follows.

1) Functional RRC: Functional RRC addresses require-

ments that include only functional ones. Thus the cost of the

request can be calculated according to IFPUG FSM v.4.3

standard. Whether the request has a functional component or

not can be identified by examining the requirements of the

request. If it has at least one function among Internal Logi-

cal File (ILF), External Interface File (EIF), External Input

(EI), External Output (EO) or External Inquiry (EQ), then

request may be processed as a functional RRC. Examples of

functional projects are listed below.

- Data Migration (Customer data entrance, sending con-

trol signal)

- Data Transformation (Bank interest calculation, aver-

age temperature derivation)

- Data Storage (Customer order record, environment

temperature record)

204Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 226 / 679

- Data Query (Listing current personnel, querying coor-

dinate data)

Figure 3. The cost estimation flow-chart.

2) Non-functional RRC: If the request does not contain a

functional requirement, then the cost cannot be calculated

using IFPUG FSM. The total cost of the request is

calculated using non-functional point system by summing

all of the separate FP costs of items, which are listed below

in detail.

- Project Management, Coordination, Requirement

Gathering

- Analysis, High Level Design, Quality Control

- Design, Software Development, Integration

- Functional Tests, Acceptance Tests, Technical Support

Services

- Deployment, Fixed-Works

The costs of these types of requests are reckoned accord-

ing to man/month data and used as NFP (Non-Function

Point) in the system for setting connection with FP.

a) Fixed-Works: In order to decrease the operational

cost of recurring non-functional requests, fixed-works list

has been set up. Fixed-works list is a living document. Not

only the FP practitioners, but also the planning experts and

module managers do the relevant updates as NFP on that

list.

3) Hybrid RRC: According to the standard of IFPUG FP

calculation v.4.3, if cost price of a request can be executed,

although it has non-functional requirements, this type of

requests are called hybrid requests. The cost of these types

of requests is calculated by summing the costs of both the

functional and non-functional components.

C. Request Size

Requests that have a size below a certain threshold are

classified as minor requests while the ones that are above

the threshold are classified as major requests. Requests go

through different states as shown in Table IV. Encompass-

ing the period from request entry to the deployment, several

output documents are created along these steps.

The aim of the request size classification is to have an

efficient production line. As it can be seen in Figure 4 and 5,

based on the request size, requests follow different path.

With a few exceptions, minor requests usually get involved

in a minor process pipeline, without passing through the

analysis and design steps; thus, most of the documentation

requirement is dropped off. On the other hand, major re-

quests have to follow the big route, which is passing through

quality processes and as a result, analysis and design docu-

ments are prepared in detail.

Current threshold in terms of FP is arranged to be just

more than a single function, thus meaning if a request has

more than a single function involved, it would be addressed

as a major request. Based on IFPUG CPM 4.3 [21], mini-

mum possible single function cost is 3 FPs; for example EI-

Low and EQ-Low both have 3 FPs. Therefore, in agreement

with the bank, it is decided to use 3 FPs as a threshold for

request size classification.

D. Process Factor and Cost Calculation

Process Factor (PF) is the sum of total coefficients of all

sub processes in the production line. It is used for reflecting

the costs of all sub-processes to the total cost in minor and

major requests. Besides distributing the total cost to the sub-

processes, PF also calculates the partial cost when the job,

which is being carried on the product line, is canceled. Max-

imum value for the PF can be 1.0. Table II details the PF

values for some of the sub-processes and these are calculat-

ed according to their portions in the production period.

Equation (2) shows how the process factor is calculated.

 BTATDEVQCDHLDAPF (2)

where A is the analysis process factor, HLD is the high level

design process factor, D is the design process factor, QC is

the quality control process factor, DEV is the development

process factor, AT is the alpha test process factor and BT is

the beta test process factor.

TABLE II. PROCESS FACTOR VALUES FOR EACH REQUEST TYPE.

205Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 227 / 679

 uFPVAFaFP * (3)

 aFPPFCFP * (4)

As per definition given in [17] and shown in (3), adjusted

function point (aFP) is calculated using VAF and unadjusted

function point (uFP). Value of VAF can change based on

the project type. As it can be seen from (4), PF has a direct

consequence on the cost estimation. In (4), CFP is the cost

in FPs, PF is the process factor and aFP is the regulated FP.

TABLE III. SAMPLE NET COSTS.

With reference to the Table III, net CFP values for sam-

ple applications with distinct request types and request sizes

are calculated according to distinct process factors. In the

calculations, the threshold value is set to 3 FP.

E. Planning and Production Tracking

After estimating the cost of each request, planning ex-

perts decide on the deadline of the request, taking account of

the characteristic of the request, source and integration sta-

tus. Planned development time and the number of develop-

ers that are going to be assigned to the request are calculated

according to the basic Constructive Cost Model

(COCOMO) equations given in (7) and (8) [20]. In order to

use these equations, reference values for planned develop-

ment time and number of developers are calculated via (6)

instead of (5). For this reason, instead of using code line of

count parameter and COCOMO coefficients in (6), calculat-

ed effort value of product line is used and classical

COCOMO equation is adapted to the (6) for our system.

Since (5) is not being used directly, it does not have an ef-

fect on our productivity rates. cb and db values are decided

according to Boehm’s semi-detached software project

standards as stated in (7).

 b

b
KLOCbaE)(abbb

DM

CFP
E

 b
d

EbcD cbdb

D

E
P

where E is the effort applied (person-months), KLOC is the

estimated number of delivered lines of code for the project,

ab, bb, cb and db are COCOMO coefficients, CFP is the cost

in FP, D is the development time in months, DM is the av-

erage work day count in a month (20 work days) and P is

the count of required people.

TABLE IV. PRODUCTION LINE STATUS OF CORE BANKING UNIT.

In order to obtain production line status data as show in

Table IV, costs of requests are distributed among the request

states. The production line status data enables us to track the

current intensity of work load on each group and also to

foresee the upcoming intensity of work load status of each

group as well. By monitoring the product line data as shown

in Table V, planned and completed work follow-up can be

carried out. Using the statistical data gathered, resource

planning and productivity performance analysis for each

software module & team can be successfully accomplished.

By taking goals and productivity coefficients into account,

pre-detection actions for restructuring the problematic soft-

ware modules can be put into practice in the future.

F. Cost and Planning Process Observations

In order to count functional size of any request, func-

tional requirements are needed. In the beginning of the tran-

sition phase, it was hard to complete the cost estimation

process because of lacking required information regarding

the request requirement specifications. Therefore, to deter-

mine functional and non-functional requirements for esti-

mating approximate costs for requests, meetings with the

participation of module owners and FP practitioners are

being held.

After calculating approximate costs of the requests, the

requests are planned by putting them on the production line

using available resources. Then as shown in Figure 4 and 5,

analysis, high level design, and design steps are performed

before the requests reach the final cost estimation step. On

this step, final cost is reckoned using the analysis and design

documents. Once the final cost estimation is complete and

approved by PO, software development efforts may begin

using the available resources.

206Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 228 / 679

TABLE V. THE MAIN CONTRACTOR’S PRODUCTION LINE

PLANNING AND PRODUCTION TRACKING.

As can be seen in Table V, in the new cost system, FP

calculations in the transition period are less than the other

periods. Total FP for January 2013 is 1824 and more re-

quests are being loaded to the production line in the follow-

ing months. The reasons behind the weak performance in

the transition period are technical problems, personnel re-

sistance fed from old habits and efforts spent for obtaining

functional requirements. In the succeeding step of our pro-

cess enhancement, one to one negotiations for functional

requirement inference, which is examined in the transition

period, are left and a new document, namely preliminary

requirement analysis document, is organized with the con-

tributions of business analysts and module owners in order

to calculate true approximate cost.

Figure 4. Software Production Process Pipeline Part 1.

G. Scoping Meetings

One of the ongoing improvement efforts is improving

the efficiency of scoping meetings, which are performed at

an intense pace. In order to perform more effective and

more conscious monthly and quarterly plans, comprehensive

requirement gathering activities are conducted for creation

of a request pool, which consists of requests that have initial

cost estimations. Project office, business unit, business ana-

lysts, module owners and production planning experts are

participating in these activities. Utilizing the outcomes of

the scoping meetings, due to assessing the situation of the

production line from a wider perspective, long-term busi-

ness targets will be identified and prioritized.

1) Observations: Difficulties in requirement gathering

activities, especially requests that require integration of

different modules, are noted and it is anticipated to cause

inconveniences for accurate cost estimation efforts.

However, in order to increase the efficiency of the software

development efforts, we desire to minimize the participation

of the relevant module’s software engineers in requirement

gathering activities. However, considering the lack of

technical background of the business analysts at the

moment, software engineers are still important assets for the

scope meetings.

VI. FUTURE WORK

Because of historical reasons, software engineers have

led scoping and requirements gathering activities. This role

actually belongs to business analysts and we need to train

them to increase their competence in business architecture.

Accordingly, business analysts will contribute more in the

scoping and requirements gathering meetings, so this affects

efficiency of the Software Production Line, since software

engineers will involve less in these meetings and activities,

and focus only software development phase. Moreover,

once problematic modules will be identified by observing

productivity ratios, Product Improvement team will conduct

necessary restructuring and re-factoring activities.

Figure 5. Software Production Process Pipeline Part 2.

When it comes to cost estimation process, it is under con-

tinuous quality control, which let us fine-tune of productivi-

ty calculations. Establishing Software Product Line will be

much easier after measuring all metrics of software produc-

tion line, which is the next goal of the company.

VII. CONCLUSION

The main contractor and the main supplier have been

capable of measuring several metrics related to the software

production line via IFPUG functional size measurement

207Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 229 / 679

method. In the process of adaptation to the new system, a

resistance fed from old habits is faced and new steps have

been added to the production process to achieve the desired

effect in requirement gathering activities.

Within the scope of adaptation of function points to the

production line, arrangements are made on existing request

types, request sizes, and project types. In order to estimate

total cost for different request types with different request

sizes on various project types, process factor is defined and

is used as shown in the Table III. Simple COCOMO equa-

tions are adapted for FP and statistical data of the product

line, hereby, are gathered. In consequence of available data,

the condition of the production line can show the actual and

planned works along with the accumulated workload on the

business units. Making use of these indicators, production

and resource planning can be made more efficiently and

factors adversely affecting the process can be observed.

Scoping meetings are made in requirement of detailed

information to accurately estimate cost of a request and new

methods for the solution are actively being searched. Annual

software development goals can be determined by produc-

tivity calculations that are based on FP for each team. By

utilizing productivity factors, modules that have low

productivity performance are identified. Once the identifi-

cation process is complete, the identified modules are tar-

geted for restructuring purposes to improve development

productivity.

REFERENCES

[1] C. Jones, Applied software measurement: global analysis of
productivity and quality. McGraw-Hill, 2008, ISBN 978-0-
07-150244-3.

[2] M. Solla, A. Patel, C. Wills, “New metric for measuring
programmer productivity,” Proc. IEEE Symp. Computers and
Informatics, IEEE, 2011, pp. 177-182.

[3] N. Ramasubbu , M. Cataldo , R. K. Balan , J. D. Herbsleb,
“Configuring global software teams: a multi-company
analysis of project productivity, quality, and profits,”
Proceedings of the 33rd International Conference on Software
Engineering, USA, May 21-28, 2011, pp. 261-270.

[4] O. T. Pusatli, S. Misra, “Software Measurement Activities in
Small and Medium Enterprises: an Empirical Assessment,”
Acta Polytechnica Hungarica, 8 (5) , 2011, pp. 21-42.

[5] J. S. Poulin, “The Economics of Software Product Lines,”
International Journal of Applied Software Technology 3,
1997, pp. 20–34.

[6] P. Clements, J. McGregor, S. Cohen, The Structured Intuitive
Model for Product Line Economics (SIMPLE) (CMU/SEI-
2005-TR-003). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2005.

[7] S. B. Lamine, L. L. Jilani, H. H. B. Ghezala, “A Software
Cost Estimation Model for a Product Line Engineering
Approach: Supporting tool and UML Modeling,” 3rd ACIS
Conf. on Software Engineering Research, Management and
Applications, 2005, pp. 383-390.

[8] J. P. Nóbrega, E. S. Almeida, S. R. L. Meira, “InCoME:
Integrated Cost Model for Product Line Engineering,”
Proceedings of the 2008 34th Euromicro Conference Software
Engineering and Advanced Applications, 2008, pp. 27-34.

[9] A. J. Nolan, S. Abrahão, “Dealing with Cost Estimation in
Software Product Lines: Experiences and Future Directions,”

SPLC'10 Proceedings of the 14th international conference on
Software product lines, 2010, pp. 121-135.

[10] N. I. Altintas, M. Surav, O. Keskin, and S. Cetin, “Aurora
software product line,” 2nd National Software Engineering
Conference, Ankara, Turkey, Sep. 2005.

[11] N. I. Altintas, S. Cetin, A. H. Dogru, and H. Oguztuzun,
“Modeling Product Line Software Assets Using Domain-
Specific Kits,” IEEE transactions on software engineering,
vol. 38, Dec. 2012, pp. 1376-1402.

[12] D. E. Nye, America's Assembly Line. MIT Press, 2013, ISBN
978-0262018715.

[13] P. R. Hill, Practical software project estimation: a toolkit for
estimating software development effort and duration.
McGraw-Hill, 2010, ISBN 978-0-07-171791-5.

[14] A. J. Albrecht, “Measuring application development
productivity,” IBM Application Development Symposium,
OCT. 1979, pp. 83-92.

[15] ISO/IEC 19761, 2003 COSMIC Method Measurement
Manual v. 3.0.1.

[16] ISO/IEC 29881, 2008 Information technology Software and
systems engineering FiSMA 1.1 functional size measurement
method.

[17] ISO/IEC 20926, 2009 Software Engineering - IFPUG 4.3.1.
Unadjusted FSM Method - Counting Practices Manual.

[18] ISO/IEC 20968, 2002 Software Engineering - Mk II Function
Point Analysis - Counting Practices Manual.

[19] ISO/IEC 24570, 2005 Software Engineering - NESMA
Functional Size Measurement Method v.2.1 - Definitions and
counting guidelines for the application of Function Point
Analysis.

[20] Automated Function Points (AFP) Version 1.0 - Beta 1,
ptc/2013-02-01.

[21] The international function point users group: function point
counting practices manual release 4.3.1., 2010, ISBN 978-0-
9753783-4-2.

[22] Borland Conference. How to determine your application size
using function points. [Online]. Available from
http://conferences.embarcadero.com/article/32094.

[23] P. Morris, “Mapping the rules for IFPUG and COSMIC-FFP
function size method,” IFPUG Fall Conference, Scottsdale,
Arizona, USA, 2003, pp. 299-319.

[24] Common Software Measurement International Consortium. A
Comparison of the Key Differences between the IFPUG and
COSMIC Functional Size Measurement Methods. [Online].
Available from: http://www.cosmicon.com/portal/public/

IFPUG_COSMIC_Key_Comparison.pdf.

[25] B. W. Boehm, Software engineering economics. Englewood
Cliffs, NJ:Prentice-Hall, 1981, ISBN 0-13-822122-7.

208Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 230 / 679

Empirical Research in Software Engineering: A Literature Review

Petr Pícha, Přemysl Brada

Department of Computer Science and Engineering

University of West Bohemia

Pilsen, Czech Republic

{ppicha, brada}@kiv.zcu.cz

Abstract-Software engineering (SE) and the empirical research

in this area have both become a large fields with significant

bodies of knowledge as well as methodical problems. Mentions,

descriptions and examples of these problems are spread

throughout the literature, but only a handful of suggestions

and attempts of their rectification are being presented. This

paper summarizes the goals and history of the SE field and

focuses on the empirical research area within it. It highlights

the most frequent problems affecting empirical SE research

efforts and their most promising suggested solutions. Both the

problems and suggested solutions were collected from a

carefully selected sample of research publications. The

presented overview should serve as a starting point for

researchers or other professionals trying to get the first broad

and shallow insight into the context of SE empirical research,

as well as a theoretical basis for subsequent research.

Keywords-empirical research, literature review, software

engineering, history, problems, solutions

I. INTRODUCTION

The field of Software Engineering (SE) has been
developing since the 1960s, and has, therefore, amassed a
substantial amount of knowledge. Even empirical SE
research, which specializes in studies based on experiments
and observation, is very rich and obtaining the full grasp of
its topics and findings poses a significant challenge.

The goal of this work was to perform a broad and
shallow study of literature concerning the current state of
Empirical Research in Software Engineering (ERSE). The
motivation for this study was to obtain an initial
understanding of the area as a prerequisite for further,
deeper research on its particularities, details and various
research methods and approaches.

The challenge of the study was obviously the extent of
the literature body obtained. Therefore, this paper focuses
on summarizing the findings about ERSE and the SE
discipline in general. It highlights their context, goals, major
problems in conducting empirical SE research and some
suggested solutions.

The study will be useful mainly for researchers starting
in the SE research field trying to gain a general overview of
its content and context quickly and with minimal effort.

In section II, we briefly describe the motivation for and
design of the study. Section III speaks about similar papers
included in the studied literature sample and the main

differences between this them and this paper. Section IV
presents facts and findings about ERSE and SE in terms of
their goals and history. Section V describes the major
problems of the field found in literature while Section VI
mentions the proposed solutions to these problems. Finally,
Section VII discusses the accuracy and relevance of this
study. Section VIII summarizes the principal findings and
explains their proposed usefulness for other researchers and
other readers.

II. STUDY CONTEXT AND DESIGN

This section explains the main reasons for creating this
literature review and its goals as well as a process of its
execution.

A. Reasons for the Study

The main motivation for this study was to create a
pivotal resource and knowledge basis for ERSE within the
local research group (Reliable Software Architecture -
ReliSA) at the University of West Bohemia. To establish a
baseline before any particular studies could be conducted
we needed to obtain an overview of the ERSE field itself in
a broad, but not necessarily too detailed manner.

In particular, we wanted to find out key information
about the following aspects of ERSE: its context;
methodologies and taxonomies used; leading experts,
organizations and outlets; major SE problems studied in the
research community and pitfalls of the research approaches
both in general and in their particular steps (including ways
to avoid or mitigate them). The literature review fitted all
these goals as the best way to achieve them.

B. Process of Study Execution

The design of the study (meaning the process of
literature gathering and exploration in order to extract the
key information sought) breaks down to several steps.

At first, the main sources of material were selected.
These were the academically oriented part of the search
engine Google - Google Scholar, and digital libraries (DL)
of scientific publications, such as ACM DL, IEEE DL and
Springer Link. The key expressions, such as “empirical
research”, “software engineering experiment”, or “research
in software engineering” were searched in these sources to
get a preliminary set of publications and organizations.

209Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 231 / 679

Then, the websites of the organizations that occurred
most frequently and seemed most promising were explored
to widen the set of publications. The relevance of the
publications was determined mainly by reading their
abstracts.

The whole set of selected publications was sorted using
a simple citation metric which takes the sum of the
publication’s citation counts on Google Scholar and Web Of
Science and divides this number by the age of the
publication in years plus one (so that the papers published in
the current year do not end up with count divided by zero).

The next step was the actual reading of the materials.
Mainly, only the papers were read; the books were omitted
for reasons of the exceedingly long time required to read
them.

After reading each paper, the referenced publications
were checked for relevance and, if found useful, added to
the set of useful publications with their citation metric value
calculated.

Whenever a significantly large subset of newly added
papers originated from one organization previously
unexplored, the website of the organization was checked
and relevant papers were added as before.

The whole process stopped at the point where we had a
list of the top six reachable papers which remained
unchanged after studying all relevant referenced
publications, i.e., when the process stopped uncovering new
significant papers.

C. The Analyzed Literature Sample

The end result of the process described in the previous
subsection was a set of almost 90 collected publications,
with a subset of 53 publications found both available and
useful. The publication years of this subset range from 1986
to 2014.

In terms of outlet, in which these publications were
published, most of them (approximately 72%) came from
journals, magazines, newsletters and other periodic
publications. Most significant contributions amongst them
made Information and Software Technology (Elsevier),
Transactions on Software Engineering (IEEE), Empirical
Software Engineering (Springer), and Software (IEEE).
Almost 21% of all the publication studies came from
conferences, symposiums and meetings with International
Conference on Software Engineering (ICSE), International
Symposium on Empirical Software Engineering and
Measurement (ESEM) and The Future of Software
Engineering Symposium (FOSE) leading the list. The rest of
the publications (roughly 8%) originated elsewhere, e.g.,
were a technical report or an available chapter of a book.

On the level of the organizations from where the
publications originated in the majority of cases
(approximately 70%) at least one author was affiliated with
Simula Research Laboratory (Lysaker, Norway), Keele
University (UK), University of Maryland (USA), NICTA
(National Information Communications Technology
Australia – University of New South Wales, Sydney), Lund
University (Sweden), or SINTEF (The Foundation for
Scientific and Industrial Research, Trondheim, Norway).

Other organizations included Microsoft’s ESE (Empirical
Software Engineering Group), Karlsruhe Institute of
Technology (Germany), Chalmers University of
Technology (Gothenburg, Sweden), Carnegie Mellon
University (Pittsburgh, USA) and other institutions from
USA, Ireland, Canada, Norway, UK and France.

III. RELATED WORK AND SIMILAR STUDIES

This study certainly does not constitute the first attempt
in the research community to assess the state and context of
the SE field and ERSE area. This section mentions the
similarly oriented studies closest to ours. It also highlights
the differences and individual properties of our paper in
relation to them.

Glass et al. [1] discuss the history of SE research and
then try to categorize 369 selected papers from 1995 to 1999
on several levels. Perry et al. [2] try to assess the
contemporary state and future (at the time) challenges of
empirical studies in SE followed by describing the
recommended structure of an individual study and concrete
steps for assuring its quality. Sjöberg et al. [3] give the
description of primary and secondary research methods
followed by a vision for increased research quality for the
future and suggestions leading to its fulfilling. Victor Basili
published his study overview of the field in [4] including the
nature of the discipline, research paradigms, vision and its
attainability, goals of studies, types of studies and a
description of a maturing process of the research.

None of the mentioned (or other studied) publications
deals strictly with summarizing the general context of SE
and ERSE in terms of their goals, history, major problems
and solutions. The main contribution of this particular paper
lies in summarizing the problems and solutions on the level
of the field and individual studies (not the concrete phases
and steps while conducting research). In addition, the
literature sample used in our study spreads through almost
three decades. That makes its findings not only
contemporary, but also a broad overview, since none of the
above mentioned works describes all the problems and
solutions included in this paper.

IV. CONTEXT OF SOFTWARE ENGINEERING RESEARCH

This section presents findings about SE, SE research and
ERSE in terms of goals and history discovered throughout
the studied literature.

A. Goals of Research

As in other scientific disciplines, the main goal of SE
research is to contribute to the effectivity and provide
knowledge for decision making in its respective field both in
further research and in practice. However, the outcomes of
the research can be used by several different types of
audiences, such as common readers, other researchers,
reviewers, meta-analytics, different kinds of committees and
practitioners. While the resulting papers should ideally bring
some level of benefit to them all, the authors may have to
decide beforehand who is their target audience and how the

210Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 232 / 679

study should benefit them and adjust the study and its goals
properly.

Of course, there is the matter of subsequent research.
The occurrence of one paper which brings great benefit to
the field as a whole on some 10 pages is hardly imaginable.
So the research in particular organizations (or several
cooperating organizations) should be carefully designed and
structured to support the preliminary vision and high-level
goals.

Much has been written about how the individual studies
should be done and research papers structured
[2][5][6][7][8][9][10]. Most of the findings in this area will
be summed up in a future work; here were we would like to
present just one of the more general ideas suggested in [3],
which claims that the point of every study is (or at least
should be) the exploration or description of the relations
between four “archetype classes”. These classes are: Actor,
Technology, Activity and Software System. In this context,
Actor can be not only a person or a group of people but also
another SW or HW system and so on. Furthermore,
Technology class representative need not to be a piece of
HW or SW exclusively. It can also refer to a technique,
method, practice, diagram, model, guideline, etc. This seems
to be a pretty straightforward, simple and achievable
principle.

B. Software engineering history

Now, let us talk a bit about SE and ERSE history. The
most useful, yet general and complex description of history
was found in [1], which is the main source of the
information presented here.

The existence of SE can be traced back to the early 50s.
The SE research (including ERSE) appeared almost
simultaneously, although it was mainly ad hoc research and
unfortunately, though much has been researched and
discovered, there were very few outlets to present the
findings in. This lead to the fact, that many of the findings
from this era were published roughly 10 years afterwards.

And so the real traceable history of SE research dates
back to the late 60s when the first SE conferences were
being held. However, back in that time the SE was still just
one part of the much larger Computer Science field, and did
not begin to separate its presence in academia off from it
until the early 80s.

Of course, that was not the end of the genesis of the field
that continues up until this day. For example, qualitative
research (e.g., [11]), which is aimed more on how things
work (especially important in SE, since the impact of the
human factor on the field is very significant) than on causal
links and numbers, did not really appear in noticeable
measure until 10 to 20 years ago and still does not have very
large volume compared to standard and more “technical”
quantitative research. (There is a simple and useful
differentiation between qualitative and quantitative research
methods in [7].)

V. PROBLEMS IN SOFTWARE ENGINEERING RESEARCH

The studied literature identifies and describes many
problems of SE research impacting both the field in general

(presented in this section), or just one or more steps in
particular studies (described in a future work). Many of
these problems appear in more than one publication and this
section summarizes and presents the ones that seem the
most significant and frequently encountered.

A. The Whole Field

At the top of the list is probably the absence of any
unified and universally recognized guidelines,
methodologies, taxonomy and even terminology which
could be used and followed while conducting studies and
presenting the results in research papers. Some authors
[2][5][6][7][12][13][14] try to come up with first
suggestions or their own models for research or its
evaluation, but no field-wide agreement has been reached so
far. The result of this is an inconsistency of studies and
papers throughout the research community, which leads to
sort of isolation of the studies, that cannot be compared,
widened, summarized by meta-analysis or theory building,
followed up by other studies, or even properly disproved.

A related problem is often mentioned little support in
recognized authority which could come up with these so
needed guidelines and methodologies, or at least support
their development and mediate a discussion on them, or
even make them a standard in the end. Examples from other
fields given in literature include the Cochrane
Collaboration and their Cochrane Database of Systematic
Reviews (Australia; mentioned in [15]) in medicine, or the
Human Genome Project (mentioned in [3]) in genetics.
Some sort of comfort or hope lies in SWEBOK which
describes issues related to SE but still does not include
guidelines for research.

Another problem is that not enough research in
general. According to some (e.g., [3], [16]), too few studies
are being conducted, presented and published in the SE and
ERSE field. This is of course a matter of opinion, but the
truth is the more studies undertaken the better. Even if their
quality (further discussed later in this paper) is in general
poor, the total number of good papers is higher in bigger
overall amount than in smaller. There are some subareas
where the current situation is even worse.

One is qualitative research (already mentioned in
Section IV), which is somewhat rare in itself in the SE
field. Although the situation started to get better in recent
years, as finally more and more qualitative research
(described for example in [11] or [17]) is done, the pace is
not fast enough.

The other is theory building [3][18][19][20][21], which
suffers from subsequent issues from incorrect conclusions
(mentioned in [5]), ignoring negative results (mentioned in
[22]), research questions not being insightful enough
(mentioned in [2]), misused statistical methods (described,
e.g., in [23], [24]) and poor quality of studies in general
(many of these problems are mentioned in following
subsection B) which, of course, makes it difficult to prove
hypotheses and build theories, which are necessary for
establishing some ground on which to build further
activities in the field.

211Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 233 / 679

The next problem often discussed and mentioned is the
gap between practice of the field and academia (or the
research community in general). This results in research not
covering the real needs of the industry and in return not
applying the findings of the research in practice. This has an
immediate link to the next issue (next paragraph), but
another statement found in [1] linked to this talks about so-
called “assimilation gap”, which refers to the time frame in
between the first acquisition of a new technology (tool,
technique, method, practice, model, etc.) and its 25%
penetration into software development organizations in
practice, and according to [1], is nowadays 9 to 15 years
wide.

A large amount of research is purposeless as
mentioned, e.g., in [2]), meaning its being done simply for
something to be done without the aims and goals of the
research corresponding to or reflecting on the needs of the
practice. The cause of this, apart from the above mentioned
gap between industry and academia, is the fact that often a
major evaluation criterion of researchers (including the PhD
students) is the quantity of published papers and citations.
And so, if the researchers have no experience or relationship
with the actual practice in the respective field, they end up
doing research just for its own sake.

The last big issue of the field as a whole is the lack of
resources, both financial and personal. The ERSE still
struggles to get sufficient support from governments,
industry or other entities, such as different kinds of
initiatives and foundations. The comparison with other
fields, especially medicine, is often given in the literature
studied [3].

This concludes the problems of the field in general.
Other listed problems refer more or less to the issues that the
individual studies and papers suffer from.

B. Individual Studies

The main problem concerning individual studies is low
quality (see, e.g., [25]), relevance (meaning significance of
results) and usability (also called impact – factor of
research being interesting for the field; [8]). Many studies
suffer from misusage of statistical methods, which are
often poorly understood by IT practitioners [23]. They also
often just present results or state conclusions with improper
or no validation and evaluation whatsoever, as mentioned
in [8][12][15][16][26][27].

Another contributing factor is incorrect conclusions
drawing (see, e.g., [5]), fishing for results (presenting
insignificant results so that there is something to publish)
and mostly ignoring negative results (as mentioned, e.g., in
[22]). Although not positive (in terms of proving the
hypothesis or showing something is wrong with the studied
phenomenon), such results still need to be published or
made public at the very least to prevent other researchers
from repeating the same thing once it has been proven
meaningless. Furthermore, these results can still be followed
by validation studies, replication studies (see, e.g., [28]),
qualitative studies shedding light on what went wrong, etc.

The follow-up studies are often difficult to conduct for
one more reason and that is publishing study results

without the input data used. This, of course, has its source
in the fact that the data are mostly industrial by origin and as
such considered sensitive and in need of keeping them
confidential, which is unfortunately something SE
researchers can hardly influence or overcome (as
mentioned, e.g., in [29]).

Last but not least, in reference to the above mentioned
gap between industry and academia (subsection A), the
researchers are often given no choice but to use students as
subjects in their studies. The reasons are obvious: students
are easily available and their usage is cheap [9][22][30].
But, of course, practitioners tend to dismiss the results of
such studies as irrelevant or not representative of reality
instead of considering the results and if found interesting
trying to supply replication study with their own people.

VI. SUGGESTED SOLUTIONS TO THE PROBLEMS

This section deals with solutions to the problems in
Section V, suggested in the studied literature.

As many publications compare the state of SE and ERSE
to other disciplines with longer history and more stable
infrastructure, the first suggested course of action is
patterning our field after, such other disciplines (e.g.,
[26][31]) like medicine, psychology and sociology (both for
their overlap with IT in SE and long tradition of qualitative
research), information systems, or computer science. This
could potentially bring some “order” to the “chaos” and
establish a platform for a developing more field-specific
empirical research framework.

Another suggestion was to include practitioners and
statisticians into the research activities (as mentioned in
[5][9]). This would significantly improve the situation
concerning the gap between academia and industry,
purposeless research, misuse of statistical methods,
validation and evaluation of the results. The problem here is
of course the above mentioned resources issue.

The resources could be brought by initiatives and
organizations (see, e.g., [9]) established for these purposes
and also for the purposes of stabilizing the terminology,
taxonomy, methodology and guidelines, as well as theory
building and authority foundation. Of course, to establish
such authorities and initiatives, community-wide
cooperation towards these goals is essential, but once done
this should have major impact on research quality and
effectivity, thus fulfilling the purpose of research in the first
place (section IV). A way to collaborate on the community
level through social networking is described in [32].

But before that can be done, the lower-level cooperation
needs to appear and grow. Research organizations such as
universities, institutes and even companies should strive to
build relationships on a common goal of research and
improvement [2][3]. Furthermore, each research entity
should have some degree of long-term focus on a particular
topic (or topics, depending on size and manpower), and
conduct not isolated studies, but whole families of studies
surrounding the topic [2][28]. The similar topic focus
among several entities should supply the common ground
for the above mentioned cooperation.

212Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 234 / 679

In terms of individual studies one more issue has to be
mentioned and that is the insightfulness of research
questions (see, e.g., [2]). The importance of this is that if
you do not have research questions or hypotheses insightful
enough, you undermine your studies from the very
beginning. And although you may still finish the studies and
present your results, such studies are hard to follow up on,
replicate or include in meta-analysis (see, e.g., [33][34]),
rendering them isolated, and therefore, useless.

The last main suggested solution looks to the future in a
different way. Instead of trying to change the field, current
researchers, practitioners and their mindset, the solution lies
in the upbringing of good researchers from the very
beginning – of course through education. The literature
[2][35] suggested special SE research courses at colleges
and universities to try to prepare students with research
aspirations for the obstacles and circumstances of such a
career and to teach them the basic knowledge on how to do
research properly. This would, however, better be
premeditated by establishing proper, unified and universally
acknowledged methodologies and guidelines (mentioned
before), or else every education entity will end up teaching
their students something different and the resulting chaos
will be little to none better than the current one.

VII. DISCUSSION

Here, we discuss the usage and relevance of this work.
As it is a simple literature review we do not claim that the
information presented is fully comprehensive and accurate.
Much wider and deeper analysis would be needed for a
statistically valid study.

Through the course of this paper, we often talk about SE
research, while the topic should be mainly ERSE. This is
caused by the broad and shallow nature of this study. In its
high-level context, the separation of empirical research off
from SE research in general is difficult and probably not
feasible to some degree. Nevertheless, the findings apply to
both areas in most cases and where not, it is impossible to
describe the issues of ERSE without the wider context of SE
research.

Lastly, this presented paper does not cover the full
breadth of the studied material and findings. As future work,
we plan to address the methodology and taxonomy aspects
of ERSE, various types of studies, suggested steps in
conducting and describing the studies in papers and of
course basic techniques, principles, pitfalls, and frequent
mistakes made in each of these steps.

VIII. CONCLUSIONS

This literature review summarized and described
information and findings discovered throughout the studied
publications concerning SE and ERSE in this field.

The studied literature sample consisted of 53 papers and
articles published from 1986 to 2014, coming from major
journals and conferences in the field and spread throughout
the world in their origin. The key problems in the area of SE
research, as found through this study, are overall insufficient
quality, relevance and impact. The steps towards mitigation
and avoidance of these problems are being taken throughout

the respective community, although it is a long-term and
slow process.

The general advice for improving the research quality
includes rigorous study design and description (correct
usage of statistical methods, drawing of conclusions,
insightful research question, validation and evaluation),
including statisticians and as much of practitioners
participation (or at least industrial data) to the research as
possible, education of researchers through specialized
courses, establishing authorities and financial support
systems, and using other scientific disciplines as a pattern.

Our hope is that this review helps especially other
scientists starting in the ERSE field as a base of general
knowledge and overall overview. In addition, the findings
can be used as an information basis for both further and
more detailed research and conducting individual empirical
studies in the field of software engineering.

ACKNOWLEDGMENT

The work was supported by the UWB grant SGS-2013-
029 Advanced Computer and Information Systems.

REFERENCES

[1] R. L. Glass, I. Vessey, and V. Ramesh, “Research in Software
Engineering: An Analysis of the Literature”, Information and
Software Technology, vol. 44, issue 8, Jun. 2002, pp. 491-
506, doi: 10.1016/S0950-5849(02)00049-6.

[2] D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical Studies
of Software Engineering: A Roadmap”, Proceedings of the
Conference on The Future of Software Engineering (ICSE
‘00), ACM New York, Jun. 2000, pp. 345-355, ISBN: 1-
58113-253-0, doi: 10.1145/336512.336586.

[3] D. I. K. Sjöberg, T. Dyba, and M. Jörgensen, “The Future of
Empirical Methods in Software Engineering Research”,
Future of Software Engineering (FOSE ‘07), IEEE, May
2007, pp. 358-378, ISBN: 0-7695-2829-5, doi:
10.1109/FOSE.2007.30.

[4] V. R. Basili, “The Role of Experimentation in Software
Engineering: Past, Current and Future”, 18th International
Conference on Software Engineering (ICSE ‘96), IEEE
Computer Society, 1996, pp. 442-449, ISBN: 0-8186-7246-3.

[5] B. A. Kitchenham, S. L. Pfleeger, D. C. Hoaglin, K. E. Eman,
and J. Rosenberg, “Preliminary Guidelines for Empirical
Research in Software Engineering”, IEEE Transactions on
Software Engineering, vol. 28, issue 8, Aug. 2002, pp. 721-
734, doi: 10.1109/TSE.2002.1027796.

[6] M. Shaw, “What Makes Good Research in Software
Engineering?”, International Journal on Software Tool For
Technology Transfer, vol. 4, issue 1, pp. 1-7, Oct. 2002, doi:
10.1007/s10009-002-0083-4.

[7] C. Wohlin, M. Höst, and K. Henningsson, “Empirical
Research Methods in Software Engineering”, Empirical
Methods and Studies in Software Engineering, Springer
Berlin Heidelberg, pp. 7-23, 2003, ISBN: 978-3-540-40672-3,
doi: 10.1007/987-3-540-45143-3_2.

[8] T. Dyba, B. A. Kitchenham, and M. Jörgensen, “Evidence-
based Software Engineering for Practitioners”, IEEE
Software, vol. 22, issue 1, Jan./Feb. 2005, pp. 58-65, doi:
10.1109/MS.2005.6.

[9] S. S. Briliant and J. C. Knight, “Empirical Research in
Software Engineering: A Workshop”, ACM SIGSOFT
Software Engineering Notes (Newsletter), vol. 24, issue 3,
May 1999, pp. 44-52, doi: 10.1145/311963.311998.

[10] B. A. Kitchenham, ”Procedures for Performing Systematic
Reviews”, Joint Technical Report, July, 2004, ISSN: 1353-
7776.

213Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 235 / 679

[11] C. B. Seaman, “Qualitative Methods in Empirical Studies of
Software Engineering”, IEEE Transactions on Software
Engineering, vol. 25, issue 4, Jul./Aug. 1999, pp. 557-572,
doi: 10.1109/32.799955.

[12] V. R. Basili and R. W. Selby, D. H. Hutchens,
“Experimentation in software engineering”, IEEE
Transactions on Software Engineering, vol. 12, issue 7, Jul.
1986, pp. 733-743, doi: 10.1109/TSE.1986.6312975.

[13] B. A. Kitchenham et al., “Can We Evaluate the Quality of
Software Engineering Experiment?”, The Forth International
Symposium on Empirical Software Engineering and
Measurement (ESEM ‘10), ACM New York, Sep. 2010,
article no. 2, ISBN: 978-1-4503-0039-1, doi:
10.1145/1852786.1852789.

[14] M. Höst and P. Runeson, “Checklists for Software
Engineering Case Study Research”, The First International
Symposium on Empirical Software Engineering and
Measurement (ESEM ‘07), IEEE, Sep. 2007, pp. 479-481,
ISBN: 978-0-7695-2886-1, doi: 10.1109/ESEM.2007.46.

[15] B. A. Kitchenham, T. Dyba, and M. Jörgensen, “Evidence-
based Software Engineering”, The 26th International
Conference on Software Engineering (ICSE ‘04), IEEE, May
2004, pp. 273-281, ISBN: 0-7695-2163-0, doi:
10.1109/ICSE.2004.1317449.

[16] W. F. Tichy, “Should Computer Scientists Experiment
More?”, IEEE Computer, vol. 31, 1997, pp. 32-40.

[17] M. Dixon-Woods, “How Can Systematic Reviews
Incorporate Qualitative Research? A Critical Perspective”,
Qualitative Research, vol. 6, issue 1, Feb. 2006, pp. 27-44,
doi: 10.1177/1468794106058867.

[18] M. Jörgensen and D. Sjöberg, “Generalization and Theory-
Building in Software Engineering Research”, The 26th
International Conference on Software Engineering (ICSE ‘04)
- Workshop "8th International Conference on Empirical
Assessment in Software Engineering (EASE 2004)", May
2004, pp. 29-36, ISBN: 0-86341-435-4, doi:
10.1049/ic:20040396.

[19] A. Zendler, “A Preliminary Software Engineering Theory as
Investigated by Published Experiments”, Empirical Software
Engineering, vol. 6, issue 2, Jun. 2001, pp. 161-180, doi:
10.1023/A:1011489321999.

[20] D. I. K. Sjöberg, T. Dyba, B. C. D. Anda, and J. E. Hannay,
“Building Theories in Software Engineering”, Guide to
Advanced Empirical Software Engineering, Springer London,
pp. 312-336, 2008, ISBN: 978-1-84800-043-8, doi:
10.1007/978-1-84800-044-5_12.

[21] J. E. Hannay, D. I. K. Sjöberg, and T. Dyba, “A Systematic
Review of Theory Use in Software Engineering
Experiments”, IEEE Transactions on Software Engineering,
vol. 33, issue 2, Feb. 2007, pp. 87-107, doi:
10.1109/TSE.2007.12.

[22] W. F. Tichy, “Hints for Reviewing Empirical Work in
Software Engineering”, Empirical Software Engineering, vol.
5, issue 4, Dec. 2000, pp. 309-312, doi:
10.1023/A:1009844119158.

[23] T. Dyba, V. B. Kampenes, and D. I. K. Sjöberg, “A
Systematic Review of Statistical Power in Software
Engineering Experiments”, Information and Software
Technology, vol. 48, issue 8, Aug. 2006, pp. 745-755, doi:
10.1016/j.infsof.2005.08.009.

[24] B. A. Kitchenham, D. R. Jefferey, and C. Connaughton,
“Misleading Metrics and Unsound Analyses”, IEEE Software,
vol. 24, issue 2, Mar./Apr. 2007, pp. 73-78, doi:
10.1109/MS.2007.49.7.

[25] M. Jörgensen, T. Dyba, K. Liestöl, and D. I. K. Sjöberg,
“Incorrect Results in Software Engineering Experiments:
How to Improve Research Practices”, unpublished.

[26] M. V. Zelkowitz and D. Wallace, “Experimental Validation in
Software Engineering”, Information and Software
Technology, vol. 39, issue 11, 1997, pp. 735-743, doi:
10.1016/S0950-5849(97)00025-6.

[27] B. A. Kitchenham et al., “Evaluating guidelines for reporting
empirical software engineering studies”, Empirical Software
Engineering, vol. 13, issue 1, Feb. 2008, pp. 97-121, doi:
10.1007/s10664-007-9053-5.

[28] V. R. Basili, F. Shull, and F. Lanubile, “Building Knowledge
through Families of Experiments”, IEEE Transactions on
Software Engineering, vol. 25, issue 4, Jul./Aug. 1999, pp.
456-473, doi: 10.1109/32.799939.

[29] V. R. Basili, M. V. Zelkowitz, D. I. K. Sjöberg, P. Johnson,
and A. J. Cowling, “Protocols in the Use of Empirical
Software Engineering Artifacts”, Empirical Software
Engineering, vol. 12, issue 1, Feb. 2007, pp. 107-119, doi:
10.1007/s10664-006-9030-4.

[30] D. I. K. Sjöberg, B. Anda, and T. Dyba, “Conducting
Realistic Experiments in Software Engineering”, 2002
International Symposium on Empirical Software Engineering,
IEEE, Oct. 2002, pp. 17-26, ISBN: 0-7695-1796-X, doi:
10.1109/ISESE.2002.1166921.

[31] D. Budgen et al., “Cross-domain Investigation of Empirical
Practices”, IET Software, vol. 3, issue 5, Oct. 2009, pp. 410-
421, doi: 10.1049/iet-sen.2008.0106.

[32] A. Begel, J. Bosch, and M. A. Storey, “Bridging Software
Communities through Social Networking”, IEEE Software,
vol. 30, issue 1, Jan. 2013, pp. 26-28, doi:
10.1109/MS.2013.3.

[33] J. Miller, “Applying Meta-analytical Procedures to Software
Engineering Experiments”, Journal of Systems and Software,
vol. 54, issue 1, Sep. 2000, pp. 29-39, doi: 10.1016/S0164-
1212(00)00024-8.

[34] L. M. Pickard, B. A. Kitchenham, and P. W. Jones,
“Combining Empirical Results in Software Engineering”,
Information and Software Technology, vol. 40, issue 14, Dec.
1998, pp. 811-821, doi: 10.1016/S0950-5849(98)00101-3.

[35] M. Jörgensen, T. Dyba, and B. A. Kitchenham, “Teaching
Evidence-Based Software Engineering to University
Students”, Proceedings of the 11th IEEE International
Software Metrics Symposium (METRICS ‘05), IEEE
Computer Society, Sep. 2005, pp. 24-31, doi:
10.1109/METRICS.2005.46.

214Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 236 / 679

An Automated Signature Generation Method for Zero-day Polymorphic Worms
Based on C4.5 Algorithm

Mohssen M. Z. E. Mohammed1, Eisa Aleisa2, Neco Ventura3

1,2College of Computer and Information Sciences, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
2Department of Electrical Engineering, University of Cape Town, Rondebosch, South Africa

m_zin44@hotmail.com, aleisa@ccis.imamu.edu.sa, neco@crg.ee.uct.ac.za

Abstract— Polymorphic worms are considered as the most
critical threats to the Internet security, and the difficulty lies in
changing their payloads in every infection attempt to avoid the
security systems. In this paper, we propose an accurate
signature generation system for zero-day polymorphic worms.
We have designed a novel double-honeynet system, which is
able to detect zero-day polymorphic worms that have not been
seen before. To generate signatures for polymorphic worms,
we have two steps. The first step is the polymorphic worms
sample collection, which is done by the double-honeynet
system. The second step is the signature generation for the
collected samples, which is done by a decision tree algorithm
(C4.5 algorithm). The main goal for this system is to get
accurate signatures for Zero-day polymorphic worm.

Keywords- Honeynet; Polymorphic; Worms; Machine Learning;
Algorithm.

I. INTRODUCTION

Due to the enormous threat from the worms, many
efforts have been taken previously to tackle worms by
detecting and preventing them. Later in this paper, the
relevant works are discussed. However, in this section,
internet worm defense methods and their limitations are
mentioned in brief.

One avenue to deal with worms is prevention. We
usually know that prevention is better than cure. Since
worms need to exploit software defects, by eliminating all
software defects we could eradicate worms. While
theoretically this seems to be easy, the reality finds this as
an almost impossible goal. Although significant progress
has been made on software development, testing, and
verification, empirical evidence [1][12] suggests that we are
still far from producing defect-free software.

Another avenue to solve the worm problem is
containment. Containment systems accept that software has
defects that can be exploited by worms, and they strive to
contain a worm epidemic to a small fraction of the
vulnerable machines. The main challenge in designing
containment systems is that they need to be completely
automatic, because worms can spread far faster than humans
can respond [1]. Recent works on automatic containment
[14][15] have explored network-level approaches. These
rely on heuristics to analyze network traffic and derive a
packet classifier that blocks or rate-limits forwarding of
worm packets.

It is hard to provide guarantees on the rate of false
positives and false negatives with these approaches because
there is no information about the software vulnerabilities
exploited by worms at the network level. False negatives
allow worms to escape containment, while false positives
may cause network outages by blocking normal traffic. We
believe that an automatic containment systems will not be
widely deployed unless they have a negligible false positive
rate.

It should be noted here that dealing with the prevention
mechanisms is out of the scope of this paper because our
work mainly focuses on containment mechanism of the
worms.

We use a supervised Machine Learning (ML) algorithm
[16] to generate signatures for polymorphic worms.
Supervised machine learning is the search for algorithms
that reason from externally supplied instances to produce
general hypotheses, which then make predictions about
future instances. In other words, the goal of supervised
learning is to build a concise model of the distribution of
class labels in terms of predictor features. There are several
applications for ML, the most significant of which is data
mining. People are often prone to making mistakes during
analyses or, possibly, when trying to establish relationships
between multiple features. This makes it difficult for them
to find solutions to certain problems. Machine learning can
often be successfully applied to these problems, improving
the efficiency of systems and the designs of machines.
Every instance in any dataset used by machine learning
algorithms is represented using the same set of features. The
features may be continuous, categorical or binary. If
instances are given with known labels (the corresponding
correct outputs) then the learning is called supervised [16],
in contrast to unsupervised learning [16], where instances
are unlabeled. By applying these unsupervised (clustering)
algorithms, researchers hope to discover unknown, but
useful, classes of items. Another kind of machine learning
is reinforcement learning [16]. The training information
provided to the learning system by the environment
(external trainer) is in the form of a scalar reinforcement
signal that constitutes a measure of how well the system
operates. The learner is not told which actions to take, but
rather must discover which actions yield the best reward, by
trying each action in turn [16].

This paper is organized as follows: After Section I,
Section II gives an introduction to decision tree algorithms.

215Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 237 / 679

Section III discusses the related works regarding automated
signature generation systems. Section IV talks about the
preliminaries of worms and their attacks. Section V
discusses our Double-Honeynet system. Section VI
introduces the proposed C4.5 algorithm. Section VII
concludes the paper.

II. OVERVIEW FOR DECISION TREES

Decision trees classify instances by sorting them down
the tree from the root to some leaf node, where:

• Each internal node specifies a test of some
attribute.

• Each branch corresponds to a value for the tested
attribute.

• Each leaf node provides a classification for the
instance.

Figure 1 is an example of a decision tree for the training
set of Table I.

Figure 1. A decision tree.

TABLE I. TRAINING SET

at1 at2 at3 at4 Class

a1 a2 a3 a4 Yes

a1 a2 a3 b4 Yes

a1 b2 a3 a4 Yes

a1 b2 b3 b4 No

a1 c2 a3 a4 Yes

a1 c2 a3 b4 No

b1 b2 b3 b4 No

c1 b2 b3 b4 No

Decision trees classify instances by sorting them down
the tree from the root to some leaf node, which provides the
classification of the instance [3].

Here, we give some explanation of Figure 1. The
instance 〈at1 = a1, at2 = b2, at3 = a3, at4 = b4〉 would sort
to the nodes: at1, at2, and finally at3, which would classify
the instance as being positive (represented by the values
“Yes”). The problem of constructing optimal binary
decision trees is an NP-complete problem and thus
theoreticians have searched for efficient heuristics for
constructing near-optimal decision trees.

The feature that best divides the training data would be
the root node of the tree. There are numerous methods for
finding the feature that best divides the training data, such as
information gain and gini index. While myopic measures
estimate each attribute independently, ReliefF algorithm
estimates them in the context of other attributes. However, a
majority of studies have concluded that there is no single
best method. Comparison of individual methods may still be
important when deciding which metric should be used in a
particular dataset. The same procedure is then repeated on
each partition of the divided data, creating sub-trees until
the training data is divided into subsets of the same class.

Below, we present a general pseudo-code for building
decision trees.

Check for base cases
For each attribute a
Find the feature that best
divides the training data such as
information gain from splitting on a

Let a_best be the attribute with the
highest normalized information gain

Create a decision node node that
Splits on a_best

Recurse on the sub-lists obtained by
splitting on a_best and add those
nodes as children of node

A decision tree, or any learned hypothesis h is said to
overfit training data if another hypothesis h′ exists that has
a larger error than h when tested on the training data, but a
smaller error than h, when tested on the entire dataset. There
are two common approaches that decision tree induction
algorithms can use to avoid over-fitting training data which
are [3]:

• Stop the training algorithm before it reaches a point
at which it perfectly fits the training data,

• Prune the induced decision tree. If the two trees
employ the same kind of tests and have the same prediction
accuracy, the one with fewer leaves is usually preferred.

The most straightforward way of tackling over-fitting is
to pre-prune the decision tree by not allowing it to grow to
its full size. Establishing a non-trivial termination criterion
such as a threshold test for the feature quality metric can do

216Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 238 / 679

that. Decision tree classifiers usually employ post-pruning
techniques that evaluate the performance of decision trees,
as they are pruned by using a validation set. Any node can
be removed and assigned the most common class of the
training instances that are sorted to it. Elomaa [16]
concluded that there is no single best pruning method.

Even though the divide-and-conquer algorithm is quick,
efficiency can become important in tasks with hundreds of
thousands of instances. The most time consuming aspect is
sorting the instances on a numeric feature to find the best
threshold t. This can be expedited if possible thresholds for
a numeric feature are determined just once, effectively
converting the feature to discrete intervals, or if the
threshold is determined from a subset of the instances.
Elomaa and Rousu [16] stated that the use of binary
discretization with C4.5 [3] needs about the half training
time of using C4.5 multi splitting. In addition, according to
their experiments, multi-splitting of numerical features does
not carry any advantage in prediction accuracy over binary
splitting.

Decision trees use splits based on a single feature at each
internal node, so that they are usually univariate. In fact,
most decision tree algorithms cannot perform well with
problems that require diagonal partitioning. The division of
the instance space is orthogonal to the axis of one variable
and parallel to all other axes. Therefore, the resulting
regions after partitioning are all hyperrectangles. However,
there are a few methods that construct multivariate trees. S.
B. Kotsiantis [16] presented Zheng’s work, who improved
the classification accuracy of the decision trees by
constructing new binary features with logical operators such
as conjunction, negation, and disjunction. In addition,
Zheng created at-least M-of-N features. For a given
instance, the value of an at o trees. In this model, new
features are computed as linear combinations of the
previous ones.

In the fact, decision trees can be significantly more
complex representation for some concepts due to the
replication problem. A solution to this problem is using an
algorithm to implement complex features at nodes in order
to avoid replication. In [16], S. B. Kotsiantis discussed
Markovitch and Rosenstein work, and they presented the
FICUS construction algorithm, which receives the standard
input of supervised learning as well as a feature
representation specification, and uses them to produce a set
of generated features. While FICUS is similar in some
aspects to other feature construction algorithms, its main
strength is its generality and flexibility. FICUS was
designed to perform feature generation given any feature
representation specification complying with its general
purpose grammar.

III. RELATED WORKS

Honeypots are an excellent source of data for intrusion
and attack analysis. Levin et al. [4] described how Honeynet
can be used to assist the system administrator in identifying
malicious traffic on an enterprise network and how
Honeypot-extracts with details of worm can be analyzed to

generate detection signatures. The signatures are generated
manually.

One of the first systems proposed was Honeycomb
developed by Kreibich and Crowcroft [5]. Honeycomb
generates signatures from traffic observed at a Honeypot via
its implementation as a Honeyd plugin. The Longest
Common Substring (LCS) algorithm, which looks for the
longest shared byte sequences across pairs of connections, is
at the heart of Honeycomb. Honeycomb generates
signatures consisting of a single, contiguous substring of a
worm’s payload to match all worm instances. These
signatures, however, fail to match all polymorphic worm
instances with low false positives and low false negatives.

Kim and Karp [6] described the Autograph system for
automated generation of signatures to detect worms. Unlike
Honeycomb, Autograph’s inputs are packet traces from a
DMZ (demilitarized zone) that includes benign traffic.
Content blocks that match “enough” suspicious flows are
used as input to COPP [6], an algorithm based on Rabin
fingerprints that searches for repeated byte sequences by
partitioning the payload into content blocks. Similar to
Honeycomb, Auto-graph generates signatures consisting of
a single, contiguous substring of a worm’s payload to match
all worm instances. These signatures, unfortunately, fail to
match all polymorphic worm instances with low false
positives and low false negatives.

Singh et al. [7] described the Earlybird system for
generating signatures to detect worms. This system
measures packet-content prevalence at a single monitoring
point, such as a network DMZ. By counting the number of
distinct sources and destinations associated with strings that
repeat often in the payload, Earlybird distinguishes benign
repetitions from epidemic content. Earlybird, also like
Honeycomb and Autograph, generates signatures consisting
of a single, contiguous substring of a worm’s payload to
match all worm instances. These signatures, however, fail to
match all polymorphic worm instances with low false
positives and low false negatives.

New content-based systems, like Polygraph [8], Hamsa
[10] and LISABETH [11], have been deployed. All these
systems, similar to our system, generate automated
signatures for polymorphic worms based on the following
fact: there are multiple invariant substrings that must often
be present in all variants of polymorphic worm payloads
even if the payload changes in every infection. All these
systems capture the packet payloads from a router, so in the
worst case, these systems may find multiple polymorphic
worms but each of them exploits a different vulnerability
from each other. So, in this case, it may be difficult for the
above systems to find invariant contents shared between
these polymorphic worms because they exploit different
vulnerabilities. The attacker sends one instance of a
polymorphic worm to a network, and this worm in every
infection automatically attempts to change its payload to
generate other instances. So, if we need to capture all
polymorphic worm instances, we need to give a
polymorphic worm, chance to interact with hosts without
affecting their performance. So, we propose a new detection
method “Double-honeynet” to interact with polymorphic

217Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 239 / 679

worms and collect all their instances. The proposed method
makes it possible to capture all worm instances and then
forward these instances to the Signature Generator which
generates signatures, using a particular algorithm.

An Automated Signature-Based Approach against
Polymorphic Internet Worms by Tang and Chen [9]
described a system to detect new worms and generate
signatures automatically. This system implemented a
Double-honeypot (inbound Honeypot and outbound
Honeypot) to capture worms payloads. The inbound
Honeypot is implemented as a high-interaction Honeypot,
whereas the outbound Honeypot is implemented as a low-
interaction Honeypot. This system has limitations. The
outbound Honeypot is not able to make outbound
connections because it is implemented as low-interaction
honeypot which is not able to capture all polymorphic worm
instances. Our system overcomes this disadvantage by using
Double-honeynet (high-interaction Honeypot), which
enables us to make unlimited outbound connections between
them, so that we can capture all polymorphic worm
instances.

All of the above works have used different algorithms to
generate signatures for polymorphic worms, but there is no
one in the above works using data mining algorithms to
detect polymorphic worms. Data mining is a new
technology and has successfully applied on a lot of fields;
the overall goal of the data mining process is to extract
information from a data set and transform it into an
understandable structure for further use. Data mining is
mainly used for model classification and prediction.
classification is a form of data analysis that extracts models
describing important data classes. C4.5 [16] is one of the
most classic classification algorithms on data mining. So, in
this paper, we used C4.5 algorithm for polymorphic worm
classification. The C4.5 algorithm can classified each type
of polymorphic worm into group.

The objective of using C4.5 is to generate signatures for
polymorphic worms.

The advantages of using C4.5 algorithm over the others
algorithms is the C4.5 can generate an accurate signatures
for polymorphic worms.

IV. PRELIMINARIES OF WORM AND WORM ATTACKS

In this section, we talk about worms, so that the readers
can learn how worm can attack victim computers connected
to the Internet.

Worms are basically computer programs that self-
replicate without requiring any human intervention;
especially, by sending copies of their code in network
packets and ensuring the code is executed by the computers
that receive it. When computers become infected, they
spread further copies of the worm and possibly perform
other malicious activities.

A. Worm Infection

Remotely infecting a computer requires coercing the
computer into running the worm code. To achieve this,
worms exploit low-level software defects, also known as
vulnerabilities. Vulnerabilities are common in current

software, because today’s software is usually large,
complex, and mostly written in unsafe programming
languages. Several different classes of vulnerabilities have
been discovered over the years. Currently, buffer overflows,
arithmetic overflows, memory management errors, and
incorrect handling of format strings, are among the most
common types of vulnerabilities exploitable by worms.

While we should expect new types of vulnerabilities to
be discovered in the future, the mechanisms used by worms
to gain control of a program’s execution should change less
frequently. Currently, worms gain control of the execution
of a remote program using one of three mechanisms:
injecting new code into the program, injecting new control-
flow edges into the program (e.g., forcing the program to
call functions that should not be called), and corrupting data
used by the program.

B. Spread of Internet Worms

After infecting a computer, worms typically use it to
infect other computers, giving rise to a propagation process
which has many similarities with the spread of human
diseases.

The spread of the worm in its most basic sense depends
mostly on how it chooses its victims. This not only affects
the spread and pace of the worm network but also its
survivability and persistence as cleanup efforts begin.
Classically, worms have used random walks of the Internet
to find hosts and attack. However, new attack models have
emerged that demonstrate increased aggressiveness.

C. Components of Worm

There are five basic components of worm:
Reconnaissance. The worm network has to hunt out

other network nodes to infect. This component of the worm
is responsible for discovering hosts on the network that are
capable of being compromised by the worm’s known
methods.

Attack Components. These are used to launch an attack
against an identified target system. Attacks can include the
traditional buffer or heap overflow, string formatting
attacks, Unicode misinterpretations (in the case of IIS
(Internet Information Server) attacks), and
misconfigurations.

Communication Components. Nodes in the worm
network can talk with each other. The communication
components give the worms the interface to send messages
between nodes or some other central location.

Command Components. Once compromised, the nodes
in the worm network can be issued operation commands
using this component. The command element provides the
interface to the worm node to issue and act on commands.

Intelligence Components. To communicate effectively,
the worm network needs to know the location of the nodes
as well as characteristics about them. The intelligence
portion of the worm network provides the information
needed to be able to contact with other worm nodes, which
can be accomplished in a variety of ways [21].

218Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 240 / 679

V. OUR HONEYNET SYSTEM

We propose a Double-honeynet system to detect new
worms automatically. A key contribution of this system is
the ability to distinguish worm activities from normal
activities without the involvement of experts.

Figure 2 shows the main components of the Double-
honeynet system. Firstly, the incoming traffic goes through
the Gate Translator which samples the unwanted inbound
connections and redirects the sample connections to
Honeynet 1. The gate translator is configured with publicly-
accessible addresses, which represent wanted services.
Connections made to other addresses are considered
unwanted and redirected to Honeynet 1 by the Gate
Translator.

Figure 2. Double-honeynet system.

Secondly, once Honeynet 1 is compromised, the worm
will attempt to make outbound connections. Each Honeynet
is associated with an Internal Translator implemented in
router that separates the Honeynet from the rest of the
network. The Internal Translator 1 intercepts all outbound
connections from Honeynet 1 and redirects them to
Honeynet 2, which does the same, forming a loop.

Only packets that make outbound connections are
considered malicious, and hence the Double-honeynet
forwards only packets that make outbound connections.
This policy is due to the fact that benign users do not try to
make outbound connections if they are faced with non-
existing addresses.

Lastly, when enough instances of worm payloads are
collected by Honeynet 1 and Honeynet 2, they are
forwarded to the Signature Generator component which
generates signatures automatically using specific algorithms
that will be discussed in the next section. Afterwards, the
Signature Generator component updates the IDS database
automatically by using a module that converts the signatures
into Bro or pseudo-Snort format.

The above mentioned system was implemented by using
Vmware Server 2 [13]. The details of the core
implementation matters are out of the scope of this paper
and were reported earlier; the readers are encouraged to read

on the Double-honeynet architecture in our previously
published work [13][17][18].

VI. C4.5 ALGORITHM

Motivation for Using C4.5 for Polymorphic Worms
Detection

As it is known that a polymorphic worm can change its
payload in every infection attempt, it is so difficult to know
all instances of a polymorphic worm. In this paper, we use a
well-known algorithm in classification problems, which is
the C4.5. The advantage of using the C4.5 is polymorphic
worm classifications.

We propose C4.5 algorithm to detects Zero-day
polymorphic worms. The most well-know algorithm for
building decision trees is the C4.5 [3]. C4.5 is an algorithm
used to generate a decision tree developed by Ross Quinlan.
This is an extension of Quinlan's earlier ID3 algorithm. The
decision trees generated by C4.5 can be used for
classification, and for this reason, C4.5 is often referred to
as a statistical classifier.

C4.5 builds decision trees from a set of training data in
the same way that ID3 does, using the concept of
information entropy. The training data are a set � = � � , � � , …
of already classified samples. Each sample, � � = � � , � � , … is
a vector where � � , � � , … represent attributes or features of
the sample. The training data is augmented with a vector
� = � � , � � , … where � � , � � , … represent the class to which
each sample belongs.

At each node of the tree, C4.5 chooses one attribute of
the data that most effectively splits its set of samples into
subsets enriched in one class or the other. Its criterion is the
normalized information gain (difference in entropy) that
results from choosing an attribute for splitting the data. The
attribute with the highest normalized information gain is
chosen to make the decision. The C4.5 algorithm then
recurses on the smaller subsists [3].

This algorithm has a few base cases:
• All the samples in the list belong to the same class.

When this happens, it simply creates a leaf node for the
decision tree saying to choose that class.

• None of the features provides any information
gain. In this case, C4.5 creates a decision node higher up the
tree using the expected value of the class.

• Instance of previously-unseen class encountered.
Again, C4.5 creates a decision node higher up the tree using
the expected value.

We should mention that machine learning algorithm are
very slow in working, so in the future work we would like
to use some of mathematical methods to enhances the our
machine learning algorithm efficiency.

VII. CONCLUSION

In this paper, we have proposed an automated signature
generation mechanism for zero-day polymorphic worms
using a decision tree algorithm (C4.5 algorithm). In fact,

219Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 241 / 679

there are many other algorithms that have been proposed to
generate signatures for zero-day polymorphic worms, but
most of them have limitation to detect unknown pattern and
also they have high computational complexity. Therefore,
we have used C4.5 algorithm which overcomes these
problems (detecting unknown pattern and computational
complexity). One of the main advantages of machine
learning algorithms is their great capacity to extract
unknown and general information from a given data set
(polymorphic worms samples) and its application on new
data. The main goal of this paper was to use a machine
learning technique (C4.5 algorithm) which can get better
results than other algorithms such as string matching
algorithms or similar others.

REFERENCES

[1] L. Spitzner, “Honeypots: Tracking Hackers,” Addison Wesley
Pearson Education: Boston, 2002.

[2] H. Bidgoli, “Handbook of Information Security,” John Wiley & Sons,
Inc., Hoboken, New Jersey.

[3] D. Gusfield, “Algorithms on Strings, Trees and Sequences,”,
Cambridge University Press: Cambridge, 1997.

[4] J. Levine, R. La Bella, H. Owen, D. Contis,and B. Culver, “The use
of honeynets to detect exploited systems across large enterprise
networks,” Proc. of 2003 IEEE Workshops on Information
Assurance, New York, Jun. 2003, pp. 92- 99.

[5] C. Kreibich and J. Crowcroft, “Honeycomb–creating intrusion
detection signatures using honeypots,” Workshop on Hot Topics in
Networks (Hotnets-II), Cambridge, Massachusetts, Nov. 2003.

[6] H.-A. Kim and B. Karp, “Autograph: Toward automated, distributed
worm signature detection,” Proc. of 13 USENIX Security
Symposium, San Diego, CA, Aug., 2004.

[7] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm
fingerprinting," Proc. Of the 6th conference on Symposium on
Operating Systems Design and Implementation (OSDI), Dec. 2004.

[8] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically
generating signatures for polymorphic worms,” Proc. of the 2005
IEEE Symposium on Security and Privacy, pp. 226 – 241, May 2005.

[9] Y. Tang, S. Chen, “An Automated Signature-Based Approach against
Polymorphic Internet Worms,” IEEE Transaction on Parallel and
Distributed Systems, pp. 879-892, July 2007.

[10] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao and B. Chavez, “Hamsa: Fast
Signature Generation for Zero-day Polymorphic Worms with
Provable Attack Resilience,” Proc. of the IEEE Symposium on
Security and Privacy, Oakland, CA, May 2006.

[11] L. Cavallaro, A. Lanzi, L. Mayer, and M. Monga, “LISABETH:
Automated Content-Based Signature Generator for Zero-day
Polymorphic Worms,” Proc. of the fourth international workshop on
Software engineering for secure systems, Leipzig, Germany, May
2008.

[12] J. Nazario, “Defense and Detection Strategies against Internet Worms
“ Artech House Publishers (October 2003).

[13] M.M.Z.E. Mohammed, H.A. Chan, N. Ventura. “Honeycyber:
Automated signature generation for zero-day polymorphic worms”;
Proc. of the IEEE Military Communications Conference, MILCOM,
2008.

[14] Snort – The de facto Standard for Intrusion Detection/Prevention.
Available: http://www.snort.org, 1 April 2012.

[15] Bro Intrusion Detection System. Available: http://www.bro-ids.org/,
last accessed: 4 November 2013.

[16] S.B. Kotsiantis, “Supervised Machine Learning: A Review of
Classification Techniques,” Informatica 31 (2007) 249-268.

[17] M.M.Z.E. Mohammed and A.-S. K. Pathan. Automatic Defense
against Zero-day Polymorphic Worms in Communication Networks,
ISBN 9781466557277, CRC Press, Taylor & Francis Group, USA,
2013.

[18] M.M.Z.E. Mohammed and A.-S. K. Pathan, “Using Routers and
Honeypots in Combination for Collecting Internet Worm Attacks,”
The State of the Art in Intrusion Prevention and Detection (Edited by
Al-Sakib Khan Pathan), ISBN: 9781482203516, CRC Press, Taylor
& Francis Group, USA, 2014 (To Appear).

220Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 242 / 679

On the Automation of Vulnerabilities Fixing for Web Application

Kabir Umar, Abu Bakar Sultan, Hazura Zulzalil, Novia Admodisastro, and Mohd Taufik Abdullah
Faculty of Computer Science and Information Technology

Universiti Putra Malaysia, UPM
Serdang, Selangor, Malaysia

emails: kbrumar@yahoo.com, {abakar, hazura, novia, taufik}@upm.edu.my

Abstract -- Testing Web applications for detection and fixing of
vulnerabilities has become an indispensable task in web
applications’ development process. This task often consumes a
lot of time, efforts and other resources. The research
community have devoted considerable amount of efforts to
address this problem by proposing many techniques for
automated vulnerabilities detection and fix generation for web
application. Many of these techniques can reliably detect
vulnerabilities and generate fix(es), which can be applied to the
web application’s code, by the developer, for possible fixing of
the vulnerabilities. Hence, the actual code modifications that
fix the vulnerabilities is not automated and has to be carried
out manually. To the best of our knowledge, none of the
existing automated techniques is able to do this, and hence the
actual fixing of the vulnerabilities is left for the human
developer to handle. In this paper, we propose a novel
framework for automatic vulnerabilities fixing for web
application. We mimic evolutionary idea and employ
Evolutionary Programming to evolve web applications whose
fitness is evaluated based on their ability to survive test
attacks. The reliability of the resulting vulnerabilities-free web
application can be further enhanced by co-evolving test sets
with generations of web applications in which the fitness of test
attack is evaluated based on its ability to break web
applications.

Keywords-Web application; Automated Vulnerabilities
Fixing; Evolutionary Programming; SQL Injection.

I. INTRODUCTION
In recent years, web applications and services have

gained utmost popularity and acceptance in various fields of
human endeavor. Unfortunately, these applications are often
deployed with varied degrees of vulnerabilities that are
exploitable by hackers through many types of attacks, which
can result in unauthorized and, often, harmful transactions
with the application, as well as its’ underlying database
[1][2][3]. The severe consequence of web application
attacks is, perhaps, the reason why detection and fixing of
these vulnerabilities has been among top priorities of both
research communities, governments and industries [4][5].

For more than a decade now, many techniques were
proposed in the literature, by different researchers from
around the globe, for automated detection and generation of
fix for these vulnerabilities. Although many of the proposed
techniques can reliably detect vulnerabilities in a subject
web application and generate possible fix, unfortunately, the
non-trivial task of actual modification of the source code of

the web application for fixing the detected vulnerabilities
has to be done manually by the human developer. To the
best of our knowledge, none of the existing techniques
proposed in the literature has achieved complete automation
of vulnerabilities fixing, in which actual code modifications
to fix vulnerabilities is done automatically. Additional draw
back of the manual code modification by applying the auto-
generated fix is that, sometimes the resulting application
may behave in an unexpected manner [6], thus compelling
the developer to undo the changes and revert to the original
application. Although in many cases applying the auto-
generated fix does fix the vulnerabilities, this can only be
ascertained through conducting another testing of the
modified application. In order words, there is no guarantee
that applying the auto-generated fix to the application will
surely fix the detected vulnerabilities, another testing has to
be done. This creates an unnecessary additional cost
overhead because software testing consumes time, efforts
and other vital resources [7][8].

Producing very secure web application is an important
goal of software engineering [7] because doing so will
greatly reduce or completely prevent attacks on web
application and therefore, prevent losses incurred by
governments, organizations and individuals. In this paper,
we propose a novel framework for complete automation of
vulnerabilities fixing for web application. The framework
will make the actual source code modifications necessary to
fix vulnerabilities. We explore the widely applied ideas of
evolutionary computing [9][10][11] and use Evolutionary
Programming (EP) to evolve web applications whose fitness
is evaluated based on their ability to defend themselves from
test attacks and pass legitimate input tests. The actual source
code modifications will be achieved through evolutionary
operation of mutation.

Furthermore, the reliability of the resulting
vulnerabilities-free web application (V-freeWA) will be
enhanced by co-evolving test sets along with generations of
web applications. The test sets comprises test attacks whose
fitness is evaluated based on its ability to break web
applications and legitimate input test whose fitness is
evaluated based on its ability to fail web applications. This
creates competitive co-evolution between the population of
programs and the population of test sets similar to what
happens in nature between preys and predators, such as
Antelopes and Tigers [11]. The main goal is to go beyond
automated vulnerabilities detection and fix generation, and

221Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 243 / 679

have the actual task of code modification for vulnerabilities
fixing fully automated. This challenging task is, perhaps,
one of the long awaited automations in the field of software
engineering. The remaining of this paper is organized as
follows. Section II presents an overview of automated
vulnerabilities detection and fix generation. Section III
presents the proposed framework for automated
vulnerabilities fixing. Section IV presents discussion, and
Section V presents conclusion, future research work, as well
as other possible research areas that can benefit from the
framework.

II. OVERVIEW OF AUTOMATED
VULNERABILITIES DETECTION AND FIX

GENERATION
Many techniques were proposed in the literature for

automated vulnerabilities detection and generation of
possible fix(es) that can assist the developer to fix the
vulnerable web application. Regrettably, the domain of web
application vulnerabilities is very broad, diverse and
exploitable by hackers through many types of attacks, thus
making the task of automating vulnerabilities detection and
fixing very challenging. The performance of the proposed
techniques, in terms of vulnerabilities detection
effectiveness, varies significantly from one category of
vulnerabilities to another. While some of the techniques
targeted specific category of vulnerabilities, others were
proposed to handle considerably wide range of
vulnerabilities, for example; Bau et al. [14] presented eight
state-of-the-art black box vulnerabilities scanners that, on
the average, each targets about six categories of
vulnerabilities, namely, Cross Site Scripting (XSS), SQL
Injection (SQLI), Cross Channel Scripting, Session
Management, Cross Site Request Forgery (XSRF) and
Information Leakage. Coincidentally, most of these

vulnerabilities happen to be in the 2013 OWASP top 10
most dangerous web application security risk. Details about
OWASP Top 10 project can be found in [4].

Interestingly, the techniques that addressed specific
category of vulnerabilities also focus attention mostly
within the OWASP Top 10 [4]; for example, [6][15][16]
target SQL Injection (SQLI), [17][18] target Cross Site
Scripting (XSS), [19] targets Buffer Overflow, [20] targets
Configurations vulnerabilities, [21] targets Access Control
vulnerabilities, [22] targets Session Management and
Broken Authentication vulnerabilities, [23] targets Remote
Code Execution, and [24] targets Logic vulnerabilities.

Although these techniques employs different software
testing methods [7][8], such as static analysis, dynamic
analysis, black box testing, penetration testing, mutation
testing, search based testing, etc, and demonstrated diversity
in their performance and effectiveness in vulnerabilities
detection and fix generation, yet they almost have one thing
in common, that is: “they were proposed to automate
vulnerabilities detection and (in some cases) generate
possible fix(es) in order to assist the developer to fix the
vulnerable web application (under test)”. To the best of our
knowledge, none of these techniques does the actual task of
vulnerabilities fixing automatically.

III. AUTOMATED VULNERABILITIES FIXING
The proposed framework is for automatic vulnerabilities

fixing for web applications. In this section, we present an
overview of the components of the framework, highlight
how they interacts, and highlight how fitness is evaluated
for programs and test.

A. Components of the Framework
The framework comprises five main components,

namely, Static analyzer, fix-generator, and EP engine
(StatFEP), Test Set Selector (TSS), Test Controller Server

TSS

Figure 1. Framework for automated vulnerabilities fixing

Pre-filled webpage Auto-submitted webpage

Test Controller Client-
Side (TCCS)

Dyn. Gen. Query

attacks
db

Parse Tree Analyzer
& Vulnerability Detector

(PTAVD)

TAL′ Test Controller Server-
Side (TCSS)

TAL
fitness

db

StatFEP

V-free
WACP Progs

fitness
db

EP engine:
• Mutation & reproduction
• Fitness evaluation

Fix
generator

gen progs

WAuTCP or Formal
specs

TAL

TAL
generator

CEP engine:
• Reproduction
• Fitness evaluation

Static
Analyzer

TAL
fitness

db

222Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 244 / 679

Side (TCSS), Test Controller Client Side (TCCS) and Parse
Tree Analyzer and Vulnerability Detector (PTAVD). See
Fig. 1 above.

1) StatFEP: Comprises three sub-components, namely,
Static Analyzer, Fix-generator and EP engine. The static
analyzer receives current page of web application under test
(WAuTCP) as input. It statically analyzes the webpage to
determine all relevant database accessing points, sql
generating statements, un-validated query-input variables,
API method calls and parts of the webpage suitable for
source code modification. The Fix-generator uses result of
static analysis of WAuTCP and information from “attacks
db” to generate smart fix(es) that targets likely
vulnerabilities in WAuTCP. The EP engine evolves
population of WAuTCP as genetic programs (gen- progs)
through single-parent reproduction and mutation operation.
The mutation operation applies the auto-generated fix
through source code modification guided by result of static
analysis. In addition, the EP engine receives result of
PTAVD to evaluate fitness of current individual program
being tested and update “progs fitness db” accordingly.
Lastly, this component monitors attainment of optimal
solution and process stop condition.

2) TSS: The input to this component is test sets’ search
space TAL or system’s specifications of WAuT. TAL is union
of set of test attacks TA and set of legitimate input tests TL.
The CEP-engine of TSS uses customized EP to evolve
population of test sets 𝑇𝐴𝐿′ from the search space TAL.
Moreover, TSS uses result of PTAVD to evaluate fitness of
individuals in 𝑇𝐴𝐿′ and update “TAL fitness db” accordingly.

3) TCSS: This component receives current programs’
individual (webpage) being tested from StatFEP, pre-fill the
webpage with input data from current tests’ individual in
𝑇𝐴𝐿′ (received from TSS), and forward the pre-filled
webpage to TCCS. In addition, the component receives
form submission (http POST request) from TCCS,
intercepts and forward dynamically generated sql queries to
PTAVD for analysis

4) TCCS: This component receives pre-filled webpage
(current programs’ individual being tested) from TCSS and
auto-submit the page using http POST.

5) PTAVD: This component receives dynamically
generated sql query from TCSS and performs syntax
analysis for vulnerability detection by comparing syntax of
current dynamic query with syntax of the same query
generated using benign (verified legitimate) input from TAL.
Moreover, the component feeds information to StatFEP and
TSS for appropriate fitness evaluations, and updates
“attacks db” accordingly.

B. How it Works
To apply the proposed framework, a human tester might

have confirmed the presence of at least one vulnerability in
the Web Application under Test (WAuT) by subjecting it to
test attacks (TA) using appropriate testing method, such as
applying tool for automated vulnerabilities detection.
However, this is a very trivial and optional requirement.
Nevertheless, since the framework is to auto-fix
vulnerabilities, the presence of the vulnerabilities to fix

could be confirmed first. Of course, if no vulnerabilities
were detected in the WAuT, then there is no need to apply
the framework.

Considering the nature of database access in web
application, the StatFEP receives input of a page of the web
application under test (WAuTCP) at a time. The additional
required input, received through TSS, is test sets TAL
comprising of test attacks and legitimate input tests. In
addition, the TSS can receive system’s specification of
WAuT as input and generate TAL accordingly. The WAuTCP
is statically analyzed and represented as genetic program
[9][12][13]. EP engine evolves the genetic programs. The
CEP engine of TSS evolves the test sets TAL′ . The evolved
programs in each generation are subjected to tests in TAL′ , by
TCSS in collaboration with TCCS. During test execution,
TCSS intercepts and forwards dynamic query to PTAVD for
parse tree analysis, vulnerability detection, and functional
correctness verification. Result of analysis is sent to EP
engine for program’s fitness evaluation, sent to CEP engine
for test’s fitness evaluation, and used to update “attacks db”
accordingly. These fitness evaluations guide the evolution
process to an optimal solution, i.e., V-freeWACP.

At each generation of programs, the operation of
mutation, selection and reproduction is performed. Mutation
applies the auto-generated fix to evolved programs. The
auto-fix is generated by the fix generator module of
StatFEP, with reference to information in “attacks db” and
results of WAuTCP static analysis. Tournament is used to
select programs with lowest fitness as parents. Single parent
reproduction is employed to produce offspring [12]. Parents
and offspring are combined to produce next generation. The
optimal solution is found if an individual program has
fitness of zero.

On the other hand, at each generation of test sets, only
selection and reproduction is performed. Tournament is
used to select test sets with highest fitness as parents. New
test sets are randomly selected from test sets’ search space
to serve as offspring. Parents and offspring are combined to
produce next generation of test sets.

C. Fitness Evaluation
1) Fitness of program: For easy reference in

expressions, let WAuTCP be denoted by Por, individual
genetic program be denoted by P, and population of
programs, consisting of n individuals P1, P2, …, Pn, be
denoted by Ppop.

Fitness of P is evaluated based on semantic difference
and syntax difference [9][28]. Semantic difference is a
measure of how vulnerable, and how functionally incorrect,
P is. Thus, we minimize semantic difference to ensure
invulnerable and correct solution. On the other hand, syntax
difference is a measure of how much P differs from Por
syntactically and structurally. Thus, we minimize syntax
difference to ensure solution that respects the structure of
Por.
Definition 1: Given Qd as the intercepted dynamic query
generated by running P with a test set 𝑡 𝜖 TAL′ , Qb as the
same query generated from benign input, Syn(Q) as the
syntax tree of query Q, and TAL′ (𝑃) as the set of assertions

223Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 245 / 679

(consisting of pairs (𝑄𝑑 ,𝑄𝑏)) after execution of P on all test
sets 𝑡 𝜖 TAL′ , the semantic difference of P is defined as
follows:

𝑓𝑠𝑒𝑚(𝑃) = ∑ 𝑎𝑠𝑡𝑃𝑇(𝑄𝑑 ,𝑄𝑏)(𝑄𝑑 ,𝑄𝑏) 𝜖 TAL

′ (𝑃) (1)

Where, 𝑎𝑠𝑡𝑃𝑇(𝑄𝑑 ,𝑄𝑏) = �0 𝑆𝑦𝑛(𝑄𝑑) = 𝑆𝑦𝑛(𝑄𝑏)
1 𝑆𝑦𝑛(𝑄𝑑) ≠ 𝑆𝑦𝑛(𝑄𝑏)

Definition II: Given 𝑁(Por) as the number of nodes in
syntax tree of Por, 𝑁(𝑃) as the number of nodes in syntax
tree of P, and 𝛿 as the allowable safe nodes difference, the
syntax difference of P is defined as follows:

𝑓𝑠𝑦𝑛(𝑃)

= �
𝑁(𝑃) − 𝑁(𝑃𝑜𝑟) − 𝛿 𝑖𝑓 𝑁(𝑃) > 𝑁(𝑃𝑜𝑟) + 𝛿
𝑁(𝑃𝑜𝑟) − 𝑁(𝑃) − 𝛿 𝑖𝑓 𝑁(𝑃) < 𝑁(𝑃𝑜𝑟) − 𝛿
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

Equations 1 and 2 are combined to define the fitness

function of P. The goal is to minimize the fitness function.

𝑓(𝑃) = 𝑓𝑠𝑒𝑚(𝑃) + 𝑓𝑠𝑦𝑛(𝑃) (3)

2) Test sets fitness function: The test sets 𝑇𝐴𝐿′ is consist
of test attacks and legitimate input tests. The fitness of test
attack is evaluated based on its ability to break P, while the
fitness of legitimate input test is evaluated based on its
ability to fail P. We define an expression that evaluates the
fitness of any test set 𝑡 𝜖 𝑇𝐴𝐿′ , where t can be a test attack or
legitimate input test. The goal is to maximize fitness of t.

Definition II1: Given 𝑄𝑃𝑖(𝑡) as the intercepted dynamic
query generated by running Pi with test set 𝑡 𝜖 TAL′ , Qb as
the same query generated from benign input, Syn(Q) as the
syntax tree of query Q, and 𝑃𝑝𝑜𝑝(𝑡) as the set of assertions
(consisting of pairs �𝑄𝑃𝑖(𝑡),𝑄𝑏�) after execution of all
individuals 𝑃𝑖 𝜖 𝑃𝑝𝑜𝑝 with test set 𝑡 𝜖 TAL′ , the fitness of t is
defined as follows:

𝑓(𝑡) = ∑ 𝑎𝑠𝑡𝑃𝑇�𝑄𝑃𝑖(𝑡),𝑄𝑏�𝑃𝑖 𝜖 𝑃𝑝𝑜𝑝 (4)

Where, 𝑎𝑠𝑡𝑃𝑇�𝑄𝑃𝑖(𝑡),𝑄𝑏� = �
0 𝑆𝑦𝑛(𝑄𝑃𝑖(𝑡)) = 𝑆𝑦𝑛(𝑄𝑏)
1 𝑆𝑦𝑛(𝑄𝑃𝑖(𝑡)) ≠ 𝑆𝑦𝑛(𝑄𝑏)

IV. DISCUSSION
The fitness of program is evaluated based on its ability

to defend attacks and pass legitimate inputs. The
evolutionary operation of mutation is applied to make actual
source code modifications. For simplicity, we seed the
population of first generation of the genetic programs with
many duplicate copies of WAuTCP. This is because we
assume that WAuTCP is both structurally, semantically and
syntactically near V-freeWACP, considering the famous
assumption that, software developers do not write programs

at random [25]. The problem that we may encounter with
this kind of seeding is lack of diversity in the first
generation [12]. However, we can easily resolve this
problem and achieve the required diversity by randomly
applying the evolutionary operation of mutation to all
members of the first generation.

 Though our framework seems simple, unfortunately, the
task of evolving vulnerabilities-free program is not an easy
one. For instance, as a result of mutation operations the EP
may evolve a too short program or too large program
compared to the WAuTCP. This situation is not always
trivial. Moreover, since we assumed that WAuTCP is
structurally and syntactically near the optimal solution, we
don’t want to have a solution that is too different
(structurally and syntactically) from WAuTCP, because it
might not be easily understood and maintained by the
developer. This problem is handled by adding program size
parameter to our fitness function (equation 2). We penalize
too short or too large program, thereby minimizing
structural and syntactic difference between WAuTCP and the
optimal solution.

Another problem that may be induced by EP mutation is
degradation of functional properties of the WAuTCP due to
effects of source code modifications. This could, invariably,
impair the correctness of resulting solution. Fortunately, the
formulation of our semantic difference (equation 1) and
composition of test sets TAL can effectively take care of the
situation. During program’s fitness evaluation, the test
attacks in TAL tries to expose residual vulnerabilities, while
the legitimate test inputs in TAL tries to re-affirm functional
correctness. This way, the correctness of resulting optimal
solution is guaranteed.

An important factor that directly affects the reliability of
the optimal solution produced by the framework is the
quality of the test sets TAL in terms of effectiveness and
precision in revealing all residual vulnerabilities in, and re-
affirming functional correctness of, WAuTCP. The
emergence of V-freeWACP that is able to defend all test
attacks and pass all legitimate input tests in TAL may not
guarantee 100% vulnerabilities-free and functionally correct
web application. This is true if the quality of the test sets
TAL is poor. One way we can tackle this problem and
improve the quality of the test is to have large set of TAL
comprising of many diverse tests that target wide range of
possible vulnerabilities and functional correctness.
Obviously, this approach is very likely to reveal all
vulnerabilities in WAuTCP, while maintaining its functional
correctness. Unfortunately, using large set of TAL will
induce very high computational cost of fitness evaluation.

A more feasible approach is to employ a co-evolutionary
mechanism in which population (of reasonable number) of
test sets TAL′ (consisting of test attacks and legitimate input
tests) is co-evolved along with every generation of the
programs. To achieve this, the TSS component of the
framework adopted the very large set TAL as a test sets’
search space from which generations of TAL′ are evolved
using customized EP (CEP engine module). At each
generation of test sets TAL′ , fitness of individual test attack is
evaluated based on its ability to break programs while

224Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 246 / 679

fitness of legitimate input test is evaluated based on its
ability to fail programs. A test attack that breaks more
programs is ranked more fit. A legitimate input test that fails
more programs is ranked more fit. Fitness of both test attack
and legitimate input test is evaluated using the same fitness
function (equation 4). The idea is that, when test attack
breaks a program, then the program is vulnerable, and when
legitimate input test fails a program, then the program is
functionally incorrect. Thus, we seek to maximize the
fitness function of TAL′ . This approach will create
competitive co-evolution between population of programs
and population of test sets similar to what happens in nature
between preys and predators, such as Antelopes and Tigers,
in which an Antelope (prey) is rewarded for its ability to
escape Tiger’s hunt (predator), whereas a Tiger (predator) is
rewarded for its ability to catch an Antelope (prey). In our
co-evolutionary scenario, the programs are the preys while
the test sets TAL′ are the predators. Thus, an evolved program
is rewarded for defending against tests’ hunting while a test
is rewarded for being able to break or fail programs. As the
co-evolutionary process go through generations, the
population of test sets will go (hunting) after population of
programs, while the population of programs try to survive
by means of fitness, reproduction and mutation.

Although the co-evolutionary process can lead to
emergence of highly reliable V-freeWACP, along the way,
the process may suffer from problem of mediocre stable
state and loss of gradient [26], which can occur when both
population of preys and predators seem to positively evolve
at each generation in an infinite circular pattern without any
real improvement. This happens if the fitness evaluation of
members of the co-evolving populations (programs and
tests) is done without remembering what happened in
previous generations. Fortunately, we can adopt Archives
technique [26] to handle this problem. At each generation
some individuals of programs and tests are stored into “prog
fitness db” and “TAL fitness db” respectively. The fitness of
current generation is then based on interaction with the old
individuals in the Archive, thus enabling the co-
evolutionary process to remember history of past
generations.

V. CONCLUSION AND FUTURE WORK
In addressing the problem of resolving web application’s

attacks and exploitations, this paper proposed a novel
framework for automating vulnerabilities fixing for web
application. The current techniques proposed in the
literature are only capable of automating vulnerabilities
detection and fix-generation while leaving the task of actual
vulnerabilities fixing predominantly manual. We combine
ideas of software testing, parse tree analysis, and
evolutionary computing in a novel framework to achieve
complete automation of the task. We have also shown how
reliability of the resulting vulnerabilities-free web
application can be further enhanced through co-evolution.
The novel framework incorporates functional testing to
guarantee correctness of the resulting optimal solution. As
we progresses in this on-going research, we are optimistic in
revealing and reporting very useful contributions toward

automating vulnerabilities fixing, as well as advances in the
field of software engineering.

Obviously, research on complete automation of
vulnerabilities fixing for web application is at very
preliminary stage for two reasons. First, to the best of our
knowledge, this paper is the first to address the task.
Second, the domain of web application’s vulnerabilities is
very large, broad and diverse [1][2][4][5]. Hence, there is
room for a lots of future research activities. At the moment,
we are planning the following:

A. Because the domain of web application vulnerabilities is
very large, broad and diverse, we intend to scope our
research to case study of SQL Injection vulnerabilities
(SQLIVs). Our scope is so chosen for obvious reasons.
First, SQLI has been the world’s most serious web
application security risk since 2004, as shown by OWASP
Top 10 project reports of 2004, 2007, 2010, and 2013 [4]
and CWE/SANS Top 25 Most Dangerous Software Errors
[5]. Second, we are quite optimistic that applying the
framework to successfully automate fixing SQLIVs,
through well planned and documented experiment, should
be sufficient to suggest the applicability of the framework
for fixing other web application vulnerabilities related to
source code.

B. We are planning to build our first prototype
implementation of the framework in Java programming
language to auto-fix vulnerabilities in web application
designed in Java Server Pages (JSP) with MySQL as the
backend database. The choice of JSP with MySQL backend
is due to the fact that, most web applications are built in
JSP, and MySQL database is, perhaps, the most widely used
database server for the web.

Our novel framework can be applied (with slight
modifications where necessary) to other research areas.

A. The framework can be used to automate fixing
vulnerabilities in other non-web based database systems,
such as Java database applications, which are equally liable
to SQL injection attacks [27].

B. The framework can be adapted to automate Networks
Vulnerabilities fixing through simulation. The idea is to
have real network under test (NuT) simulated and evolved
through generations. Fitness is then evaluated by subjecting
the simulated networks to test attacks TA.

Finally, we hope that our novel framework can benefit
research community and lead to further research activities.

AKNOWLEDGEMENT
We acknowledge efforts and contributions of various
authors whose work has benefited our research. We also
acknowledge that this research received support from the
Fundamental Research Grant Scheme
(FRGS/2/2013/ICT01/UPM/02/8) awarded by Malaysian
Ministry of Education to the Faculty of Computer Science
and Information Technology at Universiti Putra Malaysia.

225Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 247 / 679

REFERENCES
[1] D. Watson and U. K. H. Project, “Web application attacks,” Journal of

Network Security, vol. 2007, iss. 10, Oct. 2007, pp. 10–14,
doi:10.1016/S1353-4858(07)70094-6.

[2] D. Gollmann, “Securing web applications,” Information Security
Technical Report, ELSEVIER, vol. 13, no. 1, Jan. 2008, pp. 1–9,
doi:10.1016/j.istr.2008.02.002.

[3] A. Garg and S. Singh, “A review on web application security
vulnerabilities,” International Journal of Advanced Research in
Computer Science and Software Engineering, (IJARCSSE), vol. 3, no.
1, 2003, pp. 222–226.

[4] OWASP, "OWASP top 10 project,"
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
, [retrieved: May 2014].

[5] CWE, “CWE-SANS top 25 most dangerous software errors,” Common
Weakness Enumeration, Http://cwe.mitre.org/ top25/. (http://cwe.mitre.
Org/top25/), [retrieved: May 2014].

[6] J. M. Chen and C. L. Wu, "An automated vulnerability scanner for
injection attack based on injection point," Proc. IEEE International
Computer Symposium, IEEE Press, Tainan, Dec. 2010, pp. 113-118,
doi:10.1109/COMPSYM.2010.5685537.

[7] L. Luo, "Software testing techniques," Class Report for 17-939A,
Institute for Software Research International, Carnegie Mellon
University, USA. (http://mcahelpline.com/tutorials/testing/testing.pdf).

[8] J. Irena, “Software testing methods and techniques,” The IPSI BgD
Transactions on Internet Research, 2008, internetjournals.net.

[9] A. Arcuri, "Evolutionary repair of faulty software," Journal of Applied
Soft Computing, ELSEVIER, vol. 11, iss. 4, June. 2011, pp. 3494–
3514, doi:10.1016/j.asoc.2011.01.023.

[10] A. Arcuri, "On search based software evolution," Proc. IEEE 1st
International Symposium on Search Based Software Engineering, IEEE
Press, Windsor, May. 2009, pp. 39–42, doi:10.1109/SSBSE.2009.12.

[11] A. Arcuri, "On the automation of fixing software bugs," Proc. ACM
30th International Conference on Software Engineering, ACM,
Leipzig, Germany, May. 2008, pp. 1003-1006,
doi:10.1145/1370175.1370223.

[12] A. Abraham, "Evolutionary computation: from Genetic Algorithms to
Genetic Programming," in Genetic Systems Programming: Theory and
Experiences, Ecological Studies 185, N. Nedjah and A. Abraham,
Springer, 2005, pp. 1-20.

[13] R. G. S. ASTHANA, "Evolutionary Algorithms and Neural Networks,"
in Soft Computing and Intelligent Systems: Theory and Applications, A
volume in Academic Press Series in Engineering, N. K. Sinha, M. M.
Gupta and L. A. Zadeh, ELSEVIER Inc, 2000, pp. 111-136.

[14] J. Bau, E. Bursztein, D. Gupta and J. Mitchell, "State of the art:
automated black-box web application vulnerability testing," Proc.
IEEE Symp. Security and Privacy (SP), IEEE Press, Oakland, CA,
May. 2010, pp. 332-345, doi:10.1109/SP.2010.27.

[15] F. Dysart and M. Sherriff, "Automated fix generator for SQL injection
attacks," Proc. IEEE 19th International Symposium on Software
Reliability Engineering, (ISSRE), IEEE Press, Seattle, WA, Nov. 2008,
pp. 311-312, doi:10.1109/ISSRE.2008.44.

[16] Z. Djuric, “A black-box testing tool for detecting SQL injection
vulnerabilities,” Proc. IEEE Second International Conference on
Informatics and Applications, (ICIA), IEEE Press, Lodz, Sept. 2013,
pp. 216-221, doi:10.1109/ICoIA.2013.6650259.

[17] B. Qu, B. Liang, S. Jiang and C. Ye, "Design of automatic vulnerability
detection system for web application program," Proc. IEEE 4th
International Conference on Software Engineering and Service Science,
(ICSESS), IEEE Press, Beijing, May. 2013, pp. 89-92,
doi:10.1109/ICSESS.2013.6615262.

[18] G. Wassermann and Z. Su, "Static detection of Cross-Site Scripting
vulnerabilities," Proc. ACM/IEEE 30th International Conference on
Software Engineering, (ICSE), ACM/IEEE, Leipzig, May. 2008, pp.
171-180, doi:10.1145/1368088.1368112.

[19] A. Smirnov and T. Chiueh, "Automatic patch generation for Buffer

Overflow attacks," Proc. IEEE Third International Symposium on
Information Assurance and Security, (IAS), IEEE Press, Manchester,
Aug. 2007, pp. 165-170, doi:10.1109/IAS.2007.87.

[20] B. Eshete, A. Villafiorita, K. Weldemariam and M. Zulkernine,
"Confeagle: Automated analysis of Configuration vulnerabilities in web
applications," Proc. IEEE 7th International Conference on Software
Security and Reliability, (SERE), IEEE Press, Gaithersburg, MD, June.
2013, pp. 188-197, doi:10.1109/SERE.2013.30.

[21] F. Gauthier and E. Merlo, "Fast detection of Access Control
vulnerabilities in PHP applications," Proc. IEEE 19th Working
Conference on Reverse Engineering, (WCRE), IEEE Press, Kingston,
ON, Oct. 2012, pp. 247-256, doi:10.1109/WCRE.2012.34.

[22] D. Huluka and O. Popov, "Root cause analysis of Session Management
and Broken Authentication vulnerabilities," IEEE World Congress on
Internet Security, IEEE Press, Guelph, ON, June. 2012, pp. 82-86.

[23] Y. Zheng and X. Zhang, "Path sensitive static analysis of web
applications for remote code execution vulnerability detection," Proc.
IEEE 35th International Conference on Software Engineering, (ICSE),
IEEE Press, San Francisco, CA, May. 2013, pp. 652-661,
doi:10.1109/ICSE.2013.6606611.

[24] V. Felmetsger, L. Cavedon, C. Kruegel and G. Vigna, "Toward
automated detection of logic vulnerabilities in web applications," Proc.
ACM 19th USENIX conference on Security, ACM, Berkeley, CA,
USA, 2010, pp. 10-10.

[25] R. A. DeMillo, R. J. Lipton and F. Sayward, "Hints on test data
selection: help for the practicing programmer," Computer, vol. 11, iss.
4, IEEE Press, 2006, pp. 34–41, doi:10.1109/C-M.1978.218136.

[26] C. D. Rosin and R. K. Belew, "New methods for competitive
coevolution," in Evolutionary Computation, vol. 5, iss. 1, MIT Press
Cambridge, MA, USA, 1997, pp. 1-29.

[27] C. Zhou and P. Frankl, "JDAMA Java database application mutation
analyser," ACM Journal of Software Testing, Verification &
Reliability, vol. 21, iss. 3, Sept. 2011, pp. 241-263,
doi:10.1002/stvr.462.

[28] W. B. Langdon, M. Harman and Y. Jia, “Efficient multi-objective
higher order mutation testing with genetic programming,” ELSEVIER
Journal of Systems and Software, vol. 83, iss. 12, Dec. 2010, pp. 2416–
2430, doi:10.1016/j.jss.2010.07.027.

226Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 248 / 679

An Approach for Cross-Site Scripting Detection and Removal Based on Genetic

Algorithms

Isatou Hydara, Abu Bakar Md Sultan, Hazura Zulzalil, Novia Admodisastro

Dept. of Software Engineering and Information System

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

43400 UPM Serdang, Selangor, Malaysia

ishahydara@gmail.com, abakar@upm.edu.my, hazura@upm.edu.my, novia@upm.edu.my

Abstract – Software security vulnerabilities have led to many

successful attacks on applications, especially web applications,

on a daily basis. These attacks, including cross-site scripting,

have caused damages for both web site owners and users.

Cross-site scripting vulnerabilities are easy to exploit but

difficult to eliminate. Many solutions have been proposed for

their detection. However, the problem of cross-site scripting

vulnerabilities present in web applications still persists. In this

paper, we propose to explore an approach based on genetic

algorithms that will be able to detect and remove cross-site

scripting vulnerabilities from the source code before an

application is deployed. The proposed approach is, so far, only

implemented and validated on Java-based Web applications,

although it can be implemented in other programming

languages with slight modifications. Initial evaluations have

indicated promising results.

Keywords-cross-site scripting; genetic algorithm; software

security; vulnerability detection; vulnerability removal.

I. INTRODUCTION

Security testing is becoming an important part of
software development due to the numerous attacks that
software applications encounter on a daily basis. Due to their
dynamic nature, i.e., the changing of their content in real-
time as a result of user input or of being reloaded, web
applications are the most exposed to security attacks, such as
cross-site scripting (XSS). Many research activities have
been conducted to address problems related to XSS
vulnerabilities since their discovery. Most of the approaches
focused on preventing XSS attacks [1][2][3][4] or detecting
XSS vulnerabilities [5][6][7][8] in web applications during
software security testing. Few research activities have
addressed their removal [9][10].

Software systems are usually deployed to the public with
unexpected security holes. This is mainly due to the short
time frame in which software are developed. Software
project managers do not cater for security issues in their
budgeting, scheduling and staffing their software
development projects. Despite the fact that attention on
software security is increasing, the progress on research for
great solutions is slow. Notwithstanding that research on
software security is very recent, effective solutions are in

high demand due to the importance of creating software that
is more secure and is less vulnerable to attacks.

In this paper, we propose a genetic algorithm-based
approach for the detection and removal of XSS
vulnerabilities in web applications. The rest of the paper is
organized as follows: Section II gives a background of XSS
and Genetic Algorithms. Section III reviews related research
conducted on the problems of XSS. In Section IV, we
describe our proposed approach and expected experimental
results. Section V concludes the paper.

II. BACKGROUND

A. Cross-Site Scripting

Cross-site scripting vulnerabilities are a security problem
that occurs in web applications. They are among the most
common and most serious security problems affecting web
applications [11][12]. They are a type of injection problems
[12] that enable malicious scripts to be injected into trusted
web sites. This is a result of a failure to validate input from
the web site users. What happens is either the web site fails
to neutralize the user input or it does it incorrectly [11], thus,
opening an avenue for a host of attacks.

Successful XSS can result in serious security violations
for both the web site and the user. An attacker can inject a
malicious code into where a web application accepts user
input, and if the input is not validated, the code can steal
cookies, transfer private information, hijack a user’s account,
manipulate the web content, cause denial of service, and
many other malicious activities [11][12].

Cross-site scripting attacks are of three types namely
reflected, stored and DOM (Document Object Model)-based
[11][12]. Reflected XSS is executed by the victim’s browser
and occurs when the victim provides input to the web site.
Stored XSS attacks store the malicious script in databases,
message forums, comments fields, etc. of the attacked server.
The malicious script is executed by visiting users thereby
passing their privileges to the attacker. Both reflected and
stored XSS vulnerabilities can be found on either client side
or server side codes. On the other hand, DOM-based XSS
vulnerabilities are found on the client side. Attackers are able
to collect sensitive or important information from the user’s
computer.

227Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 249 / 679

B. Genetic Algorithms

Genetic Algorithms (GAs) are a subset of Evolutionary
Algorithms (EAs), which are metaheuristic optimization
algorithms based on population and inspired by biology [13].
They employ natural evolution mechanisms, such as
mutation, crossover, natural selection, and survival of the
fittest [14] to find optimal solutions in a search space. GAs
are different from other EAs in that they have a crossover
(recombination) operation and use binary coding in bits or
bit-strings to represent a population [14].

Genetic algorithms have many capabilities; they have
been used in many areas of computer science, such as
software testing [15] and intrusion detection in network
security [16][17] and in many other fields as well. In our
proposed research, we believe similar techniques used in
intrusion detection can be employed in the detection of
cross-site scripting vulnerabilities in web applications.
Experimentation need to be carried out to investigate this
possibility.

Similarly, GAs can be used to generate source code with
proper encoding that will replace parts of a source that is
found to contain XSS vulnerabilities. For this part, similar
methods used in test case generation with genetic algorithms
in software testing can be employed.

Genetic algorithms have proven to be good solutions to
many software engineering problems, since their discovery.
Their successful use in software security testing [8][18][19]
and intrusion detection systems [16][17] gives us the hope
that they will be useful in detecting and removing XSS
security vulnerabilities in Java-based Web applications.

III. RELATED WORK

Avancini and Ceccato [19] investigated the integration of
taint analysis with genetic algorithms as an approach in
software security testing of web applications. Their method
showed some improvement in capturing XSS vulnerabilities
and using them as a test case in security testing. They also
implemented the integration of static taint analysis, genetic
algorithm and constraint solving to automatically generate
test cases that detect cross-site scripting vulnerabilities [18].
Their implementation focused only on reflected XSS in PHP
code. The results seem promising. However, the fitness
function of the genetic algorithm needs to be strengthened
and the model tested in a wider range of software systems.

Duchene et al. [8] proposed an approach that combined
model inference and evolutionary fuzzing to detect XSS
vulnerabilities. Their approach used model inference to
obtain a state model of the system under test and then used
genetic algorithm to generate test input sequences, which
enabled the detection of vulnerabilities. An explanation of
their technique indicated it would prove successful when
implemented on real world applications.

Lwin and Hee [10] proposed a solution that is able to
remove XSS vulnerability from web applications before they
can be exploited by hackers. The approach works in two
phases. First, it uses static analysis to identify potential XSS
vulnerabilities in application source codes. Secondly, it uses
pattern matching techniques to come up with appropriate

escaping mechanisms to prevent input values from causing
script execution.

Researchers have also proposed tools that address the
problem of XSS. BIXSAN [20] and L-WMxD [21] are two
examples of such tools developed to tackle the XSS problem.
BIXSAN filters out harmful HTML content and removes the
non-static tags in the HTML page. It has been tested on
many web browsers and shown to successfully prevent XSS
attacks. L-WMxD, on the other hand, works on Webmail
services to detect the presence of XSS vulnerabilities. The
tool has been tested on real-world Webmail applications with
some limitations and the results seem promising.

IV. PROPOSED APPROACH

The solution being proposed uses a genetic algorithm-
based approach in the detection and removal of XSS
vulnerabilities in Web applications. The proposed solution is
in three components. The first component involves
converting the source codes of the applications to be tested to
Control Flow Graphs (CFGs) using the White Box Testing
techniques, where each node will represent a statement and
each edge will represent the flow of data from node to node.
A static analysis tool, PMD [22], is used in this task. The
second component focuses on detecting the vulnerabilities in
the source codes whiles the third component concentrates on
their removal.

The main idea behind our approach is to formulate the
security testing for XSS vulnerabilities as a search
optimization problem. GAs have proved successful in the
generation of minimal number test cases to uncover as many
flows as possible in source codes [23]. In the same way, we
can use GAs to detect as many XSS vulnerabilities as
possible with a minimal number of test cases.

The main contributions of this work are:

 The detection of XSS vulnerabilities in the source
code of web applications using a GA approach

 The removal of detected XSS vulnerabilities from
the source code of web applications

 The automation of the XSS vulnerabilities detection
and removal approach

A. Taint Analysis

Taint analysis is a White Box testing technique that
tracks tainted or untainted status of variables throughout the
control flow of an application and determines if a sensitive
statement is used without validation [10][19][24]. For XSS
vulnerabilities, a tainted variable refers to inputs from user or
database, and print statements that append a string into a web
page.

To perform a complete analysis of an application source
code, we need to follow the White Box testing coverage
criteria, such as statement coverage, branch coverage, or path
coverage. We choose path coverage criterion because it
encompasses the previous two. However, it is generally
impossible to cover all paths of the source code in testing.
Therefore, we select a subset of the paths that interest us; the
vulnerable paths whose execution will reveal XSS
vulnerabilities. These are the paths where an input is
executed without validation.

228Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 250 / 679

B. The Genetic Algorithm

Basically, a genetic algorithm consists of the following
steps:

 Step 1: Create an initial population of candidate
solutions

 Step 2: Compute the fitness value of each candidate

 Step 3: Select all the candidates that have their
fitness values above or on a threshold

 Step 4: Make changes to each of the selected
candidates using genetic operators, e.g., crossover
and mutation

 Step 5: Repeat from step 2 until solution is reached
or exit criteria is met.

The above steps are converted into a pseudocode, as
shown in Figure 1 below.

Figure 1. Genetic Algorithm Pseudocode.

1) Representation
The most common form of representing or encoding

chromosomes in GA is using binary format. However, using
binary format in XSS vulnerabilities detection would be very
complex since the chromosomes represent patterns of real
strings that serve as inputs while testing. Therefore, we
decided to use natural numbers as the encoding scheme in
our GA.

2) Initial Population
The GA population refers to the set of possible solutions

for the problem to be solved. These possible solutions are
generally referred to as chromosomes. In this work, the
initial population is a set of test data that is generated
according to the path coverage criterion, as stated in Section
IV A. Since Gas deal with large search space, we will use a
large population size of at least 100. After the initial
population is selected, each individual chromosome is
evaluated for possible inclusion in the next generation based
on the fitness function.

3) Fitness Function
The fitness function is a measure of how good a

chromosome is at solving the problem under consideration.
So, a chromosome has a higher fitness value if it is closer to
solving the problem. For our work, the fitness function
evaluates the vulnerable paths that a test case needs to follow
in order to reveal the presence of XSS vulnerabilities. It
calculates the percentage of branches covered by an input
traversing a vulnerable path and assigns a value. For

example, if an input traverses all the branches of a vulnerable
path, it means it has covered 100% of the branches and is
assigned the value 1. If it traverses 70%, it is assigned the
value 0.7 and so on. Hence, our fitness function is

F(x) = ((Cpaths% + Diff) * XSSp%)/100.

F(x): the fitness for an individual chromosome
Cpath%: the percentage of branches covered
Diff: the difference between the traversed and the

targeted paths
XSSp%: the percentage of the XSS patterns file that the

GA uses to cover a test path

4) Selection
For each iteration of the GA, a sample of chromosomes is

selected for evaluation for possible inclusion in the next
generation. There are different selection techniques for GA
and in this work we choose the roulette wheel selection
technique. It is a popular technique whereby the probability
of selecting a chromosome for the next generation is
proportional to its fitness function value. Two chromosomes
(parents) are selected randomly based their fitness function
values and subjected to crossover and mutation methods in
order to produce new chromosomes (offspring) for the next
generation.

5) Crossover
In the crossover operation, as shown in Figure 2, two

chromosomes are combined to form other chromosomes in
the hope that the new ones will be better than the parent
chromosomes. We use uniform crossover whereby the parent
chromosomes contribute to the new offspring according to a
specific crossover probability. We use a probability of 0.5
for the crossover operation. This is to give a fifty percent
chance for half of the chromosomes to undergo changes
while the other half proceeds to the next generation without
undergoing any changes. This is because some chromosomes
may already contain good genes and need not be changed.

Figure 2. Crossover

Parent 2 Parent 1

Offspring

population = generate_random_population();

 for(T in vulnerable paths) {

 while(T not covered AND attempt < max_try) {

 selection = select(population);

 offspring = crossover(selection);

 population = mutate(offspring);

 attempt = atempt + 1;

 }

 }

229Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 251 / 679

6) Mutation
The mutation operator is performed on the offspring after

the crossover. It alters the chromosome values according to a
specific mutation probability. It helps to guarantee that the
entire search space is search, given enough time. It also helps
to restore lost information or add more information to the
population. A low mutation probability of 0.2 is used.

C. The cross-site scripting removal Stage

Once the XSS vulnerabilities are detected in the source
code, the removal stage begins. The OWASP's ESAPI
(Enterprise Security API) security mechanisms [25] are
followed to remove the detected XSS vulnerabilities. The
lines of code where the XSS vulnerabilities are located will
be identified. Then, we determine which of the ESAPI
escaping rules can be applied to replace those lines of code
without compromising their functionality. Finally, we
generate the secure codes of the escaping statements and put
them in place of the vulnerable statements, using these
ESAPI escaping rules:

 Rule#1: Use HTML entity escaping for the
untrusted data referenced in an HTML element, for
example,
<body><div>htmlEscape(untrusted_data)</div></bo
dy>, where ‘‘htmlEscape()’’ is the HTML entity
escaping method

 Rule#2: Use HTML attribute escaping for the
untrusted data referenced as a value of a typical
HTML attribute such as name and value, for
example, <input
value=‘htmlAttrEscape(untrusted_data)’>, where
‘‘htmlAttrEscape()’’ is the HTML attribute escaping
method

 Rule#3: Use JavaScript escaping for the untrusted
data referenced as a quoted data value in a
JavaScript block or an eventhandler, for example,
<bodyonload=‘‘x=‘javascriptEscape(untrusted_data)
’’’>, where ‘‘javascriptEscape()’’ is the JavaScript
escaping method

 Rule#4: Use CSS escaping for the untrusted data
referenced as a value of a property in a CSS style,
for example,<table style= ‘‘width:
cssEscape(untrusted_data)’’>, where ‘‘cssEscape()’’
is the CSS escaping method

 Rule#5: Use URL escaping for the untrusted data
referenced as a HTTP GET parameter value in a
URL, for example, <a
href=‘http://www.site.com?name=urlEscape(untrust
ed_data)’>, where ‘‘urlEscape()’’ is the URL
escaping method

 Figures 3 and 4 [10] present the encoding mechanism of
ESAPI.

Figure 3. A potentially vulnerable code.

Figure 4. Code secured with ESAPI security API.

230Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 252 / 679

D. Evaluation

The above approach is being implemented in a prototype
and will be evaluated for its effectiveness and performance.
The data needed for the experiments on this research will be
full source codes of Web applications. Source codes of
complete open-source Java-based large Web applications
will be used as experimentation data. These projects will be
collected mainly from the Source Forge site [26], as they are
freely available.

All development is being implemented with the Eclipse
IDE using the Java Programming Language. The JGAP (Java
Genetic Algorithm Package) engine [27] is integrated into
the Eclipse IDE as a library for the easy usage of its Genetic
Algorithm operators. Java-based static analysis tool, PMD, is
used to generate the CFG of the application files to be tested.

For this research, we used Java as the programming
language on which to test our approach. Although most of
the existing web sites are built with PHP, JavaScript and
other similar scripting languages, there are many web sites
built using Java Server Pages. These websites are also
exposed to the cross-site scripting problem. Besides, most of
the existing research works conducted on cross-site scripting
were implemented using languages other than Java; hence,
the focus on Java.

E. Expected Results

This research is expected to produce a new approach to
detecting and removing XSS vulnerabilities in Java-based
web applications. This approach will be an improvement
based on the combination of two previously proposed
approaches [10][19]. The first approach uses genetic
algorithms to detect reflected XSS vulnerabilities only but
does not remove them. The second approach is able to detect
and remove both reflected and stored XSS vulnerabilities
using pattern matching technique, but not DOM-based XSS.
By combining them, this research will be able to use an
enhanced genetic algorithm to detect and remove not only
the same vulnerabilities but also DOM-based XSS
vulnerabilities, which are not covered by both approaches. A
Java-based tool has been developed to automate this
approach. Furthermore, we expect this new approach to
benefit web application developers by enabling them to
easily test their source codes and get rid of many XSS
vulnerabilities before deployment of their systems. This in
turn will benefit any user who accesses such web systems by
protecting them from malicious attacks.

F. Limitations

The limitations of this work are listed below:
1. Since this work makes use of static analysis, it also

suffers its limitations. Therefore, the approach will
fail to detect XSS vulnerabilities whose paths cannot
be identified by static analysis in the source code.

2. The vulnerabilities removal module of the approach
uses the OWASP ESAPI's escaping API only.
Therefore, XSS vulnerabilities that are not defined in
the context of this API are out of the scope of this
work.

3. The approach is so far only implemented on Java
Server Pages Web applications. However, the
approach can be used with other programming
languages.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a genetic algorithm-based
approach for XSS detection and removal. Cross-site scripting
is a major security problem for web applications. It can lead
to account or web site hijacking, loss of private information,
and denial of service, all of which victimize the site users.
Our proposed approach is an improvement based on two
previously proposed approaches. It uses better and improved
GA operators to help in the detection and removal of XSS
vulnerabilities as well as including all the three types of
XSS. Our next step on this progressive work is to fully
evaluate and validate the proposed approach. A prototype
tool has been developed to automate this process.
Preliminary evaluation show promising results. We will
continue to test the approach on real world Web applications
and also improve the prototype tool. We expect our approach
to be able to detect and remove the majority of XSS
vulnerabilities, if not all, in real world Web applications.

ACKNOWLEDGMENT

This work was supported by the Malaysian Ministry of
Education under the Fundamental Research Grant Scheme
(FRGS 08-02-13-1368).

REFERENCES

[1] P. Sharma, R. Johari, and S. S. Sarma, “Integrated approach to
prevent SQL injection attack and reflected cross site scripting attack,”
Int. J. Syst. Assur. Eng. Manag., vol. 3, no. 4, Sep. 2012, pp. 343–
351.

[2] Y. Sun and D. He, “Model Checking for the Defense against Cross-
Site Scripting Attacks,” in 2012 International Conference on
Computer Science and Service System, 2012, pp. 2161–2164.

[3] M. Van Gundy and H. Chen, “Noncespaces: Using randomization to
defeat cross-site scripting attacks,” Comput. Secur., vol. 31, no. 4,
Jun. 2012, pp. 612–628.

[4] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, “Preventing
Input Validation Vulnerabilities in Web Applications through
Automated Type Analysis,” in 2012 IEEE 36th Annual Computer
Software and Applications Conference, 2012, pp. 233–243.

[5] G. Agosta, A. Barenghi, A. Parata, and G. Pelosi, “Automated
Security Analysis of Dynamic Web Applications through Symbolic
Code Execution,” in 2012 Ninth International COnference on
Information Technology - New Generations, 2012, pp. 189–194.

[6] H. Al-amro and E. El-qawasmeh, “Discovering Security
Vulnerabilities And Leaks In ASP . NET Websites,” in Cyber
Security, Cyber Warfare and Digital Forensic (CyberSec), 2012
International Conference on, 2012, pp. 329–333.

[7] S. Van-Acker, N. Nikiforakis, L. Desmet, W. Joosen, and F. Piessens,
“FlashOver : Automated Discovery of Cross-site Scripting
Vulnerabilities in Rich Internet Applications,” in ASIACCS ’12:
Proceedings of the 7th ACM Symposium on Information, Computer
and Communications Security, 2012, pp. 12–13.

[8] F. Duchene, R. Groz, S. Rawat, and J.-L. Richier, “XSS Vulnerability
Detection Using Model Inference Assisted Evolutionary Fuzzing,” in
2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, 2012, no. Itea 2, pp. 815–817.

231Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 253 / 679

[9] P. Bathia, B. R. Beerelli, and M. Laverdière, “Assisting Programmers
Resolving Vulnerabilities in Java Web Applications,” in CCIST
2011: Communications in Computer and Information Science, vol.
133, no. 1, 2011, pp. 268–279.

[10] L. K. Shar and H. B. K. Tan, “Automated removal of cross site
scripting vulnerabilities in web applications,” Inf. Softw. Technol.,
vol. 54, no. 5, May 2012, pp. 467–478.

[11] CWE, “CWE - CWE-79: Improper Neutralization of Input During
Web Page Generation (’Cross-site Scripting') (2.5),” The MITRE
Corporation. [Online]. Available:
http://cwe.mitre.org/data/definitions/79.html. [retrieved: April, 2014]

[12] OWASP, “Cross-site Scripting (XSS) - OWASP,” OWASP. [Online].
Available: https://www.owasp.org/index.php/Cross-
site_Scripting_(XSS). [retrieved: March, 2014]

[13] T. Weise, Global Optimization Algorithms – Theory and Application
–, 2nd Editio. 2009, p. 820.

[14] S. H. Aljahdali, A. S. Ghiduk, and M. El-Telbany, “The limitations of
genetic algorithms in software testing,” ACS/IEEE Int. Conf.
Comput. Syst. Appl. - AICCSA 2010, May 2010, pp. 1–7.

[15] P. R. Srivastava and T. Kim, “Application of Genetic Algorithm in
Software Testing,” Intenational J. Softw. Eng. Its Appl., vol. 3, no. 4,
Oct. 2009, pp. 87–96.

[16] Z. Banković, D. Stepanović, S. Bojanić, and O. Nieto-Taladriz,
“Improving network security using genetic algorithm approach,”
Comput. Electr. Eng., vol. 33, no. 5–6, Sep. 2007, pp. 438–451.

[17] A. B. . A. Al Islam, M. A. Azad, M. K. Alam, and M. S. Alam,
“Security Attack Detection using Genetic Algorithm (GA) in Policy
Based Network,” 2007 Int. Conf. Inf. Commun. Technol., Mar. 2007,
pp. 341–347.

[18] A. Avancini and M. Ceccato, “Security Testing of Web Applications:
A Search-Based Approach for Cross-Site Scripting Vulnerabilities,”
in 2011 IEEE 11th International Working Conference on Source Code
Analysis and Manipulation, 2011, pp. 85–94.

[19] A. Avancini, F. Bruno, and K. Irst, “Towards Security Testing with
Taint Analysis and Genetic Algorithms,” in ICSE Workshop on
Software Engineering for Secure Systems, 2010, no. Section 5, May
2010, pp. 65–71.

[20] S. V. Chandra and S. Selvakumar, “Bixsan: Browser Independent
XSS Sanitizer for prevention of XSS attacks,” ACM SIGSOFT
Softw. Eng. Notes, vol. 36, no. 5, Sep. 2011, pp. 1–7.

[21] Z. Tang, H. Zhu, Z. Cao, and S. Zhao, “L-WMxD: Lexical based
Webmail XSS Discoverer,” in 2011 IEEE Conference on Computer
Communications Workshops INFOCOM WKSHPS, 2011, pp. 976–
981.

[22] PMD, “PMD: Source Code Analyzer.” [Online]. Available:
http://pmd.sourceforge.net/. [retrieved: August, 2014]

[23] D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, A. Watkins, and I. P.
Management, “Breeding Software Test Cases with Genetic
Algorithms,” in 36th Hawaii International Conference on System
Sciences, Jan. 2002, pp. 1-10.

[24] B. Shuai, M. Li, H. Li, Q. Zhang, and C. Tang, “Software
vulnerability detection using genetic algorithm and dynamic taint
analysis,” 2013 3rd Int. Conf. Consum. Electron. Commun.
Networks, Nov. 2013, pp. 589–593.

[25] OWASP, “XSS (Cross Site Scripting) Prevention Cheat Sheet,”
OWASP. [Online]. Available:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prev
ention_Cheat_Sheet. [retrieved: April, 2014]

[26] Sourceforge Community. [Online]. Available: sourceforge.net.
[retrieved: September 2014]

[27] JGAP, “JGAP: Java Genetic Algorithms Package,” 2014. [Online].
Available: http://jgap.sourceforge.net/. [retrieved: August, 2014]

232Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 254 / 679

Safety Patterns in Model-Driven Development

Timo Vepsäläinen, Seppo Kuikka
Tampere University of Technology

Dept. of Automation Science and Engineering
Tampere, Finland

{timo.vepsalainen, seppo.kuikka}@tut.fi

Abstract— Design patterns capture named solutions to
recurring challenges in development work. With an
appropriate, non-restrictive tool support, design patterns could
also improve the documentation value of models in model-
driven development. This paper extends the design pattern
modeling approach of UML Automation Profile with safety-
related information and suggests the use of patterns in models
to document safety aspects. The modeling concepts are tool
supported. In the paper, the concepts are used for exporting
safety-related documentation. The documentation can be used
to guide the selection of development techniques as well as to
perform consistency checks with respect to safety integrity
levels that are required from modeled applications.

Keywords-Model-Driven Development; Design Pattern;
Safety.

I. INTRODUCTION
Design patterns document solutions to recurring

challenges in design and development work. As a concept,
design pattern was introduced in the work of Alexander
[1][2] related to building architectures. In software
development, design patterns began to gain popularity after
the publication of the Gang of Four (GoF) patterns [3] that
were targeted to object oriented software engineering.
Support for the use of patterns was also developed to Unified
Modeling Language (UML). Today, UML is the de-facto
software modeling language. With domain specific profiles,
UML is also the modeling basis of many Model-Driven
Development (MDD) approaches. However, the support for
design patterns in UML is still focused on describing
contents of UML Classes.

The idea of MDD is to use models as the primary
engineering artefacts during the development of software
systems. Models describe the systems and applications from
different points of view and on different abstraction levels. In
MDD, the development often starts from high abstraction
level models, e.g., Computation Independent Models (CIM)
as in Model Driven Architecture (MDA) [4]. Model
transformations are used between the models to ensure their
consistency and to produce refined models based on the
earlier ones. Models also document the developed systems.
However, in specific application domains the required
information content of documentation is governed by
regulations and standards, in addition to development needs.

Safety-related systems and applications constitute such a
domain. The development process of safety applications as
well as solutions and techniques to be used during the
process is governed by standards, e.g., IEC 61508 [5]. In
addition to using standard-compliant techniques, a developer
of such a system must be able to prove the compliance of it.
This is where the relevant documentation is needed.

The use of MDD to safety system development has been
suggested by few researchers and even less MDD has been
taken to industrial practice. The reason is not that safety
standards would not allow the use of MDD techniques.
Instead, for example “automatic software generation” is
recommended as an architecture design technique by IEC
61508 [5]. Possible explanations for the scarce use of MDD
techniques in the application area are, however, the strict
documentation requirements. It is possible that given the
strict requirements, MDD has not been seen to offer
possibilities to improve the efficiency of the development.

The purpose of this paper is to extend a design pattern
modeling approach of UML Automation Profile (UML AP)
[6] to safety patterns. Safety patterns are design patterns that
are applicable for safety-related systems and include
additional information related to safety. They can be used by
exporting documentation from models of the developed
systems in which the patterns are used. The documentation
generation is intended to facilitate development work by: 1)
supporting traceability between applicable safety solutions
and their use in systems, 2) enabling verification of safety
levels of patterns in comparison to required safety levels and
3) guiding the selections of techniques and solutions.

The rest of this paper is organized as follows. Section 2
reviews work related to design patterns and use of design
patterns in models and model-driven development. Section 3
recapitulates the recent pattern-related work that is extended
in the paper. Sections 4 and 5 present the safety-related
extensions to the pattern concepts and the developed tool
support, respectively. Before conclusions, Section 6
discusses the work and the relevance of safety aspects in
control system development in general.

II. RELATED WORK
Support for using design patterns in UML models is in

the language based on Collaboration and CollaborationUse
[7] concepts that are suitable for presenting patterns inside

233Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 255 / 679

UML Classes. The concepts have been developed along the
language itself from parameterized collaborations that were
utilized in, e.g., [8]. In addition to the standard approach,
however, many tool vendors have developed additional
pattern support in a more ad hoc manner. For example,
MagicDraw [9] enables the specification of model element
templates and copying the templates to models to instantiate
patterns. Without pointing out pattern instances, however,
the information on the occurrences is endangered to vanish.

To enable precise but practical use of patterns in UML,
France et al. [10] have developed a pattern modelling
approach using UML. Precise specification of pattern
solutions is seen to enable tool support for building solutions
from pattern specifications and for verification of the
presence of patterns in design. In the approach, an overall
pattern specification consists of a structural pattern
specification specifying the class diagram view of the
solution, and a set of interaction pattern specifications that
specify the interactions in the pattern solutions.

Approaches to apply and evolve design patterns to UML
models have also been developed with use of model
transformations [11][12][13][14] using
Query/View/Transformation (QVT) and Extensible
Stylesheet Language Transformations (XSLT) techniques.
Detection of design patterns in models, on the other hand,
has been studied for example with use difference calculation
[15], graph matching [16], graph similarity scoring [17], as
well as graph decomposition and graph isomorphism [18].

In the approach of the authors, the novelty is neither in
the approach to transform patterns into design nor in
detecting pattern instances. Instead, a starting point in the
work is that uses of patterns are design decisions that should
be deliberately documented by marking the patterns. On the
other hand, attention is paid to the questions how the pattern
markings could be used to produce documentation in general
and in safety-related application development in particular.

For safety-related systems, design patterns have been
specified, for example, related to redundancy. In [19],
Douglass presents 4 patterns to implement redundancy or
redundancy-like behavior so that a task is performed in
different channels or that another computing channel is used
to observe the behavior of the main channel. Also IEC 61508
[5] in the 6th part of it presents several M out of N solutions
in which the idea is to perform a calculation redundantly and
to use voting to acquire a reliable result for it.

In the tables of recommended techniques and measures
for software architecture design (annex A), IEC 61508 [5]
also refers to a wide range of solutions that already have
corresponding patterns in pattern literature. For example, the
standards suggest the use of (different kinds of) redundancy
[19], backward recovery (from faults) [20][21] and cyclic
program execution [19]. Another example on use of patterns
in the domain is related to documenting recurring arguments
of safety cases in order to systematically collect and gain
benefit from arguments of previous projects [22].

MDD of safety systems has been studied in the DECOS
project [23] that is targeted to development of both critical
and non-critical functions of embedded control systems. In
the approach, the preferred means for specifying application

functionality is Safety-Critical Application Development
Environment (SCADE) which is based on formally defined
data flow notation and enables simulation at model level and
code generation.

UML based modelling and development of safety
applications has also been facilitated with UML profiling
techniques. In [24] the approach is based on extracting key
concepts of a safety standard, RTCA DO-178B, to
stereotypes with which it is possible for software developers
to include safety-related concepts and properties in models.
It can be assumed that such models suit well also for the
purpose of producing documentation. However, we regard
the work presented in this paper as an important complement
to the approach. Whereas UML stereotypes are applied to
single modelling elements, with patterns it is possible to link
several elements in designs to patterns and roles of them.
This is needed in order to characterize how a number of
elements are used together to perform a task.

III. NEED FOR PATTERNS IN MDD
The key concept of MDD is to shift the development

efforts from written documents to models that are used
throughout the development process. For special purposes,
e.g., safety system development, it could be possible to
maintain separate documents. However, that would require
additional work and could significantly reduce the potential
to benefit from MDD. In a sense, it would also be against the
central idea in MDD. A more appropriate approach would be
to include the documentation in the models, in the first place.

A possible challenge in this objective is that models, in
general, tend to be more applicable for representing solutions
than rationale behind them. For example, many of the basic
concepts of UML are similar to concepts of object oriented
programming languages. UML models can be well used to
answer the question how to implement, e.g., a class or a
program. In the MDD context, it is even possible to generate
code from models to avoid the manual programming work.
However, information on why something has been designed
in the way it has, is often missing. This information could be
crucially important for, e.g., quality assurance and
maintenance purposes.

Design patterns are a possible solution to improve the
situation. Patterns document named, proven solutions that
are well-known among developers and suited for solving
recurring challenges and tasks. They are structured so that
they consist of named parts that have responsibilities in the
solutions. The solutions that patterns include may have
crucial advantages. The use of design patterns and pattern
instances in MDD and models could thus increase the value
of models significantly. Patterns could 1) indicate the use of
standard solutions in systems and specifications, 2) mark
potential challenges (that are treated with the patterns), 3)
make design more understandable (because of the use of the
known solutions) and 4) clarify the roles of model elements
in design, just to name a few benefits. In specific application
areas, e.g., safety system development, the use of patters
could even automate tasks and checks that are currently
performed manually.

234Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 256 / 679

A. Design Patterns in UML
In UML, pattern definitions and pattern instances are

defined with the Collaboration and CollaborationUse
concepts of the language, respectively. Similarly to the Class
concept, Collaboration extends the StructuredClassifier and
BehavioredClassifier concepts. A pattern definition is in the
language a set of cooperating participants that are Properties
of a Collaboration. In a similar manner Properties can be
owned by Classes. The features that are required from the
participants are defined by the Classifiers that are used as
types of the Properties. Graphically Collaborations can be
presented in composite structure diagrams in which
participants of a pattern are connected with Connectors.

A CollaborationUse represents an application of a pattern
to another Classifier (Class). The CollaborationUse must be
owned by the Class to the contents of which it (the pattern) is
applied. Properties of the applying Class can be bound to the
roles of the Collaboration with Dependencies. The entities
playing the roles must be owned by the same Class instance
that owns the CollaborationUse. In short, with the UML
pattern concepts, patterns are seen to describe contents of
Classifiers.

Pattern literature of today, however, is not restricted to
contents of UML Classifiers only. For example, many well-
known patterns such as the Layers pattern [25] (and many
other architectural patterns) are intended to clarify the
division of systems to, e.g., Components or Packages.
However, marking the occurrence of such patterns may not
be possible with the UML concepts. This is because
Packages are not Properties or necessarily owned by Classes.
With application domain specific extensions, the support for
patterns in UML becomes even more constraining. In order
to benefit from the use of patterns in MDD, a new approach
to define and mark patterns in models is required. The
approach should restrict neither the types of elements that
play roles in patterns nor the types of elements to contents of
which patterns can be applied.

B. The New Pattern Approach
The developed pattern modelling approach [6] uses a set

of concepts that have been developed for defining patterns
and marking pattern instances in models. In the approach,
pattern instances are not owned by Classes but Packages that
are used in models in any case. The elements playing pattern
specific roles in pattern instances can be any direct or
indirect contents of the Packages and instances of any
metaclass, instead of Properties only. Pattern definitions
include textual properties that are essential information
content in patterns. Lastly, the element roles in pattern
definitions are separated from the template elements that are
used in automating the application of patterns.

The approach is tool-supported including functions for
instantiating patterns, exporting statistics and traceability
information related to the use of patterns as well as for
visualizing patterns in diagrams [6]. Patterns are instantiated
to models with the use of a wizard that performs pattern
specific modifications to the models, according to user
selections. Markings of pattern instances are also created
automatically by the wizard.

Statistics and traceability information on patterns can be
exported to MS Excel files. Statistics include lists of design
patterns that are used in a model including the number of
instances for each pattern. Patterns are traced to Packages
with traceability matrices to indicate the patterns that are
used in each Package and vice versa. Visualizing patterns in
diagrams utilizes the Collaboration notation of UML and
presents pattern instances with dotted ellipses. Model
elements that play pattern specific roles in the instances are
connected to the ellipses with dotted lines. The tool support
for the use of patterns can be used in any UML, Systems
Modeling Language (SysML) or UML Automation Profile
(AP) models and diagrams in UML AP research tool [26].

IV. SAFETY PATTERN METAMODEL
With extensions to safety aspects, the purpose has been

to experiment how design patterns could specifically support
documentation of safety applications. Most importantly, the
extensions to the pattern modeling concepts, see Figure 1,
include a specific SafetyPattern. SafetyPatterns are design
patterns that have been identified to be related to safety. To
distinguish the concepts that are used for defining patterns
from those used to mark pattern instances, the Figure has
been divided to two parts. The new (in comparison to [6])
concepts are in the Figure high-lighted with grey color.

A SafetyPattern is, thus, a design pattern that has been
identified to be related to safety and that may have
recommendations for applications of different safety levels.
With safety systems, we refer to systems that perform safety
functions the correct operation of which is required to ensure
the safety of a controlled process. The safety levels in the
metamodel correspond to the 4 Safety Integrity Levels
(SILs) in IEC 61508 [5]. In general, a SIL determines the
probability of correct functioning of a safety function, SIL1
being the lowest and SIL4 being the highest level. For
traditional, e.g., electrical safety systems it is possible to
determine SILs statistically. However, due to the systematic
(vs. random) nature of software faults, the statistics approach
cannot be applied to software. For new software components
there would not even be statistics available. In IEC 61508,
this problem is solved by focusing on development
techniques and solutions the use of which are documented.
For each SIL and for each development phase, the standard
specifies a set of techniques that can be highly recommended
(HR), recommended (R) or non-recommended (NR) or with
non-specified recommendation (NS). The alternatives in the
Recommendation (enumeration) in the metamodel
correspond to these alternatives.

The purpose of the SafetyCatalogue concept is to collect
together (from various pattern sources) related
SafetyPatterns. Catalogues contain patterns that should be
used together and to which sets of patterns that are used in
models can be compared. Patterns in a catalogue can be
related to, e.g., a phase in development or a specific purpose.
For example, IEC 61508 [5] includes lists of techniques to be
used during specific software development phases. For
software architecture design, for instance, the standard
mentions 27 techniques and/or measures, some of which are
non-recommended or alternatives to each other.

235Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 257 / 679

Relations between Patterns can be modeled with the
PatternRelation concept that has been extended with a
Specialization relation. The background of the new
(specialization) relation is an observation that many solutions
(such as redundancy) that are recommended by safety
standards actually have families of related, specialized
pattern versions in pattern literature. With the Specialization
relation, the purpose is to enable the use of general
SafetyPatterns in SafetyCatalogues but in such a way that
patterns specializing the general patterns can be considered
as their alternatives.

Figure 1. The new concepts for defining and using safety patterns.

The modeling concepts have been implemented to UML
AP Tool [26]. With the implementation, the purpose has
been to demonstrate how the concepts can be used to
generate safety-related documentation. The implementation
of the concepts uses Eclipse Modeling Framework (EMF) as
a meta-modeling framework, with which the new concepts
have been defined by extending the existing UML AP
modeling concepts. The developed documentation
generation extends the work presented in [6] and [27] that
already addresses, e.g., traceability of requirements.

V. FOR GUIDANCE AND DOCUMENTATION
In this Section, we present three example documentation

sheets. The generation of the sheets has been automated with
use of the concepts. In addition to discussing how the sheets

can be used, the following sub-Sections will briefly describe
how the sheets are compiled from models.

The first of the sheets to be presented was created based
on a SafetyCatalogue that had been defined to correspond to
recommendations of IEC 61508 to software architecture
design. The latter two example sheets compare a set of
SafetyPatterns that is used in an example model to another
SafetyCatalogue. The generation of the sheets relies on
patterns that have been identified to be related to safety and
that include recommendations for the different levels of
safety.

A. Safety Catalogue Sheet
The purpose of the Safety Catalogue sheet is to enable

illustrating SafetyCatalogues in a tabular form that is similar
to the form of recommendation tables of IEC 61508 [5]
(annex A of part 3 of the standard). On one hand, the sheet
has been developed to facilitate the development of
SafetyCatalogues, including checks of their conformance to
standards. The tabular presentation can be used also during
development to look for possible patterns or solutions that
should be applied during specific design phases.

In addition to recommendations of safety standards, the
sheet enables illustrating custom catalogues of SafetyPatterns
for which there may not be standard recommendations.
Nevertheless, such patterns may provide solutions to similar
problems and be alternatives to each other. On the other
hand, it may be meaningful to represent in which order such
patterns should be applied so that composing pattern
catalogues with next and alternative relations can be useful.

The Safety Catalogue sheet is compiled as follows.
PatternApplications of an exported model are iterated
through to find all SafetyPatterns that are used in the model.
The SafetyPatterns are iterated through to find the
SafetyCatalogues in which they appear. The list of the
catalogues is provided to the user of the tool. The selected
catalogues are printed to separate tables starting from their
first patterns that are assigned number 1 in the tables. Next
and alternative SafetyPatterns can be found with use of the
PatternRelations. Alternatives are in the tables assigned same
numbers but different letters, to indicate them being
alternatives to each other. Recommendations of the
SafetyPatterns to SILs are printed to the tables.

Figure 2. An example generated Safety Catalogue sheet.

236Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 258 / 679

An example Safety Catalogue sheet can be seen in Figure
2 that presents a part of a printout of a catalogue of
techniques or measures that IEC 61508 recommends for
software architecture design. In the table, patterns can be
highly recommended (HR), recommended (R) or non-
recommended (NR) or with non-specified recommendation
(NS). To avoid repeating a table of the standard, the table
includes only 15 techniques that have been modeled as
patterns. By looking at the table, however, it also becomes
clear that pattern literature already includes specialized
versions of many of the techniques, for example to
implement redundancy [19].

B. Safety Catalogue Conformability Sheet
Whereas the purpose of the Safety Catalogue sheet is to

enable presenting catalogues of SafetyPatterns, the purpose
of Safety Catalogue Conformability sheets is to present how
a set of SafetyPatterns (that are used in a model) conforms to
a SafetyCatalogue. Similarly to the previous sheet, the
conformability sheet serves both the guidance and
documentation purposes. In addition, the table presents to
which SILs the set of SafetyPatterns would be applicable.

The sheet is compiled as follows. In a similar manner
than in the case of the previous sheet, the SafetyCatalogues
related to the model are collected to a list from which the
user may select the desired ones. General structure of the
sheet is similar to the previous sheet. However, the
SafetyPatterns of the catalogue that are used in the model are
indicated with light grey color. In addition, the table presents
whether the set of (used) patterns is compatible with each
SIL. Compatibility of the used patterns is illustrated with
green color and incompatibility with red color.
Incompatibility can result from both using a non-
recommended pattern or not-using a recommended (or
highly recommended) technique or any of its alternatives.

The last two rows of the table also present the numbers of
patterns (excluding alternatives) that would be recommended
for each SIL and how many of them have been actually
applied. As such, the table also answers the question how
many techniques (more) should be applied in order to
conform to the catalogue for each SIL.

Figure 3. An example generated Safety Catalogue Conformability sheet.

An example Safety Catalogue Conformability sheet can
be found in Figure 3. It presents the conformability of
SafetyPatterns used in an example model to the software
safety requirement specification techniques of IEC 61508 [5]
that have been modeled as a SafetyCatalogue. According to
the table (grey highlighting), it can be seen that a semi-
formal modeling technique has been used, the software

safety requirements specification supports both backward
and forward traceability and that computer-aided
specification tools have been used. The table also illustrates
(with green color) that these choices are applicable to all
SILs. In addition to the techniques used, it is not necessary to
use any other technique (for requirements specification).

C. Safety Pattern Traceability Sheet
While patterns can have recommendations for different

levels of safety, it is also possible to check their conformance
to safety levels required from the safety functions. The
purpose of the safety pattern traceability sheet is to trace
safety requirements (of UML AP) to Packages that contain
implementing design elements for the requirements and to
SafetyPatterns that are used in the Packages. In addition to
traceability, the table presents the safety levels (SIL) related
to the requirements, Packages as well as recommendations of
the Patterns for each level. Similarly to the previous sheet,
the use of recommended or highly recommended patterns is
indicated with green color whereas the use of non-
recommended patterns is warned with red color.

The sheet is compiled as follows. Safety-related (UML
AP) requirements and their respective safety integrity levels
are collected to a list. The Packages that contain
implementing design elements for the requirements are
identified based on TraceRelations (of UML AP). The
SafetyPatterns, instances of which can be found from the
Packages, are identified based on PatternApplications. The
traceability table is printed. In the table, traceability between
a requirement and a Package is presented with an arrow ().
SILs for the Packages are determined by finding the highest
SILs from the requirements that are traced to the Packages.
Traceability between a Package and a SafetyPattern used in
the Package is, again, presented with the arrow symbol.

Figure 4. An example generated Safety Pattern Traceability sheet.

An example Safety Pattern Traceability sheet can be
found in Figure 4. According to the table, it can be seen that
the example model contains 2 requirements of safety level
SIL1: P100 protection and P100IR. The former one (a
general safety function requirement) is traced to “Software
Safety Requirements” Package and the latter one to
“ControlStructures” Package. SILs required from the
Packages (their contents) come from the requirements, both

237Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 259 / 679

being SIL1. Moreover, the sheet presents that the use of
“Automatic software generation” has been marked in
ControlStructures Package and Semi-formal methods,
backward traceability, forward traceability as well as
computer aided specification tool in the Software Safety
Requirements Package. According to the table (color
coding), the techniques are recommended for the safety
integrity level (SIL1) required from the Packages.

VI. DISCUSSION
This paper has presented an approach to extend the

information content of design pattern concepts of UML AP
with safety aspects. The new concepts enable specifying the
applicability of SafetyPatterns, i.e., design patterns of safety
systems, to applications of different safety integrity levels. In
addition, SafetyPatterns can be collected to SafetyCatalogues
with which it is possible to model both recommendations of
safety standards and custom catalogues of SafetyPatterns.

To illustrate the use of the concepts, the paper has
presented 3 example documentation sheets. The sheets were
generated automatically based on a library model containing
two SafetyCatalogues and a model utilizing the patterns of
the catalogues. The first of the sheets presented one of the
catalogues. The other two sheets presented compliance of a
model (of a developed systems) to the other catalogue. The
new information content of SafetyPatterns was in the sheets
used for automating identification of safety-related patterns
and consistency checks with respect to safety levels. The
sheets, thus, documented rather the developed systems than
SafetyPatterns themselves. In the developed metamodel,
SafetyPatterns share most of their information content with
the design pattern modeling concepts that are used in [6].

The authors believe that the possibility to export
documentation from models is a future research topic within
MDD research. Moreover, it could improve the applicability
of the MDD techniques to safety system development. This
is because safety applications cannot be used in practice
without appropriate documentation. Without automated
support for producing documentation, it would have to be
produced manually. On the other hand, by automating even
part of the work, it would be possible to obtain additional,
MDD specific benefits in the application area.

When developing safety applications with MDD
techniques, the development process should be supported. A
tool should assist developers by pointing out the issues that
need to be addressed, by presenting the alternatives (when
appropriate) and by documenting the decisions for later use.
For example, the supported process could start from modeled
requirements that determine the required integrity levels. A
developer could select a SafetyCatalogue to be used to guide,
e.g., architecture design. Based on the selection and required
integrity levels, the tool could suggest patterns to be used. In
practice, this scenario could be supported with only a small
modification to the Safety Catalogue sheet, by hiding
inappropriate patterns based on required integrity levels.

Work that aims for guiding development work in MDD
has been previously carried out by the authors also based on
use of an Architecture Knowledge Management (AKM)
platform [28]. Use of an external tool, however, may lead to

redundant information. On the other hand, it is believed that
documentation and guidance support should be available for
both architectural and detailed design levels. Thus, it is
feasible to integrate the required support in one tool, which is
used throughout the MDD process.

A challenge in developing guidance for MDD is that
development processes, techniques and solutions vary
between companies and between controlled processes. The
approach presented in this paper could improve the situation.
Documentation sheets can be developed to support various
purposes and processes, not only the ones presented in this
article. In addition, by using, e.g., the SafetyCatalogue
concept, the generated sheets and their contents are also
dependent of the catalogues to the contents of which the
models are compared. Thus, to support another kind of a
development process or other techniques, one could specify
other catalogues to which the models would be compared.

The authors regard safety aspects important for also basic
control systems that are not critical. Safety is an issue that
should be taken into account in development of any control
system. Safety standards state their recommendations on
techniques, measures and solutions based on evidence on
their usefulness. It is likely that adopting selected techniques
and measures from safety system development, e.g.,
traceability could also improve the quality of basic control
systems. This could in turn improve the productivity of the
controlled processes at least in application domains in which
the development processes are not strictly governed.

On the other hand, considering selected aspects of safety
standards in development of basic control systems could
shorten the gap between the systems. Safety systems and
basic control systems are currently not only separated from
each other but also developed with different development
processes and tools and often by different teams. It is
possible that professionals are not even aware of the
practices in the other teams. Because the development of
safety systems is regulated by authorities, the only possibility
to shorten the gap would be to adopt suitable practices of
safety system development to basic control system
development.

VII. CONCLUSIONS
Design patterns document solutions and capture expert

knowledge to recurring challenges in design and
development work. On one hand, design patterns support the
re-use of design by preserving named, proven solutions to
recurring challenges. However, they can also increase the
documentation value of models that usually tend to present
design solutions rather than rationale behind the solutions.
With use of patterns, designs become easier to understand
and the roles of design elements clear for possible third
parties that use the documentation. Especially the use of
patterns could benefit MDD in which the idea is to use
models for both development and documentation purposes.

In this paper, a set of pattern modeling concepts was
presented that enable increasing the information content of
design patterns with applicability to safety integrity levels.
The new concepts enable constructing catalogues of safety-
related patterns with which it is possible to model

238Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 260 / 679

recommendations of safety standards. Automated functions
for generating documentation sheets enable the use of the
concepts for producing documentation. In addition to
presenting which patterns are used in a model, the sheets
present whether the models comply with the catalogues, e.g.,
recommendations of safety standards. The sheets can be used
also during development as guidance to present the standard-
compliant selections that still have to be addressed.

Ability to use models as documentation or to produce
documentation from models to a suitable form is a possible
key for industrial acceptance of MDD techniques in safety
system development. Without automated support, the
documentation would have to be produced manually. This
could significantly reduce the potential to benefit from
MDD. However, with documentation support, MDD would
provide another means to benefit from the use of models.

When developing safety applications with MDD
techniques, the development process should be supported
and guided in a flexible manner. Instead of only predefined
forms and checks, the presented documentation tables are
compiled with use of modelled SafetyCatalogues to which
models are compared. As such, the suggestions that the tool
can be considered to provide are also dependent on the
modelled catalogues. Tailoring the approach for different
application domains or development practices could thus be
possible to achieve with changes to the catalogues. While
acknowledging that the development concepts still require
further development, the authors regard this kind of
flexibility as an important feature in MDD tool support.

REFERENCES
[1] C. Alexander, S. Ishikawa, and M. Silverstein, "A pattern

language: towns, buildings, construction", Oxford University
Press, 1977.

[2] C. Alexander, "The timeless way of building", Oxford
University Press, 1979.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design
patterns: Elements of reusable object-oriented software",
Addison-Wesley, 1994.

[4] OMG, "Model Driven Architecture (MDA) Guide", Object
Management Group, 2003.

[5] IEC, "61508 functional safety of
electrical/electronic/programmable electronic safety-related
systems – Part 3: Software requirements", International
Electrotechnical Commission, 2010.

[6] T. Vepsäläinen and S. Kuikka, "Design pattern support for
model-driven development", in 9th International Conference
on Software Engineering and Applications, 2014. (in press)

[7] OMG, "Unified Modeling Language Specification 2.4.1:
SuperStructure", Object Management Group, 2011.

[8] G. Sunyé, A. Le Guennec, and J. Jézéquel, "Design patterns
application in UML", in Proc. of 14th European Conference
on Object-Oriented Programming, 2000, pp. 44-62.

[9] No Magic, Inc. MagicDraw, 2014. Available:
http://www.nomagic.com/products/magicdraw.html
[retrieved: 07, 2014]

[10] R. B. France, D. Kim, S. Ghosh, and E. Song, "A UML-based
pattern specification technique", IEEE Transactions On
Software Engineering, vol. 30, pp. 193-206, 2004.

[11] J. Dong, Y. Sheng, and K. Zhang, "A model transformation
approach for design pattern evolutions", in Proc. of 13th

Annual IEEE International Symposium and Workshop On
Engineering of Computer Based Systems, March 2006, pp.
80-92.

[12] P. Kajsa and L. Majtás, "Design patterns instantiation based
on semantics and model transformations", in SOFSEM 2010:
Theory and Practice of Computer Science, Springer, 2010, pp.
540-551.

[13] W. Xue-Bin, W. Quan-Yuan, W. Huai-Min, and S. Dian-Xi,
"Research and implementation of design pattern-oriented
model transformation", in 2nd International Multi-Conference
on Computing in the Global Information Technology, 2007.

[14] J. Dong and S. Yang, "QVT based model transformation for
design pattern evolutions", in Proc. of 10th IASTED
International Conference on Internet and Multimedia Systems
and Applications, 2006, pp 16-22.

[15] S. Wenzel and U. Kelter, "Model-driven design pattern
detection using difference calculation", in Proc. of 1st
International Workshop on Pattern Detection for Reverse
Engineering, October 2006.

[16] M. L. Bernardi, M. Cimitile, and G. A. Di Lucca, "A model-
driven graph-matching approach for design pattern detection",
in Proc. of 20th IEEE Working Conference on Reverse
Engineering, 2013, pp. 172-181.

[17] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis, "Design pattern detection using similarity scoring",
IEEE Transactions On Software Engineering, vol. 32, pp.
896-909, 2006.

[18] A. Pande, M. Gupta, and A. K. Tripathi, "A new approach for
detecting design patterns by graph decomposition and graph
isomorphism", in Proc. of 3rd International Conference on
Contemporary Computing, Springer, 2010, pp. 108-119.

[19] B. P. Douglass, Real-Time UML: Developing Efficient
Objects for Embedded Systems. Addison-Wesley, 1998.

[20] R. Hanmer, Patterns for Fault Tolerant Software. John Wiley
& Sons, 2013.

[21] T. Saridakis, "Design patterns for checkpoint-based rollback
recovery," in Proc. of 10th Conference on Pattern Languages
of Programs (PLoP), Spetember 2003.

[22] T. P. Kelly and J. A. McDermid, "Safety case construction
and reuse using patterns. in Proc. of 16th International
Conference on Computer Safety and Reliability, Springer,
1997, pp. 55-69.

[23] W. Herzner et al., "Model-based development of distributed
embedded real-time systems with the decos tool-chain," in
Proc. of 2007 SAE AeroTech Congress & Exhibition, 2007.

[24] G. Zoughbi, L. Briand, and Y. Labiche, "Modeling safety and
airworthiness (RTCA DO-178B) information: conceptual
model and UML profile", Software & Systems Modeling,
vol. 10, pp. 337-367, 2011.

[25] F. Buschmann, R. Meunier, H. Rohnert, P Sommerlad, and
M. Stal, “Pattern Oriented Software Architecture: A System
of Patterns”. John Wiley & Sons, 1996.

[26] T. Vepsäläinen, D. Hästbacka, and S. Kuikka, "Tool support
for the UML automation profile - for domain-specific
software development in manufacturing", in Proc. of 3rd
International Conference on Software Engineering Advances,
October 2008, pp. 43-50.

[27] T. Vepsäläinen and S. Kuikka, "Towards model-based
development of safety-related control applications", in the
16th IEEE International Conceference on Emerging
Technologies & Factory Automation, September 2011.

[28] T. Vepsäläinen, S. Kuikka, and V. Eloranta, "Software
architecture knowledge management for safety systems", in
the 17th IEEE International Conceference on Emerging
Technologies & Factory Automation, September 2012.

239Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 261 / 679

Test Data Generation Based on GUI: A Systematic Mapping

Rodrigo Funabashi Jorge
Faculdade de Computação

Universidade Federal de Mato Grosso do Sul
Campo Grande, MS, Brazil

Email: rodrigo.funabashi@ufms.br

Márcio Eduardo Delamaro
Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo
São Carlos, SP, Brazil

Email: delamaro@icmc.usp.br

Celso Gonçalves Camilo Junior
Instituto de Informática

Universidade Federal de Goiás
Goiânia, GO, Brazil

Email: celso@inf.ufg.br

Auri Marcelo Rizzo Vincenzi
Instituto de Informática

Universidade Federal de Goiás
Goiânia, GO, Brazil

Email: auri@inf.ufg.br

Abstract—For the general case, the complete automation of
test data generation is an undecidable problem, and many
researches employ meta-heuristics trying to find a reasonable
partial solution. System testing performed via Graphical User
Interface (GUI) imposes extra challenge for automation due to
hundreds and often thousands of possibilities of events that can
be generated. This work presents a study based on systematic
mapping aiming at identifying the state of the art and the state
of the practice on the automation of system testing carried out
via GUI. We employed the traditional protocol of mapping study
to support the data collection. The work was carried out from
6th February 2012 to 1st May 2013 resulting in the selection of
39 out of 598 primary studies obtained with the application of
the search strings. Some of these works used, besides functional
testing criteria, structural testing criteria to guide meta-heuristics.
In relation to meta-heuristics, the distribution of work was more
uniform, with a slight majority using Genetic Algorithms for test
data generation. There are few research groups working on this
subject. One particular author is responsible for authoring more
than 30% of the selected primary studies and can be considered a
reference in the generation of test data from GUI. Some research
problems identified are 1) the difficult to represent all the possible
GUI interactions without cause state explosion, 2) the need to
evaluate the techniques on large software products, and 3) the
complexity to automate the representation of the GUI interactions
by reducing the number of infeasible sequences of actions.

Keywords–Systematic Mapping Study; System Testing; Testing
through GUI; Automated Test Data Generation

I. INTRODUCTION

Modern software systems include various components that
interact with each other to perform tasks. The correct behavior
of these components is often verified by means of unit tests,
integration, system and acceptance. In unit testing, the goal is
to identify logic and implementation faults on each software
unit. Integration testing is a systematic technique to integrate
the software units in order to identify faults in the communica-
tion interface between them. The system test is performed after
the system integration and aims to ensure that the software
meets all functional, behaviour and performance requirements
described in the specification. Finally, acceptance testing aims
to verify whether the developed product meets the require-
ments specified by users [1]. Many of today’s applications
have a special component in the form of a Graphical User
Interface (GUI). The GUI is composed by a set of control
elements widgets, such as buttons, menu items and text boxes.

The graphical interface is often the only piece of software
which the user interacts. This way, it is necessary to test this
interface in order to ensure product quality through the creation
of test data in the form of input sequences. An input for a GUI
application is a sequence of actions, such as clicking a button
control or dragging and dropping GUI elements. It is observed
that, in general, this type of test is performed during system
and acceptance testing.

To generate a good set of test data, test designers should
make sure that this set covers all the features of the system
and, in the context of GUI also has exercised all possibilities
of interface events. However, the difficulty in performing this
task is twofold: to manage the domain size and to sequence
the actions.

Within the first problem, unlike a system with a command
line interface, a graphical user interface has many operations
that need to be tested. A relatively small program, such as
Microsoft WordPad has 325 possible GUI operations [2].
Therefore, the number of operations can easily be an order
of extremely high magnitude for more complex programs [3].

Regarding the second issue, some functionality of the
system can only be performed following a complex sequence
of GUI events. For example, to open a file the user must
enter the File menu and select the Open operation and then
use a dialog box to specify the file name and complete
the operation. Obviously, increasing the number of possible
operations increases the sequencing problem exponentially,
making it difficult to create test data manually.

Due to the difficulties related to the generation of test
data which run via GUI, this work focused on the collection
of primary studies in this context by applying a systematic
mapping to verify what is available in the literature on this
subject and which gaps can still be explored on further
researches. In Section II, an explanation about GUI test,
its features, limitations and related issues are presented. In
Section III describes the planning, conduction, and analysis of
the application of the systematic mapping. The conclusion is
presented in Section IV.

II. GUI TESTING

Graphical user interface is a type of interface that allows the
user to interact with digital devices through graphical elements
such as icons and other visual indicators, as opposed to the

240Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 262 / 679

command line interface. The interaction is usually done via
mouse or keyboard, on which the user is able to select symbols
and manipulate them in order to get some practical result.
These symbols are referred to widgets and are grouped into
kits.

In our context, the testing via GUI means to perform a
system or acceptance testing of a particular product to ensure
it meets its specifications. This is normally done by using a
range of test data.

To generate a good set of test data, designers should check
that this set covers all the features of the system and, in the
context of GUI also has exercised all possibilities of interface
events. However, there are some open problems related to GUI
testing [3]:

1) the huge amount of possible sequences from each
state, i.e., in every state there are many alternative
actions leading to an exceptionally large search do-
main. Furthermore, it is computationally expensive to
generate and evaluate sequences, since the software
needs to be started and all actions need to be per-
formed in sequence. This requires efficient algorithms
to explore the search space in an intelligent way to
find optimal test sequences;

2) related to the generation of inputs for applications that
explore button clicks and drag and drop operations
components:

a) map the GUI to determine the visible widgets
and their properties. For example, the posi-
tion of the components such as buttons and
menu items;

b) derive a set of permitted actions at each stage
of implementation. For example, a visible
button may be disabled and could not be
pressed; and

c) perform and record the test sequence making
it possible to repeat (play) it again later.

To deal with the nature of the problems mentioned, the
Artificial Intelligence is very applied, since these are optimiza-
tion problems. Thus, the research area called Search-based
Software Engineering (SBSE) has emerged, which deals with
the application of mathematical optimization techniques to
solve complex problems in the field of Software Engineering.
According to the Software Engineering by Automated Search
(SEBASE) website [4], that maintains a updated database
about SBSE, 52% of the publications on SBSE focus on testing
and debugging. This is due to the high cost of implementing
these activities, which in general can spend 50% of the devel-
opment cost [1]. Given this scenario a subarea of SBSE called
Search-Based Software Testing (SBST) was created, focusing
on the application of mathematical optimization techniques in
solving problems in the context of testing activity. Therefore,
the challenge is to automate the testing process as much
as possible, and the generation of test data is, of course,
an essential part of automation. Also according to the site
SEBASE, only 6% of works in this area belong to Brazil.

III. APPLICATION OF SYSTEMATIC MAPPING

Systematic mapping is a type of literature review [5], in
which it is conducted a broader review of primary studies to
identify researches evidences and gaps, directing the focus of

future systematic reviews, which tries to answer more specific
research questions [5]. The systematic mapping study provides
an overview of a research area, the amount, the type of
research conducted, the results are available, in addition to
the frequency of publications over time to identify trends [6].
There are many reasons for conducting a systematic mapping,
the most common being [7]:

• to summarize the existing evidence regarding treat-
ment or technology, for example, to summarize em-
pirical evidence of the benefits and limitations of a
specific method;

• to identify gaps in current research in order to suggest
future areas of research; and

• to provide an overview/subsidy for advancing knowl-
edge in new areas of research.

However, the mapping can also be used to examine the
extent to which the empirical evidence supports/contradicts
theoretical assumptions, or even to aid in the generation of
new hypotheses [5], being composed of the following steps:
planning, conducting and reporting [5].

A. Planning

The planning of this systematic mapping, which describes
the protocol that was established, was carried out from the
adaptation of the protocol model presented by Petersen et.
al. [6], that specifies the following elements [5]: research
questions, search strategy and implementation, criteria for
inclusion and exclusion, and data extraction and synthesis
methods.

Research questions define the scope of the mapping. They
guide the development of the remainder of the study and
should be set according to the motivations of the study [6].
The research questions (RQ) were elaborated in order to find
primary studies to understand and summarize evidences on the
adoption of techniques for automatic generation of test data
from GUI:

• RQ1: Do the techniques employed in GUI testing
intend to cover a specific test criterion?

• RQ1.1: What is the test criterion?

• RQ2: What are the heuristics, techniques, algorithms
or strategies used for automatic generation of test data
from GUI?

• RQ3: Do the techniques for automatic generation of
GUI test data require a data model that abstracts the
GUI to perform the test generation?

• RQ3.1: If need, is the model generated automatically
or manually?

• RQ4: What are the available tools and how do they
support the automatic generation of test data from the
GUI?

• RQ5: In what domain are automatically generating test
data based on GUI applied?

Systematic mapping is a kind of secondary study in Soft-
ware Engineering [8], identifying primary studies from several
sources (databases). These sources can be classified into two
main categories [8]: index engines and sites of editors. The
index engines work with several publishers publications. One

241Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 263 / 679

can cite SCOPUS as an example of index engines. The sites of
editors refer to databases of online literature supplied by the
editors to facilitate the recovery of the published literature. A
popular site of editors in computing is the IEEE. However, as
is the case of the ACM, some of these sources fall into two
categories. The bases chosen in this study are ACM, IEEE,
Science Direct, and SCOPUS, considered to be relatively
efficient in conducting systematic reviews and mappings in
the context of Software Engineering [9].

To build the search string, key concepts that wish to
investigate were selected. From this, the synonyms, related
terms and acronyms were identified. Related to the concept
“Graphical User Interface” were graphical user interface, GUI
e web application. For the concept “Automatic Test Data
Generation” were test data generation, test-data generation,
generating test data, generate test data, automated testing,
automation testing, and automation test.

Based on the above key concepts, the default search string
was built using the Boolean AND/OR connectors:

(“graphical user interface” OR “GUI” OR “web applica-
tion”) AND (“test data generation” OR “test-data genera-
tion” OR “generating test data” OR “generate test data” OR
“automated testing” OR “automation testing” OR “automa-
tion test”)

A total of 10 articles were selected [10]–[19]. These articles
have provided evidence that this search string is adequate, since
all these items were returned after the application of search
string in their respective bases.

To determine the relevancy of given primary study it must
satisfy any Inclusion Criteria (IC) on the other hand it will be
excluded by any Exclusion Criteria (EC). Our inclusion criteria
are:

• IC1: The study presents a case study or experience
report using techniques for generating test data from
GUI;

• IC2: The study presents an investigation of the tech-
nical features to generate test data from GUI;

• IC3: The study proposes methods for evaluating tech-
niques for generating test data from GUI;

• IC4: The study presents tools that use techniques to
generate test data from GUI.

Primary studies considering different domains or presenting
ideas in a vague way were excluded. To classify these studies
the following exclusion criteria were identified:

• EC1: The work is not related to any of the research
questions;

• EC2: The work was selected by another search string
applied the same basis, sometimes with the keywords
searched in the title, sometimes in the abstract. Thus,
on these bases, the same work can be retrieved twice.

• EC3: Lack of information about the work;

• EC4: The work has already been selected by another
source;

• EC5: The work is not in English language.

Based on the inclusion and exclusion criteria, three stages
were defined for the selection of works. The first was based on
the analysis of keywords, title and abstract to decide whether

the work may or may not be included. In the second stage, the
introduction and conclusion were considered for analysis and
third, the analysis was applied to the whole work.

For synthesis and extraction of data, some additional infor-
mation to the research questions were collected, such as: which
work focuses on web applications for generation of test data,
whom authored the selected works, and what is the relation
between the selected primary studies.

B. Conducting

After the protocol specification, we started to apply the
search strings on the selected databases. Observe that this
step requires, sometimes, and adaptation of the default search
string to satisfy specific constraints of a particular database
search engine. The complete set of search strings were omit-
ted for sake of space, but they can be found in [20]. The
application and adaptation of search strings happened from 8
to 11 October 2012, which returned all the control articles
previously mentioned in Section III-A. In Table I, one can get
the number of items returned for each search string in each
database. Columns ICn and ECn correspond to the inclusion
and exclusion criteria defined in Section III-A, respectively.
Numbers in these columns represent the total of primary
studies included or excluded from analysis based on that
specific inclusion or exclusion criterion.

Identification and selection of the work was performed in
three steps: reading the title, keywords and abstract; reading the
introduction and conclusion, and reading the whole paper. In
the first step, using the JabRef [21], each work was analyzed by
two experts applying the all the inclusion and some exclusion
criteria (EC1, EC2, and EC3), defined in Section III-A, thus
helping organizing and cataloging the works. This analysis
took place in the order of application of search strings, first
considering the ones applied on titles (ACM-1 and IEEE-1) and
subsequently the ones applied on abstracts (ACM-2 and IEEE-
2), resulting in 98 works for the inclusion criteria representing
16,39% of the total.

However redundant works between databases had not yet
been identified, that is, the exclusion criterion (EC4) had not
yet been applied. After the application of EC4 and reading the
introduction and conclusion (Step 2) the number of selected
papers was reduced to 59, corresponding to 9,87% of the total,
as shown in the summary presented in Table I. Observe that
there is no primary study written on language different than
English, therefore, the exclusion criterion EC5 was not applied.

In the final selection process, third stage, studies were
analyzed completely and thereafter 39 primary studies were
selected to compose the mapping, 6,52% of the 598 primary
studies initially selected. It is observed that this reduction rate
is consistent with other surveys in the area [6][22].

C. Analysis of the Results

Figure 1 presents the 39 selected primary studies organized
by year as a directed graph. The arrows indicate a given
primary study cite another one. Observe that from 1998 until
the date of application of search strings, the majority of studies
is concentrated in 2010, summing up 10 studies. However, the
only primary study identified in 2001 was cited by 15 other
works, and all studies from 2010 are referenced together by 8
other studies. Two studies that may be considered references

242Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 264 / 679

TABLE I. Results of the Second Analysis of the Primary Studies

Strings IC1 IC2 IC3 IC4 EC1 EC2 EC3 EC4 Total IC (%) Total EC (%) Total

ACM-1 21 3 1 2 87 0 1 0 27 (23,48%) 88 (76,52%) 115
ACM-2 2 0 0 0 7 15 0 0 2 (8,34%) 22 (91,66%) 24
IEEE-1 10 1 0 1 53 0 2 13 12 (15,00%) 68 (85,00%) 80
IEEE-2 1 0 0 0 5 19 0 1 1 (3,84%) 25 (96,16%) 26
SCIENCE 4 1 0 0 151 0 25 1 5 (2,75%) 177 (97,25%) 182
SCOPUS 11 0 1 0 134 0 1 24 12 (7,02%) 159 (92,13%) 171
AMOUNT 49 5 2 3 437 34 29 39 59 (9,87%) 539 (90,13%) 598

1 9 9 8

1 9 9 9

2 0 0 0

2 0 0 1

2 0 0 2

2 0 0 3

2 0 0 4

2 0 0 5

2 0 0 6

2 0 0 7

2 0 0 8

2 0 0 9

2 0 1 0

2 0 1 1

2 0 1 2

[24]

[16]

[25]

[26]

[27]

[18]

[28]

[19]

[14]

[29]

[30]

[31]

[32]

[15]

[33]

[34]

[35]

[36]

[12]

[23]

[37]

[38]

[8] [39]

[40]

[41]

[42]

[43][11] [44] [3]

[45]

[46]

[47]

[2]

[48]

[49]

[50]

[17]

Figure 1. Distribution and Citation Between the Primary Studies

are the one authored by White and Almezen [23] and the
one authored by Memon et. al. [2] with 11 and 15 citations
each, respectively. The 39 selected primary studies involved
74 different authors of 27 affiliations (institutions) distributed
in 13 countries. Most work within this context are authored
by the same authors. An example is Dr. Atif M. Memon with
participation, in approximately, 31% of the selected studies
and can be considered a reference in the generation of test
data from GUI. Highlight for the University of Maryland
in the USA, appearing as an institution and country with
more participation in the selected studies, 12 (30,8%) and 15
(38,5%), respectively.

Regarding the first research question RQ1, the works do not
identify a specific test criterion, but sometimes they mention
which technique is used for generation of test data. Among the
three traditional testing techniques, functional, structural, and
fault-based, functional corresponds to 94,8%, since when the
study did not mention what technique was used it was consid-
ered as functional since test data generation is based on GUI.
Some works, however, besides the functional technique also
use the source (structural technique) to guide its search tech-
nique or methodology for test data generation [15][26][27][48].

To answer the research question RQ2, we analyzed the
meta-heuristics and techniques generally used in studies for the
generation of test data. In this case, the distribution of works
was more uniform, with a small majority of 10 studies (25,6%)
using Genetic Algorithms [3][14][26][32] [36][38][46][49].

Genetic algorithms are implemented as a computer sim-
ulation in which an initial population, in general randomly
generated, representing a possible solution, is evolved to a
better solution through iterations. The evolution occurs through
generations. On each generation, the quality of the current
solution in the population is evaluated, some individuals are
selected for the next generation, and mutated or recombined
to form a new population. The new population is then used as
input to the next iteration of the algorithm.

Another meta-heuristic that was also used in three studies
[16][18][34] was the Ant Colony Optimization. The algorithm
was created by Marco Dorigo in 1992 [51] and was inspired
in the behavior of ants searching for food. This is justified
by the fact that a colony of insects are very organized and
collective activities are carried out with self-organization. The
idea is that ants move randomly in search of food, i.e., they
conduct exploratory searches for possible solutions. Once one

243Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 265 / 679

finds food, it returns to the nest depositing pheromone. The
greatest amount of pheromone means that more ants found this
path and deposited the pheromone, increasing the likelihood
of this being the best or the shortest way. Thus, this path
became a solution that was optimized according to the level
of pheromone found in the trail.

Other meta-heuristics for generating test data were also
used, as is the case studies [14] and [35] which applied Q-
Lerning and the work of Raul et. al. [44] that used Particle
Swarm Optimization. In addition to meta-heuristics, other
techniques have been identified as the work [17] and [27] who
have used ontologies.

A fact that has been observed and that should be explored
is that several studies [14][15][29] need an initial model of
the GUI’s application to perform the generation of test data
(research question RQ3). Just the work of Mariani et al. [19]
employed automatic generation of a model and produced the
test data incrementally by traversing the GUI model of the
application under test, requiring no human intervention. They
used the Q-Lerning, a tool from the AI area that learns to
interact with the application under test and to stimulate their
functionality.

Responding to the fourth research question RQ4, some
tools that assist in generating test data were identified during
the mapping. Most tools are complementary, i.e., they allow
to obtain better results when combined. One of the most
used tool in the selected studies was GUI Testing Framework
(GUITAR) [45] which was used in 42% of the selected studies.
This is a project supported by National Science Foundation,
aiming at simplifying GUI testing by automatically generating
test data to test the functionality of the program under test
via the GUI. This tool is divided into four components that
represent its main functions: GUIRipper that extracts infor-
mation from the GUI of the application under testing; the
GUIStructure2Graph that builds an event flow graph (EFG)
with the GUI elements; the TestCaseGenerator which gener-
ates a set of test data based on the EFG (but without the use of
meta-heuristics); and GUIReplayer responsible for running the
program with the generated suite of tests. One of the studies
that applied the tool was performed by Huang et al. [3]. They
used genetic algorithms to correct invalid test data sets. The
work consisted of two steps: generate a set of test and repair
the test set containing viable sequences for this, used the EFG
model generated by GUITAR.

The work of Mariani et al. [19] aims to implement and
to evaluate a technique for generating test data focusing on
interactive applications, i.e., applications that interact with
users through a GUI or Web. The technique and tool devel-
oped and used are called AutoBlackTest, that works with the
generation of a model and produces the test data incrementally
by exercising the application under test. For this, it uses Q-
Lerning, an optimization techniques in the area of Artificial
Intelligence, that learns how to interact with the application
under test to stimulate their functionality.

An important feature of this work is that the AutoBlackTest
does not depend on an initial set for execution. The vast
majority of current techniques depends on this data set and
to generate GUI testing its works in two phases [37][40]:
generates a model of the sequences of events that can be
produced through the interaction with the GUI application

under test; and generates a set of test data that covers sequences
in the model.

The effectiveness of these techniques depends on the
integrity of the original model. When the initial model is
obtained by stimulation of the application under test with a
simple sampling strategy that uses a subset of GUI actions to
navigate and analyze the windows, the derived model is partial
and incomplete [19]. Thus, the test data generated can ignore
many interactions and windows not discovered in the initial
phase.

To evaluate the proposal, Mariani et. al. [19] carried out a
comparative empirical evaluation between AutoBlackTest with
the GUITAR tool using four applications for desktop comput-
ers. In the empirical comparison between AutoBlackTest and
GUITAR, when applied in sessions with 12 hours of testing,
was conclusive that AutoBlackTest can generate test data that
reach a higher code coverage and also reveals more flaws than
GUITAR.

Finally, answering the research question RQ5, most of the
selected studies, approximately 95% use desktop application
for generating test data from the GUI. Only the studies
[26][31][32] applies the proposal in a Web context, thus
showing that much can still be done in this area.

IV. CONCLUSION

This study applied a systematic mapping of the literature
between the years 1998 to 2012, on application of techniques
for generating test data from the GUI of the application under
test. 39 primary studies from different sources between regular
and high-level conferences were selected, corresponding to
6,52% of the total number of studies identified by the search
application. It was found that this percentage is justified due
to two reasons: (1) there are many works that apply, evaluate
and propose techniques to generate test data, but not using as
reference the GUI; and (2) some works focus on generating
test data to test the GUI itself and not use it as input for the
generation of test data.

With respect to the five research question we investigated,
we found that, in general, the proposed testing generation
techniques employed most functional testing criteria for test
set quality evaluation (RQ1). In terms of meta-heuristic (RQ2),
Genetic Algorithm is employed in 10 out of 39 the primary
studies, followed by ant colony employed in 3 out of 39
studies, and q-learn which were employed 2 out of 39 primary
studies (RQ3). In terms of automation (RQ4) GUITAR (a tool
to test GUI desktop applications) was used in 42% of the
primary studies, reinforcing the result obtained by RQ5 that
almost all studies were performed in the context of desktop
applications.

Therefore, based on primary studies identified and answers
to the research questions, we can highlight some research areas
in the context of testing from GUI to be explored, which is
the main purpose of a systematic mapping study:

• development of a software environment that allows
to abstract the GUI model automatically, providing
subsidies so that test data can be run at any time and
if there is a change or modification in the GUI, the
model can be updated and reevaluated at any time;

244Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 266 / 679

• conduction of experimental studies to compare the
different test data generation techniques, identifying
the main characteristics of each one;

• definition of a strategy to reduce the cost and increase
efficiency in the generation of test data from GUI;

• adaptation of the representation of the techniques
presented for generating test data from GUIs for Web
applications; and

• conduction of systematic reviews considering more
specific research questions about the use of meta-
heuristics to support the automation of test data gen-
eration.

ACKNOWLEDGMENT

The authors would like to thank the Brazilian funding
agencies Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES), Fundação de Amparo à Pesquisa
do Estado de Goiás (FAPEG), and Fundação de Apoio ao
Desenvolvimento do Ensino, Ciência e Tecnologia do Estado
de Mato Grosso do Sul (FUNDECT) which support this work.

REFERENCES

[1] G. J. Myers and C. Sandler, The Art of Software Testing. John Wiley
& Sons, 2004.

[2] A. Memon, M. Pollack, and M. Soffa, “Using a goal-driven approach to
generate test cases for guis,” in Software Engineering, 1999. Proceed-
ings of the 1999 International Conference on, May 1999, pp. 257–266.

[3] S. Huang, M. B. Cohen, and A. M. Memon, “Repairing
gui test suites using a genetic algorithm,” in Proceedings of
the 2010 Third International Conference on Software Testing,
Verification and Validation, ser. ICST’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 245–254. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2010.39

[4] Y. Zhang, “Sbse repository,” Página Web, Aug. 2013, disponível
em: http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/. Acesso em:
12/12/2013.

[5] B. Kitchenham, S. Charters, D. Budgen, P. Brereton, M. Turner,
S. Linkman, M. Jorgensen, E. Mendes, and G. Visaggio, “Guidelines
for performing systematic literature reviews in software engineering,”
Software Engineering Group – School of Computer Science and Math-
ematics – Keele University, Keele, Staffs, ST5 5BG, UK, Tech. Rep.
EBSE-2007-01, Jul. 2007.

[6] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in Proceedings of
the 12th international conference on Evaluation and Assessment
in Software Engineering, ser. EASE’08. Swinton, UK, UK:
British Computer Society, 2008, pp. 68–77. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2227115.2227123

[7] J. Biolchini, P. G. Mian, A. C. C. Natali, and G. H. Travassos,
“Systematic review in software engineering,” Systems Engineering and
Computer Science Dept. - COPPE/UFRJ, Rio de Janeiro/RJ - Brazil,
Technical Report RT-ES 679/05, 2005.

[8] L. Chen, M. A. Babar, and H. Zhang, “Towards an evidence-based
understanding of electronic data sources,” in International Conference
on Evaluation and Assessment in Software Engineering (EASE2010).
Keele, UK: BCS, Apr. 2010.

[9] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
“A systematic review of the application and empirical investigation
of search-based test case generation,” IEEE Trans. Softw. Eng.,
vol. 36, no. 6, Nov. 2010, pp. 742–762. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2009.52

[10] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical gui
test case generation using automated planning,” IEEE Trans. Soft.
Eng., vol. 27, no. 2, Feb. 2001, pp. 144–155. [Online]. Available:
http://dx.doi.org/10.1109/32.908959

[11] M. Cunha, A. Paiva, H. Ferreira, and R. Abreu, “Pettool: A pattern-
based gui testing tool,” in Software Technology and Engineering (IC-
STE), 2010 2nd International Conference on, vol. 1, Oct. 2010, pp.
202–206.

[12] X. Yuan and A. M. Memon, “Generating event sequence-based
test cases using gui runtime state feedback,” IEEE Trans. Softw.
Eng., vol. 36, no. 1, Jan. 2010, pp. 81–95. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2009.68

[13] ——, “Iterative execution-feedback model-directed gui testing,” Inf.
Softw. Technol., vol. 52, no. 5, May 2010, pp. 559–575. [Online].
Available: http://dx.doi.org/10.1016/j.infsof.2009.11.009

[14] A. Rauf, S. Anwar, M. A. Jaffer, and A. A. Shahid, “Automated
gui test coverage analysis using ga,” in Proceedings of the
2010 Seventh International Conference on Information Technology:
New Generations, ser. ITNG’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 1057–1062. [Online]. Available:
http://dx.doi.org/10.1109/ITNG.2010.95

[15] S. Arlt, C. Bertolini, and M. Schäf, “Behind the scenes: An approach
to incorporate context in gui test case generation,” in Proceedings of
the 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops, ser. ICSTW’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 222–231. [Online].
Available: http://dx.doi.org/10.1109/ICSTW.2011.70

[16] S. Bauersfeld, S. Wappler, and J. Wegener, “An approach to automatic
input sequence generation for gui testing using ant colony optimization,”
2011, pp. 251–252.

[17] H. Li, H. Guo, F. Chen, H. Yang, and Y. Yang, “Using ontology to
generate test cases for gui testing,” Int. J. Comput. Appl. Technol.,
vol. 42, no. 2/3, Feb. 2011, pp. 213–224. [Online]. Available:
http://dx.doi.org/10.1504/IJCAT.2011.045407

[18] Y. Huang and L. Lu, “Apply ant colony to event-flow model for
graphical user interface test case generation,” IET Software, vol. 6,
no. 1, 2012, pp. 50–60.

[19] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “Autoblacktest: Au-
tomatic black-box testing of interactive applications,” Software Testing,
Verification, and Validation, 2008 International Conference on, vol. 0,
2012, pp. 81–90.

[20] R. F. Jorge, “Geração de dados de teste a partir de gui: Um
mapeamento sistemático,” 2013, 24 junho 2014. [Online]. Available:
http://www.inf.ufg.br/~auri/icsea2014/

[21] JabRef, “Ferramenta JabRef,” Página do Projeto, Oct. 2013, disponível
em: http://jabref.sourceforge.net/. Acesso em: 12/12/2013.

[22] E. EngstrÃm and P. Runeson, “Software product line testing a system-
atic mapping study,” Information and Software Technology, vol. 53,
2011, pp. 2–13.

[23] L. White and H. Almezen, “Generating test cases for
gui responsibilities using complete interaction sequences,” in
Proceedings of the 11th International Symposium on Software
Reliability Engineering, ser. ISSRE’00. Washington, DC, USA:
IEEE Computer Society, 2000, pp. 110–124. [Online]. Available:
http://dl.acm.org/citation.cfm?id=851024.856239

[24] C. Bertolini and A. Mota, “A framework for gui testing based on use
case design,” in Proceedings of the 2010 Third International Conference
on Software Testing, Verification, and Validation Workshops, ser.
ICSTW’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
252–259. [Online]. Available: http://dx.doi.org/10.1109/ICSTW.2010.37

[25] S. Qian and F. Jiang, “An event interaction structure for gui test case
generation,” in Computer Science and Information Technology, 2009.
ICCSIT 2009. 2nd IEEE International Conference on, Aug. 2009, pp.
619–622.

[26] X. Peng and L. Lu, “A new approach for session-based test case
generation by ga,” in Communication Software and Networks (ICCSN),
2011 IEEE 3rd International Conference on, May 2011, pp. 91–96.

[27] H. Li, F. Chen, H. Yang, H. Guo, W. C.-C. Chu, and Y. Yang, “An
ontology-based approach for gui testing,” in Proceedings of the 2009
33rd Annual IEEE International Computer Software and Applications
Conference - Volume 01, ser. COMPSAC’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 632–633. [Online]. Available:
http://dx.doi.org/10.1109/COMPSAC.2009.92

245Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 267 / 679

[28] X. Zhu, B. Zhou, J. Li, and Q. Gao, “A test automation solution
on gui functional test,” 2008, pp. 1413–1418. [Online]. Available:
http://goo.gl/cxZ623

[29] Y. Hou, R. Chen, and Z. Du, “Automated gui testing for
j2me software based on fsm,” in Proceedings of the 2009
International Conference on Scalable Computing and Communications;
Eighth International Conference on Embedded Computing, ser.
SCALCOM-EMBEDDEDCOM’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 341–346. [Online]. Available:
http://dx.doi.org/10.1109/EmbeddedCom-ScalCom.2009.67

[30] P. A. Brooks and A. M. Memon, “Automated gui testing guided
by usage profiles,” in Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, ser.
ASE’07. New York, NY, USA: ACM, 2007, pp. 333–342. [Online].
Available: http://doi.acm.org/10.1145/1321631.1321681

[31] A. Shahzad, S. Raza, M. Azam, K. Bilal, Inam-Ul-haq, and S. Shamail,
“Automated optimum test case generation using web navigation graphs,”
2009, pp. 427–432. [Online]. Available: http://goo.gl/tiHCG8

[32] S. H. Kuk and H. S. Kim, “Automatic generation of testing
environments for web applications,” in Proceedings of the 2008
International Conference on Computer Science and Software
Engineering - Volume 02, ser. CSSE’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 694–697. [Online]. Available:
http://dx.doi.org/10.1109/CSSE.2008.1026

[33] X. Yuan, M. Cohen, and A. M. Memon, “Covering array
sampling of input event sequences for automated gui testing,”
in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, ser. ASE’07. New
York, NY, USA: ACM, 2007, pp. 405–408. [Online]. Available:
http://doi.acm.org/10.1145/1321631.1321695

[34] Y. Lu, D. Yan, S. Nie, and C. Wang, “Development of an improved gui
automation test system based on event-flow graph,” in Proceedings of
the 2008 International Conference on Computer Science and Software
Engineering - Volume 02, ser. CSSE’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 712–715. [Online]. Available:
http://dx.doi.org/10.1109/CSSE.2008.1336

[35] G. Becce, L. Mariani, O. Riganelli, and M. Santoro, “Extracting widget
descriptions from guis,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 7212 LNCS, 2012, pp. 347–361. [Online].
Available: http://goo.gl/jmLntA

[36] A. Rauf, A. Jaffar, and A. Shahid, “Fully automated gui testing and
coverage analysis using genetic algorithms,” International Journal of
Innovative Computing, Information and Control, vol. 7, no. 6, 2011,
pp. 3281–3294. [Online]. Available: http://goo.gl/zsRadh

[37] X. Yuan, M. B. Cohen, and A. M. Memon, “Gui interaction
testing: Incorporating event context,” IEEE Trans. Softw. Eng.,
vol. 37, no. 4, Jul. 2011, pp. 559–574. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2010.50

[38] I. Alsmadi and K. Magel, “Gui path oriented test generation
algorithms,” in Proceedings of the Second IASTED International
Conference on Human Computer Interaction, ser. IASTED-HCI’07.
Anaheim, CA, USA: ACTA Press, 2007, pp. 216–219. [Online].
Available: http://dl.acm.org/citation.cfm?id=1698252.1698291

[39] C. Bertolini, A. Mota, E. Aranha, and C. Ferraz, “Gui testing
techniques evaluation by designed experiments,” in Proceedings
of the 2010 Third International Conference on Software Testing,
Verification and Validation, ser. ICST’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 235–244. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2010.41

[40] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria for
gui testing,” in Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT international
symposium on Foundations of software engineering, ser. ESEC/FSE-9.
New York, NY, USA: ACM, 2001, pp. 256–267. [Online]. Available:
http://doi.acm.org/10.1145/503209.503244

[41] A. Beer, S. Mohacsi, and C. Stary, “Idatg: an open tool for automated
testing of interactive software,” in Computer Software and Applications
Conference, 1998. COMPSAC’98. Proceedings. The Twenty-Second
Annual International, Aug. 1998, pp. 470–475.

[42] M. Hayat and N. Qadeer, “Intra component gui test case generation
technique,” in Information and Emerging Technologies, 2007. ICIET
2007. International Conference on, Jul. 2007, pp. 1–5.

[43] X. Yuan and A. M. Memon, “Iterative execution-feedback
model-directed gui testing,” Inf. Softw. Technol., vol. 52,
no. 5, May 2010, pp. 559–575. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2009.11.009

[44] R. Abdul, N. Ejaz, Q. Abbas, S. Rehman, and A. Shahid, “Pso based
test coverage analysis for event driven software,” 2010, pp. 219–224.
[Online]. Available: http://goo.gl/7mdpDZ

[45] D. R. Hackner and A. M. Memon, “Test case generator for
guitar,” in Companion of the 30th international conference on
Software engineering, ser. ICSE Companion’08. New York,
NY, USA: ACM, 2008, pp. 959–960. [Online]. Available:
http://doi.acm.org/10.1145/1370175.1370207

[46] X. Yuan, M. Cohen, and A. Memon, “Towards dynamic adaptive
automated test generation for graphical user interfaces,” in Software
Testing, Verification and Validation Workshops, 2009. ICSTW ’09.
International Conference on, Apr. 2009, pp. 263–266.

[47] K. C. Chuang, C. S. Shih, and S. H. Hung, “User behavior augmented
software testing for user-centered gui,” in Proceedings of the 2011
ACM Symposium on Research in Applied Computation, ser. RACS’11.
New York, NY, USA: ACM, 2011, pp. 200–208. [Online]. Available:
http://doi.acm.org/10.1145/2103380.2103421

[48] Q. Xie and A. Memon, “Using a pilot study to derive a gui model
for automated testing,” ACM Transactions on Software Engineering
and Methodology, vol. 18, no. 2, 2008, pp. 1–35. [Online]. Available:
http://goo.gl/cXsdQi

[49] I. Alsmadi, “Using genetic algorithms for test case generation
and selection optimization,” 2010, pp. 1–4. [Online]. Available:
http://goo.gl/xNZhRY

[50] X. Yuan and A. M. Memon, “Using gui run-time state as feedback
to generate test cases,” in Proceedings of the 29th international
conference on Software Engineering, ser. ICSE’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 396–405. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2007.94

[51] M. Dorigo and L. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” Evolutionary
Computation, IEEE Transactions on, vol. 1, no. 1, 1997, pp. 53–66.

246Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 268 / 679

Mapping of State Machines to Code: Potentials and Challenges

Mehrdad Saadatmand
Mälardalen Real-Time Research Centre (MRTC),

Mälardalen University,
Västerås, Sweden

mehrdad.saadatmand@mdh.se
& Alten AB,

Sweden
mehrdad.saadatmand@alten.se

Antonio Cicchetti
Mälardalen Real-Time Research Centre (MRTC),

Mälardalen University,
Västerås, Sweden

antonio.cicchetti@mdh.se

Abstract—There is a big number of testing methods which are
based on the state machine formalism. State machines serve
as a strong means in behavior modeling of computer systems.
However, this strength is lost as we go down the abstraction
level from models to code. This is essentially due to the inherent
semantic gap between state machine models and code, and that
it is generally a challenging task to track states and transitions
at runtime. In this paper, we discuss the benefits and challenges
of having a mechanism for mapping state machines to code. The
main intention with such a mechanism is to enable tracking of
state changes at runtime. As we explain in this paper, the mapping
provides for several important testing features such as verifying
the actual runtime behavior of the system against its state
machine models. Its importance becomes further emphasized
remembering that model-based static analysis techniques rely on
models as the source of information and design assumptions,
and therefore, any mismatch between the actual behavior of the
system and its models can also imply invalidation of the analysis
results.

Keywords–State Machines; Runtime Verification; Behavioral
Modeling.

I. INTRODUCTION

Applying Model-Based Development (MBD) methodology
[1][2] helps to cope with the ever-increasing complexity
of computer systems. It does so by raising the abstraction
level, enabling analysis at earlier phases of development and
automatic code generation. In Model-Based Testing (MBT),
models serve as an explicit representation of the intended
behavior of a system from which test cases are generated [3]
[4]. Test cases are then executed to detect failures and to verify
if the intended and actual behavior of a system differ.

State machines [5] serve as a modeling formalism for be-
havioral description of different types of systems (particularly
reactive systems) and are used extensively in model-based
testing techniques. State machine models can thus capture
the expected behavior of a system. In testing the behavioral
aspects, it is necessary to be able to determine whether the
runtime behavior of the system is in compliance with its spec-
ified behavior represented and described using state machine
models. This is regardless if the code is manually developed or
automatically generated from system models. For this purpose,
there needs to be a mechanism to establish a mapping between
state machines and code in order to verify that the code at
runtime is actually behaving correctly according to the state
machine model in terms of its internal states and transitions.

In [6], we have introduced and developed an approach for
testing the behavior of automotive embedded systems, by com-
paring against the Timed Automata (TA) [7][8] specification
models that are used to describe the internal behavior of system
components, modeled using EAST-ADL language [9] (the term
state machine is used in this paper as a synonym to also refer
to a timed automaton whenever the main concern is only the
states and transitions in the model regardless of the timing
specifications). In the approach, timed automata models are
analyzed to identify if different properties hold or not. As a
result, a trace is generated consisting of a sequence of states
and transitions serving as a witness or counter-example of
the performed analysis. To verify the actual behavior of the
system, it is then checked at runtime if the system traverses
and goes through the exact order of states and transitions as in
the trace file. To achieve this, as part of the approach we have
defined a mechanism for mapping state machines to code. The
mapping is currently done manually, which is not that scalable
especially when the size of code grows. In this paper, we focus
on the mapping mechanism and discuss its importance and
the capabilities it provides for testing the behavior of systems
based on our findings in [6]. We introduce our specific way of
implementing the mapping mechanism along with its features
and limitations. Moreover, other different possible solutions
to implement such a mapping mechanism and the related
challenges are also described and identified. In short, the main
intention with this paper is to highlight the benefits of having
a mapping mechanism between state machine models and
code (as part of our research project results); particularly that
establishing such a mapping can require early design decisions
and following certain rules in the code to enable tracking states
and transitions at runtime.

The remainder of the paper are structured as follows. In
Section II, background context and motivation of this work is
presented. Related work and possible solutions for the mapping
mechanism, along with the challenges and potentials of having
such a mapping mechanism are discussed in detail in Section
III. Finally, Section IV concludes the paper and there, we also
discuss the future directions of this work.

II. BACKGROUND & MOTIVATION

This work has been performed in the scope of the the
Combined Model-based Analysis and Testing of Embedded
Systems (MBAT) European project [10] consisting of 38
project partners. One of the main goals in MBAT is to provide

247Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 269 / 679

a more efficient and effective Verification & Validation solution
for embedded systems by exploiting the synergy between
model-based analysis and testing. Brake-By-Wire (BBW) sys-
tem from Volvo is one of the industrial use-cases that are
addressed in MBAT. In a BBW system, mechanical parts and
hydraulic connections between the brake pedal and each wheel
brake are replaced by electronic sensors and actuators. Anti-
lock Braking System (ABS) is usually an inherent functionality
provided by BBW systems [11] whose purpose is to prevent
the locking of wheels by controlling braking based on slip
rate. There is a threshold for the slip rate beyond which the
brake actuator is released and no brake is applied (otherwise
the requested brake torque is used).

Figure 1. Components composing a BBW system [6].

The system is modeled using EAST-ADL. In Figure 1, a
simplified model of the system for only one wheel is depicted.
The internal behavior of system components are captured and
represented using Timed Automata (TA). Since BBW is a
real-time system with different timing requirements, the use
of TA models enable to also include timing specifications.
Considering the purpose of a BBW system, it is generally con-
sidered as a safety-critical, distributed real-time (embedded)
systems. A timed automata model, designed in UPPAAL tool
[12], describing the internal behavior of the ABS component
of BBW system is shown in Figure 2. In this model, y is a
clock whose specification on the states indicates the amount of
time units that can be spent in each state (non-deterministically,
between 0 and the specified value) before a transition has to be
made to the next state. These timing specifications are naturally
derived from high level timing requirements of the BBW
system and its components. The values in the TA model here
are just samples, and the exact values for each implementation
of the BBW system might be different.

Figure 2. Timed automata model of the ABS component [6].

A. Testing Goals
We have developed a testing methodology [6] in order

to verify the runtime behavior of the BBW system against
the desired behavior represented in the form of state machine
and automata models. To do so, test cases are generated from
automata models as UPPAAL trace files. These traces serving
as abstract test cases are then transformed into concrete ones,
which are essentially executable test scripts. By executing
the concrete test cases the runtime behavior of the system is
verified in terms of state changes. In other words, it is checked
that the order of states of the system at runtime matches what
is specified in the models.

Some of the steps that constitute the approach are as
follows:

• Based on the automata models, C/C++ enumera-
tions (enum) that represent each state machine and
their internal states are generated. These enumer-
ation structures are stored in a C/C++ file along
with the definition of a helper function called
set_state(StateMachine,State). The file is
then included in the implementation code of the target
application (i.e., to be tested).

• The states in the automata model are mapped to the
code using the above helper function. This is done by
adding calls to the set_state() helper function at
places in the code where a state change occurs. The
helper function basically logs the new state belonging
to the specified state machine and thus enables to keep
track of state changes at runtime.

• According to the automata model, a test script is
generated which verifies that the order of state changes
(logged using the helper function) match the model.
If so, then the result of the test is determined as pass,
otherwise a fail verdict is decided.

This helps to gain more confidence that the behavior of the
system is actually as specified and expected at the modeling
level. One of the motivations behind our approach is that the
models are used for different types of model-based analysis. If
the runtime behavior of the system deviates from and does not
match the behavioral models, the result of the analyses that
have been performed assuming such behavioral models will
be violated and not valid anymore.

III. STATE MACHINE MAPPING

A. Challenges
To provide a mechanism for tracking state changes at

runtime, the set_state(StateMachine,State) helper
function that was introduced in the previous section is used
to map state machine models to code. This mapping step is
needed to keep track of different states and how they change
at runtime, which is currently done in a manual way. Figure 3
shows how this mapping is done by annotating the code and
adding calls to the helper function in it. The code shown here
is C/C++ code for the ABS component written on OSE Real-
Time Operating System (RTOS), which is a commercial and
industrial real-time operating system developed by Enea [13].
OSE offers the concept of direct and asynchronous message
passing for communication and synchronization between tasks
using send and receive APIs.

248Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 270 / 679

Figure 3. Mapping of states to the code (ABS function) [6].

As mentioned, the mapping step is currently done man-
ually. While this works fine for systems with a small code
base, it has a big impact for the scalability of the general
approach. From this perspective, the manual mapping step
can be considered a bottleneck in the automation of the
whole approach. Therefore, there is a need and big interest
in automating the mapping step by finding a solution to map
state machine models to code in order to track state changes
at runtime.

B. Potentials
So far, it was discussed how having such a mapping

mechanism can help to track the runtime behavior of the
system with respect to its internal state changes. Information
on internal state changes basically provides an insight about
execution flow in the system. On the other hand, state machines
used in the modeling phase represent the desired and expected
behavior of the system. The mapping mechanism enables to
compare the actual versus expected behavior and identify vio-
lations. Moreover, it also becomes possible to identify at which
state and during which transition a violation has occurred. This,
in turn, can help with debugging and better pinpointing the
root cause of the problem than the case where there is no
such mapping; hence identifying the vicinity and localization
of potential defects. We have discussed and demonstrated these
features in detail in [14], as a method for checking architectural
consistency.

Moreover, having the mapping mechanism and being able
to track state changes at runtime brings along other interesting
testing capabilities. One of such capabilities is to verify timing
properties and clock constraints in real-time systems. We have
introduced and demonstrated it in [15]. The idea is basically
that not only each state change is recorded, but they are also
time stamped. This way, it becomes possible to measure the
time difference between each pair of states during the actual
execution of the system and at runtime. This information
is then used to compare the timing behavior of the system
versus the timing and clock constraints that are specified in

the timed automata models. For example, a clock constraint
can be defined in the timed automata model specifying that the
system may spend time and remain in a state only for a certain
period of time and then it has to make the transition to the
next state. Such timing requirements are of great importance
in designing real-time systems, but are also hard to actually
test at such granularity and level of detail. Timed automata
are a formal way of capturing such timing requirements
and constraints, which are then used also for analyzing the
temporal correctness of the system design. However, despite
performing static analysis, at runtime situations may still occur,
which lead to the violation of assumptions that have been taken
into account for performing the analyses; hence invalidation
of the analysis results [16][17]. This further emphasizes the
need to be able to actually test a system with respect to its
extra-functional properties; and particularly in this case, timing
properties which are not as easy and straightforward to perform
as functional testing. The approach we have introduced in [15]
is one solution towards this purpose, which is based on the state
machine mapping mechanism in order to test clock constraints
in real-time systems.

C. Related Work & Possible Solutions
There is not much discussion in the literature on establish-

ing a mapping and relationship between state machines and
code for the purposes mentioned in this paper. Walkinshaw
et al. in [18] discuss the problem of rarely maintaining state
machine models during software development by emphasizing
and drawing attention to their importance and role in state-
based testing techniques. They introduce an approach based
on symbolic execution to reverse engineer state transitions
from code. However, what we discussed here can be con-
sidered as opposite of their approach and with the purpose
of tracking state changes at runtime; which their introduced
reverse engineering approach does not provide. Moreover, the
mapping from the direction of state machine models to code
and then runtime tracking of state changes helps to identify
situations where the behavior of code deviates from what is

249Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 271 / 679

specified by the model as the correct behavior. In contrast,
merely extracting state machine models from the code just
creates the model of how the code behaves, which can contain
and represent a wrong behavior. What might be possible
here is to reverse engineer state machine model of the code
and then compare it with a designed state machine model
representing the correct and expected behavior that the system
should conform to. In [19], the DiscoTect method and tool are
introduced. DiscoTect engines observe and filter system events
during execution and at runtime to discover and construct
the architecture of the system based on derived states and
transitions. The ultimate goal in DiscoTect is to highlight
inconsistencies between the implementation and intended ar-
chitecture by providing the discovered architecture, which can
then be compared with intended one. SMArTIC [20] is also
an architecture and method for specification mining which is
similar to DiscoTect, particularly that the discovered system
specification is derived in the form of a finite state automaton.
Other examples of such dynamic analysis techniques that
derive state machine models from actual program executions
are ADABU [21] and GK-tail [22]. The latter aims to capture
the interplay between data values and component interactions
by annotating state machine models with conditions on data
values. FSMGen tool which is introduced in [23] utilizes a
symbolic execution technique to statically analyze TinyOS
program codes in order to derive state machine models of the
system. The advantage that static analysis methods have over
dynamic ones (e.g., the ones mentioned above) is that dynamic
approaches can capture and analyze only particular runs of an
application, while applications can generally have an infinite
number of execution traces. All these mentioned approaches
try to construct state machine models from code. However,
as described earlier, in this paper, our focus is on the other
direction which is from existing models (used in model-based
analysis) to code and establishing mapping between them.

Another approach to enable tracking of state changes at
runtime could be to implement or generate the code in the
form of a state machine. In other words, the code is originally
designed and written in the form of states and transitions;
i.e., an implementation and code representation of the state
machine. The Windows Workflow Foundation [24] provides
tracking APIs, which make it (easily) possible to implement
such an approach as demonstrated in [25]. Another example
of this approach could be to have a variable to keep the
current state and a switch-case structure (in C/C++) to choose
execution blocks based on its value. In [26], where we have
presented a more complete and extended version of our testing
methodology, this approach is used. In other words, the code
contains necessary variables to keep track of different states at
runtime. A feature of this mapping approach is that if the code
is automatically generated from the models, it can be made
to insert and include the necessary variables to keep track of
states and transitions as part of the code generation process.

Finally, automation of the manual mapping approach that
was introduced in previous sections of the paper can serve
as another solution. This requires an ’intelligent’ tool, which
goes through the code and tries to identify parts that match a
state from the model (e.g., based on the guards, actions, and
other information in the state machine model). The accuracy
of such a tool needs to be considered carefully. For this reason,
it may be made as a semi-automatic tool with user interactions

to confirm whenever, for example, several matching points are
detected for a state (false positives). A feature of this approach
though is that it can be very helpful when there is already some
code available (as opposed to the code generation approach
discussed above), for instance, in legacy systems.

An advantage of the mapping approach in general is that
the instrumentation of the code that is done to achieve the
mapping can be done just to test the system and removed after-
wards from the final product and before the actual deployment.
The impacts of such instrumentation and how it may affect test
results, particularly, in real-time systems need to also be taken
into account, as we have discussed with more details in [15].
Moreover, it should be investigated if a state change always
corresponds to only one location in the code, particularly when
the target system is parallel or distributed, e.g., in multicore
scenarios. In other words, the mapping in some systems might
not always be one-to-one but also one-to-many.

IV. CONCLUSION

In this paper, we discussed the idea of mapping state
machine models to code to enable tracking state changes at
runtime. Moreover, the advantages and potentials that such
a mapping can offer for testing were also presented along
with the possible implementation solutions as well as the
challenges that exist in implementing it. A manual estab-
lishment of mapping between state machines and code is
currently being considered as part of a testing methodology for
the Volvo’s Brake-By-Wire use-case in the MBAT European
project. However, the main challenge is that while such a
manual mapping might work for a small system, it will not be
scalable for systems with large code bases, and therefore, needs
to be automated. In summary, the main goal of this paper has
been to highlight the benefits and uses of having the mapping
mechanism, discuss its feasibility, and encourage research on
methods for automatic establishment of the mapping as well
as its further use in testing.

V. ACKNOWLEDGEMENTS

This work has been supported by the MBAT European
Project [10] and also through the ITS-EASY industrial research
school [27]. The research leading to these results has received
funding from the ARTEMIS Joint Undertaking under grant
agreement no 269335 (see Article II.9. of the JU Grant
Agreement) and from the Swedish Governmental Agency
for Innovation Systems (VINNOVA). We would also like to
thank Raluca Marinescu and Dr. Cristina Seceleanu for their
technical tips and support for this work.

REFERENCES
[1] B. Selic, “The pragmatics of model-driven development,” Software,

IEEE, vol. 20, no. 5, Sept 2003, pp. 19–25.
[2] J. Bezivin, “On the unification power of models,” Software Systems

Modeling, vol. 4, no. 2, 2005, pp. 171–188.
[3] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-

based testing approaches,” Software Testing, Verification and Reliability
journal, vol. 22, no. 5, Aug. 2012, pp. 297–312.

[4] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Zölch, and T. Stauner, “One evaluation of model-based
testing and its automation,” in Proceedings of the 27th international
conference on Software engineering, ser. ICSE, New York, USA, 2005,
pp. 392–401.

[5] T. S. Chow, “Testing software design modeled by finite-state machines,”
IEEE Trans. Softw. Eng., vol. 4, no. 3, May 1978, pp. 178–187.

250Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 272 / 679

[6] R. Marinescu, M. Saadatmand, A. Bucaioni, C. Seceleanu, and P. Pet-
tersson, “EAST-ADL Tailored Testing: From System Models to Ex-
ecutable Test Cases,” Mälardalen University, Technical Report ISSN
1404-3041 ISRN MDH-MRTC-278/2013-1-SE, August 2013.

[7] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, 1994, pp. 183 – 235.

[8] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” in In Lecture Notes on Concurrency and Petri Nets, ser. Lecture
Notes in Computer Science vol 3098, W. Reisig and G. Rozenberg,
Eds. Springer–Verlag, 2004.

[9] The ATESST Consortium, “EAST-ADL Profile Specification.”
www.atesst.org, Accessed: August 2014.

[10] MBAT Project: Combined Model-based Analysis and Testing of Em-
bedded Systems, http://www.mbat-artemis.eu/home/, Accessed: August
2014.

[11] S. Anwar, “An anti-lock braking control system for a hybrid electro-
magnetic/electrohydraulic brake-by-wire system,” in American Control
Conference, 2004. Proceedings of the 2004, vol. 3, 2004, pp. 2699–
2704.

[12] G. Behrmann, R. David, and K. G. Larsen, “A tutorial on Uppaal
4.0,” http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.
pdf, November 2006.

[13] Enea, http://www.enea.com, Accessed: August 2014.
[14] M. Saadatmand, D. Scholle, C. W. Leung, S. Ullström, and J. F.

Larsson, “Runtime verification of state machines and defect localization
applying model-based testing,” in Workshop on Software Architecture
Erosion and Architectural Consistency (SAEroCon) - Proceedings of
the WICSA 2014 Companion Volume, ser. WICSA ’14 Companion.
ACM, 2014, pp. 6:1–6:8.

[15] M. Saadatmand and M. Sjodin, “Testing of timing properties in real-
time systems: Verifying clock constraints,” in Software Engineering
Conference (APSEC, 2013 20th Asia-Pacific, vol. 2. IEEE-CPS, Dec
2013, pp. 152–158.

[16] S. Chodrow, F. Jahanian, and M. Donner, “Run-time monitoring of real-
time systems,” in Real-Time Systems Symposium, 1991. Proceedings.,
Twelfth, dec 1991, pp. 74 –83.

[17] M. Saadatmand, A. Cicchetti, and M. Sjödin, “Design of adaptive
security mechanisms for real-time embedded systems,” in Proceedings
of the 4th international conference on Engineering Secure Software and
Systems, ser. ESSoS’12. Eindhoven, The Netherlands: Springer-Verlag,
2012, pp. 121–134.

[18] N. Walkinshaw, K. Bogdanov, S. Ali, and M. Holcombe, “Automated
discovery of state transitions and their functions in source code,” Journal
of Software Testing, Verification & Reliabality, vol. 18, no. 2, Jun. 2008,
pp. 99–121.

[19] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman, “Discotect:
A system for discovering architectures from running systems,” in Pro-
ceedings of the 26th International Conference on Software Engineering,
ser. ICSE ’04. Washington, DC, USA: IEEE, 2004, pp. 470–479.

[20] D. Lo and S.-C. Khoo, “SMArTIC: Towards Building an Accurate,
Robust and Scalable Specification Miner,” in Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. SIGSOFT ’06/FSE-14. New York, NY, USA: ACM,
2006, pp. 265–275.

[21] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller, “Mining Object
Behavior with ADABU,” in Proceedings of the 2006 International
Workshop on Dynamic Systems Analysis, ser. WODA ’06. New York,
NY, USA: ACM, 2006, pp. 17–24.

[22] D. Lorenzoli, L. Mariani, and M. Pezze, “Automatic generation of
software behavioral models,” in Software Engineering, 2008. ICSE ’08.
ACM/IEEE 30th International Conference on, May 2008, pp. 501–510.

[23] N. Kothari, T. Millstein, and R. Govindan, “Deriving state machines
from tinyos programs using symbolic execution,” in Information Pro-
cessing in Sensor Networks, 2008. IPSN ’08. International Conference
on, April 2008, pp. 271–282.

[24] Microsoft Windows Workflow Foundation, http://msdn.microsoft.com/
en-us/vstudio/jj684582.aspx, Accessed: August 2014.

[25] To use State Tracking with WorkflowApplication, http:
//wf.codeplex.com/wikipage?title=Tracking%20states%20with%
20WorkflowApplication, Accessed: August 2014.

[26] R. Marinescu, M. Saadatmand, A. Bucaioni, C. Seceleanu, and P. Pet-
tersson, “A model-based testing framework for automotive embedded
systems,” in 40th Euromicro Conference on Software Engineering and
Advanced Applications. Verona, Italy: CPS-IEEE, August 2014.

[27] ITS-EASY post graduate industrial research school for embedded soft-
ware and systems, http://www.mrtc.mdh.se/projects/itseasy/, Accessed:
August 2014.

251Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 273 / 679

Functional Testing Criteria Applied in a Database Project

Dianne Dias Silva, Edmundo Sérgio Spoto, Leandro Luís Galdino de Oliveira

Instituto de Informática (INF)

Universidade Federal de Goiás (UFG)

Goiânia, Brazil

Emails: {diannesilva, edmundo, leandroluis}@inf.ufg.br

Abstract—This paper reports the application of the functional

testing criteria for a database project in an IT company,

aiming to explore the main features that exist in the project of

the company. The paper presents a set of required elements

based on the functional testing and the results of test cases

analyzed in the project in question. The article also presents

the criteria that were most effective in detecting faults in the

organization of the database project.

Keywords-Software Testing; Database Testing; Functional

Software Testing; Functional Testing Criteria in a Database

Project.

I. INTRODUCTION

Gradually, software has come to play a relevant activity
in everyday society, so its reliability can not be ignored. The
reliability criteria are specified by parameters of quality and
as a result, sets of Software Quality Assurance (SQA)
activities can be defined by supportting the software
development process.

In this context, the activity of software testing should be
started in parallel with the software design, requiring good
planning, since the determination of testing criteria to be
used, the definition of Test Cases (TC) and mass test data,
come from this stage of the development cycle.

The testing criteria determine the Required Elements
(RE), which must be tested because in general, the
exhaustive testing is not feasible. Also, the RE are associated
with testing techniques that explore different aspects and
functionality of the software, relating to the functional
technique (Equivalence Class Partitioning and Boundary
Value Analysis), the statement structure of the project code
belonging to the structural technique (Based-on-Control-
Flow and Based-on-Data-Flow) and typical faults inserted
into the software during its implementation caused by error
based techniques (Error Seeding and Mutation Analysis) [5].

In addition, the growing usage of database applications in
both small and large organizations, requires that relevant
characteristics of database project, as cardinality, domain
attributes, functional dependency, among others, are treated.

However, the techniques, strategies and tools for testing
application database are scarce. Chays et al. [6] presented a
number of important features of database project testing to
be explored both in the development and the in the operation
stages of the project.

The testing criteria for database projects used in this
paper were chosen from the set of the testing criteria
presented by Souza [10] and from the criteria used by the
functional testing technique suggested by Carniello [1].

Although promising, the criteria proposed in these
studies have not been validated in real database project. Thus,
in this paper, we report an experiment using these criteria in
a database project of an Information Technology (IT)
development company.

The experiment helped to demonstrate the importance of
these criteria in the improvement of the database project. The
chosen criteria was shown to contribute to the detection of
different types of faults in the analyzed database project,
enhancing the quality of applications that use the database.

Besides testing the criteria in real application, we also
investigated which criteria have higher chances to contribute
to the detection of specific database project faults.

Thus, this study aimed to:

 Use the RE functional testing criteria (Equivalence
Class Partitioning and Boundary Value Analysis)
and also the criteria generated by Souza [10] through
the restrictions of the relational model based
schemes (Structural Relationships, Domain
Attributes, Keys, Referential Integrity, Semantic
Integrity and Functional Dependency) in a database
project of an IT company;

 Build and run the corresponding TC and;

 Measure the strength of each criterion, emphasizing
the importance in relation to the detection of faults in
the project in question.

This paper is organized as follows. Section 2 presents the
main concepts and terminology in the context of software
testing for database project, as well as the criteria explored in
this work. Section 3 shows a case study to be explored with
the functional testing criteria on database project. Section 4
presents the results obtained. Section 5 presents the
conclusion and future work.

II. BACKGROUND OF FUNCTIONAL TESTING IN A

DATABASE PROJECT

The database testing techniques are applied during the
creation of a database application, aiming to evaluate six
levels of integrity which are: the Structural Relationships, the
Domain Attributes, the Keys, the Referential Integrity, the
Semantic Integrity and the Functional Dependency.

252Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 274 / 679

The functional testing criteria (Equivalence Class
Partitioning and Boundary Value Analysis), have been
adapted to test the attributes of the tables (Domain Attributes
criterion) in order to check valid and invalid values on the
domains used by the project, which would result in eight
testing criteria for the database project.

The following are the definitions and terminology
adopted for each criteria of the functional testing in a
database project. In Section A, the functional testing criteria
is presented before introducing the adaptations for their use
in database projects.

A. Functional Testing Technique

The functional testing is a technique used in the creation
of RE in order to exercise the values of the domain of each
attribute of the tables in the database project [9][14]. Thus,
the functional testing contributes to the improvement of the
creation of the tables and also forces the creation of checks
for each of the attribute types, in order to respect the
database constraints. Functional testing can be done using
the Data Manipulation Language (DML) or in conjunction
with the database application software [5][10].

The functional testing technique contributes to detect
faults that occur when specifying the boundaries of values
that can be assigned to each attribute [13]. Moreover, an
elaborate specification obtained by the user in the analysis
phase is critical to identify these faults.

Therefore, the functional testing criteria are based on the
database specification to generate the RE which are used to
produce the corresponding TC. However, the generated TC
must test the criteria without affecting other database
constraints that are not related to the criteria being checked
[1][11].

Then, it is understood that the database specification is
used both to build a program and to contribute to the
generation of RE-based on the specification criteria, and
subsequently indicate mechanisms for the production of TC.

In the database project, presented in the case study, we
used both the Equivalence Class Partitioning and Boundary
Value Analysis as criteria to test tables attributes. These
criteria are presented in the following two sections.

1. Equivalence Class Partitioning Criteria

The Equivalence Class Partitioning criteria is a black box
testing technique that divides the input domain (of the
attributes) through the specification conditions of a given
data type classes, i.e., equivalence classes, of which TC are
derivative [13].

Once the equivalence classes have been established, it
can be assumed, with some certainty, that any member of a
class can be considered a representative of it, and every
member value should behave similarly, i.e., if one member
causes a fault, then any other will also cause the same fault.
Thus, the criteria reduces the input domain to a passive size
to be treated during the testing activities [5].

An equivalence class represents a set of valid states
(expected inputs) or invalid entries (not expected) to the
entry conditions, here represented by the attributes of the
database tables [7].

The usage of the equivalence classes is composed by two
phases: identification of equivalence classes and the
generation of the corresponding TC [8].

When an input attribute of an equivalence class results in
[13]:

 Use of Intervals: One valid and two invalid class are
defined, i.e., an invalid value would be well below
the lower limit and well above the upper limit;

 Use of Specific Value: One valid and two invalid
class are defined; i.e., the value (valid) itself and a
lower value, and other higher (invalid);

 Use of an Element of a Set: A valid class (within the
set) and an invalid (outside the set) are defined;

 Use Boolean: A valid class (T or F) and invalid one
(other than T or F) are defined.

Thus, partitioning into equivalence classes for the
attributes of the tables involved, aims to produce TC who
discover several classes of errors and thereby reduce the total
number of TC required to satisfy the criteria [8][13].

However, this criterion can also be classified as a
systematic method for the assessment of requirements, in
addition to restricting the number of existing TC [3][4].

And besides that, another black box testing technique
called Boundary Values Analysis criteria uses the
approaches of Equivalence Class Partitioning, being seen as
complementary, thus making it more systematic [13].

2. Boundary Value Analysis Criteria

The Boundary Value Analysis criteria checks more
rigorously the boundaries associated with the conditions of
the input attributes, i.e., exercising the boundary values [5].

And according to Myers [8], it can be said that the TC,
which explores the boundary conditions, has a higher
probability of finding faults. This criterion exercise the
conditions of entry, and also derived the TC output to the
domain when necessary [7].

The guidelines for the Boundary Value Analysis are
similar to Equivalence Class Partitioning criteria as the
following [13]:

 If an input condition to specify an interval
determined by the values A and B, TC must be
designed with values A and B, just above and just
below A and B respectively;

 If an input condition specify multiple values, TC are
created to exercise minimum and maximum values.
Values just below and just above the minimum and
maximum are tested;

 Application to output conditions, the first and second
guide;

 If the internal data structures of the program have
identified limits, must be projected to TC to exercise
this data structure at its boundary.

Finally, if a tester apply all these guidelines, the test itself,
and is more systematically, it will be complete, having a
greater likelihood of fault detecting.

B. Functional Testing Specific of the Database Projects

The functional testing in a database project is to validate
the specification through the DML statements, which

253Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 275 / 679

contribute in detecting various problems in the construction
of the database project, making this type of testing becomes
difficult for the following reasons [2]:

 The construction of the database to test (choice of
schemes and values) involves some important and
relevant factors in the generation of TC, to meet each
RE of the criteria. The selection of data is essential
to getting a good set of TC, since it will be the
entrance to any Structured Query Language (SQL)
statements;

 The applications are not just a set of statements, in
preparing the database testing. Therefore, the data
should be useful to the greatest possible number of
instructions, for loading test data with different
information for each query has a high cost;

 The information generated for testing may be
modified during the execution of SQL statements.
Consequently, when designing a database to assist
the test, it is necessary to consider the order in which
SQL statements are executed and whether they will
modify the data to be input for subsequent
executions with a view that relations are persistent
variables;

 As in imperative languages, SQL statements can be
parameterized by variables and constants and when
designing the test plan, these inputs should also be
considered in addition to the test data provided by
the same functional testing criteria of database
project;

 The adequacy of the data test unit generated it is
necessary to check whether the test unit really covers
all possible situations and whether the output
obtained by applying the test plan satisfies the
requirements for which the database has been
designed in such a case.

Anyway, the functional testing of the database project
involves the following steps [6]:

 Extraction of information from database schema;

 Generation of test data and filling in the database
testing;

 Generation of TC as input for database;

 Validation of the state of the database and exit after
execution.

To exercise the test in database project, some criteria
may be used, aiming to cover different fault types.

C. Functional Testing Criteria in a Database Project

The specific criteria for database have used features
exercising relations represented in the database. Thus, some
criteria require the generation of TC that exercise the
attributes of the same relations and other criteria that
exercise the attributes of different relations, which forces the
production of TC that involves a number of DML statements
in one or more connections to the test.

In this work, we use the term Relation instead of Table,
to keep the terminology relational database. Taking into
account that the functional testing approaches consider the
domain variables based on the system specification in order

to work out a database application and other characteristics
of the database are investigated through based criteria in: the
Structural Relationships, the Domain Attributes, the Keys,
the Referential Integrity, the Semantic Integrity and the
Functional Dependency [10].

1. Based-on-Structural-Relationships Criterion

The Based-on-Structural-Relationships criterion has two
sub-criteria that exercise multiple relations simultaneously
during the test: all-maximum-cardinality and all-the-
minimum-cardinality. Given two Relations A and B, then the
Based-on-Structural-Relationship criterion must generate TC
that exercises the cardinality relationships between A and B
in order to verify their specifications [10].

Definition 1: A test data set T satisfies the subcriteria all-
the-maximum-cardinality constraints of the structural
relationships criteria (one-to-one, one-to-many, many-to-one
and many-to-many) between two Relations A and B if the
actions of cardinality between A and B are met by application.

The sub-criteria all-maximum-cardinality is called
exercised when T satisfy the criteria, ensuring that:

 Relation A has a one-to-one relationship with
Relation B or;

 Relation A has a (zero or many)-to-one relationship
with Relation B or;

 Relation A has a one-to-many relationship with
Relation B or;

 Relation A has a many-to-many relationship with
Relation B.

Definition 2: A test data set T satisfies the sub-criteria
all-minimum-cardinality if the structural constraints of
relationship (total and partial participation) are exercised
between the Relation A and Relation B and if the actions of
minimum cardinality between A and B are met by the
database application.

The sub-criteria all-minimum-cardinality is considered to
exercise when T satisfy the criteria, ensuring that there exists
at least one relationship between A and B, total or partial.

2. Based-on-Domain-Attributes Criterion

Souza [10] defined the Based-on-Domain-Attributes
criterion: all-domain-attributes, since is the same exercising
the attributes of the same relation.

Definition: A test data set T satisfies the sub-criteria all-
domain-attributes if all domain constraints (Check, Data
Types and Allow Nulls) of the attributes of a relation are
satisfied.

The sub-criteria all-domain-attributes of a relation is
called exercised when T satisfies the criteria, ensuring that
the values of the attributes domain of this relation:

 Whether checked all valid and invalid conditions for
each attribute, respecting its data type;

 The conditions specified in accordance with Check
(valid and invalid situations in relation to clause
Check) clause were satisfied;

 Comply with conditions of null or not null values
established by the Allow Nulls (null or not null)
clause.

254Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 276 / 679

3. Based-on-Keys Criterion

In the Based-on-Keys criterion, defined by Souza [10],
there is a need for exercising existing rules in Database
Management Systems (DBMS) in which all Primary Keys
(PK) must be unique and not null. The sub-criteria were
established: all-primary-keys.

Definition: A test data set T satisfies the sub-criteria all-
primary-keys if all restrictions related to PK of a relation are
satisfied.

The sub-criteria all-the-primary-keys is called exercised
when T satisfy the criteria, ensuring that:

 Occurring uniqueness of the value of PK;

 The PK value is not null.

4. Based-on-Referential-Integrity Criterion

The Based-on-Referential-Integrity criterion has as sub-
criteria for the exercise of another relation: all-foreign-keys.
This means that the references between the relations must
satisfy the constraints between non-verbal relationships of
two or more relations [10].

Definition: A test data set T satisfies the sub-criteria all-
foreign-keys if the referential integrity constraints, Foreign
Key (FK) and relationship between relations, or a
relationship between A and B are satisfied.

The sub-criteria all-foreign-keys is called exercised when
T satisfy the criteria, ensuring that:

 A tuple in Relation A, referenced by FK, belongs to
other Relation B be the result of an existing tuple in
the relationship between relations A and B;

 A set of attributes FK in the scheme of the Relation
A is a FK of the relationship that references the
Relation B;

 The attributes of FK of the Relation A have the same
domain as the attributes of the PK of Relation B.

5. Based-on-Semantic-Integrity Criterion

Souza [10] defined the Based-on-Semantic-Integrity
criterion: all-semantic-attributes. Being that it exercises the
actions of semantic attributes and allowed values transitions
valid values are in the same relation.

Definition: A test data set T satisfies the sub-criteria all-
semantic-attributes if all semantic integrity constraints
(between attributes and Check of dependent attributes) of a
relationship are satisfied and the dependent attributes are in
the same relation.

The sub-criteria all-semantic-attributes is called
exercised when T to satisfy the criteria, ensuring that:

 The value attribute of a relation satisfies the
semantic condition depending if the attribute may be
the same relation or in a different relation.

The Semantic Integrity is presented here as the
complement of Functional Dependency when it falls on the
semantics of the attribute in question.

For example, a date of birth of a parent regarding the date
of birth of a descendant or the salary of an employee should
not exceed the salary of the manager of the employee.

6. Based-on-Functional-Dependency Criterion

The Based-on-Functional-Dependency criterion, defined
by Souza [10], exercises the attributes distinct between the
same relation or different relations to which it belongs. The
sub-criteria was established: all-attributes-functionally-
dependent.

Definition: A test data set T satisfies the sub-criteria all-
attributes-functionally-dependent if the restriction of
functional dependency between attributes of one or more
relations is satisfied.

The sub-criteria all-attributes-functionally-dependent is
called exercised when T satisfy the criteria, ensuring that an
attribute of a:

 Relation B uniquely determines another attribute of
Relation A and actions occur in distinct dependency
relations;

 Relation can also be dependent on another attribute
in the same relation. This can occur whenever there
is information of an attribute that are formed by the
values of other attributes.

III. CASE STUDY

In partnership with Laboratory of Quality Milk (LQL)
belonging to the Food Research Center, Veterinary School of
the Federal University of Goiás (Universidade Federal de
Goiás), at Goiânia, was developed the Panel of Quality Milk
(PQL) solution, which aims to provide customers the LQL a
set of milk strategic information analyzed in the laboratory,
plus a knowledge base produced by researchers at the
institution [12].

The goal of this solution is to encourage continuous
learning and the improvement of the final quality of the
Brazilian milk, leading strategic real time information to the
agents of the milk chain.

For dairy, the solution helps reducing operational costs,
increasing profitability and opening new markets, promoting
the improvement of the quality of the purchased milk yield
and production.

Moreover, the operation of the PQL is provided by
information extraction from milk samples (results of analysis)
were collected and sent to the laboratory as well as those
identifications its (producers, farms, animals and dairy
products) directly from the LQL database.

The extraction of such data is performed daily at
scheduled times, forming a database constituted by historical
milk testing, which will be subject to statistical analyses by
the PQL tool. These analyzes are presented to dairy through
a website through authenticated access.

However, the integration architecture of the system is
distributed in two locations: LQL (Database and Extractor)
and PQL (Database, Integrator, Controllers and Web
Browsers).

Finally, the application consists of:

 Registers (Online Help, Cities, Farms, Dairy, Paper,
People, Producers, Fixed Price Table,
Bonus/Punishment Table, Errors Types, Users and
Milk Volume);

255Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 277 / 679

 Settings (Fat X CCS, Histograms, Lactose X CCS,
Protein X CCS, Industrial Performance, Tank
Volume X CCS, Animal Volume X CCS and About
System);

 Panels grouped in versions: Basic (Collection and
Recollect with a Compliance IN62), Standard
(History of Quality, Producer Mirror, Indicators of
Routes and Route Mirror), Advanced (Decision
Cube, Errors Cube, Distance and Volume and
Distance Mirror) and Full (Analysis of Income,
Statement of Producer, Pay Per Quality and View
Cluster).

A. Database of PQL Project

The DBMS employed in PQL Project was PostgreSQL
was due to the fact that LQL make use of it and also the large
data volume that the software will behave. Moreover, this
DBMS is free, high performance, highly scalable platform.

The structure of this database includes tables, fifty eight,
and eight of these were selected because they are essential
and relate to virtually all other tables that make up the
software. They are: analysiserror, analysisresult, baseprice,
farm, routefarm, monthclusterfarm, userroles and person.

After this assignment, their relationships with other
tables that make up the PQL database were identified and
mapped, as the following:

 analysiserror: animal, client, farm and sampleerror;

 analysisresult: animal, client, farm, sampleerror,
casein, cbt, ccs, esd, est, fat, ibc, proteins and urea;

 baseprice: dairy, farm and price;

 farm: city, farmer, milkorigin, person1, person2 and
lqlcode;

 routefarm: dairy, farmcode and route;

 monthclusterfarm: farm and monthcluster;

 userroles: roles and users;

 person: city.
They still used the Entity Relationship Diagram (ERD) to

recognize these relationships, with the intention of presenting
the dependencies between tables that have gone through
database functional testing with their respective domains and
specificities.

A testing technique with their respective criteria was
established to derive their due RE provided the generation of
TC and the extraction of its expected results.

Then, a specific and isolated environment testing was
structured and also given a load on database project for the
tables involved in this testing activity were populated.

Upon execution of the TC, a comparison between
expected results and obtained results was performed aiming
to verify the effectiveness of the criteria employed in the
functional testing of the database project.

B. Exploited Criteria

Among the functional testing specific of the database
project criteria presented in Section 2, not all were tested.
For example, it was not possible to test only Based-on-
Semantic-Integrity criterion, because this characteristic was
not included in the Business Plan of PQL Project.

Some examples of RE, description of TC, Inputs and
Expected Results applying these criteria, which were
abstracted from the document TC project of the PQL project,
i.e., the test specification of the same, are shown in Table I.

TABLE I. EXAMPLES OF FUNCTIONAL TESTING CRITERIA IN A

DATABASE PROJECT

Functional

Criteria
RE TC Input

Expected

Results

Based-on-
Structural-

Relationships

Analyze the

sample

result of the
animal.

Modify the

date of the

test result
of an

animal.

Analysis

of results
of animal

“57” the

date
“2012-

05-23” to

“2012-
07-02”.

Occurrence

Remove an
animal that

has a result

of analysis.

All

animals

that have
analysis

results.

Not

Occurrence

Based-on-

Domain-

Attributes
(Equivalence

Class

Partitioning
and Boundary

Value

Analysis)

Specify the

creation
date of a

farm route.

Enter a
valid date

in the

creation of
a farm

route.

Date =
2011-05-

05.

Occurrence

Enter a
valid null in

the creation

of a farm
route.

Date =
null.

Not
Occurrence

Based-on
Keys

Check the

consistency
of the PK

of a farm.

Insert a

single PK

on a farm.

PK =

943.
Occurrence

Insert a null

PK on a

farm.

PK =
null.

Not
Occurrence

Based-on-
Referential-

Integrity

Analyze the

sample

error of the
animal.

Insert a

parsing

error for a
nonexistent

animal.

Error
Analysis

“193” for

the
animal

nonexiste

nt “0”.

Not

Occurrence

Remove an

animal that

has the
error

analysis.

Animal
which

has error

analysis.

Not

Occurrence

Based-on-

Functional-

Dependency

Determine

the client's
name and

dairy.

Modify the

name of the
client and

dairy.

Dairy =
Parmalat

Brazil

S/A Food
Industry.

Occurrence

Modify the

name of the

client and
dairy to a

null value.

Dairy =

null.

Not

Occurrence

The Based-on-Domain-Attributes criterion was exercised
in conjunction with Equivalence Class Partitioning and
Boundary Value Analysis criteria because both evaluate the

256Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 278 / 679

specificities of the attributes that make up the database
project tables.

Thus, the Based-on-Domain-Attributes criterion was
exercised along with the functional technique being
Equivalence Class Partitioning and Boundary Value
Analysis criteria, because of them assessing the specificity of
each of the attributes that make up a database table.

The functional testing criteria of the database project,
explored in this paper are shown in Table II.

TABLE II. FUNCTIONAL TESTING CRITERIA IN A DATABASE PROJECT

Functional Criteria Functional Subcriteria TC Exercises

Based-on-Structural-
Relationships

all-maximum-cardinality
all-minimum-cardinality

Maximum Cardinality;
Minimum Cardinality.

Based-on-Domain-

Attributes

(Equivalence Class
Partitioning and

Boundary Value

Analysis)

all-semantic-attributes

Occurrence of a Do-

main;

Allow Null Value.

Based-on-Keys all-primary-keys
PK;

Allow Null Value.

Based-on-
Referential-Integrity

all-foreign-keys
FK;
Permit Null Key.

Based-on-Functional-

Dependency

all-attributes-dependent-

functionally
Dependent Attribute.

Thus, other criteria database demonstrates aspects of
verifying how it was built and even though the current
DBMS preserve these properties, they were included only for
verification.

According to the tables of the database and the
established performance criteria yielded a model capable of
revealing the RE needed to obtain their corresponding TC.

TABLE III. EXTRACTION MODEL OF THE FUNCTIONAL TESTING

CRITERIA IN A DATABASE PROJECT

Functional Testing Criteria

Equivalence Class Partitioning

Condition
For each attribute of a Table, Attribute values with sequential
domains: Li until Ls.

Group 1

RE01 – Valid value until Ls ranging from Li (Li <= Attribute

<= Ls);
RE02 – Invalid value below the L (Attribute < Li);
RE03 – Invalid value higher than Li (Attribute > Ls).

Condition
For each attribute a table attribute belonging to a set of values:

Attribute ∈ {a, b, c, d}.

Group 2
RE04 – Valid within the set value (Attribute ∈ {a, b, c, d});
RE05 – Invalid value out of the set (Attribute ∉ the set {a, b,
c, d}: {e}).

Boundary Value Analysis

Condition
For each attribute of a table, with attribute values in the domain

limit L.

Group 3
RE06 – Valid value equal to the limit of L (L = Attribute);
RE07 – Invalid value lower next to L (Attribute < L);
RE08 – Invalid value near the top L (Attribute > L).

Based-on-Domain-Attributes

Condition
For each attribute of a table, the field mapping: Data Type and
Allow Nulls.

Group 4

RE09 – Data Type (Attribute of type Numeric);
RE10 – Data type (Attribute of type Date/Time);
RE11 – Data type (Attribute of type String);
RE12 – Allow Nulls (Attribute Null);
RE13 – Allow Nulls (Attribute Not Null).

Based-on-Keys

Condition For each key of a table, the mappings of keys: PK.

Group 5
RE14 – PK (Candidate Key Simple);
RE15 – PK (Candidate Key Composite).

Based-on-Structural-Relationship

Condition
For each ratio of a table, the mappings of relations:

Relationship, Cardinality and Dependence.

Group 6

RE16 – Relations (Relations Association and Dependence);
RE17 – Cardinality (Relationship of Cardinality 1 – 1);
RE18 – Cardinality (Relationship of Cardinality 1 – N);
RE19 – Cardinality (Relationship of Cardinality N – N);
RE20 – Dependence (Specialization);
RE21 – Dependence (Generalization);

Based-on-Referencial-Integrity

Condition For each key of a table, the mappings of keys: FK.

Group 7
RE22 – FK (Relationship cardinality);
RE23 – FK (Dependence).

Based-on-Functional-Dependency

Condition For each attribute of a table, the field mapping: Check.
Group 8 RE24 – Check (Extend Relationship).

Therefore, the organization of these criteria is as shown
in Table III, considering the specificities of both functional
testing criteria as the for database criteria.

IV. OBTAINED RESULTS

Results for functional testing criteria in a database project
used in this study were obtained through test analysis based
on the coverage percentage for the quantity of RE exercised
by the TC.

Altogether, there were 443 RE, generating 425 TC is
needed in this step. Therefore, it was found that all the TC
has been run and the database project also acquired that is a
100% coverage for the criteria.

Still, were achieved the results of the functional testing
criteria (Equivalence Class Partitioning and Boundary Value
Analysis) employees in Based-on-Domain-Attributes
criterion. Therefore, all TC related in the criteria were
executed and, furthermore, achieved a 100% coverage.

The results stemmed from the implementation of a
specific functional testing in a database project through the
exercise of the analyzed criteria to be presented in Table IV.

TABLE IV. RESULTS OF THE TEST RUN

Functional Testing Criteria RE TC Defects

Based-on-Domain-Attributes (Equivalence

Class Partitioning and Boundary Value
Analysis)

171 171 9

Based-on-Keys 28 21 0

Based-on-Structural-Relationships 124 113 0

Based-on-Referential-Integrity 100 100 0

Based-on-Functional-Dependency 20 20 0

Grand Total 443 425 9

In general, it is observed that the other specific criteria of
database testing help verify that the project meets specified
correctly to ensure a good quality of the generated
information.

The types of fields date, number, text, email and website
were verified through Based-on-Domain-Attributes criterion
along with functional testing criteria Equivalence Class

257Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 279 / 679

Partitioning and Boundary Value Analysis, which
consequently showed the faults in a database project.

Finally, the Boundary Value Analysis criteria detected
most of the faults identified in the database project because a
large amount of these faults is in the limits of the domains of
its attributes.

V. CONCLUSION AND FUTURE WORK

According to functional testing criteria on a database
project, there was a high efficiency degree in detection of
faults during the execution of TC for the RE generated in
PQL's Reports. All functional testing criteria applied reached
a coverage of 100% in relation the RE.

Nine faults were detected over the following criteria,
Equivalence Class Partitioning (three faults) and Boundary
Value Analysis (six faults) together with Based-on-Domain-
Attributes criterion.

The Equivalence Class Partitioning criteria contributed to
the definition of TC by the class of faults, reducing the total
number of TC generated in the PQL's Project. The Boundary
Value Analysis criteria allowed to observe most faults tend
to occur at the borders of the domain.

Furthermore, because the Based-on-Keys, Based-on-
Structural-Relationships, Based-on-Referential-Integrity and
Based-on-Functional-Dependency criterion contributing with
corrections in existing restrictions on a project database, so
no fault was detected during the execution of the TC. The
Based-on-Semantic-Integrity criterion was not used in this
project considering that the documentation does not make
any reference to these dependencies.

Finally, the combination of Based-on-Domain-Attributes
criterion also provides Equivalence Class Partitioning and
Boundary Value Analysis criteria by exploring a high level
of faults detection, just treating the specific attributes. And
thus, can be utilized in the database project.

For future work, an object of study with the purpose of
applying the criteria presented is being constructed, such as
the Based-on-Functional-Dependency and Based-Semantic-
Integrity. These criteria can improve the detection of failures
a project database.

REFERENCES

[1] A. Carniello, Test Structure Based on Use-Case, FEEC/UNICAMP,
Campinas, 2003.

[2] A. D. Suarez, A. S. Simão, J. C. Maldonado, and P. C. Masiero,
“Using an SQL Coverage Measurement for Testing Database
Applications”, In: ACM SIGSOFT Software Engineering Notes, New
York, pp. 253-262, 2004.

[3] A. L. Domingues, Assessment Criteria and Test Tools for OO
Programs, ICMC/USP, São Carlos, 2002.

[4] A. M. Vincenzi, E. F. Barbosa, J. C. Maldonado, M. E. Delamaro, M.
Jino, and S. R. S. Souza, Introduction to Software Testing, Teaching
Notes, ICMC-USP, São Carlos, 2004.

[5] A. M. Vincenzi, J. C. Maldonado, and S. C. Fabbri, Introduction to
Software Testing: Functional Testing, Rio de Janeiro: Elsevier, 2007.

[6] D. Chays, E. J. Weyuker, F. I. Vokolos, P. G. Frankl, and S. Dan, “A
Framework for Testing Database Applications”, In Proc. of the ACM
SIGSOFT Intl. Symp. On Software Testing and Analysis, Vol. 25
Issue 5, August 2000, pp. 49-59.

[7] G. J. Myers, Software Reliability Principles and Practices, 1st ed.
New York: John Wiley & Sons, INC., p. 360, 1976.

[8] G. J. Myers, T. Badgett, and T. M. Thomas, The Art of Software
Testing. 2nd ed., New York: John Wiley & Sons, INC., 2004.

[9] I. Burnstein, Pratical Software Testing: A Process Oriented
Approach, New York: Springer-Verlag, p. 709, 2002.

[10] J. P. Souza, Functional Testing Application DB Based on UML
diagram, UNIVEM, Marília, 2008.

[11] J. Tian, Software Quality Engineering, Texas: John Wiley & Sons,
INC., p. 412, 2005.

[12] Milk Panel, http://www.paineldoleite.com.br/site/ Aug/Sept 2014.

[13] . S. Pressman, Software Engineering, 6th ed., São Paulo: McGraw-
Hill, p. 720, 2006.

[14] W. E. Lewis, Software Testing and Continuous Quality Improvement,
2nd ed., Florida: CRC Press LLC, p. 534, 2004.

258Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 280 / 679

Automatic Unit Test Generation and Execution

for JavaScript Program through Symbolic Execution

Hideo Tanida, Tadahiro Uehara

Software Engineering Laboratory

Fujitsu Laboratories Ltd.

Kawasaki, Japan

Email: {tanida.hideo,uehara.tadahiro}
@jp.fujitsu.com

Guodong Li, Indradeep Ghosh

Software Systems Innovation Group

Fujitsu Laboratories of America, Inc.

Sunnyvale, CA, USA

Email: {gli,indradeep.ghosh}
@us.fujitsu.com

Abstract—JavaScript is expected to be a programming language
of even wider use, considering demands for more interactive
web/mobile applications. While reliability of JavaScript code
will be of more importance, testing techniques for the language
remain insufficient compared to other languages. We propose a
technique to automatically generate high-coverage unit tests for
JavaScript code. The technique makes use of symbolic execution
engine for JavaScript code, and stub/driver generation engine
which automatically generate stub for code of uninterest. Our
methodology allows for fully automatic generation of input data
for unit testing of JavaScript code with high coverage, which
ensures quality of target code with reduced effort.

Keywords–JavaScript, test generation, symbolic execution, stub
generation.

I. INTRODUCTION

Extensive testing is required to implement reliable soft-
ware. However, current industrial practice rely on manually-
written tests, which result in large amount of effort required
to ensure quality of final products or defects from inadequate
testing.

Verification and test generation techniques based on formal
approaches are considered to be solutions for the problem. One
such technique is test generation through symbolic execution,
which achieves higher code coverage compared to random
testing [1]–[6].

In order to symbolically execute a program, input variables
to the program are handled as symbolic variables with their
concrete values unknown. During execution of the program,
constraints to be met by values of variables in each execution
path are obtained. After obtaining constraints for all the paths
within the program, concrete values of input variables to
execute every paths can be obtained, by feeding a solver such
as Satisfiability Modulo Theory (SMT) [7] solver with the
constraints. Normal concrete execution of the program using
all the obtained data, results in all the path within the program
went through.

Manually-crafted test inputs require effort for creation,
while they do not guarantee running all the execution path
in the target program. In contrast, test generation based on
symbolic execution automatically obtains inputs to execute all

the path within the program. As the consequence, it may find
corner-case bugs missed with insufficient testing.

There are tools for symbolic execution of program code,
including those targeting code in C/C++ [1][2][4], Java [3],
and binary code [5][6]. It is reported that the tools can
automatically detect corner-case bugs, or generate test inputs
to achieve high code coverage.

Existing tools for JavaScript code include Kudzu [8] and
Jalangi [9]. Kudzu automatically generates input data for
program functions, with the aim of automatically discovering
security problems in the target. Jalangi allows modification of
path constraints under normal concrete executions, in order to
obtain results different from previous runs. However, the tools
could not be applied to unit testing of JavaScript code in field,
due to limitations in string constraint handling and need for
manual creation of driver/stub used for testing.

We propose a technique to generate test inputs for
JavaScript code through symbolic execution on a tool SymJS.
Test inputs generated by the tool allows for automatic unit test
execution. After augmenting generated test inputs with user-
supplied invariants, application behavior conformance under
diverse context can be checked in a fully automatic fashion.
Our proposal includes automatic generation of symbolic stubs
and drivers, which reduces need for manual coding. Therefore,
our technique allows for fully automatic generation of input
data used in unit testing of JavaScript code. Test inputs
generated by our technique exercise feasible execution paths
in the target to achieve high coverage.

Our methodology has the following advantages to existing
works. Our JavaScript symbolic execution engine SymJS is
applicable to JavaScript development in field for the following
reasons. First, our constraint solver PASS [10] allows test
generation for programs with various complex string manip-
ulations. Secondly, SymJS does not require any modification
to the target code, while the existing symbolic executors for
JavaScript [8][9] needed modifications and multiple runs.

Further, our automatic stub/driver code generation allows
for fully automatic test data generation. An existing work [9]
could be employed for generation of unit tests. However, it re-
quired manual coding of stub/driver, which requires knowledge

259Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 281 / 679

�

�

�

�

f u n c t i o n func0 (s , a) {
i f (” ” . e q u a l s (s)) { / / b l o c k 0

s = n u l l ;
} e l s e {

i f (s . l e n g t h <= 5) { / / b l o c k 1
a = a + s t a t u s ;

} e l s e {
i f (” ” . e q u a l s (s)) { / / b l o c k 2

Lib . m0 () ; / / Unreachable
} e l s e { / / b l o c k 3

Lib . m1 () ;
}

}
}
i f (a <= Lib . m2 ()) { / / b l o c k A

a = 0 ;
} e l s e { / / b l o c k B

a = a + s . l e n g t h ; / / Error w i t h n u l l s
}

}

Figure 1. Code Fragment Used to Explain our Methodology:
s, a, Lib.m2() may Take Any Value

on symbolic execution and error-prone. Our fully automatic
technique can be applied to development in practice.

The rest of this paper is organized as follows. Section II
explains the need for automatic test generation/execution with
an example, and introduces our test input generation technique
through symbolic execution. Section III describes our method
to automatically generate stub/driver code used in test gener-
ation/execution. Evaluation in Section IV shows applicability
and effectiveness of our technique. Finally, we come to the
conclusion in Section V and discuss future research directions.

II. BACKGROUND AND PROPOSED TEST

GENERATION TECHNIQUE

A. Demands for Automatic Test Generation

Generally, if a certain execution path in a program is exer-
cised or not, depends on input fed to the program. Therefore,
we need to carefully provide sufficient number of appropriate
test input data, in order to achieve high code coverage during
testing.

For example, function func0() shown in Figure 1 con-
tains multiple execution path. Further, whether each path is
exercised or not depends on input fed to the program, which
are value of arguments s,a and return value of function
Lib.m2(). Current industrial testing practice depends on
human labor to provide the inputs. However, preparing test
inputs to cover every path within software under test requires
large amount of efforts. Further, manually-created test inputs
might not be sufficient to exercise every path within the target
program.

Figure 2 shows possible execution path within the example
in Figure 1. In the example, there are two set of code blocks
and whether blocks are executed or not depend on branch
decisions. The first set of the blocks contains blocks 0-3,
and the second set contains blocks A-B. Conditions for the
blocks to be executed are shown at the top of each block

Figure 2. Execution Paths within Code Shown in Figure 1

TABLE I. CONSTRAINTS TO EXECUTE PATHS IN FIGURE 2 AND

SATISFYING TEST INPUTS (UNDER ASSUMPTION STATUS=-1)

Test Blocks Path Test
No. Executed Conditions Data

1 0,A "".equals(s) ∧ s="", a=0
a<=Lib.m2() Lib.m2()=0

2 0,B "".equals(s) ∧ s="", a=0
a>Lib.m2() Lib.m2()=-1

3 1,A !"".equals(s) ∧ s="a", a=0
s.length <= 5 ∧ Lib.m2()=0
a-1<=Lib.m2()

4 1,B !"".equals(s) ∧ s="a", a=1
s.length <= 5 ∧ Lib.m2()=0
a-1>Lib.m2()

5 3,A !"".equals(s) ∧ s="aaaaaa", a=0
s.length > 5 ∧ Lib.m2()=0
a<=Lib.m2()

6 3,B !"".equals(s) ∧ s="aaaaaa", a=0
s.length > 5 ∧ Lib.m2()=-1
a>Lib.m2()

in Figure 2. Block 2 has a contradiction between conditions
for execution and will never be executed. However, the other
blocks have no such contradiction and executable. Tests to
execute every possible combination of blocks 0,1,3 and blocks
A,B correspond to 3× 2 = 6 set of values for the inputs.

TABLE I shows combinations of blocks to execute and
path condition to be met by arguments s,a and return value
of Lib.m2(). In the example, it is possible to obtain concrete
values meeting the conditions for the inputs, and the values can
be used as test inputs. We will discuss how to automatically
obtain such test inputs in the sequel.

B. Test Input Generation through Symbolic Execution

We propose a methodology to automatically generate test
inputs with SymJS, a symbolic execution engine for JavaScript.
During symbolic execution of a program, constraints to be met
in order to execute each path (shown as “Path Conditions” in

260Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 282 / 679

TABLE II. INSTRUCTIONS WITH THEIR INTERPRETATIONS MODIFIED

FROM ORIGINAL RHINO

Arithemetic/Logical ADD, SUB, MUL, DIV, MOD, NEG, POS, BITNOT,
Operations BITAND, BITOR, BITXOR, LSH, RSH, URSH etc.

Comparisons EQ, NE, GE, GT, LE, LT, NOT, SHEQ, SHNE etc.

Branches IFEQ, IFNE, IFEQ POP etc.

Function Calls RETURN, CALL, TAIL CALL etc.

Object NEW, REF, IN, INSTANCEOF,
Manipulations TYPEOF, GETNAME, SETNAME, NAME etc.

Object GETPROP, SETPROP, DELPROP,
Accesses GETELEM, SETELEM, GETREF, SETREF etc.

TABLE I) are calculated iteratively. After visiting every pos-
sible path within the program, constraints for all the path are
obtained. Concrete values of variables meeting the constraints
can be obtained with solvers such as SMT solver. Obtained
values are input data to exercise paths corresponding to the
constraints, which we can use for testing.

While JavaScript functions are often executed in a event-
driven and asynchronous fashion, our technique focuses on
generation of tests which invoke functions in deterministic
and synchronous orders. We assume the behavior of generated
tests are reasonable, considering what is inspected in current
JavaScript unit tests in field, as opposed to integration/system
testing. Each generated test data exercise single path within
the target, and only single data is generated for each path.

SymJS allows for symbolic execution of JavaScript code.
SymJS interprets bytecode for the target program, and symbol-
ically executes it in a way KLEE [2] and Symbolic JPF [3] do.
SymJS handles program code meeting the language standard
defined in ECMAScript [11].

SymJS is an extended version of Rhino [12], an open-
source implementation of JavaScript. Our extensions include
symbolic execution of target code, constraint solving to obtain
concrete test input data, and state management. While there
are existing symbolic executors for JavaScript, SymJS does
not reuse any of their code base. TABLE III shows comparison
between SymJS and existing symbolic executors.

SymJS interprets bytecode compiled from target program
source code. This approach is taken by existing symbolic
executors such as KLEE [2] and Symbolic PathFinder [3].
Handling bytecode instead of source allows for implementation
of symbolic executors without dealing with complex syntax
of the language. SymJS is implemented as an interpreter of
Rhino bytecode, which updates the program state (content of
heap/stack and path condition) on execution of every bytecode
instruction. Upon hitting branch instruction, it duplicates the
program state and continues with the execution of both the
branches.

In order to implement symbolic execution of target pro-
grams, we have modified interpretation of the instructions
shown in TABLE II from the original Rhino. Handling of
instructions for stack manipulation, exception handling, and
variable scope management remain intact.

For example, an instruction ADD op1 op2 is interpreted as
follows. (1) Operands op1 and op2 are popped from stack. The
operands may take either symbolic or concrete value. (2) Types
of the operands are checked. If both the operands are String,
the result of computation is the concatenation of the operands.

TABLE III. COMPARISON OF SYMBOLIC EXECUTORS

Tool Target Sym. Dep./Cache String
Lang. VM Solving Solving

SymJS JavaScript Yes Yes Yes
KLEE [2] C Yes Yes No
SAGE [6] x86 binary No Yes No

Sym JPF [3] Java Yes No No
Kudzu [8] JavaScript No No Yes
Jalangi [9] JavaScript No No Limited

TABLE IV. REPRESENTATION OF STATES IN FUZZING AFTER EXECUTING

CODE ON FIGURE 1 UNDER PATH CONDITIONS IN TABLE I

Test No. Blocks Executed State Representation

1 0,A L;L
2 0,B L;R
3 1,A R;L;L
4 1,B R;L;R
5 3,A R;R;R;L
6 3,B R;R;R;R

If they are Numeric, the result is the sum of the operands.
Otherwise, values are converted according to ECMAScript
language standard, and the result is either concatenation or
addition of the obtained values.

Comparison instructions are followed by branch instruc-
tions in Rhino bytecode. SymJS handles comparison and
branch instruction pairs as in the following. First, it creates
Boolean formula corresponding to result of comparison after
necessary type conversions. Assuming the created formula is
denoted by symbol c, we check if c and its negation ¬c are
satisfiable together with path condition pc. In other words,
we check for satisfiablity of pc ∧ c and pc ∧ ¬c. If both are
satisfiable, we build states s1, s2 corresponding to pc ∧ c and
pc ∧ ¬c and continue with execution from states s1 and s2.
If one of them is satisfiable, the state corresponding to the
satisfiable one is chosen and execution resumes from that point.

SymJS supports two ways to manage states which are
created on hitting branches etc. The first method is to store
program state variables including content of heap/stack, as is
done in [2][3]. The second method is to remember only which
side is taken on branches. This method needs to re-execute the
target program from its initial state on backtracking. However,
it benefits from its simple implementation and smaller memory
footprint. The method is called “Fuzzing” and similar to
the technique introduced in [4][6]. However, our technique
is implemented upon our symbolic executor and does not
need modification of target code required with the existing
tools [8][9] for JavaScript.

During symbolic execution of programs through fuzzing,
states are represented and stored only by which side is taken
on branches. The information can be used to re-execute the
program from its initial state and explore the state space
target may take. States after symbolically executing the target
program in Figure 1 with path conditions corresponding to
tests 1-6 in TABLE I, are represented as shown in TABLE IV
during fuzzing. Symbols L,R denote left/right branch is taken
on a branching instruction.

For each of state representations shown in TABLE IV,
corresponding path condition can be obtained. TABLE I in-
cludes path conditions for the states in TABLE IV. If it is
possible to obtain solutions satisfying the constraints, they can

261Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 283 / 679

be used as inputs used during testing. Constraints on numbers
can be solved by feeding them into SMT solvers. However,
SMT solvers cannot handle constraints of strings, which is
heavily used in most of JavaScript code. Therefore, we employ
constraint solver PASS [10] during test input generation.

PASS can handle constraints over integers, bit-vectors,
floating-point numbers, and strings. While previous constraint
solvers supporting string constraints used bit-vectors or au-
tomata, PASS introduced modeling through parameterized-
arrays which allows for more efficient solving. As the con-
sequence, it can solve most of constraints corresponding to
string manipulations within ECMAScript standard.

C. Symbolic Stubs and Drivers

Symbolic variables are targets of test input generation
through symbolic execution. SymJS allows definition of sym-
bolic variables through function calls. The code snippet be-
low shows an example of defining symbolic string variable.
var s = symjs_mk_symbolic_string();

While the example defines a symbolic variable of
string type, functions symjs_mk_symbolic_int(),
symjs_mk_symbolic_bool() and
symjs_mk_symbolic_real() allow definition of
symbolic variables with their type being integer, Boolean, and
floating-point, respectively. While SymJS allow only string,
integer, Boolean, and floating-point numbers to be symbolic,
their constraints are retained on assignments/references as
members of more complex objects, allowing generation of
tests with value of object members changing.

In order to determine test inputs for the function func0()
in Figure 1, additional code fragments are required. First, a
symbolic driver shown in Figure 3 is required. The driver
declares symbolic variables and passes them to the function
as arguments. Stubs to inject dependencies are also required.
A symbolic stub in Figure 4 includes a symbolic variable
declaration. With the stub, the return value of the function call
to Lib.m2() is included to test inputs obtained by SymJS.

Functions symjs_mk_symbolic_*() used to define
symbolic variables is interpreted as expressions to define new
symbolic variables during test generation. SymJS allows for
normal concrete execution with the generated test inputs.
During concrete execution, the functions return concrete values
contained in test inputs. SymJS can export test inputs into
external files in JavaScript Object Notation (JSON) format. The
files can be read by test playback library which returns cor-
responding test input data on symjs_mk_symbolic_*()
function calls. The library loaded into typical web browser
enables execution of generated tests with no custom JavaScript
interpreter.

III. AUTOMATIC GENERATION OF SYMBOLIC

STUBS AND DRIVERS

As explained in Section II-C, symbolic stubs and drivers
are required to symbolically execute target functions and obtain
test inputs. Symbolic stubs which return symbolic variables are
used to generate return values of functions which are called
from functions under test. Symbolic drivers are needed to vary
arguments passed to functions tested.

While it is possible to employ manually implemented
symbolic stubs and drivers, additional cost is required for
implementation. Therefore, it is desirable to have symbolic
stubs and drivers be automatically generated. Hence, we have
decided to generate symbolic stubs and drivers in an automatic
manner, and use them for test generation and execution.

A. Strategy for Generating Symbolic Stubs and Drivers

Our symbolic stub generation technique produces stub
for functions and classes specified. Our driver generation
technique emits code which calls functions specified.

As for stub generation, we have decided to generate func-
tions which just create and return objects according to type of
return value expected by caller. The following is the mapping
between expected type and returned object:

• String, integer, Boolean and floating-point numbers
which SymJS can handle as symbolic
(Hereafter referred to as SymJS primitives):
Newly defined symbolic variable of the corresponding
type.

• Other classes:
Newly instantiated object of the expected type. If the
class is targeted for stub generation, newly instantiated
stub object is returned.

• Void: Nothing is returned.

In order to create stubs for classes, stubs for constructors also
need to be generated. Here, we generate empty constructors,
which result in all stateless objects. Our approach assumes
there is no direct access to fields of stub classes, and does not
generate stubs for fields.

We have to note even in case type of return value is
a non-SymJS primitive, we may get multiple test inputs.
That is the case if functions defined in the returned object
return symbolic variables. The situation happens if the non-
SymJS primitive class contain functions which return objects
of SymJS primitive class, and the non-SymJS primitive class
is stubbed. Therefore, it is possible to obtain more than one
set of test inputs by calling functions returning non-SymJS
primitive.

Symbolic drivers generated with our technique have the
following functionality:

• If the function to be tested is not static and needs an
object instance to be executed, instantiate an object of
the corresponding class and call the function

• If the function is a static one, just call the function

As arguments passed to the function, drivers give the following
objects according to the expected types:

• SymJS primitives:
Newly defined symbolic variable of corresponding
type.

• Other classes:
Newly instantiated object of the expected type. If the
class is targeted for stub generation, newly instantiated
stub object is passed.

262Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 284 / 679

�
�

�
	

v a r s = s y m j s m k s y m b o l i c s t r i n g () ;
v a r a = s y m j s m k s y m b o l i c f l o a t () ;
func0 (s , a) ;

Figure 3. Symbolic Driver to Execute Code in Figure 1�
�

�
	

Lib . m2 = f u n c t i o n () {
re turn s y m j s m k s y m b o l i c f l o a t () ;

} ;

Figure 4. Symbolic Stub Providing Lib.m2() Used in Figure 1

�

�
/∗ ∗ @return {Number} m2 v a l u e ∗ /

Lib . m2 = f u n c t i o n () { . . . } ;

Figure 5. Function Definition with an Annotation to Automatically Generate
Symbolic Stub in Figure 4

�
�
/∗ ∗ @return { t x . Data} da ta ∗ /

t x . Ui . g e t V a l u e = f u n c t i o n () { . . . } ;

⇓�
�

�
	

t x . Ui . g e t V a l u e = f u n c t i o n () {
re turn new t x . Data () ;

} ;

Figure 6. Function with an Annotation Returning non-SymJS Primitive and
Generated Symbolic Stub�

�
�
	

/∗ ∗ @param { S t r i n g } s
∗ @param {Number} a ∗ /

f u n c t i o n func0 (s , a) { . . . }

Figure 7. Annotations for Function under Test to Automatically Generate
Symbolic Driver in Figure 3

The manner to choose arguments is similar to the one resolves
what to return in symbolic stubs.

B. Generating Symbolic Stubs and Drivers from Annotations

Symbolic stub/driver generation strategy proposed in Sec-
tion III-A requires type information from target code. Types
of return values expected by caller are required for stub
generation. Types of arguments passed to functions under test
are required to generate drivers.

However, JavaScript is a dynamically typing language
which makes it difficult to determine type of return values and
arguments prior to run time. On the contrary, many JavaScript
programs have some expectations in types of return values and
arguments, which are often given in Application Programming
Interface (API) etc. Further, there is a way to express type
information for JavaScript code in a machine readable manner,
which is JSDoc-style annotation. Therefore, we have decided
to obtain type information from annotations in JSDoc3 [13]
convention, and generate symbolic drivers and stubs.

Symbolic stubs are generated from original source code
of functions to generate stubs for. Functions need to contain
annotations, which provide type information on return values
of functions. Symbolic stub for a function can be generated if
type of its return values is obtained from annotations.

JSDoc3 allows declaration of return value type, mainly
through @return annotations. In order to generate symbolic
stub for function Lib.m2() used in code snippet on Figure 1,
an annotation like the one shown in Figure 5 is required. If such
annotation is attached to original source code of the function,
it is possible to figure out type for return values. From the
obtained type for return values, the symbolic stub in Figure 4
can be generated in a fully automatic manner. The example
demonstrates generation of symbolic stub for a function re-
turning a SymJS primitive. An example of generating symbolic
stub for a function which returns a non-SymJS primitive is
shown in Figure 6.

Symbolic drivers are generated from source code of func-
tions to be tested. Source code need to contain annotations
expressing type of arguments passed to the function, in order to
automatically generate symbolic driver to invoke the function.

Type of parameters passed to functions are often given
with @param annotation for JSDoc3. Symbolic driver for the
function func0() can be generated from the annotations
in Figure 7, attached to the function. The annotations give
types of parameters for the function, allowing generation of
the symbolic driver in Figure 3.

The proposed technique for automatic generation of sym-
bolic stub and drivers is implemented as plugins for JSDoc3.
JSDoc3 allows implementation of custom plugins, and they
may contain hooks to be invoked on finding classes or func-
tions. Within the hooks, it is possible to obtain types for return
values and parameters. The developed plugins automatically
generate symbolic stubs and drivers for classes and functions
contained in program source code fed to JSDoc3.

While we have proposed a technique to automatically
generate symbolic stubs and drivers based on type information
obtained from annotations in program, it is also possible to
use type information from other sources. Such sources of type
information include API specification documents.

IV. EVALUATION

In order to confirm that our proposed technique can auto-
matically generate and execute unit tests achieving high code
coverage, we have performed experiments using an industrial
JavaScript program. The program corresponds to the client part
of web application implemented upon our custom framework
for web application implementation. The program calls to
API not defined in ECMAScript standard wrapped in our
framework, and it contains only calls to standard API or
our framework. We have to note common API to manipulate
HTML Document Object Model (DOM) or communicate with
servers are not part of ECMAScript standard and they are not
used directly in the program. TABLE V shows statistics on the
target program.

A. Generation of Symbolic Stubs and Drivers

In order to perform automatic generation of test input
proposed in Section II, we have generated symbolic stubs and
drivers with through technique explained in Section III.

Symbolic stubs are generated from source code of the
framework used to implement the application. Source code has
annotations meeting JSDoc3 standard which allow for retrieval

263Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 285 / 679

TABLE V. STATISTICS ON THE TARGET PROGRAM

#Line #Function #File

431 23 1

TABLE VI. STATISTICS ON THE FRAMEWORK SOURCE CODE USED FOR

STUB GENERATION AND GENERATED STUB

#Line(Orig.) #Line(Stub) #Function #File

2843 1304 154 13

of types for return values of functions. Stubs are sucessfully
generated for all the classes and functions defined in the
framework. TABLE VI lists figures on the original framework
source code and generated symbolic stubs. As the program is
implemented only upon API defined in ECMAScript language
standard and the framework, all the stubs required for symbolic
execution of the program are ready at this stage.

Symbolic drivers are generated from source code for the
program under test. JSDoc3-style annotations can be found
in the target program as well, and it is possible to determine
types of arguments required for generation of symbolic drivers.
Drivers for all 23 functions within the program are generated.

B. Test Input Generation and Test Execution

Each function within the target program is executed in a
symbolic manner, using the automatically generated drivers
and stubs. Test inputs containing concrete values of symbolic
variables are obtained at the end of executions.

Symbolic execution of all functions finished within 1 sec-
ond and test inputs are generated. Number of test inputs, which
are assignments of concrete values into symbolic variables,
differed between target functions. Only 1 test input is generated
for functions with no branch, while number of tests varied to
27 obtained with a more complex function.

Target functions are concretely executed with test inputs
obtained. Test playback library running on a web browser
is used to replay the tests. Code coverage during testing is
measured with JSCover [14], and line coverage of 92% was
obtained. The result shows our technique can generate unit test
input achieving high code coverage fully automatically.

C. Code Not Covered in the Experiments

While the experimental results show that the proposed
method can generate test input achieving high code coverage,
100% coverage is not reached, implying some portion of the
target program is not exercised. The followings are the classes
of code not executed with our methodology.

Code handling objects of unexpected type is not covered.
As JavaScript is a dynamically typing language, objects of
unexpected type might be returned by functions. In order to
handle such scenario, the target program contained type check-
ing and subsequent error handling code. However, symbolic
stubs generated through our technique, always return a object
of type described in source code annotation. Such stubs fail to
utilize code portions handling objects of type different from
annotations.

Code with no premise on object type is also missed. The
target program contained code fragments which determine type

of objects at run time and process them accordingly. However,
our technique cannot cover such procedures. From functions
with types of their return values unknown, we generate stubs
returning default JavaScript “Object”. Therefore, code inter-
acting with objects of custom class is uncovered.

Catch blocks handling exceptions is left. The target pro-
gram contained catch blocks for exceptions thrown from the
framework used in the program. However, after replacing the
framework with the automatically generated symbolic stubs
which throw no exception, they are not exercised.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We proposed a technique to automatically generate unit
test input data for JavaScript code. The technique makes use
of a symbolic execution engine, in order to achieve high
code coverage during testing. The technique is a two-phase
approach, consisting of the following fully-automatic steps:

1) Symbolic stub/driver generation based on type infor-
mation obtained from annotations

2) Test input generation through symbolic execution of
target code

The experiment with an industrial JavaScript program
shows the technique can generate tests achieving line coverage
of 92%. The result shows our technique can automate gener-
ation and execution of unit tests for JavaScript code.

B. Future Work

Future work includes more verification trials with variety of
target programs. While we have performed experiments with
programs of relatively small size, experiments on larger targets
are also required.

In order to exercise target code missed in the experiment,
symbolic stubs need to be improved. Code handling objects
of unexpected/unknown type can be kicked by symbolic stubs
which return various types of objects. Code handling excep-
tions can be triggered with symbolic stubs throwing excep-
tions. In addition to more complex automatic stub generation
strategies, manual modifications to automatically generated
stubs are considered effective to increase coverage.

In the experiment, we have targeted JavaScript code with
HTML DOM handling encapsulated in our framework, al-
lowing test generation and execution only with creation of
symbolic stub for the framework. In order to target JavaScript
code containing manipulation on HTML DOM, symbolic
stubs for HTML DOM API need to be developed. To target
mobile applications, it is required to write symbolic stubs for
frameworks used in mobile application implementation.

REFERENCES

[1] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically Generating Inputs of Death,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security,
2006, pp. 322–335.

[2] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-coverage Tests for Complex Systems Programs,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, 2008, pp. 209–224.

264Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 286 / 679

[3] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: Symbolic
Execution of Java Bytecode,” in Proceedings of the IEEE/ACM In-
ternational Conference on Automated Software Engineering, 2010, pp.
179–180.

[4] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing En-
gine for C,” in Proceedings of the 10th European Software Engineering
Conference, 2005, pp. 263–272.

[5] N. Tillmann and J. De Halleux, “Pex: White Box Test Generation for
.NET,” in Proceedings of the 2nd International Conference on Tests and
Proofs, ser. TAP’08, 2008, pp. 134–153.

[6] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing
for Security Testing,” Queue, 2012, pp. 20:20–20:27.

[7] L. De Moura and N. Bjørner, “Satisfiability Modulo Theories: Intro-
duction and Applications,” Commun. ACM, vol. 54, no. 9, 2011, pp.
69–77.

[8] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A Symbolic Execution Framework for JavaScript,” in Proceedings of
the 2010 IEEE Symposium on Security and Privacy, 2010, pp. 513–528.

[9] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for javascript,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488–498.

[10] G. Li and I. Ghosh, “PASS: String Solving with Parameterized Array
and Interval Automaton,” in Proceedings of Haifa Verification Confer-
ence, 2013, pp. 15–31.

[11] ECMA International, Standard ECMA-262 - ECMAScript Language
Specification, 5th ed., June 2011. [Online]. Available: http://www.
ecma-international.org/publications/standards/Ecma-262.htm

[12] “Rhino,” https://developer.mozilla.org/en-US/docs/Rhino, [Online; ac-
cessed 2014.08.15].

[13] “Use JSDoc,” http://usejsdoc.org/index.html, [Online; accessed
2014.08.15].

[14] “JSCover - JavaScript code coverage,” http://tntim96.github.io/JSCover/
http://usejsdoc.org/index.html, [Online; accessed 2014.08.15].

265Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 287 / 679

Enabling Functional Integration Testing of Software-Intensive Technical Systems
by Heterogeneous Models

Thomas Bauer, Frank Elberzhager
Fraunhofer Institute for Experimental Software Engineering IESE

Kaiserslautern, Germany
{thomas.bauer | frank.elberzhager}@iese.fraunhofer.de

Abstract— In complex software-intensive systems, the analytical
quality assurance activities on different levels have become crucial
for achieving high product quality. Higher complexity and
distributed product development require systematic integration
testing to assure interoperability between components and the
fulfilment of complex distributed system operations. This work
presents the novel automated model-based testing approach ER!S
for software-intensive technical systems, which uses a heterogeneous
modeling concept for describing the test- and system-specific
information. Recommendations from the relevant process
standards have been considered to assure and support industrial
applicability. The generic approach has been instantiated for
functional integration testing on the software design level. It focuses
on the functional requirements that are related to distributed system
operations implemented by the component interplay. The test model
contains the information needed for deriving the test cases for
concrete stimulation sequences together with the corresponding
expected behavior. The approach supports stepwise system
assembly according to an operation-oriented integration strategy.
The approach has been initially evaluated in a feasibility study,
which was conducted in a research project together with tool
vendors and industrial partners from different technical system
domains. The first evaluation results are presented. A higher degree
of test coverage regarding the relevant functional requirements was
achieved.

Keywords— model-based testing; software integration testing;
standard-compliant quality assurance; ISO 26262.

I. INTRODUCTION

The increasing use of software in technical devices like
automotive and aerospace systems has enabled the efficient
development of new functionality. Software-intensive systems
are the main innovation drivers for many embedded system
domains nowadays. Most of the innovations are achieved by
embedded software [3]. The increasing complexity of software-
intensive technical systems regarding their functionality,
requirements, system structure, and amount of program code
requires more constructive and analytical measures to fulfill the
high quality needs within the given economic limits [4].

One consequence of the ever greater complexity of systems
and their software parts is the increasing impact of software
defects on the overall system quality [2]. A significant number
of defects are caused by the faulty interplay of software-
controlled components that perform complex functions, the so-
called distributed system operations. Therefore, integration and
interoperability testing of distributed systems are essential
quality assurance activities to check complex sub-system
requirements, distributed system operations, and component
interaction patterns.

In the research project MBAT, which stands for combined
model-based analysis and testing [1], we investigate and develop
quality assurance (QA) techniques for safety-related systems
from the automotive, avionics, and rail domains.

Development and QA of these systems is guided and driven
by different process standards depending on the application
domain, e.g., ISO 26262 [6] for passenger cars and DO-178C
[7] for airborne systems. Compliance of processes with such
standards is an important factor that has to be considered when
new technologies are introduced that tackle the challenges of
increasing product complexity and economic restrictions.

Software

Model
Component

Test

Model
Integration

Test

Acceptance
Testing

System
Architecture

Analysis

Requirements
Analysis

HW-SW Integrat. T.

Software
Architecture

Analysis

Component
Design

Analysis

Software
Component

Testing

SW Integration
& System
Testing

ECU Integration T.

Subsystem TestingSystem

Code Analysis &
Developer Testing

Figure 1. Simplified QA process for software-intensive technical systems

 Figure 1 shows a simplified QA process for software-
intensive technical systems. Test objects are executable
software, software integrated with hardware, and networks of
control units driven by software, which leads to various stages
of integration testing. Software testing is split into several
abstraction levels such as software component, integration, and
system testing, where individual components, interacting
subsystems, and fully integrated parts are checked against their
specifications. If executable models are available from the
design stages, dedicated model testing activities on the
component and subsystem levels are conducted in addition. This
leads to a new branch in the QA process, which is marked in
black in the figure.

This article presents the new test approach ER!S for
integration testing on the software and model levels of technical
software-based systems. It is structured as follows: Section II
presents the results from a state-of-the-practice study, which
comprises a detailed analysis of the relevant process standards.
Section III gives an overview and assessment of the state-of-the-

266Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 288 / 679

art approaches in model-based integration testing and motivates
why the available solutions are not sufficient. The new model-
based testing approach ER!S is presented in Section IV
(modeling notation) and Section V (test case generation
approach). The article concludes with a short presentation of the
evaluation results in Section VI and a summary in Section VII.

II. ANALYSIS OF PROCESS STANDARDS

Since technical software-intensive systems perform safety-
related functions, standards and guidelines have been developed
that are mandatory for product development and QA. Standards
provide a high-level overview of the accepted and determined
state of the practice at a defined time. They require compliance
of the development processes regarding the activities performed
and the documents produced depending on criticality degrees.
The relevant standards for software development and
verification in the transportation domains are IEC 61508
(generic recommendations for safety-related software-intensive
systems, [5]), ISO 26262 (for passenger cars, [6]), DO-178C (for
avionics systems, [7]), and EN 50128 (for the railway domain,
[8]). In our analysis, we focused on ISO 26262 and DO-178C.
ISO 26262 re-uses many recommendations and guidelines from
the generic standard IEC 61508, which will not be considered
separately in this section. The same applies to EN50218, which
does not provide additional information for the state-of-the-
practice analysis.

Software integration testing is explicitly considered and
demanded in ISO 26262 and DO-178C as a mandatory QA
activity. ISO 26262 states a set of objectives, coverage criteria,
and test case derivation methods. DO-178C and its supplements
for model-based development and verification (DO-331) and
formal methods (DO-333) define a list of generic objectives to
be satisfied during the development and QA of the different
artifacts.

Figure 8 in the appendix section shows the relevant
recommendations from the two major standards analyzed and
the derived and aggregated recommendations focusing on
functional software integration testing. The left part of the figure
describes the DO-178C recommendations and the right part
covers the recommendations from ISO 26262. The generic and
aggregated conclusions are described at the bottom of the figure.
The corresponding parts, sections, and tables in the documents
and the external sources that are referenced in standards are
annotated.

Certain recommendations depend on the safety criticality of
the artifacts being developed and verified. A higher level of
criticality always leads to stricter recommendations and more
intensive QA. Both standards have four criticality levels (A, B,
C, D), but with different orders. The most critical ISO level is D
and the highest DO level is A.

ISO 26262 distinguishes between recommended and
mandatory actions, which are annotated as lower and upper case
letters in the figure. For example, the annotation abCD of the
ISO recommendation function coverage means that this
criterion is recommended for criticality levels A and B and
mandatory for C and D. The term (--BA) for the DO
recommendation of the criterion branch coverage of source
code means that this criterion is recommended for levels A and
B, but not needed for levels C and D. Directed arrows show the
references between different document parts. Dashed lines

represent the relations of the documents and sections of the
standards to the generic and aggregated recommendations at the
bottom of the figure.

The major recommendation of both standards is the intensive
verification and validation of a product’s compliance with its
requirements. DO-178C, in particular, demands very strict
approaches for requirements refinement, traceability, and
coverage in the test cases. Additional aspects cover verification
of compliance with the software architecture design and the
interface definitions, performance properties checks, and
coverage of exceptional situations in the robustness test.

Concrete techniques for test case selection are also proposed.
Both standards mention the generic, industrially proven,
functional testing techniques of equivalence class partitioning,
boundary value analysis, and coverage of specification and
design models if such model models are available. Detailed
criteria and guidelines for the application of these techniques are
not provided. An exception is the recommendation of model
coverage for finite state machines. The definition of concrete
equivalence classes and boundary values and their exploitation
for the selection of test cases are not further defined and remain
up to the test designer.

Furthermore, architectural coverage regarding component
interfaces, interactions, and control and data coupling is
recommended. Concrete entity types of interfaces and
interaction elements are not mentioned. From the perspective of
complex system operations, the coverage of functions, function
calls, and function sequences is demanded. This criterion is
important for the coverage of complex use cases and distributed
system operations.

ISO 26262 and DO-178C explicitly support the use of
formal models, especially behavior models, for development
and QA activities. Different notations are mentioned and
recommended, for example transition-based notations (finite
state machines), pre-/post-based notations (Z), and operational
and concurrent notations (Petri nets). More information on the
modeling notations and their classification is provided in [9].

The conclusions for functional integration testing on the
model and software levels are: Requirements coverage is the
major criterion and the most important goal of testing. Concrete
techniques and criteria for creating requirements-based test
cases are mentioned. The specification of complex and
distributed system operations represents high-level
requirements of the integrated system that have to be checked
intensively. Additionally, the coverage of the software
architecture as well as that of component interfaces and their
interactions has to be considered for test design and test
specification. Based on our experience from the MBAT project,
no industrially proven automated test approach is available that
sufficiently and efficiently covers standard-compliant functional
integration testing on the model and software levels.

III. STATE OF THE ART

Model-based approaches provide a high degree of automation
regarding analysis, transformation, and generation of valid
execution sequences due to their sound mathematical basis.
Different modeling notations have been systematically exploited
for the generation of test cases. The set of corresponding
techniques is called model-based testing (MBT). MBT
approaches address those 40% of testing effort that are usually

267Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 289 / 679

spent on test preparation and test specification in an industrial
project [32]. By automating these activities, the overall testing
effort can be significantly reduced. The standards analyzed in the
previous section also propose the use of models for development
and QA activities. The main focus of the MBT techniques is on
functional testing, i.e., on testing against the functional
specification [9]. Functional testing usually requires the
specification of test cases with the corresponding pre-conditions,
actions, expected results, and post-conditions.

Models that are constructed for the primary use of generating
test cases from them are called test models. They represent the
relevant information from the test and QA perspectives. Test
models can describe intended and unintended functionality,
unexpected and unspecified usage, or misuse to support
robustness testing. Additionally, test models also guide and
facilitate test case generation by providing information on
importance and criticality or on the frequency of certain scenarios.
An overview of test modeling notations and test case generation
approaches is provided by Utting et al. in [9]. For model-based
integration testing, numerous approaches have been developed
with different kinds of test objectives and modeling notations. A
detailed overview and a classification are given by Bauer and
Eschbach in [31]. The approaches have been classified intro three
classes (component-based, scenario-based, and combined
approaches), which are described below. There are additional
approaches that work directly on program code and code-based
integration testing, but they are not considered here due to
restricted code access in most industrial projects and missing
support for testing high-level requirements.

The remaining solutions of the three classes have been
assessed regarding their capabilities for modeling the two
dimensions of integration testing: the low-level interaction-
focused view and the high-level requirements view, which is
related to distributed system operations. Due to the high
complexity of the software systems and their requirements, a
stepwise assembly strategy and the composition of operations
should be supported. Test scenarios require the specification of
their pre- and post-conditions. Therefore, the notation should also
support the modeling of such execution conditions. Finally, the
approach should be able to describe the interaction patterns
regarding the system components and their interfaces as part of
the operational implementation.
 The component-based integration test approaches use
dedicated behavior models, mostly different types of finite state
machines, from the component perspective as the basis for test
case generation. Their origin is the conformance and
interoperability testing of protocols [10]. For integration testing,
different finite state machine notations are used to represent the
system behavior. Most of them focus on the coverage of
synchronized events, e.g., the approaches by Koppol et al. [12]
and Robinson-Mallett et al. [14]. Other approaches use extended
finite state machines with variables and guards and define specific
criteria for additionally covering data coupling and data flow
dependencies on the subsystem level [13][15][16]. Component-
based approaches usually support stepwise system assembly and
integration testing. The main problem is that complex scenarios
and high-level requirements are not sufficiently considered due to
the focus on specific component interactions.

The scenario-based approaches focus on the modeling of
high-level system requirements, system operations, use cases, and

usage scenarios. Most of them use UML behavior diagrams such
as sequence diagrams, collaboration diagrams, interaction or
activity diagrams [18][19]. Each scenario (including rare and
exceptional cases) has to be modeled explicitly. A second group
applies operational modeling notations that consider concurrency
like Petri nets [20] and Communicating Sequential Processes
(CSP) [21]. The operational modeling notations have advantages
in terms of model composition, but weaknesses regarding the
description of operational execution conditions. Due to the high-
level view focusing on usage scenarios, low-level aspects such as
concrete component interfaces and component interactions are not
covered sufficiently by all scenario-based approaches. The strategy
of stepwise assembly is not considered by any of the approaches.

The most advanced solutions consider the heterogeneous
aspects of functional integration testing: the high-level system
features, operations, and requirements on the one hand and the
concrete component interactions on the other hand. The
approaches are classified as combined integration test
approaches. They use different kinds of finite state machines to
model the low-level behavior on the component and subsystem
levels and a high-level model to describe the relevant usage
scenarios and high-level requirements. For modeling the
scenarios, different notations are used, such as finite state
machines in the approach by Wieczorek et al. [24], UML
collaboration diagrams in the solution by Ali et al. [22], or a tree-
like feature interaction model in the publication by Benz [23].
All approaches support at least simple solutions for the
composition, the description of the operational execution
conditions, and the modeling of component interactions as
operational implementations, but no approach exists that
completely covers all aspects to the full extent. However, the
approach by Benz [23] supports different kinds of composition
operators and the one by Wieczorek et al. [24] supports the
detailed modeling of component interactions.

The conclusion of the state-of-the-art analysis is that
heterogeneous integration test approaches provide the most
appropriate solutions for our problem. They are able to cover
high-level system operations as well as low-level component
interactions. None of the state-of-the-art approaches sufficiently
supports all requirements stated. The composition of system
operations, the modeling of complex execution conditions, and
their implementation as component interplay is only partially
solved by the available solutions. Therefore, we have developed
a new model-based test approach that tackles these challenges.

IV. TEST MODELING NOTATION

The efficiency of MBT highly relies on the selection of an
appropriate modeling notation and the availability of efficient
model analysis technologies. The notation influences the quality
and efficiency of model construction, i.e., the formalization of
the requirements, and test case generation, i.e., the derivation of
traces from the model.

The selection of an appropriate modeling notation depends
on the characteristics of the system and its functionality to be
modeled. As described above, the application type is the
software level of embedded systems. In embedded systems, two
types of functions are usually provided: computation and control
functions. Computation functions are mainly used for
connecting the system with its environment via sensors and
actuators and for deriving relevant variables and decision points.

268Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 290 / 679

Control functions are connected to the system state and modes.
They are usually used at a higher abstraction level than
computation. Based on the stimulation pattern and the current
system state, the future behavior is controlled.

MBT often focuses on testing the functional behavior and the
control functionality. The functional behavior is expressed by
stimuli, responses, pre- and post-conditions, and state variables.
Especially for technical software systems, inputs and outputs can
be complex due to time dependency and concurrency. Solutions
have been proposed particularly for the Simulink/Stateflow
simulation environment [26]. The following subsections will
describe the generic heterogeneous test modeling approach (in
subsection A), its instantiated modeling notations (in subsections
B and C), and the concept for assuring consistency of the two
notations (in subsection D).

A. Towards a generic test modeling approach

In order to enable fully automated test case generation, test
models have to describe system-specific aspects, such as the
system structure and component interfaces, as well as test-specific
aspects, such as the importance of scenarios, interfaces, and
modes. Most MBT approaches use one modeling notation as a
basis for generating test cases [9]. In order to clearly divide the
responsibilities of the model artifacts, the generic heterogeneous
test modeling approach ER!S has been developed. The approach
distinguishes between a low-level model that represents the test-
relevant system behavior and a high-level model for representing
complex requirements and guiding test case derivation. In the
MBAT project, the approach has been instantiated for functional
software integration testing.

Figure 2. Generic test modeling approach

Figure 2 describes the artifacts involved in the generic test
modeling approach and their relations. The starting point is the
system specification, which is the initial source for describing
the system functionality to be checked. In most cases, the system
specification is a textual requirements document enriched with
architectural descriptions of the components, interfaces, and

communication middleware. The test goals describe the generic
objectives of quality assurance, such as coverage of the
functional requirements, assuring robustness in unspecified
situations, or considering the most critical usage scenarios. Test
goals influence the QA strategy and therefore also test modeling
and test case generation in MBT.

Based on the specification and the test goals, an importance
analysis is conducted, which considers the complexity and defect
data of the product and other criticality factors of the test project.
The importance analysis influences the abstraction level of the test
modeling and the inclusion and exclusion of elements and
requirements. Additionally, the importance analysis may serve as
input for the distribution of the test effort, the selection of the test
coverage criteria, and the guidance regarding test case generation.

In the approach, two types of test models are constructed: the
system behavior model (SBM) and the test guidance model
(TGM). The SBM defines the relevant system behavior for the test
on an appropriate abstraction level. The SBM is constructed from
the system specification and describes the interfaces, valid input-
output trajectories, and the state space of the test object. For this
work, the SBM focuses on component interactions. Therefore, the
SBM for functional integration testing is also called interaction test
model (ITM). Due to the characteristics of the actual test object of
the evaluation, a discrete control system, the modeling notation for
the ITM is a subset of timed automata [29]. This notation enables
the description of a component-based system whose parts are
synchronized by events. Communication protocols and specific
middleware entities such as bus controllers can be modeled as
additional state-based components of the SBM.

The TGM describes patterns and constraints for the
application and exploration of the SBM and the conditions under
which they are to be applied. Constraints are defined to prohibit
or enforce defined situations for the forthcoming test case
generation. The TGM can also represent the operational profile of
the test object, which may differ in different environments. For
this work, the TGM has to deal with composite system operations
and functional scenarios with defined execution conditions.
Therefore, the TGM for functional integration testing is called
operational test model (OPM). A concrete operational
implementation is defined by the interaction patterns of the
system components. Due to the strong focus on the composition
of different operations and the efficient description of their
execution conditions, a heterogeneous notation based on B
machines [27] and CSP [28] has been chosen. The integration
of B machines and CSP for formal verification purposes has
been shown in [30].

 For the test case generation step, the coverage criteria and
the generation technology have to be defined [9]. Considering
the ER!S models, the coverage criteria determine the class of
relevant elements of the test model that shall be covered by the
test cases. Examples are the coverage of component interfaces
or the coverage of conditional execution paths within an
operation. The test cases are represented by sequences of
operations and events, which are refined to executable test
scripts (like C-Unit scripts [38] or signal descriptions in the
Matlab / Simulink environment [37]).

B. The Operational Test Model

The OPM is used to guide the selection of test cases from an
operational point of view. It describes the high-level functional
requirements and system operations with their composite

269Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 291 / 679

implementations and execution conditions, and the system state
space. The implementation of the modeling notation is based on
B machines and CSP. The OPM is defined as: OPM = {Op,
VarOp,SOP, s0, SExit}. It contains a finite set of hierarchical
operations Op. The composition relation is defined by a partial
ordering function, which enables operational composition with
different operators. These operators are based on the
composition operators of CSP [28]: sequencing, alternatives,
conditional branching, and parallel interleaving. They enable the
construction of so-called composite operations. The non-
composite operations are called basic operations. A finite set of
variables VarOP is defined to model the system states and
operational execution conditions. Combinations of variable
values define the system state space. A dedicated start state s0
and an optional set of ending states SEXIT for the execution of test
case are defined. For the OPM, two graphical representations
have been developed to facilitate discussions and model
reviews: the Operational Hierarchy Graph (OHG) and the
Operational Composition Graph (OCG).

1

2
3

4

5

Figure 3. Operational Hierarchy Graph for the sample application

 Figure 3 shows an OHG, which represents the hierarchy of
operations regarding their composition relations. Boxes
represent operations. Basic operations are marked white,
composite operations are marked gray. The arrow points to the
sub-operations of a composite operation. The example shown is
taken from the evaluation case study described in chapter VI.
Additionally, a valid integration order for the system operations
is annotated, which consists of five steps. The integration is
performed from lower-level to higher-level operations, i.e., from
step #1 to step #5.
 The OCG visualizes the operational composition with a
directed graph. An example of an OCG is shown in Figure 4. It
describes the composite operation Warn Priority Blinking of the
example used in the feasibility example. The rectangular boxes
represent the sub-operations referenced and rounded rectangles
represent the execution conditions (here: pre- and post-condition)
with the corresponding Boolean formulas. Composition

operators are shown with specific symbols, such as arrows for
sequencing and diamonds for alternatives. The OCG traversing
starts in the pre-condition node and ends in one of the post-
condition nodes. Every trace through an OCG is a valid
operational execution.

Figure 4. Operational Composition Graph of an operation

 The operation of the example deals with the determination of
the active blink operations when multiple turn and warn blink
operations (manual, emergency brake, and crash) are requested.
The interesting cases in the example are when (1) a previously
activated turn blink operation is overwritten by a subsequent
warn blinking (manual, emergency brake, and crash) and (2) a
previously activated emergency brake and crash warn blinking is
deactivated by subsequent turn blinking.

C. The Interaction Test Model

 The ITM describes concrete interactions between system
components in order to implement an operation. Its notation is a
subset of timed automata [29]. The ITM is defined as the parallel
composition of a set of component models (CM) that may
synchronize on shared events. A CM is defined as
, , , , . Locations (L) represent the vertices of

the component automaton connected by a set of edges (E). Every
CM has a designated initial location () and a set of variables
(), which is a subset of the operational system variables
(Var). Furthermore, a CM has an alphabet of events with inputs
and outputs (Act). Edges (E) connect two locations. They are
annotated with the corresponding input (?) or output (!) event.
The operations are implemented by a set of component
interactions, which are related to concrete component edges.
Therefore, the ITM component edges are annotated with the set
of operations that are connected to them.

Figure 5. Sample interaction test model of a component

Figure 5 shows a sample ITM for the component
WarnBlinkUnit of the feasibility study. The graphical
representation is similar to common finite state machine
notations. The ITM locations are expressed as rounded nodes

270Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 292 / 679

(stable states) or circles (committed states); the transitions are
represented as directed edges. The stable component states are
annotated with an invariant, which is a unique combination of
component state variable values. In the example, only one
variable is used. A state is stable if all of its outward transitions
are only enabled by external stimulation [33].

Transitions are labeled with at most one event, which is
either a sending event (!) or a receiving event (?). The relevance
of transitions for the implementation of certain operations is
annotated by guard conditions. In our example, the model
transitions are used for the warn blink operations, which are
expressed by the Boolean variable OP_WARN. For analysis and
test case generation, the transition guards help to reduce the
complexity of the artifacts and focus on the relevant parts.

The component behavior is defined by a sequence of one
input and a list of outputs, which have stable source and target
states. Since timed automata allow only one event per
transition, the input and the corresponding output(s) are
constructed as an atomic sequence of transitions connected by
committed states. During the exploration of the system state
space, committed states have to be left immediately by taking
an outgoing transition when they are traversed. This assures the
atomicity of the event sequence.

D. Model Construction and Analysis

Complex formal models that are created manually from
potentially incomplete and inconsistent sources require a
systematic construction process and intensive QA. Another
issue is the use of different model types, which may produce
consistency issues. The construction approach provides a
systematic procedure for designing the test model and applies
guidelines and restrictions to reduce the fault-proneness and
complexity of the artifacts. A formal correctness proof of a
complex model is difficult to achieve. Therefore, a stepwise
heuristic procedure is applied, comprising parallel construction
and model analysis activities. The approach is supported by
prototypical tools. For the conduction of the model analysis, the
external tools Uppaal [35] and ProB [36] were used.

Both models, OPM and ITM, were checked independently
regarding certain properties such as deadlocks and reachability
of elements. Further analysis activities assured the consistency
of both models. A catalogue of concrete analysis activities was
defined, which is described in part below.

As shown in Figure 2, the main source for the test modeling
is the system specification, which contains all information
about the static system structure of the test object and its
functionality and operations. The construction approach of
ER!S models was derived from sequence-based specification
(SBS, [34]) which enables the systematic specification of
component test models. The system functionality in ER!S is
specified as a set of operations that are implemented as
interactions between components under defined conditions.

The recommended construction approach from the
operational view is bottom-up. According to the operational
hierarchy, basic operations are specified first with their
execution conditions and interaction patterns. These interaction
patterns describe event flows, sequences of inputs and
corresponding outputs, and conditions under which they are

applicable. The system is supposed to run in a so-called slow
environment [33]. This means that the system is only stimulated
when all of its components are in stable states, i.e., the
components do not perform autonomous interactions. All
component responses are direct reactions to stimulation from
the environment. Operations always start and end in stable
system states, which facilitates the construction of deterministic
test models. This leads to special requirements for the event
sequences and states that are checked in the ITM analysis.
Furthermore, the ITM is checked for interoperability, i.e., the
ability of communicating via its interfaces.

In the next step, the composite operations with their
composition patterns and the execution conditions are
specified. In the subsequent analysis, the OPM is checked for
the validity and executability of the composition patterns. The
OPM analysis checks whether operational traces exist that
completely traverse the operational specification.

The quality of the source documents affects the construction
paradigm of the ER!S models. Faulty, inconsistent, incomplete,
or even changing requirements lead to model design flaws and
model changes. In order to assure compatibility and consistency
between different modeling notations, two concepts are
introduced that focus on the relations between operations and
interaction. The first concept is an injective mapping function
for OPM states and ITM states. Each state of the OPM state
space is mapped to a unique stable system state of the ITM. The
reachability of selected stable states of the ITM is checked.
Specific requirements for stable states regarding variable values
and transition events are defined and checked as well. The
second concept are operational tags, which are annotated to
ITM component transitions. For each operation, the
corresponding sub-model of the ITM is determined. The ITM
analysis assures that the interaction patterns of the operations
are executable and valid regarding the conditions and variable
values.

V. GENERATION OF TEST ARTIFACTS

After the construction of the test model and its verification,
test cases are derived as ER!S model traces. The test case set
comprises valid model traces that cover selected test
requirements. For the generation of test cases, many results of
the ER!S model analysis can be reused since they contain
sample model traces that prove the reachability of defined
model elements.

Figure 6 shows the generation of test artifacts from the test
models. The starting point are the TGM and the SBM, which
are analyzed in order to define the assembly strategy for the
system components and operations. An operation-driven
bottom-up strategy is proposed, i.e., operations of a lower
hierarchy level are integrated earlier, whereas complex
operation of higher levels are integrated later in the test stage
[31]. An example of a valid assembly strategy for a feasibility
study is annotated in Figure 3. Each step covers a disjoint set of
the selected test requirements. Two criteria have been
developed that enable the scalable assembly of components and
operations. The first criterion determines the relevant sub-
systems that perform specific operations. The other criterion
determines the integration strategy for the relevant system

271Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 293 / 679

operations in each integration step. Since each assembly step
focuses only on specific aspects of the system functionality,
only a subset of the test models is required for test case
generation. Therefore, step-specific reduced test models are
created that only contain the required subset of the information.

Figure 6. Workflow for generating test artifacts

System operations have different kinds of test-relevant
information depending on their implementation and
composition. Basic operations focus on the coverage of
interaction patterns under specific conditions. Composite
operations focus on the coverage of their alternative
composition paths under specific conditions. Therefore, our test
approach provides a set of coverage criteria for component
interactions and for operational composition. The interaction
coverage criteria are related to component interfaces, event-
sending and receiving transitions, and synchronizations of
them. The operational coverage criteria consider the different
execution conditions and the characteristics of the composition
operators used in the implementation.

The test case generation procedures use the model checking
capabilities of the tools Uppaal and ProB, which are capable of
verifying properties and deriving sample traces for timed
automata, B machines, and CSP models. The ER!S tool
transforms the coverage criteria and sets of test requirements
into simple model checking queries for the tools mentioned
above. The resulting test cases are valid ER!S model traces.
They consist of sequences of operations implemented by event
traces. More details on the test selection criteria and generation
technologies are provided by Bauer and Eschbach in [31].

VI. EVALUATION

The evaluation was conducted in the MBAT project together
with tool vendors and product manufacturers from the
transportation domains. The goal was to assess the impact of the
new heterogeneous MBT technique on the test process compared
to manual expert-driven requirements-based test case creation and
a simple MBT technique with finite state machines, which had
been already introduced to the companies. The properties to be
evaluated were: (A) compliance with the recommendations of the

process standards, (B) coverage of the test cases regarding the
properties to be checked, and (C) the manual effort spent on the
construction of the test artifacts.

The evaluation was planned to be conducted in two rounds:
(1) a feasibility study to initially assess the new test approach
and (2) a detailed quantitative evaluation study to measure the
impact. In the following subsection, the test object, the results
of the first evaluation round, and the set-up for the second round
are presented.

There were several challenges that complicated an
evaluation in the MBAT project. The first challenge was the
missing independence of system experts and test experts (for
the expert-driven requirements-based test case derivation),
which might have influenced the significance of the results. The
other issue was the confidentiality of the test object in the
project, which restricted the usage and publication of certain
details. Therefore, a new test object with the corresponding
specification documents, design models, and executables was
created. The functionality is close to the features of the actual
test object, but the system structure, component interfaces, and
the concrete implementations were simplified and developed
independently to abstract from any confidential details.

A. The test object
The test object of the evaluation case study was a simplified

version of an executable design model (notation: Simulink /
Stateflow) of an automotive exterior light control system
(ELCS). The ELCS consists of five system components:
steering unit, ignition unit, warn blink unit, door control unit,
and exterior light control unit. Another eight environmental
components were considered for the evaluation of stimulation
and response. The functionality comprises several blinking
functionalities of the external lighting, including turn indication,
warn blinking, and security features such as door locking and
theft alarm.

TABLE I. PRIORITIES OF BLINK OPERATIONS IN THE CASE STUDY

Prio Class Blink operation Duration Side
1 Warning Crash warning Permanent Both
2 Manual warning* Permanent Both
3 Brake warning Permanent Both
4 Turn

indication
Permanent* Permanent Left/right

5 Temporary* Temporary Left/right
6 Security Theft alarm Permanent Both
7 Door locking Temporary Both
8 Door unlocking Temporary Both

Table I shows the different blink functionalities with their

priorities (1 – highest, 8 – lowest) and the properties that were
checked in the test evaluation. Several blink operations can be
requested at the same time, but only one operation can be active.
If multiple blink operations are requested, the operation with the
highest priority is selected and executed. The only priority
exception in the example application is that turn indication
overwrites an active warn blinking in certain situations (marked
with * in the table).

Each functionality has defined pre-conditions for its
activation and deactivation, for example regarding the ignition
status or door locking status. The observable outputs of each
functionality are the flashing side markers outside the car and

272Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 294 / 679

the flashing LEDs on the car’s dashboard at defined frequencies.
The key issue of functional integration testing is to assure the
correct execution of the blinking behavior in the case of multiple
activated blinking functions.

B. Preparation of the evaluation

As the first step of the evaluation, a simplified requirements
specification of the ELCS was developed based on the
knowledge of system and test experts, the original requirements,
and the existing test goals and test cases. The new specification
does not contain confidential information and abstracts from
irrelevant details for functional integration testing. Based on the
simplified specification, the executable test object, i.e., the
application under test, was developed as an executable Matlab /
Simulink model [37], which enables the automated generation
of program code. In the specification and design activities,
experts with system and domain knowledge were involved as
well as test experts.

Figure 7. Evaluation set-up

Figure 7 shows the set-up of the evaluation, which comprises
the development of the actual test object, the construction of the
test artifacts, and the derivation of the test cases for the
following three methods: (1) manual, expert-driven, and
requirements-based test case derivation, (2) MBT with finite
state machines, and (3) MBT with heterogeneous test models
(the ER!S approach).

After the creation of the test object, the test artifacts for the
different approaches were created based on the same simplified
requirements specification. The manual creation of the expert-
driven test cases (T1) was done by system experts according a
standard-compliant, expert-driven, and requirements-based
approach. The construction of the test models for the MBT with
finite state machines (M2) and the MBT with heterogeneous
models (M3) was done by dedicated method experts. For the
construction of the test artifacts (models and test cases), the
same abstraction level regarding system structure, component
interfaces, events, and variables was applied. The test cases for
both MBT approaches were created automatically, which is
displayed as dashed lines in the figure.

C. Results from the feasibility study

In the first evaluation round, we aimed at a short assessment
of the test technology. Therefore, we considered a subset of the
systems’ functionality. Test models and test cases were created

by applying each of the three methods. The assessment
regarding the selected properties is summarized in Table II. The
complexity of the different test artifacts could not be assessed
adequately since the test approaches use different modeling
paradigms (test sequences, finite state machines, and the
heterogeneous notation based on timed automata, B, and CSP).

TABLE II. SUMMARY OF FIRST EVALUATION RESULTS

 Expert/req-
based (T1)

MBT-FSM
(M2, T2)

ER!S
(M3, T3)

Standard Compl. + - +
Operational
Test Coverage 81% 67% 90%

Interaction
Test Coverage 92% 100% 100%

Test Effort 100% 119% 135%

 The first evaluation aspect is standard compliance, which
qualitatively assesses the considerations of the
recommendations from the process standards mentioned in
section II. The ER!S approach was developed with the intent of
being compliant with the industrial standards and guidelines.
The support of certain topics, such as coverage of functional
requirements, interactions, and operational sequences, is
sufficient and comparable to the expert-driven test approach that
has been applied to the test project and the resulting certification
for many years. The MBT approach with finite state machines
does not sufficiently consider the characteristics of more
complex system operations.
 The next aspect is test coverage, which is a quantitative
quality criterion of a set of test cases regarding a set of properties
and test requirements. It can be seen as an indicator of the quality
of the test process. The ER!S approach facilitates the
determination of appropriate criteria regarding the component
interactions and the operational implementation. The initial
evaluation of interaction and operational coverage showed that
ER!S test cases (T3) achieved high coverage of both criteria
(100% regarding the interactions and 90% regarding the
operational aspects). The MBT test cases (T2) achieved full
coverage of the selected interactions, which is explained by the
strong focus on component behavior and communication.
Therefore, the operational coverage of T2 is also much lower
(67%) than with the other approaches. The expert-based test
cases (T1) had reasonably high coverage of both criteria (92%
regarding the interactions and 81% regarding the operational
aspects). An influencing factor for the detailed assessment is the
varying degree of importance of selected test requirements,
which was not considered in the initial evaluation. The
discussion with the industrial partners showed that the
automated test approaches with their test case sets T2 and T3
contained a slightly higher number of less relevant elements. In
the next evaluation round, a more detailed analysis of the test
coverage will be conducted.
 The reduction of effort and costs is an important success
factor when it comes to introducing new technologies. In our
feasibility study, the effort for manually constructing the test
artifacts was assessed (T1, M2, M3). The main part of the effort
for all approaches was spent on determining and defining the
components, interfaces, events, variables, and interaction
patterns in order to ensure the same origin and abstraction level

273Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 295 / 679

of the test cases. Automated steps, such as the test case
generation for T2 and T3, were not considered. The initial effort
for constructing the first set of test models and test cases (+19%
for M2 and +35% for M3) is slightly higher for the model-based
approaches than for the traditional testing approach (T1). This is
caused by the fact that T1 only contains selected scenarios for
the application. Test models and the resulting test case sets are
often more complete regarding the selected properties. A
significant effort reduction for the model-based approaches is
expected when existing test artifacts are incrementally extended
for updated product versions and similar systems.
 The limitations of the feasibility study only enable an initial
and rough assessment of the impact and capabilities of our ER!S
approach. The standard compliance, the higher test coverage,
and the slightly higher test effort in the first round are indications
that ER!S is an efficient and reasonable integration testing
approach. Further evaluations are needed to assess the
capabilities and impact on the overall test processes in detail.

VII. CONCLUSION AND FUTURE WORK

In this article, we presented the novel model-based approach
ER!S for functional integration testing of software-intensive
technical systems. The detailed analysis of the recommendations
and challenges stated in the two relevant process standards (ISO
26262 and DO-178C) resulted in a set of major requirements for
functional software integration testing that can be addressed by
model-based solutions. The state-of-the-art approaches do not
sufficiently cover the multifaceted aspects of integration testing
with the two dimensions of composite and distributed system
operations and the actual component interplay that implements
these operations.

The ER!S approach is able to efficiently tackle these
challenges. It comprises a heterogeneous modeling notation that
considers both aspects of functional integration testing. The
notation enables the automated generation of test cases using
different coverage criteria. The results of the first evaluation
round were positive. Our approach produced test artifacts of
higher test quality regarding the test coverage. More detailed
results will be gathered in the second evaluation round. Other
future activities will comprise the improvement of the analysis
and test case generation algorithms and the extension of the tool
chain, which currently consists of a set of loosely coupled in-
house, external research, and commercial tools.

ACKNOWLEDGMENT

This work has been funded by the ARTEMIS project
“MBAT” (grant number: 269335). We would also like to thank
Sonnhild Namingha for proofreading.

REFERENCES
[1] Website of the project MBAT,,http//www.mbat-artemis.eu [12 Aug 2014]

[2] P. Liggesmeyer and M. Trapp, “Trends in Embedded Software
Engineering”, IEEE Software 26(3), pp. 19-25, Jan. 2009.

[3] M. Maurer and H. Winner, Automotive Systems Engineering, Springer
June 2013

[4] J. Zander, I. Schieferdecker, P. Mosterman, Model-Based Testing For
Embedded Systems, CRC Press, Sep. 2011

[5] IEC 61508, International Electrotechnical Commission, IEC 61508:2010
- Functional safety of electrical/electronic/programmable electronic
safety related systems, 2010

[6] ISO 26262, International Standardization Organization, ISO 26262:2011
- Road vehicles – Functional safety, 2011

[7] DO-178C,.Radio Technical Commission for Aeronautics Software, DO-
178C:2011 Considerations in Airborne Systems and Equipment
Certification, 2011

[8] EN 50128, CENELEC - European Committee for Electrotechnical
Standardization, EN 50128:2011, Railway applications - Communication,
signalling and processing systems - Software for railway control and
protection systems, 2011

[9] M. Utting, A. Pretschner, B. Legeard, “A Taxonomy of Model-based
Testing Approaches”, Softw. Test. Verif. Reliab. 22(5), pp. 297-312,
Aug. 2012

[10] A. V. Aho, A. T. Dahbura, D. Lee, M. Uyar, “An optimization technique
for protocol conformance test generation based on UIO sequences and
rural Chinese postman tours”, IEEE Transactions on Communications
39(11), 1604-1615, Nov. 1991

[11] Y. Wu, D. Pan, M.-H. Chen, “Techniques for Testing Component-Based
Software”, Proceedings of the 7th Int. Conf. on Engineering of Complex
Computer Systems, IEEE Computer Society, pp. 222-232, June 2001

[12] P. V. Koppol, R. H. Carver, K.-C. Tai, “Incremental Integration Testing
of Concurrent Programs”, IEEE Trans. Software Eng. 28(6), pp. 607-623,
June 2002

[13] A. Desmoulin and C. Viho, “A New Method for Interoperability Test
Generation”, Proceeding of the TestCom/FATES'07, Springer, pp. 58-73,
June 2007

[14] C. Robinson-Mallett, R. Hierons, J. Poore, P. Liggesmeyer, “Using
Communication Coverage Criteria and Partial Model Generation to Assist
Software Integration Testing”, Software Quality Control 16(2), pp. 185-
211, Apr. 2008.

[15] L. Gallagher, J. Offutt, A. Cincotta, “Integration testing of object-oriented
components using finite state machines”, Softw. Test., Verif. Reliab.
16(4), pp. 215-266, Jan. 2006

[16] F. Saglietti, N. Oster, F. Pinte, “Interface Coverage Criteria Supporting
Model-Based Integration Testing”, ARCS '07 - Workshop Proceedings,
VDE Verlag GmbH , pp. 85—93, 2007

[17] A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, “Model-based
Testing for Real: The Inhouse Card Case Study”, Int. J. Softw. Tools
Technol. Transf. 5(2), 140—157, 2004.

[18] A. Abdurazik and J. Offutt, “Using UML Collaboration Diagrams for
Static Checking and Test Generation”, Proceedings of the 3rd
International Conference on The Unified Modeling Language: Advancing
the Standard, Springer-Verlag, pp. 383—395, 2000

[19] F. Basanieri and A. Bertolino, “A Practical Approach to UML-based
Derivation of Integration Tests”, in 4th International Software Quality
Week Europe, Nov. 2000

[20] H. Reza and E. Grant, “A Method to Test Concurrent Systems Using
Architectural Specification”, J. Supercomputing 39(3), pp. 347-357, Feb.
2007

[21] S. Nogueira, A. Sampaio, A. Mota, “Guided Test Generation from CSP
Models”, Proceedings of the 5th International Colloquium on Theoretical
Aspects of Computing, Springer, pp. 258-273, Sep. 2008

[22] S. Ali et al., “A State-based Approach to Integration Testing Based on
UML Models”, Inf. Softw. Technol. 49(11-12), pp. 1087-1106, Nov.
2007

[23] S. Benz, “Combining Test Case Generation for Component and
Integration Testing”, Proceedings of the 3rd International Workshop on
Advances in Model-based Testing, ACM, pp. 23—33, May 2007

[24] S. Wieczorek et al., “Applying Model Checking to Generate Model-Based
Integration Tests from Choreography Models”, 'Testing of Software and
Communication Systems', Springer, pp. 179-194, Nov. 2009

[25] M. Utting, A. Pretschner, B. Legeard, “A Taxonomy of Model-based
Testing Approaches”, Softw. Test. Verif. Reliab. 22(5), pp. 297-312,
Aug. 2012

[26] F. Böhr, Model-based Statistical Testing of Embedded Real-time
Software with Continuous and Discrete Signals in a Concurrent
Environment: The Usage Net Approach, PhD thesis, TU Kaiserslautern,
Dr. Hut, 2012

274Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 296 / 679

[27] J.-R. Abrial, The B-book: Assigning Programs to Meanings, Cambridge
University Press, 1996

[28] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, Apr.
1985

[29] R. Alur, and D. L. Dill, “A Theory of Timed Automata”, Theoretical
Computer Science 126 (2), pp. 183-235, Apr. 1994.

[30] M. J. Butler and M. Leuschel, “Combining CSP and B for Specification
and Property Verification”, Proceedings of the 2005 international
conference on Formal Methods, Springer, pp. 221-236, July 2005.

[31] T. Bauer and R. Eschbach, “Model-Based Testing of Distributed
Functions”, Advanced Automated Software Testing: Frameworks for
Refined Practice, CRC Press, pp. 151-181, Jan. 2012

[32] M. Pol, Software Testing: A guide to the TMap Approach, Addison-
Wesley Professional, Nov. 2001

[33] M. Shahbaz, Reverse Engineering Enhanced State Models of Black Box
Components to support Integration Testing, PhD thesis, Grenoble
Institute of Technology, 2008

[34] S. J. Prowell, and J. H. Poore, “Foundations of Sequence-Based Software
Specification”, IEEE Trans. Software Eng. 29(5), pp. 417-429, May 2003

[35] Website of Uppaal, http://www.uppaal.org/ [12 Aug 2014]

[36] Website of ProB, http://www.stups.uni-duesseldorf.de/ProB [12 Aug 2014]

[37] Website of Simulink http://www.mathworks.de//simulink [12 Aug 2014]

[38] Website of C-Unit http://cunit.sourceforge.net/ [12 Aug 2014]

APPENDIX

Figure 8. Aggregated recommendations of the ISO 26262 and DO-178C regarding software integration testing

275Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 297 / 679

Structural Test Case Generation
Based on System Models

Leandro T. Costa, Avelino F. Zorzo, Elder M. Rodrigues, Maicon Bernardino, Flávio M. Oliveira
School of Computer Science - Pontifical Catholic University of Rio Grande do Sul - PUCRS

Porto Alegre, RS, Brazil
Email: leandro.teodoro@acad.pucrs.br, bernardino@acm.org, {elder.rodrigues, flavio.oliveira, avelino.zorzo}@pucrs.br

Abstract—Structural testing, or white-box testing, is a tech-
nique for generating test cases based on analysis of an application
source code. Currently, there are different tools supporting this
type of test. However, despite the benefits of these tools, some
tasks still have to be performed manually. This makes the test
process time consuming and prone to injection of faults. In order
to mitigate these problems, this paper presents a Model-based
Testing (MBT) approach for deriving structural test cases for
different code coverage tools using UML sequence diagrams.
Our approach consists of four steps: Parser, Test Case Generator,
Script Generator and Executor. These steps are based on the four
main features of a Software Product Line for MBT tools, from
which we derived two automation tools (PletsCoverageJabuti and
PletsCoverageEmma) that generate and execute structural test
cases, respectively. We also describe a case study, which defines
test cases for an application that manages skills of employees.

Keywords—model-based testing; structural testing.

I. INTRODUCTION

The evolution and increased complexity of computer sys-
tems have made the testing process an activity as complex
as the development process itself. In order to overcome this
problem, and to increase the effectiveness in the test case gen-
eration process, several tools have been developed to automate
software testing. Currently, there are several tools supporting
different types of testing, for example, structural testing (or
white-box testing), in which the source code of the system is
inspected; or, functional testing (black-box testing), in which
the functionality of the system is verified. In the last decade,
many commercial and academic tools have been developed
and used to support testing activities, such as, Java Bytecode
Understanding and Testing (JaBUTi) [1], Semantic Designs
Test Coverage [2], IBM Rational PurifyPlus [3], EMMA [4],
Quick Test Professional [5], EvoSuite [17] or Randoop [15].

However, despite the benefits brought about by these testing
tools, it is still necessary to perform several manual or semi-
automated activities, for example, to provide test cases or to
analyze the test results from running test cases. Furthermore,
manual or semi-automated test case generation makes the
testing process time consuming and prone to introduction of
faults, even by experienced professionals. A solution proposal
for this issue is to automate the test case generation process
through software testing techniques, such as Model-based
Testing (MBT) [6]. This technique consists in the generation of
test cases and/or test scripts based on system models, which
can include the specification of the characteristics that will
be tested. MBT adoption presents several advantages, such
as reducing the likelihood of misinterpretation of the system
requirements by a test engineer or decreasing of testing time.

Currently, MBT can be used to generate test cases through
the use of a wide range of modeling notations, such as
Specification and Description Language (SDL) [7] or Unified
Modeling Language (UML) [8]. UML provides a notation
for modeling some important characteristics of applications,
allowing the development of automatic tools for model verifi-
cation, analysis and code generation.

In this context, this paper presents an MBT approach to
drive the automatic generation of test cases and test drivers
for measuring test coverage. Our approach uses sequence
diagrams to identify the classes/methods under test and to gen-
erate test sequences based on the order of execution between
the classes and methods described in the sequence diagram.
Then, generates strucural test cases with a random test case
generation tool, and finally generates test drivers to run the test
cases and measure their coverage with the code coverage tools
EMMA and JaBUTi. Furthermore, our approach is embedded
in a Software Product Line (SPL) and new testing products
are generated automatically. Our approach consists of four
steps: (a) Parser: extracts test information about the classes
and methods to be tested from UML sequence diagrams; (b)
Test Case Generator: applies a random test data generation
technique to generate an abstract structure, i.e., a text file
that describes the test case information in a tool-independent
format; (c) Script Generator: generates test scripts/test driver
for a specific code coverage tool from the information present
in the abstract structure; (d) Executor: represents the test
execution for a specific code coverage tool using the test driver
generated in the previous step. Although we have applied our
approach to object-oriented languages, it is straightforward to
apply it to other programming paradigms.

One of the advantages of our approach is related to the reuse
of test information, i.e., information described in the abstract
structure can be reused to generate test scripts for several code
coverage tools, e.g., academic: JaBUTi [1] or EMMA [4];
commercial: Semantic Designs Test Coverage [2] or IBM Ra-
tional PurifyPlus [3]. Therefore, a company that is using tool
A can, motivated by a technical or managerial decision, easily
change to a testing tool B without having to create new test
cases. Another advantage is related to the use of UML models
to generate test cases. Models provide a representation of the
test information at a high level, facilitating the understanding
by the test expert responsible for implementing and executing
test cases. Moreover, differently from others studies that only
describe the process to generate test cases through MBT, our
approach is able to instantiate them to generate test drivers
that could be executed by different code coverage tools.

Based on our approach, we developed two tools: PletsCov-
erageJabuti and PletsCoverageEmma. Both tools automatically
extract test information from sequence diagrams, generate an

276Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 298 / 679

Fig. 1. Approach for generating structural test cases

abstract structure, instantiate the information present in this
structure to generate and execute concrete test cases, respec-
tively, for the target tools JaBUTi [1] and EMMA [4]. The
tools presented in this paper were derived from a Product Line
for Model-based Testing tools (PLeTs) [9]. PLeTs supports
the generation of products (MBT tools) that automate the
generation and execution of test cases. We also applied our
approach to a case study, in which we have used two generated
tools to test classes and methods of an actual application.

This paper is organized as follows. Section II discusses
related background. Section III presents the details of our ap-
proach. Section IV describes a case study. Section V discusses
related work in structural test case generation using UML.
Section VI presents some conclusions and lessons learned.

II. BACKGROUND

MBT is a technique for automating the generation of test
artifacts based on system models [6]. Using MBT it is possible
to represent the structure and the system behavior, in order to
be shared and reused by the test team members. Therefore, it is
possible to extract the test information from models to generate
new test artifacts, such as test cases, scripts and scenarios. The
MBT adoption requires the creation of models based on system
requirements specified by software engineers and test analysts.
The purpose is that these models include information that
frequently is implicit in traditional specification documents,
for example, through comments and/or annotations.

One approach to improve the system specification is the
use of UML models [8]. UML models can improve the
system specification through stereotypes and tag definitions.
Stereotypes is one of the UML extensibility mechanism that
may have properties referred to as tag definitions. When a
stereotype is applied to a model element, the values of the
properties are referred to as tagged values. Hence, all infor-
mation added to the model, through stereotypes and tagged
values, can be used to derive new artifacts, such as test cases.

To the best of our knowledge, early studies focused on MBT
were limited to functional testing. Nowadays, models are able
to abstract other information, e.g., parameters and input data,
thus allowing MBT to be applied to perform other testing
techniques, e.g., the structural testing [1].

Structural testing is a technique for generating test cases
from the source code analysis. It seeks to evaluate the internal
details of implementation, such as test conditions and logical
paths. In general, most criteria based on structural analysis
use a graph notation named Control Flow Graph (CFG) [1],
which represents all the paths that might be traversed during
the program execution. These criteria are based on different
program elements that can be connected to the control flow
and data flow in the program. Control-flow uses the control
features of a program to generate test cases, i.e., loops,
deviations or conditions, while criteria based on data flow use
data flow analysis of the program to generate test cases.

Structural test case generation consists of selecting values
from an input domain of a program that satisfies specific
criteria. For instance, the All-nodes criterion groups in a
domain all the input values that execute a specific node.
The selecting input values task could be made using data
generation techniques, e.g., random [10], based on symbolic
execution [11] or dynamic execution [12]. In this paper, we
apply a random technique due to be practical and easier to
automate, which provided a useful test case generation for
specific code coverage tools.

Currently, there is a diversity of commercial, academic,
and open source code coverage tools that assist the testing
process. However, most of these tools were individually and
independently implemented from scratch based on a single ar-
chitecture. Thus, they face difficulties of integration, evolution,
maintenance and reuse. In order to reduce these difficulties,
it would be interesting to have a strategy for automatically
generating specific products, i.e., tools that perform tests based
on the reuse of assets and a core architecture. This is one of
the main ideas behind SPLs [13].

An SPL can be defined as a set of systems that share
common and manageable features in order to meet the needs
of a specific domain, which may be a market segment or mis-
sion [13]. The aim is to explore the similarities among systems
in order to manage variability aspects and thus determine a
higher reusability level of software artifacts. Through the reuse
of artifacts, an SPL allows to create a set of similar systems,
thus reducing time to market, cost and, hence, to achieve a
higher productivity and quality improvement.

In the testing context, we developed an SPL of MBT tools
called PLeTs [9]. This SPL supports the derivation of MBT
tools that allow automatic generation and execution of test
cases. The purpose of PLeTs is not only to manage the reuse
of artifacts and software components, but also to make the
development of a new tool easier and faster. Until now, PLeTs
was able to generate performance testing products. In this
paper, we extend PLeTs to develop structural testing products.

III. APPROACH TO STRUCTURAL TEST CASE GENERATION

As mentioned in the previous sections, MBT techniques
have been used to improve software testing through automa-
tion of test case generation. Furthermore, using UML models
it is possible to automate the test case generation through
annotation of test information using stereotypes and tags.
Stereotypes and tags can be included in different parts of
an UML model to represent test case information [8]. In
our previous work [14], we have used UML use cases and
activity diagrams as SUT models to automatically generate
performance test cases from the information annotated on
these diagrams. When conducting performance or even func-
tional testing, UML use cases and activity diagrams were
sufficient. However, an understanding about the ordering of
execution between program units (e.g. methods/functions) is

277Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 299 / 679

needed to execute structural testing. In this context, we propose
an approach to automate the generation and execution of struc-
tural test cases based on UML sequence diagrams. Thus, test
sequences are generated according to the order of the methods
described in sequence diagrams. As mentioned in Section I,
we divided our approach in four steps (see Figure 1): Parser,
Test Case Generator, Script Generator (Test
Driver), and Executor. These steps are based on the four
main features of PLeTs.

In order to generate and execute the Test Driver, our ap-
proach must retrieve information, about classes and methods,
annotated in an UML sequence diagram. It is important to
highlight that the diagrams must be well-defined, i.e., they
have to contain information about classes and methods pa-
rameters (name, type), as well as, each method return type.
Besides, it is also necessary to annotate the diagrams with ad-
ditional information, e.g., a variable that will be used to specify
the path of the classes that will be tested. This information will
be used to generate the Abstract Structure (more details about
how the diagram is annotated will be presented in Section IV).
The UML sequence diagram is annotated with the following
tags:�TDexternalLibrary�: specifies the libraries path
of the SUT; �TDclassPath�: specifies the path of the
classes to be tested;�TDtoolPath�: specifies information
about the chosen code coverage tool, e.g., the installation
directory and the path of its launcher; �TDimportList�:
specifies a list of imported classes.

The advantage of annotating the sequence diagram with
these tags is that they are used to provide information used
to automatically generate Test Drivers, such as libraries,
dependencies among classes and import list. Each tag can
define a fixed value or a variable that can be replaced when
generating the actual test case or driver for a specific tool.
For example, the previously mentioned four tags must be
annotated in the sequence diagram with the following param-
eters: @externalLibrary, @classPath, @toolPath
and @importList. However, these parameters are just a
reference and have no actual information about the code
coverage tool, class path, external library or import list. After
this annotation process, all information described in the UML
sequence diagram is exported to a XMI file, which is the input
of the first step in our approach.

The first step (Parser) consists of parsing the XMI file
in order to extract the information necessary to generate a
data structure in memory, which we call Test Information (see
Figure 1a). The Test Information describes the test sequences
generated from the sequence diagram and it has information
about the methods and classes to be tested. The second
step (Test Case Generator) receives as input the Test
Information and a XML file called Test Data (Figure 1b).

The Test Data file has the actual values about libraries used
to the application execution, the path of classes to be tested and
the package list to be imported. However, the Test Data file has
no tool information, since the first two steps of our approach
are tool-independent. Moreover, the Test Data also describes a
set of different parameter values for all classes and methods of
the application to be tested. Based on that, the Test Case
Generator applies a random test data generation technique
[10] under the parameter values presented on Test Data and
only for the classes and methods described on Test Informa-
tion. The random technique generates input values for each
method described in a test sequence. The reason for choosing

this technique consists of selecting specific parameters for
each one of these classes and methods. It was used due to its
practicality and to be easier to automate. However, other tech-
niques are presented in the literature, e.g., symbolic execution
[11], dynamic execution [12] and feedback-directed random
testing [15]. After applying the random test data generation
technique, the Test Case Generator also produces the
Abstract Structure and the Data File, which are the input of the
third step. The Abstract Structure is a text file that describes,
in a sequential and tool-independent format, the entire data
flow of the classes and methods to be tested (see Figure 3
for an example of file that contains the Abstract Structure).
The Abstract Structure is divided in three groups: 1) Tool
Configuration: defines the @toolPath parameter, which
specifies the information about the code coverage tool that
will be used for the test; 2) Test Configuration: defines the
@classPath, @externalLibrary and @importList
parameters, which define the information used for a specific
test case; 3) Sequential Flow Configuration: defines the
sequential flow of the methods that will be tested.

Each one of these parameters is a reference to the actual data
that is stored in the Data File, which is a text file that contains
the information (values) used to instantiate test cases for a
given code coverage tool (see Figure 4 for an example of a
file that contains actual values for a specific tool). The test case
instantiation is performed by the step Script Generator
(see Figure 1c), which consists of automatically generating
the Test Driver for a specific code coverage tool. Therefore,
when the Abstract Structure and Data File are instantiated
to generate Test Driver, a class file named TestDriver.java
is generated. This file contains a class that makes calls to
the methods that will be tested and also includes a set of
information to be used as input of these methods. In our
approach, the input information is generated automatically
using the random test data generation technique previously
mentioned. Furthermore, in the step Script Generator
the user must provide all information about a specific code
coverage tool, e.g., the path of its launcher.

One of the advantages of using a file to store the actual
values, which are used in the instantiation of the class file,
is that it is not necessary to include, in the UML sequence
diagram, the parameter values of the methods that will be
tested. Thus, to generate new test cases with different input
values, it is only necessary to generate new test data using any
kind of data generation technique. Moreover, the advantage
of using the Abstract Structure is related to the ability to
reuse information for different code coverage tools. In this
sense, if a company decides to migrate to a different code
coverage tool, due to a management strategy, it will be able
to use the test cases previously generated. Besides that, the
Abstract Structure presents the test information in a clear
format, making it simple and easy to understand. Therefore, it
is easier to automate the Test Driver generation for several
tools. The last step (Executor - see Figure 1d) consists
of performing the test with a specific code coverage tool.
Therefore, all the class files generated on step three are used
for the test execution. The generation of the class files will be
further described in Section IV.

IV. CASE STUDY: SKILLS - WORKFORCE PLANNING

This section describes how we have applied our approach
to test an application to manage profiles of employees from

278Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 300 / 679

Fig. 2. Sequence diagram

any company. The main goal is to assess the efficacy and the
functionality of our approach through presenting how we de-
rived two tools (PletsCoverageJabuti and PletsCoverageEmma)
that generate test cases from UML sequence diagrams and
execute TestDrivers using two coverage tools, e.g., JaBUTi
and EMMA. Through the use of our approach we were able
to reuse components from steps 1 and 2 (Section III) for both
testing tools.

The application used as subject under test is called Skills
(Workforce Planning: Skill Management Tool) [14]. This
application was developed in a collaboration project between
a TDL of a global IT company and our university. The main
objective of Skills is to manage and to register skills, certifi-
cations and experiences of employees for a given company.

With the purpose of verifying the functional aspects of our
approach, we have tested a set of classes and methods of
Skills. These classes and methods are represented by four
sequence diagrams that describe processes, in which an user
performs several operations, e.g.: (a) search for a particular
certification information; (b) search for a particular skill infor-
mation; (c) display a list of registered experiences; (d) display
information about the user profile; and (e) change the login
password. Figure 2 shows part of one of the four sequence
diagrams (all sequence diagrams can be found in [16]), in
which it is possible to see how tags described in Section III are
annotated in the sequence diagram. As can be seen in Table I,
these operations are performed through calls of 22 methods of
9 classes (2,561 lines of code). Note that our approach consists
of automating the test case generation, in which only the
system internal methods are analyzed. Therefore, no method
called from the user interaction will be analyzed, since our
approach does not implement this feature. In this context, only
the information about the methods described in Table I will be
used to automatically generate and executing the Test Driver.

In order to generate and execute the Test Driver, initially,
we had to annotate the four sequence diagrams with the tags
TDexternalLibrary, TDclassPath, TDtoolPath,
TDimportList and their respective parameter values:
@externalLibrary, @classPath, @toolPath and
@importList. These tags and values were annotated in the
classifier role elements, which represent the nine classes used
for this case study. After annotating the sequence diagrams
with test information, we exported these test models to a XMI
file, which is input for PletsCoverageJabuti and PletsCover-
ageEmma. During their execution, the tools parse the XMI file,

Abstract Structure: Search for Certification
Tool Configuration
Tool Information : <<TDtoolPath: @toolPath>>
Test Configuration
External Libraries : <<TDexternalLibrary: @externalLibrary>>
Path Classes : <<TDclassPath: @classPath>>
Imported Classes : <<TDimportList: @importList>>
Sequential Flow Configuration
1. ServletCertification
1.1. searchCertification(String certification, String provider):
boolean
1.2. checkName(String certification, String provider): String
1.3. getProvider(String certification, String provider): int ...

Fig. 3. Code snippet of the Abstract Structure

@toolPath = C:\Jabuti\bin; C:\Jabuti\lib\bcel-5.2.jar;
C:\Jabuti\lib\capi.jar; ...
@externalLibrary = C:\Tomcat 6.0\lib\jsp-api.jar; ...
@classPath = C:\CmTool_SkillsTest\web\WEB-INF\classes; ...
@importList = servlets.*; java.io.*; java.util.StringTokenizer
1. ServletCertification
1.1. searchCertification("ActiveX", "BrainBench")
1.2. checkName("ActiveX", "BrainBench")
1.3. getProvider("ActiveX", "BrainBench") ...

Fig. 4. Code snippet of the Data File for JaBUTi

extracting information from the methods and classes that will
be tested in order to generate a data structure in memory (Test
Information). Based on the Test Information and the Test Data
(a XML file with different parameter values for all classes
and methods of the SUT), the tools apply a random test data
generation in order to generate the Abstract Structure (Figure
3) and Data File (Figure 4).

Figure 3 shows a code snippet of the Abstract
Structure that is divided into three information groups:
Tool Configuration, Test Configuration and
Sequential Flow Configuration. As mentioned in
Section III, all parameters present in each information group
are a reference to the actual data that is stored in the Data
File that contains all values that will be used to instantiate
test cases for a given code coverage tool (JaBUTi or EMMA).
Figure 4 presents a code snippet with information regarding
the parameters values of this file. In this example we defined
information on the JaBUTi launcher path (@toolPath); for
EMMA, we just need to change this value in the Data File.

Based on the information described in the Abstract Structure
and Data File, the TestDriver.java class is generated. This
class is the same for both JaBUTi and EMMA. Since JaBUTi
and EMMA perform structural analysis on the bytecode,
PletsCoverageJabuti and PletsCoverageEmma create a Java

279Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 301 / 679

TABLE I. Coverage Information for JaBUTi

Classes Methods Lines of Code
Coverage Percentage (%)

One Two Three Four
run runs runs runs

ServletCer
tification

searchCertification 128 100 100 100 100
checkName 96 100 100 100 100
getProvider 134 69 75 89 100

ServletSkill searchSkill 119 56 100 100 100
checkName 90 100 100 100 100

ServletEx peri-
ence

getUserExperiences 125 100 100 100 100

ServletProfile getUsers 122 80 85 93 100
printResult 95 100 100 100 100

Servlet
Password

checkPassword 129 100 100 100 100
changePassword 121 90 95 100 100

ServletTree searchSkillNode 120 100 100 100 100
searchCertificationNode 126 59 72 95 100

ServletIndus try-
Domain

getRoleChildren 115 48 57 81 100

ServletForgot
Password

sendEmail 137 100 100 100 100
checkEmail 121 66 84 94 100
checkUser 119 48 63 86 100

ServletGen
eralSearch

getSelectedUsersCertifications 122 25 50 75 100
getSelectedUsersExperiences 129 71 82 100 100
getSelectedUsersSkills 113 74 89 100 100
printCertifications 100 75 100 100 100
printExperiences 102 62 100 100 100
printSkills 98 90 100 100 100

process to compile the driver class. In order to perform
test cases with EMMA, automating the generation of the
TestDriver.java class is enough. However, in order to perform
test cases with JaBUTi it is necessary to generate a project file.
PletsCoverageJabuti generates this project file by creating a
Java process. This process runs a JaBUTi’s internal class called
br.jabuti.cmdtool.CreateProject, in which some
information such as paths of the JaBUTi’s internal libraries is
used as input parameter.

Once these two files are generated, the test execution con-
sists in the internal call of the probe.DefaultProber.
probe and probe.DefaultProber.dump methods for
JaBUTi. At the end, the PletsCoverageJabuti creates a Java
process for running JaBUTi, which is responsible to calculate
and to show the updated coverage information for the defined
test case. Based on that converage information, the tester
could continue running the PletsCoverageJabuti in order to
generate more test cases and increase code coverage. In this
context, the tool executes several tests until the code coverage
is reached. The tester has also the possibility of terminating
the PletsCoverageJabuti execution in any moment and then,
finalize the test. An advantage of using PletsCoverageJabuti
is that it could generate several tests avoiding redundant test
cases, since each test case generated by the random technique
is saved by the tool. This ensures that a test case will not
be repeated. Table I shows the coverage results after four test
runs. It is important to mention that all classes and methods
were analyzed based on All-nodes criterion. As can be seen
in the table, some methods were covered after one run, while
others needed for runs to be covered.

In order to generate and execute Test Drivers using the
PletsCoverageEmma, we have used the same sequence di-
agram. However, we have not annotated it with test in-
formation, because this task had been done previously for
PletsCoverageJabuti. Furthermore, all test cases generated for
PletsCoverageJabuti were also used for our second tool. In
the same way as PletsCoverageJabuti, the user/tester has the
possibility of continuing to run the tool in order to generate
and execute more Test Drivers. The results for EMMA are
similar to the ones for JaBUTi presented in Table I.

These results show that our approach allowed the same
diagrams, and test cases to be used in different tools producing
similar results. Furthermore, our approach was able to generate
a second tool (PletsCoverageEmma) with less effort. The rea-

son is that our approach is based on an SPL, which allowed the
reuse of components (Parser and Test Case Generator) already
developed. Although we have developed different components
(Script Generator and Executor) for our both tools, this task
required less effort compared to development of the two first
components. In this case, we had to automate the calls of
internal routines and subcommands of JaBUTi and EMMA.
Furthermore, once familiar with the functional features of the
PletsCoverageJabuti tool, it was possible to perform tests with
little learning effort using PletsCoverageEmma, since both
tools share several features, e.g., GUI, test data generation
technique and the Abstract Structure format.

The results also show the importance of performing struc-
tural testing, since it covers faults that are difficult to meet
with other testing techniques, e.g., the functional testing. For
instance, if a test team does not ensure that all methods
were fully covered during the structural testing activity, it is
possible that when applying the functional testing, a specific
functionality cannot be assessed (unreachable statement) due
to a code inconsistency, e.g., infinite loops or conditions
that never occur. Therefore, structural testing is useful in
combination with functional testing, since it helps to reveal
faults that may not be evident with black-box testing alone.

V. RELATED WORK

There has been some work in the past years related to MBT,
UML and structural testing, but to the best of our knowledge
none of them has integrated all of them. Furthermore, our work
also uses code coverage tools and it is integrated into an SPL.

Regarding test case generation using UML sequence dia-
grams, Khandai et al. [18] propose an approach for generating
test cases for concurrent systems using sequence diagrams.
Our approach, on the other hand, aims to generate tools that
automatically generate and execute test cases based on source
code of applications. A strategy similar to Khandai et al. can
be applied to extend our approach for concurrent systems.

Similarly, Sharma et al. [19] convert the UML sequence di-
agram into Sequence Diagram Graph (SDG), and then traverse
the SDG to generate the test cases. Other UML diagrams are
also used to collect information that is stored in the SDG.
Their approach was extended to combine sequence and use
case diagrams to generate system test cases. This extended
approach consists of converting UML use cases into a Use
Case Diagram Graph and UML sequence diagrams into SDG.
Our work, on the other hand, focus on structural testing with
coverage criteria based on commands, decisions, classes, and
methods, which is not addressed by Sharma et al.. Thus, both
approaches are complementary since our approach can be used
to generate test cases to cover interactions and scenarios faults.

A work from Swain and Mohapatra [20] uses UML se-
quence and activity diagrams to generate test cases by con-
verting the UML diagrams into an intermediate representation
called Model Flow Graph (MFG). This MFG is traversed to
generate test sequences that are instrumented in the test case
to satisfy a message-activity path test adequacy criteria. Our
approach differs from [20] since it is embedded in an SPL and
go further than only generating the test cases, i.e., our approach
actually executes the test cases in two code coverage tools.

Different from the existing works in test case generation
presented in this section, our approach consists not only
in the test case generation through MBT, but also on the
generation and execution of Test Drivers for several tools.

280Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 302 / 679

Furthermore, we applied our approach to a detailed case study
in an actual company environment. Moreover, our approach is
based on an SPL, which make it easier to reuse code that
was not developed for a specific tool. This has happened
in the two tools we presented and also in previous tools
for performance and functional testing [14]. Furthermore, our
approach distinguishes from [14] in two aspects: first, our
approach generates test cases from UML sequence diagrams,
while their work uses UML use cases and activity diagrams;
second, our approach uses a random test data generation
technique to select input values from a specific domain, while
their work uses sequence test case generation methods, e.g.,
Harmonized State Identification (HSI) [21].

VI. CONCLUSION AND LESSONS LEARNED

This paper presented an approach for automating test case
generation for several coverage tools from UML sequence
diagrams. Based on this approach, we incremented an SPL
called PLeTs. PLeTs is able to generate testing tools that
use academic or commercial tools to execute performance,
functional or structural test. One of the advantages of our
approach is related to reuse of test information described
in UML sequence diagrams. Hence, it is possible to easily
migrate to a different testing tool and reuse the test cases
previously defined. The tools used to exemplify our approach
were: JaBUTi and EMMA. However, commercial tools such
as Semantic Designs Test Coverage and Rational PurifyPlus
or other academic tools such as Poke-Tool (Poke-Tool) could
be used for this purpose. Furthermore, our approach is useful
for industry when developers already have designed models.
In this context, the models could be reused to automatically
generate test cases. Basically, the main lessons we have learned
were: 1. Coverage analysis based on bytecode and source
code. Although we have presented a case study, in which we
used two code coverage tools (JaBUTi and EMMA) to perform
coverage analysis based on bytecode, our approach is able
to deal with tools performing tests based on the analysis of
source code, e.g., Semantic Designs Test Coverage [2]. Some
minor tools related changes should be performed, however. For
example, the @classPath parameter must indicate the path
of source code files instead of the path of class files (bytecode).
We decided to use bytecodes, since in some situations the
source code could not be available to test an application.
2. The choice of test data generation technique. When
performing structural testing, it is very important to choose
an efficient technique for generating testing data. An efficient
technique increases the likelihood of meeting the requirements
of structural testing. In our approach we have applied a random
testing data generation technique to select the parameter values
used to instantiate the TestDriver.java file. However, our ap-
proach could implement other data generation techniques, e.g.
symbolic execution [11] and dynamic execution [12]. These
two techniques are more effective than random generation
and guarantee data selection with a higher probability to
reveal faults. Nevertheless, a random technique is practical
and easier to automate. 3. The needed knowledge on the
code coverage tools. Although there are several ways to
automate the generation and execution of tests for different
tools, a detailed study of used code coverage tools is still
necessary. Sometimes this study may reveal that is not possible
to automate the generation and execution of test cases for
a particular code coverage tool. For example, open source

tools such as JaBUTi and EMMA are easier to automate than
commercial ones, because it is possible to get access to their
internal functioning. Another point is related to the way tools
are executed, i.e., throughout command line or GUI. Command
line tools are easier to automate because they, usually, provide
a set of subroutines/programs that can be easily parameterized.
4. The advantage to generate testing tools from an SPL.
The SPL concepts were useful to develop testing tools with
less effort. A reason for that is related to the possibility to
reuse components already developed to generate other testing
tools. Furthermore, an SPL can provide other advantages,
such as: quality improvement, since it is possible to reuse
components already developed and tested; higher productivity,
since it is not necessary to develop tools from scratch; and cost
reduction, since it is possible to develop tools in large scale.

ACKNOWLEDGMENT

Research projects: PDTI 001/2014 financed by Dell Com-
puters with resources of Law 8.248/91, and AutoScene sup-
ported by Facin/PUCRS. Thanks also to Soraia R. Musse.

REFERENCES

[1] A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado, and W. E. Wong,
“Establishing structural testing criteria for Java bytecode,” Software:
Practice and Experience, vol. 36, no. 14, pp. 1513–1541, 2006.

[2] Semantic Designs, “Semantic Designs Test Coverage,” URL: http://
www.semdesigns.com, [retrieved: July, 2014].

[3] IBM, “IBM Rational PurifyPlus,” URL: http://www.ibm.com/software/
awdtools/purifyplus/, [retrieved: July, 2014].

[4] V. Roubtsov, “EMMA: a Free Java Code Coverage Tool,” URL: http:
//emma.sourceforge.net, [retrieved: July, 2014].

[5] S. R. Mallepally, QuickTest Professional (QTP) Interview Questions
and Guidelines: A Quick Reference Guide to QuickTest Professional.
Parishta, 2009.

[6] P. Krishnan, “Uniform Descriptions for Model Based Testing,” in Proc.
ASWEC, 2004, pp. 96–105.

[7] A. Kerbrat, T. Jéron, and R. Groz, “Automated Test Generation from
SDL Specifications,” in Proc. SDL Forum, 1999, pp. 135–152.

[8] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide. Addison-Wesley Professional, 2005.

[9] CePES/PUCRS, “PLeTs SPL,” URL: http://www.cepes.pucrs.br/plets,
[retrieved: July, 2014].

[10] D. Hamlet and R. Taylor, “Partition Testing does not Inspire Confi-
dence,” IEEE Transactions on Software Engineering, vol. 16, no. 12,
pp. 1402–1411, 1990.

[11] M. Lin, Y. Chen, K. Yu, and G. Wu, “Lazy Symbolic Execution for Test
Data Generation,” IET Software, vol. 5, no. 2, pp. 132–141, 2011.

[12] R. Dara, et al., “Using Dynamic Execution Data to Generate Test Cases,”
in Proc. ICSM, 2009, pp. 433–436.

[13] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley Longman Publishing, 2001.

[14] M. B. Silveira, et al., “Generation of Scripts for Performance Testing
Based on UML Models,” in Proc. SEKE, 2011, pp. 258–563.

[15] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-Directed
Random Test Generation,” in Proc. ICSE, 2007, pp. 75–84.

[16] CePES/PUCRS, “PLeTs Guide,” URL: http://www.cepes.pucrs.br/plets/
?a=guide, [retrieved: July, 2014].

[17] EvoSuite, “EvoSuite,” URL: http://www.evosuite.org, [retrieved: July,
2014].

[18] M. Khandai, A. Acharya, and D. Mohapatra, “A Novel Approach of
Test Case Generation for Concurrent Systems Using UML Sequence
Diagram,” in Proc. ICECT, 2011, pp. 157–161.

[19] M. Sarma, D. Kundu, and R. Mall, “Automatic Test Case Generation
from UML Sequence Diagram,” in Proc. ADCOM, 2007, pp. 60–67.

[20] S. K. Swain and D. P. Mohapatra, “Test Case Generation from Behav-
ioral UML Models,” International Journal of Computer Applications,
vol. 6, no. 8, pp. 5–11, 2010.

[21] A. Petrenko, et al., “Nondeterministic State Machines in Protocol
Conformance Testing,” in Proc. PTS, 1993, pp. 363–378.

281Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 303 / 679

Towards a Maturity Model in Software Testing Automation

Ana Paula C. C. Furtado, Silvio R. L. Meira
Informatics Center – Cin

Federal University of Pernambuco – UFPE
Recife, PE, Brazil

{apccf, srlm}@cin.ufpe.br

Marcos Wanderley Gomes
SOFTEXRECIFE
Recife, PE, Brazil

marcos@recife.softex.br

Abstract—The practice of testing software is one of the ways to
produce software with quality for demanding clients in the
software market. The automation of Software testing may be
seen as a solution for how to test the greatest amount of
software within a project, due to the fact that the more the
software is built, the larger the scope of testing is. Therefore,
organizations that seek to guarantee that their software
projects are being built according to the demands of their
clients should follow an automation approach to testing. Thus,
this paper puts forward a description of work in progress on
the development of a maturity model for automating software
testing that is being developed as part of a doctoral thesis.
Besides presenting the overall expected structure of the
maturity model, the plan for validating it is also set out.

Keywords-software testing; automation; maturity models.

I. INTRODUCTION

Software Testing is an essential activity in today´s world
of software development, given that customers are more and
more rigorous about the quality of products being delivered
to the market. It is necessary to test in order to minimize the
risks of finding faults in the software while in clients’
production environment.

Within this context, automating software testing appears
as an alternative to manual tests in order to cover a broader
scope of the functionalities tested within a shorter period of
time. According to International Software Testing
Qualification Board (ISTQB) [1], test automation is the use
of software to execute or support testing activities, such as
test management, test case, test execution and assessing
results. Nevertheless, the automation of testing is an activity
that can be introduced in order to gain productivity from the
team and additional quality in the artifacts generated.

Another relevant perspective from which to approach
excellence in software development is to use maturity
models to support the continuous improvement of the
processes within an organization. There are maturity models
that cover the entire scope of development activities, such as
Capability Maturity Model Integration for Development
(CMMI-DEV) [2] and MPS.BR [3] (the acronym in
Portuguese for Improving Software Processing: a Brazilian
model) which is a Brazilian model that was developed with a
view to the global software community considering it better
suited to its needs. Nevertheless, there are three other models
that were built specifically to build more discipline into

testing, namely Testing Maturity Model – TMM [4], Test
Maturity Model Integration – TMMI [5] and MPT.BR [6]
(the acronym in Portuguese for Improving Test Processing: a
Brazilian model), and thereby to support the introduction of
testing in a more disciplined and prescribed manner.

However, it is observed that none of them discuss testing
automation as an issue within maturity models.
Organizations that seek to automate their testing have no
support from maturity models which would help them to
understand what the best practices of automation are and
how to introduce these into their organizations.

Therefore, this paper sets out the overall structure of a
maturity model for automating software testing that is being
developed as part of a doctoral research study.

This paper is organized as follows: the next section gives
an overview of the discipline of software testing and its main
concepts. Section 3 gives the background to maturity models
and comments on what they offer in terms of automating
software testing. Section 4 explains the framework for the
maturity model and Section 5 makes concluding remarks and
suggests future lines of study.

II. SOFTWARE TESTING BACKGROUND

According to ISO/IEEE [7], testing is a set of activities
conducted to facilitate discovery and/or evaluation of
properties of one or more test items. Testing activities can
include planning, preparation, execution, reporting, and
management activities, insofar as they are directed towards
testing.

Meyers [8] states that software testing is the process of
executing a program with the intent of finding errors. The
book, A Guide to Advanced Software Testing [9], states that
testing can also be considered a support activity: it is
meaningless without the development processes and does not
produce anything in its own right: nothing developed entails
nothing to test.

All such statements give a general idea of the definition
of software testing and essentially lead to the same overall
objective of software testing which is not to find every
system/software bug that exists, but rather to uncover
situations that could negatively impact the business.
Nevertheless, note that the cost of finding and fixing bugs
can rise considerably during the development life cycle.
Therefore, the earlier in testing that bugs which are judged

282Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 304 / 679

likely to have moderate or serious impacts on later stages are
identified and fixed, the better.

On the other hand, ISTQB [1] declares test automation as
the use of software to perform or support test activities, e.g.,
test management, test design, test execution and results
checking. According to ISO/IEEE [7], automated testing is
often considered to be mainly concerned with conducting
tests on scripted tests rather than having testers conduct tests
manually. However, many additional test tasks and activities
can be supported by software-based tools.

The activity of automating tests assumes that tools are
used, and, according to Hass [9], the purpose of using tools
for testing is to get as many as possible of the noncreative,
repetitive, and boring parts of the test activities automated.
The purpose is also to exploit the possibility of tools for
storing and arranging large amounts of data.

Automation may help solve problems, especially those
caused by:

• Work that is to be repeated many times;
• Work that it is slower to do manually; and
• Work that it is safer to do with a tool.

Another goal when introducing automation techniques
into the discipline of testing is to increase the productivity of
the team. Otherwise the cost of introducing automated
practices would not be compensated for. Figure 1 is a
graphical representation of the comparison of the cost of
manual and automated testing.

Figure 1. The cost of testing, by Hass [9].

Therefore, this section presented the main concepts of
software testing used for this research. The next section
comments on maturity model concepts used as references to
implement a testing maturity model in automation.

III. SOFTWARE MATURITY MODELS

According to Prado [10], maturity can be defined as "a
way to measure the stage that an organization is at in its
ability to manage its projects." The main objective is to help
improve the way software is being built.

In order to suggest a maturity level for automated testing,
the main maturity models studied were CMMI-DEV [2],
TMMI [5] and MPT.BR [6], which will be explained in the
following sections.

A. TMMI

TMMI [5] is a maturity model that was produced by the
TMMI Foundation which used TMM [4] as a reference. It
aims to work as a complementary model to CMMI-DEV [2]
and, therefore, it is organized in maturity levels, as presented
in Figure 2.

Figure 2. TMMI Maturity Levels [5].

The framework of the model consists of 16 process areas.
However, the model states “TMMI does not have a specific
process area dedicated to test tools and/or test automation”.
The model comments that test tools are treated as a
supporting resource (practices) and are therefore, part of the
process area where they provide support.

B. MPT.BR

MPT.BR [6] approaches the enhancement of the testing
process by using the best software testing practices
throughout the product lifecycle. MPT.BR uses guidelines on
how best to improve the software testing process throughout
the lifecycle of the software.

It was developed to be introduced as a complement of
MPS.BR [3], which focuses on software processing, but pays
scant attention to testing disciplines.

The MPT.BR reference model presents five maturity
levels, representing the stages for evolving a test process in
the context of an organization. The maturity levels are shown
on Table I.

The levels comprise 16 processes areas, one of which,
AET (which is the acronym in Portuguese for Test Execution
Automation), that specifically addresses testing automation,
the objective of which is to establish and maintain a strategy
for automating test execution activity, by defining its
objective, defining a framework and assessing the Return on
Investments (ROI).

There is another process area, called GDF (which stands
for tools management), that mentions testing tools. Its
objective is to manage the identification, analysis, selection
and deployment of tools to support testing activities, in

283Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 305 / 679

general, within an organization. This process area does not
mention any specific tool; it talks about the necessity to plan
organizationally, to instantiate and to manage the use of tools
within a project.

TABLE I. MPT.BR PROCESSES AREAS

Maturity Level Objective

1 – Partially
Managed

This contains the minimal requirements that a
company needs to meet in order to demonstrate
that the discipline of testing is applied to
projects and that this takes place in a planned
and monitored manner.

2 – Managed

This takes a broader view in which the scope of
the project starts to be controlled by the
management of change process. In addition,
software testing patterns are defined and
processes are monitored and controlled.

3 – Defined

At this level, testing becomes organizational.
Defined software processes are adopted, quality
Assurance is institutionalized in order to
support process definition, responsibilities for
test organization are defined and a
measurement program is institutionalized in the
organization. At this level, the software testing
lifecycle is associated with the development
one, where static and acceptance testing are
formalized and systematic procedures are
applied for test closure.

4 – Defect
Prevention

This focuses on preventing defects and
systematically improving the quality of the
product. At this level, the organization has a
process for managing defects, in which defects
found are monitored.

5 – Automation
and Optimization

The fifth maturity level sets out to establish a
process for testing that continuously improves
tests and automates them.

C. CMMI-DEV

CMMI-DEV [2] is a model that consists of best practices
that address development activities applied to products and
services. It addresses practices that cover the product’s
lifecycle from conception through delivery and maintenance.

The structure of the model comprises 22 process areas
organized in 5 maturity levels, which are:

1. Initial;
2. Managed;
3. Defined;
4. Quantitatively Managed; and
5. Optimizing.
CMMI is a maturity model that can be applied by means

of staged or continuous representation. In the former, the
organization can improve a set of related processes by
incrementally addressing successive sets of process areas.
The latter enables organizations to improve processes
corresponding to individual process areas, by making it
possible to choose the ones that best fit the organizational
environment.

Both representations use the same set of process areas,
and there are 2 that specifically talk about testing, as shown
in Table II.

TABLE II. CMMI PROCESS AREAS OF TESTING

Process Area Description.

Verification
The purpose of Verification (VER) is to ensure
that selected work products meet their specified
requirements.

Validation

The purpose of Validation (VAL) is to
demonstrate that a product or product
component fulfills its intended use when placed
in its intended environment.

Both process areas talk about practices on how to
guarantee quality by means of testing activities (static and
dynamic testing), but there are no recommendations on how
to conduct automated practices for testing activities.

D. Automation Approach on Maturity Models

This section combines the maturity models that are used
as main references to build the MPTA.BR. Table III
summarizes the maturity models together with the approach
of automation contained in each, if present.

TABLE III. MATURITY MODELS AND AUTOMATION APPROACH

Maturity
Model

Automation Approach

CMMI
No automation approach defined, there are two process
areas that talk about testng, namely, VER and VAL.

TMMI
Automation can be done in any process area but there is no
guidance on how to do it.

MPT.BR
Level 5 presents two process areas, one of which is AET
which talks about automation and GDF which mentions
tools, in general, including automated ones.

The next section will present the proposal of the work in
progress for developing a maturity model for automation

IV. MPTA.BR

The Maturity Model MPTA.BR (the acronym in
Portuguese for Improving the Test Automation Process: a
Brazilian model) aims to be complementary to MPT.BR, as
it provides guidance to be used when developing automation
processes within an organization.

In the current marketplace, maturity models, standards,
methodologies, and guidelines exist that can help an
organization improve the way it does business. According to
CMMI-DEV [2], “the quality of a system or product is
highly influenced by the quality of the process used to
develop and maintain it.”

The idea to develop a maturity model on automation
arose from both technical research and a bibliographic
review as well as from demand in the software development
industry. Research specifically undertaken in organizations
that have achieved a maturity level on MPT.BR [11] shows
that they are interested in applying automation techniques to
their testing processes.

MPTA.BR will follow the structure of MPT.BR, where
each maturity level consists of a set of process areas, which
can be understood as a group of related practices that, when
implemented together, satisfy a specific objective. Each
maturity level is also associated with generic practices that
are applied to each process area.

284Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 306 / 679

A. Maturity Levels

The maturity levels were influenced by the organization
of MPT.Br, together with a classification of tools for
automation defined by Hass [9]. This describes an
evolutionary track recommended for a company that aims to
introduce testing automation processes. The maturity levels
are:

1. Managed: its objective is to introduce the
automation of planning and monitoring activities of
the test project as well as configuration management
practices.

2. Designed: This maturity level focuses on the
definition of automated practices in test design and
debugging activities, as well as troubleshooting and
static analysis tools.

3. Executed: The objective of this level is to automate
data generation, simulation, emulation, fault-
sending, fault-injection and test case execution.

4. Analyzed: The objective is to use tools to support a
comparison of results and indicators.

The suggested model improves the concepts presented in
the other models to include specific guidance on how to
introduce test automation in an organization.

B. Validation of MPTA.BR

The validation of the model is planned to occur through
the following processes of Case Study and Survey.

The case study is run by adopting the model in selected
and volunteer organizations following the steps below:

1. Making an initial diagnosis to identify gaps and to
assess the automation practices that exist (if any) in
the organizations;

2. Building an action plan to introduce the practices of
the model in the organization;

3. Running a pilot project; and
4. Assessing the pilot project to identify if the intended

objectives of the model were achieved, in fact, with
the support of MPTA.BR.

On the other hand, a survey with specialists can be
conducted by selecting a group of experienced professionals,
both from the academic world and industry. Thereafter, it is
necessary to run a survey in order to assess their opinion on
the effectiveness of the model with regard to helping to
introduce automation practices in organizations.

Both methods of validation can run in parallel and after
collecting the results from both, the positive and negative
aspects of the model will be assessed and the improvement
opportunities consolidated in order to generate the final
version of the model which the doctoral research study sets
out to do.

Certain limitations to validate the model can be observed,
such as the difficulty to find an organization to run the case
study and to select/find the correct specialist to execute the
survey.

V. CONCLUSION AND FUTURE WORK

It has been observed that software testing automation can
be used to support organizations to achieve higher levels of

quality in the products being developed by the software
industry. Maturity models that are being used world-wide
give little, or almost no guidance on how to implement
automation in testing processes.

This work in progress is part of a proposal for a doctoral
thesis that is being developed and was prompted by prior
research and a review of the literature besides which it was
noted from personal experience and observations that there is
a demand from the software industry for a model of this
nature. The objective is to propose guidelines using a
maturity model on software testing automation in order to
help organizations gradually introduce automation practices.

One of the threats that may arise from this research is
related to the fact that automation might not be the solution
for an organization´s needs and its introduction may make
the process heavier than necessary.

Another relevant threat is that even defining MPTA.BR
as the model to be implemented might make it more difficult
than expected to run study cases in the real world
environment because it is hard to convince organizations to
introduce practices of a model that is under construction.

Automation may not be the solution for all software
development projects because its incorrect use may lead to
an increase in cost and not make sense in the end. As to
future research, this model will be detailed with the
information necessary and this will include making detailed
descriptions of its structure and processes areas.

REFERENCES

[1] ISTQB, “Standard Glossary of Tearms Used in Software
Testing”, Version 2.2, October 2012.

[2] CMMI-DEV, “CMMI for Development”, Version 1.3,
CMU/SEI-2010-TR-033, Software Engineering Institute,
2010.

[3] MPS.BR, “Improving Software Processing: a Brazilian model
”, Softex, Available from

http://www.softex.br/mpsbr/guias/, 2014.08.11

[4] TMM, “Test Maturity Model”, Illinois Institute of
Technology, Available from http://science.iit.edu/computer-
science/research/testing-maturity-model-tmm 2014.08.11

[5] TMMI, “Test Maturity Model Integration” Release 1.0. TMMi
Foundation, Ireland. Available from
http://www.tmmi.org/pdf/TMMi.Framework.pdf 2014.08.11.

[6] Softex Recife, “MPT - Improving Test Processing: a Brazilian
model”. Available in http://mpt.org.br/mpt/wp-
content/uploads/2013/05/MPT_captured on Apr. 27th 2014.
Portuguese Version Only.

[7] ISO/IEEE 29119 – Part I International Standard, “Software
and Systems Engineering/Software Testing, Concepts and
Definitions, First Edition, 2013.

[8] J. Glenford Myers, “The Art of Software Testing,” John
Wiley and Sons, ISBN 0-471-04328-1, 1979

[9] A. Hass, “A guide to Advanced software testing,” Artech
House, INC.2008

[10] D. Prado, “Project Management in Organizations”, 2 ed. Belo
Horizonte: Editora de Desenvolvimento Gerencial, 2003.
Portuguese Version Only.

[11] A. Furtado, M. Gomes, E. Andrade, I. de Farias Junior,
“MPT.BR: A Brazilian Maturity Model for Testing” The 12th
International Conference on Quality Software (QSIC), August
2012, pp. 220-229, ISSN 1550-6002, ISBN: 978-1-4673-
2857-9, DOI 10.1109/QSIC.2012.53

285Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 307 / 679

Low-Variance Software Reliability Estimation Using Statistical Testing

Fouad ben Nasr Omri, Safa Omri and Ralf Reussner

Chair for Software Design and Quality
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: {fouad.omri, safa.omri, ralf.reussner}@kit.edu

Abstract—Software statistical testing establishes a basis for sta-
tistical inference about the expected field quality of software
based on an expected operational profile. The standard statistical
testing approach draws randomly test cases from the expected
operational profile according to the statistical distribution on the
expected inputs. Standard Statistical testing is in the most of the
cases impractical. The number of required test cases to reach a
target reliability with a given confidence is too large. In this paper,
we present a test selection approach to minimize the variance
of reliability estimator and reduce the overhead of estimating
reliability. The presented approach combines the idea of statistical
testing with the concepts of stratified sampling. Experiments are
conducted to validate the efficiency of our approach.

Keywords–Software reliability testing, reliability estimation, sta-

tistical testing, stratified sampling

I. INTRODUCTION

Statistical testing draws test cases from the expected Op-
erational Profile (OP) according to the statistical distribution
on the expected inputs.

Reliability assessment using statistical testing can be
grouped in three different categories: (i) reliability growth
models, (ii) fault seeding models and (iii) sampling models.
Reliability growth models are making assumptions about the
number of faults removed at each testing step by trying to
extrapolate the future behavior of the software based on its past
behavior. The assumptions made by reliability growth models
are difficult to justify [1][2]. Fault seeding models are also
making assumptions about the distribution of faults remaining
in the program after testing. Such assumptions cannot be
rigorously justified [3].

One class of reliability assessment approaches using sta-
tistical testing are sampling models. These models are the-
oretically sound [4], but they suffer from several practical
problems. Sampling models require a large number of test
cases [5]. In addition, a major concern is how to choose a
proper estimator for the reliability that provides accurate and
stable reliability estimate. The goodness of an estimator is
judged based on the following four properties: (i) unbiased, (ii)
minimum variance, (iii) consistent and (iv) sufficient. The main
focus when selecting an estimator is the minimum variance
of the estimator. The other three properties are in most of
the cases satisfied by most of the estimators. The variance of
an estimator describes the closeness of the future estimate to
the previous estimate when rerunning the estimation with the
same setting. An estimator with low variance increases the
confidence on the predicted estimate. In fact, a low variance

usually implies tighter confidence interval for the estimate.
Consequently, we can improve the accuracy of the reliability
estimation by providing or choosing an unbiased estimator
that has a minimum variance. It is also important to note
that the more tests are executed the more will the variance of
the estimator decrease. Consequently, an estimator with low
variance can find an accurate estimation with fewer test cases.

This paper presents a test selection strategy based on
adaptive constrained sampling of the OP to deliver an unbiased
reliability estimator which is both efficient and accurate (i.e.,
needs less test cases than standard approaches to find an
accurate estimate). We call our approach Adaptive Constrained
Test Selection (ACTS).

The rest of the paper is organized as follows. Section II
formulates the problem of reliability estimation variance re-
duction and identifies the adaptive optimal test cases allocation
over the operational profile sub-domains as a solution. The
main steps of our approach are described in detail, in Section
III. Experiments are set up to validate the performance of the
proposed approach in Section IV. We give an overview on
related work in Section V. Section VI concludes this paper
and proposes future research direction.

II. PROBLEM FORMULATION

The target of this paper is to present a reliability estima-
tion approach that minimizes the variance of the reliability
estimator for discrete-time domain software. For discrete-time
domain systems, one is interested in the probability of success
of a single usage of the software.

A. Software Statistical Testing

Software statistical testing is testing based on an opera-
tional profile.

Operational Profile Definition: As defined by Musa [6] ”an
Operational Profile (OP) is a quantitative characterization of
how a (software) system will be used”. It consists of a set
of partitions of the software input domain (sub-domains) and
their probabilities of occurrence.

In most of the cases, the OP describes also the distribution
of the input variables of a program. We use in this work the
abstract OP representation defined by Musa [6], which we
introduce in Section II-B.

286Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 308 / 679

B. Standard Tests Selection Approach
Statistical Testing as proposed by Musa [6] generates by

random sampling test cases according to the OP.
The OP is used to divide the input domain D of the

software to test in L disjoint sub-domains: D1,D2, . . . ,DL.
Each sub-domain represents a possible operational use and has
a probability of occurrence according the OP. Let pi be the
probability of occurrence of sub-domain Di. The OP can be
represented as OP = {(Di, pi)|i = 1, 2, . . . , L}.

Let A a sequence defined as follows: A =
{A0,A1, . . . ,AL}, |A| = L + 1, where Ai =

Pi
k=1 pi

for i = 1, . . . , L, and A0 = 0.
The generation of the test cases is then as follows:

1) Generate an uniformly distributed random number
⇣ 2 (0, 1), if ⇣ 2 [Ai,Ai+1], then the sub-domain
Di+1 will be randomly sampled since Ai+1 �Ai =
pi+1, where pi+1 the probability of occurrence of
sub-domain Di+1.

2) Generate input variables from the sub-domain Di+1

based on the provided input distributions, and execute
the test case.

3) Repeat the above steps until a stopping criteria is
reached (e.g, target reliability value reached, target
confidence on the estimated reliability reached, re-
quired test time reached, etc.)

C. Discussion
The test selection approach proposed by Musa [6] is a

random selection process without replacement. The selection
is controlled by the uniformly distributed random variable
⇣ 2 (0, 1). The main idea behind this approach is to ensure that
when the testing process is terminated because of (for example)
imperative software project constraints, then the most used
operations will have received the most testing effort. Musa
also claims that ”the reliability level will be the maximum
that is practically achievable for the given test time” [6]. One
key assumption here is that the sample of selected test cases
represents the expected software execution according to the
OP and delivers the maximum achievable reliability level.
However, this assumption is not always valid. It would be
ideal if we could separate successful program execution from
the failing ones. However, this is not likely, because failures
are often caused by small faults in a large program.

A software fault is a hidden programming error in one
or more program statements. A program consists of a set of
statements. A program execution is a program path executed
with an input value from the program’s input domain. A
program path is a sequence of statements. Each program path
has an input and an executed output which usually depends on
the input. Consequently, a program execution is considered as
a failure if the corresponding executed program path deviates
from the expected output.

Two program execution are similar if they execute the same
program path with different input value. If the same input value
is used then the two executions are equal.

Two similar program executions may differ only in regard
to executing a particular fault, with the result that one execu-
tion fails while the other does not. Conversely, two dissimilar
program execution may both fail because they execute the

same faulty program statement. Consequently, we may not
group the failing program executions together even if they have
the same causing fault.

Hence, it is realistic to assume that the reliability estimate
across the test sub-domains have different statistical properties
(i.e., mean and variance). In this case, we refer to the sub-
domains as heterogeneous sub-domains. Using conventional
proportional random sampling to select test cases from het-
erogeneous sub-domains does not guarantee that a statistically
sufficient number of test cases will be selected from every
sub-domain. Hence, the statistical quality of the samples may
be compromised for some sub-domains. This may lead to
inaccurate statistical estimate.

Stratified sampling is designed to cluster a population made
of heterogeneous groups into disjoint strata and then randomly
sampling each strata. This paper addresses the problem of
heterogeneity of the OP sub-domains by using optimal strat-
ified sampling. The goal is to formulate the statistical testing
approach as an optimal stratified random sampling process and
provide a reliability estimator which should reduce the number
of required test cases for the estimation while delivering
accurate reliability estimates.

D. Stratified Sampling Variance Reduction
Stratified sampling is based on the idea of iterated ex-

pectations [7]. Let Y be a discrete random variable taking
values y1, y2, ..., yL with probabilities p1, p2, ..., pL. Let X be
a discrete random variable. Then, E[X] = E[E[X|Y]] =PL

l=1 E[X|Y = yl]pl. Suppose that the population can be
divided into L > 1 groups, known as strata. Suppose that a
stratum l contains Nl units from the population (

PL
l=1 NL =

N), and the value for the units in stratum l are x1l, x2l, ..., xNll.
Let Wl = Nl

N and µl = 1
Nl

PNl

i=1 xil, then it follows
that the population mean is µ = 1

N

PL
l=1

PNl

i=1 xil =
1
N

PL
l=1 Nlµl =

PL
l=1 Wlµl.

Then, instead of taking a simple random sample (SRS) of
n units from the total population, we can take a SRS of size nl

from each stratum (
PL

l=1 nl = n). Here µl = E[X|stratum
l] and Wl = P [Stratum l], so the overall mean satisfies the
setup of an iterated expectation.

Let X1l, X2l, ..., Xnll be a sequence of independent and
identically distributed random variables samples from stratum
l, X̄l = 1

nl

Pnl

i=1 Xil be the sample mean, and Sl
2 =

1
nl�1

Pnl

i=1(Xil � X̄l)2 be the sample variance. Then, an
estimate of the population mean µ is: X̄S =

PL
l=1

Nl

N X̄l =PL
l=1 WlX̄l =

PL
l=1 Wl

1
nl

Pnl

i=1 Xil. Since the random vari-
ables Xl are independent, then:
var(X̄S) =

PL
l=1 Wl

2V ar(X̄l) =
PL

l=1 Wl
2 1
nl
(1� nl�1

Nl�1)�l
2,

where �2
l = 1

Nl

PNl

i=1(xil � µl)2 is the variance of stratum l.
If we assume that nl ⌧ Nl for each stratum l so that the

finite population factor FPC = 1� nl�1
Nl�1 ⇡ 1 can be ignored,

then:

var(X̄S) =
LX

l=1

Wl
2 1

nl
�l

2 =
1

N

LX

l=1

Wl
2�l

2

al
(1)

where al = nl/N indicates the fraction of samples drawn from
the stratum l.

287Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 309 / 679

This variance is controllable through the allocation ra-
tio al. For example, the proportional allocation, where
al = Wl.N/N = Wl, yields the variance var(X̄S) =
1
N

PL
l=1 Wl�l

2.
By Lagrange multiplier method, the optimal allocation

a⇤ := (a⇤1, . . . , a
⇤
L) is derived in closed form

a⇤k =
Wk.�kPL
l=1 Wl.�l

(2)

achieving the minimal variance var(X̄S) =
1
N

PL
l=1 Wl

2 �l
2

a⇤
l
=

1
N (

PL
l=1 Wl�l)2, [7].

Moreover, due to the mutual independence of samples
across the strata, the empirical mean X̄S is asymptotically
normal [7].

E. Assumptions
In order to formulate the concerned research goal, some

assumptions on the software are presented.

1) The software is frozen when estimating the reliability,
since reliability estimation aims at testing the current
status of the software. The software will not be
modified during the estimation process. The software
can be modified after the estimation process.

2) The output of each test is independent of the testing
history. In some cases, it is possible that a test case is
judged to be failure free although it actually leads to
some faults which cannot be observed due to limited
test oracles. We consider such test cases to be failure
free. However, such unobserved faulty program states
can cause the failure of some following test cases.
Consequently, the latter test cases can be mistakenly
considered as faulty test cases. This leads to an error
in the reliability estimation. However, this is not a
reliability estimation approach concern rather is a test
oracle problem.

3) Each test case either fails or succeeds. A test oracle
is used to verify the behavior of the software under
test.

4) We assume that a proper test oracle is available, since
this work focuses on the effectiveness and efficiency
of reliability estimation.

5) In each operational use represented by a sub-domain
Di, all possible software operations and possible
inputs are equally likely to arise.

6) We assume that an OP is provided for the tested
software.

III. ADAPTIVE CONSTRAINED TEST SELECTION

The OP = {(Di, pi)|i 2 {1, ..., L},
PL

i=1 pi = 1} defines
the expected input domain of the program’s input variables.
Each partition (Dl, pl) is a subset of the OP , and pl � 0 is
the probability that a program input belongs to sub-domain Dl.
The OP is a natural definition of the strata for stratified random
sampling. Each stratum l corresponds to the sub-domain Dl

and has a weight Wi = pl.
A test case either fails or not. Consequently, each test case

execution is a Bernoulli trial. Let Xil be the outcome of test
case i from stratum l, i.e., from sub-domain Dl, then:

Xil =

⇢
1, if the test case fails
0, if the test case does not fail

.

Let µi defined as P (test cases from sub-domain Di fail) =
µi, where i = {1, 2, . . . , L} and µi 2 [0, 1].

Based on assumption 2, {Xil} are independent random
variables, and since

PL
i=1 pi = 1, then it can inferred that

P (Xil = 1) = µi (i.e., the probability that test case i from
sub-domain Dl fails). Each test case will lead the software
under test to failure or success. And in each sub-domain the
probability of failure of each test case is equal for all test cases
in the sub-domain. Hence, the distribution of Xil is binomial
distribution with µi.

Consequently, the sample mean of stratum l, X̄l =
1
nl

Pnl

i=1 Xil is an unbiased point estimator of µi.
The reliability of the tested software can be defined

as the weighted sum of the reliability of the sampled OP
sub-domains Di,i={1,...,L} : R =

PL
i=1 pi(1 � µi). An

unbiased estimator of the reliability is then defined as:

bR = 1�
LX

i=1

piX̄i = 1�
LX

l=1

1

nl
.pl

nlX

i=1

Xil (3)

with E[bR] = 1 �
PL

i=1 piµi and var[bR] =PL
i=1 pi

2 µi.(1�µi)
ni

=
PL

i=1 pi
2 �i

2

ni
, since the distribution of

Xil is a binomial distribution with µi.

A. Optimal Test Cases Selection

The Problem of selecting the test cases optimally from the
OP sub-domains is an adaptive optimization problem formu-
lated as follows. Given the OP, we want to select a total number
n of test cases, where (i) ni test cases are selected from each
sub-domains Di,i2{1,...,L} and (ii)

PL
i=1 ni = n, with the goal

to minimize var[R̂]. For mathematical tractability, we assume
in this section that the total number of required test case n as
well as the sub-domains failure rates and consequently their
variances are known. These assumptions will be relaxed in the
next sections. According to Section II-D:

ni = n
pi�iPL

k=1 pk�k

(4)

Note that the larger the variance �i
2 of the failure rate of

the software when executed with inputs from the sub-domain
Di, the more test cases should be selected from that sub-
domain. This makes sense, since the sub-domain with higher
estimated/observed failure rate variability should require more
testing to attain the same degree of precision as those with
lower variability. If the variances of all sub-domains are all
equal, the optimal allocation is proportional allocation.

B. Constrained optimal allocation

The intuition behind statistical testing is that the highest
the probability of occurrence of a sub-domain, the larger the
number of test cases executed from that sub-domain.

To account for this, the optimal allocation introduced in the
previous section is formulated as a constrained optimization to
a utility cost function c⇤. Let ci = 1� pi the cost of selecting

288Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 310 / 679

1: if SC(TOP) 6= 1 ^ SCmin = SC(T(Dk,pk)) < 0 then
// T(Dk,pk) is over-proportional sampled

2: n = dnk

pk
e

3: for T(Di,pi) 2 T ^ T(Di,pi) 6= T(Dk,pk) do
4: ni = dn.pie
5: //select extra (dn.pie � ni) test cases
6: end for
7: else
8: for T(Di,pi) 2 T do
9: ni = dn.pie

10: end for
11: end if

Figure 1. Adjust to Proportional Sampling

a test case from a sub-domain Di that has a probability of
occurrence pi, Then

ni = c⇤.
pi�i/

p
ciPL

k=1 pk�k/
p
ck

(5)

The cost function c⇤ is defined in Section III-D.
Note that the higher the cost ci of selecting a test case from

sub-domain Di, the smaller the sub-domain sample size ni.
Since the cost function ci is defined as ci = 1 � pi, then

(5) means: the smaller the probability of occurrence of a sub-
domain Di, the smaller the sample size ni.

C. Similarity Confidence
When testing a software according to an OP, the goal is to

simulate the expected software execution as described by the
OP. Consequently, it is interesting to quantify the similarity
of the total set of selected test cases to the expected OP. It is
also interesting to control the testing process toward a 100%
similarity to the OP.

Let T(Di,pi) be the set of test cases selected from the sub-
domain (Di, pi){i21,...,L}. Let |T(Di,pi)| = ni, i.e., the set
T(Di,pi) contains ni different test cases selected from the sub-
domain (Di, pi){i21,...,L}. Let TOP = {T(Di,pi)|(Di, pi) 2
OP = {(Di, pi)|i 2 {1, ..., L},

PL
i=1 pi = 1}} the set of

selected test cases from the OP. The similarity of T(Di,pi) to the
OP when a total number n = |

S
(Di,pi)2OP T(Di,pi)| = |TOP |

of test cases is selected from the OP sub-domains, is defined
as follows:

SC(T(Di,pi)) =

(
ni

dpi.ne , if ni dpi.ne
� ni

dpi.ne , if ni > dpi.ne
(6)

The similarity confidence of the total selected test cases is
consequently defined as follows: SC(

S
(Di,pi)2OP T(Di,pi)) =PL

i=1 SC(T(Di,pi)
)

L

Let SCmin = min{SC(T(Di,pi))|i 2 {1, ..., L}} =
SC(T(Dk,pk))k2{1,...,L}, the minimum computed similarity to
the OP.

Algorithm 1, adjusts the allocation of the test cases from
each sub-domain (Di, pi){i21,...,L} to reach a similarity confi-
dence of 100%. The steps of the algorithm are as follows. If
the selected tested cases TOP is not similar to the OP and if

SCmin = SC((Dk, pk)) is negative (line 1), then it means that
the sub-domain (Dk, pk) is over proportionally sampled. In this
case, the total number of test case n is updated proportionally
to nk (line 3), and for each sub-domain except the sub-domain
(Dk, pk), extra (dn.pie�ni) test case are selected (lines 4-6).

Otherwise, the sub-domains are under proportionally sam-
pled, and for each sub-domain (Di, pi), extra (dn.pie � ni)
test case are selected (lines 8-9).

D. Stopping Criteria

We define a test stopping criteria based on the tester
required (i) maximal error of the reliability estimate d, and
(ii) confidence level (1� ↵). The goal of reliability testing is
then to estimate the reliability R̂ to within d with 100(1�↵)%
probability.

The total required number of test cases depends on the
allocation of the selected test cases to the sub-domains. Let
al (as defined in Section II-D) be the allocation ratio for the
sub-domain Dl, with nl = n.al. Also, let z be the upper ↵/2
critical point of the standard normal distribution. Then, we
want to find n such that z[var[bR]]1/2 = d (margin of error
equation), where var[bR] =

PL
i=1 pi

2 �i
2

ni
= 1

n .
PL

i=1 pi
2 �i

2

al
.

Solving the margin of error equation for n leads to:
n = z2

d2

PL
i=1 pi

2 �i
2

al
.

From (5), we can compute the total cost c⇤ required to
achieve the desired level of accuracy as follows [7]:

al =
pl.�l/

p
clPL

i=1 pi.�i.
p
ci

and c⇤ =
z2

d2

"
LX

i=1

pi.�i.
p
ci

#2

. (7)

From here, we can compute nl = c⇤.al, and then, ulti-
mately n.

E. Adaptive Constrained Test Selection Algorithm

Based on the discussions above, the adaptive constrained
test selection algorithm works as described in Algorithm 2. In
the intialization phase of the algorithm (lines 6-7), |T(Di,pi)|
test case are selected from each sub-domain (Di, pi) based on
a given initial number of test case nstart. T(Di,pi) represents
the set of test cases selected from sub-domain (Di, pi). In the
sampling phase (lines 10-27), the algorithm computes for each
sub-domain the optimal required number of test cases to be
select based on the stopping criteria formula in equation 7
(line 12-13). Extra test cases are then selected if required (lines
15-16). Otherwise, test cases have been optimally selected
from that sub-domain (line 18). The algorithm computes the
variance of the observed failure rate for each sub-domain after
each sampling phase (line 24), and adjust the test allocation
toward 100% similarity to the OP. The algorithm stops and
returns the estimated reliability if (i) a maximal allowed test
time interval � has passed or (ii) for all sub-domains the
optimal required number of test cases has been selected and
the total selected test cases are 100% similar to the OP (line
21).

289Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 311 / 679

Require: OP = {(Di, pi)|i 2 {1, ..., L},
PL

i=1 pi = 1}
1: TOP = {T(Di,pi)|(Di, pi) 2 OP}
2: � : maximal allowed test time
3: nstart : initial number of test cases to start
4: 1� ↵ : confidence level
5: d : margin of error
6: for (Di, pi) 2 OP do // 1. Initialization
7: |T(Di,pi)| dnstart.pie
8:
9: end for

//2. Adaptive optimal constrained stratification
10: while true do
11: for (Di, pi) 2 OP do
12: c⇤ = z2

d2

hPL
i=1 pi.�i.

p
(1� pi)

i2

13: ai =
pi.�i/

p
(1�pi)

PL
k=1 pk.�k.

p
(1�pk)

14: no
i = dc⇤aie

15: if |T(Di,pi)| < no
i then

//select extra (no
i � |T(Di,pi)|) test cases from (Di, pi)

16: |T(Di,pi)| no
i

17: else
18: opt = opt + 1
19: end if
20: end for
21: if � passed or (opt = L ^ SC(TOP) = 100%) then
22: break;
23: end if
24: update statistics for all (Di, pi)
25: Adjust to proportional sampling: call Algorithm 1
26: opt = 1
27: end while
28: return bR =

PL
i=1 pi.

bRi

Figure 2. Adaptive constrained test cases selection

IV. EXPERIMENTAL EVALUATION

We conduct a set of experiments on a real subject program
to evaluate the performance of the Adaptive Constrained Test
Selection (ACTS) algorithm against the standard proportional
test selection approach as proposed by Musa [6] (PS), and the
theoretical optimal test selection approach (OS) with respect
to the estimated reliability accuracy and precision. For (OS),
we assume that we know the failure rates in advance, and we
sample accordingly.

A. Experiment Design and Setup
1) Subject Program and Operational Profiles: Space: a

language-oriented user interface developed by the European
Space Agency. It allows the user to describe the configuration
of an array of antennas with a high level language. The correct
version as well as the 38 faulty versions and a test suite of
13, 585 test cases are downloaded from the software-artifact
infrastructure repository [8]. In these experiments, three faulty
versions are not used because we did not find test cases that
failed on these faulty versions. Space is 9126 LOCs big.

A failure of an execution is determined by comparing the
outputs of the faulty version and the correct version of the
program. A failure is a deviation from the expected output.
The failure rates for both studied programs are empirically

computed by executing all the available test cases against each
faulty version of a program and recording the number of failed
test cases.

Operational profiles for Space are not available. We create
operational profiles for Space as follows. We assume that in
each sub-domain Di, all possible inputs are equally likely
to arise. Hence, it follows that the number of sub-domains
(greater or equal to two sub-domains) as well as the number
of inputs in each sub-domain may not bias the statistical
properties (i.e., variance and mean) of the estimated reliability.
The estimated reliability is influenced by the probability of
occurrence of the sub-domains, as well as the true failure rate
of the tested software when executed with inputs from each
sub-domain. In that sense, we partition the test cases of Space
in six disjoint sub-domains. All six sub-domains contain the
same number of test cases except for rounding issues. For
each sub-domain, test cases are randomly selected without
replacement from the pool of test cases. The 13, 585 test cases
of Space are partitioned into six disjoint classes: 2264, 2264,
2264, 2264, 2264 and 2265. In order to minimize possible bias
due to the choice of the test cases in each sub-domain, we
repeat the allocation of the test cases of each subject program
into the six sub-domains twice. This results into 2 possible
allocations of the test cases to sub-domains Di for each subject
program.

Due to time and space limitation, not all possible opera-
tional profiles can be adopted in the experiments. We define
two different profiles for the probability of occurrence of the
sub-domains: (i) uniform profile: the probability of occurrence
of each sub-domain is the same except for rounding error and
(ii) optimal profile: the probability of occurrence of each sub-
domain is proportional to the number of test cases allocated
to each sub-domain using optimal allocation

These two profiles are some typical or extreme profiles and
cannot represent all usage scenarios in field use. Consequently,
for each subject program, 4 different operational profiles are
created.

2) Performance Metrics: ACTS, PS and OS are random-
ized test selection strategies. For statistical significance, we
conduct 200 independent repetitions of each experiment for
each test selection strategy.

We compare the performances of ACTS, PS and OS
by comparing the accuracy and precision of the estimated
reliability by each approach. The accuracy of an estimate is
a measure of how close the estimated value is to its true
value. The precision of an estimate is a measure of how close
the estimates measured from different samples are to another,
when the samples are taken from the same data set. We use
the sample variance as metric for the reliability estimation
accuracy. The sample variance is an unbiased estimator of
the variance. We use the root mean squared error (RMSE)
to quantify the estimate precision.

Based on assumption 5 in Section II-E, the reliability
estimates delivered by ACTS, PS, and OS are unbiased.
Consequently, we can compare the relative efficiency of the
estimates using the sample variance. For each experiment E we
define the mean value of the reliability estimate (R), its sample
variance (S2

199(bR)), its root mean squared error (RMSE(bR)),
and the relative efficiency of the reliability estimator using
ACTS to PS and OS as follows:

290Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 312 / 679

R =
1

200

200X

i=1

dRi, S
2
199(bR) =

1

199

200X

i=1

(dRi�R)2, RMSE(bR) =

vuuut
1

200

200X

i=1

(dRi � R)2

eff(bRACTS, bRPS) =
RMSE(bRPS)

RMSE(bRACTS)
, eff(bRACTS, bROS) =

RMSE(bROS)

RMSE(bRACTS)

where R is the true reliability calculated based on the true
failure rates, cRi the reliability estimate in repetition i of
the experiment, bRACTS the reliability estimate using ACTS,
bRPS the reliability estimate using PS and bROS the reliability
estimate using OS.

The differences in reliability mean values between the
different test selection strategies is confirmed using the non-
parametric Mann-Whitney U test [9]. The differences between
the sample variances are tested using the Brown-Forsythe test
[9].

For each experiment and for each test selection strategy,
we compute the reliability estimate at seven checkpoints:
200, 250, 350, . . . , 500. After 200 repetitions of the experi-
ment, we compute the mean value, sample variance and the
root mean square error of the reliability estimates for each
test selection strategy. Note that the more test cases are
executed the more will the variance of the estimator decrease.
In addition, the experimental dataset is selected randomly
from the population and the selection is repeated 200 times.
Consequently, the selected dataset do not affect the efficiency
and the generalizability of ACTS.

B. Experimental Results
The goal of this set of experiments is to assess the

efficiency and precision of our reliability estimation approach.
Figure 3 presents the sample means and sample variances

for Space. The dashed lines are the true reliability values for
the subject programs.

According to the experimental results, the means as well
as the sample variances of the reliability estimates of ACTS
are closer to the true values than those of PS and OS. This
is confirmed by the statistical tests Mann-Whitney U test and
Brown-Forsythe test in table I. The table confirms that ACTS
significantly deliver more accurate reliability estimate that PS
and OS.

The computed mean of the relative efficiency of the reli-
ability estimator using ACTS compared to the one using PS
for the Space experiments was 1, 57. This means that PS will
yield a reliability estimate as accurate as ACTS only if 57%
more test cases are selected.

The computed mean of the relative efficiency of the reli-
ability estimator using ACTS compared to the one using OS
for the Space experiments was 1, 32. This means that OS will
yield a reliability estimate as accurate as ACTS only if 32%
more test cases are selected.

V. RELATED WORK

Stratified sampling is linked to the idea of partition testing
or sub-domain testing of a software. Techniques to estimate
software reliability using partition testing are proposed by
Brown and Lipow [10] and Duramn and Wiorkowski [11], for
example. They introduced the idea of sampling to reliability
estimation but did not specify a sampling design. Podgurski

TABLE I. Mann-Whitney U and Brown-Forsythe test results
for the sample means and variances for Space

Variance Mean
Scenarios ACTS OS ACTS OS
Space pro-
file1

PS 0/7 4/7 6/7 0/7

OS 0/7 - 7/7 -
Space pro-
file2

PS 0/7 1/7 7/7 7/7

OS 1/7 - 7/7 -
Space pro-
file3

PS 1/7 1/7 7/7 5/7

OS 1/7 - 5/7 -
Space pro-
file4

PS 0/7 1/7 5/7 1/7

OS 2/7 - 6/7 -

et al.’s [12] work of is the most related work to our research.
However, they only used the idea of equal stratification using
clustering to estimate the software reliability from software
execution profiles collected by capture/replay tools. Failure
rates have been extensively used in the area of adaptive
random testing (for example Cangussu et al.’s [13] and Chen
et al.’s [14]). Adaptive random testing aims to distribute the
selected test cases as spaced out as possible to increase the
chance of hitting the failure patterns. The intuition behind
adaptive random sampling can be added in a future work to
our approach to probably further enhance the efficiency of
the reliability estimator. Cangussu et al.’s [13] and Chen et
al.’s [14] do not address the problem of reliability estimator
efficiency.

Thévenod-Fosse and Waeselynck [15] present the usage
of probabilistic test generation for fault detection. They gen-
erate automatically tests to address different behavioral and
structural test criteria. Apparently, Thévenod-Fosse and Wae-
selynck [15] view the evaluation of tests as inexpensive. They
call their approach ”statistical testing” although it dos not
involve reliability estimation. In contrast to Thévenod-Fosse
and Waeselynck [15], we think that evaluating test is an
expensive process. Our approach aims to reduce the variance
of a reliability estimator and consequently reduce the required
number of executed and evaluated test cases to reach a target
reliability confidence. A recent work on adaptive testing by
Junpeng and Cai [16], allocates test cases using a gradient
search method based on the variance variation of the failure
rate. However, their approach introduces bias resulting from
the use of the gradient method: it is possible that all test cases
are selected from the sub-domain that first reveals a failure.
They avoid such situations by introducing a biased estimator
using Bayesian estimation.

VI. CONCLUSIONS AND FUTURE WORK

Statistical testing is in the most of the cases impractical
due to the large number of test cases required to reach a
target reliability. In this paper, we presented an approach to
automatically select test cases from an operational profile sub-
domains with the goal to reduce the variance of the reliability
estimator. Our initial experimental results are promising and
shows that our approach ACTS outperforms PS and OS.

We plan to conduct further experiments to validate the

291Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 313 / 679

Figure 3. Sample means and sample variances of the reliability estimates for Space

effectiveness of ACTS on software with real specified opera-
tional profiles. We also plan to further investigate the efficiency
of our approach for ultra-high software reliability scenarios.

ACKNOWLEDGMENT

This work was partially supported by the German Fed-
eral Ministry of Economics and Energy (BMWI), grant No.
01MD11005 (PeerEnergyCloud).

REFERENCES
[1] M.-H. Chen, M. Lyu, and W. Wong, “Effect of code coverage on

software reliability measurement,” Reliability, IEEE Transactions on,
vol. 50, no. 2, 2001, pp. 165–170.

[2] P. K. Kapur, D. N. Goswami, and A. Bardhan, “A general software
reliability growth model with testing effort dependent learning process,”
Int. J. Model. Simul., vol. 27, no. 4, Sep. 2007, pp. 340–346.

[3] C. V. Ramamoorthy and F. B. Bastani, “Software reliability status and
perspectives,” IEEE Trans. Softw. Eng., vol. 8, no. 4, Jul. 1982, pp.
354–371.

[4] T. A. Thayer, M. Lipow, and E. C. Nelson, Software reliability : a
study of large project reality, ser. TRW Series of software technology;
2. Amsterdam: North-Holland, 1978.

[5] R. W. Butler and G. B. Finelli, “The infeasibility of quantifying the
reliability of life-critical real-time software,” IEEE Trans. Softw. Eng.,
vol. 19, no. 1, Jan. 1993, pp. 3–12.

[6] J. D. Musa, “Operational profiles in software-reliability engineering,”
IEEE Softw., vol. 10, no. 2, Mar. 1993, pp. 14–32.

[7] W. Cochran, Sampling techniques, ser. Wiley series in probability and
mathematical statistics: Applied probability and statistics. Wiley, 1977.

[8] “The software-artifact infrastructure repository,” http://sir.unl.edu, ac-
cessed: 2014-08-30.

[9] S. Wilks, Mathematical Statistics. Read Books, 2008.
[10] J. R. Brown and M. Lipow, “Testing for software reliability,” SIGPLAN

Not., vol. 10, no. 6, Apr. 1975, pp. 518–527.
[11] J. W. Duran and J. J. Wiorkowski, “Quantifying software validity by

sampling,” Reliability, IEEE Transactions on, vol. R-29, no. 2, June
1980, pp. 141–144.

[12] A. Podgurski, W. Masri, Y. McCleese, F. G. Wolff, and C. Yang,
“Estimation of software reliability by stratified sampling,” 1999.

[13] J. W. Cangussu, K. Cooper, and W. E. Wong, “A segment based
approach for the reduction of the number of test cases for performance
evaluation of components,” International Journal of Software Engineer-
ing and Knowledge Engineering, vol. 19, no. 04, 2009, pp. 481–505.

[14] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive random
testing: The art of test case diversity,” J. Syst. Softw., vol. 83, no. 1,
Jan. 2010, pp. 60–66.

[15] P. Thévenod-Fosse and H. Waeselynck, “Statemate applied to statistical
software testing,” in Proceedings of the 1993 ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ser. ISSTA ’93.
New York, NY, USA: ACM, 1993, pp. 99–109.

[16] B.-B. y. Junpeng Lv and K. yuan Cai, “On the asymptotic behavior of
adaptive testing strategy for software reliability assessment,” Transac-
tion on software Engineering, vol. 40, no. 4, April 2014, pp. 396–412.

292Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 314 / 679

PRReSE – Process of Non-Functional Requirements Reuse for Embedded Systems

Based on a NFR-Framework

Cristiano Marçal Toniolo

Faculty of Exact and Natural Sciences

Methodist University of Piracicaba (UNIMEP)

Piracicaba – São Paulo – Brazil

e-mail: cmtoniolo@gmail.com

Luiz Eduardo Galvão Martins

Institute of Science and Technology

Federal University of São Paulo (UNIFESP)

São José dos Campos – São Paulo – Brazil

e-mail: legmartins@unifesp.br

Abstract — The Embedded Systems are increasingly present in

society’s daily life. Their demand in several home appliances

makes them more complex, bringing the necessity of a more

careful requirements engineering than for traditional systems.

The requirements reuse for embedded systems, especially those

addressed to non-functional requirements, is still a challenge

for industries that develop products based on Embedded

Systems (ES). This paper presents a Process of Non-Functional

Requirements Reuse for Embedded Systems – called PRReSE -

using NFR-Framework as an approach to improve the concept,

design and development of such systems. The process was

instantiated in a case study to illustrate the reuse of non-

functional requirements in a product family; the family chosen

was for microwave oven.

Keywords-Embedded Systems; Requirements Reuse; Non-

Functional Requirements; NFR-Framework.

I. INTRODUCTION

Software Engineering and Requirements Engineering
work together to find new ways to ensure the quality of
software development. To achieve this, a step of great
importance in the process is the requirements elicitation,
which seeks the understanding of the user’s needs. The
elicitation process defines and documents the steps so that an
organization can elicit, analyze, specify and verify the
requirements [15].

The advancement of techniques and methodologies
allows us thinking about a systematic requirements reuse
throughout the project development. According to
Sommerville and Sawyer, the requirements reuse saves time
and efforts in their elicitation. About 80% of the
requirements are reused when dealing with similar systems
[10].

The requirements reuse is performed in several ways,
e.g., software components and requirements to make the
reuse process even more efficient and able to answer the
market demands. However, the reuse performed in industries
is somehow intuitive, since engineers and developers reuse
methods and documents in new projects based on their own
experience.

Non-functional requirement is a central concept in this
work, which means a quality feature that can affect the entire
system to be developed. This study presents a Process of
Non-Functional Requirements reuse for Embedded Systems

(PRReSE is a Portuguese acronym for Processo de Reuso de
Requisitos Não-Funcionais para Sistemas Embarcados). The
proposed process is based on a NFR-Framework [16], which
is a method to assist engineers and software designers to
produce software in a faster and with more quality way, in a
high level of quality with the lowest possible cost. This is
precisely the role of engineering, namely, look for best
quality systems within a cost compatible with this quality
[8].

In industry context, many projects are related to each
other and their requirements can be stored and reused in new
projects in the future. Such projects can be divided into
innovation of previous projects or into product families.

The innovations are related to implementations of new
features in products that do not have them yet. So, a new
version can be available. Product Families are related to new
versions of products from the same family, e.g., microwave
ovens – or to the creation of new ones, though with features
previously used.

Therefore, the motivations for this study is the fact that
the requirements reuse is a widely used approach to
management, web, financial and administration systems, but
poorly used in embedded systems and even more if dealing
with non-functional requirements.

This paper is organized as follows: Section 2 presents

background and related works in requirements reuse.

Section 3 shows PRReSE process. Section 4 presents the

results and analysis of the performed case study. Section 5

concludes the paper and points out to future works.

II. REQUIREMENTS REUSE

Software Requirements have to be carefully elicited in
order to not compromise the whole systems development. As
discussed in Kotonya and Sommerville “requirements are
defined at the first phases of the system development as
being a specification to be implemented” [2].

Requirements describe the user’s needs guiding
developers how the system must behave, where it has to be
applied and with some quality constraints. Several
techniques have been used in order to solve the problems of
reuse. One of them is the requirements reuse which,
according to Sommerville and Sawyer, occurs “when
developing requirements for a new system is necessary,
wherever possible, reuse requirements from other systems
which have been developed to the same area of application”,

293Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 315 / 679

i.e., the same field of the system [10]. Reuse can reduce the
cost, coding and testing of the project if it is systematically
done; therefore, reducing the effort of new elicitation for
several applications [2][3][9].

The advantages to adopt requirements reuse are the
elicitation time saving, analysis and requirements validation,
reduction of the risk of new elicitations that might hinder the
requirements implementations, leading to a requirements
reuse without alterations, or with minimal settings leaving
the elicitation process only for new requirements of the
system. This leads the system’s development life cycle to
start earlier.

The identification, capture and organization of a
requirements process with the purpose of reuse in new
systems can be considered a domain reuse approach.
Kotonya and Sommerville show some situations where the
reuse is possible [2]:
1. If the requirement shows information about the

application domain: several requirements do not specify
the system’s functionality but presents its constraints or
operation derived from the application domain.

2. If the requirement is consistent with the presentation of
information style: if possible, common sense to
organize, to have a consistent interface for all systems.
It means that the user’s errors are smaller when they
change from one system to another.

3. When the requirements reflect the company’s policies
such as security and performance, they must be
reflected in the system requirements. In this context,
requirements are developed for the system and can be
considered encapsulated requirements, which are
common to a large number of different systems.

This way, for many systems, 50% of requirements are in
such classes, which are a considerable scope for the cost
reduction by requirements reuse [2]. Other reasons to
perform the requirements reuse can be: requirements already
analyzed tend to suffer few or no alterations; cost reduction
of new requirements elicitation, which may lead to an
incompatibility with other systems generating unexpected
problems. The requirements reuse process has to be agreed
for engineers and developers aiming to improve the system
development cycle [13].

Some reuse processes can be cited as follows: analysis of
domain, textual analysis, use cases patterns, scenarios,
frameworks, direct and indirect reuse. The indirect reuse is
specified as follows [10]:

1. Identify the requirements that are close or similar to
the stakeholders requirements for the system being
developed.

2. Show these requirements to the stakeholders and
explain their meanings.

3. Ask where the requirements would be adequate or
inadequate.

4. Rewrite the requirements according to suggestions
and repeat the process until all the stakeholders agree
with them.

The elicitation steps for direct reuse are as following:
1. Identify the common requirements between the

existing system and the one to be developed.

2. Recognize the potentially reusable and relevant
requirements in the existing system to identify the
common features.

3. Evaluate the possible reusable requirements with the
purpose of validate them with the stakeholders for the
new system to be developed.

4. Check with users if the requirements meet their
needs.

A product family approach is another usual way of
requirements reuse. This process is based on two concepts:
strong reuse and weak reuse [7]. In the strong reuse, the
requirements must be synchronized with the associated
products, and any alterations on them affect the entire
product family.

In the weak reuse, the requirements are copied from the
beginning of the project and they can evolve from other
requirements.

Another way to identify product families, according to
Lam, McDermind and Vickers [4], is that “requirements are
sensitive to the context and are specified to a set of
problems”, then in product families it is possible:

- To identify commonalities between the system “father”
and the system “son”;

- To impose a common requirements engineering process
or a pattern inside the organization;

- To antecipate some types of alterations and
specializations;

- To recognize labor patterns to assist the planning of the
project [4].

The reuse problems may go through some issues that
make them a difficult task, such as: the engineering methods
and techniques that are not specifically designed to reuse; the
process which does not prioritize an integrated development
and exchanging experience among the team members; the
organization which works with individual projects without
reuse planning; and the business that aims profit and works
with financial return only.

Sommerville [11] lists a number of problems such as:
maintenance cost, lack of tools and specific development,
“non-invented-here” syndrome, creation of a library or
repository to store the components. These factors impact the
development costs. When it comes to reuse, it is possible to
have models for requirements patterns, reuse of documents
and artifacts, which makes this area very embracing and
without a definite pattern to reuse system requirements along
with the lack of specific tools but with several techniques
addressed to each type of context and problem.

III. PRRESE: PROCESS OF NON-FUNCTIONAL

REQUIREMENTS REUSE FOR EMBEDDED SYSTEMS BASED ON

A NFR-FRAMEWORK

Studies are performed in order to shorten the steps of the
development process and consequently save time with
development and cost reduction. Researches has shown that
many efforts have been made to reuse software components
and requirements, aiming to accelerate the development
process in computer programming since the market
competition is increasingly fierce. The paper focuses on a
Process of Non-Functional Requirements Reuse for

294Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 316 / 679

Embedded Systems based on a NFR-Framework, which
intends to become a guidance for professionals in appliance
industry, assisting them when developing new systems
reusing non-functional requirements for embedded system
previously developed.

A. PRReSE: General Flow

PRReSE starts with the phase of separation of artifacts

which can generate inputs for the requirements reuse
activities [9][12]. These inputs correspond to previously
analyzed data, which are considered as requirements feeding
the requirements reuse process. According to [5][6][9], the
following documents can be considered as being input
artifacts: questionnaires, reference models, checklists,
documents based on patterns, documented interviews,
catalogues or technical descriptions of a system. Other
artifacts can be found in IEEE Std 830-1998 models and in
Volere Template [1][14]. The general model for the
requirements process described in this study is shown in
Figure 1. The main activities of the proposed process are
explained in the next sections.

Figure 1. General Flow of Requirements Reuse Process for Embbeded

Systems (PRReSE).

B. Identification of Software and Hardware Requirements

In this phase, the requirements engineer has to identify,
select and prioritize requirements through input artifacts with
the purpose of producing output artifacts to the next step,
which can be divided into software and hardware non-
functional requirements.

Input artifacts are the analyzed data in the documents
collect from the stakeholders, whose specific goal is to create
knowledge of the software context to be modeled by the

requirements engineer, electronic engineers and technicians.
Technical manuals and catalogues can be cited as examples
of such documents. After separating these documents,
requirements engineering process is in charge to identify the
non-functional requirements for software and hardware. The
next step is modeling according to Volere Template.

C. Modeling Non-Functional Requirements according to

Volere Template

After the first phase of PRReSE, when the requirements
document is generate, the next step is to create the non-
functional requirements cards and store them to be used in
NFR-Framework.
The non-functional requirements documents created in the
previous step are the start up for the modeling process. Thus,
the non-functional requirements can be catalogued using the
Volere Template cards. The output artifact for this PRReSE
step is the creation of all non-functional requirements cards
to model according to NFR-Framework.

D. Checking the Existence of Legacy System

This step shows two conditions when modeling an
embedded system: the existence of a legacy system or the
lack of a legacy system.

E. Lack of a Legacy System

An analysis to verify the existence of a modeled and
compatible system is performed after to model non-
functional requirements according to Volere Template to
apply PRReSE. Otherwise, the following steps are:
1. When the system under consideration has not been

elicited or do not have any relationship with another
system – product families – it is necessary to perform
all the analysis for the artifacts described by the NFR-
Framework. This means creating a catalogue of
knowledge to form a basis to research future systems.

2. Develop SIG graphs to model the relationship among
non-functional requirements and expose them
graphically.

3. Generate the modeled graphs for the entire systems, as
output artifacts.

F. Existence of Legacy System

The analysis to verify the existence of an already
modeled system compatible to apply PRReSE is performed
after the creation of the Volere Template cards. The steps
are:
1. Identify the reusable requirements according to the

following procedures:
a. If there is any relation to some existing product or

product families, search the catalogues already
created, verify the presence of requirements that can
be reused and analyze only the compatible
requirements.

b. This identification will be performed through the
comparison of the requirements modeled in SIG
graphs with the requirements collected in the input
artifacts (Volere cards). Thus, when the
requirements are in the upper levels of the graph,

ok

295Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 317 / 679

the reuse will have little or no alterations at all. In
the lower levels of the graph, the reuse will tend to
be performed.

2. Generate a set of reusable requirements: it happens after
the comparison with the legacy systems. Thus, the SIG
graphs are created and the candidate requirements for
reuse are identified.
a. Identical requirements are reused without any

alteration.
b. Requirements with some similarities to a specified

NFR must be reused, with the necessary alterations.
Also, they must be identified in the SIG graphs with
dashed circle.

c. Requirements that are not catalogued must be
entirely elicited and represented in the SIG graphs
by a solid circle.

3. Create Artifacts for Statistical Analysis: after creating
SIG graphs and identifying the requirements which were
or were not entirely used, they are quantified and tagged
as entirely used, partially used or not used. Then the
steps bellow are followed:
a. Recover all the stored SIG Graphs;
b. Quantify the requirements entirely used;
c. Quantify the requirements partially used;
d. Quantify the requirements not used.

G. Analysis of Reuse Quality

This analysis defines the reuse viability and how the
indicators quantify the reuse of non-functional requirements.
From these results, the quantity is verified and a reuse
pattern of quality will be established in percentage:

a. Reused without alterations;
b. Reused with alterations;
c. New requirements elicited with the stakeholders.
Such analysis must be performed based on the equation

(1) and Table 1:
(1) RP = (QRR / QR) * 100

where:
RP = Reuse Percentage
QRR = Quantity of reused requirements
QR = Total quantity of requirements

TABLE I. REUSE INDEX FOR NON-FUNCTIONAL REQUIREMENTS

 Reuse Index Reuse Percentage

High RP ≥ 85%

Adequate RP ≥ 60% e RP < 85%

Insufficient RP ≥ 40% e RP < 60%

Inadequate RP < 40%

Table 1 presents indicators which may assist software

engineers to get an idea of how much will be necessary to
elicit new software from existing requirements and the
quantity of reuse it may be generated providing time and
profit.

H. Analysis of the Obtained Results

This analysis defines which percentage of requirements
reuse was obtained with PRReSE, and also if the work of
preparing the software design will become viable,

consuming less effort from those involved in the project. It
will also allow the software and requirements engineers to
get the parameters to develop new projects, such as time to
analyze and elicit requirements, making this process to work
as a knowledge and learning basis with experiments from
previous projects.

IV. CASE STUDY: MICROWAVE OVEN

This case study performed the steps of the Reuse of Non-
Functional Requirements Process for Embedded Systems
showing that PRReSe becomes a feasible alternative for
requirements reuse for embedded systems.

A. Requirements Identification

The requirements for the microwave oven family were
extracted from the catalogue of products previously studied,
because there is a lack of documentation related to the
embedded systems used in microwave ovens. This way it
was possible to elaborate the requirement cards according to
the model suggested by Volere Template.

Panasonic’s microwave oven manual of the flat and
family models were used as input artifacts, and the following
non-functional requirements were extracted: security,
usability, customization, learning, accessibility and capacity.

B. Non-Functional Requirements Cards

The requirements cards based on Volere Template were
fulfilled after the requirements identification. Such cards
offer a pattern structure to describe the requirements, which
turn easy the work of requirement engineers during the reuse
process.

C. Non-Functional Requirements Catalogue

Non-Functional Requirements Catalogues are modeled
for embedded systems (ES) after the requirements and the
cards get ready. These catalogues have the purpose to show
non-functional requirements in a hierarchical form with the
generic NFRs displayed above the more specific ones, as
showed in Figure 2.

Figure 2. Interface Non-Functional Requirements for Microwave Oven.

The SIG graphs for such requirements were subsequently
modeled, and the resulted specification model are presented
in Figure 3. The reuse model illustrated in the figure shows
three levels of requirements, which are: requirements without
alterations - cloned objects, requirements with some type of
alterations – derived objects, and new requirements specified
for the project being developed – new objects. The

296Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 318 / 679

requirements for the Panasonic Flat-Style microwave NF-
SF560WRU™ were initially modeled becoming the base for
the requirements related to the product family, as shown in
Figure 4. This model of oven has simple features and basic
commands. Monzon [7] explains that to have the
requirements reuse done there must be a set of common
requirements, which will be reused in new projects. This set
of requirements becomes the core for the reuse in embedded
systems projects or a product family, which will be reused in
each evolution or new version of a product.

Figure 3. Model of Non-Functional Requirements Reuse from a common

requirements set [7].

D. Systems Evolution

The model NN-GF580MRU™ from the Panasonic Flat
Family™ was used and the requirements were elicited and
analyzed. SIG graphs were created to compare it with the
previous model – according to Figures 5 and 6. The softgoals
which needed to be elicited from the catalogue of product
due to advanced features were added to the core
requirements already presented in the previous model. An
analysis of a model of a microwave oven, which is not part
of the adopted product family was performed to show the
requirements reuse process extent. The used model was
NNST669WRU™ with innovative features. The SIG graph
referring to the model above was created to become possible
the comparison with the core requirements in the previous
models, as illustrated in Figure 6.

E. Analysis of the Results

Analysis of the results was performed from the creation
of both requirements cards and SIG graphs, according to
what has been proposed in the non-functional requirements
process. Table 2 summarizes the requirements from the reuse
process, which are commented in the next sections.

TABLE II. RESUME OF NON-FUNCTIONAL REQUIREMENTS OF

MICROWAVE OVEN

Model (a) (b) (c) (d) (e) Reuse

NN-
SF560WRU

31 0 0 0 0 0%

NN-
GF580MRU

33 31 31 0 2 94%

NN-
ST669WRU

35 31 31 1 3 88%

(a) Non-Functional Requirements Total

(b) Reused Requirements Total

(c) Reused Requirements without alterations

(d) Reused Requirements with alteration

(e) New Requirements

F. Reused requirements without alterations

The model NN-SF560WRU was the first to be analyzed
and 31 non-functional requirements were elicited. The
second model, NN-GF580MRU had 33 non-functional

requirements elicited and 31 of them were reused from the
first model, which correspond to 94% of requirements reuse.
The third model NN-ST669WRU had 35 non-functional
requirements elicited. From this total, 31 requirements were
reused, meaning 88% of reuse.

G. Reused requirements with alterations

The first two models of microwave oven used in this case

study belong to the same product family and the third model

belongs to a different product family. The non-functional

requirements “stand by key” in the model NN-GF580MRU

was the one reused with alterations. Here, the “stand by key”

was matched to the “clock key” resulting in a “stand

by/clock key”. This model had 35 elicited requirements,

which 2.8% correspond to requirements reused with

alterations.

H. New Requirements

Two new requirements were created for the second
model, which belongs to the same family of the first model.
These two new requirements mean 6% of the elicited
requirements. For the third model – which does not belong to
the family of the first one – three new requirements were
created, meaning 8.5% of the elicited requirements.

I. Reuse Analysis

The Requirements Reuse in the second model of
microwave oven analyzed saved time in the analysis of
requirements phase since the biggest efforts were performed
in the base model. Thus, the requirements reuse in products
of the same family leaded to a significant time saving.

The study case showed that with PRReSE adoption was
possible to obtain 94% of requirements reuse in the second
model in relation to the first one, which belong to the same
family indicating a promising reuse process.

PRReSE allowed 88% of requirements reuse in the third
model of microwave oven in relation to the first, even
considering that the third model belongs to a different
product family. This result also can be considered as a
promising one. Since this model belongs to a different
family, could be expected a lower percentage of reuse.

V. CONCLUSION AND FUTURE WORK

The requirements reuse in traditional systems – not
embedded - inspired PRReSE creation in a yet not enough
explored context, i.e., non-functional requirements for
embedded systems. NFR-Framework was adopted because it
is a specific methodology to NFRs, and also it is largely
known in the Requirements Engineering community.

The productivity of embedded systems development can
significantly increase using the requirements reuse
techniques, especially because in embedded systems
development is very common to use product families. The
statement above can be seen in the microwave oven case
study, which applied PRReSE to reuse the requirements in
three models, being two from the same family and one from
a different product family.

There was a large effort to elicit requirements at the first
model, then using PRReSE process it became easier to reuse

297Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 319 / 679

the resulting requirements in the following models.
According to PRReSE, the visualization of non-functional
requirements through SIG graphs becomes the reuse
identification easier by the requirements engineering.

According to the evidences observed in the case study,
during the creation of the second model 94% of non-
functional requirements were reused from the first model –
both belonging to the same product family. PRReSE allowed
the reuse of 88% of the non-functional requirements in the
third model, considering that this last one did not belong to
the same product family.

 As future work, a software tool to support PRReSE will
be developed to facilitate its use. Another case study
performing all steps of PRReSE is being planned; such study
will be in the area of medical devices.

REFERENCES

[1] IEEE, “IEEE Recommended Practice for Sotware Requirements

Specifications”. IEEE Std 830-1998.

[2] G. Kotonya and I. Sommerville, Requirements Engineering: process
and techniques, Ed. Wiley, 2001.

[3] W. Lam, “A case-study of Requirements Reuse through product
families”. In: Annals of Software Enginering, vol. 5, 1998, pp. 253 –
277.

[4] W. Lam, J. McDermind, and A. Vickers, “Ten Steps Towards
Systematic Requirements Reuse”, Proceedings of the Third IEEE
International Symposium on Requirements Engineering. Jan/1999,
pp. 6-15.

[5] X. Liu, S. Lui, and X. Zheng, “Adapting the NFR Framework to
aspectual use-case driven approach”, In: 7th ACIS International

Conference on Software Engineering Research, Management and
Applications. Dec/2009, pp. 209-214.

[6] O. López, M. A. Laguna, and F. J. Garcia, “Metamodeling for
Requirements Reuse”, In: Proceedings of the 5th. International
Workshop on Requirements Engineering (WER'02). Valencia,
Espanha Nov/2002.

[7] A. Monzon, “A pratical approach to Requirements Reuse in product
families of on-board systems”, In: 16th IEEE International
Conference on Requirements Engineering. Sep/2008, pp. 223-228.

[8] A. R. C. Rocha, Qualidade de Software: teoria e prática. São Paulo :
Prentice Hall, 2001.

[9] J. Rumbaugh, Object-Oriented Modeling and Design. International
Publlisher: Prentice-Hall. International Pub., 1990.

[10] I. Sommerville and P. Sawyer, Requirements Engineering, John
Wiley, 2000.

[11] I. Sommerville, Software Engineering, 9th Edition, Addison-Wesley,
2009.

[12] S. Supakkul, “Capturing, organizing, and reusing knowledge of
NFRs: an NFR pattern approach”, In: 2nd International Workshop
on Managing Requirements Knowledge (MARK). Sep/2009, pp.
75-84.

[13] O. Villegas and M. A. Laguna, “Requirements Reuse for software
development”, In: 5th IEEE International Symposium on
Requirements Engineering. Toronto, Canada, Aug/2001, pp. 27-31.

[14] J. Robertson and S. Robertson, Volere Requirements Specification
Template. Atlantic Systems Guild London, 2011.

[15] K. L. Wiegers, “Requirements specification template”. Microsoft
Press, 1999.

[16] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, “Non-Functional
Requirements in Software Engineering” In: The Kluwer
International Series in Software Engineering, Vol. 5, 1999.

Figure 4. SIG Graph for “User Interface” requirement for microwave oven model NN-SF560WRU.

298Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 320 / 679

Figure 5. SIG Graph for “User Interface” requirement for microwave oven model NN-GF580MRU.

Figure 6. SIG Graph for “User Interface” requirement for microwave oven model NN-ST669WRU.

299Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 321 / 679

A Model-Driven Approach to the Development of
Heterogeneous Software Product Lines

Thomas Buchmann and Felix Schwägerl
University of Bayreuth

Chair of Applied Computer Science I
Bayreuth, Germany

{thomas.buchmann, felix.schwaegerl}@uni-bayreuth.de

Abstract—Software product line engineering is dedicated to
planned reuse of software components based upon a common
platform, from which single products may be derived. The
common platform consists of different types of artefacts like
requirements, specifications, architecture definitions, source code,
and so forth. Only recently, research projects have been started
dealing with model-driven development of software product
lines. So far, the resulting tools can only handle one type of
artefact at the same time. In this paper, requirements, concepts
and limitations of tool support for heterogeneous model-driven
software product line engineering are discussed. As a proof of
concept, an extension to the toolchain FAMILE is presented,
which supports mapping of features to different types of artefacts
in heterogeneous model-driven software projects at the same time.

Keywords–software product lines; model-driven development;
negative variability; feature models; heterogeneity.

I. INTRODUCTION

Software Product Line Engineering (SPLE) [1][2] deals
with the systematic development of products belonging to a
common system family. Rather than developing each instance
of a product line from scratch, reusable software artefacts
are created such that each product may be composed from a
collection of reusable artefacts — the platform. Commonalities
and differences among different products may be captured
in a feature model [3], whereas feature configurations de-
scribe the characteristics of particular products by selecting
or deselecting the respective features. Typical SPLE processes
distinguish between domain engineering, which deals with the
establishment of the platform as well as the feature model,
and application engineering, which is concerned with the
derivation of particular products out of the product line by
exploiting and binding the variability provided by the platform.

Two distinct approaches exist to realize variability in SPLE:
In approaches based upon positive variability, product-specific
artefacts are built around a common core [4][5]. Composition
techniques are used to derive products. In approaches based on
negative variability, a superimposition of all variants is created
— a multi-variant domain model. The derivation of products
is achieved by removing all fragments of artefacts implement-
ing features which are not contained in the specific feature
configuration [6][7]. The toolchain “Features and Mappings
in Lucid Evolution” (FAMILE) [8][9], which is used in this
paper, belongs to the latter category.

Model-driven Software Engineering (MDSE) [10] puts
strong emphasis on the development of high-level models

rather than on the source code. Models are not considered as
documentation or as informal guidelines how to program the
actual system. In contrast, models have a well-defined syntax
and semantics. Moreover, MDSE aims at the development of
executable models. The Eclipse Modeling Framework (EMF)
[11] has been established as an extensible platform for the
development of MDSE applications. It is based on the Ecore
metamodel which is compatible with the OMG Meta Object
Facility (MOF) specification [12]. Ideally, software engineers
operate only on the level of models such that there is no need
to inspect or edit the actual source code, which is generated
from the models automatically. However, practical experiences
have shown that language-specific adaptations to the generated
source code are frequently necessary. In EMF, for instance,
only structure is modeled by means of class diagrams, whereas
behavior is described by modifications to the generated source
code.

In the past, several approaches have been taken in combin-
ing SPLE and MDSE to get the best out of both worlds. Both
software engineering techniques consider models as primary
artefacts: Feature models [3] are used in SPLE to capture
the commonalities and differences of a product line, whereas
Unified Modeling Language (UML) models [13] or domain-
specific models are used in MDSE to describe the software sys-
tem at a higher level of abstraction. The resulting integrating
discipline, Model-Driven Software Product Line Engineering
(MDPLE), operates at a higher level of abstraction. The
upcoming MDPLE approach has been successfully applied in
several case studies, including MOD2-SCM [14], a model-
driven product line for software configuration systems.

In this paper, requirements, concepts and limitations of tool
support for heterogeneous product lines are discussed. Here,
the term ‘heterogeneity’ means that (a) artefacts are distributed
over multiple resources, (b) the underlying data format of
artefacts may differ (e.g., text files or XMI files), (c) in the case
of models, the metamodel may vary, and (d) variability among
different resources may be expressed by a shared variability
model that uses a common variability mechanism. Based upon
these assumptions, several conceptual extensions to MDPLE
frameworks are developed, which are implemented in the form
of extensions to the toolchain FAMILE as a proof of concept.

The paper is structured as follows: After clarifying the
contribution (Section II), the state of the art of homogeneous
SPLE tools is outlined in Section IV. Section III discusses re-
lated work, before a brief introduction of the running example
is given in Section V. Section VI explains the new concepts

300Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 322 / 679

introduced for the support of heterogeneous product lines. In
Section VII, the example is revisited in order to demonstrate
the heterogeneous extension to the MDPLE toolchain FAMILE
on a product line for graphs, which has been modeled us-
ing Eclipse Modeling Technology (EMF and the Graphical
Modeling Framework (GMF) [15]). Both the toolchain and
the running example project may be retrieved via an Eclipse
update site (http://btn1x4.inf.uni-bayreuth.de/famile2/update).
Section VIII concludes the paper.

II. CHALLENGES AND CONTRIBUTION

Heterogeneous software projects consist of a variety of
interconnected resources of different types. Different repre-
sentations may be used for requirements engineering, analysis
and design. The generated source code is typically expressed
in a general purpose language, e.g., Java, and extended with
language-specific – mostly behavioral – components. Further-
more, a software project contains a set of configuration files
such as build scripts, which are typically represented in plain
text or XML format. In order to adequately handle variability
of the overall software project, all these different artefacts need
to be subject to variability management.

In its current state, tool support for model-driven product
line engineering does not adequately address heterogeneous
software projects (see Section III). In particular, the following
new challenges arise for SPLE tools:

(a) They should ensure the consistency of cross-resource
links between different artefacts.

(b) The level of abstraction needs to be variable, i.e., the
tool should be able to operate both at the modeling
and at the source code level.

(c) Different artefacts are based on different formalisms,
e.g., metamodels or language grammars. In the special
case of models, supporting a mixture of different
metamodels requires adequate tool support.

(d) All artefacts must be handled by a uniform variability
mechanism (e.g., a common feature model) in order
to allow for product configuration in a single step.

In this paper, an approach to heterogeneous SPL develop-
ment is presented, which advances the state of the art by the
following conceptual contributions:

(a) Multi-resource artefacts Heterogeneous projects
consist of inter-related models created for different
development tasks such as requirements engineering
or testing. The referential integrity among these inter-
related models is maintained during product deriva-
tion.

(b) Heterogeneous artefact types The approach pre-
sented here can handle product lines composed from
different kinds of artefacts. Technically, an abstraction
from different resource types is conducted by repre-
senting them as EMF models.

(c) Variable metamodels In the special case of models,
the approach presented here does not assume a spe-
cific metamodel but allows an arbitrary mixture of

models which may be instances of any Ecore-based
metamodel(s).

(d) Common variability mechanism In the original ver-
sion of FAMILE, the variability mechanism of feature
models has been applied to single-resource EMF mod-
els. The presented approach allows for an extension
of the product space to almost arbitrary resources. All
artefacts are managed by a unique feature model.

These conceptual contributions will be demonstrated by the
example of a proof-of-concept implementation that provides
an extension to the FAMILE toolchain [8][9]. The extended
version of FAMILE can deal with plain text files, XML files,
Java source code files, arbitrary EMF models, and further types
of resources. This way, variability within complete Eclipse
projects may be managed. Internally, all artefacts, even plain
text and XML files, are represented as EMF models. In
Section VI, tool support is discussed in detail.

III. RELATED WORK

Many different tools and approaches have been published
in the last few years, which address (model-driven) software
product line development. Due to space restrictions, the focus
of this comparison lies on support for heterogeneous soft-
ware projects, using the definition of heterogeneity given in
the introduction. Other comparisons of FAMILE and related
approaches can be found in [8] and [9].

The tool fmp2rsm [16] combines FeaturePlugin [17] with
IBM’s Rational Software Modeler (RSM), a UML-based mod-
eling tool. The connection of features and domain model
elements is realized by embedding the mapping information
into the domain model using stereotypes (each feature is
represented by its own stereotype), which requires manual
extensions to the domain model. While fmp2rsm is limited
to the support of RSM models, the approach presented in this
paper provides a greater flexibility since the only restriction is
that the domain model needs to be Ecore based. Furthermore,
the extensions presented in this paper allow to use several
domain metamodels within one software product line project.

FeatureMapper [6] is a tool that allows for the mapping
of features to Ecore based domain models. Like FAMILE, it
follows a very general approach permitting arbitrary Ecore
models as domain models. FeatureMapper only allows to
map a single (self-contained) domain model, while the work
presented in this paper allows to use FAMILE also for software
product lines whose multi-variant domain model is composed
of artefacts distributed over different resources. Furthermore,
the artefacts may be instances of different metamodels.

VML* [4] is a family of languages for variability man-
agement in software product lines. It addresses the ability to
explicitly express the relationship between feature models and
other artefacts of the product line. It can handle any domain
model as long as a corresponding VML language exists for
it. VML* supports both positive and negative variability as
well as any combination thereof, since every action is a small
transformation on the core model. As a consequence, the order
in which model transformations are executed during product
derivation becomes important. So far, VML* is designed to
work with text files, provided that a corresponding VML

301Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 323 / 679

language exists for it (i.e., a grammar has to be specified).
Theoretically, VML languages could be written that work with
XMI serializations of the respective models in the example
presented in this paper, whereas FAMILE provides generic
support for model-driven software development based on
Ecore compliant models. In other words, VML* and FAMILE
provide similar support for heterogeneous projects, but they
operate on different ”technological spaces“. As a consequence,
the example provided in Section VII cannot be realized with
VML* easily. In fact, significant effort would be required to
create VML languages for the different models involved in the
graph product line example as presented here.

MATA [5] is another language which also allows to develop
model-driven product lines with UML. It is based on positive
variability, which means that, around a common core specified
in UML, variant models described in the MATA language are
composed to a product specific UML model. Graph transfor-
mations based on AGG [18] are used to compose the common
core with the single MATA specifications. While MATA is
limited to UML, the approach presented in this paper provides
support for any Ecore based model and furthermore allows
the combination of different domain metamodels within one
product line project.

CIDE [7] is a tool for source-code based approaches. It
provides a product specific view on the source code, where
all source code fragments which are not part of the chosen
configuration are omitted. The approach is similar to #ifdef -
preprocessors known from the C programming language [19].
The difference is that it abstracts from plain text files and
works on the abstract syntax tree of the target language instead.
In its current state, CIDE provides support for a wide range of
different programming languages. Unfortunately, it cannot be
used for model-driven development. In contrast, FAMILE pro-
vides full-fledged support for model-driven development based
on Ecore models. Furthermore, it may also deal with regular
Java source code by using the MoDisco [20] framework.

Bühne et al. [21] and Dhungana et al. [22] present ap-
proaches for heterogeneous variability modeling, i.e., manag-
ing commonalities and differences across multi product lines.
Dhungana et al. aim at unifying multi product lines which rely
on different tools and formalisms for modeling variability. Web
services are used for a prototypical implementation. In contrast
to the approach presented here, in both approaches, the term
‘heterogeneity’ concerns different variability models rather
than the product space. While Bühne et al. and Dhungana et
al. only address variability modeling, the approach presented
in this paper covers a larger part of the software life-cycle.
Furthermore, FAMILE does not only allow for variability
modeling, but also for mapping the variability information to
heterogeneous implementation artefacts.

IV. STATE OF THE ART: HOMOGENEOUS MDPLE TOOLS

This section provides a brief overview on the state of the
art of current tools for model-driven product line engineering.
The description is confined to approaches based on negative
variability. As one representative, the original version of the
FAMILE toolchain [8][9] is presented. Current MDPLE tools
assist the user in the following tasks:

1) Definition of a feature model At the beginning of
the domain engineering phase of the product line
life-cycle, the problem domain is analyzed and the
commonalities and differences are captured in a fea-
ture model [3]. For feature models, several extensions
such as cardinality-based feature modeling [23] have
been proposed.

2) Creation of the domain model For the construction
of a multi-variant domain model, modelers may use
their preferred modeling languages and tools. Most
MDPLE approaches only support single-resource
models. FAMILE requires that the resulting model
is an instance of an Ecore metamodel.

3) Mapping features to model elements In order
to define which parts of the domain model realize
which feature, or a combination thereof, MDPLE
tools provide different mechanisms to map features to
model elements. For this purpose, FAMILE includes
the Feature to Domain Mapping Model (F2DMM)
editor which supports the process of assigning feature
expressions – arbitrary propositional formula on the
set of features – to particular model elements.

4) Ensuring the consistency of the product line The
increasing complexity coming with both the size of
the multi-variant domain model and the number of
features requires sophisticated mechanisms to detect
and repair inconsistencies among the product line. In
particular, the consistency between (a) the mapping
model and the domain model, (b) the feature model
and its corresponding feature configurations, and (c)
feature expressions and the feature model, must be
ensured. Different approaches are described in [23],
[24]. FAMILE introduces the concepts of surrogates
and propagation strategies [9] for this purpose.

5) Definition of feature configurations As soon as
the mapping is complete, MDPLE tools support the
creation of feature configurations, each describing the
characteristics of a member of the software product
line. For each feature defined in the feature model,
a selection state must be provided that determines
whether a feature is present in the corresponding
product.

6) Product derivation A specific product can be derived
by applying its corresponding feature configuration
to the product line. During the derivation process,
the multi-variant domain model is filtered by ele-
ments whose assigned feature expressions evaluate to
false, i.e., the corresponding features are deselected
in the respective feature configuration. In homoge-
neous MDPLE tools, the result of this operation is a
product-specific single-resource model represented in
the (previously fixed) domain metamodel.

V. EXAMPLE: HOMOGENEOUS FAMILE PRODUCT LINE
FOR GRAPH METAMODELS

The following statements refer to the original version of the
tool FAMILE as one representative of homogeneous MDPLE
tools. Section VI demonstrates how heterogeneous project
support is added to the toolchain.

FAMILE itself has been developed using EMF as its
technological foundation. A model-driven software product

302Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 324 / 679

Figure 1. Screenshot of the F2DMM mapping model editor showing the multi-variant domain model of the (homogeneous) graph product line.

Instance of
Ecore

Metamodel

Feature
Metamodel

Feature
Model

Feature
Configuration

Instance of

Domain
Metamodel

Multi-variant
Domain model

F2DMM
Metamodel

Instance of

FEL
Metamodel

F2D Mapping Model Configured
Domain model

 derives

Figure 2. Metamodels and models involved in the original version of FAMILE. Different models are used to map a single-resource multi-variant domain model.
All metamodels are based on Ecore.

line developed with FAMILE is spread over multiple EMF
resources which are instances of multiple metamodels (cf.
Figure 2): Feature models and configurations share a com-
mon metamodel which also supports cardinality-based feature
modeling. The F2DMM mapping model describes how domain
model elements are mapped to features. The domain model is
instance of an arbitrary domain metamodel, which is fixed for
the mapped resource. It is assumed to be a single-resource
entity. The Feature Expression Language (FEL) metamodel
describes a textual language for feature expressions [8].

With the F2DMM editor (see Figure 1), the user is assisted
in assigning feature expressions to domain model elements.
The underlying F2DMM mapping model is constructed auto-
matically and reflects the spanning containment tree structure
of the domain model. Using the reflective EMF editing mech-
anism [11], the F2DMM user interface emulates the reflective
EMF tree editor. Optionally, the user may load an example
feature configuration already during the mapping process in
order to comprehend how feature expressions are evaluated.
The screenshot in Figure 1 depicts an example feature con-
figuration in the left pane. Selected features or groups are
displayed in cyan, deselected features or groups in orange. The
right pane contains the mapping of specific features to artefacts
of the multi-variant domain model. Elements are annotated
with feature expressions after a colon. The calculated selection
states (selected, deselected) are represented in cyan and orange,
respectively.

As a demonstrating example within this paper, the graph
product line example has been adopted, which is frequently
used in research papers because it is easy to understand and its
size is rather small. In Figure 1, an example feature configura-
tion is loaded that represents a directed graph (with uncolored

nodes and unweighted edges) that realizes neither depth-first
search nor breadth-first search. The feature “Graphical Editor”
will be explained in Section VII, where the example is revisited
in the context of heterogeneous product line support.

VI. SUPPORT FOR HETEROGENEOUS APPROACHES

This section explains how support for heterogeneous
model-driven software product lines has been added to the
MDPLE tool FAMILE. From a technical point of view, this
requires multiple metamodels for the platform and multiple
models that describe different artefacts of the product in
different stages of the development process (e.g., requirements,
static model, implementation). As stated in the introduction, it
is assumed that all project artefacts may be expressed using
EMF. EMF and its metamodel Ecore are wide-spread in the
Eclipse community, thus a large number of potential domain
models is addressed. A (non-exhaustive) list may comprise of
course Ecore class diagrams, Eclipse UML models [25], Xtext
[26] / EMFText [27] grammars and documents, GMF models
[15], Acceleo source code generation templates [28], MWE2
Workflow files [29], Xtend specifications [30], domain-specific
languages based on Ecore, and many more. Additionally,
FAMILE has been applied successfully to Java source code
as well. To this end, the MoDisco [20] framework is used,
which allows to parse Java source code into a corresponding
Java model instance (which is also based on Ecore). MoDisco
may be also used to create EMF model instances out of XML
files. For plain text files that are not yet mapped by language-
specific mechanisms, the new extension framework provides
an additional “fall-back” metamodel, which operates on the
granularity of text lines. As a consequence, FAMILE may
handle arbitrary resource types that may occur within typical

303Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 325 / 679

MDSE-related Eclipse projects.

Figure 4 shows the conceptual overview of the new, hetero-
geneous version of the FAMILE toolchain. A FAMILE model
wraps different F2DMM model instances which are used
for mapping features to the different (heterogeneous) multi-
variant domain model instances. A FAMILE model references
a given feature model and one out of an arbitrary number of
corresponding feature configurations. Features are mapped to
the respective domain artefacts by using a separate mapping
model per resource.

A. The FAMILE Metamodel

The specific requirements of heterogeneous modeling
projects have been addressed by the FAMILE metamodel and
its corresponding instances, which constitute an extension to
the F2DMM metamodel, where models have been considered
as self-contained single-resource entities [8]. In order to sup-
port multiple (EMF-based) resources of different type, the new
FAMILE metamodel shown in Figure 3 wraps several instances
of the F2DMM metamodel, which still constitutes the core of
the extended toolchain.

deriveProduct()

ps : PropagationStrategy

ProductLine
RootFeature

(from Feature
Metamodel)

name : EString
type : ArtefactType

F2DMMInstance

uri : Estring
contentType : EString

ResourceDescriptor

MappingModel
(from F2DMM
Metamodel)

Mapping
(from F2DMM
Metamodel)

FeatureExpr
(from FEL

Metamodel)

1

0..1

0..11

1

1

0..*

currentFeature
Configuration

featureModel

currentFCfeatureModel

mappingModel

mappingModels

domainArtefact

featureExpr0..1

Figure 3. The FAMILE metamodel which is designed to support heteroge-
neous software product lines.

The FAMILE metamodel defines a logical grouping of
inter-related mapping models. The root element – an instance
of ProductLine – defines a number of global project parame-
ters, being the references to the used feature model and option-
ally a feature configuration, as well as a propagation strategy
(used for automatic detection and resolution of inconsistencies;
see [9]). FAMILE takes care that global project parameters are
kept consistent within different F2DMM resources of the same
heterogeneous product line.

A single F2DMM mapping model, which refers to exactly
one mapped resource, is represented by F2DMMInstance. This
meta-class defines a number of resource-specific parameters,
such as the name and the artefact type (requirements, im-
plementation, test, etc.). Please note that F2DMMInstance ex-
tends the abstract meta-class Mapping defined in the F2DMM
metamodel, which manages variability by the use of fea-
ture expressions and the calculation of selection states [8].

The referenced MappingModel describes the mapping of the
specific contents of a mapped resource, e.g., mapped EMF
objects in the case of EMF model resources. Furthermore,
a contained ResourceDescriptor element describes additional
resource-specific parameters, being the relative URI of the
mapped resource, as well as its content type (plain text, XML,
EMF, etc.). The resource containing a multi-variant domain
model is referenced by its URI.

Besides the possibility of annotating specific resources of
the multi-variant domain model with feature expressions, the
presented extension addresses the fact that in heterogeneous
projects, cross-resource links occur frequently. For instance, in
the example in Section VII, elements of an Ecore model are
referenced by a corresponding GMF mapping model located
in a different resource. During product derivation, these links
are detected and resolved automatically in order to meet the
requirement of referential integrity across multiple resources.
As a result, a derived product will never contain any reference
to the multi-variant model.

B. User Interface

The user interface has been extended to support heteroge-
neous software product lines. A new FAMILE editor manages
the mapping for a set of resources rather than single-resource
models, which are still covered by the existing F2DMM editor.
In addition to the tasks listed in Section IV, the extended
FAMILE framework supports the following user interactions
(see also example in Section VII):

1) Adding heterogeneous product line support An
arbitrary Eclipse project containing any kind of re-
source (e.g., EMF models, source code and docu-
mentation) can be provided with the FAMILE nature,
which adds heterogeneous product line support by
automatically creating a FAMILE product line model.

2) Definition of a global feature model As soon as the
FAMILE nature has been added, the feature model
editor is opened automatically and can be used to
provide the results of domain analysis. Once a new
feature model has been created or an existing feature
model has been selected, its contained features may
be used in feature expressions annotating correspond-
ing implementation fragments from the multi-variant
domain model(s).

3) Adding variability to resources Initially, it is as-
sumed that none of the project resources is subject
to variability. In order to add variability to a specific
resource, the Add F2DMM Instance command can be
invoked. It will create a new mapping model for the
selected resource and append it to the reference map-
pingModels of the ProductLine instance. Furthermore,
global project parameters are transferred to the new
F2DMM instance.

4) Assigning feature expressions to resources In many
cases, variability is achieved at a rather coarse-
grained level, having resources rather than objects
implement features. The FAMILE editor supports this
requirement by the possibility of assigning feature
expressions to entire resources.

5) Applying a feature configuration globally The
command Set Feature Configuration allows to change

304Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 326 / 679

Heterogeneous projectFAMILE model

Feature
Metamodel

Feature
Model

Feature
Configurations

Domain
Metamodels

MVDM A

F2DMM
Metamodel

FEL
Metamodel

FAMILE
Metamodel

F2D Mapping Model A

Products

derives

F2D Mapping Model B

F2D Mapping Model C

MVDM B

MVDM C

CDM A

CDM B

CDM C

Figure 4. Metamodels and models involved in the extension of FAMILE. Abbreviations: MVDM = multi-variant domain model; CDM = configured domain
model.

the current configuration, which will restrict the
visible elements/resources in both the F2DMM and
the FAMILE editor to elements with a feature ex-
pression that satisfies the new configuration. This
global project parameter is propagated to all existing
F2DMM instances.

6) Deriving a multi-resource product After applying
a specific feature configuration, a product can be
exported. Invoking the Derive Product command will
prompt the user for a name of the derived Eclipse
project. As described above, F2DMM product deriva-
tion will be applied to each mapping model covering
a resource, keeping cross-resource links consistent.
Resources which are not wrapped by any F2DMM
instance or which are not annotated with FEL expres-
sions will be copied without any further restriction.

VII. EXAMPLE REVISITED: HETEROGENEOUS PRODUCT
LINE FOR GRAPH METAMODELS AND EDITORS

To demonstrate FAMILE’s support for heterogeneous
software projects, the graph product line introduced in
Section V has been extended by a graphical editor. To
achieve this in a model-driven way, GMF [15] has been
used. A screencast demonstrating how to use the extensions
for heterogeneous projects provided by FAMILE can be
found on the corresponding webpages (http://btn1x4.inf.uni-
bayreuth.de/famile/screencasts).

A. GMF Artefacts as a Heterogeneous Set of Multi-Variant
Domain Models

Figure 5 depicts the different models involved in the
GMF development process. The abstract syntax is defined
by an Ecore model, while the editor providing the concrete
(graphical) syntax is defined by a graphical definition model, a
tooling definition model and a GMF mapping model. The EMF
generator model is used to generate Java source code for the
abstract syntax while the GMF generator model is responsible
for generating the diagram editor’s source code. Please note
that the screencast does not cover the definition of the models
mentioned below. It is assumed that the models describing
the abstract and concrete syntax definitions have been created
beforehand:

1) Ecore The abstract syntax of the graph metamodel
has been created in Ecore. As shown in Section V,
the F2DMM instance which maps features to the
semantic model (abstract syntax).

Abstract Syntax Concrete Syntax

Ecore Model

EMF Generator Model

GMF Mapping Model

Graphical Definition

Model

Tooling Definition

Model

GMF Generator Model

d
e

co
ra

te
s

g
e

n
e

ra
te

s

Java Source Code

g
e

n
e

ra
te

s

g
e

n
e

ra
te

s

Figure 5. Models involved in the GMF development process.

2) GMFGraph (Graphical Definition Model) GMF
uses a GMFGraph model to define the graphical
representation of the concrete syntax. In case of the
example, the visual appearance of nodes and edges
of the graph is defined.

3) GMFTool (Tooling Definition Model) Every GEF
based editor uses a so called palette to drag new
elements to the canvas. As GMF is a model-driven
extension to GEF, it follows this paradigm. The
GMFTooling definition model is used to specify the
contents of the editor’s tool palette.

4) GMFMap (GMF Mapping Model) The models
described above (Ecore, GMFGraph and GMFTool)
are combined in the GMF mapping model. In this
model, a relation between abstract syntax (Ecore)
and graphical notation (GMFGraph) is established.
Furthermore, the tools (GMFTool) for creating cor-
responding model elements are linked to those rela-
tions. Please note that the GMF mapping model is the
central part of the Graphical Modeling Framework. It
has nothing in common with the F2DMM mapping
model, which is the core of the FAMILE toolchain.

305Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 327 / 679

Figure 6. Screenshot of the FAMILE model editor. The left pane shows the feature model and feature configuration. In the main pane, the contents of the
FAMILE model are shown.

Figure 7. Usage of alternative mappings. The red box depicts where elements of the multi-variant domain model have been virtually extended by alternative
mapping values (in italics).

B. Mapping Heterogeneous Artefacts

In order to use FAMILE for a (heterogeneous) project,
the FAMILE project nature has to be assigned. As a result,
an empty feature model and a FAMILE model are created
within the project. In the example, the feature model shown
in Figure 1 is applied to the entire product line as a global
project parameter. In order to map features to corresponding
implementation fragments, F2DMM mapping models have
to be created for each domain model. In the example, four
F2DMM instances have been defined, one for each EMF/GMF
resource mentioned above.

Figure 6 depicts the state of the example project after
corresponding F2DMM instances have been created. The red
arrows in the left part of the figure indicate which domain
model resource the corresponding F2DMM models refer to. As
one can see, FAMILE model elements may also be annotated
with feature expressions. For the example, a feature called
Graphical Editor has been introduced in order to make the
visualization (tree editor vs. graphical editor) of the graph
variable. In case this feature is deselected in a respective
configuration, it is obvious that the resulting product must not
contain the GMF models. As a consequence, the respective
F2DMM instances are annotated with the feature expression
Graphical Editor, as shown in Figure 6.

Figure 1 has already shown the content of the F2DMM
mapping model for the Ecore model which is used to define
the abstract syntax of the graph model. Analogously, F2DMM

instances for the other required models (GMFGraph, GMFTool
and GMFMap) are created. Each model file contains a su-
perimposition of all possible variants. Common approaches
using negative variability suffer from restrictions imposed
by the respective domain metamodels which usually do not
provide adequate support for variability. FAMILE mitigates
this restriction by offering the advanced concept of alternative
mappings. In the example, alternative mappings are used in
the Link mapping in the GMFMap model (c.f., Figure 7). In
case of an undirected graph, the corresponding graphical editor
should just connect two nodes by a solid line. To this end,
the underlying semantic model (i.e., the Ecore class model)
provides a reference nodes in the class Edge. In contrast, if the
feature Directed edges is selected, the graphical editor should
indicate the direction of the edge connecting two nodes by
using an arrow as a target decorator. Furthermore, the semantic
model does no longer contain a reference nodes, but instead
two single-valued references source and target, which are used
to store the corresponding nodes connected by the edge. In
GMF, a link mapping requires to specify the corresponding
EReferences which are used as the link’s source and target.
While in the first case, both source and target features in the
GMFMap file are set to the EReference nodes, the latter case
requires those features to point at the corresponding source
and target EReferences.

In this example, FAMILE’s alternative mapping capabil-
ities are necessary because the GMF mapping model uses
a single-valued EReference to store the sourceMetaFeature

306Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 328 / 679

and linkMetaFeature features. In case of undirected edges, the
nodes Reference defined in the Ecore model of our graph
product line is used. However, in case of directed edges, a
distinction between source and target nodes is required. To
this end, the Ecore model provides corresponding source and
target EReferences in the class Edge (c.f. Figure 1), which
have to be used in the GMFMap model instead in case the
feature Directed is chosen. Figure 7 depicts how this has been
solved using FAMILE’s alternative mappings [8], which can
virtually extend the multi-variant model and thus mitigate the
limited variability of the respective domain metamodels.

C. Product Derivation

Once the mapping is completed, specific feature config-
urations may be used to derive concrete products. In the
example, a derived Eclipse project is created which contains
the required model files. Please note that the derived project
does not include the Ecore and GMF generator models which
are required to generate code. Since code generation is always
invoked on a configured product, this task clearly belongs
to the application engineering rather than to the domain
engineering phase.

With the feature configurations provided in the example
project, a fully automatic generation of four Eclipse plugin
projects may be performed, which differ from each other as
follows:

• an EMF tree editor for undirected, unweighted graphs,

• a GMF-based graphical editor for undirected, un-
weighted graphs,

• a graphical editor for directed, unweighted graphs, and

• a graphical editor for directed, weighted graphs.

Of course this set of feature configurations does not contain
all possible combinations of features and it may be extended
arbitrarily based on the features defined in the feature model.

D. Outlook: Increasing the Heterogeneity of the Example
Project

The example described in this section has been conducted
using only EMF-compatible resources as artefacts. All models
involved in the GMF development process, i.e., the Ecore
domain model, the Graphical Definition Model, the Tooling
Definition Model, as well as the GMF Mapping Model, are
instances of different Ecore-based metamodels. In the current
state of the project, these models constitute the adequate level
of abstraction for variability management. However, it might
become necessary to define additional F2DMM mapping mod-
els for non-EMF resources in addition, for different reasons:

• With Ecore, only structure may be modeled in the
form of class diagrams. For the behavioral part, mod-
ifications to the generated Java source code might
become necessary. In order to map specific parts of the
source code, e.g., specific method bodies, to features,
additional F2DMM mapping models may be added
for the respective Java files. For this purpose, Java
constructs are internally mapped to EMF models using
the MoDisco framework, as described in Section VI.

Please note that using the current FAMILE extension,
the user may annotate Java elements directly in the
standard Java text editor.

• The file plugin.properties in the Eclipse
project contains language-specific UI string constants,
each declared in a respective text line. Currently, the
generated Editor displays UI elements in English.
However, if support for different languages is desired,
one may add an additional F2DMM mapping model
for the properties file, and corresponding features
for each additional language to the feature model.
The mapping may be adequately managed by means
of a per-line mapping, using the “fall-back” EMF
representation for plain text files (see Section VI).

• The file plugin.xml defines plugin extensions
which are used to integrate the generated editor with
the Eclipse platform. By adding an F2DMM mapping
model and corresponding features, variability may be
added to the plugin’s runtime configuration, i.e., in
order to make the editor’s icon, label, or file extension
depend on specific feature configurations. Assuming
that no EMF-compatible metamodel for Eclipse plugin
files is defined, the “fall-back” EMF representation for
XML files (see Section VI) may be used.

VIII. CONCLUSION AND FUTURE WORK

In this paper, requirements, concepts and limitations with
respect to tool support for heterogeneous model-driven soft-
ware product lines have been discussed. The approach pre-
sented in this paper solves a significant gap in the tool support
for model-driven development of software product lines, whose
artefacts are heterogeneous in terms of the used metamodels
as well as in containing artefacts like text files or XML
documents. As a proof of concept, an implementation of an
extension to the FAMILE toolchain was shown.

Usually, (model-driven) software projects do not only con-
sist of one single model. In contrast, different models and
metamodels are involved. The main challenges of heteroge-
neous SPLE tool support are (a) to cope with different levels
of abstractions (models and source code / plain text files) as
well as (b) different forms of representation, (c) to ensure that
links between different resources are kept consistent, and (d)
to provide a uniform variability mechanism with respect to all
project resources.

The approach presented here comes with the assumption
that each resource type may be expressed by an EMF model;
the new version of FAMILE provides adequate mapping con-
structs in order to support entire Eclipse projects. Furthermore,
the solution to heterogeneous SPLE tooling is to divide a
heterogeneous software project into a set of single-resource
mapping models, for which adequate SPLE support is already
implemented. Links between different models are kept con-
sistent during product derivation. Extensions to the user inter-
face ease the integration of new artefacts into heterogeneous
product lines as well as modifications to existing mappings.
Furthermore, fallback mechanisms for plain text files and
XML files are provided, which also allow to map features
to those kinds of artefacts at a lower level of abstraction.
A demonstration of the presented approach was given by

307Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 329 / 679

applying the heterogeneous FAMILE toolchain to a product
line for graph metamodels and editors, which manages an
entire Eclipse plug-in project.

Current and future work addresses a case study which is
carried out in the field of robotics [31][32]. Although first
results produced by the old (homogeneous) version of the
FAMILE toolchain are very promising, it is expected that a
significant gain in productivity is achieved by exploiting the
new, heterogeneous approach. Future work on the tool com-
prises a better integration of the mapping assistant into the user
interface of Xtext-generated textual editors. Furthermore, work
in progress addresses extensions to the MoDisco framework in
order to provide support for other programming languages like
C++ or C#.

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, Boston, MA, 2001.

[2] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line En-
gineering: Foundations, Principles and Techniques. Berlin, Germany:
Springer Verlag, 2005.

[3] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (FODA) feasibility study,”
Carnegie-Mellon University, Software Engineering Institute, Tech. Rep.
CMU/SEI-90-TR-21, Nov. 1990.

[4] S. Zschaler, P. Sánchez, J. Santos, M. Alférez, A. Rashid, L. Fuentes,
A. Moreira, J. Araújo, and U. Kulesza, “VML* - A Family of
Languages for Variability Management in Software Product Lines,”
in Software Language Engineering, ser. Lecture Notes in Computer
Science, M. van den Brand, D. Gaevic, and J. Gray, Eds. Denver, CO,
USA: Springer Berlin / Heidelberg, 2010, vol. 5969, pp. 82–102.

[5] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, and J. Arajo,
“MATA: A Unified Approach for Composing UML Aspect Models
Based on Graph Transformation,” in Transactions on Aspect-Oriented
Software Development VI, ser. Lecture Notes in Computer Science,
S. Katz, H. Ossher, R. France, and J.-M. Jzquel, Eds. Springer Berlin
/ Heidelberg, 2009, vol. 5560, pp. 191–237.

[6] F. Heidenreich, J. Kopcsek, and C. Wende, “FeatureMapper: Map-
ping features to models,” in Companion Proceedings of the 30th
International Conference on Software Engineering (ICSE’08), Leipzig,
Germany, May 2008, pp. 943–944.

[7] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. S. Batory,
“Guaranteeing syntactic correctness for all product line variants: A
language-independent approach,” in TOOLS (47), ser. Lecture Notes in
Business Information Processing, M. Oriol and B. Meyer, Eds., vol. 33.
Springer, 2009, pp. 175–194.

[8] T. Buchmann and F. Schwägerl, “FAMILE: tool support for evolving
model-driven product lines,” in Joint Proceedings of co-located Events
at the 8th European Conference on Modelling Foundations and Ap-
plications, ser. CEUR WS, H. Störrle, G. Botterweck, M. Bourdells,
D. Kolovos, R. Paige, E. Roubtsova, J. Rubin, and J.-P. Tolvanen,
Eds. Building 321, DK-2800 Kongens Lyngby: Technical University
of Denmark (DTU), Jul. 2012, pp. 59–62.

[9] T. Buchmann and F. Schwägerl, “Ensuring well-formedness of config-
ured domain models in model-driven product lines based on negative
variability,” in Proceedings of the 4th International Workshop on
Feature-Oriented Software Development, ser. FOSD 2012. New York,
NY, USA: ACM, 2012, pp. 37–44.

[10] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-Driven
Software Development: Technology, Engineering, Management. John
Wiley & Sons, 2006.

[11] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF Eclipse
Modeling Framework, 2nd ed., ser. The Eclipse Series. Boston, MA:
Addison-Wesley, 2009.

[12] OMG, Meta Object Facility (MOF) Core, formal/2011-08-07 ed., Object
Management Group, Needham, MA, Aug. 2011.

[13] ——, UML Superstructure, formal/2011-08-06 ed., Object Management
Group, Needham, MA, Aug. 2011.

[14] T. Buchmann, A. Dotor, and B. Westfechtel, “Mod2-
scm: A model-driven product line for software configuration
management systems,” Information and Software Technology, 2012,
http://dx.doi.org/10.1016/j.infsof.2012.07.010. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2012.07.010

[15] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit, 1st ed., ser. The Eclipse Series. Boston, MA:
Addison-Wesley, 2009.

[16] “fmp2rsm project,” http://gsd.uwaterloo.ca/fmp2rsm, accessed: 2014-
07-15.

[17] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: Feature modeling
plug-in for Eclipse,” in Proceedings of the 2004 OOPSLA Workshop on
Eclipse Technology eXchange (eclipse’04), New York, NY, 2004, pp.
67–72.

[18] G. Taentzer, “AGG: A Graph Transformation Environment for Modeling
and Validation of Software,” in Applications of Graph Transformations
with Industrial Relevance, ser. Lecture Notes in Computer Science,
J. Pfaltz, M. Nagl, and B. Böhlen, Eds. Charlottesville, VA, USA:
Springer Berlin / Heidelberg, 2004, vol. 3062, pp. 446–453.

[19] B. W. Kernighan, The C Programming Language, 2nd ed., D. M.
Ritchie, Ed. Prentice Hall Professional Technical Reference, 1988.

[20] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: a generic
and extensible framework for model driven reverse engineering,” in
Proceedings of the IEEE/ACM International Conference on Automated
software engineering (ASE 2010), Antwerp, Belgium, 2010, pp. 173–
174.

[21] S. Bühne, K. Lauenroth, and K. Pohl, “Modelling requirements vari-
ability across product lines,” in RE. IEEE Computer Society, 2005,
pp. 41–52.

[22] D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser, P. Grünbacher,
D. Benavides, and J. A. Galindo, “Configuration of multi product lines
by bridging heterogeneous variability modeling approaches,” in SPLC,
E. S. de Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid,
Eds. IEEE, 2011, pp. 120–129.

[23] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formalizing
cardinality-based feature models and their specialization,” Software
Process: Improvement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[24] F. Heidenreich, “Towards systematic ensuring well-formedness of soft-
ware product lines,” in Proceedings of the 1st Workshop on Feature-
Oriented Software Development. Denver, CO, USA: ACM, Oct. 2009,
pp. 69–74.

[25] “Eclipse UML2 Project,” http://www.eclipse.org/modeling/mdt/
?project=uml2, accessed: 2014-07-15.

[26] “Xtext project,” http://www.eclipse.org/Xtext, accessed: 2014-07-15.
[27] “EMFText Project,” http://www.emftext.org, accessed: 2014-07-15.
[28] “Acceleo project,” http://www.eclipse.org/acceleo, accessed: 2014-07-

15.
[29] “MWE2 Project,” http://www.eclipse.org/modeling/emft/?project=mwe,

accessed: 2014-07-15.
[30] “Xtend project,” http://www.eclipse.org/xtend, accessed: 2014-07-15.
[31] J. Baumgartl, T. Buchmann, D. Henrich, and B. Westfechtel, “Towards

easy robot programming: Using dsls, code generators and software
product lines,” in Proceedings of the 8th International Conference on
Software Paradigm Trends (ICSOFT 2013), J. Cordeiro, D. Marca, and
M. van Sinderen, Eds. ScitePress, Jul. 2013, pp. 548–554.

[32] T. Buchmann, J. Baumgartl, D. Henrich, and B. Westfechtel, “Towards
a domain-specific language for pick-and-place applications,” in
Proceedings of the Fourth International Workshop on Domain-Specific
Languages and Models for Robotic Systems (DSLRob 2013)., U. P. S.
Christian Schlegel and S. Stinckwich, Eds. arXiv.org, 2013. [Online].
Available: http://arxiv.org/abs/1401.1376

308Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 330 / 679

System Composition Using Petri Nets and DEVS Formalisms

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Brno, Czech Republic

{koci,janousek}@fit.vutbr.cz

Abstract—This paper is part of the work dealing with system
developoment and deployment, where the system behavior
should be modeled by formalisms allowing to define workflow
scenarios and offering an interface for workflows synchroniza-
tion. One such formalism is represented by Object Oriented
Petri Nets (OOPN). OOPN are based on well-known class-based
approach enriched by concurrency. Nevertheless, OOPN lacks
one important element—a hierarchy followed by a simple way
to model items exchanges on the fly. Therefore, the formalism
of Discrete Event System Specification (DEVS) is taken into
account. In the presented approach, the OOPN model is split up
into DEVS components. Each component can be coupled with
another component through the same compatible interface.
A combination of OOPN and DEVS formalisms is used to
compose the system using DEVS-based components, where
each such component is modeled by means of OOPN. It
preserves the advantages of using OOPN for behavior modeling
and makes it possible to hierarchize models. The paper deals
with the combination of both formalisms and compares the
classic object approach to the component approach for system
composition.

Keywords-Object Oriented Petri Nets; DEVS; system compo-
sition; data passing.

I. INTRODUCTION

The paper is part of the work dealing with system

developoment and deployment [1][2][3], where the system

is modeled, as well as implemented, by means of formal

models. Present methods use various models in analysis

and design phases, whereas these models usually serve as a

system documentation rather than real models of the system

under development. The system is then implemented in

accordance with these models, whereas the code is either

generated from models or implemented manually. Unfortu-

nately, many implementation differ from the designed mod-

els because of changes created during the system debugging

and improvement. Consequently, models become out of date

and useless.

To solve this problem, the methodologies and approaches

commonly known as Model-Driven Software Development

were investigated and developed for many years [4][5].

These methods use executable models, e.g., Executable

Unified Model Language (ExecUML) [6] in Model Driven

Architecture methodology [7], which allow to test systems

using models. Models are then transformed into code, but

the resulted code has to often be finalized manually and

the problem of imprecision between models and transformed

code remains unchanged.

The system development methodology, which makes a

base of the presented work, uses formal models for system

description, as well as system implementation. Therefore,

there is no need to transform models. Moreover, the system

is developed using different kinds of models in simula-

tion, i.e., it is possible to test systems in any state at

any time. The combination of formalisms allows to derive

benefits from their different features. This paper deals with

two formalisms—Object Oriented Petri Nets (OOPN) [8],

[9] and Discrete Event System Specification (DEVS) [10].

It preserves the advantages of using OOPN for behavior

modeling and makes it possible to compose systems us-

ing DEVS-based components. This combination has been

already used in previous works [2][11][12] as it is, without

an analysis of its features and usefulness. This paper puts

an accent on the ability of that concepts to model a sys-

tem composition and its usability is demonstrated ising an

example, which was defined in [11].

The paper is organized as follows. Section II deals with

related work. Then, we briefly introduce the system in

simulation concept in Section III and the used formalisms of

OOPN and DEVS in Section IV. The different principles of

system composition will be described in Section V, followed

by analysis of system elements communication in Section

VI. The usability of the presented approach is demonstrated

in Section VII and the summarization and future work will

be described in Section VIII.

II. RELATED WORK

There are many works dealing with similar problems in

the field of the design of control or embedded systems. The

common feature is to use formal system (language, models,

etc.) to software design and testing. There are two main mo-

tivations of formal system usage. First, to build and maintain

control of the system in a quite fast and inuitive way. The

High-level languages, especially based on Petri Nets, are

used in this way. For example, the RoboGraph framework

[13] for the robot application control uses hierarchical binary

Petri nets for middleware implementation. In the area of

309Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 331 / 679

embedded systems, we can mentioned the work by Rust et

al. [14], which uses Timed Petri Nets for the synthesis of

control software by generating C-code, the work based on

Sequential Function Charts [15], or the work based on the

formalism of Nets-Within-Nets (NwN) [16][17][18].

These tools and works allow to model systems using a

combination of different formalisms, but do not allow to

use formal models in system implementation. The formal-

ism of NwN is closest to the formalism of OOPN, but

OOPN fully support an integration of formal description

and programming language, which facilitates, e.g., reality-

in-the-loop simulation or usage of formal models in the

target application. The proposed approach allows to use of

formal models to design, analyze and program applications,

including a combination of simulated and real components.

The main advantages are the following: there is no need for

code generation, and the same formalisms and methods are

used for further investigation of deployed systems.

III. SYSTEM IN SIMULATION CONCEPT

The basic principles of the system development methodol-

ogy [3][11] will be introduced in this section. The methodol-

ogy supposes that the system is developed in the simulation;

this concept will be outlined, too.

A. System Development Methodology

The modeling process is split up into three basic phases—

identification of model elements, modeling the system be-

havior, and modeling the system architecture. The basic

model elements are subjects, roles, and activities. The sub-

ject represents a data unit, e.g., the user working with the

system or an individual element in the system. Each subject

acts through its role. One subject can have more roles, e.g.,

the user can act as a reviewer, as well as a participant, in the

conference review system. The activity represents the system

functionality and is modeled by workflow scenarions. To

model each such element, the formalism of OOPN is used.

It can also be modeled by any other formalism allowing

to define workflow scenarios and offering an interface for

workflows synchronization, e.g., statecharts, activity dia-

grams, or other kind of Petri nets. The system architecture

is modeled by classes that can be coupled into components

using the formalism of DEVS.

B. Application Framework For System in Simulation

The used methodology [11] supposes that the system is

being developed in the simulation. The development process

starts with the empty simulation (simulation containing no

model elements). Subsequently, in every subsequent step,

model elements are being created, modified, or exchanged

within the simulation. The simulation can be suspended,

resumed, or restarted at any time, so that designers are

able to test system behavior immediately, after each change.

The model can be tested in real conditions, too. Therefore,

a possibility to communicate with elements of product

environment has to be ensured. The product environment is

the target system where the developed model has to work.

The presented concept has to be supported by an appli-

cation framework allowing to model the system, to simulate

designed models, and to manipulate with models during

the simulation. The application framework has to fulfil

three basic requirements. First, to link models and product

environment. Second, to work with models in simulations.

Third, to exchange elements of models on the fly—the

model elements should be exchanged with no changes in

the depending model elements.

The application framework PNtalk, which satisfies previ-

ously listed requirements, has been developed [19]. Since the

framework is implemented in Smalltalk [20], the objects of

the OOPN formalism are directly available in the Smalltalk

application and Smalltalk objects are directly available in

the PNtalk framework. Nevertheless, OOPN objects can be

linked to objects of any languages or formalisms allowing

message passing.

Second, the PNtalk framework allows to execute models

in different simulation modes that are suitable for design,

testing, hardware/software-in-the-loop simulation, and sys-

tem deployment. Using simulation allows, among others, to

suspend (i.e., to exclude from the execution), to modify, or to

exchange chosen parts of the model. By this point, we came

in on the third requirement—a possibility to exchange model

parts on the fly (any time during the system simulation).

Therefore, the formalism of DEVS is taken into account.

DEVS offers component approach allowing for wrapping

an other kind of formalisms. The combination of OOPN

and DEVS formalisms preserves the advantages of using

OOPN for behavior modeling and makes it possible to

hierarchize models. It allows the designer to derive benefits

from component exchanges instead of object exchanges.

IV. FORMAL MODELS

We will briefly introduce the formalisms of OOPN and

DEVS that make a base of the system development method-

ology [3][11].

A. Formalism of Object Oriented Petri Nets

The formalism of OOPN [21] is based on the well-known

class-based approach. All objects are instances of classes,

every computation is realized by message sending, and

variables contain references to objects. This kind of object-

orientation is enriched by concurrency. OOPN objects offer

reentrant services to other objects and, at the same time, they

can perform their own independent activities. The services

provided by the objects, as well as the autonomous activities

of the objects are described by means of high-level Petri

nets—services by method nets, object activities by object

nets.

310Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 332 / 679

The formalism of OOPN contains important elements

allowing to test object states (predicates) and to manipulate

object state (synchronous ports) with no need to instantiate

method nets. Object state testing can be negative (negative

predicates) or positive (synchronous ports). Synchronous

ports are special (virtual) transitions that cannot fire alone

but need to be dynamically fused to some other transitions

the synchronous port is called from (via message sending).

Negative predicates are special variants of synchronous ports

having inverted semantics—the calling transition is fireable

if the negative predicate is not fireable.

For the sake of notation simplicity, we introduce the

formal notation for following relationships. The term @
represents the relationship is an instance of. For example,

(a, C1) ∈ @ means that a is the instance of the class named

C1. We will write this relation in the form a@C1. If the

instance identifier is not important, we will type only @C1.

The terms
M
⇁ and

M
↽ represent the relationship contains

a reference to. For example, a1@A
M
⇁ a2@B means that

a1@A contains a reference to a2@B and a1@A
M
↽ a2@B

means that a2@B contains a reference to a1@A. If there

are both relationships on the same elements, we will write

a1@A
M

⇋ a2@B.

B. Formalism of DEVS

The formalism of DEVS [10] can represent any system

whose input/output behavior can be described as a sequence

of events. The atomic DEVS model is specified as a structure

M containing sets of states S, input and output event values

X and Y , internal transition function δint, external transition

function δext, output function λ, and time advance function

ta. These functions describe the behavior of the component.

This way, we can describe atomic models. Atomic models

can be coupled together to form a coupled model CM . The

later model can be employed itself as a component of a larger

model. This way, the DEVS formalism brings a hierarchical

component architecture. Sets S, X , Y are to be considered

as structured sets. It allows to use multiple variables for

specification of a state; we can use a concept of input and

output ports for input and output events specification, as well

as for coupling specification. In another words, components

are connected by means of ports and event values are

carried through these ports. We will denote input port by the

notation component name⊕port name and output port

by the notation component name⊖port name.

As with the object approach, we will define the for-

mal notation of DEVS components. Since the component

represents the model description (cf. classes), as well as

its executable form (cf. objects as instances of classes),

there is no means for a notion to be an instance. The

new component having the same structure and behavior of

existing one can be created by clonning that component.

To differ from the notation contains a reference to
M

⇋ ,

Figure 1. Packages with bidirectional relationship.

we define the relationship linked with meaning that the

component is linked with another one through their ports.

This relationship will be represented by terms left link
D
⇁ ,

right link
D
↽ , and link

D

⇋ . For example, c1
D
⇁ c2 (or

c1
D
↽ c2) establishes a channel for data transmission from

the component c1 to the component c2 (or from c2 to c1).

The link
D

⇋ means there are both (left and right) links. To

specify ports, we will write c1⊖port1
D
⇁ c2⊕port2.

C. Combination of OOPN and DEVS Formalisms

The DEVS formalism offers a component approach, al-

lowing to wrap other kinds of formalisms, so that each

such formalism is interpreted by its simulator and simulators

communicate with each other by means of the compatible

interface. The OOPN model is then split up into components

linked together by the compatible interface. Let MPN =
(M,Π,mapinp,mapout) be a DEVS component M , which

wraps an OOPN model Π. The model Π defines an initial

class c0, which is instantiated immediately the component

MPN is created. Functions mapinp and mapout map ports

and places of the object net of the initial class c0. The

mapped places then serve as input or output ports of the

component, i.e., they are part of the component interface.

V. SYSTEM COMPOSITION

The different principles of system composition will be

described in this section. First, we describe the classic object

oriented approach defining packages, where the interface is

build up from classes or objects. Second, we describe the

DEVS approach defining components, where the interface is

build up from ports.

A. Packages Composition

In the classic approach, the interface of each package

is built up from classes and their operations. Relation-

ships between two packages should be only unidirectional—

if there are bidirectional relationships, packages cannot

be simply replaced by other packages. The example is

shown in Figure 1. There are two packages net and

model1; the class model1.M1 needs to use the class

311Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 333 / 679

net.Communication and net.Communication no-

tifies model1.M1 about incomming events—the relation-

ship is bidirectional. If the package net would be used with

another package (e.g., model2), there is a problem how to

represent the association from net.Communication to

model2.M2. The only way is to change the package net.

Figure 2. Packages with unidirectional relationship.

Figure 2 shows a solution of the previous situation—

the class net.Communication depends on the newly

created class net.EventListener and model1.M1 is

derived from it—the relationship is unidirectional (only from

model1 to net). If the package net would be used

with another package, e.g., model2, this package only

uses classes from net—no changes are needed. It is an

application of known Dependency Inversion Principle.

B. Components Composition

In DEVS approach, the component interface is built up

from ports. Relationships between two packages do not

need to be only unidirectional; components can be simply

replaced by other components in both cases. The example

is shown in Figure 3. There are two components net

and model1; the component model1 sends commands

to the component net and net notifies model1 about

incomming evets—the relationship is bidirectional.

net

cmd
event

model1

cmdevent

Figure 3. Components with bidirectional relationship.

If the package net would be used with another compo-

nent (e.g., model2), there is no problem how to do it—the

new component is simply re-connected through ports (see

Figure 4).

VI. COMMUNICATON

The difference between objects and components replace-

ment on the fly will be taken into account in this section.

A. Message Passing

In the classic approach, the package communication is

provided by message passing. The object from one package

(client) sends a message to the object from second package

(server), whereas the client usually waits for an answer (until

the message is processed—synchronous communication).

net

cmd
event

model1

cmdevent

model2

cmdevent

X X

Figure 4. Components composition through ports with component chang-
ing.

Figure 5a) shows the communication between packages

net and model1 through their interfaces. The instance

@net.Communication notifies the instance @model1.M1
about arrising events and @model1.M1 sends commands

to @net.Communication. Let us assume that the class

Communication represents an interface to the real robot

and the class M1 implements control algorithms. During the

simulation, there can arise a need to test another algorithms

in the current situation—the simple way is to change the

control algorithm on the fly and continue in simulation. So,

the component model1 is exchanged to model2; it follows
that @model1.M1 is removed and @model2.M2 is put in

its place.

Figure 5. Communication through the object and component interfaces.

The object exchange on the fly means that one reference is

exchanged to another one. To achieve this goal, the server

has to be prepared for such an operation—it has to offer

a protocol for attaching and detaching clients. Second, if

the new client has a different protocol, it has to be adapted

(cf., e.g., the design pattern Adapter). Third, if the detached

component is in process, e.g., it processes a method which

has been called from another object, the problem of its

correct removing arrises.

312Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 334 / 679

If we get back to the previous example, we make out

that the instance of the class net.Communication has

a reference to the instance of the class model1.M1 and

vice versa—from this point of view, there is a bidirectional

relationship @net.Communication
M

⇋ @model1.M1.

B. Data Passing

In DEVS approach, the component interface is built up

from ports. Component communication is then provided by

data passing; the client component sends a piece of data to

the server component, whereas the client usually does not

wait for an answer (asynchronous communication).

Figure 5b) shows a data passing between components

net and model1 through their interfaces. The component

net notifies the component model1 about arrising events by

carrying a piece of data from net⊖event to net⊕event.

The component model1 sends commands to the component

net by carrying a piece of data through the data connection

model1⊖cmd
D
⇁ net⊕cmd. Since the component repre-

sents the model description (cf. classes), as well as its

executable form (cf. objects as instances of classes), there

is no difference between components replacements during

their composition or on the fly.

C. Comparison of Data and Message Passing

Since the Petri nets have good ability of describing

processes, they can be used to model the difference between

message passing and data passing. Figure 6a) describes the

model of message passing and Figure 6b) describes the

model of data passing.

a = r.msg(d)

 r.msg(d)

r.msgsend

send

send
msg

a

a) b)

d

a

d

a

Figure 6. Comparison of message passing and data passing.

Let us investigate Figure 6a). The sequence of unnamed

places and transitions represents one thread in the system

behavior containing the message passing. It is modeled by

the transition named send—it sends a message msg to the

receiver r with a piece of data d and waits for the answer

a. The transition send can be split up into output transition

(shown with output arrow), which needs to know receiver,

message, and data, and input transition (shown with input

arrow), which waits for the answer, i.e., waits until the called

method r.msg is finished.

d
send

msg

a

a

Figure 7. Adjusting data passing to sychronous communication.

Let us investigate Figure 6b). The transition send needs

to know only a piece of data d that are put to the output port

msg (shown with output arrow) representing the message.

First, the component does not care about the receiver (any-

thing what is linked) and its interface. Second, the transition

send models asynchronous communication (no waiting for

the answer). If the component needs to get the answer, it can

define an independent thread, which is started by putting the

answer to the input place a (shown with input arrow). In the

case the component needs to wait for the answer, it can be

modeled as shown in Figure 7.

VII. DATA PASSING AND SYSTEM IN SIMULATION

CONCEPT

This section demonstrates the usability of the presented

approach on a simple example of the robotic system, which

has been described in [11]. The robotic system consists of

the simulated robot (the data unit modeled by the subject

Device), its role Robot, and one possible scenario of the

robot behavior (the activity Scenario). These model elements

are identified in accordance with development methodology

(see Section III).

A. Model of Behavior

We will suppose a very simple activity, which can be de-

scribed by the following algorithm: (1) the robot is walking;

(2) if the robot comes upon to an obstacle, it stops, turns

right and tries to walk, (3) if the robot cannot walk, it turns

round and tries to walk; (4) if there is no possibility to walk,

it stops. The activity net Scenario describing the presented

behavior is shown in Figure 8.

The activity @Scenario communicates with the object

@Role, which is initially placed in the place walking.

The communication is provided using predicates that serve

for testing (see isCloseToObstacle and isClearRoad) and

synchronous ports for action performing (see stop, go, and

turnRight).

313Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 335 / 679

walking

r isCloseToObstacle.

t1

r stop. r turnRight.

r

r

p1

r isCloseToObstacle.

t2

r turnRight. r turnRight.

r

r isCloseToObstacle.

t3

r isClearRoad.

t11

r

r isClearRoad.

t12

r isClearRoad.

t13

r

r

r

r go.

r go.

r go.

r

p2

r

r

r

p3

r

Figure 8. The activity net Scenario.

distance

self delay: 10

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

d

d

oldD

#getDist

request

p1

t1

t2

go

stop

#stop

#go

left

turnLeft

right

turnRight

true true

Figure 9. The role Robot.

The possible model of the role Robot is shown in Figure

9. The role offers information about robot’s position by

means of predicates isClearRoad and isCloseToObstacle.

Moreover, the role offers synchronous ports stop, go, turn-

Right, and turnLeft, that represent commands forwarded to

the subject.

B. Model of Composition

The system is composed of two components that are

shown in Figure 10. The component behavior1 consists of

the role Robot and the activity Scenario—since these objects

communicate using message passing, they have to be en-

capsulated into the same component. The component robot

represents the subject, whose realization is schematically

depicted in Figure 11.

The communication is provided using data passing. The

role Robot represents the initial class c0 of the component

behavior1, so that the object @Robot defines input and out-

put ports. The component interface consists of output ports

⊖request, ⊖left, and ⊖right. We can see that appropriate

synchronous ports only put a piece of data to these ports.

The component robot has input ports corresponding to the

output ports of the component behavior1—their interfaces

are compatible. Let us investige the following situation.

behavior1

distance

request

robot

distance
left

right right

left
request

behavior2

distance

request
left

right

Figure 10. The robot system composition.

The activity @Scenario requests turning right—it calls the

synchronous port @Robot.turnLeft, which puts a value

true to the output port behavior1⊖left. This value is

carried through behavior1⊖left
D
⇁ robot⊕left to the

component robot, where performs advisable operations.

The role @Robot checks actual robot’s distance to the

obstacle every 10 time units by requesting new data—it

carries a symbol #getDist through behavior1⊖request
D
⇁

robot⊕request to the component robot. The component

robot gets a new information about the distance and carries

it back through robot⊖distance
D
⇁ behavior1⊕distance.

answer

#getDist

request

...

#go

(#distance, d)

#stop

left
true

right

true

Figure 11. The subject component—an abstract view.

Anytime we need to exchange the model of behavior (for

example, the actions change from turning right to turning

left), we simply clone the existing component behavior1,

the new component named behavior2 will be created, we

modify its realization and connect it through ports (see the

component behavior2 in Figure 10).

VIII. CONCLUSION AND FUTURE WORK

This paper dealt with the usability of the OOPN and

DEVS formalisms in the system development. The formal-

ism of OOPN allows to define workflow scenarios and offers

an interface for workflows synchronization. Nevertheless, it

lacks a hierarchy followed by simple way to model items

exchanges on the fly. Therefore, it was combined with the

formalisms of DEVS, which offers hierarchized component

approach—the OOPN model is split up into components

linked together by the compatible interface. It preserves

314Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 336 / 679

the advantages of using OOPN for behavior modeling and

makes it possible to hierarchize models.

This paper is part of the work dealing with system devel-

opment and deployment using specific methodology and tool

support. The application framework PNtalk, which satisfies

required features, has been developed [19]. So far, it allows

a communication to Smalltalk environment. Nevertheless, it

can be linked to objects of any languages or formalisms

allowing message passing. We plan to extend PNtalk to the

Java and C/C++ platforms.

The proposed approach has one main disadvantage—the

usage of application framework interpreting formal models,

increases requirements on memory size and system perfor-

mance. The future research will aim at efficient represen-

tation of choosed formal models and interoperability with

another product environments. The application framework

will be adapted to these conditions having lesser requirement

for resources.

ACKNOWLEDGMENT

This work has been supported by the European Regional

Development Fund in the IT4Innovations Centre of Excel-

lence project (CZ.1.05/1.1.00/02.0070) and by BUT FIT

grant FIT-S-14-2486.

REFERENCES

[1] R. Kočı́ and V. Janoušek, “System design with Object oriented
Petri nets formalism,” in The Third International Conference
on Software Engineering Advances Proceedings ICSEA 2008.
IEEE Computer Society, 2008, pp. 421–426.

[2] R. Kočı́ and V. Janoušek, “OOPN and DEVS formalisms for
system specification and analysis,” in The Fifth International
Conference on Software Engineering Advances. IEEE Com-
puter Society, 2010, pp. 305–310.

[3] R. Kočı́ and V. Janoušek, “Modeling and simulation-based
design using Object-oriented Petri nets: a case study,” in
Proceeding of the International Workshop on Petri Nets and
Software Engineering 2012, vol. 851. CEUR, 2012, pp. 253–
266.

[4] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development. Springer-Verlag, 2005.

[5] M. Broy, J. Gruenbauer, D. Harel, and T. Hoare, Eds., Engi-
neering Theories of Software Intensive Systems: Proceedings
of the NATO Advanced Study Institute. Kluwer Academic
Publishers, 2005.

[6] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie,
Model Driven Architecture with Executable UML. Cam-
bridge University Press, 2004.

[7] D. S. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing, ser. 17 (MS-17). John Wiley & Sons,
2003.

[8] M. Češka, V. Janoušek, and T. Vojnar, PNtalk — a computer-
ized tool for Object oriented Petri nets modelling, ser. Lecture
Notes in Computer Science. Springer Verlag, 1997, vol.
1333, pp. 591–610.

[9] R. Kočı́ and V. Janoušek, Simulation Based Design of Control
Systems Using DEVS and Petri Nets, ser. Lecture Notes in
Computer Science. Springer Verlag, 2009, vol. 5717, pp.
849–856.

[10] B. Zeigler, T. Kim, and H. Praehofer, Theory of Modeling
and Simulation. Academic Press, Inc., London, 2000.

[11] R. Kočı́ and V. Janoušek, “Object oriented Petri nets in
software development and deployment,” in ICSEA 2013, The
Eighth International Conference on Software Engineering
Advances. Xpert Publishing Services, 2013, pp. 485–490.

[12] R. Kočı́ and V. Janoušek, “Towards Design Method Based on
Formalisms of Petri Nets, DEVS, and UML,” in ICSEA 2011,
The Sixth International Conference on Software Engineering
Advances, 2011, pp. 299–304.

[13] J. L. Fernandez, R. Sanz, E. Paz, and C. Alonso, “Using
hierarchical binary Petri nets to build robust mobile robot
applications: RoboGraph,” in IEEE International Conference
on Robotics and Automation, 2008, pp. 1372–1377.

[14] C. Rust, F. Stappert, and R. Kunnemeyer, “From Timed
Petri nets to interrupt-driven embedded control software,” in
International Conference on Computer, Communication and
Control Technologies (CCCT 2003), 2003, pp. 124–129.

[15] O. Bayo-Puxan, J. Rafecas-Sabate, O. Gomis-Bellmunt, and
J. Bergas-Jane, “A GRAFCET-compiler methodology for
C-programmed microcontrollers, In Assembly Automation,”
Assembly Automation, vol. 28, no. 1, pp. 55–60, 2008.

[16] R. Valk, “Petri nets as token objects: an introduction to
Elementary object nets.” in Jorg Desel, Manuel Silva (eds.):

Application and Theory of Petri Nets; Lecture Notes in
Computer Science, vol. 120. Springer-Verlag, 1998.

[17] D. Moldt, “OOA and Petri nets for system specification,” in
Object-Oriented Programming and Models of Concurrency.
Italy, 1995.

[18] L. Cabac, M. Duvigneau, D. Moldt, and H. Rölke, “Modeling
dynamic architectures using nets-within-nets,” in Applications
and Theory of Petri Nets 2005. 26th International Conference,
ICATPN 2005, Miami, USA, 2005, pp. 148–167.

[19] R. Kočı́. PNtalk system. [Online]. Available:
http://perchta.fit.vutbr.cz/pntalk2k [retrieved: August, 2014]

[20] A. GoldBerk and D. Robson, Smalltalk 80: The Language.
Addison-Wesley, 1989.

[21] V. Janoušek and R. Kočı́, “PNtalk: concurrent language with
MOP,” in Proceedings of the CS&P’2003 Workshop. Warsaw
University, Warsawa, PL, 2003, pp. 271–282.

315Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 337 / 679

A Prototyping Discipline in OpenUP to Satisfy
Wireless Sensor Networks Requirements

Gian Ricardo Berkenbrock

Software/Hardware Integration Lab.
Federal University of Santa Catarina

(UFSC)
Joinville, SC, Brazil

Email: gian.rb@ufsc.br

Carla Diacui Medeiros
Berkenbrock

Santa Catarina State University
(UDESC)

Department of Computer Science
Joinville, SC, Brazil

Email: carla.berkenbrock@udesc.br

Celso Massaki Hirata

Department of Computer Science
Aeronautics Institute of Technology

(ITA)
S.J.Campos - SP, Brazil

Email: hirata@ita.br

Abstract—Wireless Sensor Networks (WSNs) are used to collect
data from different sources and they can be applied in mon-
itoring and instrumentation areas. WSN are highly dependent
on application requirements, then one application is hardly
equal to another. There is not a specific process to address the
development of WSN applications. Open Unified Process is an
iterative software development process that is intended to be
minimal, complete, and extensible, and because of these features it
is a good candidate for WSN application development. However,
OpenUP does not support the challenges and requirements of
WSN systems, because it does not have specific tasks that consider
such requirements. Then, in order to address this lack of support,
this paper proposes a prototype discipline that can be integrated
into software development process for WSN applications.

Keywords–Software Engineering; Prototype Discipline; Discrete
Simulation.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are used in envi-
ronmental monitoring, surveillance of installations or areas,
such as, home, border, or building, object tracking, precision
agriculture, bridge monitoring, hospital monitoring, and herd
monitoring. WSNs are composed of nodes that have capability
to sense and communicate over-the-air to each other. The nodes
have also processing capability and local storage. In order
to deliver the collected data to a base station in a multi-hop
scenario, nodes transmit data using ad hoc communication. The
nodes have the capability to create the wireless interconnection
network, which is needed to delivery the data.

The number of nodes of WSNs can change from a few
nodes to hundreds of thousand nodes. And they can be
static or mobile. In order to aggregate all the aforementioned
characteristics, the node platform has some drawbacks, e.g.,
short communication range, low bandwidth, small memory,
and limited battery. These drawbacks are restrictions that are
inherent to any WSN application.

The feasibility of WSN is highly dependent on application
requirements mainly due to the restrictions aforementioned.
Even when the application has similar requirements to other

Thanks to CAPES process nr. 6804-14-4.

previously deployed application, a complete application ver-
ification and validation must be performed again in the new
environment. The main cause is that the behavior of a WSN
can differ from the other previously known application, and
the target environment can be different.

The development of WSN applications is challenging and
demands a peculiar effort. The difficulties include requirements
satisfaction, gap between model and implementation, specific
hardware platform, system validation, verification, testing [1]
[2]. Then, during the WSN application development the team
members inform the project management about some con-
cerns related to prototyping. For example, hardware test and
approval, application test, and third-party system integration
evaluation are related to prototyping. So, we argue that one
should consider the use of specific software development pro-
cess to improve the development organization, deal with such
concerns, and to enable a better project management. When the
organization uses a process for software development, it can
have the opportunity to reproduce the process in the following
projects and to enhance it with the feedback of the previous
team. Software development process [3] is a set of activities
whose goal is the development or evolution of software. An
example of software development process is Open Unified
Process (OpenUP) [4].

OpenUP is an open iterative software development process
that is intended to be minimal, complete, and extensible [5].
It can be used to develop software of different purposes, from
small and embedded to desktop enterprise application. For ex-
ample, some WSNs projects are Aquila Tower Monitoring [6],
and Aqua WSN [7]. Nevertheless, OpenUP does not address
the specific requirements for development of WSN systems.
Thus, it is difficult to achieve a predictable system behavior
that complies with the WSN application requirements.

There are some studies reporting the extension and in-
tegration of OpenUP, such as [5] for specifying capacity
requirements, and [8] for security. Yet complex products,
such as WSN, need special handling of requirements as
well. However, there is a lack of definition in the existing
software development process to address the development of a
WSN application project. The main reason why development

316Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 338 / 679

processes do not fit to WSN development is the inability to
meet important requirements of WSN satisfactorily and they
do not provide a way to manage activities that are needed
through the development, such as, simulation and prototyping
activities.

In addition, other characteristics that need to be addressed
during the development process of the WSN applications are
the data integration with third party systems, employment
of verification techniques, and different viewpoints used for
analysis. Yet, due to the development characteristics of WSN
systems, it is important to aid the development team with a
disciplined way to perform their tasks, including prototyping
activities.

This paper is organized as follows. Section II investigates
some related works. Section III introduces the Prototype
Disciplines that can be integrated into software development
process for WSN applications. Section IV presents details of
work products integration from the Prototype discipline to the
OpenUP development process. Section V illustrates the use of
proposed discipline. Finally, Section VII concludes this paper.

II. RELATED WORK

There are several studies reporting processes for software
development in constrained environments [9] [10] [11] [12].
However, there is not a specific process to address the devel-
opment of WSN applications. Developers should be aware of
restrictions such as limited storage, battery consumption, low
accuracy sensor, and short transmission range. WSN are highly
dependent on application requirements, then one application is
hardly equal to another.

Carvalho et al. [9] conducted a comparative investigation
between applications of two software development processes:
Scrum[13] and Rational Unified Process [14]. The authors
concluded that it is necessary high effort in the traditional
method compared to the agile software development.

According to Marincic et al. [10], when the next generation
of a system is designed, the new system will have common
elements with its previous version. Then, the authors propose a
framework for identifying the non-formal elements of knowl-
edge which can support modelling of the next system gener-
ation. The authors presented the application their framework
modelling mechanical parts of a paper-inserting machine on
an action research case.

The development process proposed by Nosseir et al. [11],
called Mobile Development Process Spiral, is a usability driven
model designed to integrate usability into existing application
development processes. It also recommends usability tech-
niques for assessing mobile applications. The proposed method
aims identifying a set of usability techniques and incorporating
these techniques into each iteration to assess the mobile
applications.

According to Berrani [12] WSN specification is a complex
task due to their embedded and distributed nature as well as the
strong interaction between their hardware and software parts.
In order to improve the verification of the WSN properties the
authors propose an approach called Model Driven Architecture
(MDA). This approach aims to promote the reusability and
improve the development process. The authors mentioned that

their approach promoted the reusability of modeled compo-
nents and it also facilited the modeling task decreasing relative
costs.

III. PROTOTYPING DISCIPLINE

The use of prototypes during project development helps to
improve the knowledge about the system, the network, and the
nodes. In this research a prototype has at least one real node
and the working code is deployable to the node’s hardware.
The scope of discipline is restricted to software prototypes.
Then the prototype discipline can be used at any process phase
of the OpenUP.

The prototyping discipline considers specific tasks to build
a prototype during the software development process for WSN
application. The workflow is depicted in Figure 1. The work-
flow begins by defining the objective for the prototype study,
it drives all the further decisions. After that, a specification
regarding the prototype requirements is elaborated. Afterwards,
the prototype design based on information from previous
activities performed can be started. Then, in parallel, the devel-
opment and the calibration activities are performed, followed
by the test activity, which verifies if the code complies with the
objectives. So, the code is compiled and deployed in the nodes
to perform the experiments which can begin. After running the
experiments, the results are evaluated and depending on them
it might be needed a code review and new experiments or it
proceeds to document the generated results. In the remainder
of this section details of each activity of this discipline are
given.

Figure 1. Workflow for prototype discipline

A. Define Objectives

This activity defines which is the objective for the proto-
type discipline. The prototyping model used to perform this
discipline relies directly on the chosen objective. For example,
one can create a prototype only to test the sensors and after the
study has finished, the prototype is not needed any longer. This
activity is performed by Prototype Analyst and the main output
work product is the Prototyping Objectives. This activity has
two tasks: Define Objectives, and Plan Prototyping. The first
task aims to define the overall prototyping objective and
the second one aims to plan the prototyping activities. The
Prototyping Plan is used as an input work product of the design
task performed later.

317Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 339 / 679

B. Define Requirements

After the objectives are defined, the definition of the
prototype requirements is produced. The requirements drive
the prototype development. It is performed by the Prototype
Analyst. This activity produces the Prototype Requirements
Specification work product.

C. Design Prototype

This activity consists of describing the blueprints that guide
the development. Some information in this activity describes,
for example, the detailed communication model, topology to
be followed, which programming approach to be used and
a detailed software architecture, and even the base station
behavior if it is applied for the study. This activity is performed
by the Prototype Analyst role and he can be assisted by
the Prototype Developer role. The Software Specification,
Protocols Definition, and Base Station Behavior Description
are the main output work products of this activity.

D. Develop Prototype

In this activity, the code is implemented. This activity is
performed by the Prototype Developer role and it produces
the Code that is compiled and deployed to the real nodes.
In addition, the Prototype Developer needs to deal with the
WSN restrictions during the coding tasks. He/She also needs to
deal with the specified middleware, OS, and hardware platform
details. The role has to manage the code size, because of the
memory size available in the hardware platform. It is expected
that this activity demands a considerable effort. Finally, in
order to assist the coding, one can use the simulation model
for, if it is applied, developing the WSN application.

E. Calibrate Sensors

This activity is performed by the Phenomenon Specialist
and he can be assisted by the Prototype Developer. It consists
of verifying the values of the prototype and then calibrates it
closer to the real values as possible. So, during the experiments
the values obtained from the prototype are more reliable. This
activity has the Sensor Calibrated as an outcome.

F. Test Prototype

Tests are performed in order to verify if the code complies
with the prototyping objectives of the current iteration and if
there is no error in the code. This activity is performed by
the Prototype Tester and it is expected as results the Test Log
work product. The Test Log contains the results of performed
tests and if some test fails the process resumes back in the
Development activity otherwise it proceeds to Deploy the Code
activity.

G. Review Code

The Review Code activity is only performed if the ex-
periment results do not fulfill the prototype objectives and
requirements. It consists of performing a review of the code
deployed after running the experiments and assess its results.
The Prototype Developer does the solicited changes in Code
Review task and then the Prototype Tester performs again the
tests in the code reviewed. The process resumes in the Deploy
Code activity only when the complete review is finished.

H. Deploy Code

Deploy the code in the nodes is an activity performed
by the Prototype Developer. It is performed using the tools
available from the chosen OS. In some cases, it can be made
via over-the-air communication, but commonly the node is
plugged to the development station and then the binary code
is deployed to the connected node through the cable. The
outcome from this activity is Prototype Nodes with Code
loaded. The task Deploy is performed with the nodes that are
considered for the experiment.

I. Run Experiments

This activity is executed by the Prototype Developer with
the aid of the Prototype Analyst. Run Experiments activity aims
to obtain the experiments results that are used in the Assess
the Results activity in order to evaluate the current study. The
main output work product is the Experiment Results.

J. Assess Results

After the experiments results are available, further analysis
are performed. The Prototype Analyst role is responsible for
performing the analysis and he can have assistance from the
Phenomenon Specialist role. The analysis can be made using
statistics techniques and tools. In addition, the activity provides
information, via its main output work product Experiment
Results Evaluated, to make a decision if the experiments results
satisfy the prototype’s objective. If the results do not fulfill the
objective then the process resumes in the Code Review activity.
Otherwise, the next activity is the Documentation activity.

K. Document Prototype

This activity consists of evaluating the results provided by
the Assess Results activity. The Prototype Report is generated.
In this report some information is available, such as solicitation
for requirements, parameter, and sensors review, or it can
provide information how close the prototype is to reach the
quality of the final system. The report can have also decisions
resulting from the experiments evaluated regarding the pro-
totyping objectives. The Prototype Analyst role performs the
Documentation task.

IV. INTEGRATION WITH OPENUP

During the development process, the team members inform
the project management some concerns that include: further
requirement analysis, debugging results, communication analy-
sis, system performance analysis, design evaluation, scalability
validation, hardware test and approval, application test, third-
party system integration evaluation, requirements refinement,
and training results. Some concerns of hardware test and
approval, application test, third-party system integration eval-
uation, requirements refinement are related to prototyping.
The concerns are reported to project management and then
a decision regarding of which approach is used in sequence is
taken.

The project team performs an assessment of the raised
concerns and then the related information is updated to the
following work products: Iteration Plan, Project Plan, System
Wide Requirements. These work products are the main inputs

318Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 340 / 679

to start the prototyping iteration. After the selected iteration is
executed, it provides a report with the answers and recommen-
dations to the project. The prototyping discipline provides the
Prototype Report. It is important to mention that this report is
not the only work product outputs, the iteration also generates
other work products of interest, for example, a validated model,
experiments results assessed, and application code evaluated.

Table I presents details of work products integration from
the Prototype discipline to the OpenUP development process.
Table I also describes how the work product is used by the
proposed disciplines: as input or as output. It indicates which
tasks use the work product as input and which tasks produce
the work product.

TABLE I. Work products interaction of Prototyping Discipline

Work Product Type Task that produces Task that uses
(WP) the WP the WP
Iteration Plan Input Plan Iteration/ Define Objectives

Manage Iteration
Project Plan Input Plan Project Define Objectives/

Plan Prototyping
Vision Input Develop Technical Requirements

Vision Specification/
Define Objectives

Input Identify and
System-Wide Outline Requirements/ Requirements
Requirements Detail System-Wide Specification

Requirements
Middleware Output Design Prototype Implement
Definition Solution
Protocols Output Design Prototype Implement
Definition Solution
Message Output Design Prototype Implement
Behavior Solution
Description
Software Output Design Prototype Implement
Specification Solution
Base Station Output Design Prototype Implement
Behavior Solution
Description
Code Output Prototype Building Implement

Solution
Test Case Input Create Test Cases Test
Prototype Report Output Documentation Assess Results/

Detail System
Requirements

The following comments are related to the tasks that use
the work products of the Table I. The Define Objectives,
Plan Prototyping, and Requirements Specification tasks use
the Vision, Iteration Plan, Project Plan, and System-wide
Requirements work products that provide essential information
to perform the tasks. The Implement Solution task is performed
after the Inception phase is executed. It uses the following
work products: Middleware Definition, Protocols Definition,
Message Behavior Description, Software Specification, Base
Station Behavior Description, and Code. The next work prod-
uct, Test Case, is used in Test task. The input work product
is the Test Case - it has the specification of a set of test
inputs, execution conditions, and expected results related to
some scenario. The work product Prototype Report is the
most useful to the development process because it provides
a feedback of the prototype iteration to the Assess Results task
and the Detail System-Wide Requirements task. For example,

the Prototype Report contents are details about the network
protocol performance, and if the employed network protocol
complies with the application requirements.

Therefore, if the integration requirements are satisfied,
e.g., the process analyst can map all input and output work
products, then our proposed extension could be integrated to
other software development process. Thus, it can be used for
development of WSN applications as needed.

A. Publishing

In this paper, Prototyping Discipline is described using the
Eclipse Process Framework (EPF) – version 1.5.1. EPF enables
the process manager/analyst to update all components of the
process in use and also enables to publish the desired process.
The process can be available directly inside the tool or it can
be published for web access. The availability inside the EPF
helps the process analyst to preview the web site structure
before publishing it. For authoring, the EPF has available a
perspective which provides the necessary set of solutions for
method composing.

If the organization needs to provide access via web, then
the process analyst just needs to generate the web pages, and
then they can be published, for example, in the intranet of the
organization or in the public web site. So, the published web
pages are available via the web browser. For example, Figures
2 and 3 depict our proposed extensions available using the web
browser.

Figure 2. Consulting the extension via web browser

V. CASE STUDY

This section aims to illustrate the use of prototype disci-
pline for the software development process for WSN applica-
tion. The case study is about monitoring a cellar used to age
Brazilian sugar cane spirits. A description of the application,
some requirements, and the achieved results are given.

A. Description

The sugar cane spirits (Cachaça) is a genuine Brazilian
drink, known worldwide. Its production began in the sixteenth
century. According to Brazilian laws, which standardize and
rank drinks, cachaça is defined as a typical beverage produced

319Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 341 / 679

Figure 3. Consulting the prototyping workflow via web browser

in Brazil, with an alcoholic strength of 38 % vol (thirty-
eight percent by volume) to 48 % vol (forty-eight percent by
volume) at a temperature of 20o C (twenty degrees Celsius).
It is obtained by distilling the fermented juice of sugar cane
with peculiar sensory features.

The production cycle of sugar cane spirits starts with the
milling of sugar cane, through the preparation of the wort,
fermentation, distillation, filtration and dilution. After filtering
and resting, the sugar cane spirits can be bottled or stored in
wooden barrels for aging.

The longer the aging of the sugar cane spirits, the higher is
the value of the drink. In the aging process, the characteristics
of the sugar cane spirits change, improving their qualities with
new flavors, new tastes and new coloring.

B. User Environment

The main environment place is a cellar for aging drinks.
The tasks related with the application in the environment
are: deployment task, monitoring task, maintenance task. The
considered platform is TelosB. TelosB is a WSN platform
with a TI-MSP430 micro controller, 128 kbytes of memory,
supported by TinyOS and ContikiOS, and it has a light,
temperature, and humidity sensor. The maintenance task occurs
only once a year. The monitoring task must inform the control
station when the cellar is out of its environmental specification.
So, in order to keep the cellar with the appropriate condition, a
notification must be delivered. The previous notification occurs
when the cellar environment reaches a critical temperature
or humidity, close to the upper or lower bounds. Another
notification must be sent if the cellar is out of its upper or
lower bound for any given environment condition. The control
station must store all the received events.

C. Functional Requirements

The sugar cane spirits age in a cellar with dimension of
8 meters wide per 80 meters long and 5 meters high. The
cellar can store 800 barrels with capacity of 250 liters each
or 200,000 liters in total. The barrel dimensions are 95 cm of
height, 72 cm of diameter at middle, and 58 cm of diameter at
top/bottom. During the aging time (from 1 year up to 5 years)
the temperature must be within the range of 15o C (fifteen

degrees Celsius) to 20o C (twenty degrees Celsius) and the air
relative humidity must be from 70% to 90%. Figure 4 shows
the arrangement of barrels in the cellar and the circles represent
the nodes’ positions.

Figure 4. Cellar illustration with the barrels and the position of the nodes

In WSN application, the nodes must be able to set upper
and lower bounds for the environmental variables (temperature
and humidity). If the sensed value gets closer to the bounds,
the node must send a message to the control station. It only
stops sending the message when the control station notifies
that the message was received. The node sends the message
again at a 5 time intervals. Nodes should be able to connect to
the network and it must be able to perform the following activ-
ities: sensing, routing, disseminating, aggregating. A threshold
should be in two levels, either for upper and lower bounds,
one soft threshold 10% lower than the hard threshold. All the
parameters must be changeable and be retrievable through the
control station. At least, once a day, the node must inform its
sensing values to the sink node. All information received in
the sink node is retransmitted it to the control station. When
all nodes send the alarm message to the control station, they
indicate their battery levels. The nodes are deployed one meter
above the barrels and two meters from each other in the same
row.

The Control Station communicates to the network via the
node sink, i.e., it is directly connected to the sink node. It
must also indicate the battery level of all nodes that perform
any communication with it. Additionally, it must indicate the
upper and lower threshold used by each node. The Control
Station must be able to set a parameter of a single node or the
whole network, and it must indicate all alarms received and
notify back to the source node.

VI. RESULTS

The case study was performed by only one person. He
performed all the roles. During the execution of one simulation
study, the time needed to execute each activity was measured.
The whole simulation discipline was completed in fourteen
days, including weekends and the prototype discipline was
performed in 21 days.

Figure 5 depictes the relative time spent for each activity.
The activities with zero time were not executed. And before,
after, and between the execution of the proposed discipline,
an Inception iteration from OpenUP is executed. Then, the
iteration executions are Inception, Simulation, Inception, Pro-
totyping, and Inception.

320Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 342 / 679

Figure 5. Relative time to perform each activity

After the entire process execution, the results are compiled
and they show as expected. In each experiment, we changed
different MAC protocol parameters, such as, duty cycle, lis-
tening interval, and transmission power.

Furthermore, the activities that demanded more effort to
complete in the prototype discipline was the Development
followed by Design Prototype and then by Assess Results. The
longest activity is Run Experiments that took more than eight
days to complete.

Using this discipline to perform the prototyping aided the
developer to organize the work and to be more objective in
each step of the process.

VII. CONCLUSION

This paper presented an extension for OpenUP. The pur-
pose of this paper is to introduce the discipline Prototyping
for developing WSN applications. The prototyping discipline
was created in order to improve the knowledge about the
system as well as to refine information about the system.
This paper detailed the discipline and described the discipline
activities. In addition, there is a description about how this
discipline integrate with OpenUP and we argue that if the
process analyst maps all input and output work products in a
new software development process then the discipline can be
used in that software development process. The EPF publishes
the discipline by making available via web.

REFERENCES

[1] A. Hasler, I. Talzi, J. Beutel, C. Tschudin, and S. Gruber, “Wireless
sensor networks in permafrost research: Concept, requirements,
implementation, and challenges,” in Proceedings... International
Conference on Permafrost (NICOP), 2008, pp. 669–674.

[2] A. Lédeczi, P. Völgyesi, M. Maróti, G. Simon, G. Balogh, A. Nádas,
B. Kusy, S. Dóra, and G. Pap, “Multiple simultaneous acoustic source
localization in urban terrain,” in Proceedings..., International
Symposium on Information Processing in Sensor Networks.
Piscataway, NJ, USA: IEEE Press, 2005, p. 69.

[3] I. Sommerville, Software Engineering, 7th ed. Addison-Wesley,
2004.

[4] IBM, “Openup,” 2009.

[5] A. Borg, K. Sandahl, and M. Patel, “Extending the openup/basic
requirements discipline to specify capacity requirements,” in
Proceedings..., IEEE International Conference on Requirements
Engineering. Los Alamitos, CA, USA: IEEE Computer Society,
2007, pp. 328–333.

[6] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna,
M. Corra, M. Pozzi, D. Zonta, and P. Zanon, “Monitoring heritage
buildings with wireless sensor networks: The torre aquila
deployment,” in Proceedings..., International Conference on
Information Processing in Sensor Networks. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 277–288.

[7] H. Ntareme, M. Zarifi, A. Ergawy, S. Rathore, K. Wang, and
A. Strikos, “Aqua wireless sensor networks,” January 2008. [Online].
Available: http://www.online.kth.se/csd/projects/0726/

[8] S. Ardi and N. Shahmehri, “Integrating a security plug-in with the
openup/basic development process,” in Proceedings..., International
Conference on Availability, Reliability and Security. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 284–291. [Online].
Available: http://portal.acm.org/citation.cfm?id=1371602.1371921

[9] S. Carvalho, F. Motta Cardoso, A. Da Cunha, and L. Zanetti, “A
comparative research between scrum and rup using real time
embedded software development,” in Information Technology: New
Generations (ITNG), 2013 Tenth International Conference on, April
2013, pp. 734–735.

[10] J. Marincic, A. Mader, R. Wieringa, and Y. Lucas, “Reusing
knowledge in embedded systems modelling,” Expert Systems, vol. 30,
no. 3, 2013, pp. 185–199. [Online]. Available:
http://dx.doi.org/10.1111/j.1468-0394.2012.00631.x

[11] A. Nosseir, D. Flood, R. Harrison, and O. Ibrahim, “Mobile
development process spiral,” in Computer Engineering Systems
(ICCES), 2012 Seventh International Conference on, Nov 2012, pp.
281–286.

[12] S. Berrani, A. Hammad, and H. Mountassir, “Mapping sysml to
modelica to validate wireless sensor networks non-functional
requirements,” in Programming and Systems (ISPS), 2013 11th
International Symposium on, April 2013, pp. 177–186.

[13] K. Beck and C. Andres, Extreme programming explained. Embrace
change. Addison–Wesley Boston, 2005, vol. 2.

[14] P. Kruchten, The Rational Unified Process: An Introduction, 3rd ed.
Addison Wesley, 2003.

321Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 343 / 679

Easily Evolving Software Using Normalized System Theory
A Case Study

Gilles Oorts, Kamiel Ahmadpour, Herwig Mannaert and Jan Verelst
Normalized Systems Institute (NSI)

University of Antwerp
Antwerp, Belgium

{gilles.oorts,kamiel.ahmadpour,herwig.mannaert,jan.verelst}@uantwerp.be

Arco Oost
Normalized Systems eXpanders factory (NSX)

Antwerp, Belgium
{arco.oost}@nsx.normalizedsystems.org

Abstract—Software agility is characterized by inevitable software
changes and ever-increasing software complexity. Unless change
accommodations are rigorously taken into account, the imple-
mentation of these changes may lead to exorbitant costs. This is
in particular true for long-lived systems. For such systems, there
is a need to explicitly address evolvability concerns during their
design phase. This to carry out software evolution efficiently and
reliably during their lifecycle, and prolong the productive life of
the software systems. Normalized Systems (NS) theory has been
recently proposed as an approach to develop agile and evolvable
software. In this paper we discuss the practical advantages of
the NS approach using a case study regarding the revision of a
budget management application. Furthermore, advantages such
as knowledge transfer through the NS development process are
also discussed in this paper.

Keywords–Normalized Systems theory; Evolvable Software;
Adaptive Software; Agile Software; Case Study

I. INTRODUCTION

In ever-increasing volatile environments, evolvability is
considered as one of the most important characteristics of
information systems. As information systems support the op-
erations and decision-making of organizations, software ap-
plications also need to support the changes on the business-
side of organizations. However, organizations normally find
it difficult to synchronize changing requirements needs with
their software applications. This is because the current software
development paradigms do not fully take into account the
changeability of business needs over the life cycle of software
systems. This problem is also characterized by the Law of
Increasing Complexity as proposed by Lehman, which states
that the structure of software tends to become more and more
complex over time because of changes made to the software
[1]. Furthermore, software applications are traditionally built
to last several years -or even decades- in order to justify (high)
development costs. With regard to changing business require-
ments, this often leads to decisions to either not implement the
changes because they are too expensive, or to eventually (after
several years or decades) totally scrap the application and start
the development of a new “up-to-date” application.

Recently, Normalized Systems (NS) theory has been pro-
posed as a way to deal with ever-changing requirements for
software by building evolvable information systems, based
on the systems theoretic concept of stability [2]. As recent
research shows, these systems are capable of incorporating
changes more easily and with less effort by means of a careful
design of the software architecture [3], [4]. Therefore, changes

can be made immediately and the life cycle of software
applications is greatly extended, up to a point that they can be
used and revised infinitely. In this paper we will discuss how
changing business requirements can be easily implemented
into an application developed according to the NS theory. This
will be illustrated by means of a case regarding the revision
of a budget management application. The initial development
of this budget application is described in [4], which focused
on illustrating the NS development methodology used in
developing the application. In this paper we provide a clear
understanding of the NS advantages in dealing with changes
to this initial application by comparing both versions of the
software, the scope of changes and the amount of time and
effort spend on implementing all the updates in the new
version. As the case description requires an understanding of
the NS theory, a brief review of the NS theory is provided in
Section II. For a more thorough description of the NS theory,
we refer to a wide number of previous works (for example, [2],
[3], [5]). In Section III, we will first provide a short description
of the initial software application, followed by the changed
business requirements. How these changes were implemented
according to the NS theory is discussed in Section IV. In
Section V, we will discuss the advantages of NS development,
some observations, and contributions of the paper. We end the
paper with a brief conclusion regarding this paper in Section
VI.

II. NORMALIZED SYSTEMS THEORY

NS theory is concerned with how information systems
can be deterministically designed and developed based on
the systems theoretic concept of stability. According to NS,
the main obstacle to evolvability is the existence of so-called
combinatorial effects. In this condition, the amount of effort
to make a specific change in the system is not only related
to the change but also to the size of the system. Therefore
the effort to apply a specific change increases as the system
grows [2]. According to the systems theory, stability refers
to a system in which a bounded input function results in
bounded output values, even as t → ∞ (with t representing
time). When applied to information systems, this means that
applying a specific change to the information system should
always require the same effort [3]. According to NS theory,
the avoidance of all combinatorial effects in software leads to
evolvable software, as this means ripple effects of changes do
not increase over time and, as such, with the size of the system.
To eliminate combinatorial effects, NS theory proposes a set
of four theorems and five elements that can be expanded into

322Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 344 / 679

fully functional applications through pattern expansion. This
set of theorems and elements are the foundation of NS theory,
and will be discussed in the next sections.

A. NS Theorems

• Separation of Concerns (SoC), requiring that each change
driver (concern) has to be separated from other concerns.
This theorem allows us to isolate the impact of each
change in its own entity;

• Data Version Transparency (DVT), requiring that data
entities can be modified (e.g., additional data can be sent
between components), without having an impact on other
entities;

• Action Version Transparency (AVT), refers to a condition
in which an action entity can be upgraded without im-
pacting the calling components;

• Separation of States (SoS), implies that actions or steps
in a workflow are separated from each other in time by
keeping a state after every action or step.

These are just brief definitions of the NS theorems, as these
have previously been extensively discussed in other work (e.g.,
[2], [3], [5]). It has to be mentioned that none of these theorems
are completely new, and even relate to heuristic knowledge of
developers [5], [6]. However, formulating this knowledge as
theorems aimed at identifying combinatorial effects will help
to build information systems that contain a minimal number of
combinatorial effects. Only when the design of an application
completely adheres to the NS theorems, one can profit from
the software evolvabilty that the NS theory offers.

B. Normalized Systems Elements

As the systematic application of the NS theorems results
in a very fine-grained modular structure, NS theory proposes
to build information systems based on the aggregation of
instantiations of five higher-level software patterns or elements,
being:

• a data element, representing an encapsulated data con-
struct with its get- and set-methodss to provide access
to its information in a data version transparent way.
Cross-cutting concerns (for instance access control and
persistency) are considered to be a part of the data
element;

• an action element, containing a core action representing
a single change driver or functional task;

• a workflow element, containing the sequence in which a
number of action elements should be executed in order to
fulfill a flow;

• a trigger element, controlling the states (both regular and
error states) and checking whether an action element has
to be triggered accordingly;

• a connector element, ensuring external systems are able
to interact with the NS system without allowing elements
to be called in a stateless way.

The above mentioned NS elements are the essential build-
ing blocks for a NS application and provide the core func-
tionality of an information system. They can then be easily
extended later (cf., description of extensions in Section IV).
A functional analyst will formulate instantiations of the NS

elements that are the foundations of a NS application [4].
At run time, these instances are instantiated once more (i.e.,
constitute a double instantiation) to form specific occurrences
of, for example, a budget [4].

The NS elements have been described more extensively
in [2], [3], [5] and the implementation of a data element
in a Java Enterprise Edition (JEE) has been described in a
previous work [5]. The definition and identification of the NS
elements is based on the implications of the set of NS theorems
[7]. For example, the definition of the workflow element is
based on the Separation of Concerns (SoC) and Separation
of States (SoS) theorems. In a workflow element, we can
invoke action elements in a completely stateful manner and as
mentioned earlier, keeping track of every action’s state, leads
to Separation of States (SoS). Similarly, each of the five NS
elements constitutes one possible solution for implementing all
four NS theorems, thus eliminating all combinatorial effects.

Each of these five elements provides a general reusable
solution to a commonly occurring problem within a given
context. Therefore, they can be considered as a design pattern,
containing a core construct and several cross-cutting concerns
(such as remote access, logging, access control, etc.). This
architecture provides protection from combinatorial effects
while allowing for a set of anticipated changes to be applied
to a system [5]. As such, the five NS elements can be used to
build an evolvable information system that satisfy the four NS
theorems.

C. NS Pattern Expansion

The use of NS elements as design patterns is supported
by the NS pattern expansion mechanism, which enables the
conversion of NS element instances defined by the developer
into fully functional code. Without using such expanders, it
would be near to impossible to achieve the fined-grained
modular structure prescribed by the NS theorems. Therefore
the NS expanders are considered to be an essential part of
designing an application using NS theory.

As such, pattern expansion is one of the four phases in the
NS development process [4]. First a comprehensive functional
analysis is performed to identify the NS element instances.
Coding these instantiations is the next step of this process and
it is done using some special “descriptor files”. A descriptor
file is a text or XML-based file which constitutes the input for
the NS expanders.

For example, in case of a data element instance, one needs
to provide the following parameters in the descriptor file in
order to be able to work with the expanders:

• Basic name of the data element instance: Each data
element instance needs to have a unique name which
needs to be provided in the descriptor file (e.g., Budget).
• Context information: It provides the package and compo-

nent name of the data element instance.
• Data field information: Each data element instance can

contain one or more data fields and all the information
about these data fields (such as their name and data type)
needs to be provided in the descriptor file;
• Relationships with other element instances: It is necessary

to address all the relationships of current data element
instances with other element instances.

323Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 345 / 679

In the next step, through the process of expansion, the
descriptor files get expanded into the code of a functional
application. This show how a minimum of input information
in the descriptor files can be used to transform into a fully
functional application. The NS pattern expansion is done by
software (called NS expanders) developed especially for this
purpose by the NS eXpanders factory (NSX).

The NS expanders expand the descriptor files into skeleton
source code for all the identified NS element instantiations.
Furthermore, the NS expanders also provide all deployment
and configuration files required to construct a working applica-
tion on a supported technology stack. The skeleton source code
facilitates a top-down design approach, where a functional
system with complete high-level structures is designed and
coded, and this system is then progressively expanded to fulfill
the requirements of the project. These expansions are called
NS extensions and will be discussed later in this paper. The
classes of the skeleton code represent the modular structure of
the defined NS element. For the Budget element instance, the
NS expanders will for example generate a set of classes and
data fields such as the bean class BudgetBean and its related
local and remote interfaces (BudgetLocal and BudgetRemote).

Because of the NS expansion mechanism, applying changes
to the application only requires us to provide new descriptor
files and a re-expansion of these updated files will provide a
new version of the application. This process will be shown in
the section discussing the implementation of the changes to
the application presented in the next paragraphs.

III. THE NS BUDGET MANAGEMENT APPLICATION CASE

Over the last years, several applications have been built
based on NS theory and its development methodology. The
most extensive description of this methodology can be found
in [4], in which it is discussed by using the development of a
budget management application for a local Belgian government
as an exemplar. After using this application for only one
year, both regulatory and requirements changes required the
application to be changed. As the initial application was built
according to the NS principles discussed in the previous
section, these changes could be implemented rather easily. In
the next paragraphs, we will first explain the functionality and
design of the initial application, followed by an overview of
the change requests.

A. The Initial Budget Management Application

Budget tracking and management are important aspects
within the administration of the local government. Budgets
need to be awarded, specified, managed and utilized for the
local government to function properly and fulfill its services to
the citizens. To accomplish this, the overall available budget
is divided into very fine-grained sub-budgets. This however
drastically complicates the budget assignment, reservation,
fixations, changes, etc. To cope with this complexity -and si-
multaneously realizing the much-needed integration of budget
management with project management and budget reporting- a
project was started at the end of 2012 to develop a stand-alone
application to capture the budget management functionalities.

The challenges of the budget application development are
discussed in [4]. First, the new application needed to match the

flexibly and user-friendliness of Excel pivot tables (which were
previously used). To cope with this challenge, the development
of the initial application was focused on budget management
functionalities and its user-friendliness. As will be discussed
in this paper, the initial application would, as such, be a sound
basis for further extending the application to include other
requirements such as budget reporting, simulation and project
management, etc.

The context-specific and fine-grained composition of the
budgets was another challenge of the application development.
Budgets need to be defined in a range of different levels of the
specific government. Therefore budgets can be managed on a
scale from general to highly specific. On the most fine-grained
or specific level, budgets are defined by a combination of the
following six parameters: department, activity, article, domain,
product and budget year. However, budgets can also be defined
based on a subset of these parameters, meaning budgets can
be defined on several levels.

After going through a functional analysis and NS soft-
ware development process, the final application architecture
is shown by the set of unchanged, changed and removed data
element instances in Fig. 1. This figure clearly shows how
the application is structured around a central data element
instance, being a “Budget”. A current budget is defined by
the aggregation of “Budget Changes” made to the budget over
time. The parameters that can be used to define a budget -
“Department”, “Activity”, “Article”, “Domain”, “Product” and
“Budget year” instances- are shown on the left side of Fig. 1.
These “Articles” can be grouped into “Economic groups”. In
the initial application, Economic groups make up a “Budget
estimate”. This estimate used to be utilized to draw up a target
budget at the beginning of a budget year. The data elements
instances on the right of the Budget instance in Fig. 1 are used
for managing budgets. “Budget fixations” are used secure a
part of a budget for a specific purpose. These Budget fixations
are assigned to a specific “Supplier” and can be called in
“Budget calls”, so the budgets can be partially spent when
needed. Budget calls are associated with “Invoices” and “Work
orders” to track the spending of “Budget calls”. Other aspects
of the application will be discussed in the next section, as they
are part of the changes made to the initial application.

B. Change Requests for the Application

As mentioned before, the government officials had several
change requests after having used the budget management
applications for some time. Additionally, changes in legislation
required the introduction of a “Purchase file” data instance
to enable long-term (i.e., more than one year) tracking of
purchases of departments. Thereby, this case show how an
application that was in use for only one year already needed
functional changes. This meant that a lot of software features
had to either be added, changed or removed. One developer
even expressed that one could argue the change requests were
so extensive and concerned the foundation of the application
that you could consider it as a new application. NS theory
however allows for far-reaching changes to be made to an ap-
plication, and the renewed application is therefore considered
a second version of the budget application. In the following
paragraphs, we will briefly review some of the changes that

324Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 346 / 679

have been made to the application, for which Fig. 1 can be
used as a reference.

The first significant change was the addition of a project
management functionality to the application. Because the NS
methodology was used, this functionality could be left out in
the initial application to be easily added later on. The project
management functionality that needed to be added involved
project monitoring through observation of the state of work
orders. These work orders get initiated in the system for
specific tasks and are linked to the budget fixation they belong
to. When an invoice is received for a work order, the invoice
lines are linked to specific work order lines. To fully implement
the new project management functionality, new data element
instances for “Consultant” and “Profile” needed to be added
as well.

Another change request was the extension of invoice man-
agement. Invoices were made more detailed by adding a data
element instance “Invoice line” and by linking invoices directly
to the budget fixation they belong to. Previously invoices were
defined on three levels: for fixations, budget calls and work
orders. For simplification and centralization reasons, this was
reduced to only one level in the revised application.

The third major change in the new application is the
inclusion of purchase orders. These orders needed to be added
to the application as the purchasing department needed to be
able to control purchases according to the granted budgets.
Additionally, a element instance for “Purchase File” was added
to hold all the information on specific purchase orders.

Furthermore, it was made possible to further specify an
activity by adding the data element instances “Action plan”,
“Policy domain” and “Management domain”. And as budget
estimates were not used in the application, the corresponding
element instance was removed.

These changes show that only the fundamental functional-
ity of the application stayed unchanged in the new version (i.e.,
the budget, budget change and budget-defining data element
instances). With the exception of four element instances, all
initial element instances needed to be “touched” and several
element instances needed to be added to provide the requested
functionality changes.

IV. IMPLEMENTATION OF THE CHANGES

As the goal of NS theory is to design software in an evolv-
able way, it should be no surprise that the change requests dis-
cussed in the previous section could be implemented quickly
and easily by just a single developer. By taking evolvability
of software into account at design time, NS applications can
effortlessly be extended through the descriptor files and the
expansion mechanism.

In the descriptor files of the NS element instances, one can
for instance easily change the data model of an application
(i.e., the relationships between element instances). For exam-
ple, although the “Work order” and “Invoice” retained the same
name in the second version of the budget application, their def-
inition and position in the data model changed completely (cf.
previous section). The changes could however be applied by
simply re-defining the relationships of these element instances
and the instances they are linked with in their descriptor files.

Similarly, adding or removing NS element instances from
an application can also be done by just writing or removing
descriptor files for these instances. The “Work order Line”,
“Invoice Line” and “Consultant” element instances for exam-
ple could be added to the application by creating new de-
scriptor files containing information such as their description,
relationships, etc. Additionally, relationships to these new in-
stances need to be added in existing element instances that are
coupled with the new element instances. As these changes can
be done rather easily, implementing all the required changes
to the descriptor files of the budget application took less than
1 man-day.

Although the NS expansion process delivers a fully work-
ing application that includes all defined NS element instances,
the functionalities of the application most likely still need to be
extended to provide context-specific functionality. This is done
through manually programming customizations, either within
anchor points in the expanded files (called “injections”) or in
separate files (called “extensions”). The additional function-
ality added to the budget application needed two important
extensions and/or injections.

As the budget application is very data-intensive (i.e., it
exists of only NS data element instances), a lot of data
validations needed to be implemented in the application. For
example, budget calls can not exceed the available budget,
budgets need to be unique, etc. Implementing these validations
took 3 man-days.

The second important type of extensions that needed to be
implemented were graphical extensions. These included col-
ored status boxes, projections and HTML screens to implement
these projections. Projections are views that can be defined on
NS data element instances that show data in a specific way.
These projections need to be defined so information can be
projected to the end user in the most useful way in specific
use cases. For example, when a user is looking up information
on a specific budget, this screen also needs to display overall
information on all budget calls made on this budget. From this
overall information, the user can then select a budget call to
get more information on. It however does not need to show
detailed information on all budget calls in the budget screen,
as this would lead to an information overload on this screen.
Furthermore, different projections can be defined depending
on user roles. For the 25 end users of the budget application,
several roles are defined in the application (e.g., super user,
administrator, manager, employee). As such, managers or
members of a specific department can be shown more detailed
information than regular employees. Implementing the custom
graphical elements for the second version of the application
took 5 man-days in total, of which the projections took 3 days
to implement.

V. DISCUSSION

From the description of the case in the previous section,
one can make several observations.

First off all, the benefit of reduced effort of changing
NS applications seems to come at an extra cost or effort at
design time of the application. However, the additional effort
to design in an evolvable way is negligible. Previous research
has shown that the NS expansion process is very efficient

325Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 347 / 679

Article

Economic group Budget estimate

Budget fixation

Budget call

Domain

Product

Budget

Activity

Work order

Invoice

Department

Budget year

Budget change

Supplier

InvoiceLine

Action plan Management domainPolicy domain

Work order Line Project Management

Consultant Profile

Budget fixation Detail

Purchase order

Purchase File

Key:

Unchanged data element instance

Changed data element instance

Added data element instance

Removed data element instance

Figure 1. Entity Relationship Diagram Showing the Architecture and Changes to the Budget Application

and fast and even provides a way of developing software
faster than traditional development methodologies [4]. This
is because the developer does not need to concern himself
with the software architecture or boilerplate code once the
NS element instances are defined in descriptor files. The only
prerequisite is that additional knowledge on the NS theorems,
elements and expanders is required for developers to be able
to develop software that is fully according to NS theory.

Once an application has been built according to NS princi-
ples, the case description also shows it can be easily changed.
The total development time of the thorough changes to the
budget application was only about 9 man-days. According to
the developer, the entire job was very clear to him. And he
reckoned the amount of effort he had to spent on re-developing
the application was much less than something they normally
do when an application is not designed based on NS theory.

A third observation is that because the rapid development
of the new versions of an application, issues that are other-
wise proportionally irrelevant, can become even more time-
consuming than the development itself. For the revision of the
budget application, there was a lot of effort needed to convert
and input the old Excel-data in the new application. This is
because of missing data, inconsistencies, wrong data formats,
etc. Overall this even took more effort than developing the new
version of the application.

A. Knowledge transfer

NS development also incorporates knowledge management
processes that support capturing, storing, transferring and
applying development knowledge. How this works is discussed
in [7], based on the widely used theoretical framework of
[8]. Basically, knowledge is captured and transferred through

326Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 348 / 679

the use of NS expansion, as this process provides a way to
incorporate new insights obtained from practical application of
the theory into the NS knowledge base (i.e., the NS expanders).
Captured knowledge can be newly normalized features in the
NS elements that can be re-used in future applications, new
general reflections on building Normalized software, etc. This
way, newly normalized features can simply be provided to new
applications through NS expansion and they do not need to be
manually added after expansion. As such, any new version
of the NS expanders can as well be used to re-expand older
applications to provide additional functionality, graphical and
more user-friendly enhancements, etc.

During the development of the revised budget application,
several insights gained from previous NS projects could be
used, including the initial development of the budget manage-
ment application. One example of functionality that could be
added more easily in the application revision are composite
screens. These advanced screens provide an overview of data
on different levels. They show for example the budget of
a department, and by selecting an activity, domain, article,
etc., one can drill down to a specific budget on the same
screen. Before the start of the initial budget application,
implementing such screen would take about 600 lines of code
in manually programmed extensions. By incorporating some
of the functionality of composite screens in the NS expanders,
this was reduced to about 60 lines of manual code during the
development of the initial budget application. In this revision
of the application the effort needed was even further reduced
to about 5 to 10 lines of code for each layer in a composite
screen. The development of the revised budget application also
lead to the addition of new knowledge to the NS expanders.
The idea of projections (cf., previous section) that only show
relevant information on a NS data element instance (e.g., when
in a list of departments, one is only interested in total budget
of the departments) is very useful in a large array of contexts
and applications. Therefore they were added to the expanders
after completion of the project.

B. Contributions and future research

This paper has several contributions. First, it shows the
advantages of building software according to the NS design
theory. These advantages can normally only be observed over
long periods of time, when systems are required to evolve or
be adapted. The case description in this paper however already
shows for the first time how fundamental changes can be made
to an application without excessive implementation effort (e.g.,
implemented by only one developer over a very limited amount
of development days). Furthermore, the absence of combina-
torial effects in NS applications will also make sure that the
effort of implementing changes does not increase over time,
as the application becomes larger and more complex. Second,
the case description shows how the NS development process

(discussed in detail in [4]) also supports the implementation
of changes to an application by using the descriptor files and
NS expanders.

Possibilities for future research include additional case
studies to provide more information on how the NS theory
realizes profound progress with regard to the evolvabilty of
software.

VI. CONCLUSION

In this paper, we discussed how software can be easily re-
vised and adapted when it is built according to NS theory. This
was shown by means of describing the revision of a budget
management application built for a local Belgian government,
of which the NS development is previously discussed [4]. This
case shows how, even after only being used for a single year,
changes needed to be made to the software design because
of regulatory and requirement changes. As such, the paper
shows how these fundamental changes can be made easily and
without much effort. Because the case application was built
according to NS principles, one will also be able to implement
future changes with the same ease and the application will
thereby become evolvable.

REFERENCES

[1] M. Lehman and J. Ramil, “Rules and tools for software evolution
planning and management,” Annals of Software Engineering, vol. 11,
no. 1, pp. 15–44, 2001.

[2] H. Mannaert and J. Verelst, Normalized Systems: Re-creating Information
Technology Based on Laws for Software Evolvability. Koppa, 2009.

[3] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability based
on systems theoretic stability,” Science of Computer Programming,
vol. 76, no. 12, pp. 1210 – 1222, 2011, special Issue on
Software Evolution, Adaptability and Variability. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016764231000208X

[4] G. Oorts, P. Huysmans, P. D. Bruyn, H. Mannaert, J. Verelst, and A. Oost,
“Building evolvable software using normalized systems theory: A case
study,” 2014 47th Hawaii International Conference on System Sciences,
vol. 0, pp. 4760–4769, 2014.

[5] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability,” Software: Practice
and Experience, vol. 42, no. 1, pp. 89–116, 2012. [Online]. Available:
http://dx.doi.org/10.1002/spe.1051

[6] P. D. Bruyn, G. Dierckx, and H. Mannaert, “Aligning the normalized sys-
tems theorems with existing heuristic software engineering knowledge,”
in Proceedings of The Seventh International Conference of Software
Engineering Advances (ICSEA), ser. ICSEA ’12, Lisbon, Portugal, 2012,
pp. 84–89.

[7] P. D. Bruyn, P. Huysmans, G. Oorts, D. V. Nuffel, H. Mannaert, J. Verelst,
and A. Oost, “Incorporating design knowledge into software develop-
ment using normalized systems,” International Journal On Advances in
Software, vol. 6, no. 1&2, pp. 181 – 195, 2013.

[8] M. Alavi and D. E. Leidner, “Review: Knowledge management and
knowledge management systems: Conceptual foundations and research
issues,” MIS Quarterly, vol. 25, no. 1, pp. pp. 107–136, 2001. [Online].

Available: http://www.jstor.org/stable/3250961

327Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 349 / 679

Towards Task Allocation in Global Software Development Projects

Sajjad Mahmood, Sajid Anwer, Waleed Umar, Mahmood Niazi, Mohammad Alshayeb
Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Emails: {smahmood, g201303950, g201207040, mkniazi, alshayeb}@kfupm.edu.sa

Abstract— Global Software Development (GSD) initiative aims

to facilitate software development process by providing access

to skilled workers at a relatively low cost and a 24/7 software

development model. Previous work suggests that a significant

number of companies that have tried GSD have failed to realize

the anticipated benefits, which have resulted in poor

outsourcing relationships, high costs and overall poor software

products. Task allocation is one of the critical factor for a

successful GSD project as project managers not only need to

consider their workforce but also need to take into the account

the characteristics of the geographically distributed sites

involved in a project. In this paper, we present a task allocation

process with an aim to utilize different geographically

distributed sites for a GSD project. The task allocation process

uses project scheduling techniques, e.g., Critical Path Method

(CPM)/ Program Evaluation and Review Technique (PERT),

and a multi-objective optimization technique to allocate GSD

project tasks. We also present an application of the task

allocation process to Obesity Health Clinic System (OHCS) case

study.

Keywords-global software development; task allocation; work

distribution; software project schedules.

I. INTRODUCTION

Global Software Development (GSD) occurs where a

company (client) contracts out all or part of its software

development tasks to another company (vendor), who

provides services for remuneration [1]. GSD has been

growing steadily as a large number of organizations aim to

take advantage of using highly skilled workforce at a

relatively reduced cost. Furthermore, GSD has the potential to

reduce project’s time to market by using different time zones

to organize a 24/7 development model.

A good number of organizations that have tried GSD

failed to realize the expected outcomes, which resulted in

misunderstanding of requirements, poor global relationships

among clients and vendors, high costs and overall poor

services [2][3]. These failures are usually traced back to two

main causes: insufficient abilities (e.g., absence of domain

knowledge, high turnover rate, etc.) at different sites, and

problems at the interfaces between two distributed sites due to

cultural barriers.

These issues are directly impacted by the decisions taken

at the task allocation phase of a GSD project. Existing

research suggests that tasks need to be allocated to different

geographical sites based on a number of often conflicting

objectives such as low cost [4][5], reduced development time,

and increased productivity [6]; and minimum communication

and coordination between different development sites [7]. For

example, Tran and Latapie [8] have presented models for

structuring teams and work in globally distributive projects by

taking into account the dependencies between components at

a higher abstraction level.

In this paper, we present a task allocation process that

takes into account the interdependencies between project tasks

and geographically distributed sites’ capabilities. The task

allocation process has two inputs, namely, GSD project tasks

and number of geographically distributed sites, which have

the required skills to complete the project tasks. The task

allocation process uses either CPM [15] or PERT [15] to

develop schedule of a GSD project. Next, the tasks are ranked

based on the precedence requirements and these ranked tasks

are used an input to a ‘goal program’, a multi-objective

optimization technique, to select suitable geographical sites

for a GSD project.

The rest of this paper is organized as follows: Section II

reviews the related literature. In Section III, we present the

task allocation model and Section IV presents a case study.

We conclude the paper and discuss future work in Section V.

II. RELATED WORK

This section presents different approaches that researchers

adopt for task allocation in global software development.

Setamanit et al. [6] propose a simulation model based on two

factors of software process model development time and

productivity and it compare different task allocation strategies

proposed in research against these two factors. They consider

different important properties of software, i.e., coupling

between activities, sites capabilities and project plan for

comparing different approaches. In fact this model is proposed

for comparing different site allocation techniques not

allocation tasks to different sites in GSD.

328Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 350 / 679

Lamersdorf et al. [9] proposed qualitative approach

intended for understanding and identifying different criteria

that are practically used for task allocation in GSD. They

conducted interviews from different industry peoples to

collect data. They showed that type of required system and

sourcing strategy mainly affects the task allocation criteria.

Their study analysis shows that market proximity, turnover

rate strategic planning and labor cost are main factors that

need consideration during task allocation.

Lamersdorf et al. [10] presented a risk driven customizable

model to suggest different task allocation approaches based on

the target system and software development process model

and critically evaluated this model based on risks related to

tasks allocation in GSD. They also evaluated proposed

approach by interviewing different peoples from Information

Technology (IT) industry that are related to software

development in GSD.

Narendra et al. [11] presented an integrated formal

technique for analyzing all tasks and developed optimal tasks

allocation model for GSD projects. The proposed model

predicts estimated effort required for particular task based on

the overall allocation of tasks over estimated effort and effort

required to execute a particular task on particular site.

Wickramaarachchi and Lai [5] proposed a method for

work distribution to different locations with an aim to

minimize overhead costs. The method categorizes the

offshore tasks based on software process model. It also

proposes a method to distribute work to suitable tasks using

work specific matrix, work dependency matrix and site

dependency matrix.

Mockus and Weiss [7] proposed an approach for task

allocation in GSD that mainly addresses the communication

problem between sites and ultimately reduced the overall

overhead in distributed development and used optimization

algorithms to implement this approach. Proposed approach is

well understood and easily applicable in GSD but they only

consider one factor that affects GSD. As there are other factors

that can affect the distributed development like cost, site

capabilities and tasks dependencies and due to this limitation

this approach however, cannot be used for tasks allocation in

GSD.

Vathsavayi et al. [4] discuss the solution of work

allocation problem in GSD using genetic algorithms. They

proposed a model that take different activities of software

development process as an input and find the near optimal

solution. Their model is capable enough to accommodate the

change management and other concerns related to project

management. They considered only duration and cost factors

of site for tasks allocation in GSD.

Lamersdorf and Munch [12] proposed task allocation

approach that considers different factors, i.e., time zone

difference, sites capabilities, labor cost and cultural issues.

They developed a tool named Task Allocation based on

Multiple criteria (TAMRI) using Bayesian network [12]. This

model is applicable across a number of products by just

modifying the underlying Bayesian approach.

Shen et al. [13] proposed approaches to solve the multi

criteria task allocation problem using fuzzy numbers and

linguistic scales. Linguistic scales are first used to measure

quantitative properties like individual capabilities and then

fuzzy numbers are used to measure and quantified these

scales. Four criteria, namely, workload, familiarity with task,

capability and social relationships with other team members

are used to assess the individual that is suitable for this

particular task.

Tran and Latapie [8] proposed a task allocation model

from architectural point of view and considered the

dependencies between components as criteria for task

allocation. They allocated architectural integration to one site

and other activities to other sites based on dependencies exist

between them while other sites coordinate with the main site.

The main limitation of this approach is that they consider

dependencies at component level (abstract level) and

dependencies inside the component can cause delay.

III. TASK ALLOCATION PROCESS

In a traditional software development environment, a

project manager typically distributes work tasks among its

team members who are present at a single development site.

However, in GSD projects, a project manager needs to assign

tasks to teams who are usually present at different

geographical locations. This introduces an extra complexity at

the task allocation phase of a project as one GSD vendor can

be cheaper than other while another vendor might have more

skilled workers. We present the task allocation decision

model, as shown in Figure 1, which acts as a tool that helps

managers to assign tasks in a GSD project.

The task allocation process has two inputs, namely, GSD

project tasks and number of geographically distributed sites,

which have the required skills to complete the project tasks. A

project task is defined as a small manageable unit with a time

requirement. Resource requirements for a task define the

manpower required for the activity. Project tasks usually are

not standalone and have precedence relationships with other

tasks in a project. Furthermore, the precedence relationship

also defines that what tasks can run concurrently with other

tasks.

329Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 351 / 679

Figure 1. Task Allocation Process.

The task allocation process uses either CPM or PERT to

develop schedule of a GSD project. CPM or PERT allows a

project manager to define various components of a schedule

such as floats, early start time, early finish time and project

completion date. The task allocation process uses PERT when

the end date for the activities cannot be defined but can be

represented by expected probabilistic durations.

Next, the tasks are ranked based on the precedence

requirements and these ranked tasks are used an input to a

‘goal program’ to select suitable geographical sites for a GSD

project. ‘Goal programming’ helps achieving an optimal or

near optimal solution for a set of goals.

In the following subsections, we present three models for

task allocation, namely, ‘equal utilization of all sites’,

‘optimal utilization of all sites’, and ‘constraints-based

utilization of sites’, respectively.

A. Equal utlization of all sites

In this model, we aim to equally distribute GSD project

tasks to all geographically distributed sites. We propose to use

a genetic algorithm to assign GSD project tasks, such that the

standard deviation of total man-hours required at all GSD sites

is minimized. The mathematical form of the proposed model

as follows:

T.M.U at a site =

∑ (𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 𝑥 (𝑀𝑎𝑛 − ℎ𝑜𝑢𝑟𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑒𝑟 𝑑𝑎𝑦)𝑛

𝑘=0 (1)

where T.M.U= Total Man-hours Utilized, n is the number of
the tasks to be performed at a site.

Mean =(∑ T. M. U at a site 𝑚
𝑙=0) / number of geographical

sites

where m is the number of total geographical sites involved in

the project.

Variance = ∑ [(T. M. U at a site) − (mean)]2𝑚

𝑙=0
 (2)

B. Optimal utilization of all sites

The aim of this model is to assign the tasks to the sites so

that the each site is optimally utilized. The model tries to

assign the various tasks to a site based on the capacity of a site

and the man-hours requirement of individual tasks. The

mathematical form of the proposed model as follows:

Minimize the Goal= (∑ S. D. S. U m
l=0) (3)

S.D.S.U=(∑ S. D. Sites capabilities 𝑑
𝑡=0) (4)

where S.D.S.U= Standard Deviation of Site Utilization, S.D.

= Standard Deviation, d is the duration and m are the total

geographical sites.

C. Constraints-based utilization of sites

In this model, we enhance the ‘equal utilization of all sites’

and ‘optimal utilization of all sites’ by introducing a set of

constraints. The ‘utilization of sites based on constraints’

allows project managers to assign tasks to a certain site.

Mathematically, the objective function is defined as follows:

Minimize = √Variance + ∑ S. D. S. U m
l=0 (5)

330Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 352 / 679

IV. CASE STUDY

This section discusses an application of the proposed

schedule flexibility analysis to the Obesity Health Clinic

System (OHCS). The OHCS allows health team members and

patients to create obesity reducing health goals. The goals are

added to the ‘bank of ideas’ and classified under the

appropriate category (for example, physical, dietary, etc.).

These goals can also be customized according to individual

patient needs by the health team. The OHCS also has the ‘goal

suggestion’ feature, which helps the health team to find

appropriate goals for a patient according to his health

condition.

Table I presents a list of OHCS tasks, planned durations in

days and their respective dependencies. Figure 2 presents the

CPM network of OHCS.

Figure 2. OHCS Activity Network.

Furthermore, Table II shows available resources (in term

of man hours per day) at four geographical development sites

for the OHCS project.

TABLE I. OHCS TASKS

Task

ID

Activities Duration predecessors Man-

Hour

Per Day

1 Source Node 0 0

2 Patient profile 7 1 5

3
Health Team

Profile
11 2

 4

4
Complete profile

features
5 3 5

 6

5
Database

Implementation
14 1

 5

6

Profile

Management

Screen layout

5 1

 4

7 OHCS Reports 9 4 3

8
Goal

Management
18 4

 5

9
Goal Suggestion

feature
21 8

 6

10 SQL Queries 20 5 4

11
Implement Store

procedures
9 10

 5

12

Complete

database

implementation

5 11

 5

13

Goal

Management

screen layout

5 6

 4

14
Complete OHCS

Screen layouts
14 13

 6

15

Complete OHCS

Feature and

Database

integration

12 7 9
1

2

3

16
Complete system

integration
18 14

1

5

6

17
OHCS

Deployment
6 16

6

331Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 353 / 679

Figure 3. OHCS Activity Network.

TABLE II. OHCS GSD DEVELOPMENT SITES

GSD Sites A B C D

Resources Available (man-
hour/day)

6 4 5 3

The OHCS project activates and project geographically

distributed sites, presented in Tables I and II. OHCS project

activities and the distributed sites are used as inputs such that

all the GSD sites are optimally utilized. We used Evolver [14],

a multi-objective optimization tool, to implement the three

models for task allocation presented in Section III.

Figure 4. Equal Utilization of Four GSD Sites.

Figure 5. Optimal Utliziation of four GSD Sites.

Figure 3 shows the task allocation of OHCS project to four

geographical sites using ‘equal utilization of all sites’ model.

Figure 4 shows the task allocation of OHCS project based the

‘optimal utilization of all sites’ model. Similarly, Figure 5

shows the task allocation under the ‘constraints based

utilization of sites’ model such that project managers wants to

use site A’s expertise in interface design and site D’s expertise

in database implementation.

Figure 6. Utilization of four GSD Sites under Constraints.

332Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 354 / 679

V. CONCLUSIONS AND FUTURE WORK

Global software development approach is adopted by

organizations with an aim to reduce development cost,

improve overall software quality and increase productivity by

having work carried out along the day using follow-the-sun

concept. Task allocation is a key phase of GSD projects that

directly impacts the benefits of adopting GSD. In this paper,

we have presented a task allocation process to equally utilize

different geographically distributed sites for a GSD project.

The task allocation process uses a multi-objective

optimization technique to allocate tasks of a GSD project.

In the future, we aim at extending the task allocation

process to handle complex objective functions and improve

work distribution among different sites of a GSD project. We

also aim to evaluate the presented model using larger case

studies.

ACKNOWLEDGMENT

The authors would like to thank King Fahd University of
Petroleum and Minerals (KFUPM) for its continuous support
of research. This research is supported by the Deanship of
Scientific Research at KFUPM under Research Grant
IN131013.

REFERENCES

[1] T. Kern, and L. Willcocks, "Exploring information technology

outsourcing relationships: theory and practice", Journal of
Strategic Information Systems, vol. 9, pp. 321-350, 2000.

[2] D. D. Bradstreet, and Bradstreet's Barometer of Global
Outsourcing. 2000 [cited 2007 September]; Available from:
<http://findarticles.com/p/articles/mi_m0EIN/is_2000_Feb_2
4/ai_59591405>.

[3] S. Islam, M. M. A. Joarder, and S. H. Houmb, "Goal and risk
factors in offshore outsourced software development from
vendor's viewpoint", In Proceedings of IEEE International
Conference on Global Software Engineering (ICGSE 09), pp.
347-352, 2009.

[4] S. Vathsavayi, O. Sievi-Korte, K. Koskimies and K. Systa,
"Planning global software development projects using genetic
algorithms", In Search Based Software Engineering, G. Ruhe
and Y. Zhang, Editors. pp. 269-274, 2013.

[5] D. Wickramaarachchi, and R. Lai, "A method for work
distribution in Global Software Development", In Proceedings
of IEEE 3rd International Advance Computing Conference,
pp.1443-1448, 2013.

[6] S. Setamanit, W. Wakeland, and D. Raffo, "Planning and
improving global software development process using
simulation", In Proceedings of the 2006 international workshop
on global software development for the practitioner, pp.8-14,
2006.

[7] A. Mockus, and D. M. Weiss, "Globalization by chunking: a
quantitative approach", IEEE Software, vol. 18, pp. 30-37,
2001.

[8] V. N. Tran, and H. M. Latapie, "Models for structuring teams
and work in globally collaborative projects", In Proceedings of
IEEE International Engineering Management Conference, pp.
425-431, 2006.

[9] A. Lamersdorf, J. Munch, and D. Rombach, "A survey on the
state of the practice in distributed software development:
criteria for task allocation", In Proceedings of 4th IEEE
International Conference on Global Software Engineering, pp.
41-50, 2009.

[10] A. Lamersdorf, J. Munch, A. F. V. Torre, and C. R. R. Sanchez,
"A risk-driven model for work allocation in global software
development projects", In Proceedings of 6th IEEE
International Conference on Global Software Engineering, pp.
15-24, 2011.

[11] N. C. Narendra, K. Ponnalagu, Z. Nianjun and W. M. Gifford.
"Towards a Formal Model for Optimal Task-Site Allocation
and Effort Estimation", In Proceedings of Global Software
Development Conference, pp. 470-477, 2012.

[12] A. Lamersdorf, and J. Munch, "TAMRI: A Tool for Supporting
Task Distribution in Global Software Development Projects",
In Proceedings of 4th IEEE International Conference on Global
Software Engineering, pp. 322-327, 2009.

[13] M. Shen, G. Tzeng, and D. Liu., "Multi-criteria task
assignment in workflow management systems", In Proceedings
of the 36th Annual Hawaii International Conference on System
Sciences, pp. 9-17, 2003.

[14] www.palisade.com/evolver., last accessed June, 2014.

[15] K. Schwalbe, "Information technology project management",
Course Technology, 6th Edition, 2010.

333Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 355 / 679

Combining MARTE-UML, SysML and CVL to Build Unmanned Aerial Vehicles

Paulo Gabriel Gadelha Queiroz

Departamento de Ciências Exatas e Naturais - DCEN
Universidade Federal Rural do Semi-Árido

Mossoró, Brazil
Email: pgabriel@ufersa.edu.br

Rosana Teresinha Vaccare Braga

Instituto de Ciências Matemáticas e de Computação - ICMC
Universidade de São Paulo

São Carlos, Brazil
Email: rtvb@icmc.usp.br

Abstract—Several methodologies have been proposed in the last
decades to improve the quality of critical embedded systems
and, at the same time, keep costs and schedule compatible with
project plans. In particular for Unmanned Aerial Vehicles (UAV),
approaches such as Product Line Engineering (PLE) and Model-
Driven Engineering (MDE) offer an interesting solution to reduce
development complexity and are being widely used in various
academic research and industrial projects. This paper presents
an approach combining PLE and MDE to develop families of
Unmanned Aerial Vehicles. In this approach, we propose the use
of SysML and MARTE UML profile to support requirements
specification, design, validation, simulation and eventual code
generation. Additionally, we propose the use of the Common
Variability Language (CVL) to support the transformations of
the generic product line models into specific product models,
aiming at achieving a high degree of reuse. Additionally, this
paper proposes a process to use the above mentioned modeling
techniques to produce family models and a method to use these
artifacts to generate product members. Finally, we illustrate
the various concepts presented in the proposed methodology by
means of a UAV case study.

Keywords–Product Line; Model-Driven Development; Safety-
Critical Systems.

I. INTRODUCTION

Embedded Systems are components integrating software
and hardware jointly and specifically designed to provide given
functionalities [1]. Safety-Critical Embedded Systems (SCES),
in particular, are embedded systems whose failure could result
in loss of lives or on significant environmental or property
damage. SCES are common in medical devices applications,
aircraft flight control systems, weapons, and nuclear systems.
Aircraft flight control systems, for example, must present
failure rates as low as a serious fault per 108 flight hours
[2] and other complex constraints and requirements like cost-
effectiveness, time to market, fast evolving environment, re-
liability, security, availability, criticality, reactivity, autonomy,
robustness, and scalability [3], which impose overhead costs on
the development. In the SCES domain, we focus on Unmanned
aerial vehicles (UAV), which can be defined as airplanes that
fly without the need of a human pilot, accomplishing a pre-
established mission.

The coming generations of SCES, like UAVs, must meet
the new expectations created by hardware evolution like the
increase in computational power of processors and the corre-
sponding decrease in size and cost that lead to the increase
of users expectations for new functionalities and have al-
lowed moving more and more functionality to software [4].

Therefore, to overcome these challenges and to fulfill the
requirements and constraints mentioned above, we need new
efficient and flexible development methodologies and tools that
can reduce UAV production complexity.

The use of Product Line Engineering (PLE) [5] has proven
to be a good alternative to reduce system costs and time
to market, as well as to increase system reliability through
the assembling of reusable and extensively tested resources.
Model-Driven Engineering (MDE) [6] is also used in this
context, producing models in higher abstraction levels and
allowing automatic generation of products through model
transformations.

The motivations for this work have arisen after the creation
of a Product Line (PL) workgroup in the National Institute of
Science and Technology - Critical Embedded Systems (INCT-
SEC) [7] project, whose goal was to create methodologies and
tools to develop, among others, families of UAVs. The first
family, called Tiriba, was developed by the AGX Company [8]
in partnership with INCT-SEC. During our participation in this
workgroup we performed a systematic review of the literature
to find gaps in existing methodologies and approaches that
combine MDE and PLE to develop SCES, as well as a study
using three other UAV existing examples [9][10][11] to build
a family of UAVs and validate our approach. These studies
culminated with the approach proposed in this paper, whose
main goal is to build a family of UAV using a combination
of both PLE and MDE techniques. The novelties of the
proposed approach are the use of MDE in both Domain and
Application Engineering and the management of both software
and hardware variabilities, accompanied by Verification and
Validation (V&V) activities during the whole cycle. For an
effective use of MDE, we propose the use of a subset of
the Systems Modeling Language (SysML) [12] and the UML
profile for Modeling and Analysis of Real-Time and Embedded
systems (MARTE) [13] to enable model transformations in
the Domain Engineering (DE) phase. We also propose the use
of the Common Variability Language (CVL) [14] to manage
system variabilities and enable model transformations during
the Application Engineering (AP) phase. Finally, we illustrate
the various concepts present in the proposed approach by
means of a UAV family case study. It is worth to mention
that this approach is an extension of the work presented in
[15], with the addition of CVL to manage variabilities, the
safety analysis activity and the evolution of the case study.

The rest of this paper is organized as follows: Section II
presents a background summary of Product Line Engineering

334Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 356 / 679

and variability management; Section III summarizes related
works; Section IV presents the proposed approach; Section V
illustrates the proposed approach by means of a UAV product
line case study; lastly, Section VI presents the conclusions of
this paper.

II. BACKGROUND

Product Line Engineering is an approach that enables
organizations to develop, deliver and evolve an entire Product
Line portfolio, through each stage of the development life
cycle, with much higher degrees of efficiency compared to
developing single systems [16]. The products of a PL differ
from each other in terms of features, which are user-visible
aspects or characteristics of a software system or systems [17].
As expected, the costs, in terms of time and money spent, to
build a PL is higher in comparison with the costs to build a
single system, because among other things PLE is done in two
stages: Domain Engineering (DE), which is the development
of a series of generic artifacts to the PL; and Application
Engineering (AE), in which the application engineer uses the
artifacts developed in DE to assemble products of the line,
known as members.

During DE, a general architecture for the PL is defined,
from which various products can be generated. Despite the
higher cost, Weiss and Lai [18] claim that the construction of
a PL is justified if at least three systems generated from the
PL are derived. Since UAV are often manufactured, distributed
in large scale and present significant variability in terms of
hardware and applications, it can be expected that the use of
PLE is advantageous to them.

On the other hand, in Model-Driven Engineering, the
software complexity concentrates on high level models and
not in the code, which can be automatically generated from
the models. Furthermore, system quality can be improved
with the use of V&V methods [19]. According to model-
based approaches, models become part of the final product
and most of the development complexity shall belong to
the transformations that should be used to automatically or
semi-automatically produce code. To successfully use MDE
techniques to model a UAV PL, we propose the use of SysML,
MARTE and CVL.

SysML [12] is a general-purpose modeling language for
systems engineering applications, which reuses a subset of the
Unified Modeling Language (UML) [20] and provides addi-
tional extensions. SysML supports the specification, analysis,
design, verification, and validation of a broad range of complex
systems and is used to model a wide range of industrial and
academic systems [21]. As SysML is an UML extension, there
is a compatibility of tools and concepts, which can reduce the
learning time. We also want to propose an approach that can be
adopted using free tools, which are abundant for UML-based
languages.

MARTE [13] is an UML profile that provides capabilities
for model-driven development of Real Time and Embedded
Systems (RTES). It provides support for specification, design,
and verification/validation stages [13]. MARTE is also used to
model a wide range of industrial and academic systems [22].
We adopt it in our approach because UAVs have many real

time constraints that need to be checked by model simulation
in early development stages, to improve product quality.

Even though some authors consider MARTE and SysML
profiles incompatible, by using the MADES methodology
[3] recommendation we can avoid conflicts related to the
two profiles by not mixing SysML and MARTE concepts
in the same diagram, but instead focusing on a refinement
scheme. Therefore, as presented later, SysML is used for
initial requirements and functional description, while MARTE
is utilized for the enriched modeling of the global functionality
and execution platform/software modeling.

Another resource that can be useful to improve the appli-
cation of MDE techniques to build the UAV PL is CVL [14],
which is a separate and generic language to define variabilities.
CVL semantics are defined as a transformation of an original
model (e.g., a product line model) into a configured, new
product model. CVL combines user-centric feature diagrams
with an automation-centric approach to the production of
product models. In CVL, the focus is on specifying variability
in a model separate from the base product line models. A base
model is an instance of any metamodel conforming to Meta
Object Facility (MOF) [23]. The base models are produced
in domain engineering in our case. There may be several
variability models applied to the same base product line model
and the base model is unaware of the variability models (there
are only links from the CVL model to the base model). Several
product resolutions can apply to the same variability model.
CVL is executable, i.e., after specifying the resolution of
variabilities, a CVL tool can automatically derive the specific
product model.

The core concept of CVL is substitution. Models are
assumed to consist of model elements in terms of objects that
are related by means of references. The CVL model points out
model elements of the base PL model and defines how these
model elements shall be manipulated to yield a new product
model. There are three kinds of substitution: value substitution,
reference substitution and fragment substitution. A substitution
replaces base model elements named as placement by base
model elements named as replacement [14]. CVL can represent
variabilities through the concepts of Variation point, Substi-
tution, Existence, Value assignment, Variability specification,
and Choice, among others.

III. RELATED WORKS

While there is a large number of researches who make use
of either PLE or MDE for safety-critical embedded systems,
due to space limitations, it is not possible here to give an
exhaustive description, so we only provide a brief summary
of works that combine PLE and MDE to build safety-critical
embedded systems, similarly to the approach proposed in this
work.

The work presented by Polzer et al. [24] is concerned
with variability in control systems software, where a model-
based PL engineering process using Rapid Control Prototyping
system is combined with MDE techniques. The authors mod-
ularize the components parameterization in a separate setup,
which is isolated from the model that defines the behavior of
the controller. Simulink [25] and Pure::variants [26] are used
for modeling and automatic code generation. It is observed

335Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 357 / 679

that this work is done with proprietary tools and modeling
techniques like Matlab building blocks that although efficient
for the project description, are not ideal for requirements
modeling and communication with the final user, which goes
against the purpose of this paper.

Regarding the development of UAV product lines, there
are approaches such as Product Line on Critical Embedded
Systems (ProLiCES) [27] and SysML-based Product Line Ap-
proach for Embedded Systems (SyMPLES) [28]. Even though
they were not defined for UAV, the authors used a UAV case
study to illustrate their approaches. ProLiCES creates a parallel
path in the process to handle the PL domain engineering and
also proposes the use of Matlab/Simulink as a Model-Driven
Development (MDD) technique, which limits requirements
analysis and concentrates the MDD only in one step of the
process. SyMPLES is an approach for PL application in
embedded systems through the extension of SysML language
to include variability together with a development process,
but in this study the authors do not distinguish between the
characteristics of hardware and software and focus on the use
of SysML for the architecture description.

Svendsen et al. [29] present a case study for creating a
PL for the train signaling domain. The Train Control Lan-
guage (TCL) is a Domain-Specific Language that automates
the production of source code for computer-controlled train
stations, also using CVL. However, their approach presents
just the variability management through CVL, which consists
of a portion of the system product line development process.

In the work presented by Haber et al. [30] the authors
focus on variability management in all development phases
using Matlab/Simulink. They propose a modular variability
modeling approach based on the concept of delta modeling.
A functional variant is described by a delta encapsulating a
set of modifications. A sequence of deltas can be applied to a
core product to derive the desired variant. The authors illustrate
the approach by presenting a prototypical implementation.

Finally, we highlight the Cardiac Pacemaker PL described
by Huhn and Bessling [31], where they present how to specify
the PL and its products by means of CVL. CVL enforces a
strict structuring of the product models (done in SCADE) that
reflects the substitution concepts used to describe variability.

The approach we propose in this paper is different from
the above mentioned related works, as it focuses on the PL
definition, modeling both hardware and software variabilities.
We propose the use of MDE, like automatic generation of
hardware descriptions and embedded software from high level
models, for rapid design and specification of SCES. Further-
more, we propose the use of free tools for MDE, the use of
UML as it is an extensively used modeling language and the
use of CVL to model variability.

IV. PL APPROACH

Figure 1 illustrates our proposed Product Line approach.
Notice that the approach addresses both hardware and software
variability with its underlying requirement dependencies. To
reduce both domain and application engineering complexity,
we propose the use of UML based models, in particular SysML
and MARTE. Despite being the most widely used modeling

language, UML is generally easier to understand than Matlab
blocks.

The strengths of the proposed methodology are the use
of MDE in both Domain and Application Engineering phases,
with focus on model-to-model transformations in requirements,
analysis and design activities, especially for the purpose of
modelling and generating application variants. This is different
from most of the PL methodologies, which focus on model-
to-text transformations just in the Application Engineering
phase, through the use of application generators. The use of
MDE has also the advantage to promote the possibility to
use Model-Based Test [32] in early design stages, which can
substantially reduce the V&V costs and effort [33]. Safety
analysis [34] techniques is also recommended in early design
stages, especially for certification purposes, but this is out of
the scope of this paper.

As seen in Figure 1, the approach is divided into two
interdependent phases, Domain Engineering and Application
Engineering, which are common in consolidated methods
like the Framework for Software Product Line Practice [16]
and the PLUS method [35]. During the DE phase, the high
level system models are carried out using SysML and CVL,
which are exemplified later in Section V. After the system
PL specification (user requirements, specification and related
hardware/software variability specification), underlying model
transformations (model-to-model and model-to-text transfor-
mations) are used to produce models for the subsequent design
phases including MARTE profile. The next design phases
include verification, hardware descriptions of modeled targeted
architecture and generation of platform specific embedded
software from platform independent software specifications.
For implementing model transformations in the case study, we
use the Eclipse Modeling Platform (EMF) [36]; the Papyrus
[37] modeling tool, which is a UML modeler that enables
model transformations, code generation and validation; and the
CVL Eclipse Plug-in [38] as the engine for the transformations
of product line models into specific product models. The
proposed approach is not limited to these tools, therefore
the choice of the modeling tool is up to the user, the only
requirement is to support MARTE and SysML metamodels.

Another important factor to be noted is that in the UAV
domain, hardware variability could impact directly on soft-
ware requirements and vice versa. For example, consider the
following system requirement: the system should allow the
user to choose between broadcasting the images to the ground
control station in real time or to recording a video (in flash
memory, for example). In that case, the UAV hardware must
include a camera. Moreover, for each new sensor added, their
corresponding software drivers must also be added. Another
highlight is the continuous feedback in the artifacts repository,
in which we can store any kind of artifact from both hardware
or software types. As a repository to store hardware artifacts,
we refer in a logical level, to a hardware models repository (the
same repository to store software artifacts). This feedback can
come from updates in DE or from new different requirements
elucidated from new members modeled in the AE. The feed-
back is represented by both dashed arrows and double-headed
arrows.

336Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 358 / 679

Figure 1: Overview of the proposed approach.

A. Domain Engineering

Before the Domain Engineering takes place, a business
team performs an economic feasibility analysis of the PL,
which will indicate whether or not it is worth to be developed.
If the PL is feasible, then we start the Domain Engineering
by modeling requirements in the system abstraction level, as
detailed below. It is out of the scope of this work to propose
domain analysis techniques, as they can be easily found in the
literature. So, existing techniques such as those mentioned in
the survey by Prieto-Diaz and Arango [39] can be used.

The Domain Engineering is performed by the domain
expert, who should first define the PL strategy, i.e., he must
decide whether to use a proactive or reactive approach [40].
Regardless of the strategy chosen, to model variabilities we
propose the use of CVL. Since CVL replaces values and sets
of model elements, by executing CVL we can add, remove
or replace functionality. To use CVL, according to Svendsen
et al. [29] the domain expert has three options for choosing
a base model: the first is a model with maximum set of
features included, meaning a complete model where CVL can
remove features to get a specific product model; the second
is a model with a minimum set of features included in the
model itself, and other fragments in other library models, then
the product models will be generated by adding features to the
base model; and the third is to choose a base model that has
neither maximum nor minimum, but somewhere in between,
so this base model can be, for instance, the base model that is
most similar to the majority of the product models, or a base
model that is tailored for teaching purposes.

CVL proposes a model with two parts: the Feature Specifi-
cation Layer (FSL) and the Product Realization Layer (PRL).
The FSL resembles a feature diagram [17], while the PRL
connects the FSL to the base model, for example by substi-
tutions. We also suggest that domain experts develop the FSL
incrementally: first, create a high level system FSL, then add
the software and the hardware features. Hardware variability
management should concern the impact evaluation of hardware
variabilities on software requirements, in the same way that
software variability management should concern the impact
evaluation of software variabilities in hardware requirements.
To manage this impact, the dependencies between hardware
and software features should be defined.

As we propose the use of CVL in conjunction with a subset
of MARTE and SysML models to describe the PL, the domain
expert should prepare a PRL that corresponds to each SysML
and MARTE models, so that after the variability resolution, all
models created for the PL are automatically adapted for each
product.

To complement the system requirements definition, a
SysML requirements diagram should be created, where distin-
guishing between functional and non-functional requirements
is recommended. As illustrated in Figure 1, the artifact reposi-
tory is updated during the PL life cycle for both domain experts
and application engineers. So, if concrete products have new
requirements not covered by the PL, the requirements diagram
can be further reviewed to include them.

Following the system requirements activity, we proceed
to the system specification activity, where we produce use
case scenarios and a system domain model. The use case
is described using traditional UML Use Case Diagrams. The
system domain model can be modeled using a class diagram,
in which the concepts are represented by pseudo-classes. These
two modeling concepts are strongly related to the functional
high level specification described subsequently. While the use
case is needed to obtain a SysML block diagram, as explained
below, the domain model is used to communicate with domain
experts for a better understanding about the domain, for
validating the specification and for a future definition of a
domain specific language by means of a UML profile, for
example.

To finalize this system initial description, each use case is
converted into a SysML block (or internal block), for example
by applying the MADES methodology [3], with the difference
that a mandatory use case is converted to a mandatory block,
an optional use case is converted to an optional block, and an
alternative use case is converted to an alternative block. After
including all the developed artifacts in the repository, we can
continue the PL development by going to hardware or software
abstract levels or even to both in parallel.

Following this initial system specification, the development
can evolve into two parallel paths, as illustrated in Figure
1. The first path starts at hardware specification, architecture
definition, design of the components and simulation. The
second path goes through software variability specification
and management, architecture definition, subsystems design,
simulation, testing, and code generation.

The designer can move to the partitioning of the system in
question: depending upon the requirements and resources in

337Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 359 / 679

hand, he or she can determine which part of the system needs
to be implemented in hardware or software. It is possible,
although it could substantively increase SPL costs, to improve
safety by implementing system features in a redundant way,
i.e., whenever possible, to provide features implementations in
both hardware and software. Thus, it becomes part of the Ap-
plication Engineering to decide if the features implementation
component should be integrated in the product by software or
hardware.

Since the proposed approach focuses on UAV, V&V activ-
ities should be executed in each stage. It is important to notice
that on hardware and software paths a more detailed specifica-
tion takes place by the eventual allocation with schedulability
and underlying model transformations (model-to-model and
model-to-text transformations) that are used to bridge the
gap between these abstract design models and subsequent
design phases. These phases include verification, hardware
descriptions of modelled target architecture and generation
of platform specific embedded software from independent
architectural software specifications.

For a description of the different steps related to each
design level by means of MARTE concepts, see the work of
Quadri et al. [3], which can be adapted to this approach by
creating a CVL model for the base models representing the
hardware and software specification, architectural definition,
components and subsystems design and simulation. It is also
important to perform validation activities in every model to
ensure they correspond to the requirements and are traceable
to each other. At the end of this phase, our repository contains
all the artifacts and the domain engineering is ended.

B. Application Engineering

Application Engineering corresponds to configuring a prod-
uct by assembling reusable artifacts from the repository. This
step is the responsibility of the application engineer, who elicits
the particular system requirements. By using our approach, the
application engineering phase is simplified and reduced to the
definition of the resolution model, which consists of selecting
the desired features for the PL member. So, the application
engineer can choose which substitutions to execute, and then
execute the CVL model that will generate specific products
(i.e., specific models). To conclude this step, it is necessary
to conduct simulation and testing also on the target system to
validate it.

V. CASE STUDY

To illustrate the use of the proposed methodology, we
present the initial development of a UAV PL. Through this
example, we aim to show the power of CVL to manage
hardware and software variabilities. We assume that the PL
economic feasibility analysis indicated it is worth to be de-
veloped. The domain expert defined the following strategies:
reactive approach with the base model with maximum set of
features. We have chosen Tiriba as a starting point, but intend
to include other UAVs in future works.

In Figure 2, we illustrate part of the SysML requirements
diagram with the maximum set of features. The next step is
to create the CVL model, which comprises FSL and PRL, for
this base model. For the management of both hardware and

<<FuncitionalRequirement>>

<<FuncitionalRequirement>> <<FuncitionalRequirement>> <<FuncitionalRequirement>> <<FuncitionalRequirement>>

<<FuncitionalRequirement>> <<FuncitionalRequirement>>

<<FuncitionalRequirement>>

Figure 2: Part of the SysML requirements diagram for the UAV
Product Line.

Figure 3: Part of the system high level FSL for the UAV
Product Line.

software features, we should create a hardware and software
FSL, which are modelled from the system high level feature
diagram, as illustrated in Figure 3. To finish this first part,
we define the PRL, which connects the feature specification
layer to the base model and the substitutions, like illustrated in
Figure 4 through an architectural view. Observe that the base
model has the maximum set of features, thus a subtractive
strategy is used for most parts, and sometimes a substitution.

Supposing that the same process is done for the other
models proposed and all the models are stored in a repository,
all the application engineer needs to do is to create the
resolution model, by selecting the required features for the
product. A possible resolution model with the positive choices
for Autonomous Navigation, Manual Control, Agrochemical
Sprayer and Video Camera is illustrated in Figure 5. After
executing the CVL engine, the PRL is transformed into the
resulting product model presented in Figure 6.

VI. CONCLUSIONS AND FUTURE WORKS

This paper aimed to present an approach for UAV product
lines modeling with the use of MDE techniques in both
Domain and Application Engineering, as well as software and
hardware variability management. To fulfill this objective we
have used a subset of UML profiles like SysML, MARTE in
combination with the CVL. The use of the proposed approach
in the UAV domain can bring the benefits of PL and MDE
techniques, such as reducing system costs and time-to-market

338Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 360 / 679

Figure 4: Part of the PRL for the UAV Product Line.

Figure 5: Part of the UAV resolution model.

Figure 6: Part of the UAV product model after processing the
variabilities.

and increasing system reliability. Finally, the most important
steps, models and concepts from the proposed approach have
been illustrated by a UAV product line case study. The main
limitation of our approach is the lack of definition of a
UAV UML profile to improve model-to-code transformation.
Therefore, for future work we propose to define a UAV UML
profile and to evaluate the proposed approach by means of an
experiment to compare our approach with others in terms of
efficiency and usability.

Acknowledgments

The authors would like to thank CAPES (Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior) for financial
support received during the development of this work.

REFERENCES

[1] J. Sifakis, “Embedded systems - challenges and work directions,” in
Principles of Distributed Systems, 8th International Conference, Greno-
ble, France, ser. Lecture Notes in Computer Science, T. Higashino, Ed.,
vol. 3544. Springer, Dec. 2004, pp. 184–185.

[2] I. Moir, Civil Avionics Systems, ser. Aerospace Series (PEP). John
Wiley Sons Ltd, 2006.

[3] I. R. Quadri, A. Sadovykh, and L. S. Indrusiak, “MADES: a
SysML/MARTE high level methodology for real-time and embedded
systems,” in ERTS2 2012: Embedded Real Time Software and Systems,
Feb. 2012, pp. 1–10.

[4] J. R. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli,
“Using multiple levels of abstractions in embedded software design,”
in Embedded Software, ser. Lecture Notes in Computer Science,
T. A. Henzinger and C. M. Kirsch, Eds. Springer Berlin
Heidelberg, Sep. 2001, vol. 2211, pp. 324–343. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45449-7 23 [retrieved: August, 2014]

[5] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005.

339Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 361 / 679

[6] S. Kent, “Model driven engineering,” in Integrated Formal Methods, ser.
Lecture Notes in Computer Science, M. Butler, L. Petre, and K. Sere,
Eds. Springer Berlin Heidelberg, Apr. 2002, vol. 2335, pp. 286–
298. [Online]. Available: http://dx.doi.org/10.1007/3-540-47884-1 16
[retrieved: August, 2014]

[7] INCT-SEC, “Sistemas Embarcados Crı́ticos: aplicações em segurança
e agricultura,” 2008. [Online]. Available: http://www.inct-sec.org
[retrieved: August, 2014]

[8] AGX Tecnologia Ltda, 2014. [Online]. Available: www.agx.com.br
[retrieved: August, 2014]

[9] GISA-Grupo de Interesse em Sisvants e Aplicaes, 2014. [Online].
Available: http://gisa.icmc.usp.br/site/ [retrieved: August, 2014]

[10] SLUGS-Santa Cruz Low-cost UAV GNC System , 2014. [Online].
Available: http://slugsuav.soe.ucsc.edu/ [retrieved: August, 2014]

[11] Ardupilot , 2014. [Online]. Available: http://ardupilot.com/ [retrieved:
August, 2014]

[12] Object Management Group, OMG Systems Modeling Language (OMG
SysML), V1.3, 2012.

[13] Object Management Group*, UML Profile for MARTE (Modeling and
Analysis of Real-Time and Embedded Systems) 1.1, 2011, OMG doc.
http://www.omg.org/spec/MARTE/1.1/ [retrieved: August, 2014].

[14] O. Haugen, A. Wasowski, and K. Czarnecki, “Cvl: Common
variability language,” in Proceedings of the 16th International Software
Product Line Conference - Volume 2, ser. SPLC ’12. New
York, NY, USA: ACM, 2012, pp. 266–267. [Online]. Available:
http://doi.acm.org/10.1145/2364412.2364462

[15] P. G. G. Queiroz and R. T. V. Braga, “A critical embedded system
product line model-based approach,” in SEKE-26: Proceedings of
the The 26th International Conference on Software Engineering and
Knowledge Engineering. London, UK: Springer, Jul. 2014, pp. 71–75.

[16] Northrop, L. M. et al., “A Framework for Software
Product Line Practice, Version 5.0,” 2009. [Online]. Available:
http://www.sei.cmu.edu/productlines/framework.html [retrieved: Au-
gust, 2014]

[17] K. C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented Product Line
Engineering,” IEEE Software, vol. 19, no. 4, Aug. 2002, pp. 58–65.

[18] D. M. Weiss and C. T. R. Lai, Software Product-line Engineering: A
Family-based Software Development Process. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[19] L. Belategi, G. Sagardui, and L. Etxeberria, “Model based analysis
process for embedded software product lines,” in Proceedings of
the 2011 International Conference on Software and Systems Process,
ser. ICSSP ’11. New York, NY, USA: ACM, May. 2011, pp. 53–
62. [Online]. Available: http://doi.acm.org/10.1145/1987875.1987886
[retrieved: August, 2014]

[20] O. M. Group, “OMG Unified Modeling Language (OMG UML),
Infrastructure, V2.1.2,” Tech. Rep., nov 2007. [Online]. Available:
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF [retrieved: Au-
gust, 2014]

[21] P. Baker, S. Loh, and F. Weil, “Model-Driven Engineering in a Large
Industrial Context - Motorola Case Study,” in Proceedings of the 8th
International Conference on Model Driven Engineering Languages and
Systems, ser. MoDELS’05. Berlin, Heidelberg: Springer-Verlag, Oct.
2005, pp. 476–491.

[22] M. Z. Iqbal, A. Arcuri, and L. Briand, “Environment modeling with
uml/marte to support black-box system testing for real-time embedded
systems: Methodology and industrial case studies,” in Proceedings
of the 13th International Conference on Model Driven Engineering
Languages and Systems: Part I, ser. MODELS’10. Berlin, Heidelberg:
Springer-Verlag, Oct. 2010, pp. 286–300. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1926458.1926486 [retrieved: August,
2014]

[23] omg, Meta Object Facility (MOF) Core Specification Version 2.0, 2006.
[Online]. Available: http://www.omg.org/cgi-bin/doc?formal/2006-01-
01

[24] A. Polzer, S. Kowalewski, and G. Botterweck, “Applying software
product line techniques in model-based embedded systems engineering,”
in Model-based Methodologies for Pervasive and Embedded Software
(MOMPES 2009), Workshop at the 31st International Conference on

Software Engineering (ICSE 2009), vol. 0. IEEE Computer Society,
May May. 2009, pp. 2–10.

[25] O. Beucher, MATLAB und Simulink (Scientific Computing). Pearson
Studium, 08 2006.

[26] Pure Systems, “pure::variants,” 2012.
[27] Braga, R. T. V. et al., “The prolices approach to develop product

lines for safety-critical embedded systems and its application to
the unmanned aerial vehicles domain.” CLEI Electron. J., vol. 15,
no. 2, May 2012, pp. 1–13. [Online]. Available: http://dblp.uni-
trier.de/db/journals/cleiej/cleiej15.html#BragaBJMNB12 [retrieved: Au-
gust, 2014]

[28] R. F. Silva, V. H. Fragal, E. A. de Oliveira Junior, I. M.
de Souza Gimenes, and F. Oquendo, “SyMPLES - A SysML-based
Approach for Developing Embedded Systems Software Product
Lines.” in ICEIS (2), S. Hammoudi, L. A. Maciaszek, J. Cordeiro,
and J. L. G. Dietz, Eds. SciTePress, Jul. 2013, pp. 257–
264. [Online]. Available: http://dblp.uni-trier.de/db/conf/iceis/iceis2013-
2.html#SilvaFJGO13 [retrieved: August, 2014]

[29] Svendsen, A. et al., “Developing a software product line for train
control: A case study of cvl.” in SPLC, ser. Lecture Notes in Computer
Science, J. Bosch and J. Lee, Eds., vol. 6287. Springer, Sep. 2010,
pp. 106–120. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
15579-6 8 [retrieved: August, 2014]

[30] Haber, A. et al., “First-class variability modeling in matlab/simulink,”
in Proceedings of the Seventh International Workshop on Variability
Modelling of Software-intensive Systems, ser. VaMoS ’13. New
York, NY, USA: ACM, Jan. 2013, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/2430502.2430508 [retrieved: August, 2014]

[31] S. Blessing and M. Huhn, “Formal Safety Analysis
and Verification in the Model Driven Development of a
Pacemaker Product Line.” in MBEES, H. Giese, M. Huhn,
J. Phillips, and B. Schtz, Eds. fortiss GmbH, Mnchen,
Feb. 2012, pp. 133–144. [Online]. Available: http://dblp.uni-
trier.de/db/conf/mbees/mbees2012.html#BlessingH12 [retrieved: Au-
gust, 2014]]

[32] M. Timmer, H. Brinksma, and M. I. A. Stoelinga, “Model-based
testing,” in Software and Systems Safety: Specification and Verification,
ser. NATO Science for Peace and Security Series D: Information and
Communication Security, M. Broy, C. Leuxner, and C. A. R. Hoare,
Eds. Amsterdam: IOS Press, April 2011, vol. 30, pp. 1–32.

[33] Heimdahl, Mats Per Erik, “Safety and software intensive systems:
Challenges old and new.” in FOSE, L. C. Briand and A. L. Wolf, Eds.,
2007, pp. 137–152.

[34] J. Liu, J. Dehlinger, and R. Lutz, “Safety analysis of software product
lines using state-based modeling,” in 16th IEEE International Sympo-
sium on Software Reliability Engineering, 2005. ISSRE 2005, pp. 10–
30.

[35] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Redwood City, CA,
USA: Addison Wesley Longman, 2004.

[36] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

[37] “Open source tool for UML modeling,” 2011,
http://www.papyrusuml.org/ [retrieved: August, 2014].

[38] SINTEF, “Cvl tool from sintef,” 2012. [Online]. Available:
http://www.omgwiki.org/variability/doku.php/doku.php?id=cvl tool from sintef
[retrieved: August, 2014]

[39] R. Prieto-Diaz and G. Arango, Domain Analysis and Software Systems
Modeling. IEEE Press, 1991.

[40] C. W. Krueger, “Variation management for software production
lines,” in Proceedings of the Second International Conference
on Software Product Lines, ser. SPLC 2. London, UK, UK:
Springer-Verlag, Aug. 2002, pp. 37–48. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645882.672255 [retrieved: August,
2014]

340Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 362 / 679

Collaborative Team Management in Agile and

Distributed Development Environments

NohSam Park and JongHyun Jang

IT Convergence Technology Research Laboratory

ETRI

Daejeon, Korea

{siru23, jangjh}@etri.re.kr

Abstract—The inherent nature of software engineering is

collaboration. Recently software engineering practices have

seen many agile methods, and distributed collaboration in

geographically distant environment. In this paper, we

propose the methods to manage the collaborative team for

this changing environment. Collaborative team management

skills in agile requires the communication skills and

procedures in terms of social activities in agile process. In a

distributed software project, human factors are emphasized

for facilitating collaboration. The importance of risk

management strategy is highlighted to address the

circumstantial limitations of both environments. This paper

presents the basic skills for an agile and distributed project,

and reports on our experience of adapting for the real Studio

project settings with the concrete methods.

Keywords-Collaborative Team; Team Management; Agile;

Distributed software development; Software Engineering.

I. INTRODUCTION

Software engineering is a result of team activity.
Collaboration in software engineering has greatly
increased thanks to widespread use of the Internet and
many kinds of project management tools. Rapid
development using agile methods also enabled various
team organization and project management by
emphasizing the communication process with customers
[1].

Just like in many open source projects, distributed
team formation may make communication more
complicated because of time difference, culture, and
language barriers. The wide range of engineers on the
team may have different motivations and needs. These
characteristics in global and diverse team management
facilitate collaboration by offering technical tools and
adaptive software processes. Teaming process research
shows the importance of establishing and managing
software teams and emphasizes the difficulties of
implementing it [2]. Collaboration in software engineering
refers to managing the entire lifecycle of the project, and it
is the most important factor to accomplish high quality
product, and efficient software engineering practices.
Collaboration is complicated and hard to achieve because
of the increased interdependencies between the project
teams.

Agile software development has become popular since
the early of 2000s, and involves collaboration and
interactions naturally, resulting in creating working

software [3]. The structure and organization of agile teams
proves the people-focused approaches when it comes to
collaboration.

The need for coordination in software project comes
because tasks and artifacts between team members are
tightly connected to each other, so researchers created a
variety of tools and approaches to improve team
coordination. In addition, some evaluation types and
frameworks such as DESMET [4] for coordinating
software engineering tools have been proposed [5].

Much work has been done in collaborative software
engineering, but the collaborative practices are not routine
and generalized. In a research field there are three main
topics: theoretical understanding of collaborative software
engineering, designing assessment methods for specific
situations, and implementing tool support [1]. As should
be clear from the practices and research work,
collaboration is without doubt the core of software
engineering. From the point of collaboration, it is required
to develop the methods how to manage collaborative team
in the current software engineering situations. As Austin
and Devin described in their book [6], successfully
managing knowledge workers – software team members –
call for collaboration without detailed or coercive direction,
keeping in mind that we cannot supervise talented
employees in any conventional sense; we must lead them
with passionate support and faith in their work.

This paper is organized as follows. In Section 2, some
skills are proposed for enhancing collaboration in agile
process and distributed development environment. Section
3 presents the case study of MSE Studio project at
Carnegie Mellon University (CMU), and Section 4
concludes the paper.

II. COLLABORATIVE TEAM MANAGEMENT IN

DIFFERENT ENVIRONMENT

Collaboration in software engineering has evolved
through diverse processes, methodologies, and
development environments. In this section, the ways of
achieving the collaborative team management in the agile
process and the distant development environment are
discussed.

A. Agile Process Development Team

Customer collaboration and social activities get much
emphasis in agile. Nevertheless, collaboration does not
come naturally just by setting the agile team up. The team

341Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 363 / 679

management skills are important in order to improve
collaboration and coordination, especially between the
customer and software developers in the agile process.

Identify social skills for the agile process
The agile process has key practices such as small

release, simple design, refactoring, and iteration. They also
put an emphasis on communication with customers and
reflection on development iterations. For example, pair
programming in Extreme Programming (XP) [7]
encompasses the whole communication not just involving
two programmers in the same room. They discuss the
problem, understand the task, negotiate their opinions and
share the work.

Agile process practitioners need to socialize with
coworkers and customers. Most of them are familiar with
communicating using social networking and instant
messaging. But, socializing also requires us to keep in
contact with people in the physical situation. It involves
respect for the difference, understanding people’s situation,
and sound critique towards participants. Socializing might
cause conflicts among team members whether we apply it
online or offline.

The team should identify diverse social skills from
many different perspectives. From the technical view, the
team encourages technical discussion and research. The
team can have technical workshops or open-lab for
intriguing the intellectual motivation. The working
condition should easily accommodate the collaboration
between people. Just like XP’s pair programming requires
the reconfiguration of desks, the working environment
should be open and shared to increase collaboration.

Establish reporting channels between stakeholders
Co-located setting of agile processes does not require

formal reporting procedures to keep managers and
customers up-to-date with progress. Those procedures
hinder the project from moving fast, which violates the
agile property. The agile principle of “barely sufficient [8],”
can be applied to reporting as well. The reporting
concentrates on key features developed or requirements
satisfied, removing any unnecessary information. But it
should be able to hold the minimum value for the project.

Agile teams need to establish the reporting channel
when they show the project progress information to the
customer. Many agile teams still do in a light way such as
spreadsheet, sticky notes on the wall or whiteboard. The
intention was not try to impose additional burden or cost
on the agile practices, but it is another option for the team
that wants to use agile continuously.

Many tools can provide appropriate level of
information for both managers and the customer. It would
be the alternative for the formal reporting procedure
between stakeholders in the agile methods. Plus, agile
software tools provide reflections functionality when
teams finish iteration for both developers and the customer.
For example, by offering the burn-down chart, it shows the
simple trend and increases understanding of the project
progress.

Establish a risk management strategy
The elements of the risk management paradigm are the

following: identify, analyze, plan, track, control, and
communicate risks [9]. Agile risk management follows the
same activities like the traditional software projects. The
iterative nature allows us to tackle high risk sooner than
later. The risk management process is repeated every
iteration, and remaining risks are re-assessed. Teams
prioritize risks and take proactive risk management
strategy for the top priority risks.

The pitfall of risk management in agile processes is
that the team tends to dismiss the risks with low priorities
when they assess the risks. People are likely to identify
new risks for the project and focus on the high priority
risks. In order to prevent the tem from overlooking those
risks, the risk overhaul is suggested on every milestone of
the project. Risk overhaul implies that existing risks are
initialized and teams inspect risk management process
from the scratch. From the risk identification to risk
planning, teams go through every step involving the entire
stakeholders. Teams can start with the remaining risks, and
each risk is inspected thoroughly and reassessed.

In the risk overhaul, the outside member of the team
can join with a fresh eye. In other words, every remaining
risk should be treated and evaluated like newly identified
risks. It could be burdensome and costly to do quite often,
so it would be viable to perform it on a major milestone
basis.

In Figure 1, collaboration skills for the agile process
are described. Based on firm social skills, cooperation and
coordination procedure should be established. On top of
that, reporting channels enable the stakeholders to
communicate effectively. Throughout these procedures, a
proactive risk management should be implemented.

B. Distributed Development Team

The goal of distributed team building is to build a high
performance team. Global Teaming goals are suggested in
[10], each of which has specific practices and sub-
practices when implementing a global software
engineering (GSE) strategy. It has two specific goals:
Define Global Project Management, and Define
Management between Locations.

Figure 1. Collaboration skills for the agile process.

Social skills for Agile process

Cooperation and coordination procedure

Reporting channel

Risk

Management

342Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 364 / 679

In distributed software development, diverse factors
should be taken into account like distance, language,
culture, etc. from the team setup. Especially, human
factors are important for motivating participants and
letting them take the initiative. The following are some
suggestions for collaborative team management for
distributed development teams.

Identify common goals, objectives as fast as possible
Distributed development settings require each team

member to have consensus for the goals, objectives in the
early phase of the project. But, the team members in
different location have relatively fewer ways to get
feedback and information for the project. They usually
resort to online communications such as email, web-based
tools, and social networking. Face-to-face interface like
videoconferencing is possible, but still limited, especially
when the team is globally distributed.

Distributed development teams should put much effort
in getting all the stakeholders on the same page. The small
problem in the early phase will snowball and end up
bringing serious implications for the project. It is
preferable to hold not only the kick-off meeting but also
several workshops. Even though team members should be
located in distance, it would be much better to get together.

Teams only work and collaborate when they share the
same idea and goals. Though many technologies support
meetings via audio or video, not all team members are
comfortable because of diverse factors such as language
barrier, time difference, etc. Just having a meeting does
not guarantee to keep them agreed upon the issues.
Follow-up activities should be implemented and the team
should clarify the problem when they have issues during
the meeting.

Define the explicit roles and responsibilities
Distant team should be given explicit roles and

responsibilities for their team. Without them, the project
manager will receive dozens of questions from distant
development team members because they want to check
what their missions and tasks are. The objective is to
distribute work and motivate them to take the leadership of
their own.

No one in the distant team would want to put his/her
head up and lead without explicit roles and responsibilities.
Make them take the initiative of the project, and make
them feel they are the part of the team. When they can see
what should be done throughout the project, they will
make plan, accomplish tasks, and communicate as a whole
team. The project manager should be able to inspire the
distant team by setting the boundary of the central and
distant team.

Partitioning and allocating tasks across the distant team
is a key concept of the distant development. It is related to
the team’s capability to manage and develop features of
the project. The project management should assess the
distant team and local team’s abilities objectively and
modularize functional units.

Give autonomy and accountability
Some recommendations called “coherent and co-

located teams of fully allocated engineers” were made for
global software development projects [11]. They say that
engineers should not be distracted by other tasks working
on the same processes, methodologies, and terminology.
The success of the distant development team comes from
the innovation of the team members given autonomy.

The distant team can manage itself not by the central
team’s micromanagement. The distant team may have its
own rules and management styles, thus it can make self-
organized team. Then the central team gives it the
necessary information, tools, and other resources in order
to let it work. Product management would empower the
distant team with the privilege and remove impediments in
its way that may harm the progress of the project. All
those things are related to promoting team performance in
the project. The team as a whole can progress in its own
roles and contribute to the project success.

The team needs to find the golden mean between
autonomy and accountability. Autonomy should be
allowed within the roles and responsibilities given by the
central team. Autonomy and privileges should be only
allowed in terms of the common goal: the success of the
project. Autonomy naturally brings accountability for the
team’s result. Individuals in different locations work for
the team and project’s success, and each individual is
responsible for their result. Use of different process can be
done only when they meet the whole team’s schedule,
deliverables, and cost. The management should monitor
and track team’s progress and take actions to address the
issues when autonomy gets on track of the project.

Relate the risks and problems
Distributed development projects bring additional high

risk exposure as many risk factors exist such as culture-
related and geographical-related risks. Bass et al. presented
a coordination risk analysis method for multi-site projects
in [12]. The team leader can start with this risk
management strategy for the distant development project.

The team leader should relate the risks to the actual
problems from these risks. It is the best to avoid risks or
prevent them from becoming problems. But, some risks
evade and become problems. In the risk management
strategy, prioritizing and mitigating risks are highlighted,
but not much attention is paid to the correlation between
risks and problems when risks become problems.

Software engineers tend to either fix the problem or
controlling the risk. We need to analyze the correlation
between them, so that we can achieve more effective risk
management. First, we analyze risk monitor, track and
control activities. Then we look into what triggered the
risk for becoming the problem, and what the problem’s
impact is. Investigating the reason and result of the
problem helps us reflect on the risk management. That
reflection keeps the risk with similar conditions from
happening again. The risk/problem analysis process
incorporates collaboration among physically distant team
members.

343Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 365 / 679

III. CASE STUDY

In this section, we will give an example of CMU MSE
(Master of Software Engineering) Studio project, and
discuss issues when team management skill suggestions

are applied to the real collaborative team setting.

A. The Studio project and team setup

MSE is a 16-month/4 semester intensive program for
software engineers. The program can be done in the form
of full or part-time via distance education as well. The
entire program emphasizes application of course material
in a hands-on experience with real, paying clients who
expect actual deliverables [13]. CMU has been
incorporating the core academics of software engineering
into the MSE Studio.

The Studio project has three stakeholders: the team,
mentors, and the client. The team is structured as a small
with three to five students from diverse culture and
backgrounds. Students are expected to overcome technical
challenges, and meet their client’s requests through the
Studio project. Mentors are assigned to each team, and
they conduct, advise and guide the project. Student-mentor
meetings are held weekly in an interactive style of asking
the student, encouraging reflections. The client requests
the development of output by giving requirements and
information, providing feedback, and evaluating the
deliverables from the team.

Our team was composed of five team members, two
mentors, and the client. Each team member is from
different country. They speak different languages, and it
means the team had various factors to consider such as
language and culture. Work experience was also various
from less than 1 year to more than 10 years. The client of
the studio project came from the area of the retail store,
which has many branches worldwide. The goal of the
project was to improve the customer's shopping experience
such as shortening the checkout time in the local store. In
order to achieve the goal, the customer required us to
develop a mobile application on the Android platform.

The team adopted OpenUp [14], which is one of the
agile processes, as the development process. OpenUp has
4 phases of development lifecycle: Inception, Elaboration,
Construction, and Transition. Though the team used the
agile process, the client did not co-locate in the same place
with the team. In the inception phase in OpenUp, the team
was supposed to refine requirements and elicit specific
features for the project.

The team had to take also another thing into
consideration: one of the team members had to return to
the home country and continue the academics in the
transition phase.

B. Project Development and reflection about

collaboration

1) Inception
In the inception phase of OpenUP, the team is

supposed to establish the scope of project and do the
requirements analysis. The team, however, did not get

much response from the customer. The client stopped
communicating once in a while and the team did not take
the initiative meanwhile. We should have tried to fix the
problem of miscommunication and come up with our own
solutions despite of the client’s absence. Basically we just
waited the response from the client and we did not put
much effort on the Studio project, which made the agile
method ineffective. In addition, we did not prepare for the
upcoming risk of the remote team setup.

2) Elaboration
In the elaboration phase, the tasks are mostly related to

design. Architecture is believed to heavily affect the
software and the team tried to convince the client to
increase the communication for the architectural review.
Technical risks were identified and reported to the client
regularly, which made the team feel confident about the
success of the project.

The team also established the project strategy during
the elaboration phase not to repeat the mistake of the
inception phase. That was mostly from what we learned in
the architecture class, more specifically from Architecture-
Centric Design Methodology (ACDM) [15]. We tailored
the steps and procedures in accordance to our project
context. The team also suggested the strategy and plan
related to it. Contrary to the frustration in the elaboration
phase, a well-established reporting channel and risk
management strategy boosted the team morale as well as
the client satisfaction.

3) Construction
Implementing is what software engineers enjoy and

indulge in the most. The team was given 48 hours of work
each week. The common working time was set up during
the weekdays to work together, and a daily scrum meeting
was planned to check the status. With plenty time of work,
developing two features the client asked was considered
not a big deal for the team.

The plan was only a plan again, though. The chronic
time management problem still did not show any hint of
the improvement for some members. The daily meeting
was switched to two meetings per week. The quality plan
and the milestones have continuously changed because the
client did not respond to any reports from us. It was the
last opportunity for the team to co-work because one
member would be in a remote place in the next phase. The
Studio project is an academic course and that aspect
heavily influenced for the team members. The benefits in
the elaboration phase did not last long because the
reporting channel with the client was collapsed and the
social skills were useless.

The best lesson the team members learned is the
importance of communication with the client. We were at
a loss when the client just quit the connection and became
contactless from time to time. This time, we changed the
policy. The customer liaison, which has already existed,
notified that he/she would try to contact with several times
using email, text, and phone calls. When there was no
response for those efforts, the team finally made their own
decisions. At least, we tried to remove some uncertainties
and the team was able to deliver the mobile application

344Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 366 / 679

integrating two features. That would not be exactly what
the client wanted at first, but it was the minimum we could
make without enough communication.

4) Transition
The team finally faced the distant team setting in the

transition phase. Actually, that intrigued the team because
it was not common in small and medium sized businesses.
The transition phase normally does not involve many tasks
related to the development, so it was not easy to assess
how the suggestions for the remote collaboration would
work.

Collaborating as a team can be a real challenge.
Getting everybody on the same page, assigning tasks,
following up on pending items, and making sure everyone
is always in the loop is never easy, and it is something
almost all companies struggle with. The team decided to
have a weekly meeting considering the time difference and
team members’ schedule. The team used a
videoconferencing tool like Skype or Hangout of Google
to get together. The team prepared the remote development
condition from the construction phase, but that was not
enough. More documents were needed for the remote
member to catch up. More methods to collaborate online
should have been attempted.

In the early weeks of the transition phase, the weekly
meetings were canceled or held without getting the whole
team members. The meeting itself was not satisfactory:
just checking and reporting the status without enough
discussion and review of the deliverables and the iteration
process. The team did not take advantage of the current
collaboration technologies. Whereas the Studio project did
not see the effectiveness from the remote team condition,
in another situation of the remote class we took at the same
time, the collaboration was good enough. The class asked
for the group presentation about one topic and we were in
the same distant team setting. The group shared the goals
of the presentation and divided the parts each member had
to do. We had a weekly meeting to check each member’s
progress after working individually. A subjective criterion
would be the members’ morale whereas an objective one
would be the grade for each class. The results in the Studio
project were poor in both criteria.

One way of assessing the success of the team in the
agile method is the trend of team’s velocity. It could be

applied to the evaluation of distant team in the agile
method. Comparing the velocity in the co-located situation
with one in the remote condition will show the
effectiveness of the team’s status. The team’s velocity did
not show the improvement during the project in Figure 2.
Overall the trend is not stable except during the
elaboration phase from iteration 12 to iteration 17. Some
tasks are not finished on time during the iteration in the
transition phase after iteration 22.

C. Discussion

In this section, we will investigate how these
suggestions would make better this situation or what were
the issues when adopting these into the real situation.

1) Agile team
Identifying social skills refers to acquiring diverse

communication methods both among team members and
for the customer. Even though the agile method was
adopted, which requires the intimate and quite often
conversation, the team was too passive to just wait
requirements from the customer. The team established
several kinds of communication methods: a Facebook
group between team members in addition to traditional
ways such as email and instant messaging, and biweekly
teleconference meeting with the customer.

Reporting channels are the official procedure for
discussing, negotiating and satisfying the customer
expectation for the project. The team did not have the on-
site customer even though adopting the OpenUp. So the
team needed to set up the reporting channel, and a
biweekly teleconference meeting was held with the
customer to report the progress of the project, and the
customer gave feedback about it.

Risk management strategy is emphasized by the
nature of the OpenUp requiring risk management process
at the end of iteration. The team adopted the
aforementioned risk overhaul in the elaboration phase. The
customer wanted the team to follow feature-by-feature
development for the mobile application. When we touched
another one after finishing one feature, new kinds of risks
were identified and the team needed to see it differently
from the usual risk management process.

As these suggestions were applied to the real agile
project, the problem behind them is always the motivation.
When the team members are not motivated to use them,
the collaboration skills are meaningless. In fact, the team
was not able to build some management foundation before
realizing the team's collaboration and coordination
problems and raising the awareness of the importance of
them.

2) Distant team
Sharing common goals and vision in the early phase

of the project is the first thing we had to consider. The
team had co-located setting except in the transition phase
that was good enough for having the common goals and
objectives. Maintaining the commonality, however, should
be kept throughout the entire project when the change
happens.

(b) Velocity Status

Figure 2. Team’s velocity trend

345Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 367 / 679

Explicit roles and responsibilities are a factor which
enables to proceed in the distant development environment.
The distant team member should be able to know what his
tasks are, when they should be done, and how they can be
incorporated into the deliverables of the project. It is only
possible when the team defines roles and responsibilities
for each team member.

Autonomy and accountability is an integral part
when we deal with the team morale and the project
accomplishments. In reality, it is not feasible to
micromanage the distant team member. One of solutions is
to give autonomy and ask accountability for the results.
The team leader or project management should be able to
ask for accountability for his tasks.

Risk/problem analysis is supplemental to the existing
risk management process. A risk may become a problem
or not, and the distant team condition may bring
confliction when it becomes a problem. Without complete
analysis about the reason and implications of the
risk/problem, the team might evade the responsibility or
accuse someone else who is not present, thus infringing
collaborative team spirit.

Table 1 summarizes the suggested skills and the
corresponding methods in the Studio project. The criteria
for the skills are measured by both subjectively like
questionnaire and quantitatively.

IV. CONCLUSION

In this paper, the trend of collaboration in software
engineering was reviewed, and some suggestions were
proposed for the agile process and distributed development
environment. Agile process is known for strengthening the
collaboration with the customer, but it is necessary to
prepare strategy and procedure beforehand about how to
communicate both within the teams and among the
customer.

Management skills in distributed development
environment presented in this paper focuses on human
factors. Respecting, understanding given circumstances of

each team will facilitate the collaboration. Besides,
thorough preparation and planning regarding how to
manage the project will drive collaborative team members
to follow the practices of software engineering.

Some issues and reflections are discussed when we
implemented these skills into the real software project. Our
team had both characteristics of agile and distributed
development. We learned that coordinating and
collaborating are hard to obtain from some of experience
in the project because of human and technological factors.

ACKNOWLEDGMENT

This work was supported by Electronics and
Telecommunications Research Institute (ETRI) Grant
funded by the Korea government [14ZC1320,
Development of WoT Collaboration Service Platform
based on Social Relation].

REFERENCES

[1] Ivan Mistrik, John Grundy, Andre van der Hoek, and Jim
Whitehead, Collaborative Software Engineering. Springer, 2010.

[2] Ita Richardson, Valentine Caseyb, Fergal McCafferyb, John
Burtonc, and Sarah Beechama, "A Process Framework for Global
Software Engineering Teams," Information and Software
Technology,” vol. 54, pp. 1175-1191, November 2012.

[3] Helen Sharp and Hugh Robinson, "Collaboration and coor-dination
in mature eXtreme programming teams," International Journal of
Human-Computer Studies,” vol. 66, pp. 506-518, July 2008.

[4] Barbara Kitchenham, Stephen Linkman, and David Law,
“DESMET: a methodology for evaluating software engineering
methods and tools,” Computing & Control Engineering Journal,
vol. 8,pp. 120-126, June 1997.

[5] Barbara Ann Kitchenham, "Evaluating Software Engineering
Methods and Tool Part 1: The Evaluation Context and Evaluation
Methods," SIGSOFT Software Engineering Notes, vol. 21, pp. 11-
14, January 1996.

[6] Rob Austin and Lee Devin, Artful making: What Managers Need
to Know About How Artists Work, Prentice Hall, 2003.

[7] Kent Beck and Cynthia Andres, Extreme Programming Explained,
Addison-Wesley, Reading MA, 2000.

[8] Kevin Tate, Sustainable Software Development: An Agile
Perspective, Addison-Wesley Professional, 2005.

[9] Ray C. Williams, George Pandelios, and Sandra Behrens, Software
Risk Evaluation (SRE) Method Description (Version 2.0), SEI,
1999.

[10] Ita Richardson, Miriam Q'Riordan, and Valentine Casey,
"Knowledge Management in the Global Software Engineering
Environment," ICGSE 2009, pp. 367-369, 2009.

[11] Christof Ebert and Philip De Neve, "Surviving global software
development," IEEE Software, vol. 18, pp. 62-69, March 2001.

[12] Matthew Bass, James D. Herbsleb, and Christian Lescher, "A
Coordination Risk Analysis Method for Multi-Site
Projects:Experience Report," 2009 IEEE International Conference
on Global Software Engineering, pp. 31-40, November 2009.

[13] Mary Shaw, Jim Herbsleb, Ipek Ozkaya, and Dave Root,
"Deciding What to Design: Closing a Gap in Software Engineering
Education," ICSE 2005, pp.607-608, May 2005.

[14] Eclipse Foundation, OpenUp Wiki, http://epf.eclipse.org/
wikis/openup, 2014.08.15.

[15] Anthony J. Lattanze, Architecting Software Intensive Systems,
Auerbach Publications, 2009.

TABLE I

COLLABORATIVE SKILLS FOR THE STUDIO PROJECT

Skills Team’s methods Criteria for the skills

Social skills Email, Facebook group,

biweekly teleconference

meeting

Team members’ and

client’s morale

(questionnaire)

Reporting

channels

VersionOne report, biweekly

teleconference meeting

Number of reporting

Risk management

strategy
 Risk evaluation at the end of

iteration

Risk overhaul

Trend of the number of

risks

Common goals in

the early phase

Requirement engineering (RE)

in co-located environment

Time spent in RE

Number of requirements

Explicit roles and

responsibilities

Assign of role to each member Assigned roles

Autonomy and

accountability

Distant team member

management by formal

(VersionOne) and informal

(regular videoconferencing)

method

Progress report by team

member

Relate risk to

problem

Risk/problem analysis Number of problems from

the risks

346Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 368 / 679

Security Through Software Rejuvenation

Chen-Yu Lee, Krishna M. Kavi, Mahadevan Gomathisankaran, Patrick Kamongi

Department of Computer Science and Engineering
University of North Texas

Email: {Chen-Yu.lee,Krishna.Kavi, Mahadevan.Gomathisankaran}@unt.edu
Email: patrickkamongi@my.unt.edu

Abstract—Software rejuvenation has been used to improve reli-
ability of systems by periodically checkpointing and restarting
them. In this paper, we propose to use rejuvenation as a
mechanism to enhance the security of Cloud infrastructure and
eliminate malware by continuous and periodic rejuvenation. To
evaluate the effectiveness of rejuvenation in eliminating malware,
we defined an experimental setup, and utilizing complete sys-
tem rejuvenation, as well as application level rejuvenation we
investigated which malware were eliminated. We also describe
a cost model for rejuvenation so that one can determine how
often systems and applications should be rejuvenated, trading
cost against security. Our experiments and models show that
rejuvenation once every 24 hours is cost-effective.

Keywords–Rejuvenation; Malware; Security; Vulnerability.

I. INTRODUCTION

Computer viruses have been evolving into more complex
malware and the detection and elimination of such threats is
becoming very expensive in large IT operations. The number
of new types of malware detected over the past ten years has
increased very rapidly since 2010.

Software Rejuvenation technology was first proposed by
Lin in 1993 [1]. The author observed that system performance
degrades with time, and failure rates also increase with time.
This phenomenon was termed software aging. A proactive so-
lution to this problem is to gracefully terminate an application
or a system and restart it in a clean internal state, known
as software rejuvenation [2]. Rejuvenation technology was
originally used for software fault tolerance [3] [4]. The most
relevant work that applies rejuvenation for protection against
security attacks is SWRMS proposed by Aung in 2004 [5]. The
authors propose to identify attacks using an intrusion detection
system, and then perform software rejuvenation to counteract
these attacks, including killing the intruders’ processes, halting
abuse, shutting down unauthorized connections, and restarting
applications. The attacks, however, are not eliminated if the
processes are infected. They do not rely on rollback to restart
infected processes from a known clean state. Moreover, since
the approach is based on detecting intrusions, one should
include the cost of detecting attacks along with the cost of
rejuvenation, to estimate the total cost of their approach. We do
not base rejuvenation on detecting attacks; rejuvenation is ap-
plied regularly. Along with rejuvenation, we restart processes
from a checkpointed or clean state.

More generally, we believe that rejuvenation can either be
used in place of scanning to detect attacks and malware, or in

addition to scanning. To evaluate the effectiveness of rejuve-
nation against malware and viruses, we created a testbed that
performs both system level and application level checkpointing
and restarting. We then introduced known malware and verified
if the malware was eliminated after the restart. The testbed also
provides for a realistic evaluation of the cost of rejuvenation
and which malware can be eliminated using rejuvenation. In
this paper, we also develop a model to compare the cost
of rejuvenation with the cost of scanning for malware. We
emphasize that rejuvenation is more than just restarting of
systems, it also includes checkpointing software applications
and systems in clean states, and periodically rolling back the
software to known clean states.

The rest of the paper is organized as follows: Section II
introduces how rejuvenation can be used to enhance security.
This section also introduces a model for estimating the cost
of rejuvenation. Section III shows the simulations results of
rejuvenation on our web service built by Joomla [6] and Open-
Stack [7]. Section IV compares rejuvenation with scanning
approaches. Section V provides our conclusions and future
work.

II. REJUVENATION FOR SECURITY

A. Environment Description

The proposed rejuvenation is applied to Cloud computing
[8] environments to enhance security and stability of the
systems. Many commercial operations rely on Cloud com-
puting and in such applications, maintaining low Mean Time
To Repair (MTTR) and the cost of repair are essential to
the profitability of the operations. Therefore, they normally
use software patches to fix problems, instead of completely
overhauling their systems. The patches include system patches,
software patches, malware/virus signatures, firewall rules, etc.

B. Work Flow of Rejuvenation for Security

We propose to use periodic rejuvenation (i.e.,checkpoint,
rollback, recover and restart) to improve security and reliability
of components. The rejuvenation can be applied modularly to
minimize the downtime of the system. Each module is restored
(or rejuvenated) to a clean checkpoint and reconnected with
other related modules. Patches can also be applied to modules
during a rejuvenation to reduce their vulnerabilities and to
eliminate detected malware. The patches should be verified
as clean and distributed by authorized providers, to assure
that patched modules are clean. The work flows are shown
in Figure 1, and the main processes are described below:

347Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 369 / 679

Figure 1. The workflow of secure rejuvenation mechanism

• Checkpoint: When a new software module is tested,
verified, and ready to go online, it is assumed to
be in a clean state and a checkpoint of the module
is taken. Periodically, the module is rolled back to
the clean checkpoint to scrub the module of any
infections. If any design fixes or other patches are
made available to the module since its original release
(and the patches are verified as trusted and clean), the
module is upgraded during the rejuvenation period,
and the checkpoint image is also updated to the new
clean state.

• Recover: All modules of a system go through a re-
juvenation process (checkpoint-recovery) periodically,
where the periodicity is determined based on the cost
of rejuvenation and the frequency of new malware in-
troductions. The process eliminates not only software
aging and soft or intermittent faults, but also some
malware. The rejuvenation may also be performed
when an abnormal condition or a suspected security
threat is detected.

• Restart: The module always restarts after each recov-
ery. This eliminates software aging and some common
security threats, including denial of service (DoS) and
others.

III. SIMULATION RESULTS

A. Simulation Settings
To understand how rejuvenation can eliminate malware,

we built a Joomla content management service on our private
Cloud environment supported by OpenStack [7]. The specifi-
cation of our system is shown in Table I.

B. Results and Analysis
The rejuvenation is divided into two types: a complete

system rejuvenation and component rejuvenation. In our sim-
ulation, the complete system rejuvenation is provided by
OpenStack which creates an instance snapshot stored in the
snapshot repository, and restores it while launching the com-
plete rejuvenation. It supports live snapshotting, which allows
for taking snapshots of the running virtual machines without

pausing them. In the second case, we only take checkpoints of
an application or components of applications and periodically
restore them.

In the experiment, we tested some malware and vulnerabil-
ities listed in Table II. Most of the attacks are at the Operating
Systems (OS) level: they create backdoors for bot or other
attacks by using rootkit or other related technologies. Under
the attack, the malware gains root privileges, hides itself, and
deletes itself from the log. We perform our experiment in two
phases.

Phase 1. Inject malware and scan the complete system
to make sure the malware is in the system and
detectable by anti-malware software. NOD32 [9]
and ClamAV [10] are applied in our experiments.

Phase 2. Restore the checkpointed version and then scan to
find if the malware is eliminated by rejuvenation.
If the malware is not eliminated by the reju-
venation, it should be detected by anti-malware
software.

The experimental result shows that the complete system
rejuvenation eliminates all the malware we introduced and
recovers all of the infected files. We also simulated changes
to the integrity of MySQL [11] files using the known vul-
nerabilities of MySQL. After restoring, the modified files are
recovered correctly. The rejuvenation can only recover the

TABLE I. textscSimulation Environment Specification

Platform Version
Cloud platform OpenStack
Flavor m1.small
RAM 2GB
Processor QEMU Virtual 1.0@2.33GHz(1Core)
Instance operation system Ubuntu 12.04
Instance Size 20 GB
Application service Joomla 3.3
Database MySQL 5.5.36
Compiler PHP 5.4.27
Web service Apache 2.4.9
Anti-malware software ClamAV 0.98.3
Anti-malware software F-prot 6
Anti-malware software Nod32 4

348Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 370 / 679

infected files, but the vulnerabilities still exist making the
system vulnerable for repeated attacks. Vulnerabilities can only
be fixed with appropriate patches. We also tested to show that
rejuvenation can rescue the system from Denial of Service
(DoS) [12] or low-rate DoS attacks [13].

TABLE II. TEST MALWARE AND VULNERABILITIES

Malware Scope Rejuvenation, Result
Backdoor.Linux.Ovason Operation System Restore, Eliminated
Backdoor.Linux.Phobi.l Operation System Restore, Eliminated
Backdoor.Linux.Rst.a Operation System Restore, Eliminated
Exploit.Linux.Da2.a Operation System Restore, Eliminated
Exploit.Linux.Race.l Operation System Restore, Eliminated
Net-Worm.Linux.Scalper.b Operation System Restore, Eliminated
Rootkit.Linux.Agent.sm Operation System Restore, Eliminated
Trojan.Linux.Rootkit.n Operation System Restore, Eliminated
Trojan.Tsunami.B Operation System Restore, Eliminated
VirTool.Linux.Mhttpd Operation System Restore, Eliminated
Virus.Linux.Osf.8759 Operation System Restore, Eliminated
Virus.Linux.Radix Operation System Restore, Eliminated
Virus.Linux.Silvio.b Operation System Restore, Eliminated
Virus.Linux.Snoopy.c Operation System Restore, Eliminated

Vulnerability Scope Rejuvenation, Result
CVE-2013-1636 Joomla Restore, Recovered
CVE-2014-2440 MySQL Restore, Recovered
CVE-2014-2436 MySQL Restore, Recovered

Attack Scope Result
Denial of Service (DoS) Apache Reboot, Recovered
Low-rate Dos Apache Reboot, Recovered

C. Performance and Cost
Performance of rejuvenation (the time spent for rejuvena-

tion) is important because it relates to the unavailability or
downtime of the system or service. In this section, we report
the performance of our simulations in two parts: time spent
for rejuvenation and the storage space required for storing
checkpointed information.

1) Time spent and storage space costs: For the com-
plete rejuvenation experiment, we checkpointed and restored
the working instance. But, checkpointing can be performed
without any downtime; restoring, however causes 54 sec-
onds of downtime. For component rejuvenation, we set up
a checkpoint on Apache and MySQL database software in
our experiments with 850 MB of data without pausing; the
chekpoint images used 327MB of memory. Application level
rejuvenation required 187.51 seconds (includes the time to
retrieve checkpointed images, stopping the application and
restarting the application using the checkpointed image).

2) Cost: Globalscape found that in 60% of Fortune 500
companies, a single hour without critical systems costs their
company between $250,000 and $500,000 and one in six
companies reported that one hour of downtime can cost $1
million or more [14].

Assuming that on average $500,000 of loss per hour of
downtime, our experiments show a cost of $7500 for com-
plete system rejuvenation, $26,043 for rejuvenating Apache
and MySQL software. The cost of the storage needed for
checkpoint images are $2.4 and $0.12 respectively based on
Amazon’s prices. The cost model is described in Section IV-B.

IV. ANALYSIS AND COMPARISON OF REJUVENATION FOR
SECURITY

In this section, we compare the capabilities in term of
defense against various security threats and cost associated
with rejuvenation and malware scanning techniques.

A. Characteristics Comparison

Rejuvenation has been used as a fault-tolerant/fault-
avoidance approach in software systems. In a similar manner,
rejuvenation can be applied as a defense against security
threats. By restoring components to clean or healthy states,
rejuvenation can make the system less prone to catastrophic
failures. In Table III, we compare the capabilities of reju-
venation with malware scanning when applied to survivable
systems. In Section III, our experiments have shown that
rejuvenation can eliminate or mitigate the effects of several
types of malware. Some weaknesses that cannot be eliminated
using rejuvenation include trapdoors, which are eliminated
by compiler-based code checkers and detected by resource
monitors. But, anti-malware software need to monitor and
scan entire memory and file systems to detect malware and
eliminate or quarantine the infected files.

TABLE III. THE COMPARISON OF THE FEATURES, AND THE ABILITIES OF
THREAT ELIMINATION BETWEEN REJUVENATION AND MALWARE

SCANNING FOR SECURITY.

Feature Rejuvenation Malware Scanning
Fault avoidance Partial No
Fault tolerance Yes Yes
Denial of Service(DoS) or
Low-rate DoS

Reboot Log analysis

Virus elimination Restore to checkpoint Scanning
Trojan horse elimination Restore to checkpoint Scanning
Trapdoors elimination No No
Automated software-patching Yes Yes
Intrusion dection No Yes

B. Cost Model

This section discusses the cost of performing rejuvenation
compared with malware scanning more formally.

Malware scanning software (e.g., anti-malware software) is
usually performed as a daemon, scanning all the stored files,
executing processes, system kernel and other system software
continuously. Scanning may detect more security threats than
that can be eliminated using only rejuvenation. However,
scanning for malware consumes computational resources and
thus the following model can be used for estimating the cost
of malware scanning (CoMS).

• Instance size(V): The cost of scanning is proportional
to the size of the system being scanned. In addition to
scanning of the system at startup, malware scanning
occurs continuously and is invoked when changes to
the system are detected (such as file updates, internet
downloads, mail attachments or other changes to the
system state, such as changes to page tables). In this
paper, we relate the cost of scanning to the average
volume of the new information that must be scanned
over a given period of time. The period of time and
the volume of data scanned are compared with the
rejuvenation period and the volume of information
involved in the rejuvenation process.

• Scan speed(SS): This is the rate at which a system
can be scanned to detect malware or virus signatures.

• Cloud computing fee (CCF): The fee charged by
Cloud providers (whether the computing is used for
scanning or for providing services).

349Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 371 / 679

The total cost involved with malware scanning CMS for
size V over a chosen time period T is

CMS(V, T) =
V × CCF

SS
(1)

As an example, if it is assumed that the scanning speed is
26.58 MB/sec [15] and the computing fee charged by Amazon
EC2 is $0.176, $0.351, $0.702, and $1.404 per hour for
instance size 4, 32, 40, and 80GB [16], the cost of performing
one malware scan on a Cloud environment with 10 GB size
data would be $0.007, $0.117, $0.293, and $1.173 respectively.

In this paper, we assume two types of rejuvenation: a
regular, periodic rejuvenation at fixed periods, and ad hoc
rejuvenations when anomalies or threats are detected. Thus,
factors that contribute to the cost of rejuvenation are divided
into two parts. One is the cost involved with rejuvenation
(CoR), and the other is involved with monitoring (CoM)
to detect anomalies. Rejuvenation makes some modules un-
available (downtime) during the process of restoration. The
following are the factors that influence the cost of rejuvenation.

• Downtime (DT): While performing the rejuvenation,
some modules will be unavailable and the downtime
can range from a few seconds to a few minutes.

• Number of transactions lost (TL): The number of
transactions lost during the downtime.

• Potential loss of revenue associated with each transac-
tion (PR) that could not be completed during down-
time.

• Version storage fee (SF): Since clean modules and
checkpointed states must be saved, we include the
cost of storage with rejuvenation. In some cases, we
may need to save m snapshots or checkpoints to fully
recover the system to a clean state. Thus we include
the total cost of storage needed for checkpointing. This
can be compared with the volume scanned by malware
scanners.

• Data transfer fee (TF): We assume that the check-
points are stored in a backup or archival facility and
this information has to be transferred to executing
environments during restoration. We include the data
transfer costs for transferring n bytes of data trans-
ferred between an execution environment and backup
facility.

The total cost involved with rejuvenation CoRperiodic for
size V , with a rejuvenation period of T , is

CoRperiodic(V, T) = DT ×TL×PR+mV ×SF +V ×TF
(2)

In addition to periodic rejuvenation, ad hoc rejuvenation
(rollback to clean checkpoint and restart) is also applied when
an abnormal condition or a security violation is detected. The
detection may be based on monitoring system performance
or other indicators. For example, performance indicators, in-
cluding memory allocations, CPU usage, network traffic, disk
writes, may indicate abnormal behavior of applications. We
will include the cost of monitoring (CoM(V, t)) the system to

identify abnormal conditions in the cost of rejuvenation. The
cost depends on the volume V of information monitored.

CoRadhoc(V, t) = CoM(V, t) + CoRperiodic(V, t) (3)

Since the ad hoc rejuvenation can take place at any time
between scheduled periodic rejuvenations, we will use a prob-
ability distribution that associates the probability of detecting
an abnormal condition over this period of time. We can now
compute the expected cost of rejuvenation that includes both
ad hoc and periodic rejuvenation as follows.

CoRtotal(V, T) =

∫ T

0

f(t)(CoM(V, t) + CoRperiodic(V, t)) dt

(4)

Here, f(t) is the probability density function that reflects
the probabilities of detecting abnormal behaviors. f(t) varies
depending on the security environment of the institution. If the
systems are not protected, the probability of detecting an ab-
normal system may be higher. T is the scheduled rejuvenation
period.

Consider for example that it takes 17 seconds to rejuvenate
a system (i.e., the downtime is 17 seconds [17]), the average
number of transactions lost in a year is 355.72 [17], the average
potential revenue of a transaction lost is $100,000, and the
storage fee charged by Amazon is $0.095 per GB-month and
data transfer fee is $0.12 per GB, the cost of performing each
periodic rejuvenation is $19.1756 for the 10 GB cloud instance.
If we assume that in addition to hourly scheduled rejuvenation,
ad hoc rejuvenations are warranted with a probability of 10%
in between scheduled rejuvenations and if we assume that
monitoring consumes 0.1% of CPU time, the total cost of
rejuvenation can be estimated as

CoRtotal(10GB, 1hr) = 2.03756 + 19.1756 (5)

C. Cost Comparison
Figure 2 shows the cost of rejuvenation performed peri-

odically for different frequencies: four hours, six hours, 12
hours, and 24 hours over a year. The cost of rejuvenation
over a year depends on the frequency of rejuvenation and the
cost of each rejuvenation. In Figure 2, we did not include
monitoring and ad hoc rejuvenation costs, since these costs
depend on the probability of detecting an abnormal condition.
The figure also shows the cost of scanning for malware. The
cost of scanning depends on the size of the system being
scanned. The red horizontal lines represent the cost of scanning
continuously (Frequency = 0). We also show the cost of
malware scanning when scanning takes place at four, six, 12
and 24 hour periods - similar to rejuvenation. Systems need
only to scan new information generated during the period and
we assume that the amount of new information generated is
proportional to the length of the period. It can be seen that the
cost of rejuvenation decreases with the decrease in frequency
(less frequent rejuvenation). The cost of continuously scanning
for malware (see the three dash lines) is higher than rejuvena-
tion at certain rejuvenation periodicities. If one assumes that

350Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 372 / 679

2	

2.5	

3	

3.5	

4	

4.5	

5	

0	 4	 6	 12	 24	 36	 48	 60	 72	 84	 96	

CO
ST
	 (L
G(
X)
)	

FREQUENCHY	 (HRS)	

80G-‐Scanning	 40G-‐Scanning	 32G-‐Scanning	 80G-‐Rej	 40G-‐Rej	 32G-‐Rej	

Figure 2. Cost comparison of secure rejuvenation versus malware scanning

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

20
1

20
6

21
1

21
6

22
1

22
6

23
1

23
6

24
1

24
6

N
um

be
r o

f p
ot

en
tia

l u
nd

et
ec

te
d

m
al

w
ar

e

Day

Scanning method Rejuvenation method

The signatures malware
are generated since 180th

day.

Figure 3. The potential number of malware remaining in a system after use of scanning versus rejuvenation

systems scan for malware at fixed internals (such as every
four hours), rejuvenation costs are higher except when it takes
place once every 80-100 hours. Based on our assumptions and
cost models, rejuvenation once every 24 hours appears to be
a reasonable choice for different system sizes.

D. Undetectable Malware Elimination

Malware is getting more sophisticated and the sophisti-
cation is increasing in recent years. McAfee’s report shows
that there are over 100,000 new malware instances detected
in a given day [18]. There are three phases in the detection
and elimination of malware. The first is the undetected phase

in which the malware strain was not detected in the system.
The second is the identification phase in which the malware
strain is detected as a malicious code pattern and its signature
is generated. Finally, the malware strain enters the detected
phase after its signature is updated. A study by Damballa
demonstrated that the typical gap between malware release and
detection using anti-malware is 54 days, almost 8 weeks [19].
Nearly half of the 100,000 malware samples go undetected on
the first testing day, and there were at least 15% of the samples
remaining undetected even after 180 days. This means that the
system may suffer from undetected malware for long periods
of time.

351Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 373 / 679

Suppose a system component is infected with an average of
30 malware strains every day since it is released, the number of
potential malware strains hidden may increase over the next
several weeks before some strains are detected. On average
it will be 9 weeks before detected malware signatures are
released, and the number of hidden malware will be reduced
as shown in Figure 3.

By contrast, the proposed rejuvenation mechanism periodi-
cally restores the component to a ”clean” version (checkpoint);
thus, the exposure of the system to new malware introduction is
the time between rejuvenations. Assuming that the component
is rejuvenated once a day, it remains in ”clean” status at the
beginning of each day. After the 9th week, some malware
strains are eliminated because of the signatures, thus the
potential malware strains lurking may decrease as long as the
backup version is not infected.

E. Complete Rejuvenation and Component Rejuvenation

The services can be rejuvenated one service at a time
such that the impact of rejuvenation is not felt by the entire
system. The performance of rejuvenation depends on the
instance’s capability. By taking our experiment as an example,
the instance works with flavor m1.small, thus the ability of
checkpointing smaller size files is slower than checkpointing
of complete instance performed by the host. Furthermore, any
patches or upgrades to services can be done separately from a
running system.

F. Application of Mobile Device

Kaspersky Lab’s report shows that approximately
10,000,000 unique mobile malicious installation packages
were detected in 2012-2013 [20]. Sometimes mobile malware
resists the anti-malware protection because of Android
vulnerabilities. Malware uses the vulnerabilities to bypass
the code check, enhance the privilege to extend their
capabilities, and make it more difficult to be removed, like
Trojan-SMS.AndroidOS.Svpeng.a. Therefore, it is difficult
for normal users to remove malware, since most of the
malware is embedded in the legitimate software and acquires
administrator privilege during the installation. There are only
two options for users. One is to reset the system to factory
settings, but some malware could obstruct this reset. The
other is to apply anti-malware software to continuously scan,
analyze, and eliminate it; but this consumes processing and
thus the battery life of the device.

Our rejuvenation mechanism can be applied on Virtual
Machine-based environments, such as cloud services, as well
as mobile devices (e.g., Android). Our rejuvenation mechanism
restores the checkpointed image from either the storage of
the device or from some external storage in the Cloud, or
may rely on trusted zones to bring the system to a clean or
consistent state. If the rejuvenation is performed while the
device is connected to a power source, the battery life will
not be a consideration. Rejuvenation can be performed on
a regular basis, similar to checking periodically for software
patches and upgrades. A rejuvenation mechanism, therefore, is
more suitable in a mobile environment, than malware scanning
techniques.

V. CONCLUSION

The cybersecurity of Cloud-based computing systems are
becoming critical to modern society as we are becoming ever
more dependent on information infrastructures. Balancing sys-
tem reliability, availability and security is complex. Malware
and other security threats are becoming more sophisticated.
Thus a multipronged approach is necessary to improve se-
curity as well as system survivability. We feel that software
rejuvenation, which has been successfully employed as a fault-
tolerance mechanism, can also be used as a defense against
security threats. We conducted experiments in a controlled
environment to show that rejuvenation does eliminate some
malware. We will extend our experiments to more thoroughly
evaluate which types of malware can and cannot be eliminated
with rejuvenation only. In this paper, we also introduced a
model that can be used to compare the costs associated with
rejuvenation and malware scanning so that one can determine
the rejuvenation frequencies that lead to cost-effective defense
against hidden threats. While we compared rejuvenation as
an alternative to scanning in this paper, they should be used
together.

ACKNOWLEDGMENT

This research is supported in part by the NSF Net-centric
and Cloud Software and Systems Industry/University Cooper-
ative Research Center and NSF award 1128344 and 1332035.
The authors also acknowledge David Struble’s help in making
the paper more readable.

REFERENCES

[1] F. Lin, “Re-engineering option analysis for managing software rejuve-
nation,” Information and Software Technology, vol. 35, no. 8, 1993, pp.
462–467.

[2] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software re-
juvenation: analysis, module and applications,” in Proceedings of the
25th International Symposium on Fault-Tolerant Computing (FTCS-25),
1995, pp. 381–390.

[3] R. Agepati, N. Gundala, and S. V. Amari, “Optimal software rejuve-
nation policies,” in Proceedings of the Reliability and Maintainability
Symposium (RAMS), 2013, pp. 1–7.

[4] S. Oikawa, “Independent Kernel/Process Checkpointing on Non-
Volatile Main Memory for Quick Kernel Rejuvenation,” in Proceedings
of the 27th International Conference on Architecture of Computing
Systems (ARCS), ser. LNCS. Springer, 2014, vol. 8350, pp. 233–
244.

[5] K. M. M. Aung and J. S. Park, “Software Rejuvenation Approach to
Security Engineering,” in Proceedings of the International Conference
on Computational Science and Its Applications (ICCSA), ser. LNCS.
Springer, 2004, vol. 3046, pp. 574–583.

[6] “Joomla,” URL: http://www.joomla.org [accessed: 2014-07-28].
[7] “OpenStack,” URL: http://www.openstack.org [accessed: 2014-07-28].
[8] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”

NIST, Tech. Rep. SP800-145, Sep. 2011.
[9] NOD32, URL: http://www.eset.com [accessed: 2014-07-28].

[10] ClamAV, URL: http://www.clamav.net/ [accessed: 2014-07-28].
[11] MySQL, URL: http://www.mysql.com/ [accessed: 2014-07-28].
[12] Z. Tan, A. Jamdagni, X. He, P. Nanda, and R. P. Liu, “A System for

Denial-of-Service Attack Detection Based on Multivariate Correlation
Analysis,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 2, 2014, pp. 447–456.

[13] Y. Tang, X. Luo, Q. Hui, and R. Chang, “Modeling the Vulnerability of
Feedback-Control Based Internet Services to Low-Rate DoS Attacks,”
IEEE Transactions on Information Forensics and Security, vol. 9, no. 3,
2014, pp. 339–353.

352Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 374 / 679

[14] “Three Ways System Downtime Affects Companies and Four Methods
to Minimize It,” Globalscape, Tech. Rep., 2014.

[15] “Scan Speeds for 2011/2012 AntiVirus Software,” Antivirus Ware,
2011, URL: http://www.antivirusware.com/testing/scan-speed/ [ac-
cessed: 2014-07-28].

[16] “Amazon EC2 Price,” Amazon Web Services, 2013, URL:
http://aws.amazon.com/ec2/pricing/ [accessed: 2014-07-28].

[17] F. Machidaa, D. S. Kim, and K. S. Trivedi, “Modeling and analysis
of software rejuvenation in a server virtualized system with live VM
migration,” Performance Evaluation, vol. 70, 2013, pp. 212–230.

[18] “Infographic: The State of Malware 2013,” McAfee, Inc., Tech.
Rep., Apr. 2013, URL: http://www.mcafee.com/us/security-
awareness/articles/state-of-malware-2013.aspx [accessed: 2014-07-28].

[19] “3% to 5% of Enterprise Assets Are Compromised by Bot-
driven Targeted Attack Malware,” Damballa, Inc., Tech. Rep.,
Mar. 2008, URL: http://www.prnewswire.com/news-releases/3-to-5-
of-enterprise-assets-are-compromised-by-bot-driven-targeted-attack-
malware-61634867.html [accessed: 2014-07-28].

[20] V. Chebyshev and R. Unuchek, “Mobile Malware
Evolution: 2013,” Kaspersky Lab ZAO, 2013, URL:
http://www.securelist.com/en/analysis/204792326/
Mobile Malware Evolution 2013 [accessed: 2014-07-28].

353Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 375 / 679

Design of Mobile Services for Embedded Platforms

Guy Lahlou Djiken

Laboratory of Algorithms,

Complexity and Logics,

LACL, UPEC University

Créteil, France

guy-lahlou.djiken@lacl.fr

Sanae Mostadi

Ecole Supérieure d’Informatique

Appliquée à la Gestion,

ESIAG, UPEC University

Créteil, France

mostadis@miage.u-pec.fr

Fabrice Mourlin

Laboratory of Algorithms,

Complexity and Logics,

LACL, UPEC University

Créteil, France

fabrice.mourlin@u-pec.fr

Abstract—The design of distributed applications requires

theoretical knowledge and hands-on experience. Our work is

about distributed applications based on embedded platforms

such as smartphones or tablets. We define a software chain

development from design to implementation where services are

designed through interface diagrams and component

diagrams. From these declarations, we are able to generate

software descriptions into two languages. Android Description

Language (AIDL) is utilized for local services to an embedded

platform. Web Application Description Language (WADL) is

utilized for remote services. Such services are called from one

platform to another one. The first kind of description allows

developers to create Android services. Then, WADL

description provides all the features for building Restlet Web

services. We applied our strategy to the design and building of

a case study on medical picture set management. Embedded

tablets can take pictures during the users’ activities. Local

services allow users to display their medical picture through

specific viewers. Remote services are set to expose these data to

specific medical material. So, we provided a way to exchange

technical data from well spread platforms to medical

application servers.

Keywords-mobility; data collection; mobile service;

distributed application.

I. INTRODUCTION

Tanenbaum defines a distributed system as a “collection
of independent computers that appear to the users of the
system as a single computer.”. This means that two features
are essential: independent and suitable software for hiding
the architecture to the users [1].

We consider a distributed system as a collection of
autonomous computers linked by a network and using
software to produce an integrated computing facility. The
size of a distributed system can belong to a local area
network (10's of hosts) or a metropolitan area network (100's
of hosts) or a wide area network (internet) (1000's or
1,000,000's of hosts). The key characteristics of such
distributed systems are the resource sharing where data
source or external device are used by applications. Then, the
use of open standard allows building applications which
need to have the components of a solution work together [2].
The concurrency property is also important; in fact, multiple
activities are executed at the same time [3]. This reduces
latency and allows hiding blocking with some computing.

The scalability in size deals with large numbers of
machines, users, tasks, etc. This property occurs also in a
location with geometric distribution and mobility [4]. The
subject of our work is the design of distributed applications
based on services. When considering scalable application
design, a service helps to decouple functionality and think
about each part of the application as its own service with a
clearly defined interface. For Service Oriented Architecture
(SOA) [5], each service has its own distinct functional
context, and interaction with anything outside of that context
takes place through an abstract interface, typically the
public-facing Application Programming Interface (API) of
another service.

Building a system on a set of complementary services
decouples the operation of those pieces from one another.
This abstraction helps establish clear relationships between
the services, its underlying environment, and the consumers
of that service. Our work is about the use of services which
are web services or embedded services. Both types occur
into real projects, and it seems to be essential to adopt the
same design approach. In Section II, we present our
methodology for specifying both types of services. Section
III is about the use of intermediate representation between
design charts and computer representations. The following
section specifies a way to provide an implementation. The
two last sections are dedicated to a case study we built on the
management of the pictures with their localization. Finally,
we sum up about the results we explained in this paper.

II. DESIGN OF DISTRIBUTED SERVICES

Client/server, 3-tier and n-tier distributed applications
and cloud computing, open up new opportunities and ways
to design systems and develop applications. The design
challenge is the main step of the life cycle of any project.
The definition of message exchange pattern is essential for
the declaration of each remote service. An object-oriented
modelling approach is often used to describe business
requirements, identify components, their interactions and
placement in a multi-tier environment.

We have chosen Unified Modelling Language (UML) [6]
[7] as a specification language. There are a lot of charts
which can help designers for requirement specification. We
have selected deployment diagram for architecture level and
how materials are linked. Next, the use of component
diagram is the core of our methodology with the
specification of interfaces and the declaration of signatures.

354Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 376 / 679

A. Design step of distributed services

1) A service approach
Similar to other distributed applications, Web services

have a specific structure and behavior. The structure is the
static part of Web services, which is composed of the
candidate classes and their associations. The behavior is
called the dynamic part. It represents how the Web service is
executed in terms of sending requests, preparing responses to
these requests, and how they will be sent back to the clients.

The UML gains greater acceptance among software
designers, not only because of its standardization by the
Object Management Group (OMG) [8], but also because of
the high support from tool vendors, such as IBM and Oracle.

2) First step in our case study

Along our paper, we use a case study about the

management of pictures which are taken with mobile

devices such as smartphones and tablets. The main goal for

an end user is to know precisely where a given picture is.

More precisely, if several devices are used in a lab, it could

be convenient to localize the pictures on the devices without

any upload of working pictures on a common data server.

The main goal of the Web service requirements analysis

task is to capture and gather the requirements for the target
Web service. This includes the identification of the precise
services that have to be provided. This means that UML
interfaces are defined in package structure. For instance,
assume a context where a set of pictures has to be exposed to
a network with HTTP methods. So, Figure 1 describes what
will be the first step of the requirement specification.

This short example stresses 2 main tasks: the naming and
the signature definition. Type and name of the domain and
co-domain are essential to the future implementation and the
clients. All these definitions are relative to a namespace (in

our example fr.upec.lacl.project.gallery).
This allows reducing name conflict. A package structure is
an ideal entry point into a project dictionary.

On another side, a material description provides all the
details useful for the deployment step. In our previous
example, the occurrences of the service are deployed on
mobile devices. The clients could also be installed on mobile
platforms or workstations. In Figure 2, a potential
deployment diagram is described as a mobile application
server deployed over a mobile device. Its client is installed
on an application server. When all data are collected about
the pictures, the other artifact, called

picture.inventory.war deployed over the
application server, can answer to the requests of the standard
clients.

From this view, we define several artifacts. They play the
role of deliverables. Each of them will provide one or more
components. A component diagram gives a snapshot of a
runtime. Each component has provided interfaces and also
dependencies on other parts of the software. Also, we can
check how precise the requirements are defined. This allows
defining the used network protocol and the message
exchange pattern. For instance, the requests to the

PictureManager service is considered synchronous and
parameters are exchanged through an XML format

This component diagram is also the support to express no
functional properties such that the maintainability of the set
of services and the management of several versions. All the
components follow the OSGi specification (Open Service
Gateway Interface) [9]. A feature of OSGi technology is its
portability since it can be implemented both in the terminal
board so that in conventional applications or servers [10]. In
this context, the OSGi technology is designed to address the
other no functional aspects, such that to enable the
management of complex applications and to improve the
quality of service applications for administration to warm
(see Figure 3).

In Figure 3, all components are placed. The naming
convention allows readers to understand the correspondence
between components and artifacts. There are three kinds of
components depending on the kind of deployment node. This
diagram highlights the roadmap of our development. So,
because the Figure 2 requires different kinds of platform,

Figure 1. Precise declaration of interface and signature

Figure 2. Deployment diagram

Figure 3. Software architecture of case study

355Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 377 / 679

then, the next refinements are going to provide more details
about the technical features.

B. Integration testing

The integration testing is a level of the software testing
process where individual units are combined and tested as a
group. The purpose of this level of testing is to expose faults
in the interaction between integrated units. In our context, it
means the integration of the three parts: mobile part, server
part and a client part. This level of test can be considered as
business routes where each of them is a use of our distributed
application. In Figure 4, we describe the integration scenario
where the application server sends requests to mobile
platforms and collects the URLs of pictures and their
technical features.

This sequence diagram plays the role of validation after
the integration of all the components and their deployment
on to the set of materials.

We also use such kind of diagrams when we study the
impact of a scenario on the other behaviors of the application
server. For instance, the problem can be to understand what
the consequences of the data collections are during the
subscription of other mobile devices. It seems to be obvious
to require that the main business functionalities have to be
isolated and the use of one mobile device is independent with
the use of another one.

Figure 4 shows the interactions between a tablet and the
application server. First, the mobile device is registered and a
collector service validates the availability of all the data
around the pictures (content, format, identification,
localization, etc.). This diagram can be extended with the
introduction of other mobile devices or the interaction with
other scenarios, but this will introduce some noise into the

description and the role of such diagram will be reduced.

III. INTERMEDIATE REPRESENTATION

From the previous set of diagrams, we have to continue
towards a more technical representation. As we can observe,
this distributed application is based on the use of remote
service. These services are clearly defined and depending on
the kind of platform, we use a precise approach.

A. AIDL services

The IDL (Interface Definition Language) is generally
language independent for the service specification. It is used
theoretically for generating C++ or Python stub code from it.
The Android one is Java-based though, so the distinction is
subtle. One difference is that there is only a single interface
in an .aidl file, while Java allows multiple classes/interfaces
per Java file. There are also some rules for which types are
supported; so, it is not exactly the same as a Java interface,
and it is not allowed to use one instead of AIDL.

In the context of mobile programming, a service is an
application component that runs in the background without a
user interface. In our case study, the picture manager can
perform data collection by using a background service to
prepare data for a foreground application. It means another
application of the mobile device. This is quite important
because the consequence is that a service built from AIDL
cannot be used remotely.

Services work in the background, even though the
application is running neither in foreground nor background.
A service might handle long running tasks like network
connections or retrieving database records with the help of
content provider from the background. In our case study, two
interfaces are defined to expose services on mobile platform:

Figure 4. Interaction diagram as integration test

356Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 378 / 679

these are PictureManagerPortType and

PicturePortType (see Figure 1). So, from these
declarations, we transform them into two .aidl files.

These files (called PictureManagerPortType.aidl and
PicturePortType.aidl) define the interfaces that declare the
methods and fields available to a client. AIDL is a simple
syntax that lets designer declare an interface with one or
more methods, that can take parameters and return values.
These parameters and return values can be of any type, even
other AIDL-generated interfaces. Then, the AIDL compiler
creates an interface in the Java programming language from
the AIDL interfaces. These interfaces have an inner abstract
class named Stub that inherits the interface and implements a
few additional methods necessary for the IPC call (Inter
Procedure Call).

The next step is to create two classes that extend our

previous interfaces PictureManagerPortType.Stub

and PicturePortType.Stub implements the methods
we declared in our .aidl file. Then we extend the Service

class and override Service.onBind(Intent) to return
an instance of one of our classes that implements one of our
interfaces. The parameter intent plays the role of incoming
message. The corresponding AIDL descriptions of Figure 1
are given Figure 5.

The primitive types are in direction by default. We limit
the direction to what is truly needed, because marshalling
parameters is time expensive. We have a class called

Picture that we would like to send from a client process
to the implementation process through an AIDL interface.
We have made the Picture class which implements the
Parcelable interface. The consequence is the overriding of

the method public void writeToParcel(Parcel out)

that takes the current state of the Picture and writes it to a

parcel. The dual method is the method public void

readFromParcel (Parcel in) that reads the value

of a parcel into a Picture.

B. REST services

The use of AIDL is required because of application
sandboxing. Each application in Android runs in its own
process. An application cannot directly access another
application's memory space. In order to allow cross-
application communication, Android provides the inter-
process communication protocol. IPC protocols tend to get
complicated because of all the marshaling/unmarshaling of
data that is necessary, but it has also a main limit: it is not
possible to use it in a remote manner.

Today, a remote access is a common requirement, but the
installation of a web server on a mobile platform is not so
natural. Also, we propose to use remote access by the use of
the REST service through the use of Google implementation
called Restlet. REST stands for Representational State
Transfer. It relies on a stateless, client-server, with cache
communications protocol, and in generally all cases, the
HTTP protocol is used. REST is an architecture style for
designing networked applications. The idea is that, rather
than using complex mechanisms such as CORBA [11], RPC
[12], or SOAP [13] to connect between machines, simple
HTTP is used to make calls between machines.

As a programming approach, REST is a lightweight
alternative to Web Services and RPC (Remote Procedure
Calls) and Web Services (SOAP, WSDL [14], and others).
Much like Web Services, a REST service [15] is platform-
independent, language-independent, standards-based runs on
top of HTTP, and can easily be used in the presence of
firewalls.

There are several reasons for having a Web server on a
mobile phone. The main one is to allow third-party
applications, on other phones or other platforms to access to
the phone remotely. This requires strong security
mechanisms that are provided in part by the Restlet
framework as well as network level authorizations by the
carrier. We have decided to apply a Proxy design pattern to
hide Restlet mechanism. So, each AIDL service is equipped
with a Restlet service. To sum up, the AIDL implementation
is used as a local facet on the mobile device and the Restlet
implementation can be considered as a remote facet from
other platforms.

In accordance with the Proxy design pattern, we have

declared a subclass of the ServerResource class which
belongs to the Restlet framework. Our class is called

PicturePortTypeResource and has an attribute which
is the previous AIDL implementation. Both classes
implement the same business interface, but this last one
provides our local service on the http protocol as a web
resource. Figure 6 shows the main changes. Two technical
packages are drawn to precisely the role of our technical
classes.

Now, this mobile part is accessible from other mobile
devices and also from workstation and application server if
necessary.

package fr.upec.lacl.project.gallery;

interface PictureManangerPortType {

 PicturePortType getPicture(long id);

 long putPicture(in Picture p);

 String getPictureDetail();

 // other methods are added in the case study.

}

package fr.upec.lacl.project.gallery;

// Declare Picture so AIDL can find it, knows

// that it implementsthe parcelable protocol.

parcelable Picture;

package fr.upec.lacl.project.gallery;

interface PicturePortType {

 Picture read();

 boolean update(long id, in Picture p);

 boolean available();

 // other methods are added in the case study.

}

Figure 5. AIDL output files

357Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 379 / 679

IV. CODE CONSTRUCTION

We design the embedded part in the respect of such
properties, such that the independence of the layers and
interoperability. It means that the client part of the previous
service does not know any technical details of our solution.
This preserves the client from the changes of the new
versions.

A. JavaEE implementation

As explained previously, the middle layer is the pilot of
the data collection. After the subscription of a mobile device,
requests are sent periodically from the application server to
the mobile device. Applications that model business work
flows often rely on timed notifications. We schedule a timed
notification to occur at time intervals. Then, the collected
data are stored on the application server. Of course, other
mobile devices can subscribe to that picture manager service
even if several data collections are running. Both
functionalities are isolated.

Another artifact is deployed on this application server: it
is the inventory service. It is a stateless component which
answers to the presentation layer running on a client
workstation. The role of the inventory service is to answer to
the client about the previous data collections. For instance,
assume several mobile devices are previously registered, so a
client can ask precisely to know where a picture, called
“picture1”, under a JPEG format is. The structure of that part
is more convenient: it is a three tier layer. These different
responsibilities of an application are broken up into distinct
tiers, typically:

 The integration tier for data transformation and
persistence services. The persistence unit is about the
details which are collected during the data collection.

 The business tier for the validation, business rules,
workflow and interfaces to external systems. The
request is expressed by a subset of the features of the
pictures. This means the content type, the size the
annotations, etc.

 The presentation tier for user interface generation
and lightweight validation. The web panels allow the
requester to define his need.

The requests between the presentation and business layers
are synchronous over TCP protocol, but a message broker is
used to separate client and service. The exchanges are totally
asynchronous between the business and the integration
layers. This is essential because the integration part can be
considered as a cache of the database for several web
applications.

B. JavaSE implementation

First, we use a web explorer to send http request and to
display html tier. This display is a default graphical user
interface used to send requests about the location of images.
Next we have provided an API to develop new requests into
programmatic clients. This is particularly useful for the
automatic functional tests. This allows us to replace the use
of Selenium tool of our own test application.

Our API allows also other developers to program new
client tiers. It is based on the use of REST services which
send requests to our business tier. Because, we have chosen a
REST implementation with the WADL generation (Web
Application Description Language), other developers can
build their own version of our API. Also, SOAPUI tool [16]
provides an easy way to create test suites of our business tier.

Our next case study is built with a lightweight client tier.
In this context, the user is sure that the web client is well
suitable for the version of the business tier. Moreover, a
comparison with other testing tool can be done especially for
performance measures.

V. CASE STUDY

As we explained in our contribution, our case study is
about the management of the pictures on Smartphone.
Several embedded devices are used, for instance, in a lab or
in a classroom. So, a distributed tool is necessary to locate
precisely where the pictures are. More generally, such kind
of tools is useful for the whole management of the pictures.
This means collect, remove, transfer, duplicate or transform
to an appropriate format.

A. Deployment view

Before starting our case study, we have to deploy all
artifacts on given computer as mentioned Figure 2. Next,
services have to be started by local servers. So, observations
and measures could be done by a tester.

1) Mobile data tier
Under Android 4.2 operating system, the mobile devices

are used by members of a laboratory to take photos. The
camera records the pictures into a gallery where each of them
corresponds to a separate file with a set of features (name,
format, size, date, owner, etc.). Because, a gallery can be
considered as a set of pictures, each picture has an own name
for their identification. Often, the name is generated by the
software component which manages the camera. This means
that the name is not easily known by the scientist.

For a test phase, the first activity is to take several
photos. And then, register the mobile device as a data tier to
a business server. This will engage a set of REST services as
and points to the gallery of photos

Figure 6. Design class diagram of the mobile part

358Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 380 / 679

2) Business tier
Its first objective is to ready for receiving registration of

all the mobile devices. From its point of view, the mobile
devices are considered as a distributed data set of pictures.
Concurrently, it performs a data collection about the features
of the photos. This is not a collect of the photos because this
will spend too much time. But, this activity is to bind all the
features such as localization into a registry for future
requests. The inventory activity is managed by a timer. Also,
regularly, a mobile device receives requests about new
pictures if there are until the end of its registration onto the
business server.

A third activity is to answer to the end users who want to
localize the photos which are taken during a given period of
time. Additional conditions can be set such as the content
type, the dimension of the picture, the size of the file, etc.

3) Client tier
In the test phase, we use a web client for sending the

requests. This client is received by sending an HTTP request
from a navigator. It allows end users to define precisely the
photos that they want to have access. The answer of a request
is a set of links. They can be used to access to the embedded
devices and the concrete photo. So, by the end of a test, this
means: a request and a click on a hypertext link, a photo is
displayed in the web browser of the end user.

B. Artifact deployment

1) Mobile data tier
In order to install third party applications to our Android

phone, we need to install APK (Android Package, files). The
way we usually do is like the next iteration, but ir is for
testing:

 Plug in an USB cable to a PC and mount a SD card on
the computer

 Get the APK file somewhere on the SD card on the
phone

 Unmount the SD card on the PC, allowing the phone to
see the SD card contents again

 Use Astro File Manager or some similar app to browse
to that file on the SD card and select it, which will
prompt us if we want to install the app on the phone.

For the end users, we have defined a more simple
strategy based on the use of the local repository. We deploy
the .apk file on a local server (apache http server) with a
static IP to make the file available for download. Now the
end user has to open the download link of the apk file in his
mobile browser. The device will automatically start the
installation after the download completes.

2) Business tier
We use an application server called JBoss where our

applications are installed though an ear files (Enterprise
Application aRchive). The standard configuration of JBoss
provides a system for deploying applications very simple and
convenient, but not necessarily suitable for a production
environment.

As standard, the deploy directory is a configuration
where deploying services, components and applications. Just
include a file according to the specific type of component

specifications for JBoss deployment take into account. It is
possible to deploy the files to deploy directory or its
subdirectories. Each file type is taken into account by an
appropriate service deployment. The EARDeployer service
is used for our two main components: the registration of
tablets and the data collector.

The AbstractWebDeployer service is used for the Web
application called by the client. It is implemented for the
servlet container TomcatDeployer. The archive files are in
the format war (Web ARchive).

3) Client tier
In the test phase, we use a web client for sending the

requests. This is a set of JSP pages which belongs to the
previous Web application. Also, the client tier is just a Web
browser which is already installed on the computer of the
client.

We also use Java Web Start which is a mechanism for
program delivery through a standard web server. The Java
GUI client is downloaded to the client and executed outside
the web browser. The GUI client does not need to be
downloaded again on the next run. If the GUI client is
updated, a new version will be downloaded automatically.
The jar file contains an XML descriptor with an XML
schema. It specifies the resources needed to run Java Web
Start applications. It defines also the URL location of the jar
file, VM arguments and other resources that JRE on the
client side should know to start Java Web Start GUI client.

Such GUI client that needs access to system resources,
like file system, network connections, etc., need to be signed.
Also, we generate a keystore (certificate) and attach it to the
jar file. After that, an end user is able send request to the
business tier and also to access to a mobile device.

C. Measures

Measuring the execution time is a really interesting, but
also complicated topic. To do it right in Java, we have to
know a little bit about how the JVM works: generation
decomposition and so on. But, we do not have the same VM
on all the nodes of the network. The mobile devices have a
DVM (Dalvik VM), the business tier and the client tier have
a JVM (Java VM); but the versions are not correlated.

Also, we use a "ready to run" benchmarking framework
that addresses many of our issues [17].

1) Measuring method execution time: The framework's

essential class is named Benchmark. It is the only class that

we use for the computation of measures; everything else is

ancillary. Client and business tiers are observed by instances

of the Benchmark class. We supply the code to be

benchmarked to the Benchmark constructor. The

benchmarking process is then fully automatic. Then, we

generate a result report. The only restriction is that the code

be contained inside a Callable or Runnable. Otherwise, the

target code can be anything expressible in the Java language.

2) Business tier Measures: There are two sets of

measures. One is about the requests between the mobile

devices and the application server. There two main tasks

are: one is the registration of the mobile devices, the second

359Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 381 / 679

is the data collection which is started and ended by the

application server.
The other set is about the treatment of the requests of the

clients. Each request is received and treated by a business

action which is also a Runnable instance. This means that
we have measures on it. Both are interesting and their
observations involve future improvements.

3) Results

Table 1 presents measures of RegistrationTask

class. It is a Callable subclass and its method is invoked

when a mobile device needs to belong to the community of

the mobile data tier. Next, a data collection will be occurred.

TABLE I. REGISTRATION OF MOBILE DEVICES

Measures
Method execution time

First time Mean time Standard deviation

Registration 112.901 ms 108.501 ms 725.510 µs

In the meantime, we have additional information on it:

deltas: -35.205 µs,+46.206 µs).

For the standard deviation execution time, we have the

info: deltas: -161.405 µs, +361.108 µs

Table 2 presents measures of DataCollectionTask

class. It is a Runnable subclass and its behavior is

managed by a timer. Each interval of time a data collection

is started on a given mobile device. By the end, the changes

are updated on the business server. This task is not linked to

the previous one and several data collections are started

concurrently in a manner that there is no effect from one

data collection onto the other ones.

TABLE II. DATA COLLECTION ON A MOBILE DEVICE

Measures
Method execution time

First time Mean time Standard deviation

Data collection 225.910 ms 220.050 ms 555.004 µs

In the meantime, we have additional information on it:

deltas: -31.520 µs,+41.602 µs).

For the standard deviation execution time, we have the

info: deltas: -124.040 µs, +302.088 µs

Table 3 presents the measures of the ClientRequest

class. It is also a Runnable subclass and its method is

invoked when the end user sends a request about the url

addresses of several photos. Next, all the features of the user

request are parsed and a result is computed from the

previous data collections. Then, an answer is built with a set

of URL instances. Each URL instance is a REST call to a

service deployed on a mobile device.

TABLE III. CLIENT REQUEST ABOUT PHOTO ON DISTRIBUTED DEVICES

Measures
Method execution time

First time Mean time Standard deviation

Client request 164.621 ms 158.921 ms 605.233 µs

In the meantime, we have additional information on it:

deltas: -41.115 µs,+51.261 µs).

For the standard deviation execution time, we have the

info: deltas: -103.523 µs, +112.561 µs

VI. ANALYSIS

The first time that RegistrationTask instance was
called, it took 112.901 milliseconds to execute. A point
estimate for the mean of the execution time is 108.501
milliseconds. The 95% confidence interval for the mean is
about -35/+46 microseconds, which is relatively narrow, so
the mean is known with confidence.

A point estimate for the standard deviation of the
execution time is 725.510 microseconds. The 95%
confidence interval for the standard deviation is about -
161/+361 microseconds about the point estimate, namely
[235.389, 1086.51] μs, which is relatively wide, so the
deviation is known with much less confidence. In fact, the
warning at the end says that the standard deviation was not
accurately measured. The result also warns about the
outliers. They are no significant in this case because the
scenarios contain network connections. This involves
blockings and time consuming only for negotiation between
mobile devices and business server.

In the case of the data collection, the first time that

DataCollectionTask instance was called, it took
225.910 milliseconds to execute. A point estimate for the
mean of the execution time is 220.050 microseconds. The
95% confidence interval for the mean is approximately -
31/+42 microseconds, which is relatively narrow too, so the
mean is known with confidence.

We guess the standard deviation of the execution time is
555.004 microseconds. The 95% confidence interval for the
standard deviation is about -124/+302 microseconds about
the point estimate, namely [430.964, 857.092] μs, which is
less wide than the previous case. So deviation is known with
much confidence. In fact, the warning at the end notes that
the standard deviation comes from the size of data which is
collected. The result also warns about the variability in the
measurement. The latter is sometimes excluded from the data
set.

The last case is about request treatment. The first time

that ClientRequest instance was called, it took 164.621
milliseconds to execute. A point estimate for the mean of the
execution time is 158.921 microseconds. The 95%
confidence interval for the mean is approximately -41/+51
microseconds, which is relatively narrow too, so the mean is
known with confidence.

Then, we guess the standard deviation of the execution
time is 605.233 microseconds. The 95% confidence interval
for the standard deviation is about -103/+112 microseconds
about the point estimate, namely [501.71, 717.794] μs, which
is relatively few. So, it is known with confidence. In fact, the
warning at the end notes that the standard deviation comes
from the number of requests which are received by the Web
application. The result also indicates an experimental error
because of the latency of the network. When we compute
other measures on a sample with a bigger volume of

360Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 382 / 679

requests, then this overhead time is hidden or recovered by
the computation of the answers.

VII. CONCLUSION

We have presented in this document our approach to the
design (D), the implementation (I) and the evaluation (E) of
mobile applications based on services. It was shown that
there are two families of services: some of them are local and
the others are called from outside the mobile platform. Our
Design is based on the use of UML diagrams and stereotypes
to identify interfaces and the locality.

The Implementation is based on Java programming and
the use of frameworks such as Restlet and Android. We have
shown how to refine he diagrams towards a more technical
description. A designer can sketch his applications with the
use of local or remote services.

The Evaluation is also described by interaction diagrams
which will become a test suite. We have built a case study
based on our approach. It highlights all kinds of services
(local and remote). So, interoperability is insured by the use
of XML messages.

To sum up, our approach, called D.I.E. validates our
design choice. Our experiments highlight the use of mobile
devices as mobile data tier. As the number of embedded
devices increases, our prototype shows that our software
protocol supplies a way to exploit data on mobile devices
without big data transfers.

REFERENCES

[1] J. N. Herder, H. Bos, B. Gras, Ph. Homburg, and A.S.

Tanenbaum: Reorganizing UNIX for Reliability. “Asia-Pacific
Computer Systems Architecture Conference”, 2006, pp. 81-94

[2] M. Gould, M.A. Bernabé, C. Granell, P.R. Muro-Medrano,
and J. Nogueras, Reverse engineering SDI: Standards based
Components for Prototyping, “8th EC-GI & GIS Workshop ESDI” -
A Work in Progress Dublin, Ireland July. 2002. pp. 3-5

[3] S.U. Khan, A.Y. Zomaya, and L.Wang, “Scalable Computing
and Communications”: Theory and Practice, Wiley-IEEE Computer
Society Press. January 2013,

[4] T. Erl. Service-oriented architecture: concepts, technology,
and design. Pearson Education India, 2005.

[5] J. Rumbaugh, J. Ivar, and B. Grady. Unified Modeling
Language Reference Manual, The. Pearson Higher Education,
2004.

[6] M. Randles, D. Lamb, A. Taleb-Bendiab : A Comparative
Study into Distributed Load Balancing Algorithms for Cloud
Computing, : Proceedings of the 2010 IEEE “24th
International Conference on Advanced Information
Networking and Applications Workshops”, WAINA '10,
IEEE Computer Society, Washington, DC, USA, pp. 551-556.

[7] S. Th• one, R. Depke, and G. Engels. Process-Oriented,
Flexible Composition of Web Services with UML: “
Advanced Conceptual Modeling Techniques”. pp. 390-401.
SpringerLink, October 2003.

[8] Models, Object. "Object Management Group." Draft 0.3,
January 12 (1995).

[9] Alliance, OSGi. Osgi service platform, release 3. IOS Press,
Inc., 2003.

[10] P. Kriens, "OSGi Service Platform, Enterprise Specification",
Version 4.2, aQute publisher, ISBN 978-90-79350-06-3.

[11] J. Siegel. CORBA 3 fundamentals and programming. Vol. 2.
Chichester: John Wiley & Sons, 2000.

[12] N. B. Jay. Remote procedure call. No. CSL-81-9. Carnegie-
Mellon Univ. Dept. Comput. Sci., 1981.

[13] M. Gunnar, et al. "Simple object access protocol." U.S. Patent
No. 6,457,066. 24 Sep. 2002.

[14] C. Erik, F. Curbera, G. Meredith, S. Weerawarana. "Web
services description language (WSDL). 2001. pp. 1-1.

[15] K. Rohit, and R. N. Taylor. "Extending the representational
state transfer (rest) architectural style for decentralized
systems." Software Engineering, 2004. ICSE 2004.
Proceedings. 26th International Conference on. IEEE, 2004.

[16] K. Charitha. Web services testing with soapUI. Packt
Publishing Ltd, 2012.

[17] B. Boyer, “Robust Java benchmarking: Introducing a ready-
to-run software benchmarking framework”, Programmer
Elliptic Group, Inc, IBM Red book

361Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 383 / 679

The Quantification of Risk Factors for Predicting Diabetic

Cystoid Macular Edema based on a Hierarchical Approach

Eun Byeol Jo*, Ju Hwan Lee*, Jong Seob Jeong*, Byeong Cheol Choi† and Sung Min Kim*
*Department of Medical Biotechnology, Dongguk University-Seoul

Seoul, South Korea

{eunbyeol27, ykjhlee, jjsspace}@gmail.com, smkim@dongguk.edu
†Department of Biomedical Engineering, Choonhae College of Health Sciences

Ulsan, South Korea

bcchoi@ch.ac.kr

Abstract—This study suggests a novel risk factor extraction

method for retina layers based on a hierarchical approach to

distinguish Diabetic Cystoid Macular Edema (DCME) from

optical coherence tomography scans. For this, a total of 80

subjects composed of 30 normal and 50 DCME patients were

selected. To estimate evaluation variables, a hierarchical

approach-based feature extraction algorithm was employed.

Evaluation variables were classified into the Total Retina (TR),

the Inner Retina (IR), the Photoreceptor Outer Segment (POS),

the Outer Retina (OR), the Ganglion Cell (GC), and the

Retinal Nerve Fiber Layer (RNFL). The experimental results

show the reliable performance of the proposed approach in

discriminating DCME from normal subjects. The proposed

method could differentiate changes in the thickness of the IR

and the POS between the normal and DCME groups. In

addition, the most significant degeneration was observed in the

central macular area. These results suggest the clinical

applicability of the proposed method to the diagnosis of DCME.

Keywords-diabetic cystoid macular edema; optical coherence

tomography; retina layer; thickness; hierarchical approach

I. INTRODUCTION

Diabetic retinopathy is one of the most frequent
complications caused by diabetes. The prevalence of
diabetes has increased in an aging society, and patients with
diabetic retinopathy have also been increasing. Among
various types of diabetic retinopathy, Diabetic Cystoid
Macular Edema (DCME) is a major cause of vision loss [1].
DCME increases the thickness of the retina by accumulating
liquid inside through the collapse of the retinal barrier and
causes macular degeneration at the center of the retina where
images are focused on [2].

The diagnosis of DCME is usually performed using the
Retinal Thickness Analyzer (RTA) [3], Heidelberg Retina
Tomography (HRT) [4], and Optical Coherence
Tomography (OCT) [5]. Among these techniques, OCT is
known as the gold standard for diagnosing DCME [6]
because of its superior sensitivity. OCT also allows for the
quantitative measurement of retina lesions and structures.
However, OCT cannot identify various intra-retinal
structures accurately, and the accuracy of extracting macular
thickness is relatively low. In particular, it represents the

lowest accuracy for retina nerve fiber layers, where
photoreceptors exist [7].

To address these problems, a number of studies have
extracted macular thickness based on retinal layer boundaries
from OCT images. Mujat et al. [8] proposed a novel
boundary extraction approach for smoothing boundaries and
reducing the image-processing speed based on the
deformable spline algorithm. However, this method cannot
process large amounts of data simultaneously. Koozekanani
et al. [9] tried to minimize detection errors for retinal
boundaries by using the standard Markov boundary model
[10]. Bartsch et al. [11] simply extracted the longest
boundary appearing continuously in the retina layer based on
an improved Markov boundary model. Also, Yazdanpanah et
al. [12] successfully segmented the retina and the choroid
from OCT images by using a dual-thresholding technique
and found the availability of only limited information.
Gonzalez et al. [13] tried to identify retina layers by using
the Hough transform, but this technique cannot successively
extract various thickness values. Chiu et al. [14] extracted
retinal layers by taking a graph-search segmentation
approach using dynamic programming. Similarly, Yang et al.
[15] minimized thickness measurement errors by applying
the weight of graph-based dual-scale gradient information.
The graph-search segmentation method used in the above
two studies has a disadvantage in that it takes a long time to
calculate because the number of operations varies widely
according to the resolution of images.

This study estimates the risk factors of retina layers using
a hierarchical approach-based feature extraction method to
appropriately distinguish DCME from the original OCT scan.
The rest of this paper is organized as follows: Section 2
develops the algorithm and discusses the background of the
experiment. Section 3 presents the results, and Section 4
discusses them. Finally, Section 5 concludes.

II. MATERIAL AND METHODS

A. Image Acquisition

The experiment included a total of 80 subjects composed
of 30 normal and 50 DCME patients. These subjects were
classified into 50 normal and 100 DCME eyes based on a
clinical evaluation with a trained operator. Retina images

362Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 384 / 679

were acquired using OCT (Cirrus HD-OCT, Carl Zeiss
Meditec, Inc. Dublin, CA). The Institutional Review Board
of Dongguk University Hospital approved this study, and all
participants gave their consent to participate in the study.

B. Algorithm Development

To extract the thickness of retina layer, a modified
hierarchical approach of Koprowski [16] was employed.
First, denoised images were obtained by applying median
filtering to the original OCT scan (Figure 1(b)). Then, the
difference between the original image and the blurred image
(image mask) was obtained, and synthesis outcomes for
output and original images were printed. Images from the
aforementioned step showed a low resolution. To measure
the retina layer, the image was decomposed into pixels of N x
N size (N=15, 16, 17) (Figure 1(c)). In addition, thresholding
techniques using the Otsu algorithm were applied to separate
the threshold in the degraded image (Figure 1(d)). The pixel
value of the output image indicated the average value of the
decomposed image into this N x N size. Based on the average
value, the maximum pixel value in each column was derived
as follows:

other

nmLnmLif
nmL D

m
D

DM
0

,max,1
, (1)

where m and n refer to rows and columns, respectively.
Based on images acquired from (1), the top image boundary
was obtained. The lowest boundary of the image was
measured using the following (2):

other

PnmLnmLif
nmL rDD

DM
0

,1,1
,

 (2)

where Pr indicates the threshold in the (0, 0.2) range

according to each pixel and satisfies m ∈ (1, M-1), n ∈ (1,

N). Through this process, the bottom boundary of the retina
layer was extracted, and upper and lower boundaries of the
retina were obtained (LDM, LDB = 1). The boundary
coordinate showing a value of 1 in the output image was
defined as LDB (x) ≤ LDM (x). The boundary coordinate was
the output a total of three different boundary coordinate
values based on pixel size. Figure 1(e) shows the synthesis
results for the original image and three boundary outputs.
This procedure was repeated to minimize errors during the
detection of boundaries. The mean value of three boundary
values was designated as the final boundary value (Figure
1(f)). All image processing was performed using the Matlab
software (R2011b, MathWorks Inc., Natick, MA, USA).

C. Evaluation Variables

The proposed approach was employed to extract six risk
factors, including the Total Retina (TR), the Inner Retina
(IR), the Photoreceptor Outer Segment (POS), the Outer
Retina (OR), the Ganglion Cell (GC), and the Retinal Nerve
Fiber Layer (RNFL). The TR was the retina layer from the
top boundary to the bottom edge (Figure 2), and the IR was
the retina layer obtained by subtracting the OR and the POS

Figure 1. Image processing procedures for obtaining the thickness of

retina layer.

from the TR. The POS was the lowest retina layer, and the
OR was the thickness of swelling in the retina layer. Cells
were distributed in the GCL, which delivered visual
information to the brain and was included in the TR. The

Figure 2. The specific positions of each evaluation variables in the OCT

image.

(a) ROI image (b) Median filtering

(c) Decomposition (d) Thresholding

(e) Hierarchical approach (f) Edge detection

363Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 385 / 679

Figure 3. Regions for measuring risk factors from the center of the

macula (0.75 mm, 2.00 mm, 3.00 mm, 4.00 mm, and 5.25 mm).

RNFL was the retina layer at the top and included optic
nerve cells. Figure 2 shows the position of each evaluation
variable in the OCT image.

Each evaluation variable was extracted from the original
OCT image captured within a 3 mm radius from the center of
the macula. OCT images were divided into a total of five
measurements (0.75 mm, 2.00 mm, 3.00 mm, 4.00 mm, and
5.25 mm), and the average value of each measurement was
specified as an evaluation variable (Figure 3).

D. Statistical Analysis

Data were analyzed using an independent t-test and a
one-way ANOVA based on SPSS (Ver. 12.0 for Windows,
Chicago, IL, USA). A p-value less than 0.05 was considered
significant.

III. EXPERIMENTAL RESULTS

A. A Comparison of Thickness Extraction Performance

between Cirrus HD-OCT and the Proposed Method

To evaluate the performance of the proposed extraction
approach, evaluation variables were measured using Cirrus
HD-OCT equipment, and statistical significance was
compared. The OCT equipment was only able to measure the
thicknesses of the TR, the GC, and the RNFL.

In the normal group, the proposed method showed higher
reliability than the existing method. The R2 value, which was
used to evaluate the significance of variables, was close to 1
(Figure 4). On the other hand, the R2 value of most
evaluation parameters was close to 1 in the DCME group,
but the RNFL showed a low value of 0.0446 (Figure 5(d)).
TR and GC values extracted by Cirrus HD-OCT showed
significant differences between the normal and DCME
groups (p <0.05). However, the RNFL showed a low level of
significance (p>0.05).

B. A Comparison of Retinal Layers between Normal and

DCME Groups

According to correlations between evaluation variables
for the normal and DCME groups, the TR, the OR, the GC,
and the RNFL showed high levels of significance in all

(a) TR. center (b) TR. mean

(c) GC. mean (d) RNFL. mean

Figure 4. Comparison of the evaluation variables obtained from the Cirrus HD OCT and proposed method for normal subjects

364Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 386 / 679

macular regions (p <0.05). On the other hand, the IR and the
POS showed high levels of significance in the normal and
DCME groups only in the central macular region (p <0.05),
and the other areas showed a low level of significance.

The TR was thicker in the normal group than the DCME
group in all macular regions. In particular, differences
increased toward the center of the macula, and the largest
difference (148.051 mm) was found at the center of the
macular area. The IR was larger in the normal group than in
the DCME group (except for the 4.5 mm - 6.0 mm range).
The largest difference (78.494 mm) was found at the center
of the macula. In addition, the POS was thicker in the normal
group, and the difference at the center was 29.421 mm.
Finally, the GC and the RNFL were larger in the normal
group. The OR could be measured only in the DCME group.
For all the aforementioned evaluation parameters, the
standard deviation was higher in the DCME group than in
the normal group. Table 1 compares evaluation parameters
extracted using the proposed method between the normal and
DCME groups.

IV. DISCUSSION

The proposed method could measure the thickness of the
IR, the POS, and the OR, which could not be obtained using
the existing method. It could also measure the TR, the GC,
and the RNFL in OCT images. According to a comparison of
experimental results based on Cirrus HD-OCT, extracted
evaluation parameters were very similar to those based on
the existing method. In addition, RNFL values obtained by
Cirrus HD showed a low level of significance in
discriminating between the normal and DCME groups,

unlike in the case of other retina layers, providing no support
for the suitability of clinical RNFL data for diagnosing
DCME.

According to the statistical analysis of evaluation
variables based on the proposed method between the normal
and DCME groups, the TR, the GC, and the RNFL showed
high levels of significance for the whole area of the macula.
This indicates that extracted risk factors were significant
predictors of DCME. On the other hand, the IR and the POS
showed low levels of significance in some sections, and the
center of the macula (clinically the most important area)
showed a high level of significance in both normal and
DCME groups. This implies the usefulness of the IR and the
POS for diagnosing DCME.

According to a comparison of differences in evaluation
variables between the normal and DCME groups, the TR
was larger in the DCME group. This was mainly because the
whole layer swelled up from retinal edema. The IR was
much smaller in the DCME group than in the normal group.
The decrease in the IR typically implies an increased risk of
vision loss, since the IR includes the GC and the RNFL [17].
The POS tended to become thinner with retinal
neovascularization, indicating greater damage. Given this,
the POS was minutely thinner in the DCME group than in
the normal group, indicating the worsening of retinal damage.
In addition, the GC and the RNFL were larger in the normal
group, indicating an increase in the risk of macular
degeneration [18]. Further, the difference between the
normal and DCME groups increased significantly in the
macular area, the center of the retina, because abnormalities
generally occur first in the macular area, where the optic

(a) TR. center (b) TR. mean

(c) GC. mean (d) RNFL. mean

Figure 5. Comparison of the evaluation variables obtained from the Cirrus HD OCT and proposed method for DCME group

365Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 387 / 679

nerve is mainly distributed. This implies that DCME may
produce substantial degeneration in the central region of the
macula and is closely related to blindness.

V. CONCLUSION

The results suggest that the proposed algorithm can
reliably differentiate DCME patients from normal subjects.
In addition, changes in the thickness of the IR and the POS
may be useful risk factors for diagnosing DCME. Further,
the most significant degeneration was observed in the central
area of the macula as DCME progressed. These results
suggest the clinical applicability of the proposed method to
the diagnosis of DCME. This study has a limitation in that
the normal and DCME groups had relatively small numbers
of subjects. For more reliable results, future research should
provide additional experiments using a larger number of test
subjects and a wider range of classification models. In
addition, the effects of age and gender should be considered
in the context of DCME.

ACKNOWLEDGMENT

This work was supported by International Collaborative
R&D Program funded by the Ministry of Knowledge
Economy (MKE), Korea. (N01150049, Developing high
frequency bandwidth [40-60 MHz] high resolution image
system and probe technology for diagnosing cardiovascular
lesion)

REFERENCES

[1] R. Klein, B. E. Klein, S. E. Moss, M. D. Davis, and D. L.
DeMets, “The Wisconsin epidemiologic study of diabetic
retinopathy. IV. Diabetic macular edema,” Ophthalmology,
vol. 91, no. 12, Dec. 1984, pp. 1464-1474.

[2] B. E. Bouma, G. J. Tearney, and B. Bouma, “Handbook of
optical coherence tomography,” Taylor & Francis, Marcel
Dekker, Inc., New York, 2002.

[3] Y. Oshima, K. Emi, S. Yamanishi, and M. Motokura,
“Quantitative assessment of macular thickness in normal
subjects and patients with diabetic retinopathy by scanning

TABLE I. COMPARISON OF EVALUATION PARAMETERS EXTRACTED FROM OCT SCANS USING THE PROPOSED METHOD BETWEEN THE NORMAL

AND DCME GROUPS

 Horizontal distance Normal group DCME group P-value

TR

0~1.5mm 279.625±22.445 343.100±72.930 0.000

1.5~2.5mm 318.333±13.760 398.520±94.999 0.000

2.5~3.5mm 252.229±15.383 400.280±126.402 0.000

3.5~4.5mm 314.917±17.140 394.470±92.306 0.000

4.5~6mm 268.979±18.589 336.020±64.825 0.000

Mean 286.817±11.245 374.478±76.799 0.000

IR

0~1.5mm 215.576±24.832 214.846±55.775 0.952

1.5~2.5mm 251.106±34.584 215.614±63.400 0.004

2.5~3.5mm 168.793±15.719 90.299±70.487 0.000

3.5~4.5mm 252.800±14.517 227.090±51.097 0.003

4.5~6mm 212.302±22.481 221.624±60.098 0.362

Mean 220.117±12.231 193.893±34.351 0.000

POS

0~1.5mm 63.757±6.796 62.585±19.025 0.714

1.5~2.5mm 67.102±30.696 56.722±15.494 0.069

2.5~3.5mm 84.915±10.659 55.494±27.412 0.000

3.5~4.5mm 63.825±6.575 57.990±15.890 0.380

4.5~6mm 65.948±7.731 61.190±16.688 0.114

Mean 69.108±5.854 58.796±10.447 0.000

OR

0~1.5mm 0.000±0.000 68.069±47.118 0.000

1.5~2.5mm - 130.505±95.987 0.000

2.5~3.5mm - 269.684±156.672 0.000

3.5~4.5mm - 130.807±105.306 0.000

4.5~6mm - 67.118±63.748 0.000

Mean - 133.237±70.990 0.000

GC
Minimum 77.667±4.984 30.640±24.854 0.000

Mean 81.750±4.162 57.740±24.891 0.000

RNFL Mean 95.708±8.143 73.900±21.461 0.000

366Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 388 / 679

retinal thickness analyser,” British Journal of Ophthalmology,
vol. 83, no. 1, Jan. 1999, pp. 54-61.

[4] H. J. Zambarakji, W. M. Amoaku, and S. A. Vernon,
“Volumetric analysis of early macular edema with the
heidelberg retina tomograph in diabetic retinopathy,”
Ophthalmology, vol. 105, no. 6, Jun. 1998, pp. 1051-1059.

[5] M. R. Hee et al., “Quantitative assessment of macular edema
with optical coherence tomography,” Archieves of
Ophthalmology, vol. 113, no. 8, Aug. 1995, pp. 1019-1029.

[6] D. F. Kiernan, W. F. Mieler, and S. M. Hariprasad, “Spectral-
domain optical coherence tomography: a comparison of
modern high-resolution retinal imaging systems,” American
Journal of Ophthalmology, vol. 149, no. 1, Jan. 2010, pp. 18-
31.

[7] F. A. Medeiros et al., “Evaluation of retinal nerve fiber layer,
optic nerve head, and macular thickness measurements for
glaucoma detection using optical coherence tomography,”
American Journal of Ophthalmology, vol. 139, no. 1, Jan.
2005, pp. 44-55.

[8] M. Mujat et al., “Retinal nerve fiber layer thickness map
determined from optical coherence tomography images,”
Optics Express, vol. 13, no. 23, Nov. 2005, pp. 9480-9491.

[9] D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness
measurements from optical coherence tomography using a
Markov boundary model,” IEEE Transactions on Medical
Imaging, vol. 20, no. 9, Sep. 2001, pp. 900-916.

[10] P. Zhou and D. Pycock, “Robust statistical models for cell
image interpretation,” Image and Vision Computing, vol. 15,
no. 4, Apr. 1997, pp. 307-316.

[11] D. U. G. Bartsch, X. Gong, C. Ly, and W. R. Freeman,
“Optical coherence tomography: interpretation artifacts and
new algorithm,” Proc. SPIE 5370, Medical Imaging 2004:
Image Processing, May 2004, pp. 2140-2151.

[12] A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic,
“Intra-retinal layer segmentation in optical coherence
tomography using an active contour approach,” Lecture Notes
in Computer Science, vol. 5762, Sep. 2009, pp. 649-656.

[13] R. C. Gonzalez and R. E. Woods, “Digital image processing
(3rd edition),” Prentice Hall, 2008.

[14] S. J. Chiu et al., “Automatic segmentation of seven retinal
layers in SDOCT images congruent with expert manual
segmentation,” Optics Express, vol. 18, no. 18, Aug. 2010, pp.
19413-19428.

[15] Q. Yang et al., “Automated layer segmentation of macular
OCT images using dual-scale gradient information,” Optics
Express, vol. 18, no. 20, Sep. 2010, pp. 21293-21307.

[16] R. Koprowski and Z. Wróbel, “Image processing in optical
coherence tomography,” Katowice, Poland, 2011.

[17] H. Ishikawa et al., “Macular segmentation with optical
coherence tomography,” Investigative Ophthalmology &
Visual Science, vol. 46, no. 6, Jun. 2005, pp. 2012-2017.

[18] J. C. Brown et al., “Detection of diabetic foveal edema:
contact lens biomicroscopy compared with optical coherence
tomography,” Archieves of Ophthalmology, vol. 122, no. 3,
Mar. 2004, pp. 330-335.

367Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 389 / 679

Identifying Requirements for Centralized Service

for Movement and Biodiversity Data Analysis

Ivana Nižetić Kosović, Boris Milašinović, Krešimir Fertalj

Department of Applied Computing

Faculty of Electrical Engineering and Computing, University of Zagreb

Zagreb, Croatia

e-mails: {ivana.nizetic, boris.milasinovic, kresimir.fertalj}@fer.hr

Abstract—Positioning technology is lately widely used in many

scientific fields to collect movement and biodiversity data for

further analysis. That generates enormous amount of positions

and tracking data and impose the need for developing new

algorithms for analysis and prediction, which are managed in

ever growing partial and incomplete software solutions. In this

paper, we made a roadmap for development of centralized

service-oriented software in which one could manage data

about moving objects or plants, as well as spatial layers,

contextual information and perform complex algorithms. We

identified a set of interfaces for communication with users

allowing data and algorithm manipulation. Furthermore, we

proposed meta-model for storing data and algorithms in order

to achieve adaptiveness and wide applicability. The proposed

model establishes a baseline for a concrete implementation.

Keywords-movement data; biodiversity; tracking; service-

oriented software; meta-model.

I. INTRODUCTION

Widespread use of Global Positioning System (GPS)
devices, smart phones and wireless communication devices

induced the expansion of research on moving objects [1]-

[3]. There is an increasing number of applications in which

mobility plays an important role. Vehicles are monitored

and analysed in the field of traffic management and control

to predict driver’s intentions or traffic congestions [4]-[7].

Mobile users' movement is analysed to assure fast access

point availability [8][9]. In the field of behavioural ecology,

wild animals are tracked in order to predict their migrations

and predator-prey behaviour [10]-[12]. There is also a

variety of location-based services provided to smart phone
users such as museum or touristic attractions applications

for tourists, hospital plan information for doctors and

nurses, hotels, location-aware games and so on.

Ubiquitous tracking technology and various applications

generate enormous amount of tracking data and impose the

need for developing new algorithms for analysis and

prediction. Furthermore, in the last decade, the need to

enrich object’s movement data with geographical and

semantic information is recognized since raw trajectory data

(positions and timestamps) are not sufficient to obtain

meaningful movement patterns [3][13][14]. Inclusion of

heterogeneous data (contextual information, environmental

data) makes analysis and prediction even more complex and

the need for explanation of movement and spatial data more

indispensable. Similar problem exists not only in the field of

moving objects but also in some other fields like botany
[15]. Although plants do not move, the algorithms for

analysis and prediction are still complex and yield different

results.

Still, there is no unique software in which one could

manage data about moving objects, contextual information

and perform complex algorithms. Visualisation and

algorithms are currently managed by partial or incomplete

platform-dependent software which cannot fully satisfy

researchers' needs. Moreover, existing applications are not

adaptable to new (custom) algorithms. Furthermore, since

mobile applications cannot perform complex calculations
and manage voluminous data locally, the need for

standardized service-oriented system is essential.

These problems are further elaborated in Section II in

order to formulate a problem followed by the identification

of typical algorithms and their inputs and outputs. Once

identified, it would be shown that there is a common

intersection between inputs and outputs which can lead to a

solution presented in the Section III. After centralized

service-oriented solution concept description, a set of

interfaces is enumerated, followed by the meta-model for

storing data and algorithms. The paper ends with a

conclusion of a presented work and future work guidelines.

II. PROBLEM FORMULATION

In the field of moving objects, an increasing number of

analysis and prediction algorithms are developing: data

mining techniques to extract behavioural patterns from

moving objects data [16][17], clustering algorithms to detect

important places [13][18], prediction techniques to model

and predict moving object’s future location, such as neural

networks, Markov models, and specific types of dynamic

Bayesian networks, like Hidden Markov Models (HMM) or

Kalman filter [5][19]-[22]. In recent years, considerable
research has been devoted to mapping the flora distribution,

spatial analysis, biodiversity analysis and prediction of

368Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 390 / 679

occurrence. Bedia et al. [23] presented variety of different

algorithms applied to a particular geographic area. However,

it is not guaranteed that a particular algorithm can equally

be used for different regions of the world. Although there

are significant differences between moving objects and

(static) plants, some similarities exist that led us to identify
main ideas and enumerate problems in order to propose an

integrated software solution. Table I shows representative

categories of algorithms and their inputs and outputs with

some examples where results depend on algorithm being

used.

Although aforementioned algorithms and their

implementations are valuable, we listed their main

drawbacks considering not only their performance accuracy

but also their ease of use and adaptiveness. As it can be seen

from Table I, each algorithm uses spatial data and a set of

coordinates that represents object positions or species

findings. Testing different algorithms is usually a work
intensive task as algorithms use different input data format

and produce output in different format. Moreover, findings

data must be exported to the appropriate format prior to the

use of an algorithm and output must be transformed back

into user’s format repeating the similar task for many

algorithms. Moreover, existent software is:

 Partial, incomplete – e.g., ArcGIS can be used for
calculation of probabilities distribution of species,
Weka and IntelligentMiner for clustering or basic
HMM modelling

 Local – desktop apps, rarely applets or web services

 Closed – with no possibility for adding/customizing
algorithms, and inaccessible to ordinary people, e.g.,
mobile users, non-experts in certain field

 Too specialized – not general enough to encompass
various needs and heterogeneous data, e.g., HMM is
applied to many classes of moving objects but each
model is specialized only for that class although they
have common structure and performance

 Technically determined – platform limited, e.g.,
applets require additional software installations,
Geographic Information System (GIS) software
requires high capacity and performance,

 Lack of (customized) visualisation of results

Consequently, there is a need for centralized,

interoperable, opened, adaptive (to data and to algorithms)

and widely useful application that could be extended with

additional algorithms and additional data necessary for a

particular algorithm.

TABLE I. EXAMPLES OF COMMONLY USED ALGORITHMS IN

MOVEMENT AND BIODIVERSITY DATA ANALYSIS

Algorithm Category Input Output Results depend on

algorithm?

Pattern discovery -

construction

Sets of marked sequential positions

(positions, timestamps and

corresponding pattern),

Algorithm parameters (list of

patterns, initial probabilities)

HMM (states, transitions, transition and

emission probabilities)

Yes (HMM, State-space

model, Artificial neural

network - ANN, ...)

Pattern discovery -

usage

A set of sequential positions

(positions and timestamps)

A set of marked sequential positions

(positions, timestamps and corresponding

pattern)

Yes (HMM, State-space

model, ANN, ...)

Positions clustering Positions

Algorithm parameters (Eps, MinPt)

Sets of positions (clusters) and a set of

noise positions

Yes (Density-based

spatial clustering of

applications with noise -

DBSCAN, …)

Species distribution Spatial layers, species findings Matrix of species findings per spatial layer

attribute

No

Species distribution

prediction

Spatial layers, species findings

Matrix of probabilities corresponding to

spatial shapes

Yes (Distance alg.,

Maximum Entropy

Modelling (MAXENT),

Multiple Logistic

Regression - MLR,

ANN,...)

Ecological profile Spatial layers, species findings Matrix of species occurrence per spatial

layer attribute or spatial unit

No

Biodiversity analysis

(alpha and research

intensity)

Spatial layers, species findings Collection of matrices (alpha and research

intensity per layer attribute, other species

data - ecological indices per spatial layer

attribute, basic species data...)

Extension of a spatial layer with data from

matrices but for a unit instead of attribute

May depend, when data

uncertainty exists [15]

Movement prediction Positions, spatial layers, contextual

data

Positions Yes (ANN, HMM, ...)

369Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 391 / 679

Recently, some notable ideas of centralized solutions for

managing moving objects' data and performing algorithms

were proposed. Xu and Guting [24] proposed a generic data

model for moving objects that can apply in more than one

environment and applied it to transportation model. A

conceptual data model for representing semantic trajectories
applied to tourism and animal movement is shown by

Bogorny et al. [25], giving the baseline for future research

on semantic trajectory.

Considering wild life research there is a vision of

centralized solution for wildlife data management in [26].

We have also presented a generic model and proposed the

conceptual data model for analysis and movement

prediction independent of application area and moving

object type [27].

In [15], we proposed an object model for biodiversity

analysis that can avoid the problem of data export. Input

and output are modelled using interfaces thus making the
model available in various usage scenarios as a web service

or a layer in an application. As it only defines structure of

input data, the model is independent of concrete data storage

and the service is implemented in such way that it should be

independent from data retrieval as long as the data follows

some biological patterns. Data retrieval is done by

implementing proposed interfaces and merging them with

the core service implementation service using one of

dependency injection techniques when the service is

exposed as a web service.

An idea of an integrated solution is also presented by
Ames et al. [28]. The authors have developed web services-

based software for hydrologic data discovery, download,

visualization, and analysis using extensible plug-ins for

searching, viewing and exporting data.

Although from a different field of study, cited papers

yielded an idea of using web services, data interfaces and

plug-ins for algorithms. Using service interfaces and various

plug-ins it would be easier to try a different type of analysis

or analyze the same thing using different algorithms without

need to do it manually or to convert input and output data

between different formats.

III. A PROPOSED SOLUTION

A. Concept of centralized service-oriented solution and its

interfaces

Figure 1 presents a conceptual view of centralized
service-oriented solution we propose. The application
consists of data stored permanently or temporary on a server,
a set of algorithms that use data to produce result to be
returned to a user and a set of interfaces for communication
with users allowing data and algorithm manipulation. Each
of the arrows from the figure presents usage of an interface,
which we would only enumerate in the paper providing input
and output descriptively leaving format to be standardized in
the future work.

Positions are main input data to perform any algorithm.
They can be collected via mobile device or uploaded using a

personal computer but also can be stored by an on-premise
server. As mentioned previously, one of disadvantages of
existing software is that a user must export his/her data,
adjust it to required formats and upload it again to a
proprietary service/application. In the proposed system, the
user can keep data on his/her server and enable a service on
his/her own data server according to one of formats that
would be proposed as a standard. Instead of concrete data,
the user could enter service location and optional filters and
data would be retrieved later as needed.

Custom algorithms

Algorithms Data

Spatial data (GIS
layers)

Contextual data

Movement or
positions data

Results

On-Premise Data

Figure 1. Concept of centralized service-oriented solution

The same principle applies also to contextual data and
spatial data (GIS layers). Contextual data are usually
environmental data, data about certain object, e.g., species
etc. These data are collected from different sources: other
data providing services, for example weather services
[29][30] or they could be sent by user as well (for example,
specific layer considering certain species). Contextual data
are not limited in scope and additional information is
facultative or obligatory depending on an algorithm
requirements. As shown in Table I, some of analysis depends
on used algorithm and a particular algorithm may need some
additional data. Therefore these data can be of any type and
format of data that can be recognized and used by a
particular algorithm.

The idea is that algorithms are categorized and that there
exists default algorithm per category but the application
enables upload of a user’s own algorithm. A solution must
provide an API for access to movement and spatial data and
any custom data from an input. An algorithm should
implement an interface from a category it belongs to. Details,
like language, format, runtime environment, etc., are left to
implementation phase.

370Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 392 / 679

The results of algorithms can further be analysed and
deployed to the server as well. Either retrieved on a
temporary base or stored permanently, data stored on the
server consists of data and algorithms which are both meta-
modelled.

Summarizing all above, the set of interfaces used in
Figure 1 can be described as in Table II. For each category of
data, there are three possible interfaces: for data upload, for
setting URL of a service that host user’s data and for
returning on-premise data once that centralized solution need
users data.

B. Meta-model

To achieve adaptiveness and wide applicability, data and
algorithms should be meta-modelled (Figure 2). Usage of a
meta-model enables addition of algorithms, algorithms
categories, domains and attributes that does not exist in the
present moment but would occur in the future. Furthermore
it enables integration of many different types of users under
one, integrated model.

1) Object and its characteristics
Central entity of movement and biodiversity data is an

object which represents either an animal or a plant. An object
has recursive relationship to itself, thus allowing to model
taxonomy (biological or zoological hierarchy of species) at
any level - from unique instance of certain species to
kingdom. For example, an object could be a certain animal
(identified by name or a collar identifier), which is of species
grey wolf (canis lupus), which is of genus canis, or it can be
a species, e.g., abies alba, genus abies etc. Any of taxonomic
ranks can have attributes which can comprise values from a

certain domain. Values of defined attributes can be assigned
to object itself. For example, species wolf can have attribute
social order, while a particular wolf can have value of that
attribute alpha male.

2) Findings (positions)
An object can be spotted at certain coordinate at certain

timestamp. The attribute source represents type (source) of
finding, for example GPS collar, terrain research, photo,
literature citation etc. For example, a GPS collar carried by a
wolf retrieves a recorded position of the wolf at a certain
timestamp. Also, a researcher could see a wolf at a terrain
and also record time and coordinates of finding. Another
example is logging a plant’s position by a researcher at the
terrain or entering coordinates and timestamp of the plant
from literature or a photo taken at the terrain.

Similarly to time and source other contextual data for a
finding could be stored in the model. Optionally, if
necessary, these contextual data can be related to attributes
and domains.

3) Spatial data
Since spatial data is present in almost every kind of static

or moving objects' positions analysis, they are meta-
modelled as well. A layer is consisted of spatial elements
(shapes) and layer attributes. By the term layer, we mean a
GIS layer, such as a content of ESRI shapefile [31]. The
shapes (usually polygons) belong to a certain layer. Values
of defined attributes, which are valid in specific period of
time, are assigned to certain shape. A coordinate (at which
the object is spotted) belongs to certain shapes.

TABLE II. LIST OF INTERFACES

Category Purpose(s) Input Output

Movement and

positions

Data upload

List of n-tuples containing coordinates, species or

object identifier and identifier of additional context

data

Provides URL of a service

hosted on a user’s server

(on-premise data)

URL of a service and custom data that should be send

as-is to the service

On-premise server produce output

same as used for input when data

uploaded directly

Contextual data Upload of species/objects

data

List of n-tuples containing species/object identifier

and additional parameters of any type (e.g., byte

array) that must be interpreted by an algorithm

Upload of contextual

information, i.e., those that

are related to positions

List of n-tuples containing context identifier and

additional parameters of any type (e.g., byte array)

that must be interpreted by an algorithm

Provides URL of a service

hosted on a user’s server

(on-premise data)

URL of a service for contextual data On-premise server produce output

same as used for input when data

uploaded directly

Spatial data (GIS

layers)

Data upload Zipped folder containing one of supported GIS

formats (e.g., ESRI shp+dbf+shx)

Provides URL of a services

hosted on a user’s server

(on-premise data)

URL of a service that serves a GIS layer (e.g., WMS

server)

Zipped folder or WMS server

Custom

algorithms

Custom algorithm upload Algorithm code

Results Results of an algorithm One or more matrices that summarize

algorithm results and optional output

from custom algorithm that must be

interpreted by a user

Analysis request Initiate analysis Type of analysis, chosen algorithm, optional filter on

context and data

371Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 393 / 679

4) Algorithms

Several classes of algorithms used in movement and
biodiversity analysis are summarized in Table II. In each
category, input and output types can be identified and these
input and output parameters can be meta-modelled using
entity Attribute thus describing interfaces for all algorithms
in the category. In order to enable custom extension of
parameters, the last parameter should always be in free form
(e.g., XML or array of bytes) for custom data.

One or more algorithms can exist for each category and
one of them is default one for the category. An algorithm can
have additional parameters needed for a concrete
implementation. Each algorithm instance produces results
using data from findings, coordinates and shapes which do
not have to be modelled as a relation in a model, but should
be available using some form of API in implementation.
Results from an algorithm instance are stored according to
output parameters attributes.

1,N

1,N

1,1

1,N

1,1

1,11,N

1,N

1,N

0,N

0,N

1,N

0,N

0,N

1,1

0,N

1,1

1,N

1,N

1,N

1,1

1,1

1,1

0,N0,N

0,N0,N

0,N

0,N

1,1

1,N

0,N

0,N

0,N

0,N

Object

isFoundAt

Coordinate

Time

isTypeOf

Shape

Layer
Layer

Attribute

belongsTo

hasAttribute

hasValue

isWithin

Attribute

Domain
Value

Domain

hasAtrribute

isIn

contains

Period

Source

hasAttribute
Value

Algorithm

Algorithm
Category

belongsTo

Algorithm
Instance

isInstanceOf

isDefault

hasParameters

usesForOutput

usesForInput

produceResult

hasValue

0,N

Value

Value

Figure 2. Meta-model for movement and biodiversity data and algorithms

372Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 394 / 679

IV. CONCLUSION AND FUTURE WORK

The proposed solution and the designed model establish a
baseline for a concrete implementation. To achieve
interoperability and openness, the proposed solution should
be exposed as (web) services with clearly defined standards
of input/output data. Future work should be related to the
standardization of input and output formats. Furthermore, an
appropriate solution for writing algorithms must be identified
(in place compilation of a code in some specific language or
custom Domain Specific Language) and APIs for data access
must be defined.

REFERENCES

[1] S. Dodge, R. Weibel, and A.-K. Lautensch, "Towards a
taxonomy of movement patterns," Information Visualization,
vol. 7, 2008, pp. 240-252

[2] J. Drummond, R. Billen, E. Joao, and D. Forrest, Dynamic
and Mobile GIS: Investigating Changes in Space and Time,
CRC Press, Taylor & Francis Inc, 2006.

[3] C. Parent, et al., "Semantic trajectories modeling and
analysis," ACM Comput. Surv., vol. 45, 2013, pp. 1-32

[4] W. Wang and G. Wets, Computational Intelligence for
Traffic and Mobility: Atlantis Publishing Corporation, 2013.

[5] C. Barrios and Y. Motai, "Improving Estimation of Vehicle's
Trajectory Using the Latest Global Positioning System With
Kalman Filtering," IEEE T. Instrumentation and
Measurement, vol. 60, 2011, pp. 3747-3755

[6] J. Krumm and E. Horvitz, "Predestination: Inferring
Destinations from Partial Trajectories," UbiComp 2006:
Ubiquitous Computing, vol. 4206, 2006, pp. 243-260

[7] J. Froehlich and J. Krumm, "Route Prediction from Trip
Observations," presented at the Society of Automotive
Engineers (SAE) 2008 World Congress, 2008.

[8] J.-M. François, G. Leduc, and S. Martin, "Learning
movement patterns in mobile networks: a generic method,"
presented at the European Wireless 2004, Barcelona, Spain,
2004.

[9] G. Yavas, D. Katsaros, Ö. Ulusoy, and Y. Manolopoulos, "A
data mining approach for location prediction in mobile
environments," Data Knowl. Eng., vol. 54, 2005, pp. 121-
146

[10] A. Franke, T. Caelli, G. Kuzyk, and R. J. Hudson,
"Prediction of wolf (Canis lupus) kill-sites using hidden
Markov models," Ecological Modelling, vol. 197, Aug 10
2006, pp. 237-246

[11] N. F. Webb, M. Hebblewhite, and E. H. Merrill, "Statistical
methods for identifying wolf kill sites using global
positioning system locations," Journal of Wildlife
Management, vol. 72, Apr 2008, pp. 798-807

[12] A. D. Middleton, et al., Linking anti-predator behaviour to
prey demography reveals limited risk effects of an actively
hunting large carnivore, 2013, pp. 1023–1030

[13] L. O. Alvares, et al., "A model for enriching trajectories with
semantic geographical information," presented at the
Proceedings of the 15th annual ACM international
symposium on Advances in geographic information systems,
Seattle, Washington, 2007.

[14] B. Guc, M. May, Y. Saygin, and C. Körner, "Semantic
Annotation of GPS Trajectories " presented at the 11th
AGILE International Conference on Geographic Information
Science 2008, University of Girona, Spain, 2008.

[15] B. Milašinović, T. Nikolić, and K. Fertalj, "Biodiversity
analysis supporting species-subspecies uncertainty in
findings data," International journal of biology and
biomedical engineering, vol. 7, 2013, pp. 127-134

[16] Y. Ishikawa, Data Mining for Moving Object Databases.
Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010.

[17] S. Elnekave, M. Last, and O. Maimon, "Measuring Similarity
Between Trajectories of Mobile Objects," in Applied Pattern
Recognition. vol. 91, H. Bunke, et al., Eds., ed: Springer
Berlin / Heidelberg, 2008, pp. 101-128.

[18] I. Nižetić Kosović, K. Fertalj, and J. Kusak, "An expert
system for discovering biogeographically interesting
locations from animal movement data," presented at the
European Computing Conference, Paris, France, 2011, pp.
348-353

[19] S. Akoush and A. Sameh, "Movement Prediction Using
Bayesian Learning for Neural Networks," presented at the
International conference on Wireless communications and
mobile computing, Honolulu, Hawaii, USA, 2007, pp. 191-
196

[20] R. Joo, S. Bertrand, J. Tam, and R. Fablet, "Hidden Markov
Models: The Best Models for Forager Movements?," PLoS
ONE, vol. 8 , 2013,

[21] P. E. Smouse, et al., "Stochastic modelling of animal
movement," Philosophical Transactions of the Royal Society
B-Biological Sciences, vol. 365, Jul 27 2010, pp. 2201-2211

[22] I. Nižetić, K. Fertalj, and D. Kalpić, "A Prototype for the
Short-term Prediction of Moving Object's Movement using
Markov Chains," presented at the 31st International
Conference on Information Technology Interfaces, Cavtat,
Croatia, 2009, pp. 559 - 564

[23] J. Bedia, J. Busqué, and J. M. Gutiérrez, "Predicting plant
species distribution across an alpine rangeland in northern
Spain. A comparison of probabilistic methods," Applied
Vegetation Science, vol. 14, 2011, pp. 415-432

[24] J. Xu and R. H. Guting, "A generic data model for moving
objects," Geoinformatica, vol. 17, 2013, pp. 125-172

[25] V. Bogorny, C. Renso, A. R. d. Aquino, F. d. L. Siqueira,
and L. O. Alvares, "CONSTAnT – A Conceptual Data
Model for Semantic Trajectories of Moving Objects,"
Transactions in GIS, vol. 18, 2014, pp. 66-88

[26] F. Urbano, et al., "Wildlife tracking data management: a new
vision," Philosophical Transactions of the Royal Society B-
Biological Sciences, vol. 365, Jul 27 2010, pp. 2177-2185

[27] I. Nižetić and K. Fertalj, "Automation of the Moving Objects
Movement Prediction Process Independent of the
Application Area," Computer Science and Information
Systems, vol. 7, 2010, pp. 931-945

[28] D. P. Ames, et al., "HydroDesktop: Web services-based
software for hydrologic data discovery, download,
visualization, and analysis," Environmental Modelling &
Software, vol. 37, 2012, , pp. 146-156

[29] M. Kanamitsu, et al., "NCEP-DEO AMIP-II Reanalysis (R-
2)," Bulletin of the American Meteorological Society, vol.
83, 2002, pp. 1631-1643

[30] NOAA. (2011, 01.06.2011). Earth System Research
Laboratory. Available: http://www.esrl.noaa.gov/

[31] ESRI. ESRI Shapefile Technical Description. An ESRI White
Paper—July 1998 [Online]. Available from:
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
2014.08.15

373Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 395 / 679

Method for Analytic Evaluation of the Weights of a Robust Large-Scale
Multilayer Neural Network with Many Hidden Nodes

Mikael Fridenfalk
Department of Game Design

Uppsala University
Visby, Sweden

mikael.fridenfalk@speldesign.uu.se

Abstract—The multilayer feedforward neural network is presently
one of the most popular computational methods in computer
science. The current method for the evaluation of its weights is
however performed by a relatively slow iterative method known
as backpropagation. According to previous research, attempts
to evaluate the weights analytically by the linear least square
method, showed to accelerate the evaluation process significantly.
The evaluated networks showed however to fail in robustness
tests compared to well-trained networks by backpropagation, thus
resembling overtrained networks. This paper presents the design
and verification of a new method, that solves the robustness issues
for a large-scale neural network with many hidden nodes, as an
upgrade to the previously suggested analytic method.

Keywords-analytic; FNN; large-scale; least square method;

neural network; robust; sigmoid

I. INTRODUCTION

The artificial neural network constitutes one of the most
interesting and popular computational methods in computer
science. The most well-known category is the multilayer
Feedforward Neural Network (FNN), where the weights are
estimated by an iterative training method called backpropaga-
tion [7][9]. Although this iterative method is relatively fast
for small networks, it is rather slow for large ones, given
the computational power of modern computers [1][2]. To
accelerate the training speed of FNNs, many approaches have
been suggested based on the least square method [3]. Although
the presentation on the implementation, as well as of the data
on the robustness of these methods may be improved, the
application of the least square method as such seems to be
a promising path to investigate [8][10].

What we presume to be required for a new method to
replace backpropagation in such networks, is not only that it
is efficient, but also that it is superior compared to existing
methods and is easy to understand and implement. The goal
of this paper is, therefore, to investigate the possibility to find a
robust analytic solution (i.e., with good generalization abilities
compared with a well-trained network using backpropagation,
but without any iterations involved), for the weights of an
FNN, that is easily understood and that may be implemented
relatively effortlessly, using a mathematical application such
as Matlab [6].

In a previous work [4], an analytic solution was proposed
for the evaluation of the weights of a textbook FNN. This
solution was found to be significantly much faster, and for
H = N � 1 (where H denotes the number of hidden
nodes and N , the number of training points), more accurate
than solutions provided by backpropagation, but at the same
time significantly less robust compared with a well-trained

x1

x2

hk

x3

1

vk1

vk2

vk3

vk4

Figure 1. An example with three input nodes (M = 3), hk = S(vku) =
S(vk1x1 + vk2x2 + vk3x3 + vk4), using a sigmoid activation function S.

x1

h1

y1

x2

h2

y2

x3 y3

y4

1

1

V W

Figure 2. A vectorized model of a standard FNN with a single hidden layer,
in this example with M = 3 input nodes, H = 2 hidden nodes, K = 4
output nodes and the weight matrices V and W, using a sigmoid activation
function for the output of each hidden node. In this model, the biases for the
hidden layer and the output layer correspond to column M + 1 in V versus
column H + 1 in W.

network using backpropagation, why the analytic solution was
considered to lack robustness for direct use.

Further experiments showed, however, that even small
measures, such as an increase in the input range of the network
by doubling the size of the training set with the addition of

374Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 396 / 679

perturbation, led to significant improvement of the robust-
ness of the evaluated network. As a first systematic attempt
to address the issue of robustness, this paper presents the
derivation, implementation and verification of a new method,
based on the expansion of the training set of an FNN, with
addition of perturbation, but in practice without any impact
on the execution speed of the original method. As a brief
overview, in Section II, a recap is made of the theory behind
the analytic method presented in [4], which is the foundation of
the theory presented in this paper. In Section III, a new method
(or upgrade) is derived for the improvement of the robustness
of the original method. In Section IV, the experimental setup
is briefly described, and in Section V, the new method is
experimentally verified by comparison with the performance
of the original one.

II. ANALYTIC SOLUTION

In [4], a textbook FNN is vectorized based on a sigmoid
activation function S(t) = 1/(1 + e�t

). The weights V and
W of such system (often denoted as WIH versus WHO), may
be represented by Figures 1-2. In this representation, defined
here as the normal form, the output of the network may be
expressed as:

y = Wh = W

S(Vu)

1

�
, u =

x
1

�
(1)

where x = [x1 x2 . . . xM]

T denotes the input signals, y =

[y1 y2 . . . yK]

T the output signals, and S, an element-wise
sigmoid function. In this paper, a winner-take-all classification
model is used, where the final output of the network is the
selection of the output node that has the highest value. Since
the sigmoid function is constantly increasing and identical for
each output node, it can be omitted from the output layer,
as max(y) results in the same node selection as max(S(y)).
Further on, presuming that the training set is highly fragmented
(the input-output relations in the training sets were in our
experiments established by a random number generator), the
number of hidden nodes is preferred to be set to H = N � 1.
Defining a batch (training set), the input matrix U, may be
expressed as:

U =

2

66664

x11 x12 · · · x1N

x21 x22 · · · x2N
...

...
. . .

...
xM1 xM2 · · · xMN

1 1 · · · 1

3

77775
(2)

where column vector i in U, corresponds to training point i,
column vector i in Y0 (target output value) and in Y (actual
output value). Further, defining H of size N ⇥N , as the batch
values for the hidden layer, given a training set of input and
output values and M+

= M +1, the following relations hold:

U =

X

1T

�
: [M+ ⇥N] (3)

H =

S(VU)

1T

�
: [N ⇥N] (4)

Y = WH : [K ⇥N] (5)

To evaluate the weights of this network analytically, we need to
evaluate the target values (points) of H0 for the hidden layer. In

this context, the initial assumption is that any point is feasible,
as long as it is unique for each training set. Therefore, in this
model, H0 is merely composed of random numbers. Thus,
the following evaluation scheme is suggested for the analytic
solution of the weights of such network:

VT
= (UUT

)

�1UHT
0 : [M+ ⇥H] (6)

WT
= (HHT

)

�1HYT
0 : [N ⇥K] (7)

where a least square solution is used for the evaluation of each
network weight matrix. Such equation is nominally expressed
as:

Ax = b (8)

with the least square solution [3]:

x = (ATA)

�1ATb (9)

Since the mathematical expressions for the analytic solution of
the weights of a neural network may be difficult to follow, an
attempt has been made in Figure 3 to visualize the matrix
operations involved. While a nonlinear activation function
(such as the sigmoid function) is vital for the success of such
network, the inclusion of a bias is not essential. It is for
instance possible to omit the biases and to replace H0 with
an identity matrix I. Such a configuration would instead yield
the following formula for the evaluation of V and H (where
UI can further be simplified as U):

VT
= (UUT

)

�1UI : [M+ ⇥N] (10)

H = S(VU) : [H ⇥N] (11)

III. PROPOSAL

To start with, we expand the input training set U in (2),
by the addition of perturbation to the input signal, given the
definition ⇥ = UUT , with ✓M+M+

= N in:

⇥ =

2

66664

✓11 ✓12 . . . ✓1M ✓1M+

✓21 ✓22 . . . ✓2M ✓2M+

...
...

. . .
...

...
✓M1 ✓M2 . . . ✓MM ✓MM+

✓M+1 ✓M+2 . . . ✓M+M N

3

77775
(12)

Further, an extended matrix ˜U is introduced, where:

˜U =

⇥
˜U1

˜U2 . . . ˜UN

⇤
(13)

with:

Uj =

2

66664

u1j +� u1j �� u1j u1j

u2j u2j u2j +� u2j ��

...
...

...
...

uMj uMj uMj uMj

1 1 1 1

· · · u1j u1j

· · · u2j u2j

. . .
...

...
· · · uMj +� uMj ��

· · · 1 1

3

77775
(14)

375Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 397 / 679

h ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

i

VT

=

0

@
h ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
1 1 1 1 1 1

i
2

4
⇤ ⇤ 1
⇤ ⇤ 1
⇤ ⇤ 1
⇤ ⇤ 1
⇤ ⇤ 1
⇤ ⇤ 1

3

5

1

A
�1

h ⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

i

(UUT)�1

2

4
h ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
1 1 1 1 1 1

i
2

4
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

3

5

3

5

h ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

i

UHT
0

2

4
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
1 1 1 1 1 1

3

5

H

=

2

6666666664

S

0

BBB@

" ⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

#

V

h ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
1 1 1 1 1 1

i

U

1

CCCA

[

1 1 1 1 1 1
]

1T

3

7777777775

2

4
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3

5

WT

=

0

@

2

4
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
1 1 1 1 1 1

3

5

2

4
⇤ ⇤ ⇤ ⇤ ⇤ 1
⇤ ⇤ ⇤ ⇤ ⇤ 1
⇤ ⇤ ⇤ ⇤ ⇤ 1
⇤ ⇤ ⇤ ⇤ ⇤ 1
⇤ ⇤ ⇤ ⇤ ⇤ 1
⇤ ⇤ ⇤ ⇤ ⇤ 1

3

5

1

A
�1

(HHT)�1

2

666664

2

4
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
1 1 1 1 1 1

3

5

H

2

4
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3

5

YT
0

3

777775

2

4
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3

5

HYT
0

 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤

�

Y

=

 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤

�

W

2

4
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
1 1 1 1 1 1

3

5

H

Figure 3. A visual representation of the evaluation of weights V and W by the analytic method presented in the related work [4], and the actual output Y, in
this example as a function of six training points, N = 6, the training input and output sets U and Y0, with two inputs, M = 2, four outputs, K = 4, and five
hidden nodes, H = N � 1 = 5. In this figure, an asterisk denotes a floating-point number. To facilitate bias values, certain matrix elements are set to one.

and where � is defined as the amplitude of the perturbation.
Thus, for the right hand side of (8), ˜⇥ =

˜U ˜UT , or more
explicitly:

˜⇥ = 2M

2

66664

d1 ✓12 . . . ✓1M ✓1M+

✓21 d2 . . . ✓2M ✓2M+

...
...

. . .
...

...
✓M1 ✓M2 . . . dM ✓MM+

✓M+1 ✓M+2 . . . ✓M+M N

3

77775
(15)

with di = ✓ii + ↵, where ↵ = N�

2/M , or:
˜⇥ = 2M [⇥+ diag(↵,↵, . . . ,↵, 0)] (16)

where diag(d1, d2, . . . , dM+
), denotes a diagonal matrix of

size M+ ⇥ M+ (where M+
= M + 1), with the diagonal

elements d1, d2, . . . , dM+ . Similarly, for the left hand side
of (8), and ⇤ are defined as:

HT
0 = =

2

664

 11 12 . . . 1H

 21 22 . . . 2H
...

...
. . .

...
 N1 N2 . . . NH

3

775 (17)

⇤ = UHT
0 =

2

664

�11 �12 . . . �1H
�21 �22 . . . �2H

...
...

. . .
...

�M+1 �M+2 . . . �M+H

3

775 (18)

and thereby, and j as:

 =

2

664

 1

 2
...
 N

3

775 (19)

 j =

2

664

 j1 j2 . . . jH

 j1 j2 . . . jH

...
...

. . .
...

 j1 j2 . . . jH

3

775 (20)

with ˜⇤ =

˜U :
˜⇤ = 2M⇤ (21)

This transforms (8) into:
˜U ˜UTX =

˜U (22)

376Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 398 / 679

or:
˜⇥X =

˜⇤ (23)

Thus:

2M [⇥+ diag(↵,↵, . . . ,↵, 0)]X = 2M⇤ (24)

Given the matrix equation:

AX = B (25)

since, given a scalar c 2 R:

c · (AX) = (c ·A)X = c ·B (26)

thereby:
[⇥+ diag(↵,↵, . . . ,↵, 0)]X = ⇤ (27)

This yields thus, the final expression:
⇥
UUT

+ diag(↵,↵, . . . ,↵, 0)
⇤
X = UHT

0 (28)

Hence, the expansion of U into a perturbation matrix ˜U of size
M+ ⇥ 2MN , and similarly of HT

0 into a matrix of size
2MN⇥H , is according to (28), equivalent to the reinforcement
of the diagonal elements of the square matrix ⇥ = UUT ,
by the addition of a factor ↵ = N�

2/M to each diagonal
element, except for the last one, which as a consequence of
the use of bias in the network, is left intact.

IV. EXPERIMENTAL SETUP

The experiments presented in this paper are based on a
minimal mathematical engine that was developed in C++,
with the capability to solve X in a linear matrix equation
system of the form AX = B, where A, B, and X denote
matrices of appropriate sizes, since it is computationally more
efficient to solve a linear equation system directly, than by
matrix inversion. In this system, the column vectors of X are
evaluated using a single Gauss-Jordan elimination cycle [3],
where each column vector xi in X corresponds to the column
vector bi in B. Backpropagation was in these experiments,
for high execution speed (and a fair comparison with the new
methods), also implemented in C++, using the code presented
in [5] as a reference.

V. RESULTS

The experimental results presented in this paper are shown
in Figures 4-9, measuring average success rate, and Table I,
measuring execution speed. Each experiment is based on ten
individual experiments (with different random seeds), using a
single CPU-core on a modern laptop computer. In Table I,
¯tbp denotes the execution time for backpropagation based
on 10000 iterations, which applies to all backpropagation
experiments presented in this paper. Similarly, ¯tnew denotes the
execution time for the original analytic method in [4], and ¯tnew+,
the execution time for the new method presented in this paper,
using diagonal reinforcement.

In these experiments, the input values to the FNN consisted
of the integers {0, 1, 2}, and the output values of a binary
number, {0, 1}. To avoid inconsistencies (or repetition) in any

training set, identical input values were replaced by unique
values. For the addition of noise, a random value (with uniform
distribution) in the range of ±�, was added to each input
value. However, although according to our derivation of (28),
↵ = N�

2/M , ↵ had in practice to be retuned to 10

5 ·N�

2 for
good results in the experiments in Figures 4-6 (H = N � 1),
and to 10

4 ·N�

2 in Figures 7-9 (few hidden nodes).

TABLE I. AVERAGE EXECUTION TIME

Figure M N H K t̄bp t̄new t̄new+

4 10 25 24 10 92.5 ms 688 µs 668 µs
5 20 50 49 20 332 ms 4.84 ms 4.86 ms
6 40 100 99 40 1.27 s 37.0 ms 37.1 ms
7 10 25 10 10 43.3 ms 212 µs 202 µs
8 20 50 20 20 144 ms 1.33 ms 1.31 ms
9 40 100 40 40 535 ms 9.35 ms 9.38 ms

VI. CONCLUSION

The upgrade proposed in this paper, showed to solve the
robustness issues of the analytic solution of the weights of
a large-scale FNN with H = N � 1 nodes, and in practice
without any impact on the execution speed of the solution.
Since according to [4], the original method was not considered
to be ready for direct use until the robustness issues had been
solved, this upgrade provides hereby a method that, given
access to a linear equation solver, while considerably faster, is
for large-scale networks with many hidden nodes, comparable
in robustness to a well-trained FNN by backpropagation.

REFERENCES

[1] P. De Wilde, Neural Networks Models: An Analysis, Springer, 1996,
pp. 35-51.

[2] R. P. W. Duin, “Learned from Neural Networks”, ASCI2000, Lommel,
Belgium, 2000, pp. 9-13.

[3] C. H. Edwards and D. E. Penney, Elementary Linear Algebra, Prentice
Hall, 1988, pp. 220-227.

[4] M. Fridenfalk, “The Development and Analysis of Analytic Method
as Alternative for Backpropagation in Large-Scale Multilayer Neural
Networks”, The Proceedings of ADVCOMP 2014, Rome, Italy, August
2014, in press.

[5] M. T. Jones, AI Application Programming, 2nd ed., Charles River, 2005,
pp. 165-204.

[6] Matlab, The MathWorks, Inc. <http://www.mathworks.com/> [retrieved:
August 23, 2014].

[7] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3nd ed., Prentice Hall, 2009, pp. 727-736.

[8] B. Widrow and M. A. Lehr, “30 Years of Adaptive Neural Networks:
Perceptron, Madaline, and Backpropagation”, The Proceedings of IEEE,
vol. 78, no. 9, 1990, pp. 1415-1442.

[9] B. J. Wythoff, “Backpropagation Neural Networks: A Tutorial”, Chemo-
metrics and Intelligent Laboratory Systems, vol. 18, no. 2, 1993,
pp. 115-155.

[10] Y. Yam, “Accelerated Training Algorithm for Feedforward Neural
Networks Based on Least Squares Method”, Neural Processing Letters,
vol. 2, no. 4, 1995, pp. 20-25.

377Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 399 / 679

�

Average Success Rate s̄

0 0.1 0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100% •

•

•

•
•

•

�

�

�

�
�

�

•

• • • • •

⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Figure 4. Backpropagation (⇥), analytic method (�), versus new method using
diagonal reinforcement (•), with M = 10 (input nodes), N = 25 (training
points), H = 24 (hidden nodes), and K = 10 (output nodes).

�

s̄

0 0.1 0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100% •

•

•

•
•

•

�

�

�

�
�

�

•
• • • • •

⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Figure 5. M = 20, N = 50, H = 49, and K = 20.

�

s̄

0 0.1 0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100% •

•

•

•
• •

�

�

�

�
� �

• • • • • •
⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Figure 6. M = 40, N = 100, H = 99, and K = 40.

�

s̄

0 0.1 0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100%

• • • • • •
� � � � � �
• • • • • •

⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Figure 7. M = 10, N = 25, H = 10, and K = 10.

�

s̄

0 0.1 0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100%

• • • • • •
� � � � � �
• • • • • •
⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Figure 8. M = 20, N = 50, H = 20, and K = 20.

�

s̄

0 0.1 0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100% • • • • • •� � � � � �• • • • • •
⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Figure 9. M = 40, N = 100, H = 40, and K = 40.

378Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 400 / 679

Reorganizing an Offshore Software Project
With the Goal of Favoring Knowledge Transfer

Carlo Consoli
IBM

Roma, Italy
carlo.consoli@it.ibm.com

Paolo Spagnoletti
Università LUISS

Roma, Italy
pspagnoletti@luiss.it

Paolo Rocchi
Università LUISS

Roma, Italy
procchi@luiss.it

Pietro Nico
IBM

Roma, Italy
pietro_nico@it.ibm.com

Abstract—This paper addresses the management of a software
project developed by two groups of professionals, one working
locally and the other one working off-shore. After the startup
period lasting nearly a year, the project leaders observed that
the quality and quantity of the software modules produced by
the two teams were not up to expectations while costs had
grown up. The project leaders analyzed the types and the
amount of software tests required to ensure the quality of the
software product. Finally, the management found out that the
knowledge transfer process was the real root-causes of the
project downfall. The leaders established a new organization as
the solution to this problem. They replaced the two large teams
with small groups to make communication and cooperation
amongst people easier. Immediate evidence has demonstrated
the effectiveness of this arrangement.

Keywords- large software project; project management;
offshoring.

I. INTRODUCTION

The basic aspect of offshoring is the notion that some
jobs are movable [1]. It may be said that movable jobs are
those with little face-to-face customer contact and with high
information content. In relation to customer contact, Blinder
and others use the term “personally” delivered or “personal”
services to describe tasks that require customer contact or
physical presence and “impersonal” services to describe
tasks that have neither of these prerequisites [2]. In terms of
high information content, considerable attention is paid to
jobs based on Internet connections, which have greatly
reduced the transportation costs of information [3].

The concept of offshoring started in the late 1980s when
technology firms discovered emerging countries as basins of
untapped resources of high-tech professionals at substantially
lower labour costs [4]. Technology firms and Information
Technology (IT) departments began to create Offshore
Centers of Excellence (OCEs), which, in their early
beginnings, related to assisting IT customers and later were

devoted to more complex jobs, such as software
development and maintenance.

OCEs, in many cases, evolved from a tactical to a
strategic role [5]. As OCEs matured in the strategic role, they
provided a higher degree of business value, the end goal
being to operate in a seamlessly integrated model with the
parent organization. However, the model of distributed
software development sometime has become a critical
success factor in the present global economy [6].

This paper focuses on a crucial aspect of offshore IT
projects: the Knowledge Transfer Process (KTP). Issues
related to KTPs frequently emerge within the context of IT
outsourcing environments and several empirical researches
have examined how the development knowledge needs to be
shared among technicians and customers, and the quality of
the exchanged information must be assured [7] [8] [9] [10].
Many focus on the customers viewpoint, instead [11]
approaches the issues from the typical perspective of an
offshore software supplier. Lee and others conduct a survey
which illuminates the cultural differences which affect the
performances of joined Western and Asian software
development teams [12].

The present case study deals with this kind of cultural
discrepancies and begins with an overview of the software
project. Then, it illustrates how the issues rose and finally we
shall explain the solution and its validation in relation to
human communication and cooperation.

II. SOFTWARE PROJECT PLAN AND ORGANIZATION

An outsourcing project was undertaken by IBM (herein
called the “IT Provider”) to develop a ticketing application
for an Italian company which transports goods and
passengers (herein called “XYZ” or the “IT Client”). The
aim of the project was to redefine the entire ticket trading
system of XYZ, based on on-line sales and ticket offices
deployed throughout the Italian territory.

The project began in late 2009 and its high degree of
complexity required setting up a specific organizational
model for the IT Provider which was deeply integrated with

379Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 401 / 679

the structures of the IT Client. This arrangement ensured that
the customer and the software producer can cooperate in

reaching common goals. Brief profiles of the IT provider
entities are given below (see Figure 1.).

Figure 1. Symmetrical organization of IT Client and IT Provider

- The Executive Manager was formally responsible for
all the aspects of the work and for the relations with the
customer.

- The Project Manager was responsible for technical
questions.

- The Technology Executive was responsible for the
overall architectural design of the solution.

- The Demand Manager defined the detailed
requirements and ensured the adherence of the solution to the
customer’s needs.

- The Test Manager was bound to the level of service.
- The Project Management Office (PMO) defined and

maintained standards for project management within the
organization.

- The Quality Manager was responsible for quality
assurance.

- The Release Manager was responsible for the
development and release of the software application, in
charge of two different software development teams, one in
Italy and one in India.

- The Infrastructure & Service Manager ensured that the
infrastructure services met requirements in terms of size,
performance and availability of the system.

We shall call one or more of the above managers “project
leaders”. Operations were carried out by the following
groups of software practitioners:

(i) The Release Team brought out the various modules of
the software application supplied to XYZ. This entity
registered all the functions implemented and tested in the
Release Note, a centralized platform used for software
management. The Release Note was recognized as the
official data handler and on request provided and still
provides statistics on the work in progress.

(ii) The Test Team included from five to seven testers.
The role of this team was to develop and execute test cases,
find defects and set the defect status on the Release Note.

(iii) The Development Team was subdivided into the
offshore team A and domestic team B.

The former included a variable number of programmers
living in India: from 50 to 70, depending on the work load.
Five team leaders from Italy managed team A and operated
as the front end of the Italian development team B, which
included 20 developers primarily involved in the analysis
phase. The Indian team was chiefly in charge of coding and
had a low level of responsibility.

Teams (i) and (iii) reported to the Release Manager; team
(ii) reported to the Test Manager. During the year 2010
teams (i), (ii) and (iii) did not produce significant outcomes.
It may be said that 2010 was a break-in period. In the early
2011 practitioners began to work steadily and the project
leaders perceived significant difficulties. The quality and
quantity of the software modules were not up to expectations
and delivery times delayed. The project leaders established
that the software modules should be tested in an accurate
manner in order to check this unexpected downfall. In the
mind of the managers, this control was even supposed to
explain the low performances of teams A and B. Testing was
executed in Italy, under the direct control of top leaders who
surveyed the amount and kind of undertaken tests. They
overlooked the number and typology of defects which are
more telling on the technical plane, while the amount and
kind of tests are appropriate for management purposes.

380Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 402 / 679

TABLE I. AMOUNT OF TESTS IN THE FIRST SEMESTER OF
2011

III. LARGE-SCALE TESTING

The modules are the basic components of the ticketing
application; an executable version of the module is called a
build (B). Specialists conducted two principal types of
software test:

- They undertook F functional tests on each build.
Functional testing focuses on recently implemented
functions and overlooks previously implemented functions
of the module.

- They executed R regression tests to validate the
overall build, including new and old functions.

The Test Manager arranged S sessions per module to
carry out the regression tests. More precisely, every module
was submitted to a series of tests according to the following
equations:

NFT (number of functional tests per module) = B × F
NRT (numbers of regression tests per module) = S × R
Total (total number of tests per module) =

= NFT + NRT = (B × F) + (S × R)

Table I exhibits data collected in the first semester of
2011. For instance, module # 6 – performing advanced
functions in selling tickets – had 48 executable builds each of
which underwent 90 functional tests. The manager arranged
16 sessions for module # 6 each of which included 136
regression tests. Thus, module # 6 had 4,320 (=48×90)
functional tests and 2,176 (=16×136) regression tests;
module # 6 had 6,496 (=4,320+2,176) tests in all.

The noteworthy values of NFT and NRT were basically
determined by the amount of detected errors and
strengthened the idea that something resulted in the low
performances of the offshore and domestic teams. They
settled to investigate this failure case by means of further
inquiry

The states of the software defects were classified
according to the rather usual triage as follows (Table II):

TABLE II. CLASSIFICATION OF SOFTWARE DEFECTS
UNDER TESTIONG SESSIONS

New Defect newly found by the Test Team.
In
Progress

Defect subject to ongoing remedial work
by the Development Team.

Pending Defect pending remedial action while the
Development Team gathers additional
information.

Resolved Defect remedied by the Development
Team.

Reopened Defect retested by the Test Team and
found not to be remedied.

Closed Defect tested by the Test Team and found
to be remedied.

Defects classified as In Progress, Pending and
Reopened will generically be termed Open defects hereafter.
The Test Manager separately surveyed the new and open
defects during the first semester of 2011. He noted that new
defects were decreasing while the open defects were
growing steadily from 50 (February 2011) to 130 (June
2011). This contrasting trend demonstrated that several
software errors were causing cascade failures. The Test
Manager meant to explore this negative phenomenon using
the Release Note that is a software tool for monitoring the
status of defects.

The Release Note provided a diagram that exhibits the
six states listed in Table 2 (Figure 2); in addition the special
block ‘Release Note’ indicates the status of defects just
resolved and under registration by means of the tool Release
Note. Teams (i), (ii) and (iii) responsible for handling precise
states appear on the far left of Figure 2. For instance, the
Development Team was in charge of the defects in the states:
Pending, Resolved and In Progress. The flow diagram also
shows the transitions of defects from one state to another
with the transition frequencies. For instance, 2% of new
defects evolve toward the Pending status.

The regular steps to handle a new defect are the
following: New → Resolved → Release Note → Closed. But
only 88% of new defects went to the status Resolved; 89%
passed from Resolved to Release Note; and 84% of defects
officially registered were closed. We obtain that a little more
than half of the new defects were closed throughout the
regular procedure

(0.88 × 0.89 × 0.84) ≈ 0.65

In addition, note how 11% of resolved defects could not
be registered by Release Notes (100% – 89% = 11%) due to
various reasons. As many as 16% of resolved defects (see
Release Note → Reopened), and 6% of closed defects (see
Close → Reopened) were tested anew for partial corrections.
A non-negligible amount of defects crossed the states In
Progress → Pending; others followed the pathway: Pending
→ Resolved → In Progress. Essentially, the flow chart

B F S R Total

1 - Base Functions 73 63 0 0 4,599

2 - Billing Functions 16 6 5 63 411

3 - Advanced Tickets
Purchase Options I

46 16 15 69 1,771

4 - Advanced Ticket
Purchase Options II

72 29 24 85 4,128

5 – Ticket Purchase
with Subscription

44 22 15 114 2,678

6 - Advanced Ticket
Purchase Options III

48 90 16 136 6,496

Grand Total 20,083

381Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 403 / 679

provided details about the abnormal software production of
defects and about the bad handling of those defects carried
out by the Teams A and B.

The project leaders calculated the stability of the states in
order to better understand the operations achieved by A and
B. They counted the number of defects that remained in the
same state from approximately February to May 2011 using
a simulation program, and obtained the following results:

1) New: 4% of the new defects remained in the New
state.

2) In Progress: 55% of the defects within this state
remained so.

3) Pending: 92% of the defects within this state
remained so.

4) Resolved: 11% of the defects within this state
remained so.

5) Reopened: 1% of the defects within this state
remained so.

It is worth explaining how these values – in particular 2)
and 3) – do not derive from the priority of defects. Software
defects with different urgency levels shared the same
destiny. For example, a software error with high priority was
revamped and closed in a short while; but a subsequent
regression test often placed it into the Open status anew. This
cyclic mechanism occurred more than once.

Figure 2. Flowchart of defects’ states

Besides the numbers reported above, two practical
observations on everyday job clarified the dimension of the
project fail. Firstly, groups A and B were overloaded and
spent most energy fixing the software defects rather than
developing new code. Secondly, the high number of tests
incurred time delays and high costs.

In conclusion, quantitative and qualitative data showed
how the teams A and B turned out to be ineffective, in
contrast with the high professionalism of individuals
belonging to the two teams. The project leaders suspected
that inefficient KTPs were heavily influencing the
operations.

IV. ANALYSIS OF THE SITUATION

A special control group of experts searched for the
reasons of this situation and discovered that all the root-
causes were related to KTPs in a way. Communication and
comprehension between members of the onshore and
offshore teams were largely ineffective. In particular, the
analytical report of the control group emphasized the
following aspects:
I. The teams A and B had been arranged in two very
different manners:

a) The Indian team was very large (50 to 70
programmers as described above) and rigidly
structured according to hierarchical levels. There
were managers, general coordinators, area
coordinators, specialized developers and generic
developers. They adopted standard methodologies;
they used advanced software tools such as Rational
but they followed somewhat rigid work-
procedures.
b) Most of the team A members were young and
lacking professional experience in large software
projects. By contrast, the Italian team B included
architects, analysts and developers with extensive
experience and knowledge of the target market. The
latter group took several details for granted,
whereas the former group was completely unaware
of technical requirements, the needs of the
customer, the defects to correct, etc.

II. Testing was centralized in order to ensure full control
of the software development. As a result, the Italian Test
Team suffered an overload of activity which stressed the
communication between domestic and offshore developers.

III. For team B, it was not a straightforward task to explain
the requirements of XYZ and the Indian team. The latter had
linguistic difficulties in reading some expressions typical of
the Italian transport sector. There were considerable flaws in
relation to the delivery of knowledge and knowledge
acquisition by the Indians. The offshore team had very little
domain knowledge and no understanding of how their
development work fitted with the operations of XYZ.

IV. The coding activity of team A was managed by chiefs
of the parent organization who viewed the offshore support
merely as a low-cost production facility with an abundant
supply of cost-effective labor for low-level activities.

Points I, II, III and IV taught the project leaders that
difficulties could not be solved through limited counter
measures. They decided to rearrange the structure of the
entities involved in the project; in particular, they meant to
improve the collaboration between teams A and B.

382Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 404 / 679

Figure 3. Renewed organization of IT Provider

V. WORKFORCE REORGANIZATION

The principal organizational changes are described as
follow.

The domestic and offshore developers are subdivided
into eight groups. That is to say, the ex-members of teams A
and B comprise eight groups that are paired off and report to
four Technical Team Chiefs (TTCs) (Figure 3). Each pair
specializes in implementing a precise area of the ticketing
application. The areas of railway ticketing are as follows:

 Ticket Counter = set of functions related to
ticketing

 Business to Consumer (B2C) = set of Internet
transactions that occur between the transport
company XYZ and its customers

 Business to Business (B2B) = set of Internet
transactions that occur between XYZ and other
companies

 System Configuration = miscellany of technical
functions

Italian and Indian developers become more tightly
integrated as they have common and precise goals inside
each group. In addition:

- Two Indian experts work in Italy to facilitate integration
between multicultural and multilingual groups. This
couple of people acquires knowledge of the needs and
the characteristics of the Italian market through special
training. They are wholly involved in optimizing
communication between the domestic and offshore
resources.

- The offshore team is assigned to carry out unit tests
and functional tests in advance of the corresponding
Italian team. A dozen Indian developers learn the
ticketing methods of XYZ and are able to suggest
corrections for the software modules in case of errors

- The entire testing process is monitored in a “war
room” which includes experts from the onshore and
the offshore side alike. The war room members
monitor the status of a module, and analyze and
evaluate issues in real time.

- The project leaders simplify the management of the
defect states. Abnormal transitions are formally
forbidden and, as a result, a negligible number of
defects go into the Pending status.

Finally, the Release Manager relinquishes responsibility
for software development and assists the Project Manager in
gaining a better understanding of the progress of the overall
software development.

VI. VALIDATION

In advance of the reorganization, a set of 18 principal
functions were identified and scheduled by some project
leaders who in addition calculated the resources required for
testing these principal functions. Under the original scheme,
each function should have required 406 tests of validation;
this number includes all kinds of testing, from unit tests to
regression tests. The test workload should have required 76

383Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 405 / 679

MDs (man-days) and should have caused 15 days of delay
(Table III, upper row).

TABLE III. PROSPECTED AND DEFINITIVE AMOUNT OF
TESTS REQUIRED BY 18 SOFTWARE FUNCTIONS

Test per
Function

Total
Test

Number
Total
MDs

Elapsed Time
(days)

Prospects 406 7308 76 15

Definitive
Data

96 1728 18 4

Once the reorganization is completed, the 18 principal
functions of the ticketing software applications are tested; the
grand total of tests drops down from 7,308 to 1,728; the MDs
comes down from 76 to 18 and the elapsed time falls from
15 days to four. This means that the new work organization
carries out better software modules and in turn the number of
tests necessary to ensure the quality of production decreases.
As an example, the regression errors cease to exist. The
human resources and the release times dropped down by up
to one fourth of the resources previously supplied. A sound
net 76% saving on costs and efforts was achieved.

VII. DISCUSSION AND CONCLUSION

This paper is intended to discuss a case of software
development which was influenced by KTPs between
domestic and offshore teams. The lessons learned by the
project managers fit with some modern researches in the
sense that KTPs can cause low performance, deprecable
quality of software products, time delays and other
noteworthy difficulties, while a unified and integrated
solution that ensures perfect KTPs does not exist in
literature.

It is worth noting that in the beginnings the teams A and
B were classified as centers of excellence including skilled
professionals. The situation was perfect on the surface and
evident obstacles did not emerge in the first year of work.
When problems cropped up, the project managers spent
some time to discover the root-causes of the problems.
Finally, the managers recognized that the cultural gap
between the Italian and Indian developers and the diverging
daily methods of work were the real origins of the economic
losses and inefficient outcomes.

The present paper shows how the project managers have
defined a novel governance structure to enable knowledge
sharing across organizational boundaries of the off-shore

environment. The new teams A and B are subdivided into
four sub-teams and are guided by four specialized chiefs who
ensure close communication amongst local and remote
practitioners. People working in small groups can learn from
each other about what is working better; they can get to
know each other, keep discussion manageable and allow
each discussion to happen in time. In substance, the
introduction of small sub-teams turns out to be the
organization key measure to enhance KTPs.

REFERENCES

[1] Prasanna B., Tambe Lorin M. Hitt - How Offshoring Affects
IT Workers - Comm. of the ACM , 53(10), (2010), Pages 62-
70.

[2] Bhagwati J.N., Blinder A.S., Friedman B.M. (eds) -
Offshoring of American Jobs: What Response from U.S.
Economic Policy? - Proc. Alvin Hansen Symposium on Public
Policy, MIT Press (2009).

[3] Dossani R., Denny N. - The Internet's Role in Offshored
Services: A Case Study of India - Transactions on Internet
Technology, Special Issue on the Internet and Outsourcing,
7(3), (2007), Article No. 15.

[4] Lacity M.C., Willcocks L. - Global Information Technology
Outsourcing: In Search of Business Advantage - John Wiley
& Sons (2000).

[5] Lacity M.C., Khan S.A.,Willcocks L.P. - A Review of the IT
Outsourcing Literature: Insights for Practice - The Journal of
Strategic Information Systems, 18(3) (2009), Pages 130-146.

[6] Prikladnicki R., Audy J.L.N. - Process Models in the Practice
of Distributed Software Development: A Systematic Review
of the Literature - Information and Software Technology,
52(8), (2010), Pages 779-791.

[7] Mohamed A., Arshad N.H., Abdullah N.A.S. - Influencing
Factors of Knowledge Transfer in IT Outsourcing - Proc. 10th
WSEAS Intl. Conf. on Mathematics and Computers in
Business and Economics, (2009), Pages 165-170.

[8] Faiz, M.F., Qadri, U., Ayyubi, S.R. - Offshore Software
Development Models - Proc. Intl Conf on Information and
Emerging Technologies, (2007), Pages 1-6.

[9] Prabhu N.V.A., Latha R., Sankaran K., Kannabiran G. -
Impact of Knowledge Management on Offshore Software
Development: An Exploratory Study - Proc. Third Intl. Conf.
on Advanced Computing, (2011), Pages 121-128.

[10] Pilatti L., Audy J.L.N. - Global Software Development
Offshore Insourcing Organizations Characteristics: Lessons
Learned from a Case Study - Proc. Intl. Conf. on Global
Software Engineering, (2006), Pages 249-250.

[11] Rajkumar T.M., Mani R.V.S. - Offshore Software
Development: The View from Indian Suppliers - Information
Systems Management, 18(2), (2001), Pages 63-73.

[12] Lee D., Smith A., Mortimer M. - Cultural differences
affecting quality and productivity in Western/Asian offshore
software development - Proc. of the 3rd International
Conference on Human Computer Interaction, (2011), Pages
29-39.

384Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 406 / 679

Challenges of the Existing Tools Used in Global Software Development Projects

Mahmood Niazi, Sajjad Mahmood, Mohammad Alshayeb, Ayman Hroub

Department of Information and Computer Science, King Fahd University of Petroleum and Minerals, Saudi Arabia

{mkniazi, smahmood, alshayeb, aymanh}@kfupm.edu.sa

Abstract— Global Software Development (GSD) has been
embraced by organizations due to the availability of highly
trained software engineers at a relatively low cost. GSD is not a
risk free activity as several GSD failures have been reported. It
is anticipated that the appropriate use of available software
tools can play an important role in overcoming some of the
risks associated with management of GSD projects. However,
there are many challenges in adopting the existing tools in
globally distributed projects. The objective of this paper is to
identify challenges of existing tools used in GSD projects. We
have used a Systematic Literature Review (SLR) approach by
applying customized search string derived from our research
questions. We have identified 105 papers that discuss the
challenges of the existing GSD tools. We have identified key
challenges for adopting existing tools in GSD projects, such as:
“difficulties in adopting and learning existing tools”,
“inappropriate use of tools”, “lack of coverage of GSD
processes” and “lack of security and privacy”. Based on our
SLR results, we suggest that GSD organizations should address
these challenges in order to compete in the GSD business.

Keywords-Global software development; Challenges;
Systematic Literature Review; Software Tools.

I. INTRODUCTION

Global software development (GSD) is becoming a
promising methodology to build quality software at a low
development cost and short time-to-market. GSD is the
process where a company either has its software developed
by geographically distributed teams or contracts all or parts
of its software development activities in return for
remuneration [1] [2]. A number of software organizations in
the developed world have outsourced their software
development projects to emerging countries (e.g., China and
India) where they have access to large pools of highly trained
software engineers at relatively low cost.

The adoption of GSD has introduced potential benefits as
well as challenges for software organizations. GSD has
dramatically changed the business economics in the overall
software industry by, for example, utilizing time-zone
differences to organize round-the-clock project development
life cycle. Furthermore, globalization of software projects
allows companies to employ software engineers with
required skills to work on a project from different
geographical locations. On the other hand, the
geographically distances and cultural differences between
globally distributed teams have also introduced new

challenges, such as: difficulty in maintaining collaboration,
coordination and communication [3] [4] [5] [6].

Lately, researchers [7] [8] have indicated that readily
available software tools can help in overcoming challenges
associated with development and management of software
projects by GSD teams. Document management systems,
wiki and blog features of software tools have been used for
knowledge management among GSD teams. Similarly,
social computing tools, such as: Skype, Twitter, etc., are
being used in multi-site GSD projects to provide additional
communication channels. This not only enables real-time
communication but also allows knowledge sharing and
instant feedback from different teams involved in the project
[9].

Despite the increased use of software tools in GSD
projects, little research has been carried out to comprehend
the challenges associated with the adaptation of existing
tools in the GSD environment. We also need to investigate
how to help organizations in selecting suitable tools to
ensure the successful outcome of projects and to maintain
long lasting relationships between the clients and the
vendors.

In this paper, we aim to identify challenges, via
systematic literature review, of using existing software tools
in GSD projects. Identifying these challenges will assist
GSD organizations in better development and management
of GSD projects. Our long-term research goal is to develop a
global project management readiness framework to assist
software development organizations in measuring and
improving their project management readiness prior to
starting global activities. To achieve this, we intend to
address the following research question in this paper:

RQ: What are the challenges of existing tools used in
GSD projects?

The rest of this paper is organized as follows: Section II
provides the GSD background. Section III describes the
research methodology. In Section IV, we present the initial
results with analysis and we conclude in Section V.

II. BACKGROUND

GSD is a software engineering paradigm aiming at
developing high-quality software in low-wage countries at
reduced cost [1]. The various types of GSD projects can be
grouped into two categories, namely, outsourcing on the
basis of geographical location and outsourcing on the basis
of relationship [10]. On the basis of geographic distance
between vendors and clients, outsourcing is further

385Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 407 / 679

categorized into three types: onshore outsourcing, near-shore
outsourcing and offshore outsourcing [11]. Onshore
outsourcing is also called domestic outsourcing, which
consists of both domestic vendors and domestic clients [12].
This means that both (vendor and client) organizations are
located in the same country. Near-shore outsourcing or
simply near shoring is defined as the transfer of software
development work to a nearby foreign country to reap lower
labor cost advantages [13]. Offshore software development
outsourcing refers to outsourcing in a geographically distant
country. The offshore activities have been going on since the
last decade and are growing rapidly [14]. The major vendor
countries for offshore outsourcing are India, Ireland, China
and Russia whereas the client countries are USA, UK,
Australia and Japan [15].

There are many reasons for initiating GSD project [13]
[14] [15] [16]. Client organizations benefit from GSD
because vendors in developing countries (offshore vendors)
typically cost one-third less than onshore vendors and even
less when compared with in-house operations [17]. Among
many other reasons for GSD, generally client organizations
outsource their software development work to offshore
locations to gain quality advantages, improve their skills,
access to leading-edge technologies and focus on their core
competencies [13]. Conversely, there are many risks in the
GSD, such as: temporal incompatibility, cultural differences
and hidden costs [18] [19]. IT Week magazine reported that
eight out of every ten firms that outsourced their software
development project to an offshore vendor faced major
problems due to insufficient preparation and poor
management by both client and vendor organizations [20].

There are many reasons for these problems. One of the
major issues is the lack of awareness about software tools
support for GSD projects and what features they provide to
support globally distributed software development projects.
Understanding issues related to adoption of suitable software
tools to support different phases of GSD can help in
achieving greater success in GSD projects. In this paper, we
conduct a systematic literature review to identify challenges
of the existing tools used in GSD projects.

III. RESEARCH METHODOLOGY

In this study, we followed the systematic literature
review (SLR) process to find the data required to address our
research question [21]. SLR is a defined process that aims at
providing an exhaustive summary of literature by identifying
and analyzing published studies relevant to the investigated
research question [22]. SLR may use scoring of the levels of
evidence or statistical techniques (meta-analysis) to combine
results of the identified studies. Therefore, the results
obtained from SLR may provide a better insight than might
be in ordinary literature review or surveys.

To conduct the SLR, we developed the systematic review
protocol. The protocol describes the plan for the review. The
SLR includes the following main steps:

 Define the search strategy
 Search for relevant studies
 Select relevant studies

 Perform study quality assessment
 Extract data from the finally selected studies
 Analyze the extracted data
In order to achieve the objective of this paper, we set the

following research question:
RQ1: What are the challenges of existing tools used in

GSD projects?
For the above research question, we identified the

following major terms:
 POPULATION: GSD projects.
 INTERVENTION: GSD challenges of existing

tools.
 OUTCOME OF RELEVANCE: the challenges of

existing tools used in GSD projects.
Finally, after a number of trials, we identified the

following search string that is used in this study:
{Challenges OR limitations} AND
{Technology OR tools} AND
{GSD OR Global Software Development OR Global

Software Engineering OR Global Software Testing OR
Software Outsourcing OR Software Offshoring OR
Geographically Distributed Software Development}

We used the following digital libraries to run our search
string: ACM Digital Library, IEEE Explore, Science Direct,
Springer Link and John Wiley.

The following inclusion criteria were used:
 The paper should be related to GSD.
 The paper should clearly mention at least one

challenge or limitation either for a certain tool used
in GSD or for technology used in GSD in general.

 The following exclusion criteria were used:
 Non-English papers were excluded.
 White papers and technical reports were excluded.
 Papers related to technology used by distributed

teams other than software engineering were rejected.
To address our research question, we extracted data from

the finally selected papers. The following data were
extracted from each paper: publication type, authors,
publisher, publication name, publication date, organization
size, project size and challenges of tools used in GSD
projects.

IV. INITIAL RESULTS AND DISCUSSION

Table I shows the SLR process results. A total of 1318
papers were retrieved after entering the customized search
string in the digital databases. After reading the title and the
abstract, 318 papers were selected. Finally, 105 papers were
selected after reading the whole paper.

The finally selected papers were categorized according to
the nine study strategies as shown in Table II. Most of the
articles have used case study research method.

Table III provides details of the publication venues for
the papers identified in our SLR study. Nineteen papers are
from Finland, eighteen papers are from USA, nine papers are
from Germany, six papers are from Brazil, five papers are
from the Netherlands and four papers are from UK.

386Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 408 / 679

TABLE I. SEARCH EXECUTION

Library Name Total Results Initial
Selection

Final
Selection

IEEE Explore 980 250 82

ScienceDirect 88 13 6

ACM 180 34 7

John Wiley 70 21 10

Total 1318 318 105

TABLE II. STUDY STRATEGIES USED

Study Type Count

Case Studies 29

Literature Review 16

Implementation 21

Interviews 10

Empirical 8

Systematic Literature Reviews 6

Systematic Mapping Review 4

Social Network Analysis 1

Others 10

Total 105

From the accepted papers, 8 challenges of the tools used
in GSD projects were extracted as shown in Table IV.

TABLE III. STUDY COUNTRIES

Country Count Country Count

Argentina 2 Malaysia 1

Australia 3 Mexico 3

Brazil 6 Netherlands 5

Canada 3 New Zealand 2

China 1 Norway 2

Denmark 4 Pakistan 1

Finland 19 Spain 3

Germany 9 Sweden 2

Iran 1 Switzerland 1

India 4 UK 4

Ireland 5 USA 18

Italy 4 Venezuela 1

Latvia 1

In our study, the most common challenge of the tools
used in GSD projects is “inappropriate use of synchronous
and asynchronous communication tools” (43%) as shown in
Table IV. This can be due to multiple reasons, such as:

 The synchronous tools are useless when the time
difference among the remote teams is more than 8
hours, i.e., no working time overlap between
different teams and thus they cannot utilize these
technologies unless one team shifts the working
hours.

 The synchronous interaction causes interruptions for
the employees in their daily work as often
unnecessary communication is performed. Some
team members may nudge each other without
knowing the status of the receiver (i.e., if receiver is
busy in an important meeting or meeting a crucial
deadline).

 During the use of synchronous and asynchronous
communication tools, the GSD professionals often
face problems due to cultural and language
differences.

 Asynchronous communication tools like email or
forums are not appropriate for solving conflicts and
technical interactions due to their late responses.

TABLE IV. LIST OF CHALLENGES

 Challenges Freq. (n=105) %

Inappropriate use of synchronous and
asynchronous communication tools

45 43

Difficulties in adopting and learning
existing tools for GSD projects

31 30

Lack of coverage of GSD development
processes.

26 25

Lack of data integration due to different
collaboration tools used in GSD projects.

21 20

Lack of support for collaboration and
group decision making.

12 11

Lack of security and privacy in
communication and collaboration tools.

10 10

Lack of awareness of existing tools used
in GSD projects.

6 6

Lack of ability to track the progress of
tasks assigned to team members in GSD
projects.

5 5

The second frequently mentioned challenge is “adopting
and learning new tools for GSD projects” (30%). This is
because there is an increasing pool of software tools that can
be used in GSD projects and selecting and adopting the most
appropriate tool from this pool is a challenging task. This
may be due to the absence of a well-defined procedure to
select the best tool. In addition to that, some people are
reluctant to use some tools due to cultural issues. Moreover,
some people are resistant to change and therefore they do not
like to replace their current tools with new ones.

All these problems show that most of the GSD
organizations do not design the adequate communication
strategies. It is very important to early develop a good
communication strategy in order to reduce
misunderstandings between stakeholders from different
country cultures [2].

The other highly mentioned challenge is the “lack of
coverage of GSD processes” (25%). None of the existing
tools cover all processes in the GSD life cycle. Most of the
tools are dedicated for a specific function like
communication, testing, requirements engineering etc. As a
result, the GSD companies need to have many different tools

387Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 409 / 679

to perform different GSD functions. In addition, there are
important GSD areas, which are rarely covered by the
existing tools, such as: risk management, requirements
engineering, issue tracking and social awareness.

20% of the articles mentioned “lack of data integration
due to different collaboration tools used in GSD projects”.
This incompatibility is due to the absence of standards for
the different tools vendors. This challenge complicates the
data transfer among these different tools.

10% of the articles have mentioned “lack of security and
privacy in communication and collaboration tools” as a
current technology challenge in GSD projects. These security
issues are related to source code and project information that
is exchanged over the web. There are also privacy concerns
for the team members when using these tools for informal
communication, such as: instant messaging or social media.

V. LIMITATIONS

We limited our SLR study to four research publication
databases. However, there are other related research
databases which we did not consider in our study, which
may have relevant publications. Furthermore, with the
increasing number of research papers published on this
topic, some recent and relevant publications could have
been missed at the time of consolidating the results of the
SLR. Nevertheless, we believe that our presented results are
comprehensive and cover the most relevant published
literature.

VI. CONCLUSION AND FUTURE WORK

There is a growing interest in GSD for software
development companies. In addition to the challenges that
are related to the GSD business nature and cultural
differences, there are other challenges associated with the
tools used in GSD. In this paper, we identified challenges of
the software tools used in GSD projects from the existing
literature. We identified 105 papers that discuss the
challenges of the existing GSD tools and technologies. These
challenges range from unsuitable or missing features in these
tools to the non-existence of tools in some GSD areas. There
are other challenges related to the cultural and time zones
difference issues. In addition, the existing tools are neither
comprehensive nor compatible with each other to allow tools
integration.

The next step is to conduct an empirical study to support
our findings. This includes designing a questionnaire in the
light of our findings and gathering information from the
software industry professionals about the challenges related
to the tools used in GSD projects.

The overarching objective of this research work is to
develop a global project management readiness framework
to assist software development organizations in measuring
and improving their project management readiness prior to
starting any global software development activities.

ACKNOWLEDGMENT

The authors would like to acknowledge the support
provided by the Deanship of Scientific Research at KFUPM,
Saudi Arabia, under Research Grant 11-INF2152-04. We are
also thankful to Dr. Narciso Cerpa (University of de Talca,
Chile) for reviewing our protocol.

REFERENCES

[1] S. U. Khan, M. Niazi, and R. Ahmad, "Factors influencing
clients in the selection of offshore software outsourcing
vendors: an exploratory study using a systematic literature
review," Journal of Systems and Software, vol. 84, no. 4,
(2011), pp. 686-699.

[2] S. U. Khan, M. Niazi, and A. Rashid, "Barriers in the
selection of offshore software development outsourcing
vendors: an exploratory study using a systematic literature
review," Journal of Information and Software Technology,
vol. 53, no. 7, (2011), pp. 693-706.

[3] G. Aranda, N., A. Vizcaíno, and M. Piattini, "A framework to
improve communication during the requirements elicitation
process in GSD projects," Requirements engineering, vol. 15,
no. 4, (2010), pp. 397-417.

[4] Benjamin, B. M. Shao, and J. S. David, "The impact of
offshore outsourcing on IT workers in developed countries,"
Communications of the ACM, vol. 50, no. 2, (2007), pp. 89 -
94.

[5] L. I. Charalambos, and N. Robbie, "A risk profile of
offshore-outsourced development projects,"
Communications of the ACM, vol. 51, no. 6, (2008), pp. 89-
94.

[6] H. Christiansen, Munkebo, "Meeting the challenge of
communication in offshore software development," Software
Engineering Approaches for Offshore and Outsourced
Development. Lecture Notes in Computer Science, vol. 4716,
no. (2007), pp. 19-26.

[7] J. Portillo-Rodríguez, A. Vizcaíno, M. Piattini, and S.
Beecham, "Tools used in Global Software Engineering: A
systematic mapping review," Information and Software
Technology, vol. 54, no. 7, (2012), pp. 663-685.

[8] M. A. Storey, C. Treude, D. Van, A., and L. T. Cheng, "The
Impact of Social Media on Software Engineering Practices
and Tools," Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research, (2010), pp. 359-
364.

[9] M. Niazi, S. Mahmood, M. Alshayeb, A. Baqais, and A. Q.
Gill, "Motivators of Adopting Social Computing in Global
Software Development: Initial Results," World Congress on
Engineering 2013 (WCE 2013), London July 2013, ISBN:
978-988-19251-0-7, (2013), pp. 409-413

[10] S. U. Khan, Software outsourcing vendors' readiness model
(SOVRM), PhD thesis, Keele University, UK (2011).

[11] P. A. Laplante, T. Costello, P. Singh, S. Bindiganavile, and
M. Landon, " The who, what, why, where, and when of IT
outsourcing," IEEE IT Professional, vol. 6, no. 1, (2004), pp.
19 - 23.

[12] B. Shao, David, J.S., "The impact of offshore outsourcing on
IT workers in developed countries.," Communications of the
ACM, vol. 50, no. 2, (2007), pp. 89 - 94.

388Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 410 / 679

[13] A. Stetten, v., D. Beimborn, E. Kuznetsova, and B. Moos,
"The Impact of Cultural Differences on IT Nearshoring
Risks from a German Perspective," in Proceedings of the
43rd IEEE Hawaii International Conference on System
Sciences, (2010), pp. 1-10.

[14] D. Smite, C. Wohlin, T. Gorscheck, and R. Feldt, "Empirical
evidence in global software engineering: a systematic
review," Empirical Software Engineering, vol. 15, no. 1,
(2010), pp. 91-118.

[15] N. V. Oza, An empirical evaluation of client - vendor
relationships in Indian software outsourcing companies, PhD
thesis, University of Hertfordshire, UK (2006).

[16] A. A. Bush, A. Tiwana, and H. Tsuji, "An Empirical
Investigation of the Drivers of Software Outsourcing
Decisions in Japanese Organizations," Information and
Software Technology Journal, vol. 50, no. 6, (2008), pp.
499-510.

[17] L. McLaughlin, "An eye on India: Outsourcing debate
continues.," IEEE Software, vol. 20, no. 3, (2003), pp. 114-
117.

[18] H. Holmstrom, E. O. Conchuir, P. J. Agerfalk, and B.
Fitzgerald, "Global Software Development Challenges: A
Case Study on Temporal, Geographical and Socio-Cultural
Distance," Global Software Engineering, 2006. ICGSE '06.
International Conference on, (2006), pp. 3-11.

[19] D. Damian, L. Izquierdo, J. Singer, and I. Kwan, "Awareness
in the Wild: Why Communication Breakdowns Occur,"
Global Software Engineering, 2007. ICGSE 2007. Second
IEEE International Conference on, (2007), pp. 81-90.

[20] L. Mary, and R. Joseph, "Effects of offshore outsourcing of
information technology work on client project management,"
Strategic Outsourcing: An International Journal, vol. 2, no. 1,
(2009), pp. 4-26.

[21] B. Kitchenham, and C. Charters, Guidelines for performing
Systematic Literature Reviews in Software Engineering.
Keele University and Durham University Joint Report -
EBSE 2007-001, EBSE 2007-001 (2007).

[22] M. Staples, and M. Niazi, "Experiences Using Systematic
Review Guidelines," Journal of Systems and Software., vol.
80, no. 9, (2007), pp. 1425-1437.

389Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 411 / 679

ARTIST Technical Feasibility Tool: Supporting the Early Technical Feasibility

Assessment of Application Cloudifications

An approach for estimating the complexity of a cloudification project in a pre-modernization stage

Juncal Alonso Ibarra, Leire Orue-Echevarria, Zurik

Corera Seoane

ICT-European Software Institute Division,

Tecnalia

Zamudio, Spain

 juncal.alonso@tecnalia.com, leire.orue-

echevarria@tecnalia.com, zurik.corera@tecnalia.com

Jesus Gorroñogoitia, Burak Karaboga

Atos Research & Innovation

Madrid, Spain

jesus.gorronogoitia@atos.net, burak.karaboga@atos.net

Abstract— Modernizing an IT system is a long, complex

journey. The pre-migration phase is the starting point of each

migration project where the decision to transform the legacy

rather than to rewrite it has to be taken. In order to support

this decision making, the ARTIST European project [1]

proposes a technical feasibility analysis to as much technical

information as possible about the legacy application itself and

about the required technical tasks to migrate its components.

This paper presents a technical feasibility analysis which relies

on Cloud Migration Point approach to estimate the cost of the

migration (in terms of required effort) and incorporates

techniques such as Model Driven Reverse Engineering,

software complexity metrics or Domain Specific Language-

based heuristics to automate this process as much as possible,

although leaving to the user the knowledge and control all over

the entire process
Keywords-Software modernization, technical feasibility,

software complexity, cloud computing, migration strategy.

I. INTRODUCTION

Prior to facing a challenging project such as a software
migration one, which may involve not only changing the
way companies will deliver their software but also, probably,
their business model and organizational processes, software
vendors need to analyse if what they want to achieve, is
actually feasible for them in terms of technology, processes
and business.

This paper presents an approach for a technical feasibility
analysis of a migration of an application to the cloud. The
main aim of this analysis is twofold. On one hand, support
the establishment of the most suitable migration tasks and
on the other hand, provide an estimation of the required
effort to implement these migration tasks with the final goal
of supporting the decision making process prior to a
modernization project.

II. MOTIVATION

Research literature and real industrial migration projects
have documented several general procedures to estimate the
cost and efforts required by a migration process, and
therefore deciding on its feasibility.

Both analogy based estimation [2], that is, by comparing
current migration project with other undergone migration

projects and estimation given by experts’ judgment [3] uses
the knowledge in previous similar migration experiences,
gained by experts to evaluate and estimate the complexity
and efforts to undertake a new migration mission.
Unfortunately, these approaches cannot be applied to
migration project towards the Cloud, since the Cloud
paradigm adoption is relatively recent, whereby the number
of documented migration projects of legacy software to the
Cloud is scarce [6, 7].

The most popular estimation approach is based on
algorithmic models [4] that propose mathematical models to
derive a quantitative estimation of migration costs based on
identified costs factors. Although this approach also requires
historical data in order to evaluate some parameters
introduced by the mathematical models (i.e. weights in the
model), its applicability is more generic than previous
approaches, and therefore more suitable for a wider range of
migration projects.

In order to estimate software development costs using
metrics for software size measurement, some algorithmic
methods based on Function Point Analysis (FPA) [5] have
been proposed in literature. The FPA cost estimation is based
on the analysis of software requirements.

FPA-based approaches can be more appropriate to
estimate the complexity and provide effort/cost estimations
(by historical data comparison) of migration tasks. In
particular, FPA function points, in the context of a migration
to Cloud project, can be mapped into migration tasks [6].
The systematic estimation of efforts required to migrate a
legacy application into the Cloud has received less attention
in the research community, notably because the migration to
Cloud is a relative new concern. Up to our knowledge, only
one work has proposed a systematic methodology for effort
estimation of Cloud migration projects, namely Cloud
Migration Point (CMP) [7], an adaptation of the FPA
approach for software size estimation applied to the context
of Cloud migration.

Complementing FPA-based approaches, there exist
others based on software size estimation, including software
complexity estimations. However, these methods can hardly
be used on their own when wishing to estimate the size and
complexity of the developments required migrating a legacy

390Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 412 / 679

application to the Cloud [8], because they do not offer
enough information. Nonetheless, software size/complexity
estimations on components of existing software systems can
be used to classify the complexity of migrations tasks
performed on these components, by comparing computed
complexity metrics with historical data [9]. In particular,
coupling metrics seems to help in the re-factoring of
subsystems in an effective way to achieve the lower cost and
high re-usability [10], which are factors to take into account
when migrating to Cloud.

III. ARTIST APPROACH FOR TECHNICAL FEASIBILITY

ASSESSMENT

A. Mission and scope

The ARTIST Technical Feasibility Tool (TFT) aims at
supporting users on the early technical assessment of the
migration of their applications to the Cloud. At this early
stage (e.g. pre-migration phase in ARTIST Methodology
[11]), the users need support to evaluate the feasibility of the
migration, attending its technical aspects, since even for a
very simple application, its migration to the Cloud may
require non negligible efforts and concrete expertise to be
accomplished. Moreover, the support for decision making
requires a detailed breakdown of the migration process into a
set of technical tasks, not only to estimate their required
efforts, but also to identify other resources needed to
accomplish every task, including the selection of the
appropriate technical expertise or even the detection of
dependencies among tasks or other technical intricacies.

B. Functional description

TFT works on Model Driven Engineering (MDE)

representations (e.g. models) of the applications, particularly

UML component models, offering to the users the following

features:

 Visualization of components or features of the

legacy application and the selection of those to be

affected by the migration.

 Visualization of migration goals, which ultimately

will drive the migration process. Migration goals

can be obtained from the Cloud maturity

assessment obtained through the ARTIST Maturity

Assessment Tool (MAT) [12] or expressed by the

user using the ARTIST Goal Modeling Editor [13].

 Identification of the required migration tasks on

affected components. TFT suggests migration tasks

per component. TFT allows users to confirm these

tasks (optionally, TFT tries to select some tasks by

default, but the user is able to override this

selection anytime).Selection of weighted

complexity estimations for every task type from

expert judgment figures, initially taken from [7].

These figures provide task complexity weights

estimated by experts based on accumulate

experiences.

 Computation of complexity estimations for every

component, calculating some metrics, in particular

those metrics that estimate their maintainability.

 Computation of complexity estimations for a single

task, as a function that considers both the

complexity of the component affected by the task

and task complexity itself

 Computation of effort estimations for a single task,

as proportional to the computed task complexity,

where the proportionality weight is given by expert

judgment.

 Computation of global migration effort, by

summing over individual migration task, for each

migrated component.

C. Technical approach

Our implementation of TFT extends the CMP approach
by automating some steps, using techniques explored by
ARTIST such as Model Driven Reverse Engineering
(MDRE), Software Metrics or Domain Specific Language
(DSL)-based heuristics, notably to extract knowledge of the
application, propose migration strategies and estimate the
component complexity. CMP based computation of
migration efforts is mostly conducted manually. On the
contrary TFT is aiming to automate this process as much as
possible, although leaving to the user the knowledge and
control all over the entire process.

TFT approach to estimate the cost of the migration is
based on the analysis of the migration requirements.
Therefore, the specification of the overall objectives of the
migration, that is, the migration goals, combined with the
component-specific migration requirements and the
preliminary Cloud target selection are inputs that will drive
the TFT analysis. TFT leverages on high level model
representations of the application, from which TFT
elaborates a detailed breakdown analysis into components or
features and creates a detailed structural breakdown of the
migration process per legacy component. For such, TFT
extracts legacy components from the high level model
representations of the application, analyses their
relationships and dependencies, determines their type (i.e.
data sources, data entities, distributable services, controllers,
views, etc.), estimates their complexity and maintainability
(and possibly other metrics), and finally reports all these
findings to the user in a component inventory view. TFT
uses sources of domain-specific information, like expert
judgment, to define heuristics that are used to infer the most
appropriate migration strategies. These strategies are
instantiated as migration tasks, for each component selected
for migration, aiming at fulfilling the overall migration goals
and the specific component migration requirements,
addressing the Cloud target selection as well. TFT encodes
these heuristics, used for task suggestion, in rules defined
with a concrete domain specific language (DSL), in
particular, tha JBoss Drools [14] DSL and engine is used.,
This approach avoids hardcoding expert judgment on TFT
code implementation, which provides greater flexibility to
extend the TFT knowledge in the future.

391Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 413 / 679

IV. TECHNICAL FEASIBILITY TOOL: DESIGN AND

IMPLEMENTATION

A. General architecture

In Fig.1 the general architecture of the Technical
feasibility Tool is depicted, and explained in section B.

Figure 1. TFT general architecture

B. TFT components in detail

TFT consists of a set of Eclipse views and other widgets
and wizards, a set of backend components and a set of
external dependencies with other ARTIST components and
tools, accessed through well-defined interfaces.

TFT UI complements the ARTIST Eclipse perspective
with its collection of views on which the functionality of
TFT is offered to the user:

 Navigator view: to browse and select existing

legacy application projects

 Modelling view: to browse and annotate platform

specific/platform independent models (PSM/PIM)

component views provided by the ARTIST Model

Understanding Tool (MUT) [15].

 Annotation View, provided by the ARTIST Target

Specification Tool (TST) [15], which collects

existing migration goals/requirements and provides

support to annotate the existing legacy models in

order to express additional migration goals.

 Inventory of components View: this TFT view

collects the components from the component

model and suggests migration strategies for each of

them. The estimation of efforts for these migration

strategies are also calculated and are shown to the

user in a range of low, average and high for each

migration strategy. The view allows modifying the

migration strategies that affect them from a list of

compatible strategies depending on the

components’ properties. This view also allows the

user to select/deselect components to be considered

to be migrated or not.

 Migration Goals View: allows user to browse and

enable/disable the migration goals provided by

MAT.

 Metrics view: this view allows selecting the

metrics to be calculated for a selected component

and displays the metrics figures.

 Effort estimation report view: this view reports the

estimated effort for the overall migration project

and individual migration tasks.

The TFT-UI makes use of these views, which are heavily

dependent on RCP components such as Standard Widget

Toolkit and JFace. Eclipse Workbench components are also

used to make contributions to the Eclipse UI itself. TFT

contributes to context menus of files with “uml” and “di”

extensions and Papyrus [16] containers, with actions to open

the Inventory View, and to context menus of files with XML

extension to open the Migration Goals View. The TFT

plugin also adds a listener to the opened component diagram

files which listens the changes done to the file via using

EMF/UML2 [17] or Papyrus editors.

TFT relies on several backend components to provide

business logic support to TFT-UI.

 Components Detection component: It analyzes

high level EMF Ecore UML2 PSM/PIM

component models of the selected legacy

application. The component uses EMF-Query to

filter and EMF-Core and UML2 to analyse and

modify the input model.

 Software Complexity component which computes

a set of metrics on selected components. This

component is explained in detail in the next

section.

 Migration Strategy Suggestion component: It is

responsible for analysing the components of the

non-cloud compatible application and the

relationships between them and suggesting certain

migration strategies for each component to assist

the user in the pre-migration process. Strategy

suggestion process relies on a set of Drools rule

defined in a DSL-based rule language which is

interpreted by JBoss Drools. The strategy

suggestion process is handled by the rule engine

which is implemented using JBoss Drools

 Effort Estimation component: This component

estimates the effort required to accomplish each

required migration strategy suggested. The effort

calculation is based on the migration strategy

complexity and the complexity of the affected

component(s). Strategy complexity is calculated

using historical data and the expert knowledge

encoded in the DSL based rules. Component

complexity is provided by the Software

Complexity Component. The final effort metric

values are also based on expert knowledge

combined with the complexity metrics.

392Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 414 / 679

 TFT Repository: This component stores historical

data and heuristics required to estimate efforts.

1) Software Complexity Component

In order to evaluate the effort required to perform a

migration task, TFT analyses several parameters as
explained above in the paper. One of these parameters is the
complexity related to the legacy software.

The estimation of the complexity of the legacy software
is performed, by the Software Complexity Component
(SCC). It provides information about how complex the
legacy software is in terms of easiness to evolve it to the
Cloud paradigm. This information is provided by means of
software complexity metrics.

Software complexity has been defined and calculated in a
vast variety of ways in the last years. Upon closer
examination, these are some several commonly used metrics:

 McCabe Cyclomatic Complexity (v(G)) [18]

 Weighted Methods per Class (WMC) [19]

 Afferent Coupling (Ca) [20]

 Efferent Coupling (Ce) [20]

 Instability (I= Ce / (Ca + Ce)) [21]

 Number of Interfaces [21]
The correlation of these metrics is of highly importance,

as a variation in one of them has an impact on the others.
Literature has studied this correlation mainly for
maintainability concerns which is defined by IEEE standard
glossary of Software Engineering [22] as “the ease with
which a software system or component can be modified to
correct faults, improve performance or other attributes, or
adapt to a changed environment”.

The Compound MEMOOD method presented in [23],
based on the MEMOOD model [24], creates a
maintainability model based on the creation of 4 models: 1)
Modifiability, 2) Understandability, 3) Scalability, 4) Level
of complexity. Each of these models is based on metrics
extracted from the source code and the class diagrams.
SCC uses the models cited beforehand in order to calculate

the software maintainability index, the metric that ARTIST

will use to measure the complexity of the legacy code.
These models use several metrics to calculate

maintainability as the way to calculate the complexity. In the
context of ARTIST project where the feasibility for a
migration to cloud is being evaluated, the maintainability
metric (as defined by IEEE) for calculating the software
complexity will be used:

Maintenance = 2.399 + 0.493 × Modifiability + 0.474 ×

Understability + 0.524 × Scalability + 0.507*LOC

Modifiability = 0.629 + 0.471 × NC - 0.173 × NGen -

0.616 × NAggH - 0.696 × NGenH + 0.396 × MaxDIT

Understability=1.66+0.256×NC-0.394×NGenH

Scalability=0.182×0.99×AC+0.100×EC+0.097×ND-

0.036×PC+0.068×DMS

LOC= 0.269+0.008 × Coupling + 0.181×cohesion +

0.119×CC + 0.084×ILCC

The required metrics to perform these models are described

in [25].
The aforementioned models have been predicted using

data from several sources [26] using the multivariate linear
model. However the correctness and fine-tuning of the
formulas have to be updated to the context of ARTIST use
cases.

There are several tools available in the Open Source
community that offers some of the functionalities required by
SCC. A first criterion to select the list of potential candidates
to be re-used has been their availability as Eclipse plugin (as
the basis technology of TFT and the majority of ARTIST
tools), support to Java and C# and finally the availability of
the source code. Following these criteria, three existing plug-
ins where analyzed in detail, Metrics [27], Sonar [28] and
CodeProAnlytix [29].

After a deep analysis of these tools, all of them have been
discarded as they do not accomplish the requirements for the
ARTIST project, rejecting also a possible adaptation of them
for platform compatibility reasons.

The current SCC prototype architecture is a java API that
explores source files and UML models to generate several
metrics of a specific project. It comprises three sub-
components:

 Metric Explorer: This is the main component of

SCC current prototype. It provides the calculation

of all the required metrics that are used to generate

the new ARTIST metrics. Besides, it also provides

exporting features to convenient formats like XML

or JSON.

 Structures: This component contains the structures

of the inputs and outputs models that the Metric

Explorer uses. It also provides the functionality for

generating the output file formats (XML, JSON).

 Test Cases: This component is provided for testing

purposes. It generates several use cases that test the

functionality of the SCC generating console logs

and XML files with the results.

C. TFT validation

The first validation of all the components of the TFT has
been performed executing in parallel:

1. The TFT comprising the TFT-UI, component

detection component, strategy suggestion

component, effort estimation component and TFT

repository (see Fig. 3)

2. The Software Complexity Component, which

calculates the maintainability index and other

required metrics per component. (see Fig 2)
The component models of the Java version of the

Petstore [30] application and two ARTIST use cases, Line of
Business (LoB) [31] and Distant Early Warning System

393Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 415 / 679

(DEWS) [31] were used as sample inputs for TFT and SCC.
Petstore is a multi-tier J2EE application, a B2C Web portal
that displays a Pet catalog and support basic commerce. LoB
is a .NET solution over Microsoft Sharepoint [32] for
collaborative business process modeling. DEWS offers a
complex SOA-based system (including desktop end-user
command and control UIs) enabling the early detection and
warning broadcasting of tsunami threats.

 The component model of Petstore and DEWS were
obtained using semi-automatic MDRE techniques, but the
component model of LoB was created by hand. The MDRE
process followed to obtain these models was as follows.
Using Modisco [33], we obtained PSMs from the legacy
code. These models were abstracted to a PIM level using a
search-based model exploration approach [34], using either
ATL [35] query and INC-Querying [36] techniques,
combined with UML profiling [37] and slicing methods [38].
A further ATL M2M transformation generated a UML
component model from the UML stereotyped classes
existing in the PIM, aggregating similarly stereotyped classes
within the same containment (i.e. package) to constitute
components.

Two sample MAT reports were used (one for each
platform) as the second input of TFT. TFT was fed with the
MAT report and the component model of the legacy
application in order to identify suggested migration strategies
for each component of the application and compute the effort
estimations for these strategies. TFT triggered its expert
knowledge base (encoded as a set of rules) to suggest and
select migration strategies for each component located in the
input model. The migration complexity reported by TFT is
the average of the complexity of selected strategies
(information encoded in the TFT expert knowledge base as
well). The estimated migration efforts are computed by TFT
following a similar FP analysis conducted in [7] as the sum
of efforts computed for each strategy selected for each
component.

TFT was successful to deliver meaningful results in both
migration suggestions and effort computations. In order to
improve the quality of the suggestions, a deeper analysis on
the components and its complexity metrics is required which
is achievable by creating more complex rule definitions. The
migration effort computation may be enhanced by increasing
the number of evaluated applications thus enlarging the
historical data.

In Fig. 2 and 3 the results for DEWS use case are shown:
 ****** Maintenance
Component: org.aspencloud.widgets Maintenance: 2.6357682
Component: org.aspencloud.widgets.cdatepicker Maintenance:
2.652078
Component: org.aspencloud.widgets.cnumpad Maintenance:
2.6818948
Component: org.aspencloud.widgets.snippets Maintenance:
2.7467294
Component: org.dews_online.ccui Maintenance: 2.5707283
Component: org.dews_online.ccui.control.jobs Maintenance:
2.590284
Component: org.dews_online.ccui.splashHandlers Maintenance:
2.6118982
Component: org.dews_online.ccui.profiles.actions Maintenance:

Figure 2. SCC console log for DEWS (Maintainability metric)

Figure 3 TFT Inventory View showing migration suggestions and efforts

for DEWS

V. CONCLUSIONS

This paper presents a systematic approach that enables an
early estimation of the complexity and the efforts required
for the migration of existing applications to a Cloud
provider. This approach combines traditional FPA
techniques for migration task decomposition and effort
estimation with others such as a) model-driven reverse
engineering and model comprehension techniques to capture
information about application components, b) expert
judgment (for task suggestion and complexity estimation)
implemented as a knowledge base of domain specific
heuristics and c) complexity estimation (i.e. software
maintainability) using an empirical combination of
computable metrics. A prototypical implementation of this
approach, available as an Eclipse plugin, has been described.
Preliminary evaluation of the approach and tooling support
has been conducted in an early evaluation of some case
studies. This have enabled us to increase the TFT knowledge
base of rules suggesting migration tasks and estimating their
complexity, relying on the migration experiences gained
through these cases. Nonetheless, the lack of reported
experiences about migrating to Cloud has constrained our
knowledge base to the expert judgment acquired in these few
experiments and the effort figures reported on [6].
Nonetheless, the TFT decoupling between its knowledge
base and its implementations eases the extension of the
knowledge base as soon as new insights are gathered in other
validation experiments. Foreseen future work, in the short
term, includes: a) the integration of computed SCC metrics,
in the computation of migration task efforts using empirical
formulas that combines component maintainability with task
complexity, b) the extension of TFT knowledge base to
incorporate additional expert judgment heuristics to suggest
additional Cloud optimization patterns, c) adjustment of the
TFT effort figures collecting experimental data from
ARTIST migration case studies.

VI. ACKNOWLEDGMENT

This work has been supported by the ARTIST Project
and has been partly funded by the European Commission
under the Seventh (FP7 - 2007-2013) Framework
Programme for Research and Technological Development,
grant no. 317859.

394Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 416 / 679

VII. REFERENCES

[1] ARTIST project “Advance software based service
provisioning and migration of legacy Software”,
http://www.artist-project.eu/ [retrieved: July, 2014].

[2] M. Shepperd,C. Schofield, “Estimating software project
effort using analogies”, IEEE Transactions on Software
Engineering, vol. 23, no. 11, Nov. 1997, pp. 736-743.

[3] M. Jorgensen, “A review of studies on expert estimation
of software development effort”, Journal of Systems and
Software, vol. 70, no. 1-2, 2004, pp. 37-60.

[4] M. Jorgensen and M. Shepperd, “A systematic review of
software development cost estimation studies”, IEEE
Transactions on Software Engineering, vol. 33, no. 1,
January 2007. pp. 33-53.

[5] A. Albrecht, J. Gaffney, “Software function, source lines
of code, and development effort prediction: A software
science validation”, IEEE Transactions on Software
Engineering, vol. 9, 1983, pp. 639-648.

[6] V. Tran, JW. Keung, A. Liu, A. Fekete. “Application
Migration to Cloud: A Taxonomy of Critical Factors”.
SECLOUD 2011 Software Engineering For Cloud
Computing Workshop, 2011, pp. 22-28.

[7] V. Tran, JW. Keung, A. Liu, A. Fekete .“Size Estimation
of Cloud Migration Projects with Cloud Migration Point
(CMP)”, Proceedings of International Symposium on
Empirical Software Engineering and Measurement
(ESEM'11), Banff, Canada, September 2011, pp. 265-274.

[8] B. Touesnard, “Software Cost Estimation: SLOC-based
Models and the Function Points Model”. Version 1.1,
2004.

[9] H. Najadat, I., Alsmadi,Y., Shboul. “Predicting Software
Projects Cost Estimation Based on Mining Historical
Data”, ISRN Software Engineering Volume 2012.

[10] H.Ramakrishnan, "Analysis of complexity and coupling
metrics of subsystems in large scale software systems",
M. S Thesis 2006.

[11] ARTIST Consortium “D6.2.1 ARTIST Methodology”
http://www.artist-
project.eu/sites/default/files/D6.2.1_ARTISTMethodolog
y_M12_30092013.pdf [retrieved: July, 2014].

[12] ARTIST Consortium “Business and Technical
Modernization assessment tool M12”, http://www.artist-
project.eu/sites/default/files/D5.2.1Businessand Technical
Modernizationassessmenttool_M12_30092013.pdf,
[retrieved: July, 2014].

[13] ARTIST Consortium “Methodology and Environment for
evaluating migration success”, http://www.artist-
project.eu/sites/default/files/D11.3.1 Methodology and
Environment for evaluating migration success
M8_31052013.pdf [retrieved: July, 2014].

[14] JBoss Drools, http://www.jboss.org/drools/ [retrieved:
July, 2014].

[15] ARTIST consortium, “ARTIST Integrated Architecture
M15.

[16] Papyrus, http://www.eclipse.org/papyrus/, [retrieved:
July, 2014].

[17] EMF /UML2
http://www.eclipse.org/modeling/mdt/?project=uml2
[retrieved: July, 2014].

[18] McCabe (1976). "A Complexity Measure”. IEEE
Transactions on Software Engineering
http://www.literateprogramming.com/mccabe.pdf,
[retrieved: July, 2014].

[19] http://metrics.sourceforge.net/ [retrieved: July, 2014].

[20] R. Martin. “OO Design Quality Metrics: An Analysis of
dependencies”. Workshop Pragmatic and Theoretical
Directions in Object-Oriented Software Metrics.
http://www.cin.ufpe.br/~alt/mestrado/oodmetrc.pdf.
[retrieved: July, 2014].

[21] Instability
http://en.wikipedia.org/wiki/Software_package_metrics,
[retrieved: July, 2014]

[22] IEEE (1990). “IEEE Std 610.12-1990 - IEEE Standard
Glossary of Software Engineering Terminology”.

[23] Ch. Gautam,, S. Kang, “Comparison and implementation
of software maintenance models”. International Journal of
Engineering Research & Technology (IJERT), Vol. 1
Issue 6, August 2012.

[24] S.W.A. Rizvi, R.A. Khan, “Maintainability Estimation
Model for Object Oriented Software in Design Phase
(MEMOOD)”. Journal of Computing. Volume 2, Issue 4,
April 2010

[25] M. Genero, M. Patiani, C. Calero, (2005)“A Survey of
Metrics for UML Class Diagrams” Journal of Object
Technology
http://www.jot.fm/issues/issue_2005_11/article1/article1.
pdf [retrieved: July, 2014]

[26] S. Muthanna, K. Kontogiannis, K. Ponnambalam, B.
Stacey, “A maintainability model for industrial software
systems using design level metrics”. Published in IEEE
Proceedings Seventh Working Conference on Reverse
Engineering, pp.248-256, 2000.

[27] http://sourceforge.net/projects/metrics2/ [retrieved: July,
2014].

[28] http://docs.codehaus.org/display/SONAR/Using+Sonar+i
n+Eclipse [retrieved: July, 2014].

[29] https://developers.google.com/java-dev-
tools/codepro/doc/ [retrieved: July, 2014]

[30] Java PetStore http://www.mia-
software.com/html/miaStudio/download/modisco/exampl
es/javapetstore-2.0-ea5.zip [retrieved: July, 2014]

[31] ARTIST Consortium “Use cases definition and migration
architecture” (2012) http://www.artist-
project.eu/sites/default/files/D12.1 Use Cases definition
and migration architecture_M12_01102013.pdf
[retrieved: July, 2014]

[32] Microsoft Sharepoint: http://office.microsoft.com/en-
001/sharepoint/ [retrieved: July, 2014]

[33] H. Brunelière, J. Cabot, G. Dupé, F. Madiot. MoDisco: a
Model Driven Reverse Engineering
Framework.Information and Software Technology 56, 8
,2014, pp.1012-1032

[34] P. Baker , M. Harman , K. Steinhofel , A. Skaliotis,
Search Based Approaches to Component Selection and
Prioritization for the Next Release Problem, Proceedings
of the 22nd IEEE International Conference on Software
Maintenance, p.176-185, September 24-27,

[35] F., Jouault, and I. Kurtev,:On the Architectural Alignment
of ATL and QVT. In: Proceedings of ACM Symposium
on Applied Computing (SAC 06), Model Transformation
Track. Dijon (Bourgogne, FRA), April 2006 [retrieved:
July, 2014]

[36] INC-Query, http://www.eclipse.org/incquery/

[37] J. Cabot, C. Gómez. A simple yet useful approach to
implementing UML Profiles in current CASE tools. In
Workshop in Software Model Engineering, 2003.

[38] A., Blouin, B., Combemale, B., Baudry, O., Beaudoux.
“Modeling Model Slicers”. Model Driven Engineering
Languages and Systems. Lecture Notes in Computer
Science Volume 6981, 2011, pp 62-76

395Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 417 / 679

Model Reverse-engineering of Mobile Applications
with Exploration Strategies

Sébastien Salva
LIMOS - UMR CNRS 6158
Auvergne University, France

email: sebastien.salva@udamail.fr

Stassia R. Zafimiharisoa
LIMOS - UMR CNRS 6158

Blaise Pascal University, France
email: s.zafimiharisoa@openium.fr

Abstract—This paper presents a model reverse-engineering ap-
proach for mobile applications that belong to the Graphical User
Interface (GUI) application category. This approach covers the
interfaces of an application with automatic testing to incremen-
tally infer a formal model expressing the navigational paths and
states of the application. We propose the definition of a specialised
GUI application model which stores the discovered interfaces
and helps limit the application exploration. Then, we present an
algorithm based upon the Ant Colony Optimisation technique
which offers the possibility to parallelise the exploration and
to conceive any application exploration strategy. Finally, our
approach is experimented on Android applications and compared
to other tools available in the literature.

Keywords–model generation; automatic testing; android appli-
cations.

I. INTRODUCTION

Many software engineering approaches rely upon models
to automate some steps of the software development life
cycle. Unfortunately, these kind of approaches suffer from
an indisputable problem which often makes them impractical
with many real world systems: writing models, especially
exhaustive ones, is often a tedious and error-prone task. As
a consequence, only partial models are often available which
makes model-based approaches less interesting. For instance,
Model-based testing is an approach which takes formal spec-
ifications to generate test cases, but the former have to be
complete.

Model inference or model reverse-engineering is a re-
cent research field that partially address this issue. Indeed,
models can be inferred from application documentation or
execution traces (sequences of actions given or observed from
the application) for comprehension or to automatically carry
out some tasks, e.g., the test case generation. Most of the
model generation approaches, available in the literature, focus
on GUI applications (a.k.a. event-driven applications), which
offer a Graphical User Interface (GUI) to interact with and
which respond to a sequence defined by the user. In short,
these applications are explored (a.k.a. crawled) with automatic
testing techniques for extracting traces to derive a model. Fur-
thermore, a large part of the application defects can eventually
be detected during the process. Afterwards, these generated
models may be manually extended, analysed with verification
techniques or employed for generating test cases.

In this paper, we propose a model reverse-engineering
approach, combined with automatic testing, which is dedicated

to mobile applications. These GUI applications for smart-
phones, are usually poorly documented and are often manually
tested. From a mobile application, our solution generates two
STS (Symbolic Transition System) specifications, which can
be seen as documentation either useful for maintaining the
application or for comprehension, or for performing automatic
model analyses and test case generation (verification with
model-checkers, etc.).

Several works already deal with the crawling of GUI
applications e.g., desktop applications [1], Web applications
[2][3][4] or mobile ones [5][6][7]. These approaches interact
with applications in an attempt to either detect bugs or record a
model or both. These previous works already propose interest-
ing features, such as the test case generation from the inferred
models. Nonetheless, it also emerges that many interesting
issues still remain open. Firstly, experimenting the GUIs of
Web or mobile applications may lead to a large and poten-
tially unlimited number of states that cannot be all explored.
Furthermore, the application traversing is usually guided by
one of these strategies: DFS (Depth First path Search) or BFS
(Breadth First path Search). These are relevant on condition
that all the application states would be explored. But when
the application state number is large or the processing time is
limited, using other strategies could help in the exploration of
the most interesting features of the application as a first step.

This paper presents an innovative model generation ap-
proach which overcomes the previous problems by putting
forth the following features:

• model definition and compactness: we propose an
original model definition specialised to mobile appli-
cations. Combined with our application exploration
algorithm, this model especially offers the advantage
to help limit the exploration and to prevent from a state
space explosion. But, this model can still store the
discovered interfaces and their properties instead of
resorting abstract event-based descriptions only. These
detailed information are particularly relevant to later
perform precise analyses. A bisimulation minimisation
technique is also applied to yield a second reduced
STS which can be more easily interpreted,

• test data generation: instead of using random test val-
ues, the values used to fulfil the application interfaces
are constructed from several data sets, and in particular
from a set of fake identities. Furthermore, for one
interface, the set of test value tuples are constructed

396Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 418 / 679

by means of a Pairwise technique to reduce the testing
cost,

• strategy choice: the application exploration is here
guided by strategies that are applied on the model
under generation by means of the Ant Colony Op-
timisation (ACO) technique. We also show that our
exploration algorithm, based upon the ACO heuristic,
is highly parallelisable.

The paper is structured as follows: Section II sets down the
terminology of mobile applications used throughout the paper
and particularly presents our model definition. We present, in
Section III, our mobile application exploration algorithm based
upon the ACO heuristic. We give some experimental results
and compare our approach with available tools in Section IV.
We briefly present some related work and discuss about our
proposal in Section V and we conclude in Section VI.

II. MOBILE APPLICATION MODELLING

A. Terminology

We say that a mobile application displays (graphical user)
interfaces, each representing one application state (the number
of states being potentially infinite). An interface is generated
by a component of the application. Here, we take back the
notation used in the Android Operating System (OS) where
such a component is called an Activity. These instantiate
Widgets (buttons, text fields, etc.) and declare the available
events that may be triggered by the user (click, swipe, etc.).
A Widget is characterised by a set of properties (colour, text
values, etc.); some of them are said editable, which means that
their values can be provided by users at runtime.

We take as example the Ebay Mobile application, which
is available on the Google Play store[8]. Since this complex
application owns 135 Activities, we only depict a part of its
storyboard in Figure 1. The launcher interface is loaded by
the first Activity eBay (i0). A user may choose to search
for an item by clicking on the editable text field Widget. In
this case, the Activity MainSearchActivity is reached (i1). For
instance, if the user enters the keyword ”shoes”, the search
result list is displayed (i2); the Activity is unchanged. Then,
three new Activities may be reached: 1) an Activity called
SegmentSearchResultActivity (i3) displays a result when one
element of the proposed list is chosen, 2) a Scanner Activity
is started when the text field ”Scan” is clicked (i4) and 3) a
log-in process is performed when the ”saved searches” item is
selected (Activity SignInActivity, i5).

B. The STS model

To represent the behaviours of mobile applications, we
shall consider the Symbolic Transition System (STS) model,
which is a kind of automata model extended with variables that
encode the state of the system. Transitions also carry actions
combined with parameters, guards and assignments. We chose
the STS definition proposed in [9] which does not explicitly
represent states in transitions. Instead, (control) locations are
encoded with variables taking values in finite domains. This
definition offers more flexibility to represent locations that
have a precise meaning by means of variables.

(i0) (i1) (i2)

(i3) (i4) (i5)

Figure 1. Ebay Mobile Storyboard

Definition 1 (STS) A STS S is a tuple < V, V 0, I,Λ, →>,
where:

• V is the finite set of internal variables and I is the
finite set of parameter variables. A variable can have
a simple type (Integer, String, etc.) or a complex type
(List, etc.). We denote Dv the domain in which a
variable v takes values. The internal variables are
initialised with the initial condition V 0 ⊆ Dv , which
is assumed to be unique,

• Λ is the finite set of symbolic actions a(p), with p =
(p1, ..., pk) a finite list of parameters in Ik(k ∈ N),

• → is the finite transition set. A transition
(a(p), G(p, v,
T (v, p)), A(v, p, T (v, p))) is labelled by an action
a(p) ∈ Λ. G ⊆ Dp × DV × DT (p∪V) is a guard
on internal variables, parameters and T (p ∪ V)
a set of functions that return boolean values
only (a.k.a. predicates) over p ∪ V . Internal
variables are updated with the assignment function
A : DV ×Dp ×DT (p∪V) → DV once the transition
is fired.

Below, we adapt this generalised STS definition to express
mobile application properties, i.e., interfaces and events.

C. Mobile application modelling with STS

We propose a STS-based model definition allowing to stock
complete mobile application interfaces to yield rich models,
which may be analysed afterwards. Nonetheless, a GUI ap-
plication may produce a potentially infinite set of interfaces

397Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 419 / 679

Figure 2. Ebay application STS tree

[6][10] and may lead to a state space explosion problem. We
propose to get around this strong issue by focusing on the
following idea: many of these interfaces are almost identical in
term of content and often display different text field values. For
a set of almost identical interfaces, we propose to only explore
one interface in this set. To this end, we express an interface
by the tuple (wp,wt) where wt is the list of Widget properties
related to the text field values found in the interface and wp
the remaining list of Widget properties. We define that a STS
location is encoded by the variable loc, and captures a value list
of the form (act, wp,wt, end, ph) with act an Activity name
(or URI), accompanied by the Widget property lists wp and
wt. Furthermore, these locations are completed with a boolean
value denoted end indicating whether the application has to
be explored from this location. Finally, the positive value ph
denotes a pheromone amount that shall be used by apply the
ACO technique. The purpose of this value is explained in the
next Section.

We also interact with mobile applications by means of
events, e.g., a click, applied on Widgets. Some editable Wid-
gets are eventually completed before triggering the event.
We capture these events with STS transitions of the form
(event(widget), G,A). The guard G is composed of con-
junctions which show the initial location of the transition, a
constraint over editable Widgets expressing their completion
with user values, and the value of widget, giving the Widget
name on which is applied the event. The assignment A gives
the final location of the transition. It results that we express
the functioning of a mobile application with the following STS
model, called the STS Tree of an application:

Definition 2 A mobile application is modelled by the STS Tree
< V, V 0, I,Λ, →> where:

• Λ gathers the available actions of the form
event(widget),

• → is composed of transitions (event(widget), G,A)
with a guard G of the form [loc ==
(act, wp,wt, end, ph) ∧ editable constraint ∧
Widget == wn] and an assignment A of the form
loc := (act2, wp2, wt2, end2, ph2):
◦ the expression loc == (act, wp,wt, end, ph)

gives the initial location of the
transition, while the assignment
loc := (act2, wp2, wt2, end2, ph2) gives

TABLE I. Actions and Guards of the STS Tree

Label Action[Guard]
a1 click(widget)[widget=id/home search text]
a6 1 click(widget)[widget=id/up ∧ search src text=All shoes]
a6 2 click(widget)[widget=id/up ∧ search src text=shoes]
a7 1 click(widget)[widget=id/search button ∧

search src text=All shoes]
a7 2 click(widget)[widget=id/search button ∧

search src text=shoes]
a8 1 click(widget)[widget=id/text1 ∧ search src text=All shoes]
a8 2 click(widget)[widget=id/text1 ∧ search src text=shoes]
a9 1 click(widget)[widget=id/text2 ∧ search src text=All shoes]
a9 2 click(widget)[widget=id/text2 ∧ search src text=shoes]
a10 1 click(widget)[widget=listview at position 1 ∧

search src text=shoes]
the final location. act is an Activity name, wt
is a list of Widget properties relative to text
field values, wp is a list of Widget properties
excluding wt, end and ph are boolean values,

◦ editable constraint is a conjunction of atomic
expressions of the form widgetprop == v
with v a value and the variable widgetprop
corresponding to an editable Widget property.

◦ widget == wn denotes the Widget name on
which is applied the event.

• V 0 denotes the initialisation of the loc variable.

Figure 2 illustrates an example of STS Tree derived from
the Ebay Mobile application. For readability, the locations are
not given in the transitions but some of them are presented
in a reduced form in Table II: we give the Activity name, the
numbers of Widget properties (wt and wp), and the values
end and ph. The actions and guards are showed in Table I.
The STS Tree is composed of several ”click” actions applied
on different Widgets (buttons, elements of listView Widgets,
etc.). The location loc0 represents the initial interface eBay
of the application, which includes 2 buttons, 6 images and
16 text fields. loc1 is reached from loc0 by executing the
action a1, i.e., by clicking on the home search text Widget.
The locations loc6 and loc7 are respectively reached after
the completion of the search src text Widget with the ”All
shoes” resp. ”shoes” text values and the click on the Widget up
(actions a6 1 or a6 2). These two locations correspond to two
different interfaces which differ from each other on the value
of the search src text field and on the Widget listview which
is a Widget container: the latter has 1 element for loc6 and 10
elements for loc7. The locations loc8 i(1 ≤ i ≤ 4), reached
from loc6 or loc7, express 4 interfaces which only differ from
the interface stored in loc8 by some text field values. As a
consequence, they are marked by end to stop the exploration.

After covering only 5% of the Ebay Mobile Activities, we
already obtain 19 locations in the STS Tree. This is why
our approach, explained below, relies upon a minimisation
technique to reduce this location number.

III. AUTOMATIC TESTING AND MODEL GENERATION
WITH ACO

Intuitively, many inference model methods consist in
analysing and completing interfaces with random test data
and triggering events to discover new interfaces that are
recursively explored in an in-depth manner. As a consequence,
the application exploration is usually guided with either a

398Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 420 / 679

TABLE II. Summary of some locations of the STS Tree

Loc act #wp #wt end ph
loc0 eBay 2b,6im 16t false 0
loc1 MainSearchAct 1b,4im 3t,1e false 1
loc6 MainSearchAct 1b,3im,1l e 3t,1e false 2
loc6 1 MainSearchAct 1b,3im,1l e 3t,1e true 3
loc7 MainSearchAct 1b,3im,10l e 3t,1e false 2
loc7 1 MainSearchAct 1b,3im,10l e 3t,1e true 3
b: button e: editable text field t: text field im: image
l e: # elements in the listview Widget

DFS (Depth First path Search) or a BFS (Breadth First path
Search) strategy. Nonetheless, when an application returns a
high number of new interfaces, the graph to be explored may
become too large to visit in a reasonable time delay. The search
is only performed to a limited depth, and the explored part of
the application is not necessarily the most interesting one. In
this section, we address this issue and we propose an algorithm
which includes the possibility to define an exploration strategy.

Figure 3. Parallel exploration functioning

Our proposal applies strategies by means of the Ant Colony
Optimisation (ACO) technique. With ACO, the optimal path
search in a graph is performed by simulating the behaviour of
ants seeking a path between their colony and a source of food:
firstly, the ants explore randomly and lay down little by little
pheromone trails that are finally followed by all the ants. In
our case, this solution leads to the architecture illustrated in
Figure 3. The STS construction is guided by laying down in
locations an amount of pheromone with regards to the chosen
strategy. Each location exploration is considered as a task that
is placed into a task pool, implemented as an ordered list,
and executed by threads simulating ants. Then, our algorithm
proceeds by exploring first the locations having the highest
pheromone amount. The process ends when the task pool is
empty. These steps are explained below:

A. Application exploration

Algorithm 1 takes as input a mobile application app
and starts it to analyse its first interface and to initialise
the first location loc0 of the STS Tree Tree. This step is
carried out by one thread only. The analysis of an interface
does not rise any technical difficulty with mobile applications
(Android and iOS). Indeed, it is always possible to retrieve the
Activity and the Widget properties of the current interface with
testing tools such as Robotium [11]. Afterwards, the interface
exploration can begin: each thread (ant) executes the loop of

Algorithm 1: Mobile application exploration simplified
Algorithm

input : Application app
output: STS Tree, MTree

// initialisation performed by one ant only
1 Start the application app;
2 Analyse the current interface → Activity act, the Widget property

lists wp, wt;
3 Initialise ph0 (depends of the chosen strategy);
4 loc0:= (act, wp,wt, false, ph0);
5 Initialise STS Tree (V 0Tree = loc0);
6 Add (Explore(Tree, loc0, RL = {(act, wp)}, p = ∅)) to the task

pool;
// code performed by all the ants

7 while the task pool is not empty do
8 Take a task (Explore(Tree, loci, RL, p)) having a location

(act, wp,wt, end, ph) with the highest pheromone amount
ph;

9 Reset and Execute app by covering p;
10 Explore(Tree,loci,RL,p);

// code performed by one ant only
11 MTree:= Minimise(Tree);

TABLE III. Location blocks of the minimised STS Tree

block locations
B1 loc6, loc7
B2 loc6 1, loc7 1
B3 loc8 1, loc8 2, loc8 3, loc8 4

Algorithm 1: while there is a task to do, an instance of the
application is launched in a re-initialised test environment and
a task (Explore(Tree, loci, RL, p)) having a location loci,
composed of the highest pheromone amount, is picked out.
This task aims at exploring one interface only and may produce
other tasks. The set RL, used by Explore, stores the discovered
locations in a reduced form (act, wp).

After the end of the exploration, a second STS MTree
is computed with a minimisation technique. The STS min-
imisation aims to yield a more compact STS in term of STS
location number and more readable for application compre-
hension. Here, we have chosen a bisimulation minimisation
technique since this one preserves the functional behaviours
represented in the original model. The time complexity of
this minimisation technique is also reasonable (proportional
to O(mlog(n)) with m the transition number and n the state
number). A detailed algorithm can be found in [12]. This
algorithm constructs the location sets (blocks) that are bisimilar
equivalent. Due to lack of room, we only present in Figure 4
and in Table III, the minimised STS obtained from the STS
Tree of Figure 2. Some locations are now grouped into blocks:
for instance, the locations loc6 and loc7 are grouped into
the Block B1 because the same action sequences leading to
bisimilar locations can be executed from both loc6 and loc7.

One task, pulled from the task pool, is now performed by
calling the Explore procedure given in Algorithm 2. It takes
the STS under construction Tree, a location loci, a path p and
the set RL of discovered locations stored in a reduced form.
Initially, the procedure ends if a stopping condition, based upon
the code coverage and on the processing time, holds. This
condition allows to stop the exploration after a reasonable time
delay. Otherwise, the Explore procedure calls GenConstraints
to analyse the current interface, extract the editable Widgets

399Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 421 / 679

Figure 4. Minimised STS Tree

and to produce a set of constraints expressing how fulfilling
these editable Widgets with test values. Similarly, the events
that can be triggered on the Widgets are dynamically detected
(with testing tools). It results a set of couples (event, w)
with event the event to apply on the Widget w. Then, the
exploration of the current interface begins. Its editable Widgets
are completed in accordance with a constraint c (line 7). A
Widget w is stimulated with an event in reference to a couple
(event, w) found in the Events set. This results in a new
interface Inew (line 9). A Ph Deposit procedure is called
to compute the pheromone amount that shall be deposed in
the arrival location of the transition constructed in the next
step. This amount is computed with regards to the chosen
strategy. The algorithm now checks whether this interface and
its corresponding location have to be explored. Naturally, if
Inew reflects the end of the application (exception, crash),
Inew must not be explored. Furthermore, if Inew only
differs from a previously encountered interface by its text
field values, we also stop the exploration. This is done in
the algorithm by checking if the list (actj , wpj), extracted
from Inew, which excludes the Widget properties related
to text field values, belongs to the set RL. If one of these
conditions hold then a new transition carrying the arrival
location (actj , wpj , wtj , true, phj) is added to the STS Tree.
The boolean value true denotes that this location must not be
explored. On the contrary, a new transition is added (with a
location locj whose last boolean value is set to false). This
location locj has to be explored. Therefore, a new task is
added to the task pool (line 18). To apply the next constraint
and event, the application has to go back to its previous
interface by undoing the previous interaction. This is done with
the Backtrack procedure (line 20) whose role is to undo the
most recent action. When the direct interface restoration is not
possible (when the backtrack mechanism is not implemented or
when the application crashed), the Backtrack procedure resets
the application and incrementally replays the actions of the
path p.

This algorithm also relies upon the procedure GenCon-
straints to construct constraints expressing how to fulfil an in-
terface under test with values. Due to lack of room, we present
it succinctly. The GenConstraints procedure aims to generate
constraints of the form w1.value = v1∧ ... ∧wn.value = vn,
with (w1, ..., wn) the list of editable Widgets of an interface
and (v1, ..., vn), a list of test values. Instead of using random
values like in many model inference approaches, we propose

Algorithm 2: Explore Procedure
1 Procedure Explore(Tree, loci, RL, p);
2 if [processing time > T or code coverage > CC] then
3 stop;
4 Generate constraints with GenConstraints → C;
5 Analyse the current interface → Events;
6 foreach c ∈ C ∧ (event, w) ∈ Events do
7 fulfil the editable Widgets with c;
8 Apply event on the Widget w → new interface Inew;
9 Analyse the interface Inew → actj , wpj , wtj ;

10 phj := Ph Deposit(loci, actj , wpj , wtj);
11 if Inew is empty or Inew reflects a crash or there exists

(actj , wpj) ∈ RL then
12 {Add a transition (event(widget),

G = [loc == loci ∧ c ∧ widget == w], A = (loc :=
(actj , wpj , wtj , true, phj))) to →Tree;

13 } (in critical section)

14 else
15 locj := (actj , wpj , wtj , false, phj);
16 {Add a transition t = (event(widget),

G = [loc == loci∧c∧widget == w], A = (loc := locj))
to →Tree;

17 RL := RL ∪ {(actj , wpj)}
18 Add the task (Explore(Tree, locj , RL, p.t)) to the task

pool;
19 } (in critical section)

20 Backtrack(loci, p);

to use several data sets: a set User of values, eventually
composed of logins and passwords, provided by a user, a
set RV composed of values well known for detecting bugs,
e.g., String values like ”&”, ””, or null. A last set, denoted
Fakedata, is composed of fake user identities. An identity
is itself a list of parameters (p1, ..., pm), such as (name, age,
email, address, gender), that are correlated together to form
realistic identities. Both User and RV sets are segmented per
type (String, Integer, etc.). We denote type(User ∪ RV) ⊂
User ∪ RV the subset of values having the type type. The
GenConstraints procedure starts collecting the editable Widget
list (w1, ..., wn). Every wi is then associated to a specific data
set as follows:

1) GenConstraints extracts the larger subset (w1, ..., wk)
which is also a subset of the parameter list
(p1, ..., pm) of Fakedata (we try to find a corre-
lation between the Widget names and the identity
parameters with regular expressions). This subset of
Widgets is then associated to a list of ”reduced”
identities where the parameters which do not belong
to (w1, ..., wk) are removed. For instance, if two
Widgets called name and email are found, the fake
identities of Fakedata are parsed to remove the
undesired parameters and to return the set of identities
composed only of a name and an email,

2) each remaining Widget, is associated to the value set
t(User ∪ RV) with t the type of data expected by
the Widget (usually String). We obtain a list of value
sets {V1, ..., Vn} linked to the Widgets (w1, ..., wn)

Now, instead of using a cartesian product to derive a set of
tuple of values denoted V , we adopted a Pairwise technique
[13]. Assuming that errors can be revealed by modifying pairs
of variables, this technique strongly reduces the coverage of
variable domains by constructing discrete combinations for
pair of parameters only. Finally, the set of constraints C is
derived from V .

400Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 422 / 679

Last but not least, our proposal also offers the advantage of
being highly parallelisable. Indeed, the task pool is a known
paradigm of parallel computing where the tasks of the pool are
executed in parallel on condition that the tasks are independent.
This is the case in our Algorithms since several application
instances are experimented into independent test environments.
All the threads share the same STS Tree, the same discovered
location set RL and the same task pool implemented as an
ordered list. This is why we added three critical sections in
the Explore procedure to prevent concurrent accesses when
transitions are added to the STS (lines 12,13,16), or when a
task is added into the pool (line 18).

Complexity and termination of Algorithm 1: theoret-
ically, this algorithm does not end if the number of new
interfaces to visit is infinite. This is why we added a stopping
condition in the Explore procedure. But, our algorithm only
explores the interfaces, which have new Widget properties
(in excluding those related to text field values), and we have
observed in practice that the number of these interfaces is
often bounded. Consequently, our algorithm ends with most
of the applications. If we assume that the number of locations
to visit is then bounded to n, Algorithm 1 has a complexity
proportional to O(m+n+mn+2mlog(n)) with m the number
of transitions.

B. Exploration strategies

Different strategies can be now used to cover an applica-
tion. We succinctly present some of them below. These have
to be implemented in the Ph Deposit procedure.

• DFS-BSF strategy: a combination of both DFS and
BFS strategies can be easily put into practice as fol-
lows: the location loc0 is initialised with a pheromone
amount equal to 0. Afterwards, whenever a new lo-
cation locj is detected from an initial one loci, it
is completed with the pheromone amount found in
loci increased by 1. In this case, the next task chosen
in the task pool shall be the one including the first
discovered location from loci. Tacitly, a DFS strategy
is followed. But, the current location being explored, is
also completely covered in a breadth-wise order first,

• crash-driven strategy: the number of observed
crashes could also be considered in a strategy: when
the number of crashes detected from the locations of
a path p is higher than the crash number detected
from the locations of another path p′, it may be
more interesting to continue to cover the former for
trying to detect the highest number of crashes. We
call this strategy crash-driven exploration. This can
be conducted as follows: the pheromone amount is
initialised to 0 in loc0. Whenever a new location locj
is built, it is completed with a pheromone amount
equal to the addition of the pheromone amount found
in the preceding location loci with the number of
crashes (or exceptions) detected from loci,

• semantics-driven strategy: these strategies denote an
exploration guided by the recognition of the mean-
ing of some Widget properties (text field values,
etc.). Here, the pheromone deposit mainly depends
on the number of recognised Widget properties and

Figure 5. Ebay Mobile STS Tree obtained with a semantics-driven strategy

on their relevance. It is manifest that the semantic-
driven strategy domain can be tremendously vast.
For e-commerce applications, the login step and the
term ”buy” are usually important. A strategy example
could be then conducted as follows: an authentication
process is detected when a text field Widget has
the type ”passwdtype”. In this case, the pheromone
amount considered is set to X , otherwise it is equal
to 1. When a Widget name is composed of the term
”buy”, the pheromone amount added in the location
could be Y < X , etc.

Many other strategies could be defined in relation to the
desired result in terms of model generation and test coverage.
Other criteria, e.g., the number of Widgets, could also be taken
into consideration. The strategies, succinctly described above,
could also be mixed together.

The STS Tree of Figure 2 is constructed with Algorithm
1 related to the DFS-BFS strategy. The Explore procedure
starts the exploration from loc0, which holds a pheromone
amount equal to 0. The actions a0 to a5 lead to new interfaces
and locations loc1, ..., loc5 that have to be explored. Here, the
location loc1 is chosen since it is the first new encountered
location and has the highest pheromone amount. From loc1,
the execution of actions leads to new locations: for instance
the locations loc8 and loc8 1 are reached with the actions
a7 1 and a7 2. These locations only differ by their text field
values. Hence, the arrival location loc8 1 is not explored
and marked by end. The next location having the highest
pheromone amount is loc6. Therefore, this one is explored.
And so on.

We also applied a semantics-driven strategy on this ap-
plication to illustrate the different STS Trees which may be
generated. This strategy aims to target the account management
part of the application and was applied by deposing a higher
pheromone amount in locations including Widgets of type
”passwdtype” or Widget properties composed of the terms ”ac-
count” or ”sign in”. Figure 5 illustrates the resulting STS Tree
after applying this strategy: here the Activity SignInActivity
(loc2), allowing to manage user accounts, was targeted instead
of the Activity MainSearchAct (loc1). This strategy makes
the generated STS more interesting to later analyse the security
of the application or to generate security test cases.

401Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 423 / 679

TABLE IV. Processing time to explore all the locations with different
strategies

Application DFS(1) DFS-BFS(1) DFS-BFS(3)
Converter 478 435 295
NotePad 268 310 175
Tippy Tipper 251 210 110
ToDoManager 551 410 210
LotsA 70 83 48
OpenManager 696 560 489
HelloAUT 106 216 201
TomDroid 235 256 196
ContactManager 233 216 135
OpenSudoku 434 456 411

TABLE V. Code and Activity coverage

Applications Mon
key

Orbit GUI
TAR

GUI
Rip-
per

MCrawlT

Code
cov.

Act.
cov.

NotePad 60 82 - - 88 100
ToDoManager 71 75 71 - 81 100
HelloAUT 71 86 51 - 96 100
TomDroid 46 70 - 40 76 100
Youtube - - - - - 54.5
CNN - - - - - 73
TaskKiller - - - - - 57.1
Ebay - - - - - 19
WordPress - - - 39 - 47
CatLog - - - - 77 80
DiskToFon - - - - 42 67
SipDroid - - - - - 11

IV. EXPERIMENTATIONS

We conducted several empirical studies to assess the overall
results of our approach applied on Android mobile applica-
tions. Our prototype tool, called MCrawlT (Mobile Crawler
Tool), is publicly available in a Github repository [14]. It
takes packaged Android applications (apk files) or source
projects and stimulates them by calling the testing framework
Robotium. This one is also employed to analyse interfaces.
An application can be experimented in parallel by launching
several Android emulators. We randomly chose some Android
applications of the Google Play store and some applications
taken as examples in other papers dealing with Android
application automated testing for comparison purposes.

Table IV reports the processing time required for com-
pletely exploring these applications with a Mid 2011 computer
including a CPU 2.1Ghz Core i5 and 4GB of RAM. The
tool were applied with a DFS strategy (1 emulator), a mixed
DFS-BFS (with 1 and 3 emulators in parallel). Our results
firstly show that the chosen strategy has a direct impact on the
processing time required to cover an application. In this exper-
imentation, half of the applications are more rapidly covered
with DFS-BFS traversing. For instance, with toDoManager,
using a DFS-BFS strategy instead of a DFS one, reduces the
exploration delay by 140 seconds because all of its Activities
are directly accessible from the initial one. These results
depend mainly on the application structure though. When the
insight of the application structure is known, our tool offers
the advantage of choosing the most appropriate strategy. Table
IV also shows that the parallelisation of our algorithm is
effective. With three emulators, the processing time is always
reduced. For instance, the parallel exploration of Tippy Tipper
is achieved with a processing time almost divided by two.

TABLE VI. Crash detection

Applications MCrawlerT Monkey GUI Rip-
per

Converter 9 4
Notepad 2
TomDroid 3 1 14
WordPress 51 3 37
CatLog 17 0
DiskToFon 2 0
Sipdroid 1 1

Table V shows the resulting code coverage obtained with
our tool and other crawlers available in the literature: Monkey
[15], Orbit [7], GUITAR [1], GUI Ripper [6]. With our tool, we
provide the code coverage that is obtained for the applications
whose source code is available (small open source applica-
tions). For the others, we can only give the Activity coverage
(explored Activities). Most of the other tools explore Android
applications in an in-depth manner. Therefore, MCrawlT was
executed only with this strategy to carry out a fair comparison.
These results show that the code coverage is between 42%
and 96%. An application is incompletely covered either on
account of unused code parts (libraries, packages, etc.) that
are not called, or on account of functionalities difficult to start
automatically. The code coverage achieved with MCrawlT is
either equivalent or higher than the one given by the other
tools. For instance with TomDroid, we obtained 76 %, whereas
ORBIT covers 70%, Monkey 46% and GUI Ripper 40% of the
code. ORBIT offers a better code coverage with Contactman-
ager though. Indeed, users interact on this application with
long click events that are supported by Orbit but not yet by
our tool. The last lines of Table V show the results obtained
with larger applications (Youtube to Sipdroid). Since the time
required to discover these applications may be long, we have
limited the exploration time to 30 minutes. Without limitation,
the coverage should strongly augment. Surprisingly, this kind
of application is not considered by the other tools.

Finally, Table VI illustrates the number of observed crashes
on some Android applications with our tool MCrawlT, Monkey
and GUI Ripper. We only show the applications for which at
least one error has been detected with one of the tools. The
processing time was limited to 30 minutes for the two first
tools. For GUI Ripper, we have taken back the experimental
results given in [6] that were obtained with a processing time
varying between 3 and 5 hours. MCrawlT outperforms Monkey
in automatic crash detection, which is not surprising since the
former covers deeper Android applications. The comparison
with GUI Ripper is less obvious since the authors only provide
two detailed results with this tool. For WordPress, MCrawlT
detects more crashes than GUI Ripper, and on the contrary,
more crashes are detected with TomDroid. But, the processing
time of GUI Ripper is twelve times more long.

All these experimental results on real applications tend
to show that our tool is effective and leads to substantial
improvement in the automatic testing and model inference of
GUI applications.

V. RELATED WORK AND DISCUSSION

Several papers dealing with automatic testing and model
generation approaches of black-box systems were issued in
the last decade. Here, we present some of them relative to our
work:

402Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 424 / 679

Memon et al. [1] initially presented GUITAR, a tool for
scanning desktop applications. This tool produces event flow
graphs and trees showing the GUI execution behaviours. Only
the click event can be applied and GUITAR produces many
false event sequences which may need to be weeded out later.
Furthermore, the actions provided in the generated models are
quite simple (no parameters). Mesbah et al. [2] proposed the
tool Crawljax specialised in Ajax applications. It produces a
state machine model to capture the changes of DOM structures
of the HTML documents by means of events (click, mouseover,
etc.). To limit the state space and to avoid a state explosion
problem, state abstractions should be given manually to extract
a model with a manageable size. The concatenation of identical
states proposed in [2] is done in our work by minimisation.

Google’s Monkey [15] is a random testing tool (events and
data) offering light coverage especially when an authentication
is required in the application. No model is provided. Amalfi-
tano et al. [6] proposed GUI Ripper, a crawler for crash testing
and for regression test case generation. A simple model, called
GUI tree, depicts the observed GUI. Then, paths of the tree
not terminated by a crash detection, are used to re-generate
regression test cases. Joorabch et al. [10] proposed another
crawler, similar to GUI Ripper, dedicated to iOS applications.
In comparison to these works, our generated models are much
more detailed and can be used to derive new test cases since
all the actions and parameters can directly be found in STS
Trees. We also consider several exploration strategies. The
novelty of the work proposed by Yang et al. [7] lies in the
static analysis of Android application codes to infer the events
that can be applied to the GUI. Then, a classical crawling
technique is employed to derive a tree composed of events.
This grey-box testing approach was implemented in the Orbit
tool. When only one emulator is used, this approach should
cover an application quicker than our proposal since the events
to trigger are listed by the static analysis whereas we try
to detect them dynamically. But, Orbit can be applied only
when the application source code is available. This is not
the case for many Android applications. Furthermore, our
tool should cover an application quicker than Orbit since the
former can be experimented in parallel with several emulators.
Another strong advantage proposed in our approach, is the
support of different exploration strategies. These can reduce
the exploration time when the application structure is known
or can guide the exploration when the application interface
number is large.

VI. CONCLUSION

This paper presents a formal model inference approach
for mobile applications, which performs automatic testing
through application interfaces and which explores applications
by means of strategies. For one application, two STS models
are generated by this approach. Both express the functional
behaviours of the application, but the second one is reduced
with a bisimulation technique for readability.

In comparison to the application crawlers available in the
literature, this approach takes another direction by proposing
the two following main contributions. We propose a formal
model definition whose aims are to store rich details about
the encountered interfaces and to help reduce the application
exploration. Our algorithms are based upon the application of

the ACO technique to guide the application exploration with
strategies that can be modified by managing differently the
pheromone deposit in locations. Our experimental results show
that this approach can be used in practice: the prototype tool
provides a good application code coverage in a reasonable time
delay.

ACKNOWLEDGMENT

This reasearch was conducted with the support of the ”
Digital Trust” Chair from the University of Auvergne Foun-
dation.

REFERENCES

[1] A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping: Reverse
engineering of graphical user interfaces for testing,” in Proceedings of
the 10th Working Conference on Reverse Engineering, ser. WCRE ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 260–269.

[2] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-based
web applications through dynamic analysis of user interface state
changes,” ACM Transactions on the Web (TWEB), vol. 6, no. 1, 2012,
pp. 1–30.

[3] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. Ernst,
“Finding bugs in web applications using dynamic test generation and
explicit-state model checking,” Software Engineering, IEEE Transac-
tions on, vol. 36, no. 4, 2010, pp. 474–494.

[4] V. Dallmeier, M. Burger, T. Orth, and A. Zeller, “Webmate: a tool
for testing web 2.0 applications,” in Proceedings of the Workshop on
JavaScript Tools, ser. JSTools ’12. New York, NY, USA: ACM, 2012,
pp. 11–15.

[5] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 1–11.

[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 258–261.

[7] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated
gui-model generation of mobile applications,” in Proceedings of the
16th international conference on Fundamental Approaches to Software
Engineering, ser. FASE’13. Berlin, Heidelberg: Springer-Verlag, 2013,
pp. 250–265.

[8] Google, “Android google play store,” last accessed August 2014.
[Online]. Available: https://play.google.com/store

[9] T. Jéron, “Symbolic model-based test selection,” Electronic Notes in
Theoretical Computer Science, vol. 240, no. 0, 2009, pp. 167 –
184. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S157106610900173X

[10] M. E. Joorabchi and A. Mesbah, “Reverse engineering ios mobile
applications,” in Proceedings of the 2012 19th Working Conference on
Reverse Engineering, ser. WCRE ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 177–186.

[11] Robotium, “Robotium tool,” last accessed August 2014. [Online].
Available: https://code.google.com/p/robotium/

[12] J.-C. Fernandez, “An implementation of an efficient algorithm for
bisimulation equivalence,” Science of Computer Programming, vol. 13,
1989, pp. 13–219.

[13] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn,
“Constructing test suites for interaction testing,” in Proc. of the 25th
International Conference on Software Engineering, 2003, pp. 38–48.

[14] MCrawlerT, “Mobile crawler tool,” last accessed August 2014.
[Online]. Available: https://github.com/statops/MCrawlerT

[15] Google, “Ui/application exerciser monkey,” last accessed August 2014.
[Online]. Available: http://developer.android.com/tools/help/monkey.
html

403Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 425 / 679

On the Ability of Functional Size Measurement Methods

to Size Complex Software Applications

Luigi Lavazza Sandro Morasca Davide Tosi

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

{luigi.lavazza, sandro.morasca, davide.tosi}@uninsubria.it

Abstract—The most popular Functional Size Measurement

methods, namely IFPUG Function Point Analysis and the

COSMIC method, adopt a concept of “functionality” that is

based mainly on the data involved in functions and data

movements. Neither of the mentioned methods takes directly

into consideration the amount of data processing involved in a

process. Functional size measures are often used as a basis for

estimating the effort required for software development, and it

is known that development effort does depend on the amount

of data processing code to be written. Thus, it is interesting to

investigate to what extent the most popular functional size

measures represent the functional processing features of

requirements and, consequently, the amount of data processing

code to be written. To this end, we consider a few applications

that provide similar functionality, but require different

amounts of data processing. These applications are then

measured via both functional size measurement methods and

traditional size measures (such as Lines of Code). A

comparison of the obtained measures shows that differences

among the applications are best represented by differences in

Lines of Code. It is likely that the actual size of an application

that requires substantial amounts of data processing is not

fully represented by functional size measures. In summary, the

paper shows that not taking into account data processing

dramatically limits the expressiveness of the size measures.

Practitioners that use size measures for effort estimation

should complement functional size measures with measures

that quantify data processing, to get precise effort estimates.

Keywords- functional size measurement; Function Point

Analysis; IFPUG Function Points;COSMIC method.

I. INTRODUCTION

The most popular Functional Size Measurement (FSM)
methods, i.e., IFPUG (International Function point User
Group) [1][2][3] and COSMIC (Common Software
Measurement International Consortium) [4]– adopt a concept
of “functionality” that is based mainly on two elements:

− the processes, named Elementary Processes (EP) in
IFPUG and Functional Processes (FPr) in COSMIC;

− the data that cross the boundary of the application being
measured or are used (i.e., read or written) in the context
of a process.

Quite noticeably, neither method satisfactorily considers
the amount of data processing involved in a process. As a
matter of fact, Function Point Analysis proposes an

adjustment of the size based on the complexity of data
processing, but, as discussed in Section VII, quite
imprecisely and ineffectively, while the COSMIC method
does not take the amount of data processing into account at
all.

The goal of the paper is to provide evidence, by using an
example, that not considering data processing dramatically
limits the expressiveness of functional size measures.

The core of the paper can be described as follows:

− Two applications are specified. These applications
are similar with respect to the aims and functionality
offered to the user, but they are very different in the
amount and complexity of the processing required.

− The two applications are modeled and measured
according to the IFPUG and COSMIC rules.

− It is highlighted that the two applications have the
same functional size measures, even though the
amount of functionality to be coded in the two cases
is enormously different.

− In fact, when measured via Lines of Code, it is
apparent that the implementations of the two
applications have quite different sizes. The reason is
that more data processing clearly requires more
code.

The conclusion is that using only the functional size to
estimate development effort is likely to yield huge errors for
complex applications. Since size measures are used for effort
estimation, using functional size measures to size complex
applications (i.e., programs that require a substantial amount
of data processing) may lead to large (and dangerous) effort
underestimations.

The paper is structured as follows. Section II reports a
few basic concepts of functional size measurement. Section
III illustrates the case studies used in the paper. Section IV
describes the models and measures of the considered
applications: the collected measures are then compared in
Section V. Section VI discusses the alternatives that should
be considered for complementing standards functional size
measures with measures that represent data processing.
Section VII accounts for related work. Finally, Section VIII
draws conclusions and briefly sketches future work.

404Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 426 / 679

II. FSM CONCEPTS

Functional size measurement methods aim at providing a
measure of the size of the functional specifications of a given
software application.

Here, we do not need to explain in detail the principles
upon which FSM methods are based. Instead, it is important
for our purposes to consider what is actually measured, i.e.,
the model of software functional specifications that is used
by the Function Point Analysis (FPA) and COSMIC
methods.

The model used by FPA is given in Figure 1. Briefly,
Logical files are the data processed by the application, and
transactions are the operations available to users. The size
measure in Function Points is computed as a weighted sum
of the number of Logical files and Transactions. The weight
of logical data files is computed based on the Record
Elements Types (RET: subgroups of data belonging to a data
file) and Data Element Types (DET: the elementary pieces of
data). The weight of transactions is computed based on the
Logical files involved –see the FTR (File Type Referenced)
association in Figure 1– and the Data Element Types used
for I/O.

SW application functional specifications

Logical file Transaction

Data Element Type

Record Element Type

FTR

0..*

I/O

1..*

Figure 1. The model of software used in Function Point Analysis.

It is possible to see that in the FPA model of software,
data processing is not represented at all.

The model used by COSMIC is given in Figure 2. The
size of the functional specification expressed in COSMIC
function points (CFP) is the sum of the sizes of functional
processes; the size of each functional process is the number
of distinct data movements it involves. A data movement
concerns exactly one data group.

SW application functional specifications

Functional Process

Data processing Data movement Data group

Figure 2. The model of software used by the COSMIC method.

Neither data groups nor data processing are directly used
in the determination of an application’s functional size. In
particular, data processing is not measured at all. The
COSMIC method assumes that a fixed amount of data
processing is associated with every data movement;
however, it is not so, in the examples considered in this
paper.

III. CASE STUDIES

In this section, we describe the functional specifications
of the two software applications that will be used to test the
functional sizing ability of FPA and COSMIC.

The chosen applications are programs to play board
games against the computer. They are similar with respect to
the provided functionality, but require different amounts of
data processing.

The specifications that apply to both applications are as
follows:

− The program lets a human player play against the
computer.

− The program features a graphical interface in which the
game board is represented.

− The player makes his/her moves by clicking on the
board. Illegal moves are detected and have no effect. As
soon as the human player has made a move, the
computer determines its move and shows it on the
board.

− When the game ends, the result is shown, and the player
is asked if he/she wants to play another game.

A. A Software Application to Play Tic-tac-toe

Tic-tac-toe is a very simple, universally known game. It
is played on a 3×3 board, as shown in Figure 3. Each player
in turn puts his/her symbol in a free cell. The first player to
put three symbols in a row (horizontally, vertically or
diagonally) wins. When the board is filled and no three-
symbol row exists, the match is tie.

405Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 427 / 679

Figure 3. Tic Tac Toe playing board.

Playing Tic-tac-toe is very simple. In fact, to play
optimally, a software program has just to evaluate the
applicability of the following sequence of rules: the first
applicable rule determines the move:
1) If there is a row such that two cells contain your symbol,

and the third cell X is empty, put your symbol in the free
cell X.

2) If you are the first to move and this is your first move,
put your symbol in the central cell.

3) If there is a row in which your opponent has two
symbols and the third cell X is free, put your symbol in
the free cell X.

4) If there is a free cell X such that putting your symbol
there results in two rows, each one having two cells
occupied by your symbol and the third cell free, put
your symbol in cell X.

5) If there is a row in which you have one symbol and the
other two cells X and Y are free, put your symbol in cell
X or in cell Y.

The code that implements the playing logic described
above is very simple and very small: we can expect that a
few tens of lines of code are sufficient to code the game
logic.

B. A Software Application to Play “five in a row”

Five in a row (aka Gomoku) can be seen as a
generalization of Tic-tac-toe. In fact, it is played on a larger
board (typically 19×19, as in Figure 4) and the aim of the
game is to put five symbols of a player in a row
(horizontally, vertically or diagonally).

Figure 4. Gomoku playing board.

The functional specifications of Gomoku are exactly the
same as the specifications of Tic-tac-toe, except that

a) The size of the board is larger
b) The number of symbols to put in a row is 5 instead

of 3.
The combinations of symbols and free cells that can

occur in a Gomoku game are many more than in a Tic-tac-
toe game. Accordingly, a winning strategy is much more
complex, as it involves considering a bigger graph of
possibilities.

As a matter of fact, Gomoku has been a widely
researched artificial intelligence research domain, and there
are Gomoku professional players and tournaments.

Accordingly, we can safely state that Gomoku is a much
more complex game than Tic-tac-toe, and it requires a huge
amount of processing, so that the machine can play at a level
that is comparable with that of a human player.

On the contrary, Tic-tac-toe is a very simple game: you
do not need to be particularly smart to master it and always
play perfectly.

IV. APPLICATION SIZING

A. A Software Application to Play Tic-tac-toe

Let us measure the Tic-tac-toe specifications given in
Section III.A above, starting with IFPUG Function Points.

The software model to be used involves just a Logical
data file: the board and a matrix of cells, each having one of
three possible values (circle, cross, free).

The software model to be used involves the following
elementary processes:

− Start a new game.

− Make a move.
It is not necessary to consider details (RET, DET) to see

that the Logical data files is a simple Internal Logical File
(ILF), contributing 7 FP.

Similarly, it is not necessary to consider details (FTR,
DET) to see that:

− Start a new game is a simple External Input (EI),
contributing 3 FP.

− Make a move is a simple external output, contributing 4
FP. One could wonder if this operation should be
considered an input (because the move involve inputting
a position) or an output (because of the computation and
visualization of the move by the computer). We consider
that the latter is the main purpose of this transaction,
which is thus an external output.

In summary, the FPA size of the Tic-tac-toe application
is 14 FP.

The COSMIC functional processes of the application are
the same as the FPA elementary processes. When measuring
the application using the COSMIC method, we have to
consider the data movements associated with each functional
process:

− Start a new game involves clearing the board and
possibly updating it, if the computer is the first to move
(a Write) and showing it (a Read and an Exit).
Therefore, this functional process contributes 3 CFP.

− Make a move involves entering a move (an Entry),
updating the board with the human player move (a

406Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 428 / 679

Write), reading it (a Read), and then updating it again
with the computer move and showing it (an Exit). In
addition, if a move concludes the game, the result is
shown (an Exit). Therefore, this functional process
contributes 5 CFP.

In summary, the COSMIC size of the Tic-tac-toe
application is 8 CFP.

Since we are also interested in indications concerning the
amount of computation performed by the application, we
selected an open source implementation of Tic-tac-toe and
measured it.

To evaluate the “physical” size of the Tic-tac-toe
application, we looked for an open source application that
implements the specifications described above. One such
application is the program available from [8].

The main measures that characterize the code are given
in TABLE I.

TABLE I. MEASURES OF THE TIC-TAC-TOE APPLICATION CODE

Measures
Tic-tac-toe [8]

Total AI part

LoC

172

(118 statements)

66

(52 statements)

McCabe 3.6 5

Num. classes 2 1

Num. methods 17 7

In TABLE I (and in TABLE II), column “AI part”

indicates the measures concerning exclusively the part of the
code that contains the determination of the computer move.

In the LoC line, we reported both the number of lines and
the number of actual statements. The latter is a more precise
indication of the amount of source code. We also reported
the mean value of McCabe complexity of methods.

B. A Software Application to Play “five in a row”

The functional size measures of the Gomoku application
are exactly the same as the measures of the Tic-tac-toe
application. In fact, the specifications of the two applications
are equal, except for the board size and winning row size,
which do not affect the measurement, because both IFPUG
FPA and COSMIC consider data types, not the value or
number of instances.

As for Tic-tac-toe, we selected an open source
implementation of Gomoku and measured it. More precisely,
to take into account that a programmer may aim at
developing a program capable of more or less sophisticated
“reasoning,” we considered a few different implementations
of Gomoku.

In this case, to evaluate the “physical” size of the
application, we also looked for an open source application
implementing the specifications described above. One such
application is the Gomoku application available from [9].

The main measures that characterize the code are given
in TABLE II.

TABLE II. MEASURES OF THE GOMOKU APPLICATION CODE

Measures
Gomoku [9]

Total AI part

LoC

832

(395 statements)

425

(234 statements)

McCabe 3 5.95

Num. classes 12 3

Num. methods 63 21

Measures in TABLE II were derived using the same tools

and have the same meaning as the measures in TABLE I.

V. COMPARISON OF MEASURES

The measures reported in the previous section show that
we can have two applications that have the same functional
size, but very different code size (the Gomoku applications
are over four times as big as the Tic-tac-toe application).
Considering the nature of these applications, the difference
in code is largely explained by the different amount of
processing required. In the case of Tic-tac-toe, the number of
possible moves is very small, as is the number of different
possible configurations that can be achieved by means of a
move: hence, every move computation has to explore a very
small space. The contrary is true for the Gomoku application.
The consequence is that Gomoku requires an amount of code
devoted to move computation that is over 6 times the code
required by Tic-tac-toe (or 4.5 times, if we consider the
number of statements instead of LoC).

These observations suggest two important considerations:
1. The definitions of Function Point Analysis and the

COSMIC method do not properly take into account
the amount of processing required by software
functional specifications.

2. If we assume –as is generally accepted– that the
effort required to implement a software application
is related to the number of Lines of Code to be
written, the possibility of having widely different
sizes in LoC for applications that have the same
functional size means that functional size is not a
good enough predictor of development effort.

The observation reported at point 2 above does not apply
only to the coding phase. The difference in the number of
classes and methods suggest that also the effort required by
design and testing activities is better estimated based on
measures that represent the size of the code structure –like
the number of classes– rather than the functional size.

As a final remark, we can observe that McCabe
complexity is similar for the two considered applications.
This means that Gomoku does not need more complex code,
but just more code. In other words, it is the difference in the
amount of data processing, not in the complexity of the
processing that is relevant, and that existing functional size
fail to represent.

VI. DISCUSSION: WHAT SOLUTIONS ARE POSSIBLE?

The usefulness of the evidence given in this paper stems
from a few well-known facts:

407Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 429 / 679

− We need to estimate, during the early phases of a
project, the overall software development effort.

− Development effort has been widely reported to be
directly related to the size in LoC of software.
Unfortunately, the size in LoC is not available in the
early phases of projects, when estimates are most
needed.

− Therefore, we need FSM methods, i.e., we need
measures of functional specifications, because
specifications are available in the early phases of
projects.

− In this paper, we provide some evidence that current
FSM methods appear limited in representing the amount
of data processing required by functional specifications.
Therefore, we need to somehow enhance FSM methods
to remove such limitation.

So, we are facing the following research question: how
can we improve FSM methods so that the delivered
functional size measures account for the amount of data
processing described or implied by the functional
specifications?

This is an open research question. Providing a final
answer to it can be achieved after a substantial amount of
further studies. In the following sections, we report a few
observations, ideas and evaluations that could be useful
considering when tackling the problem.

A. Software Models

FSM methods –like any measurement method– are
applied to models of the object to be measured. Hence, a
rather straightforward consideration is that data processing
must be represented in the model that describes the software
application to be measured.

We can observe that the conceptual model of software
proposed in the COSMIC method includes data processing,
but no criteria or procedures for measuring data processing
are given in the context of the COSMIC method.

In COSMIC, data processing is a sub-process of a
functional process. Therefore, functional processes should be
described in a manner that makes it possible to identify and
measure the extent of data processing that occurs within a
functional process.

Given the similarity of COSMIC functional processes
and FPA elementary processes (or transactions) any
technique used to enhance the expressivity of COSMIC
models as far as data processing is concerned should be
readily applicable to FPA models as well.

B. Software Specifications

A question that should be considered is if the information
required for identifying and measuring data processing is
always available from the software specifications that are
derived from user requirements.

Functional Size Measurement methods use models of
functional specifications: if functional specifications do not
include information on data processing, neither will their
models, and FSM methods will not be able to account for
data processing.

So, another open question is the following: is it necessary
to go beyond user requirements related specifications to be
able to represent data processing? In other words: should
elements of design be anticipated, to get better measures of
the amount of data processing to be implemented?

C. Qualitative Knowledge

Current FSM methods are inherently quantitative. Even if
some measurement activities –like deciding if two sets of
data should be two RET of a unique logic file or they should
belong to separate logic files– involve some subjectivity,
they are always meant to provide measures (the number of
ILF, RET, etc.) according to ratio scales.

One could wonder if the use of more qualitative
knowledge, derived through inherently subjective
evaluations and expressed via ordinal scales, would more
suitable for expressing the relevant information concerning
data processing.

For instance, after talking with stakeholders, an analyst
could easily classify the functional process “Make a move”
of the Tic-tac-toe application as very simple, while the same
process of the Gomoku application could be classified as
very complex.

D. Towards a Measure of Data Processing

As mentioned above, proposing a solution to the problem
outlined above is very difficult. Here we outline a couple of
directions to be considered when addressing the problem.

A first consideration concerns the level of description of
data processing. At a high level, the complexity of the
processes in terms of number of different cases to be
considered could easily determine the amount of data
processing required. Consider for instance a process that
starts by identifying users: if the specifications indicate that
the user can be identified in three different ways (e.g., by
name, by social security number, and by email address) it is
likely that it will have to process three times as much data as
a process that identifies users in a single way.

Another observation concerns how to differentiate
functionalities. A possibility is to account for the internal
states a function has to deal with. In the case of tic-tac-toe,
the number of states in which the game can be is quite small;
on the contrary, the states of a Gomoku game are very
numerous. Accordingly, the amount of computation could be
proportional to the number of states, since the function has to
properly deal with all states. However, the quantification of
data processing could be further complicated by the presence
of equivalent states, i.e., sets of states that are managed in the
same way, so that having N or N+1 states in such sets would
not affect the amount of processing required. For instance, a
data increase function has to account for months having 28,
30, or 31 days: the fact that there are 7 months having 31
days and just one having 28 days is irrelevant.

VII. RELATED WORK

Although several FSM methods (e.g., Mark II FP,
NESMA and FiSMA) have been proposed as extensions or
replacements of Function Point Analysis, very little attention
has been given to the measurement of data processing.

408Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 430 / 679

Function Point Analysis and other methods –like Use
Case Points [5]– introduce a mechanism for “adjusting” the
size measure to take into account additional complexity
factors that are likely to increase the effort required for
implementation. In fact, among FPA value adjustment
factors (VAF) we find “Complex processing,” which
represents to what degree the application includes extensive
logical or mathematical processing. This mechanism is
similar to what we need, but has a few shortcomings,
including:

− In FPA the considered VAF’s value increases the
application size by 5%: two orders of magnitude less
than needed in the Tic-tac-toe vs. Gomoku case.

− The VAF applies to the whole application, so that it is
not possible to distinguish simple and complex
processes.

The measure of Path [6][7] represents the complexity of
processes in terms of the number of execution paths that are
required for each process. Although this measure proved
fairly effective in improving effort estimation based on
functional size measures, it is not applicable in cases like
those considered in this paper, since the alternative courses
of the specified processes are not known.

VIII. CONCLUSIONS

In this paper, we have shown by means of examples that
functional size measurement methods fail to represent the
amount of data processing required by software functional
specifications.

Since we discussed just one example, one could wonder
how general are the results reported in the paper. As to this
issue, it is easy to see that the limits of FSM discussed in the
paper apply to several programs. Consider for instance
software measurement programs: from the point of view of
functional size, all the measurement functions that read a set
of source files and deliver a numeric value are equivalent.
However, it is clear that measuring LoC is easier (i.e., it
involves less data processing) than computing McCabe
complexity, which in its turn is easier to compute than most
coupling measures.

The work reported in the paper indicates that we need a
measure that can complement Function Points or COSMIC
Function Points to represent the amount of data processing
that is required to provide the required functionality.

We are interested to represent and quantify the amount of
data processing not because of an abstract interest in the
definition of functional size measures, but because –as
shown in the paper– data processing is logically related to
code size, which is known to determine the amount of
development effort required to build a software application.

How to measure the amount of data processing required
by the specifications of a software application is an open
research question of great practical interest that should
receive much more attention than it currently does.

ACKNOWLEDGMENT

The work presented here has been partly supported by the
FP7 Collaborative Project S-CASE (Grant Agreement No
610717), funded by the European Commission and by
project “Metodi, tecniche e strumenti per l’analisi,
l’implementazione e la valutazione di sistemi software,”
funded by the Università degli Studi dell’Insubria.

REFERENCES

[1] A. J. Albrecht, “Measuring Application Development
Productivity”, Joint SHARE/ GUIDE/IBM Application
Development Symposium, 1979, pp. 83-92.

[2] International Function Point Users Group. Function Point
Counting Practices Manual - Release 4.3.1, January 2010.

[3] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting
Practices Manual, Geneva: ISO, 2003.

[4] COSMIC – Common Software Measurement International
Consortium, The COSMIC Functional Size Measurement
Method - version 3.0.1 Measurement Manual, May 2009.

[5] G. Karner, “Resource estimation for objectory projects”.
Objective Systems SF AB, 17. 1993.

[6] G. Robiolo and R. Orosco, “Employing use cases to early
estimate effort with simpler metrics”. Innovations in Systems
and Software Engineering, 4(1), 2008, pp. 31-43.

[7] L. Lavazza and G. Robiolo, “Introducing the evaluation of
complexity in functional size measurement: a UML-based
approach”. ACM-IEEE Int. Symp. on Empirical Software
Engineering and Measurement, September 2010.

[8] http://algojava.blogspot.it/2012/05/tic-tac-toe-game-
swingjava.html.

[9] https://github.com/whsieh/gomoku

409Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 431 / 679

An Exploration of the Application of Usability Evaluation Methods by Disabled Users

Khalid Al-Nafjan

Software Engineering Department

King Saud University

Riyadh, Saudi Arabia

kalnafjan@ksu.edu.sa

Mona Al-Zuhair

Software Engineering Department

King Saud University

Riyadh, Saudi Arabia

433203603@student.ksu.edu.sa

Layla Al-Salhie

Healthcare IT Affairs

King Faisal Specialist Hospital &RC

Riyadh, Saudi Arabia

lalsalehi@kfshrc.edu.sa

Abstract— The involvement of system users during the system

usability evaluation with the full awareness of their specific

nature and characteristics is a key factor for achieving

effective usability evaluation results. However, conducting

usability evaluations for systems designed for disabled users is

a challenging process that requires further considerations as

compared to other ordinary usability evaluation procedures.

This is due to the special needs and conditions of disabled users

that must be considered while performing the usability

evaluation. Therefore, it is essential to assess the effectiveness

of different usability evaluation methods to help the evaluator

selecting the most suitable ones for a particular system and a

particular user group. The main contribution of this paper is

to conduct an analysis of the effectiveness of applying several

usability evaluation methods by disabled users. This analysis is

based on the special characteristics of users with disabilities

and on what adjustments should take place before the

evaluation process begins. After conducting this exploratory

analysis, we found that usability evaluation methods including

inspection and testing methods can be applied to special needs

users but many considerations should take place before

selecting which methods are most effective. We believe that this

work is particularly useful for the novice designers and

usability engineers who have never conducted usability

evaluations by disabled users before.

Keywords-UEM; Disabled users; Usability evaluation.

I. INTRODUCTION

There is a global agreement on that the usability is a key

aspect of a software product’s success. System usability can

be viewed as the studies conducted that aim to answer the

question of whether the system is good enough to satisfy the

user’s needs [2]. In order to properly acquire the desired

level of usability in a software system, a disciplined

approach should be followed. For that, usability engineering

concept has emerged into software engineering to represent

this disciplined approach [14]. Several usability engineering

process models exist in literature that share an essential

activity which is the usability evaluation [3]. Usability

evaluation is an iterative process that encompasses a

continuous measurement of the system's current usability

level; this process continues to repeat until the desired

usability level is reached.

In literature, several techniques, methods and guidelines
exist that shape the usability evaluation activity. A usability
evaluation method (UEM) is a process for producing a
measurement of usability: in evaluation, there is an object
being evaluated and a process through which one or more
attributes are judged or given a value [18]. The standard
output for all UEMs is a list of the potential usability
problems [7]. These UEMs can be classified in several ways;
a common way is to classify them into empirical user testing
methods and usability inspection methods, according to the
user involvement. While the user testing category covers
methods that involve representative users as participants, the
usability inspection category, on the other hand, includes
methods that can be applied without user involvement [16].
User testing also includes developing realistic scenarios of
the tasks that the users are required to perform [17].
Assessing the effectiveness of different UEMs is essential to
help the evaluator selecting the most suitable UEMs for a
particular system and a particular user group. This
effectiveness is related to several factors such as the type of
the systems, the nature and time of the usability study among
the development lifecycle, the characteristics of test
participants, funding and other facilities [2]. Several
measures can be used for assessing UEMs effectiveness such
as: the ratio and severity of usability problems detected, the
ratio of task success and number of comments elicited [6].

The main contribution of this paper is to conduct an
analysis study of the effectiveness of applying several
usability evaluation methods by disabled users based on the
special characteristics of such users and the adjustments that
should take place before the evaluation process begins.
However, the study was based on analyzing the literature and
reviewing the fields that focus on the application of different
UEMs with different disabilities. And the results that we
obtained during this study were based on our findings and
experience after analyzing these fields. The following UEMs
will be analyzed in this paper in regard to their application
by disabled users: Inspection methods, thinking aloud,
attention analysis, field observation, coaching method,
questionnaires and interviews. The rest of the paper is
organized as follow: Section 2 presents the related works that
studied the application of different UEMs by disabled users.
Section 3 provides an exploratory review of applying
different UEMs for users with specific disabilities along with
the resultant considerations. Section 4 presents

410Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 432 / 679

summarization of the analysis results. In Section 5, we
concluded the paper with a summary and the expected future
work.

II. RELATED WORK

Most of the related work had discussed – as a part of a
system development process- the results of conducting a
specific UEM for evaluating the system’s usability by users
with a specific type of disability. However, few works
discussed the effectiveness of applying different UEMs by
different disabled users and highlighted the challenges faced.

Regarding the challenges of the recruitment of special –
non regular- test users, Brush et al. [4] discussed the problem
of the availability of user representatives. They found it
difficult to find sufficient professional users of testing the
usability of an urban planning tool locally because users
were geographically distributed. They conducted both local
and synchronous remote usability testing and found the
results comparable. The effectiveness of applying remote
evaluation by disabled users was evaluated by Petrie et al.
[9]. They presented two usability evaluation studies with
disabled users. One was remotely conducted and in
asynchronous way while the other was ordinary local
evaluation. In the remote evaluation, there were two cases;
summative evaluation and formative one. The resulting
quantitative data of the local and remote cases were
comparable. However, there was a difference in the data
amount and richness in the favor of local evaluation.

Regarding usability evaluation by slow learning users,
Abdollah et al. [1] developed a multimedia courseware
learning tool for slow learners and performed a usability
evaluation of the tool by the slow learners along with
heuristic evaluation with teachers and one parent. Evaluation
results showed that users with this disability were able to
participate in the “efficiency” and “easy to learn”
measurement testing while they were unable to participate in
the “satisfaction” measurements testing considering their
lack of respond abilities to written questionnaires. As for the
deafness disability, Roberts and Fels [5] provided two
studies that proved the viability of using the Think Aloud
Protocol (TAP) method as a UEM in collecting gestures
from deaf sign language users. Their study showed a similar
success rate of using gestural TAP for deaf people and verbal
TAP for hearing people. As for applying UEMs by blind
users, Chandrashekar and Fels [8] assessed the applicability
of conventional TAP method to blind users who uses a
screen reader to access websites. They found that TAP
cannot be used by such users in its popular form as a
concurrent verbal protocol; it will instead require adjustment
to be useful for blind users. However, the best approach for
TAP adjustment wasn’t determined in the study.

Regarding the usability evaluation by users with cognitive
disabilities, Lepistö and Ovaska [20] performed a think aloud
usability test and found that it didn’t work well with this user
group. They also conducted an informal walkthrough and
found that this method showed effectively which parts of the
application interest the participants most. Their study
concluded that for evaluating usability by users with
cognitive disabilities, several complementary methods might

be needed to collect data, and these methods should be
adjusted to suit the characteristics of such participants.
Another conclusion is that without the observational
methods, many usability problems would have been missed.
Authors also emphasized that evaluators should focus on
gaining the participants’ trust before the evaluation sessions.

Rømen and Svanæs [19] have studied the usability
evaluation by users with several disabilities (blind, weak-
sighted, motor impaired and dyslexic) as a part of their
validation of the usefulness of using Web Content
Accessibility Guidelines (WCAG) as a heuristic for website
accessibility. Several techniques were used for the testing
process: a “think aloud” was conducted at first; then a short
interview was conducted after completing the test tasks in
order to uncover further problems. Evaluators also used a
mobile usability lab which allowed the disabled users to be
tested at their workplace and home using their own computer
and technical aides. The study results showed that only 27%
of the identified website accessibility problems could have
been identified through the use of WCAG heuristics.

The works reviewed above have addressed the application
of specific types of UEMs by disabled users as part of
presenting the development process of a software system.
However, this paper contributes to explore the effectiveness
of applying number of UEMs (Inspection methods, thinking
aloud, attention analysis, field observation, coaching method,
questionnaires and interviews) for users with disabilities and
to present the related conditions and considerations that
would customize these UEMs to fit a specific disability.
Furthermore, this contribution has been conducted by
analyzing and reviewing the literature and the fields that
focus on the application of different UEMs with different
disabilities; and the obtained recommendations and
considerations were based on our findings after analyzing
these fields. We think that this work will help novice
designers and usability engineers by giving them deeper
insight on the areas that they should consider during the
usability evaluation for systems designed for disabled users.

III. EXPLORATORY ANALYSIS OF APPLYING USABILITY

EVALUATION METHODS BY USERS WITH DISABILITIES

Based on the nature of systems designed for users with

disabilities and based on the disabled users’ characteristics,

the most effective UEMs can be selected in order to discover

all the possible usability issues that impact the system’s users

[10]. In this study, we analyzed and discussed the application

of different UEMs by users with different disabilities

focusing on the users’ special characteristics. The analysis

study was based on reviewing the literature and the fields

and the obtained result was based on our findings and

experience after performing this analysis study. However,

the result was a set of recommendations and considerations

that should take place before conducting usability evaluation

by disabled users.

A. Inspection Methods and Disabled-Users

Before testing the system by real disabled users,
inspection methods such as heuristic evaluation, cognitive

411Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 433 / 679

walkthrough and action analysis can be applied in order to
find and resolve the general and common usability issues
based on the expertise of usability and design. The system
then becomes ready for testing by disabled users. Although
there are many guidelines for designing accessible systems
for users with different kinds of disabilities, usability
engineers and the designers lack the experience with disabled
people characteristics and their different assistive
technologies. Therefore, many of the system’s accessibility
criteria are missed. In this case, the involvement of
specialized therapists during the analysis becomes important
in order to improve the effectiveness of the inspection
methods in order to find more disability-specific usability
issues. For example, in analyzing system designed
specifically for users with physical impairment; the physical
therapist can be participated in order to define the specific
limitations that such users may face during the interaction
with the system. And when we speak about system designed
specifically for children with disability, like for example
slow learning children, the involvement of persons like
parents or teachers who are interacting with the child very
closely and aware with most of the issues that this kind of
children have, this can add more value to the inspection
method and it will also help finding more usability issues.
Generally we can say that relaying only on these inspection
methods can find some general usability problems, but in
order to find more detailed problems and useful information
on how to improve the usability, it is necessary to conduct
the Usability Testing Methods by actual disabled users [9].

B. Test Methods and Disabled-Users

Usability Testing methods are conducted by real system
users and their main objective is to identify problems that
users face when dealing with the system. These tests provide
precise identification and description of the usability issues
that may lead to system re-designing [11]. In particular, for
disabled users, many considerations should take place before
conducting the test and some of these considerations are
common for all type of disabilities; while others are specific
for certain disability. Generally, for all kinds of disabilities,
the testing environment (either room or laboratory) should be
prepared and organized for the disabled user. For example, in
case of physical impairment users, testing place should allow
enough area for a wheelchair to get in, move around and face
the computer. Furthermore, an important thing to consider
before conducting tests by disabled users is the different
profiles within this user group, i.e. disabled user may be
employed or unemployed; educated or under-educated;
technology ‘power users’ or computer illiterate. Information
about these differences should be gathered in order to deepen
the obtained results. Moreover, it is important to select what
system interfaces to be tested by the disabled users.
Therefore, different test tasks can be prioritized based on
their importance in the system and also based on the amount
of user interaction involved. This is because the areas of a
system that have the most usability problems are the ones
involving the most user interaction [17].

There are many usability testing techniques such as:
Thinking aloud, Attention Analysis, Field Observation,

Questionnaires and others. Here, we will go through some of
these techniques and analyze their effectiveness when being
conducted by users of specific disabilities:

 Thinking aloud
The Thinking aloud method requires the user to verbalize

all his/her cognitions when interacting with the system. It is

considered one of the most effective techniques in

identifying usability problems [11]. When conducting this

method by disabled users, the evaluator has to consider the

participants’ disability before starting the test. For blind and

visually impaired participants, they usually use a screen

reader as their main assistive technology. However, the

evaluator should focus on both the screen reader and the

participant voice and expressions. And in this case, he/she

has to position the audio recording equipment close enough

to hear the screen reader. The evaluator can also use

separate audio equipment for the participant's voice and for

the screen reader, that way, when analyzing the data, the

evaluator can combine between the two recordings [12].

Another case of disabled users are the deaf participants. In

this case the evaluator has to record both the participant and

the interpreter voice, depending on the situation. If the

participant doesn't speak at all, the evaluator can record only

the interpreter voice. If the participant speaks some, the

evaluator probably want to record both of them. This

technique will obviously put more stress on the participant

because it is unnatural to his/her to express his thinking

loudly and share it with others [11]. Therefore, we might

say that think aloud method considered time-consuming and

hard to apply for deaf participants since they have to share

their thoughts with the interpreter who will give the answers

to the evaluator. Also, Roberts and Fels [5] proved the

viability of using this method in collecting gestural

protocols from the sign language of deaf users and extract

relevant usability issues and remarks.

 Attention Analysis

Attention Analysis method includes two categories:

Attention-tracking and eye-tracking. In the attention

tracking, the participant is asked to click on the areas in the

system interface that he/she finds most noticeable. The eye-

tracking method in the other hand requires special

equipment in order to capture the users’ eyes movement so

the evaluator can analyze it and gain useful information on

the noticeable interface elements. As we can see, this

technique is inapplicable for blind participants. While for

other disabilities it can be helpful in finding and analyzing

which elements of the system are most distracting and how

long users remain in certain sections of the system.

Furthermore, this technique can be used for evaluating

systems designed for aiding children with Autism syndrome

by examine and identify the types of interface elements (i.e.,

animation) that attract and retain child’s attention.

412Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 434 / 679

 Field Observation

This method involve an investigator who is observing

the users as they work in their work environment, and taking

notes on the activity that takes place there. Observation may

be either direct where the investigator is actually present on

the observation area or indirect where the task is recorded

using a video recorder and later on the investigator can

analyze it [15]. Allowing the observer to view what users

actually do in their context, especially in case of disabled

users, will add great value to the process of finding usability

issues. Direct observation allows the investigator to focus

attention on specific areas of interest and it will let him/her

see how the disabled users use their assistive technologies,

and which kind of daily practice they perform. And due to

the nature of these users and their sensitivity to any new

passive presence in their environment, the investigator

should make sure that users are aware with the purpose of

his/her presence and the main reasons of the observation.

This is particularly important for mentally impaired and

blind users who may be disturbed by a passive presence that

they are not sure about.

 Coaching Method

In this technique the evaluator serves as the coach, where

participants are allowed to ask any questions to an expert

coach who will answer to the best of his/her ability. The

purpose is to discover the information needs of users and

find out the limitations in the system design to possibly

redesign the interface to avoid the need for the questions [2].

This technique would help in case of blind participants who

most of the times need guidance in order to make sure that

they are in the right direction. Furthermore, it would help in

case of children with learning difficulties since they need

continuous help; and the coach can respond to their

questions and give them the needed assistance.

 Questionnaires

Questionnaires are designed to help the evaluator in

obtaining data about the users’ subject judgment of the

system and reflecting their level of satisfaction. It can be

used to evaluate entire system or only partial aspects of the

system. This technique is applicable for all kinds of

disabilities, except disabled children and slow learners [1].

However, it can be performed in a much simpler form which

is the “Interview” [13] in order to simplify the technique for

disabled users. The issue with this technique is that it needs

enough number of participants, not less than 30, in order to

make sure that enough opinions have been collected [13].

However, establishing cooperative relationships with

organizations of disabled people may help in recruiting the

required number of user participants [9].

C. Performing the Test Methods Locally or Remotely

Finding and recruiting test users with special

characteristics or specific demographics is a challenging

task [9]. For example: it is not easy to find blind or deaf

person who can be participated and committed to the system

usability evaluation. This is obviously due to the special

issues these users might have such as: transportation issues

and the need for continuous assistance. As a result, finding

test participants with disabilities is a problematic. Since

their involvement is a key factor in usability tests,

conducting the usability test remotely in the disabled user’s

own environment would be a good practice. Disabled users

usually use assistive software or hardware technologies such

as: screen magnification programs for partially sighted

people, single handed keyboards [9]. They also configure

these technologies, in a way that fits their needs. Therefore,

having remote evaluations which involve performing the

test in the users’ areas is valuable, especially that the

evaluator will be able to closely see how an assistive

technology is being used by the disabled user and how this

technology affects the usability of the system under testing.

As a result, more detailed usability problems can be

discovered. As mentioned by Petrie et al. [9], there are

number of “remote evaluation techniques” such as: portable

evaluation, local evaluation at remote site, remote

questionnaire/survey, video conferencing and others. Each

one of these techniques can be selected according to the

users and the evaluators’ conditions. In contrast, going to

each individual participants and perform the test in their

environments is considered costly and time-consuming;

especially when we are talking about large scale projects

that need number of participants with different disabilities

who may be located in different areas. Therefore,

conducting the test locally in a usability laboratory by

having the participants attend the test place is more effective

and it can save time, cost and effort. As per what has been

mentioned above, where to conduct the usability test either

locally or remotely is an important dimension that should be

considered to obtain effective usability evaluation by

disabled users.

D. Participants Independence

One of the important issues that affect the effectiveness

of the usability test results is the participants’ independence

and the amount of their contact with the evaluator during the

test. In most of the cases, disabled users need some

guidance during the test from the evaluators. Such

communication should be very well planned and organized

in a way that will not affect the accuracy and validity of the

test results, since intensive communication can distract the

participants’ attention and prevent the evaluators from

getting reliable results. Meanwhile, lack of help and

guidance during the test could lead the disabled user to

struggle in one task or become in the wrong direction. In

case of deaf users who speech-reads, the evaluator should sit

in a position in front of the test participant to allow him/her

to read the evaluator’s lip and face expressions during the

communication, this could be distracted to the user if it is

not kept to the minimum during the test. As for slow

413Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 435 / 679

learning children, communication has to be through the

learning difficulties’ specialist who knows how to interact

with children and provide the appropriate assistance.

E. Synchronous or Asynchronous Tests

Selecting among synchronous or asynchronous tests is

about assessing the need to have the evaluator and the

participant performing the usability test at the same time. In

Asynchronous test, the evaluator can provide the participant

the test details and manuals and leave him, and after

finishing the test, the evaluator can collect the results data

like video recording or screen recording tape. Synchronous

tests in the other hand, implies having the evaluator

participates with the user along the test time by observing

him/her while performing the tasks. This way, the evaluator

can explore more information like the non-verbal behavior

of the participant can reveal more usability problems and

their causes. In addition, one of the most important benefits

of synchronous tests is that the evaluator will directly and

carefully observe the disabled user and see how he/she

interact with the system using assistive technology. This

will ensure a deep understanding of different usability issues

that should be considered in system design [9][11].

IV. SUMMARIZATION OF THE ANALYSIS RESULTS

Generally, we can say that when evaluating the usability

for systems designed for disabled users, combination

between UEMs can be performed in order to find and

discover most of the possible usability issues. Meanwhile,

selecting the most effective UEMs should be done under

many considerations like: the system goals, users’ disability

type and the project’s time and cost constraints. Based on

the previous section, results of analyzing the effectiveness

of UEMs by disabled users are summarized in Table1.

These results are depicted in the shape of considerations and

recommendations along with the justifications behind the

selection of these recommendations.

TABLE I. ANALYSIS RESULTS OF THE EFFECTIVENESS OF UEMS BY DISABLED USERS

Disability Considerations/ Recommendations Justification

Complete - Partial

Deaf

Involve sign language interpreter in the test. For effective communication with deaf users.

Plan and manage the interaction during the test.
To avoid any distraction during the test for speech-reads users in order to get accurate
reliable test results.

Combination of test methods: thinking aloud and

questionnaire is recommended to apply.

As per the review of previous works, these methods have shown effective results.

Complete -Partial

visual impairment
Consider the screen reader assistive tool during the test.

Visually-impaired users rely heavily on the screen reader. therefore to get accurate

results, these tools should be considered during the test.

Provide required assistance when needed.
Based on the special nature and the difficulties faced by such users when using the

different systems, immediate and direct assistance should be provided during the test.

Omit the “task completion time” constraint.

Visually-impaired users spend more time on performing tasks than other disabilities.

Therefore, the time constraint should be removed during the test. This ensures more

flexibility that helps them complete the tasks.

Use automatic validation tools.
These users use assistive technology heavily. Therefore, checking the compatibility of

the developed system and the assistive technologies using these tools is important.

Combination of inspection methods is recommended:

heuristic evaluation and test methods (coaching method).

As per the review of previous works, these methods have shown effective results by

visual impairment users.

Physical impairment Perform synchronous remote test (in the user

environment).

Due to the different obstacles these users may face to attend usability test lab,

performing remote test allows more of them to participate in the test.

Involve physical therapists for effective inspection

method.

Such therapists can define the impacts on such disabled users and their limitations

during system interaction.

Combination of inspection methods is recommended:
heuristic and test methods (field observation,

questionnaire or interview).

As per the review of previous works, these methods have shown effective results by
such users.

Children with

disabilities: Slow

learning, Autism

Involve parents and learning difficulties’ specialist for

effective inspection methods.

Involving them can reveal more usability issues and assist in communication.

Provide clear simple guidance and instruction.
Based their special nature and the difficulties they face when using computer
applications, it is important to provide users with clear and simple guidance.

Combination of inspection methods is recommend:

heuristic evaluation and test methods (attention analysis,

coaching method)

As per the review of previous works, these methods have shown effective results by

such users.

Cognitive and
Mental disabilities

Involve cognitive and mental health specialist for
effective inspection methods.

Such involvement can reveal more usability issues and enhance the communication
omng the test.

Provide clear and simple guidance and instruction before

the test.

Based on their special nature and the difficulties they face when using computer

applications, it is important to provide users with clear and simple guidance.

Combination of inspection methods is recommended to

apply: informal walkthrough and test methods (field

observation).

As per the review of previous works, these methods have shown effective results by

such users

The observer or test facilitator should build good

relationship with the test participants and gain their trust

before the test.

Due to the special nature of these users and their sensitivity, it is important to gain

their trust to facilitate the communication during the test.

414Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 436 / 679

V. CONCLUSION AND FUTURE WORK

In this study, we analyzed and discussed the application

of different UEMs by users with different disabilities

focusing more on the users’ special characteristics. The goal

was to explore the effectiveness of applying number of

UEMs with users with disabilities; and to present the related

conditions and considerations that would customize these

UEMs to fit a specific disability. However, the study was

based on analyzing the literature and reviewing the fields

that focus on the application of different UEMs with

different disabilities. And the results that we obtained

during this study were based on our findings and experience

after analyzing these fields. We think that this work will

help novice designers and usability engineers who have no

prior experience with conducting usability evaluation with

disabled users. However, this work will give them deeper

insight on specific areas that they should consider during the

evaluation. The future work will be conducting empirical

evaluation with real disabled users in order to assess the

effectiveness and accuracy of the obtained

recommendations and results during this study.

REFERENCES
[1] N. Abdollah, W.F.W. Ahmad, and E.A.P. Akhir,

"Development and usability study of multimedia courseware

for slow learners: ‘Komputer Saya’," Computer &

Information Science (ICCIS), 2012 Int. Conf. on, vol. 2, June

2012, pp. 1110-1114, doi:10.1109/ICCISci.2012.6297192.

[2] J. Nielsen, Usability Engineering, Morgan Kaufmann

Publishers Inc., San Francisco, 1993.

[3] B. Thurnher, “Usability engineering,” Course No.: 188.314.

Quality Software Engineering (QSE) Research Group.

Institute of Software Technology and Interactive Systems

(IFS), Sept. 2004.

[4] A J. Brush, M. Ames, and J. Davis, “A comparison of

synchronous remote and local usability studies for an expert

interface,” In CHI '04 Extended Abstracts on Human Factors

in Computing Systems . ACM, New York, NY, USA, 2004,

pp. 1179-1182, doi:10.1145/985921.986018.

[5] V. Roberts and D. Fels, “Methods for inclusion: employing

Think Aloud Protocols in software usability studies with

individuals who are deaf,” Int. J. Hum.-Comput. Stud. 64,

June 2006, pp. 489-501, doi:10.1016/j.ijhcs.2005.11.001.

[6] A. Fernandez, S. Abrahao, and E. Insfran, "A systematic

review on the effectiveness of web usability evaluation

methods," Evaluation & Assessment in Software Engineering

(EASE 2012), 16th Int. Conf. on, May 2012, pp. 52-56,
doi:10.1049/ic.2012.0007.

[7] H. R. Hartson, T. S. Andre, and R. C. Williges, “Criteria for

evaluating usability evaluation methods,” Int. Journal of

Human-Computer Interaction, vol. 15, 2003, pp. 145-181,
doi:10.1207/S15327590IJHC1501_13.

[8] S. Chandrashekar, T. Stockman, D. Fels, and R. Benedyk,

“Using think aloud protocol with blind users: a case for

inclusive usability evaluation methods,” In Proc. 8th Int.
ACM SIGACCESS Conf. on Computers and

accessibility (Assets '06). ACM, New York, NY, USA, 2006,

pp. 251-252, doi:10.1145/1168987.1169040.

[9] H. Petrie, F. Hamilton, N. King, and P. Pavan, “Remote

usability evaluations with disabled people,” In Proc. SIGCHI

Conf. on Human Factors in Computing Systems (CHI '06).

ACM, New York, USA, 2006, pp. 1133-1141,
doi:10.1145/1124772.1124942.

[10] A. Al-Wabil, and H. Al-Khalifa, "A framework for

integrating usability evaluations methods: The Mawhiba web

portal case study," In Current Trends in Information

Technology (CTIT), 2009 Int. Conf. on the, IEEE, Dec. 2009,

pp. 1-6, doi:10.1109/CTIT.2009.5423128.

[11] A. Blecken, D. Bruggemann, and W. Marx, "Usability

evaluation of a Learning Management System," System

Sciences (HICSS), 43rd Hawaii Int. Conf. on, Jan. 2010, pp.

1-9, doi:10.1109/HICSS.2010.422.

[12] “Just ask: integrating accessibility throughout design.

Preparing for usability testing” - [online] Available at:

http://www.uiaccess.com/accessucd/ut_prep.html. [Retrieved:

Sept., 2014].

[13] M. Rowan, P. Gregor, D. Sloan, and P. Booth, “Evaluating

web resources for disability access,” In Proc. 4th ACM Int.

Conf. on Assistive technologies (Assets '00), 2000, pp. 80-84,
doi:10.1145/354324.354346.

[14] D. J. Mayhew, The usability lifecycle. A practitioner's

handbook for user interface design, Morgan Kaufmann

Publishers Inc., San Francisco, 1999.

[15] “UsabilityNet. User observation/field studies” – [online]

Available at:

http://www.usabilitynet.org/tools/userobservation.htm.

[Retrieved: Sept., 2014].

[16] S. Riihiaho, "Experiences with usability evaluation methods,"

Licentiate thesis. Helsinki University of Technology.

Laboratory of Information Processing Science, 2000.

[17] “Webbism - Web accessibility (Brisbane). The benefits of

user testing with disabled users” - [online] Available at:

http://webbism.com/2012/07/06/the-benefits-of-user-testing-

with-disabled-users. [Retrieved: Sept., 2014].

[18] J. Karat, “User-centered software evaluation methodologies,”

In M. Helander, T.K. Landauer, P. Prabhu (Eds.) Handbook

of human-computer interaction, 2nd ed. Elsevier Science. pp.

689-704, 1997.

[19] D. Rømen and D. Svanæs, “Evaluating web site accessibility:

validating the WAI guidelines through usability testing with

disabled users,” In Proc. 5th Nordic Conf. on Human-

computer interaction: building bridges (NordiCHI '08). ACM,

New York, NY, USA, 2008, pp. 535-538,
doi:10.1145/1463160.1463238.

[20] A. Lepistö and S. Ovaska, “Usability evaluation involving

participants with cognitive disabilities,” In Proc. 3rd Nordic

Conf. on Human-computer interaction. ACM, NY, USA,

2004, pp. 305-308, doi:10.1145/1028014.1028061.

415Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 437 / 679

Towards Automating the Coherence Verification of
Multi-Level Architecture Descriptions

Abderrahman Mokni∗, Marianne Huchard†, Christelle Urtado∗, Sylvain Vauttier∗ and Huaxi (Yulin) Zhang‡
∗LGI2P, Ecole des Mines Alès, Nı̂mes - France

Email: {Abderrahman.Mokni, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr
†LIRMM, CNRS and Université de Montpellier 2, Montpellier - France

Email: huchard@lirmm.fr
‡INRIA, Ecole Normale Supérieure de Lyon, Lyon - France

Email: yulinz88@gmail.com

Abstract—Component-Based Software Engineering considers off-
the-shelf software component reuse as its cornerstone. In previous
work, we proposed Dedal, a three level Architecture Description
Language. It supports a novel modeling approach that aims at
describing the specification, the implemented configuration and
the running assembly of the software. This eases reuse by guiding
the search for existing components. In this paper, we propose a
formal approach that states the rules for component reuse and
interoperability among Dedal models. The use of B, a specifi-
cation language providing model-checking capabilities, enables
the automatic verification of Dedal architecture descriptions. The
approach is illustrated using the example of a home automation
software.

Keywords–Software architecture, component reuse, B formal
models, component subtyping, component compatibility, architec-
ture levels.

I. INTRODUCTION

Component-Based Software Engineering (CBSE) aims at
engineering software from previously developed components.
Expected outcomes are to increase development speed and
software quality, to ease the development of software of
ever increasing complexity and to decrease costs. In previous
work [1], we proposed a three step approach to specify, de-
sign and deploy software architectures from existing software
components. This proposal also includes means to control
architecture evolution. It is supported by a three level Ar-
chitecture Description Language (ADL) and component model
called Dedal. The originality of this approach is to focus on
component reuse by guiding the search for adequate compo-
nents during the CBSE process. In this paper, we propose rules
to automatically support verification and validation of Dedal’s
architecture descriptions which is a first step to handle reuse
and architecture-centric evolution in a rigorous way. The rules
are expressed in the B [2] notation, a formalism that can
be automatically verified using existing provers and model
checking tools. The remaining of the paper is structured as
follows. Section II gives an overview of the three Dedal models
and illustrates them with a home automation architecture
example. Section III presents an overview of our formalization
of Dedal models using the B notation. Section IV sets the intra-
level rules for component substitutability and compatibility.
Section V describes inter-level rules that define the relations
between component descriptions in two successive description
levels. Section VI depicts an overview of the experimentation

of the presented formal models and rules. Section VII analyzes
related work before Section VIII concludes and discusses
future work.

II. OVERVIEW OF THE DEDAL MODEL

Dedal is an ADL that helps software development at three
abstraction levels. These levels have been designed to support
reuse-centered architecture development. In the following, we
detail each of Dedal’s three abstraction levels [1]. To illustrate
these concepts, we propose to model a part of Home Automa-
tion Software (HAS) that manages comfort scenarios. Here,
it automatically controls the building’s lighting and heating in
function of the time and ambient temperature. For this purpose,
we propose an architecture with an orchestrator component
that interacts with the appropriate devices to implement the
scenario.

A. The abstract architecture specification

The abstract architecture specification is the first level
of architecture software descriptions. It provides a generic
view of the global structure of the software and states its
expected functionalities according to functional requirements.
An architecture specification may correspond to a prescriptive
architecture, which describes the system’s architecture ”as-
wished” at specification time, as defined by Taylor et al. [3]. In
Dedal, the architecture specification is composed of component
roles and their connections. Component roles represent the
roles that components are expected to play in the system. They
thus are abstract and partial component type specifications.
They are identified by the architect in order to search for and
select corresponding concrete components in the next step.
Figure 1-a shows a possible architecture specification for the
HAS. In this specification, five component roles are identified.
A component playing the HomeOrchestrator role controls
four components playing the Light, Time, Thermometer and
CoolerHeater roles.

B. The concrete architecture configuration

The concrete architecture configuration is an implemen-
tation view of the software architecture. It results from the
selection of existing component classes in component repos-
itories. Thus, an architecture configuration lists the concrete

416Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 438 / 679

Figure 1: Architecture specification, configuration and assembly of HAS

component classes that compose a specific version of the
software system.

Component classes are concrete component implementa-
tions. In Dedal, component classes can be either primitive
or composite. Primitive component classes encapsulate exe-
cutable code. Composite component classes encapsulate an
inner architecture configuration (i.e., a set of connected com-
ponent classes which may, in turn, be primitive or composite).
A composite component class exposes a set of interfaces cor-
responding to unconnected interfaces of its inner components.
A Component type gives an abstract representation of a set
of component classes. It defines the set of interfaces that
a class must hold to be an implementation of this type.
Component types are used to classify component classes and
build indexes on the content of component repositories. To
search for component classes that can be used to implement an
architecture specification, component roles are matched with
component types (using a classification based on specialization
and substitutability in a manner similar to Arévalo et al. [4]).
As they are implementations of their declared component
types, these component classes are valid realizations of the
component roles. Figure 1-b shows the architecture config-
uration of the HAS example as well as an example of an
AirConditioner composite component and its inner configura-
tion. As illustrated in this example, a single component class
may realize several roles in the architecture specification as
with the AirConditioner component class which realizes both
Thermometer and CoolerHeater roles. Moreover, a component
class may provide more services than those listed in the
architecture specification as with the Lamp component class
that provides an extra service to control the intensity of light.

C. The instantiated architecture assembly

The instantiated architecture assembly describes software
at runtime and gathers information about its internal state.
The architecture assembly results from the instantiation of
an architecture configuration. It lists the instances of the
component and connector classes that compose the deployed
architecture at runtime and their assembly constraints (such as

maximum numbers of allowed instances).
Component instances document how component classes from
an architecture configuration are instantiated in the software.
Each component instance has an initial and current state
represented by a list of valued attributes. Figure 1-c shows
an instantiated architecture assembly for the HAS example.

D. Motivation

The three-level Dedal model is a novel approach to compo-
nent-based software development that increases reuse by sup-
porting the search for off-the-shelf components. The associated
ADL focuses on the description of architectural concepts in
three separated abstraction levels but it lacks mechanisms to
verify and validate architecture definitions before and after evo-
lution. This work aims to provide mechanisms to automate the
verification and validation of coherence between architecture
levels from requirement to runtime. We propose a set of rules
to define the relations inside each abstraction level and between
two of them. The rules are expressed using B [2], a first-order
logic and set-theoretic language with a rich expressiveness that
can be automatically verified using existing model checkers.

III. OVERVIEW OF THE FORMALIZATION

The formalization is divided into two parts. A first part,
which is generic and independent from any architectural
model, consists in formalizing the most common concepts of
software architectures. The second part is specific to Dedal and
consists in formalizing concepts and relationships of the Dedal
model. The formal model of Dedal therefore is a specialization
of the generic model. In the remainder, we present the most
important parts of the formalization.

A. Formalizing underlying architectural constructs

During the last decades, a consensus established that archi-
tectures were made of three main elements [5]: components
(loci of computation), connectors (mediators) and configura-
tions (topologies of the architecture). In Table I, we give the
formal definition and relations between these concepts (the
arch concepts model).

We note that Arch concepts includes an inner model
called Basic concepts which contains the formalization of
finer grained elements (i.e., interfaces and signatures).
Basic concepts is not presented in this paper for the sake of
space.

B. Formalization of Dedal architecture levels

Dedal proposes three abstraction levels to describe architec-
tures. Formalizing each of these levels enables to verify each
of them separately but also to check the global coherence of
architecture definitions.

The Arch specification model. An architecture specifica-
tion inherits from the generic definition of an architecture as
stated in the Arch concepts model. In Dedal, an architecture
specification is specifically made of a set of component roles.
Roles are thus defined as specializations of components by the
following property: COMP ROLES ⊆ COMPS ∧ compRole ⊆ COMP ROLES.

The Arch configuration model. In the same way, the
component class concept used in the Arch configuration model

417Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 439 / 679

TABLE I: Formal specification of underlying concepts

MACHINE Arch concepts
INCLUDES Basic concepts
SETS
ARCHS;COMPS;COMP NAMES
VARIABLES
architecture, arch components, arch connections, component,
comp name, connection, comp interfaces, client, server
INVARIANT
/* A component has a name and a set of interfaces */

component ⊆ COMPS ∧
comp name ∈ component → COMP NAMES ∧
comp interfaces ∈ component � P (interface) ∧

/* A client (resp. server) is a couple of a component and an interface */
client ∈ component ↔ interface ∧
server ∈ component ↔ interface ∧

/* A connection is a one-to-one mapping between a client and a server */
connection ∈ client �� server ∧

/* An architecture has a set of components and connections */
architecture ⊆ ARCHS ∧
arch components ∈ architecture → P (component) ∧
arch connections ∈ architecture → P (connection)

Specific B notations:
→: total function ↔: relation �: injection
��: bijection P(<set>): powerset of <set>

is defined as a specialization of the component concept, as
they share the same properties (name, interface, etc.). Table II
shows the formalization of the configuration level.

TABLE II: Formal specification of the configuration level

MACHINEArch configuration
INCLUDES Arch concepts, Arch specification
SETS

COMP CLASS; CLASS NAME; ATTRIBUTES; CONFIGURATIONS
CONSTANTS

COMP TYPES
PROPERTIES
/* Component types are also a specialization of components distinct from roles */

COMP TYPES ⊆ COMPS ∧ COMP TYPES = COMPS - COMP ROLES
VARIABLES

config, config components, config connections, compType, compClass,
class name, class attributes, compositeComp, delegatedInterface, . . .

INVARIANT
compType ⊆ COMP TYPES ∧

/* A component class has a name and a set of attributes */
compClass ⊆ COMP CLASS ∧ class name ∈ compClass → CLASS NAME ∧
attribute ⊆ ATTRIBUTES ∧ class attributes ∈ compClass → P(attribute) ∧

/* A composite component has also a configuration and is constituted of
component classes */
compositeComp ⊆ compClass ∧ composite uses ∈ compositeComp → config ∧

/* A delegation is a mapping between a delegated interface and
its corresponding one */
delegatedInterface ⊂ interface ∧
delegation ∈ delegatedInterface � interface ∧

/* A configuration is a set of component classes and connections*/
config ⊆ CONFIGURATIONS ∧
config components ∈ config → P(compClass) ∧
config connections ∈ config → P(connection)

The Arch assembly model. The Arch assembly model
captures the definition of architectures at the instance level.
Component instances are mapped to initial and current states.
This information is useful to audit software evolution at
runtime and control dynamic reconfigurations. Next section
sets Dedal’s intra-level rules by defining invariant constraints
on the previously defined concepts.

IV. INTRA-LEVEL RULES

A. Component substitutability rules

In software architectures, substitutability determines when
a component can replace another while holding the architecture

consistent. The notion of substitutability was firstly discussed
in object-oriented languages to define subtyping and object
interoperability. This notion has also been discussed in the
component-based paradigm [6] [7] but there is still no con-
sensus in defining component substitutability. Indeed, com-
ponents are complex entities that can be studied from many
views (syntactic, semantic, protocol, etc.). In Dedal, at least a
syntactic substitutability is needed to filter components while
searching for suitable ones in repositories. The corresponding
rules can be extended later to take dynamic behavior into
account. Figure 2 shows an example of component subtyping
that illustrates the main substitutability rules. The principle
that is enforced is that a subtype should provide at least the
same services as its supertype and require the same or less
services. For example, Clock can be substituted for ClockV2
which, provides one more interface (IInfo) and requires one
less interface (interface ILanguage is no more required) (cf.
Rule 1), and the interface type ILocation is subtyped by
ILocation&GMT which has one more signature getGMT() (cf.
Rule 3).

Figure 2: Example of component substitutability

Rule 1: Component substitutability. A component C sup
can be substituted for a component C sub iff there exists an
injection inj1 between the set of interfaces of C sup and the
set of interfaces of C sub such that int can be substituted for
inj1(int), int being a provided interface of C sup, and there
exists an injection inj2 between the set of interfaces of C sub
and the set of interfaces of C sup such as inj2(int) can be
substituted for int, int being a required interface of C sub.
Formally:

comp substitution ∈ component ↔ component ∧
∀ (C sup , C sub).

(C sup ∈ component ∧ C sub∈ component ∧ C sup 6= C sub
⇒

(C sub ∈ comp substitution [{ C sup}]
⇔

∃ (inj1 , inj2).
(inj1 ∈ providedInterfaces (C sup) � providedInterfaces(C sub) ∧
∀ (int).

(int ∈ interface ∧ int ∈ providedInterfaces(C sup)
⇒

inj1(int) ∈ int substitution [{int}]) ∧

inj2 ∈ requiredInterfaces (C sub) � requiredInterfaces (C sup) ∧
∀ (int).

(int ∈ interface ∧ int ∈ requiredInterfaces (C sub) ∧
⇒

int ∈ int substitution [{inj2 (int)}]))))

418Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 440 / 679

According to Rule 1, the component subtype can have more
provided and fewer required interfaces than its supertype. This
rule depends on interface substitutability which we define as
follows:

Rule 2: Interface substitutability. Interface substitutabil-
ity depends on the interface type and direction. Interface
substyping is given by Rule 3. When both interfaces are
provided, substitutability is covariant with interface subtyping
(i.e., a provided interface int sup is substituted for a provided
interface int sub iff the type of int sub is a subtype of int sup’s
type). In the second case where the two interfaces are required,
substitutability is contravariant with interface subtyping (i.e., a
required interface int sup is substituted for a required interface
int sub iff the type of int sup is a subtype of int sub’s type).

Rule 3: Interface subtyping. An interface type intTypeSub
is a subtype of an interface type intTypeSup iff there exists an
injection inj between the signature set of intTypeSup and the
signature set of intTypeSub such that for each signature sig of
intTypeSup, inj(sig) specializes sig.

int subtype ∈ interfaceType ↔ interfaceType ∧
∀ (intTypeSup,intTypeSub).
(intTypeSup ∈ interfaceType ∧ intTypeSub ∈ interfaceType ∧
intTypeSup 6= intTypeSub
⇒

((intTypeSup, intTypeSub) ∈ int subtype
⇔
∃ inj.

(inj ∈ int signatures(intTypeSup) � int signatures(intTypeSub) ∧
∀ (sig).
(sig ∈ signature ∧ sig ∈ int signatures(intTypeSup)
⇒

inj(sig) ∈ sig subtype[{sig}]))
)

)

According to Rule 3, interface subtyping allows to add new
signatures. This is why this relation is used both in a covariant
way on provided interfaces and in a contravariant way (to
require less signatures) on required interfaces in Rule 2.
Interface subtyping in turn relies on signature specialization.

Rule 4: Signature specialization. Signature specializa-
tion conforms to method overriding in the object-oriented
paradigm. A specialized signature must have contravariant
specialization of parameter types and covariant specialization
of return type as it must require less information when invoked
and provide richer results. To define signature specialization,
we first consider parameter specialization.

Rule 4.1. A signature sig sub is parameter subtype of a
signature sig sup iff there exists an injection inj between the
parameters of sig sup and the parameters of sig sub and for
each parameter param of sig sup, inj(param) has the same
name as param and the type of inj(param) is a subtype of
param’s type.

∀ (sig sup, sig sub).
(sig sup ∈ signature ∧ sig sub ∈ signature ∧ sig sup 6= sig sub
⇒ (

(sig sup, sig sub) ∈ param subtype
⇔
∃ inj.(inj ∈ parameters(sig sup) � parameters(sig sub) ∧

∀ param.(param ∈ parameter ∧
param ∈ parameters (sig sup)

⇒
param name (param) = param name (inj (param)) ∧
parameter type (inj(param))

∈ closure (subtype)[{parameter type (param)}]))
)

)

Rule 4.2. A signature sig sub specializes a signature
sig sup if and only if they have the same name and sig sup
is parameter subtype of sig sub and the return type of sig sub
is a subtype of the return type of sig sup.

∀ (sig sup, sig sub).
(sig sup ∈ signature ∧ sig sub ∈ signature ∧ sig sup 6= sig sub
⇒ (

(sig sup, sig sub) ∈ sig subtype
⇔ (

sig name (sig sup) = sig name (sig sub) ∧
(sig sub, sig sup) ∈ param subtype ∧
sig return (sig sub) ∈ closure (subtype)[{sig return (sig sup)}])
)

)

B. Component compatibility rules

Components compatibility relies on interface compatibility.
Two components can interact if and only if they have at least
two compatible (connectable) interfaces.

Rule 5: Interface compatibility. A provided interface intA
and a required interface intB are compatible iff the type of intA
is a subtype of intB’s.

In other words, a provided interface should declare the
same, a specialization of and possibly extra signatures than the
required interface to ensure that all the required functionalities
can be supplied.

Substitutability and compatibility rules are defined for
general-purpose. In Dedal, they are used to check intra-level
relations between components of the same kind (i.e., roles,
types, classes or instances). In the remainder, we focus on the
inter-level rules which enable to check the global coherence
between the multiple architecture definitions.

V. INTER-LEVEL RULES

Specifying inter-level rules is a crucial step to ensure
coherence between architecture levels from requirements to
runtime (cf. Figure 3). In order to go from the specification of
an architecture to an implemented configuration, the architect
must select suitable concrete component classes that realize the
specified roles. The implementation can then be instantiated
and deployed in multiple contexts. Inter-level rules are the
foundations to automate such a reuse process in component-
based software development.

A. Relations between the specification and configuration levels

Two main relations are considered between the
specification and configuration levels: the matching relation

419Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 441 / 679

Figure 3: Relations between architecture levels

between component roles and concrete component types
and the realization relation between component roles and
component classes.

Rule 6: Component type matching. A component type
CT matches with a component role CR iff it exists an injection
inj between the set of interfaces of CR and the set of interfaces
of CT such that int can be substituted for inj(int), int being an
interface of CR. Formally:

matches ∈ compType ↔ compRole ∧
∀ (CT, CR).(CT ∈ compType ∧ CR ∈ compRole
⇒
((CT,CR) ∈ matches
⇔
∃(inj).(inj ∈ comp interfaces (CR) � comp interfaces (CT) ∧

∀ (int).(int ∈ interface ⇒ inj (int) ∈ int substitution [{int}])
)))

As stated in Section II, component role descriptions are
specified by the architect to guide the search for existing
component classes. Hence, there are several ways to find a
concrete realization of component roles. A component class
can realize several roles at once or a composition of component
classes (composite component) can complement each other
to realize a given role. This holds a many-to-many mapping
between component roles and concrete component types.

Rule 7: Component implementation. To draw an anal-
ogy with object-oriented programming, the relation between
a component class and a component type is similar to the
relation between a class and an interface. A component class
must implement all the provided interfaces of the component
type. Implementation details (that depend on decisions of the
architect) are out of the scope of the abstract aspects that
we intend to validate. However, an abstract formalization of
the implementation is compulsory to make our formal model
coherent. Component implementation is defined as follows:

class implements ∈ compClass → compType

Rule 8: Component realization. The relation between a
component class and a component role is a corollary of the

matching relation (Rule 6) and the implementation relation
(Rule 7). Indeed, a component class CL realizes a component
role CR iff it exists a component type CT implemented by CL
and that matches with CR. Formally:

realizes ∈ compClass ↔ compRole ∧
∀ (CL, CR).(CL ∈ compClass ∧ CR ∈ compRole
⇒

((CL, CR) ∈ realizes
⇔
∃ CT.(CT ∈ compType ∧ (CT , CR) ∈ matches ∧
(CL,CT) ∈ class implements))

)

Rule 9: Relation between an architecture specification
and its configuration. An architecture configuration Conf re-
alizes an architecture specification Spec iff for each component
role CR in Spec it exists a component class CL in Conf such
that CL realizes CR.

implements ∈ config ↔ arch spec ∧
∀ (Conf, Spec).(Conf ∈ config ∧ Spec ∈ arch spec
⇒ (Conf, Spec) ∈ implements

⇔
∀ CR.(CR ∈ compRole ∧ CR ∈ spec components (Spec) ⇒
∃ CL.(CL ∈ compClass ∧ CL ∈ config components (Conf) ∧
(CL, CR) ∈ realizes)))

B. Relation between the configuration and assembly levels

An architecture assembly is composed of instances of the
component classes that are in the architecture configuration.
The instantiation depends on many technical choices that
should be made by the architect (e.g., the choice of the runtime
framework) and should not be considered at such an abstract
level of formalization.

comp instantiates ∈ compInstance → compClass

The instantiation is a total function between the set of
component instances and the set of component classes. This
means that each component instance instantiates one and only
one component class. Conversely, a component class can have
several instances (the number of instances can be specified
through assembly constraints).

Consequently, an architecture assembly Asm instantiates an
architecture configuration Conf iff every component class CL
of Conf is instantiated at least once by a component instance
CI in Asm and every component instance CI in Asm is an
instance of a component class in Conf :

instantiates ∈ assm → config
∀ (Asm,Conf).(Asm ∈ assm ∧ Conf ∈ config
⇒
((Asm,Conf) ∈ instantiates
⇔
∀ CL.(CL ∈ compClass ∧ CL ∈ config components(Conf)
⇒
∃ CI.(CI ∈ compInstance ∧ CI ∈ assm components(Asm) ∧
(CI,CL) ∈ comp instantiates) ∧

∀ CI.(CI ∈ compInstance ∧ CI ∈ assm components(Asm)
⇒
∃ CL.(CL ∈ compClass ∧ CL ∈ config components(Conf) ∧

(CI,CL) ∈ comp instantiates)))))

VI. EXPERIMENTATION OVERVIEW

In order to validate the proposed rules, formal models are
manually instantiated using simple tests covering the main
cases. Each test corresponds to a specific instantiation of

420Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 442 / 679

a given architectural model to check if one of the defined
rules meets the required definition. Models are checked using
ProB [8], a model checker of B that shows invariant violations
and the current state of the given model. In case a violation
is detected, either instantiation is wrong or the defined rules
have to be revisited. At this stage of work, all rules have
been manually validated and can be used later to automate
the analysis process.

In future work, we aim to automatically generate the
specification of model instances from the graphical or textual
descriptions of architectures. The derived models will then be
passed to the model checker for automatic verification of the
architectural descriptions.

VII. RELATED WORK

Over two decades ago, many researches focused on giving
ADL’s a formal representation. A classification of the major
ADL’s was proposed by Medvidovic et al. [5]. Although,
most of these ADL’s provide the required features to describe
an architecture, they often are either domain-specific or lack
formal foundations to support automatic analysis and dynamic
evolution. Some ADL’s like Wright [9] and Rapide [10] focus
on the specification and verification of architectural behavior.
Wright uses CSP, a formal language based on process algebra
while Rapide uses partially ordered sets (posets) of events to
model behavior and enable formal reasoning on architecture
specifications. Both Wright and Rapide, however, focus on
architecture behavior and do not consider its structure. They
do not provide any mechanism for component reuse and do
not support multiple abstraction levels either.

Other close works are the formalization and analysis of
architectural styles using a formal language. Kim and Gar-
lan [11] propose an approach for modeling and analyzing ar-
chitectural styles using Alloy. These works address architecture
styles rather than architecture constructs and aim to provide a
generic formal model for several styles like C2 [12] or the
pipe and filter style. Our focus is slightly different since we
address the structure of architectures independently from its
style.

Our work has also drawn inspiration from type theory
in object languages [13]. Like objects, components can have
subtyping relations that enable reuse and software evolution.
However, components are more complex than plain objects
and they do not obey the same rules. To our knowledge, there
was no real attempt, except for Medvidovic et al. to adapt the
theory of objects to components. Medvidovic et al. propose a
type theory for software architectures by multiple component
subtyping and have the architect decide about which properties
(name, interface, behavior or implementation) he wants to spe-
cialize. They applied their theory on their C2SADEL [6] ADL.
In our three level component model, we need different typing
rules to define relations between components into and between
each levels of architecture descriptions. A part of our subtyping
rules is also inspired from our previous work on building
component directories using Formal Concept Analysis [14]. In
fact, rules for specializing functionality signatures were defined
to guide the search for compatible or substitutable components
in a yellow-page like component directory.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes mechanisms to automate component
reuse and inter-level coherence checking in a component-based
development process. The outlined approach consists in cou-
pling a three-level ADL called Dedal with B formal models.
These models were reinforced with invariant constraints to set
substitutability and compatibility rules into each abstraction
level and inter-level rules to enable (1) reuse by guiding
the search for concrete component classes and (2) coherence
checking between abstraction levels. This work sets the basis
for the definition of evolution rules which will be the next
step of our contribution. Indeed, the proposed mechanisms
will be used to automatically handle software evolution and
propagate changes among architecture descriptions to preserve
coherence.

A practical issue of future work will be to provide a toolset
for Dedal, our three-level ADL. Indeed, we plan to map Dedal
to UML and provide a visual modeling tool. Furthermore, we
are considering the integration of existing model checkers and
animation tools to automate verification and realize simulations
and early validations of evolution scenarios.

REFERENCES

[1] H. Y. Zhang, C. Urtado, and S. Vauttier, “Architecture-centric
component-based development needs a three-level ADL,” in Proc. of
the 4th ECSA, ser. LNCS, vol. 6285. Copenhagen, Denmark: Springer,
August 2010, pp. 295–310.

[2] J.-R. Abrial, The B-book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[3] R. Taylor, N. Medvidovic, and E. Dashofy, Software architecture:
Foundations, Theory, and Practice. Wiley, 2009.

[4] G. Arévalo, N. Desnos, M. Huchard, C. Urtado, and S. Vauttier, “FCA-
based service classification to dynamically build efficient software
component directories,” International Journal of General Systems, 2008,
pp. 427–453.

[5] N. Medvidovic and R. N. Taylor, “A classification and comparison
framework for software architecture description languages,” IEEE TSE,
vol. 26, no. 1, Jan. 2000, pp. 70–93.

[6] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A language and en-
vironment for architecture-based software development and evolution,”
in Proc. of the 21st ICSE, Los Angeles, USA, 1999, pp. 44–53.

[7] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins, “Making
components contract aware,” Computer, vol. 32, no. 7, Jul 1999, pp.
38–45.

[8] M. Leuschel and M. Butler, “ProB: An automated analysis toolset for
the B method,” International Journal on Software Tools for Technology
Transfer, vol. 10, no. 2, Feb. 2008, pp. 185–203.

[9] R. Allen and D. Garlan, “A formal basis for architectural connection,”
ACM TOSEM, vol. 6, no. 3, Jul. 1997, pp. 213–249.

[10] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan,
and W. Mann, “Specification and analysis of system architecture using
rapide,” IEEE TSE, vol. 21, 1995, pp. 336–355.

[11] J. S. Kim and D. Garlan, “Analyzing architectural styles,” Journal of
Systems and Software, vol. 83, no. 7, Jul. 2010, pp. 1216–1235.

[12] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, Jr., and
J. E. Robbins, “A component- and message-based architectural style for
GUI software,” in Proc. of the 17th ICSE. Seattle, USA: ACM, 1995,
pp. 295–304.

[13] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,” ACM
TOPLAS, vol. 16, no. 6, 1994, pp. 1811–1841.

[14] N. A. Aboud, G. Arévalo, J.-R. Falleri, M. Huchard, C. Tibermacine,
C. Urtado, and S. Vauttier, “Automated architectural component clas-
sification using concept lattices,” in Proc. WICSA/ECSA, Cambridge,
UK, September 2009, pp. 21–31.

421Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 443 / 679

A Set-Oriented Formalism as a Foundation for the Modeling and Verification of
Connected Data and Process Specifications

Julia Martini, Hannes Restel, Raik Kuhlisch, Jörg Caumanns
E-HEALTH // ESPRI
Fraunhofer-FOKUS

Berlin, Germany
{julia.magdalena.martini, hannes.restel, raik.kuhlisch, joerg.caumanns}@fokus.fraunhofer.de

Abstract—In this work-in-progress report, a methodology
based on a fully formalized and machine-readable formalism is
introduced. The goal is to help modelers/developers to design
and verify specifications, standards, and profiles in the field of
information exchange. The formalism allows the specification
and verification of process models as well as data/information
models. These formalized specifications describe the structure
(syntax) and meaning (semantics) of data models and process
models as well as relations (requirements, dependencies, rules,
constraints, pre-/post-conditions) between them. Unlike the
traditional approach of defining a specification, which is to
first write an unstructured specification document and then to
derive a platform-specific binding from it (e.g., XML Schema),
the specification itself is directly defined in a structured and
machine-understandable formalism on a logical level. Fully
formalized specifications allow for automatic validation and
verification and, therefore, allow checking if the specification is
complete and consistent so that dependencies between process
steps can be verified. This work in progress lines out the very
foundations of the described methodology by introducing a
Set-Oriented formalism (SOF) that is used to formalize data
models and dependencies.

Keywords-specification; formalism; profiling; validation;
information modeling.

I. INTRODUCTION
To simplify the development of applications and to

achieve interoperability, acknowledged specifications (de
jure standards, de facto standards) for document and message
exchange are widely used in our current era of net-based
information exchange. An information exchange
specification may define data and information models as
well as process/protocol models. To support a multitude of
different use cases in a variety of domains, standards are
usually defined in a rather generic way. This often results in
an (intentionally) ambiguous specification that allows
multiple interpretations by different parties and, therefore,
limits interoperability. To counter this effect, domain
specific profiles are derived to restrict the specification and
to make it unambiguous. Even a set of specifications may be
compiled into a single profile to specify a more complex
process.

Often, the existing information exchange specifications
are barely represented as fully formalized documents and,

therefore, cannot be understood by machines. They need to
be manually interpreted, transformed and bound into a
serializable, machine-computable representation on the
platform specific level [1] that is finally used to generate and
exchange instances (messages, documents) of those models
on runtime. Technologies/methodologies are widely used to
support those steps (see Table I).

For example, the Unified Modeling Language (UML) [2]
and the Object Constraint Language (OCL) [3] may be used
to define the data models as well as constraints, and the
Extensible Markup Language (XML) Schema [4] and
Schematron [5] may be used for the binding. Still, large parts
of the specifications located on the computational
independent level (CIM, see [1]) and platform independent
level (PIM, see [1]) are represented as unstructured (free
text) documents describing the purpose, syntax and
semantics of a specification. Thus, an automated
transformation from one step of the specification
development chain to the other is rarely possible.

If a set of specifications is compiled to define a profile,
then the complexity increases because relations
(requirements, dependencies, rules, constraints, pre-/ post-
conditions) between the data and process models of each
incorporated specification do exist. The more complex those
relations are, the more difficult it is to define a valid,
complete and unambiguous profile and to verify the
correctness of the profile.

To counteract the above-mentioned problems, a
methodology based on a mathematical, formalized and
machine-readable formalism is introduced in this report,
called Set-Oriented formalism (SOF).

This formalism allows the specification and verification,
both of the defined process models as well as the
data/information models of a specification including the
relations between the models on a level prior to the platform
specific level, i.e., on CIM and PIM.

422Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 444 / 679

TABLE I. DEVELOPMENT CHAIN FROM SPECIFICATION OVER
BINDING TO INSTANCES

Step Denoted in

Specification	
(Standard, Profile)

Unstructured document,
UML/OCL, Business Process Modeling Language,
Fundamental Modeling Concepts (FMC) etc.

Binding
XML Schema, Schematron, Resource Description
Framework-Schema (RDFS), Structured Query
Language (SQL), JSR-94, etc.

Instance XML, JavaScript Object Notation (JSON), etc.

In Section II, existing formalisms are evaluated, especially
UML and OCL. In Section III, the Set-Oriented Formalism
itself is introduced by formally defining its structure
component and rule component. Subsequently, the
transformation from a sample model depicted in SOF into a
platform specific perspective (i.e., XML/Schematron
representation) is described in Section IV. To support
comprehensibility, all Sections make use of a shared
example. This report concludes with a short summary of the
findings and an outlook (Section V).

II. RELATED WORK
The worldwide established modeling language UML

supports the standardized specification, construction and
documentation of a system. UML’s boundaries are that
element-spanning semantic constraints/dependencies are not
representable. For defining these rules for model elements,
UML was augmented with the OCL, which is a declarative
language. With the OCL one can, for example, define
invariants, pre-, and post-conditions.

In SOF, the elementary dependencies regarding the
cardinalities and data types that the UML depicts graphically
are expressed with the structure component. The rules for
model elements (e.g., invariants, pre- and post-conditions)
are defined in the rule component, thereby interpreting each
rule as a set of sets, which constitutes a valid instance of a
model regarding that rule. OCL’s boundaries are that
inconsistent specifications, that is the combination of
constraints contradicting each other, cannot be recognized. In
SOF, the recognition of inconsistent specifications is
possible. Since each constraint represents a set of valid
instances of the model, checking via the intersecting set can
determine whether an instance exists at all that fulfills all
constraints (see Section III.C, list item c). In particular, this
can be done pairwise for the constraints. The criteria for such
a consistent specification is, hence, that the intersecting set
of constraint sets is not empty. The familiar “frame problem”
that can arise with OCL can also be solved with SOF since
the post-conditions can be represented in SOF as the final
state of the whole system.

III. THE SET-ORIENTED FORMALISM (SOF)
The SOF is designed to specify fully formalized and

serializable data/ information models. Any data model,
which can be transformed into a tree, is defined as a
serializable information model. The basic principle of SOF is
to represent all elements and their properties and constraints
of a serializable information model as a set. For example,
dependencies regarding the cardinality, data type or value of
each element are represented as a set. This enables the
interpretation of element-spanning constraints as a set of sets
that constitutes a valid instance of the model regarding the
constraint. Through this set-oriented representation of each
element and the constraints, each verification problem can be
reduced to a subset or intersecting-set problem (see Section
III.C). The SOF has two main components: the structure and
the rule component. The structure component is a
degenerated table. Each cell represents an element of the
information model referenced by an identifier. Using these
identifiers, rules defined within the rule component may be
attached to each cell to express dependencies regarding the
values and cardinalities of the elements among themselves.

A. The Structure Component
The structure component itself includes a constructively

defined table 𝑇! that represents a serializable information
model S in a way that each cell unit (called 𝑇!-cell) is a
representative of a unique element of S. Each 𝑇!-cell is fully
formalized, providing information about the data types and
cardinalities of its S-element representative. The construction
is hierarchy-preserving, so that each 𝑇!-cell is assigned to a
unique identifier 𝑖 by its location. The identifier 𝑖 is assigned
to the same element of the information model using an
algorithm to navigate within the tree of the information
model (as shown in Figure 5 below).

1) Construction of 𝑇!

Assume a serializable information model S and an
infinite table 𝑇 so that 𝑇 contains an infinite amount of rows
and columns. Additionally, the tuple 𝑖, 𝑗 with 𝑖, 𝑗 ∈ ℕ! will
be the representative of the 𝑇-cell that is located in the 𝑖-th
row and 𝑗-th column. The algorithm for the construction of
𝑇! is displayed in Figure 1, whereby the infinite table 𝑇
evolves into 𝑇! , as the representative of the information
model S.

Each time createStructuralComponent() is executed, e
provides the current element and its location (i,j) within the
table (see Figure 1). At the first call (highest level of
recursion) e is the root element of the serializable
information model S and (i,j)=(1,1). The cells of the sub-
elements of the current element e are recursively evolved
until there is only one element with no further sub-elements
left, i.e., a leaf.

The following section describes how an element (i.e., 𝑇!-
cell) of the information model in SOF (as suggested by the
function fill_T-Cell()) has to be coded.

423Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 445 / 679

1. createStructuralComponent(Element e, T-cell (i,j))
2. fill_T-cell(e, (i,j))
3. for each sub-element c
4. k=i
5. i= createStructuralComponent(c, (i,j+1))
6. connect all T-cells between (k,j) and (i,j) to one 𝑇!-cell
7. if no sub-elements exists
8. return i+1
9. else
10. return i

Figure 1. Algorithm for the construction of TS.

2) Syntax and Markup for the 𝑇!-cells

The name and specifications regarding the cardinality
and data types written in the 𝑇-cell are predetermined by the
information model S. The syntax markup depicted in Figure
2 has been developed in order to represent each element’s
features.

Figure 2. Syntax of the cell markup.

a) Name of element:
① The name of the element e.

b) Markup concerning the cardinalities:
② If e is a required element, ① will be underlined.
④ If e is an at-most-once element, it will be marked

with “!“.
à If e is a prohibited element, see ⑤.
à If e is an exactly-once element, ① will be

underlined and marked with "!".
à If neither the name of e is underlined nor the

annotation "!" is used, e is an optional-many element.
③ Restrictions regarding the cardinality and data types

of e that are determined by other elements are defined as
rules in the rule component. Each rule of r is referenced
using unique Roman numerals (e.g., “III”) with an optional
prefix or universal rules (see Section B.2).

c) Markup concerning data types:
⑤ The value range of e is illustrated using curly

brackets. For instance, within an XML-based standard the
value range is interpreted using the following XML
Schematron definitions: value, pattern, type, ref. In the case
of ref anon, the value range of the referencing XSD element
is used.

à If e is a prohibited element, “Ø“ will be annotated
instead of the value range.

⑥ If e holds a default value, it will be noted within
round brackets.

Figure 3 shows an extract of the SAML specification [6],
which will serve as a continuous example in this report.

Figure 4 shows how the structure component is applied to
that SAML extract.

1. <?xml version="1.0" encoding="US-ASCII"?>
2. <schema targetNamespace="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns=http://www.w3.org/2001/XMLSchema
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" version="2.0">

3. <!—[...]-->
4. <element name="Assertion" type="saml:AssertionType"/>
5. <complexType name="AssertionType">
6. <sequence>
7. <element ref="saml:Subject" minOccurs="0"/>
8. </sequence>
9. <!—[...]-->
10. </complexType>
11. <element name="Subject" type="saml:SubjectType"/>
12. <complexType name="SubjectType">
13. <!--[...]-->
14. <element ref="saml:SubjectConfirmation"
maxOccurs="unbounded"/>

15. </complexType>
16. <element name="SubjectConfirmation"
type="saml:SubjectConfirmationType"/>

17. <complexType name="SubjectConfirmationType">
18. <sequence>
19. <!--[...]-->
20. <element ref="saml:SubjectConfirmationData"
minOccurs="0"/>

21. </sequence>
22. <attribute name="Method" type="anyURI" use="required"/>
23. </complexType>
24. <element name="SubjectConfirmationData"
type="saml:SubjectConfirmationDataType"/>

25. <complexType name="SubjectConfirmationDataType" mixed="true">
26. <complexContent>
27. <restriction base="anyType">
28. <attribute name="NotBefore" type="dateTime"
use="optional"/>

29. <attribute name="NotOnOrAfter" type="dateTime"
use="optional"/>

30. <attribute name="Recipient" type="anyURI"
use="optional"/>

31. <!--[...]-->
32. </restriction>
33. </complexContent>
34. </complexType>
35. </schema>

Figure 3. Extract from the XML Schema Definition of a SAML assertion.

Figure 4. Extract of a SAML assertion as a structure component in SOF.

3) Referencing and Navigation using Identifiers

Each serializable information model S can be
transformed into a tree. In order to refer to an element within
such a tree, it is sufficient to provide, for instance, the path in
a tuple form 𝑥!, 𝑥!,… , 𝑥! . The path has to be followed
from the root element in order to get to the last element.
After the construction of 𝑇! , a 𝑇! -cell is accessible by a
special navigation through a tuple referring to the same
element (see algorithm in Figure 5). If 𝑥!, 𝑥!,… , 𝑥! is a
tuple, describing an element e within the tree of the
information model S, then the navigation in 𝑇! will be, as
shown in Table III.

424Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 446 / 679

Figure 6 applies the algorithm on the sample SAML
extract (compare to listing in Figure 3).

1. while i < n
2. goto 𝑥! − 1 cell downward
3. goto the top right-hand column relative to the current cell
4. goto 𝑥! − 1 cell downward and print output

Figure 5. Algorithm to navigate within the tree of the information model.

Figure 6. Navigation within the tree representation for an SAML

assertion.

The table-oriented navigation within the structure

component, according to the path in Figure 6, is further
illustrated in Figure 7.

To keep the rules short, elements of S are referenced with

tuples instead of their full names.

Figure 7. Navigation path within the structure component.

B. The Rule Component
The rule component for an information model S holds

rules that S has to fulfill at all times, i.e., evaluates to true.
Each rule is identified by unique Roman numerals to
reference it within the 𝑇!-cells of the structure component.
Vice versa the 𝑇!-cells addressed within a rule are identified
by their tuple identifier.

1) Syntax of the Rule Component:
The syntax of the rule component is defined using a

Domain-Specific Language (DSL) created in Xtext [7]. The
syntax of the DSL will be explained in the subsequent
paragraphs. The basic elements are sets that are categorized
as follows:

a) Simple Sets
• Enumerative sets specify the elements contained (via

their identifiers), separated by commas and
encompassed by curly brackets.

• Defined sets are an accumulation of elements that
fulfill specific characteristics regarding their
cardinality. The four defined sets are 𝐴!, 𝑅!, 𝑃! and
𝐼!:

o 𝐴! contains all at-most-once elements,
o 𝑅! contains all required elements,
o 𝑃! contains all prohibited elements and
o 𝐼! instanced in the instantiation of S.

Therefore, the defined sets are S-specific and defined

within the structure component’s context since its elements
are already underlined and marked with the respective
symbols ("!" and "Ø").

b) Feature Sets

Feature sets are denoted as "[A]" and contain the
elements that fulfill the requirements of statement A. For
example, the set 1 , 1,2 ⊂ 1 , 1,3 evaluates to
the set 1 since 1 ⊂ 1 , 1,3 is true, but
1,2 ⊂ 1 , 1,3 is false.

The sets 𝐶 and 𝐷 can be combined with the following

operations and relations:
• 𝐶 − 𝐷 forms the set of all elements of 𝐶 except

those contained in 𝐷.
• 𝐶 + 𝐷 forms the set of all elements contained in 𝐶 or

𝐷.
• 𝐶 ∩ 𝐷 forms the set of elements that are contained in

𝐶 and 𝐷; machine-understandable: 𝐶 intersect 𝐷.
• < 𝑥 > provides the value of the element with the

identifier 𝑥.

Statements are created through the subsets’ correlations

or the set operators, respectively:
• 𝐶 ⊂ 𝐷 is true if and only if all elements contained in

𝐶 are also contained in 𝐷; machine-understandable:
𝐶 subsetOf 𝐷.

• 𝐶 ⊄ 𝐷 is true if and only if all elements in 𝐶 are not
contained in 𝐷 ; machine-understandable: 𝐶
notSubsetOf 𝐷.

• #𝐶 provides the number of elements in 𝐶 . A
statement is formed with the #-operator, the
relational operators >=, <=, =, >, < together with
an accompanying integer.

The statements can be linked with the known sentential
connectives AND, OR, XOR, and =>.

Operator and sentential connective ranking order: As there
is no existing operator and sentential connective ranking
order, the latter has to be defined using appropriate brackets
so that the nesting represents the desired priority.

425Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 447 / 679

When using SOF, it became apparent that there often was
a repetition of rules with the same content. To avoid the
latter, so-called universal rules have been established.

2) Universal Rules
A universal rule u applies to each 𝑇!-cell in which u has

been referenced. Subsequently, all universal rules are
semantically limited in their cardinality since the referenced
elements of the serialized information model S, which are
underlying the universal rules, have to be derived from the
position of the annotated field. An example of such a
universal rule is uI:

𝑢𝐼: 𝑥!,… , 𝑥#(!)!! ⊂ 𝐼! 𝐴𝑁𝐷 𝑥 ⊂ 𝑅! 𝑋𝑂𝑅

𝑥!,… , 𝑥#(!)!! ⊄ 𝐼! 𝐴𝑁𝐷 𝑥 ⊄ 𝐼! .

The rule states that the element e annotated with uI has to
be instantiated if and only if its parent element has been
instantiated.

C. Example of a Validation
This section briefly demonstrates how a validation is

conducted by validating, if a profile conforms to a standard.
In order to make a correct statement to this effect, the
problem will be reduced to three subset problems. Assume a
profile P, represented in SOF, which is derived from an
existing standard S that itself is represented in SOF.

𝑃 is a valid profile of 𝑆 if and only if the following subset
relations are fulfilled, so that 𝑃 ⊂ 𝑆 evaluates to true.

a) For the 𝐴, 𝑅, 𝑃 sets of the respective rule component
(of 𝑃 and 𝑆) that represent the cardinalities of all
elements: 𝐴! ⊂ 𝐴!, 𝑅! ⊂ 𝑅!, 𝑃! ⊂ 𝑃!.

b) Let 𝐷!! be the set-representation of the data type or
the value of the model element 𝑖 of the model 𝑋, as
defined in Section A.2). The following must apply
for each element (cell of the structure component)
with the identifier 𝑖:

∀𝑖 ∈ 𝑃: 𝐷!! ⊂ 𝐷!! .

c) Assume 𝑆 is consistent, i.e., there are no rules that
contradict each other:

𝑟
!!!,!!,…

≠ .

Then, each rule 𝑟 = 𝐼, 𝐼𝐼,… of the rule component
needs to be checked whether 𝑃 is included in the set
interpretation of this rule:

∀𝑟 = 𝐼, 𝐼𝐼,… :𝑃 ∈ 𝑟 ⇔ 𝑃 ∈ 𝑟
!!!,!!,…

 .

IV. TRANSFORMATION FROM SOF TO XML
To realize a platform-specific binding, a data model

being developed using SOF can be transformed into an XML
representation. It appears inconvenient to define structural
properties within Schematron, so it will be assumed that the
structure is defined using an XML Schema that is acting as
the structure component. The semantic restrictions are
defined by embedded Schematron rules that are acting as the
rule component. The XPath expressions of the rule elements
context, assert and report are evaluated to a Boolean
expression, while its constructs can be translated, as shown
in Table II.

To exemplify how the transformation works, a rule
defined in SAML Profiles [8] is displayed both in
Schematron and in SOF. The rule states that if an attribute
Method is given the URI-value
“urn:oasis:names:tc:SAML:2.0:cm:holder-of-key”, then
“One or more <ds:KeyInfo> elements MUST be present
within the <SubjectConfirmationData> element. An xsi:type
attribute MAY be present in the
<SubjectConfirmationData> element and, if present, MUST
be set to saml:KeyInfoConfirmationDataType (the
namespace prefix is arbitrary but must reference the SAML
assertion namespace)” [8].

It is impossible to express this rule exclusively using
XML Schema. A schema validation check would be
insufficient, so a Schematron rule (see Figure 8) is embedded
within an XML Schema for the SAML example.

TABLE II. EQUIVALENTS OF XPATH AND SOF

Language
construct

Language
XPath SOF

Path	 a/b/c	 (1,2,3)	

Structure	

<Rule context = „A“>	
<assert a=“B“> </assert>	

A => B	

[a::b = "predicate"]	 [<(1,2,3)> = "predicate"]	
Operators/ Relations 	

Integer	 +, -, *, /, <, <=, =, >=, >, !=	
Boolean	 and, or	

String	 = , !=	
concat()	 ++	

Node set	 count()	 #	
Node	 string()	 <>	

1. <pattern id="subject-confirmation">
2. <title>Holder of Key</title>
3. <rule context="saml:SubjectConfirmation[@Method =
'urn:oasis:names:tc:SAML:2.0:cm:holder-of-key']">

4. <assert test= "saml:SubjectConfirmationData/ds:KeyInfo">
5. Message1
6. </assert>
7. <assert test= "not(saml:SubjectConfirmationData[@xsi:type]) or
saml:SubjectConfirmationData[@xsi:type =
'saml:KeyInfoConfirmationDataType']">

8. Message2
9. </assert>
10. </rule>
11. </pattern>

Figure 8. Exemplary Schematron rule for SAML profiles.

426Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 448 / 679

Using SOF, the same rule within the rule component in
combination with the respective structure component, as
depicted in Figure 9, is defined.

 //Holder of key
1. <(1,3,4,5)> = "urn:oasis:names:tc:SAML:2.0:cm:holder-of-key" =>
2. ({(1,3,4,4,1)}subsetOf R AND <(1,3,4,4,1)> subsetOf "ds:KeyInfo"
3. AND ({(1,3,4,4,01)} subsetOf I => <(1,3,4,4,01)> =
"saml:KeyInfoConfirmationDataType"))

Figure 9. Rule for SAML profiles represented in SOF.

V. CONCLUSION AND FUTURE WORK
A Set-Oriented Formalism (SOF) consisting of a

structure component and rule component has been
introduced in this work-in-progress report. The SOF defines
a machine-understandable formalism for the specification of
data models on a logical level (as part of information
exchange specifications). The defined data models are fully
formalized and, therefore, machine-understandable, allowing
them to be verified automatically.

The SOF acts as the foundation for an underlying
methodology that aims to support modelers/developers in
creating complex information exchange profiles based upon
a set of data models and process models. The goal is to
represent the models and relations between the models in a
fully formalized notation so that integrity and verification
checks can be automatically performed and platform-specific
bindings can be generated automatically. No further usage of
different notations/standards for the specification, profiling,
and binding is needed, as all of those steps are covered by a
single formalism.

The current development state of the SOF allows to
define data models and rules and to verify a single data
model. Modeling of process models is not yet available.
Further research is needed to identify whether an algebraic
calculus is suited to cover the needed requirements for
defining and verifying process models and the relations
between models. In addition, it is already possible to derive a

profile from a data model. A graphical user interface is
planned to make those steps easier to use. Implementing a
verification component is planned to verify a given
information model to the syntax compliance as well as the
semantic correctness with respect to the underlying rule
component. Furthermore, components for the automatic
generation of platform-specific binding are intended (XML
Schema and Schematron as well as HL7 FHIR [9]). Finally,
the formalism needs to be extended to work with a set of
models so that relations (requirements, dependencies, rules,
constraints, pre-/post-conditions) between process steps can
be defined and verified.

Subsequent papers and publications are planned that will
describe further components around the SOF (such as
process modeling, combination of formalized specifications,
multi-model verification, etc.).

REFERENCES
[1] M. Belaunde et al., “MDA Guide Version 1.0.1,” June, 2003.
[2] “Unified Modeling Language (UML).” [Online]. Available:
http://uml.org/. [retrieved: August, 2014].
[3] “OCL.” [Online]. Available: http://www.omg.org/spec/OCL/.
[retrieved: August, 2014].
[4] W3C, “W3C XML Schema.” [Online]. Available:
http://www.w3.org/XML/Schema#dev. [retrieved: August, 2014].
[5] ISO/IEC, “Schematron.” [Online]. Available:
http://www.schematron.com/. [retrieved: August, 2014].
[6] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and
Protocols for the OASIS Security Assertion Markup Language
(SAML) V2.0, http://docs.oasis-open.org/security/saml/v2.0/saml-
core-2.0-os.pdf.” März-2005.
[7] “Xtext.” [Online]. Available: http://www.eclipse.org/Xtext/.
[retrieved: August, 2014].
[8] J. Hughes et al., “Profiles for the OASIS Security Assertion
Markup Language (SAML) V2.0, http://docs.oasis-
open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf.” March, 2005.
[9] HL7, “HL7 FHIR.” [Online]. Available:
http://www.hl7.org/implement/standards/fhir/. [retrieved: August,
2014].

427Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 449 / 679

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 428

Towards Automated Design Smell Detection

A Proof of Concept in Detecting Opportunities for the Strategy Design Pattern

Stefan Burger

Software Engineering Group

University of Mannheim

Mannheim, Germany

sburger@mail.uni-mannheim.de

Oliver Hummel

Software Design and Quality

Karlsruhe Institute of Technology

Karlsruhe, Germany

hummel@kit.edu

Abstract— Patterns are widely seen as an important ingredient

to improve structure and maintainability of object-oriented

software designs. In order to fully recognize opportunities for

them, however, developers usually need a lot of experience as

well as a good understanding of a given system. Hence, they

often miss possibilities to use design patterns and produce code

containing “design smells”. With a view to overcome this un-

satisfying situation, we have derived predicates that allow

automatically identifying those locations in software systems

where the Strategy design pattern would be beneficial. Moreo-

ver, we have implemented a prototypical tool that is able to

apply these predicates. Using it on eight open-source projects

with roughly 850K lines of code as an explorative study has

discovered a variety of places where the pattern would im-

prove the design. As ongoing work has demonstrated that this

approach is transferable to other patterns, we believe that it

has a good potential to increase the use of design patterns and

therewith code quality in the not too distant future.

Keywords-Design Patterns; Pattern Recommendation; Stra-

tegy; Code Quality

I. INTRODUCTION

Creating a clean and comprehensible design is probably
one of the most challenging aspects in the development of
complex software systems [1]. Hence, it does not surprise
that it usually requires a lot of time and experience until
software engineers have mastered all subtleties involved
therein. In order to mitigate this steep learning curve, the
object-oriented development community has collected a
comprehensive set of so-called design patterns over the last
decades. The best known pattern compilation is probably the
seminal book of Gamma et al. (the “Gang of Four” (GoF),
[2]) that lists 23 of them. However, since patterns are merely
abstract solutions for common problems, they need to be tai-
lored to a given context and consequently, applying the right
pattern in a concrete situation is already a challenge in itself.

In order to break out of this vicious circle, the support of
a (potentially proactive) recommendation system [3] that is
able to recognize and suggest opportunities for the use of
design patterns directly in common programming environ-
ment certainly seems like a promising idea. In recent years,
numerous recommendation engines have been developed,
including tools intended to simplify the usage of complex
application programming interface (API) [4] or generally
aiming on increasing the amount of reuse in software devel-
opment [5][6]. However, despite the popularity of design

patterns, there have only been few attempts to automate the
detection of existing patterns in source code (such as [7]).
Obviously, the idea of detecting pattern opportunities is re-
motely related with works on smell detection in the context
of refactoring (such as by van Emden et al. [9]). Neverthe-
less, pattern recommendation requires an “understanding”
for larger source ensembles that is usually not necessary for
the relatively fine granular refactorings collected in Fowler’s
well-known book [10]. One important work on pattern rec-
ommendation has been presented by Briand et al. [11]. The
authors presented a semi-automated decision support system
intended to help developers find places for the use of patterns
in Unified Modeling Language (UML) design diagrams and
proved its feasibility for one pattern on a small case study
with 15 classes. [8]. To the best of our knowledge, the only
approach that directly aimed at automatically recommending
promising “hot spots” in the code for the use of design pat-
terns so far was recently presented by Christopoulou et al.
[25]. We will discuss this and other related work in more
detail in Section II.

Hence, the fully automatic approach for the detection of
“design smells” and prospective design patterns based on
static code analysis we describe in this paper is entering a
largely unexplored territory. The most obvious benefits of
such a pattern recommendation system are its support for
novice developers who want to learn about good design in
order to enhance the structure of their code. Moreover, it
would also disburden experienced colleagues, for whom the
recognition of pattern opportunities often still remains a chal-
lenging cognitive task, even after decades of experience [12].
Finally, such a system could also be used to get a new im-
pression on code quality, as it would allow judging whether a
system is well structured or still bears improvement potential
in terms overlooked pattern opportunities.

In order to explain our pattern recommendation ap-
proach, we start by briefly discussing related work on design
patterns and refactoring recommendations in Section II. In
Section III, we exemplarily explain our pattern recommenda-
tion approach with the Strategy pattern, before we discuss
how meaningful thresholds for the used metrics can be found
in Section IV. The section following thereafter briefly de-
scribes the prototypical tool we have developed and its ap-
plication on eight open source systems with 850 thousand
links of cod (KLOC), before we conclude our paper with an
outlook on future work and a summary of its contributions.

 450 / 679

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 429

II. RELATED WORK

The general idea of supporting developers in the selec-
tion of design patterns in order to improve source code quali-
ty has been discussed in various publications. However, the
degree of automation so far used to be low. One early ap-
proach that has been published by Palma et al. [14] proposes
the use of an expert system. It is based on the Goal-Question-
Metric (GQM) method and uses a specific question template
for every pattern. A developer can go through these tem-
plates in order to find the best matching pattern for a specific
situation. However, this approach is completely manual and
independent from the actual source code. Durdik et al. [12]
have also been working on a set of questions intended to help
documenting decisions for design patterns in order to facili-
tate replicability and hence program maintenance and evolu-
tion. A different approach was presented by Suresh et al. [15]
who were using information about pattern usage (motivation,
consequences, etc.) from other developers to create a pattern
recommendation system. Again, the recommendation is ba-
sed on disruptive questioning about a given situation and has
no direct connection to the source code. Briand et al. [11]
have proposed a similar semi-automatic approach that uses
decision trees to identify places where GoF patterns might be
useful within UML designs. Since not all necessary infor-
mation can be derived automatically by this system, the de-
veloper needs to answer questions there as well. Moreover,
their approach, supporting seven patterns in total, needs a
comprehensive set of UML design diagrams that is often not
available in practice. To our knowledge, the only approach
similar to our work was recently published by Christopoulou
et al. [25]. Their work also focusses on identifying Strategy
pattern candidates, however they merely use an analysis of
conditional statements without analyzing the surrounding
method or class. Moreover, they do not give any rationale
when it is worthwhile to recommend a pattern.

While such pattern recommendation is a relatively new
research strand, automatically identifying potential code
smells and related refactorings have been researched to some
extend in recent years: As an example, consider Seng et al.
[16] who have utilized software metrics in order to detect
code smells and therewith identify potential places for code
refactorings. However, the recommendations generated by
their tool tended to break higher level structures such as
design patterns. Hegedűs et al. [17] aimed to connect the
usage of design patterns with software maintainability. They
measured several hundred revisions of the open source pro-
ject JHotDraw [27]. During their analyses, they found evi-
dence that patterns can improve source code quality. Huston
[18] analyzed the effects of design patterns on applications
and their metrics scores. He developed a mathematical model
based on software metrics (such as Coupling between Ob-
jects) to compare source code with a pattern and the same
code without a pattern. His conclusion was that patterns can
reduce high metric scores, but the usage of software metrics
seems generally questionable in this context. This conclusion
is also supported by Burger and Hummel’s work that showed
that refactorings often worsen metric values. Tourw'e et al.
[28] have been working towards detecting refactoring oppor-

tunities or, in other words, code smells [10]. They are using
logic meta-programming (LMP) for identifying smelly struc-
tures in the source code and for choosing an appropriate
refactoring.

Another interesting challenge is identifying already im-
plemented patterns in a given source code to be able to as-
sess whether they have been applied in a meaningful way.
The pattern detection community, e.g., comprising research-
ers like Baranski et al. [6] and others has been tackling this
challenge for several years and has reached significant re-
sults, i.e., they have created pattern detection tools using
various different technologies and approaches. Heuzeroth et
al. [8] use static analysis of the source code for this purpose.
Guéhéneuc et al. [20] have developed a combined approach
based on a numerical signature (e.g. size/complexity, number
of methods/parents, etc.) and a structural analysis of code
files to identify design patterns. Tsantalis et al. [7] have pro-
posed an approach which uses graph algorithms for identify-
ing potentially modified design patterns. Fabry et al. [19]
have developed an approach for detecting existing patterns,
which is independent from the used programming language
through extracting meta-information, such as method calls or
variable references from the parse tree for this purpose.

III. PATTERN RECOMMENDATION

This section explains our generic approach for a fully au-
tomated recommendation of design patterns and the neces-
sary steps for detecting concrete candidates (we will use the
abbreviation DPC for “design pattern candidate” in the fol-
lowing) in a source code, exemplarily using the GoF Strate-
gy pattern to illustrate it. Step one of our approach is deriv-
ing the abstract syntax tree (AST) of a given Java source
code, i.e., usually one .java file. Step two is extracting the
necessary information (metrics and structural information)
from the AST as a base for identifying DPCs. For this pur-
pose, we aim to create a predicate for each supported pattern
(to be explained in the upcoming subsections) that helps in
recognizing the candidates. A DPC is found whenever all
metric thresholds of a predicate are triggered by the underly-
ing source code, or in other words, whenever the predicate
evaluates to true. A graphical summary of this process is
presented in Figure 1 .

Figure 1 Pattern Candidates Identification Process.

Based on this model, we exemplarily describe the predi-
cates we have defined for the Strategy pattern (see Figure 2)
in the following subsections in more detail. According to
Gamma et al. [2] the Strategy pattern is defined as follows:
“Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.” Following this defini-

1. Build AST
Parse Application

source code

2. Extract
Information

Collect Metric and
Structure Information

3. Check for
DPCs

Evaluate Predicates

 451 / 679

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 430

tion, the important part of the Strategy design pattern is the
separation of different algorithmic strategies from the con-
text in order to better support the open/closed principle,
which states that code should be open for extension without
the need for modification [21]. Thus, the strategies are im-
plemented independently in separated classes that each gives
home to a “family” of different algorithms (i.e. the methods
A and B in Figure 2). Obviously, they all need to implement
the common IStrategy interface that defines which methods
should be available.

+methodA()
+methodB()

«interface»
IStrategy

+methodA()
+methodB()

ConcreteStrategyA

+methodA()
+methodB()

ConcreteStrategyB

Context

Client

Figure 2 Class diagram for the Strategy pattern.

Although the GoF book and other literature (as e.g. [12])
provide some general guidance when to use a pattern, all are
relatively imprecise when it comes to concrete rules for actu-
ally using a pattern. For an automatic recommendation sys-
tem, however, it is obviously essential to define precise de-
tection rules with good thresholds so that a suggested pattern
is helpful and does not induce more complexity than it actu-
ally resolves.

The predicate for the Strategy pattern differs only slightly
from the one for the State pattern, which we have also started
to investigate. This is no surprise, since both patterns are
aiming at encapsulating program behavior in separate classes
in order to make it more exchangeable. Hence, candidates for
both can be detected within large conditional (if/switch)
statements depending on the same variable. The central dif-
ference of the two is conceptual: states typically “decide
themselves” when an object should switch into another state
in order to behave differently. For Strategy, this decision is
triggered by an external event, such as a decision of the de-
veloper or the user of a system so that no object variable
should be changed in the body of the conditional. Thus, the
predicate for the Strategy pattern can be written as in Table I.

TABLE I. PREDICATE FOR STRATEGY CANDIDATES.

Rule Description

R1.1

OR

In serveral methods of a class there exists an if/switch statement,
which has a similar number of cases and uses the same attribut

or parameter in the condition.

R1.2 In a class hierarchy there exists a number of subclasses, which

are all overriding the same method(s) of the super class.

Each rule of the predicate aims at identifying a different
design smell indicating a possibility to use the Strategy pat-
tern and is composed of a number of metrics based on code

characteristics like number of subclasses or common attrib-
utes. If all metrics of a rule are passing a predefined thresh-
old, a smell has been identified. Table II describes the met-
rics defined for the rules R1.1 and R1.2.

TABLE II. METRICS FOR STRATEGY DETECTION RULES.

No. Metric Type Rule

M1.1 Number of methods containing a

conditional statement

Numeric R1.1

M1.2 All methods of M1.1 are in the same class Boolean R1.1

M1.3 Every method identified in M1.1 has a
conditional with an identical number of

cases

Boolean R1.1

M1.4 There exists a common attribute /

parameter used in all cases of M1.1

Boolean R1.1

M2.1 Common super class Boolean R1.2

M2.2 Number of overridden methods Numeric R1.2

M2.3 Number of subclasses overriding the

same method

Numeric R1.2

In order to avoid choosing “arbitrary” thresholds, we have
chosen them based on a careful analysis of numerous Strate-
gy implementations retrieved from the Merobase software
search engine [23], as explained in the next section.

IV. THRESHOLD DEFINITION

One of the most critical aspects for the acceptance of our
envisaged approach is determining the thresholds that trigger
a recommendation. Only with meaningful thresholds, it is
possible to decide if a metric result indicates a design smell
that should be resolved through the use of a design pattern or
not. Thus, in this section, we explain exemplarily how we
have derived the thresholds for the Strategy pattern. It should
nevertheless be obvious that this procedure can also be used
for the analysis of other patterns. The basic process contains
four different steps, beginning with identifying the needed
characteristics of the target pattern, i.e., the rules that might
indicate the use of a pattern (cf. Table II). In order to estab-
lish grounded thresholds for a pattern, we considered an
empirical analysis of existing pattern uses as the best solu-
tion so that the second step aims at identifying them with the
help of a code search engine. The next step then is to meas-
ure the characteristics defined in step one for the discovered
pattern instances. Finally, the thresholds can be derived from
the measured values through a statistical analysis. Figure 3
illustrates the overall process graphically.

Figure 3 Finding meaningful thresholds for pattern recommendation.

The definition of the pattern characteristics in step one
can be analytically derived from the explanation of a pattern,
as described in the last section. Spotting concrete pattern
instances in source code, however, as needed for the second
step, is still an area of active research (e.g. [20]) without any
tools that would be readily usable “off the shelf”. Since we

Define Pattern
Characteristics

Search
Pattern

Instances

Measure
Characteristics

Calculate
Thresholds

 452 / 679

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 431

nevertheless needed to come up with a way for finding a
serious number of pattern instances with a reasonable a-
mount of effort, we decided to use a software search engine.
Since we are not aware of any search engine that would rec-
ognize patterns based on their structure, we needed to
“guess” names that could be used as search terms. Fortunate-
ly, the Merobase [5] search engine allows to search for wild-
cards under a certain constraint, which is that the asterisk as
wildcard character cannot be used as the first or the last
character of a search. Under the assumptions that many Java
programmers start interfaces with a capital ‘I’, as, e.g., sug-
gested by Beck [22] and that the pattern name will also be
reflected in the interface, we derived the following query:

I*Strategy lang:java type:interface (protocol:svn OR
protocol:CVS) original:yes

Moreover, as is visible in the query, Merobase is able to
limit searches on a desired programming language (here:
Java), and a certain file type (i.e. interfaces). Moreover, we
limited our analyses on Subversion (SVN) and Concurrent
Version System (CVS) repositories as we assumed to find
more mature projects there than in results from the open web
and excluded identical duplicates. Thus, the delivered results
contain every Java interface that starts with an ‘I’ and ends
on Strategy. Merobase finds something over 250 matches for
this query. We have analyzed the first 50 projects of the
result set with a maximum of three patterns from one project
in order not to bias the results towards the habits of a specific
project. Moreover, we filtered out about 33 obviously “incor-
rect” implementations that did not comply with the recom-
mendations of the Gang of Four [2] (e.g. they were just im-
plementing a single Strategy) so that a total of 68 Strategy
implementations remained.

The histogram in Figure 4 illustrates the size of Strategy
implementations on the x-axis, i.e., how many subclasses of
the Strategy interface or methods the analyzed instances of
the pattern contained. The y-axis shows how often each case
has occurred during the analysis.

Figure 4 Distribution histogram of strategies and methods.

A statistical overview of the analysis results is shown in
Table III.

TABLE III. STATISTICAL FACTS OF THE MEASUREMENTS.

 Strategies Methods

Minimum 2.00 1.00

Median 2.00 2.00

Average 3.29 3.37

Maximum 13.00 25.00

As mentioned before, we merely considered Strategy pat-
terns containing 2 or more concrete strategies. On the other
hand, interfaces with only one method in at least two strate-
gies were included in the results.

As the statistical analysis has revealed, existing Strategy
implementations are quite different so that it is hard to come
up with fixed threshold values. Hence, we decided to create a
staged recommendation model based on the average and
median results. Although M1 and M2 (cf. Table II TABLE
II. aim at identifying strategies “hidden” in the code in a
different way, the same thresholds can be applied since both
are based upon the number of strategies and the number of
implemented methods per Strategy. Therefore, our model
illustrated in Figure 5 assigns one of three levels of useful-
ness to each detected pattern recommendation as follows:
1. Possible: a pattern is reasonable and it is likely that it

could improve the code especially if further extensions
are to be expected. A possible place for a Strategy is
found in this case if the number of strategies and meth-
ods is at least equal to the median of the analysis pre-
sented in Table III, i.e., both values are at least 2.

2. Useful: a pattern is useful for an analyzed source code
if the measurement results are at least 3, which roughly
corresponds to the average of the analyses.

3. Recommended: a pattern is definitively recommended
when all measurements are over the average, i.e., if
they are equal or larger than 4.

M
e
tr

ik
 M

1
.1

/
M

2
.2

9

P U R R R R R R

8 P U R R R R R R

7 P U R R R R R R

6 P U R R R R R R

5 P U R R R R R R

4 P U R R R R R R

3 P U U U U U U U

2 P P P P P P P P

1

0 1 2 3 4 5 6 7 8 9

Metrik M1.3/M2.3

Figure 5 Graphical threshold model for Strategy smells.

Figure 5 illustrates the three levels of usefulness grpahi-
cally: Orange for Possible, yellow for Useful und green for
Recommended.

V. DETECTION EXAMPLES

In this section, we demonstrate how our predicates can be
used for automated design smell detection and pattern rec-
ommendation. We have analyzed eight open source pro-
grams with a total of about 850 thousand Lines of Code
(KLOC) in 10,000 classes and found 41 candidates where
the Strategy pattern was deemed helpful. Before we present
the detailed numbers, we briefly explain the tool we have
been developing for this purpose.

 453 / 679

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 432

A. Detection Tool Preview

In order to evaluate the explained rules, metrics and
thresholds automatically, we have implemented a detection
tool based on PMD [24]. PMD is a code quality tool using
the abstract syntax tree (AST) of Java for identifying code
smells. Our tool is using the plugin interface of PMD in or-
der to benefit from the PMD platform and avoid reinventing
the wheel. It is able to extract the required data for the appli-
cation of the rules defined in Table II from there and to final-
ly present recommended patterns together with the measured
values and of course the places (i.e. classes) where they
should be integrated.

The code of the tool is separated into four components,
respectively packages. The first package is collecting the
necessary information from the AST. Package two imple-
ments the data model for storing the extracted information,
while package three processes the data and measures the
required metric values. After collecting all necessary infor-
mation, the fourth package stores and evaluates the metrics
as well as the structural information and finally applies the
predicates to identify and present the potential pattern.

B. Detecion Results and Examples

As mentioned previously, we have chosen eight well-
established open source projects for a first explorative study
intended to illustrate the effectiveness of our approach and to
help us gain a better understanding of its mechanics. Table
IV provides an overview of all discovered Strategy design
smells. Execution times were measured on an old 1-core
computer with 2 GHz and can hence at least be divided by
four on more recent machines. However, in order to provide
acceptable times for a proactive recommendation system,
applying an incremental analysis seems necessary.

TABLE IV. ANALYSIS RESULT OVERVIEW.

jE
d
it

L
u

ce
n
e

H
el

ix

M
eg

am
ek

jH
o

td
ra

w

C
o
lu

m
b
a

ty
ra

n
t

Ja
ff

a

Possible 2 0 2 13 3 2 3 1

Useful 1 4 1 12 2 0 0 0

Recomm. 0 0 0 0 0 0 0 0

KLOC 117 90 35 283 80 91 41 113

Time (h) 1.5 1.1 0.6 18 1.9 3 1.4 3

Interestingly, no clear recommendation for the use of the
Strategy pattern has been found, but a total of 45 occasions
where the pattern at least appears to be possible. For the
moment, we have manually inspected the discovered sugges-
tions and consider them as appropriate. The next section on
future work will discuss planned additional evaluations.

In order to illustrate the results more vividly, we have
chosen a design smell discovered in the open source tool
jEdit (Version 5.1) [29] as an example. The code snippet
shown in Figure 6 was extracted from its TextUtilities class.
It contains two methods (findWordEnd/findWordStart) with
a switch statement in turn containing three cases using the

same case condition (i.e. WHITESPACE, SYMBOL and

WORD_CHAR) and the same switch parameter (type). Due
to limited space, code details have been omitted.

public static int findWordStart(…) {

switch(type) {
case WHITESPACE:
 …
case WORD_CHAR:
 …
case SYMBOL:

 …
} return 0;

}

public static int findWordEnd…) {
switch(type) {
case WHITESPACE:
 …
case WORD_CHAR:
 …
 case SYMBOL:
 ...
} return line.length();

}

Figure 6 Examplary opportunity to use the Strategy pattern in jEdit.

Table Vsummarizes the assessment of the predicate de-
fined in Tables I and II, respectively, for this example.

TABLE V. MEASUREMENT RESULTS FROM TEXTUTILITIES CLASS.

Metric Value Metric Value

M1.1 2 M1.3 3

M1.2 True M1.4 True

As visible in the Table V, both Boolean metrics (M1.2
and M14) are true and hence fulfill the first requirement for
design smell detection. Moreover, M1.3 is equal to the aver-
age of 3 as well as M1.1 is equal to the median. According to
the model described in Figure 5 , a Strategy pattern can be
considered as a useful improvement for this piece of code.

VI. FUTURE WORK

We have planned to improve our prototypical recom-
mender application so that it is able to detect and recommend
pattern candidates for design patterns automatically for each
Java project a developer is working on in a common inte-
grated development environment. In this context, it is im-
portant to find a convincing way to present pattern recom-
mendations to the users. A well-designed user interface that
clearly indicates where a pattern could be introduced and
which classes should participate in the pattern in what role is
probably the key to achieving user acceptance. Another re-
quirement is that it will most likely be necessary to extend
the use of thresholds to the size of the code base, i.e. the size
of code in the case blocks in case of the Strategy patterns.
According to informal feedback of colleagues, it seems to be
the case that developers are very sensitive when patterns
create a relatively large overhead compared to the actual
functionality they “contain”. Moreover, we will continue
working on recommendation predicates for further GoF pat-
terns. We currently assume that we will be able to develop
detection possibilities for most of the GoF patterns. Only
prospective Adapter and Interpreter patterns cannot be sug-
gested based on existing code since they require a cognitive
decision of the developer to integrate a novel piece of code
into an existing system. It is also impossible to recommend
opportunities for the Composite pattern since a domain anal-
ysis has to detect the part-whole hierarchies between objects
to be represented by this pattern.

Another important open topic is of course the evaluation
and the fine tuning of the developed predicates and thresh-
olds that we use for pattern candidate detection. We plan to
analyze further open source projects in order to see whether

 454 / 679

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 433

our tool is able to recommend appropriate pattern opportuni-
ties. In order to increase the validity of the results, we want
to give the identified recommendations to various profes-
sional developers (or even the authors of the investigated
systems themselves) in order to get an independent feedback
whether they consider the discovered candidates as useful.
Another validation we plan to tackle soon is scanning the
repositories of open source projects for concrete refactorings
that have integrated design patterns into their code base.
Using our tool on the version before such a refactoring obvi-
ously should yield a recommendation for the appropriate
pattern and further demonstrate the effectiveness of our ap-
proach.

VII. CONCLUSION

In this paper, we have presented a prototype of a design
pattern recommendation tool that can be directly integrated
into common development environments. It comprises the
following three contributions. First, we have explained how
opportunities for the use of design patterns can be identified
through analyzing the AST of Java programs based on so-
called detection predicates. Nevertheless, the presented ideas
are not be limited to Java, but should be transferable to other
object-oriented languages as well. Second, we have present-
ed an approach on how meaningful thresholds for the metrics
used in the detection predicate can be derived from mining
existing Strategy implementations in open source projects.

Third, in order to demonstrate the practical feasibility of
our ideas, we have presented concrete predicates for the GoF
Strategy pattern as well as a concrete Java implementation
for a detection utility and evaluated it on eight open source
projects together comprising more than 850 thousand lines of
code 10,000 classes. Our tool was able to present numerous
meaningful opportunities for the utilization of the pattern.
Hence, we are encouraged to continue our work in order to
also define predicates for various other GoF patterns and
extend our prototype accordingly.

REFERENCES

[1] C. Larman, Applying UML and Patterns, An Introduction to
Object-Oriented Analysis and Design and Iterative
Development, 3/e, Pearson Education India, 2012.

[2] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
patterns: Abstraction and reuse of object-oriented design,
Springer, 1993.

[3] M. Robillard, R. Walker and T. Zimmermann,
“Recommendation Systems for Software Engineering”, IEEE
Software, Vol. 27, No. 4, pp. 80-86, 2010.

[4] R. Holmes, R. J. Walker and G. C. Murphy, “Strathcona
example recommendation tool”, ACM SIGSOFT Software
Engineering Notes, pp 237-240, 2005.

[5] O. Hummel, W. Janjic and C. Atkinson, “Code Conjurer:
Pulling reusable software out of thin air”, IEEE Software,
Vol. 25, No. 5, pp. 45-52, 2008.

[6] M. Baranski and J. Voss, “Genetic algorithm for pattern
detection in NIALM systems”, IEEE Intern. Conference on
Systems, Man and Cybernetics, , pp. 3362-3468, 2004.

[7] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.
Halkidis, “Design pattern detection using similarity scoring”,
IEEE Transactions on Software Engin., pp. 896-909, 2006.

[8] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe,
“Automatic design pattern detection”, IEEE International
Workshop on Program Comprehension”, pp. 94-103, 2003.

[9] E. Van Embend, and L. Moonen, “Java quality assurance by
detecting code smells”, Working Conference on Reverse
Engineering, pp. 97-106, 2002.

[10] M. Fowler, Refactoring: improving the design of existing
code, Addison-Wesley Professional, 1999.

[11] L. Briand, Y. Labiche, and A. Sauve, “Guiding the
Application of Design Patterns based on UML Models”,
Intern. Conf. on Software Maintenance, pp. 234-243, 2006.

[12] K. Beck, et al., “Industrial experience with design patterns”.
Intern. Conf. on Software Engin., pp. 103 -114, 1996.

[13] Z. Durdik, and R. Reussner, “Approach for architectural
design and modelling with documented design decisions”, Int.
Conf. on Quality of Software Architectures, p.9, 2012.

[14] F. Palma, H. Farzin, Y. Gueheneuc, and N. Moha,
“Recommendation system for design patterns in software
development”, Intern. Workshop on Recommendation
Systems for Software Engineering, pp. 49 – 54, 2012.

[15] S. Suresh, M. Naidu, S. A. Kiran, and P. Tathawade, “Design
pattern recommendation system: a methodology, data model
and algorithms”, International Conference on Computational
Techniques and Artificial Intelligenc, 2011.

[16] O. Seng, F. Simon, and T. Mohaupt, Code Quality
Management, dpunkt Verlag, Heidelberg, 2006

[17] P. Hegedűs, D. Bán, R. Ferenc, and T. Gyimóthy, “Myth or
Reality? Analyzing the Effect of Design Patterns on Software
Maintainability”, in Computer Applications for Software
Engineering, Disaster Recovery, and Business Continuity,
Springer, pp. 138 - 145, 2012.

[18] B. Huston, “The effects of design pattern application on
metric scores”, Journal of Systems and Software, Vol. 58, No.
3, pp. 261-269, 2001.

[19] J. Fabry and T. Mens, “Language-independent detection of
object-oriented design patterns”, Computer Languages,
Systems & Structures, Vol. 30, No. 1, pp. 21-33, 2004.

[20] Y. Guéhéneuc, G. Jean-Yves and S. Houari. "Improving
design-pattern identification: a new approach and an
exploratory study." Software Quality Journal 18.1, pp. 145 -
174, 2010.

[21] R. Martin, Clean code: a handbook of agile software
craftsmanship, Pearson Education, 2008.

[22] K. Beck,. Implementation Patterns. Pearson Education, 2007.

[23] W. Janjic, O. Hummel, M. Schumacher, and C.Atkinson, “An
unabridged source code dataset for research in software
reuse“. Intern. Workshop on Mining Software Repositories,
pp. 339 – 342, 2013.

[24] N. Rutar,C. Almazan, and J. Foster. “A comparison of bug
finding tools for Java“. In 15th International Symposium on
Software Reliability Engineering, pp. 245 – 256, 2004.

[25] Christopoulou, A., Giakoumakis, E. A., Zafeiris, V. E., and
Soukara, V., “Automated refactoring to the Strategy design
pattern”. Information and Software Technology, pp. 1202-
1214, 2012.

[26] S. Burger and O. Hummel, “Über die Auswirkungen von
Refactoring auf Softwaremetriken“ (in German), GI-
Fachtagung Softwaretechnik, pp. 113–126, 2012.

[27] http://www.jhotdraw.org/, JHotDraw as Open-Source Project,
Accessed on 02/11/2014

[28] T. Tourw'e und T. Mens, „Identifying refactoring
opportunities using logic meta programming,“ in Software
Maintenance and Reengineering, 2003.

[29] http://www.jedit.org/, Progammer’s Text Editor, Accessed on
02/11/2014

 455 / 679

UCDMD: Use Case Driven Methodology Development

Hanieh Zakerifard, Raman Ramsin

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

e-mail: hzakeri@ce.sharif.edu, ramsin@sharif.edu

Abstract—Situational Method Engineering (SME) focuses on

project-specific construction of methodologies based on the

characteristics of the project situation at hand. Requirements

Engineering (RE) is considered as a key activity in SME and is

concerned with the elicitation, specification, modeling and

validation of methodology requirements. However, unlike

requirements engineering in software development, the RE

methods currently practiced in SME are still immature, and

methodology engineering has a lot to learn from Software

Engineering (SE) in this regard. Use Cases are widely used in

software engineering to express the functional requirements of

software systems, and the use case model is an effective tool for

capturing stakeholder requirements in a clear and

unambiguous fashion. Despite its potential benefits, the use-

case-based approach has not been used in SME yet. The main

objective of this paper is to propose the UCDMD (Use-Case-

Driven Methodology Development) methodology as a new

object-oriented approach to SME; in this approach,

methodology requirements are completely expressed in terms

of use cases, and are utilized in a SME process for developing

the target methodology. The use-case-driven nature of the

proposed process promotes requirements traceability, and

object-oriented realization of the use cases facilitates the

implementation of CASE tools for the methodology produced.

Keywords-situational method engineering; requirements

engineering; use case modeling; use case-driven development

I. INTRODUCTION

When developing software systems, selecting the
appropriate methodology is always an important issue.
Nevertheless, after using software development
methodologies for decades, developers have realized that
there is no general-purpose methodology that suits every
project situation. The need for project-specific
methodologies has therefore resulted in the emergence of
SME, which is specifically concerned with the
construction/adaptation of a methodology according to the
specific characteristics of the software development project
at hand [1]. As in any development effort, it is important in
SME to perform RE activities precisely, so as to ensure that
the produced methodology satisfies the needs of the target
software development project situation. RE in SME is
concerned with eliciting, specifying and validating the real-
world goals, functional/non-functional requirements, and
constraints of a methodology in a specific project situation
[2]. Although a wide range of RE approaches have been used
in SE, the RE approaches which are used in SME are few
and immature in comparison.

Use case modeling has become a popular technique for
capturing and describing the functional requirements of
software systems [3]. Use case driven SE approaches support
requirements traceability during the development process,
and assist in managing change and evolution [4]. As the use
case model provides a high-level view of the interactions
between the system and its users (actors), it has been
effectively used for capturing the functional requirements of
interactive systems. Use cases are vastly used in object-
oriented software development methodologies [4], which
prescribe various techniques for mapping use cases to their
object-oriented software realizations.

 A software development methodology is akin to a
complicated interactive system in which interaction with the
user plays a pivotal role: A methodology governs the
software development process by prescribing the products
that should be produced and the corresponding activities that
should be performed, and it does all of this by providing
guidance to its users, which mainly consist of managers,
users, developers, and other project stakeholders. A SME
effort is thus faced with the same problems and challenges
which are encountered when developing any other type of
interactive system; use cases are therefore potentially useful
for elicitation and specification of methodology requirements
in SME efforts. Furthermore, just as use cases are mapped to
object-oriented software in software development
methodologies, the use cases produced for methodology
development can be mapped to custom-made software tools
for enacting the target methodology. The target methodology
can therefore be implemented as a methodology-based
CASE tool; this makes the approach very appealing for use
in a Process-centered Software Engineering Environment
(PSEE). Despite their potential benefits, use cases have not
been used for methodology development yet.

We propose UCDMD as a use-case-driven approach to
SME in which requirements are expressed in terms of use
cases, and the target methodology is developed through a
process which prescribes the activities that should be
performed and the products to be produced. Being use-case-
driven means that all the artifacts of UCDMD are produced
in order to realize the use cases; traceability is thus achieved.

The rest of this paper is organized as follows: Section II
provides a brief review on the research background; Section
III explains the proposed UCDMD methodology, and
Section IV provides an example of its enactment; a criteria-
based evaluation of the proposed methodology is presented
in Section V; and Section VI provides the conclusions and
suggests ways for furthering this research.

434Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 456 / 679

II. RESEARCH BACKGROUND

Although use cases have not been previously used as a
basis for methodology development, they have been widely
used in process modeling approaches; instances have been
reported in [5][6][7][8][9]. However, this cannot be
considered as use-case-driven SME.

In this section, the concepts and methods on which this
research is based will be introduced. To this aim, we will
first present an overview of RE in SME, and will then briefly
introduce an existing process framework for SME; we have
used this framework as the basis for developing UCDMD.

A. RE in SME

 Since the advent of SME, different approaches have

been proposed for RE in this context: The research reported

by Ralyté [10] presents the roadmap-driven approach in

which process-driven and intention-driven strategies are

used for eliciting the requirements; a criteria-based approach

has been proposed by Ramsin and Paige [11] in which

requirements are identified through a top-down iterative-

incremental process; and the framework proposed by Olsson

et al. [12] is a comprehensive general process for RE in

SME, providing detailed descriptions for the various

activities and techniques prescribed. None of the above RE

approaches is defined as part of a comprehensive SME

process. In contrast, UCDMD is a comprehensive object-

oriented SME process in which requirements (use cases)

play a pivotal role in producing all the deliverables.

B. SME Process Framework

The generic pattern-based process framework for SME,
proposed by Asadi and Ramsin [13], is made up of three
serial Phase process patterns: Method Initiation, Method
Construction, and Deployment (see Fig. 1). The phases of
the framework consist of several Stage patterns along with
their constituent Task patterns. The framework can be
instantiated and configured to fit the SME situation at hand.
We have used this framework for constructing UCDMD.

III. PROPOSED METHODOLOGY – UCDMD

In this section, our proposed UCDMD methodology will
be described in detail. However, before delving into the
particulars of UCDMD, we will first explain how the notion
of use case has been adapted for application in SME.

A. Use Case Driven RE in SME

A use case represents a sequence of interactions between
the system and its actors to achieve a specific functional goal
of the system [14]. It is deeply rooted in the problem domain,
and is understandable to all stakeholders. Use cases are
prevalently used in SE. But in order to utilize them in SME,
we should first devise a mapping between the notion of use
case as used in SE to the notion of use case purposed for
application in SME. In SME, the target product is a
methodology, not a software system in the traditional sense
of the term; methodology actors are the roles in the software
development environment (e.g., developers and managers)
which affect the methodology (e.g., by tuning it or providing

it with information), or are affected (governed) by it; a
methodology use case is an atomic SE activity or task which
is prescribed and governed by the methodology and whose
fulfilment is of value to at least one actor. A methodology’s
use cases are elicited from its users and can be based on the
situational factors of the organization and the project at hand.
However, as in SE, methodology use cases only capture the
functionality expected from the methodology, not its
nonfunctional features (such as seamlessness); furthermore,
methodology use cases describe what a methodology does
without specifying how it does it (in other words,
methodology use cases are not concerned with techniques).

B. Levels of Modeling in UCDMD

Modeling is an integral part of any methodology. In SE
methodologies, different levels of modeling are used for
modeling the implementation-independent aspects of the
system (problem domain) as separate from its
implementation-specific features (solution domain). The
same distinction is true in SME methodologies. However,
there is no established definition for the problem and
solution domains in the SME context. Therefore, the first
step in developing a SME methodology is to define these
domains and the different levels of modeling required (from
Abstract to Concrete: Logical to Physical). We have used the
levels proposed by Agh and Ramsin [15] as a basis for
defining the following three modeling levels for UCDMD:

 Methodology-Type-Independent Level: This level
signifies the problem domain in SME, focusing on the
definition of general methodology requirements and
features, regardless of methodology type (e.g., agile or
plan-driven). Situational factors and use cases are
modeled at this level, comprising the nonfunctional and
functional requirements. General structural and
behavioral modeling of the methodology is also
performed, aiming at realizing the requirements by
developing a general, type-less methodology.

 Methodology-Type-Dependent and Technique-
Independent Level: At this level, the type of the target
methodology is specified, requirements are realized
based on the defined type, and relevant structural and
behavioral models are produced/refined. Even though
the type has been determined, the methodology only
consists of activities and tasks which specify what
should be done. This is because techniques, which
describe how the activities and tasks should be
performed, have been deliberately left out.

 Technique-Dependent Level: The techniques and
technique-dependent elements of the methodology are
added, requirements are realized based on these
elements, and the relevant models are produced/refined.

Figure 1. Generic SME Process Framework – Adapted from [13].

435Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 457 / 679

C. UCDMD Process

UCDMD consists of three serial phases, which in turn
consist of iterative stages (see Fig. 2). The second phase is in
fact UCDMD’s iterative development engine. The phases
and their internal stages will be explained in this subsection.

1) Initiation Phase
The objective of this phase is to provide a solid

foundation for methodology construction. Eliciting and
modeling the requirements and establishing the infrastructure
of the target methodology are the main goals of this phase.

a) Requirements Engineering (Stage)

The aim is to define methodology requirements by
eliciting, modeling, and prioritizing the situational factors
and requirements. The activities are described below:

Capturing domain vocabulary: A glossary is produced of
the main concepts of the problem domain. This document
will help identify the actors, use cases and
structural/behavioral elements of the target methodology.

Eliciting situational factors: Situational factors [16] are
elicited through studying available documents and
interviewing the users of the methodology (e.g., managers
and developers). Documents may include organizational
process documents, documents of the project at hand, and
documents of the target methodology. The situation of the
project is determined by giving values to the situational
factors; these values will be updated based on the
methodology type determined in the next phase. Lists of
candidate situational factors are already available [17].

Mapping situational factors to functional/non-functional
requirements: As situational factors are mainly non-
functional in nature, they are mostly mapped to non-
functional requirements of the target methodology. However,
some situational factors can and will be mapped to specific
functionalities of the target methodology; typical instances
include situational factors which pertain to management
issues, which are typically mapped to umbrella activities.
These functional requirements will be documented to be
used as candidate use cases after conflict resolution.

Resolving conflicts: In this stage, the conflicts that exist
among the requirements are identified and resolved [17].

Identifying use cases: Starting from the initial list of
functional requirements (mapped from situational factors),
actors and use cases of the target methodology are identified
through an iterative process. The process first focuses on
identifying the actors (roles of methodology users); use cases
are then identified/revised based on the expectations of the
actors, resulting in a UML (Unified Modeling Language) use
case diagram [3]. The question that should be asked from
actors to identify their relevant use cases is: “What are the
software development activities that you expect the
methodology to guide you through?” The use cases thus
identified are the SE activities on which the target
methodology should provide instructions and guidelines. Use
cases are therefore constituents of the target methodology.

Prioritizing use cases: Use cases are primarily prioritized
based on business value, and then by the development risks
involved. Use cases and their priorities are iteratively
reviewed and revised during the development process.

Figure 2. UCDMD Process.

Refining use cases: Detailed descriptions of the use cases
are produced which elaborate on their preconditions,
postconditions, actors, and flows of events (steps).

Structuring use case model: Structural relationships
among use cases and actors (generalization/specialization
and include/extend) are identified and added to the model.

Validating use case model: The use case model is
verified and validated by methodology users. The checklist
proposed by Cockburn [14] is very useful for this purpose.

b) Infrastructure Definition (Stage)

The objective of this stage is to determine the
architecture of the methodology and acquire the required
tools. The activities performed in this stage are as follows:

Establishing architecture: Based on the elicited
requirements, a high-level lifecycle is defined for the
methodology. This lifecycle is usually selected from among
existing frameworks. If a specific lifecycle is not requested,
the generic lifecycle proposed by Pressman [18] can be used.

Selecting tools: The tools (e.g., PSEE [16]) required for
developing the methodology are identified and acquired.

2) Development Phase
The objective of this phase is to design and construct the

target methodology. This phase consists of three stages
which develop the methodology through an iterative-
incremental process driven by the use cases.

a) Type-independent Analysis Stage

The aim of this stage is to produce structural/behavioral
models for a general (type-independent) methodology which
satisfies the use cases selected for realization in the current
iteration. The activities of this stage are described below:

Structural modeling: Based on the use cases and non-
functional requirements elicited, a UML class diagram is
produced of the target methodology’s structural elements.
Existing frameworks, such as OPF (OPEN Process
Framework) [19], can be used for identifying the classes.
These analysis classes are of three general types: Work-units,

436Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 458 / 679

Products, and Roles (producers); however, many subclasses
of each type are involved in constructing a methodology.
Objects of these classes will interact to realize the use cases.

Behavioral modeling: Behavioral aspects of each use
case are modeled in a UML activity diagram. The activity
diagram is partitioned into swimlanes which correspond to
the structural objects of the methodology (which realize the
use case), and its actors in the context of the use case.

Realizing use cases: For each use case, the object
interaction necessary for realizing the use case should be
modeled in a UML sequence diagram. The swimlaned
activity diagrams previously produced are used as bases for
developing these analysis sequence diagrams.

Determining/Revising order of use cases: It is usually
necessary for the use cases to be executed in a certain,
predefined order. In this case, the order of execution is
modeled in a UML interaction overview diagram.

Testing: The models produced in the current iteration are
tested for completeness, accuracy, consistency, validity, and
conformance to the methodology architecture.

b) Type-dependent Design Stage

The purpose of this stage is to develop a type-dependent
and technique-independent version of the methodology, thus
transitioning to the solution domain.

Determine Methodology Type (Sub-stage)

The aim of this sub-stage is to determine the type of the
target methodology through the following activities:

Determining/Revising methodology type: If the type of
the methodology has not been constrained by its users, it has
to be determined based on the requirements. The type can
connote the methodology’s paradigm (e.g., object-oriented or
agent-oriented), overall strategy (e.g., agile or plan-driven),
design/implementation approach (e.g., component-based or
service-oriented), application domain (knowledge-based or
real-time), or a combination of the above.

Revising methodology infrastructure: The architecture of
the methodology is refined based on the selected type.
Instead of refining the current architecture, the methodology
engineer may choose to replace it with an existing process
framework. For instance, the Object-Oriented Software
Process (OOSP) [20] can be used in case an object-oriented
type is desired, and the framework proposed by Kouroshfar
et al. [21] can be used if a component-based type is targeted.

Methodology-type-dependent Modeling (Sub-stage)

The objective of this sub-stage is to realize the use cases
of the current iteration based on the methodology type,
regardless of the techniques required for implementing the
activities. The tasks of this sub-stage are described below:

 Refining structural model: The analysis class diagram is
refined and extended based on the methodology type,
resulting in a design class diagram.

Realizing use cases (design): The use cases selected for
the current iteration are realized based on analysis sequence
diagrams, the design class diagram, and the new architecture;
design sequence diagrams are thus produced.

Revising order of use cases (design): The interaction
overview diagram is reviewed and revised based on the
design sequence diagrams and the revised architecture.

Testing (design): Design models are tested for
completeness, accuracy, consistency, validity, and
conformance to the new architecture.

c) Implementation (Stage)

The methodology designed in the previous stage consists
of activities which describe what is to be done, but falls short
of specifying how the activities should actually be
performed. The implementation stage is concerned with
specifying the techniques which define how the activities of
the methodology should be carried out. The target
methodology is then constructed based on the specified
techniques so that the use cases are satisfied.

Technique-dependent Modeling (Sub-stage)

The aim of this sub-stage is to determine techniques for
implementing the target methodology’s use cases. The
activities performed in this sub-stage are described below:

Specifying techniques: Techniques are typically chosen
from among those proposed by methodologies/frameworks
which are of the same type as the target methodology; for
instance, a list of agile techniques has been provided by
Abad et al. [17]. Techniques are selected based on the use
cases, non-functional requirements, and available resources.

Refining structural model (implementation): The
structural model of the methodology (class diagram) is
refined and extended based on the techniques introduced,
resulting in the implementation class diagram.

Realizing use cases (implementation): Use cases are
realized based on the design sequence diagrams,
implementation class diagram, and the methodology so far
produced, thus yielding implementation sequence diagrams.

Revising order of use cases (implementation): The
interaction overview diagram is updated based on the added
techniques. The resulting diagram is an extension of the
design version, and should not contradict it in any way.

Method Construction (Sub-stage)

The classes which have so far been defined possess the
final state and behavior necessary for realizing the use cases,
and the sequence diagrams show how instances of specific
classes should interact to realize the use cases. However, the
final methodology should be configured from activities
which correspond to the use cases, and which comprise a
complete methodology that conforms to the defined
architecture. The activities of this sub-stage are as follows:

Determining construction blocks: The structural elements
that should be incorporated into the methodology in the
current iteration are determined. By default, each use case is
mapped to a coarse-grained construction block (activity).
The structural elements (class instances) which should
interact to realize the use case are also considered as
construction blocks; these blocks are typically taken as
internal elements of the activity corresponding to the use
case. The method engineer can also choose to use method
components retrieved from a repository.

Configuring construction blocks: The construction blocks
defined in the previous activity are configured with
appropriate preconditions/postconditions, and their internal
structure is determined: The method engineer should decide
which blocks should be incorporated into other blocks.

437Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 459 / 679

Integrating construction blocks into produced
methodology: The construction blocks configured in the
previous activity are integrated with the methodology built
so far. The method engineer decides where each new
construction block should go, and what changes should be
made to facilitate the integration. It should be noted that
multiple instances of the same block may be integrated into
different phases/stages of the methodology.

Identifying reusable blocks: Reusable blocks of the
methodology are identified and stored in a repository.

Testing: All products are tested for accuracy, consistency,
validity, and conformance to the overall architecture.

Implementing supporting software: This activity
produces software support for the methodology, in parallel
with the development of the methodology itself. As
previously observed, since an object-oriented use-case driven
process has been followed for producing the methodology,
the class diagrams and sequence diagrams produced can be
directly used for implementing software support for the
methodology (usually as a methodology-based CASE tool).

Reviewing iteration: Products, plans, and even the
UCDMD process are reviewed and revised. Decision should
be made to either initiate a new iteration (if unrealized use
cases remain), or to proceed to deployment.

3) Deployment Phase
This phase aims to deliver the target methodology to its

intended users, and to maintain it during usage.

a) Delivery (Stage)

The objective of this stage is to deploy the evaluated
methodology to the development environment and conduct
postmortem tasks. The activities are as follows:

Delivering: The produced methodology is delivered to its
end users, ready to be enacted in software development
projects. The necessary manuals and documents are
produced, and training is conducted. The resources necessary
for enacting the methodology (including tool support) are
provided, and support and maintenance plans are produced.

Conducting postmortem: The lessons learnt from the
project, including the problems encountered and their
solutions, are documented for use in future SME projects.

b) Maintenance (Stage)

The purpose of this stage is to resolve the problems
encountered during methodology enactment (corrective
maintenance), to add new features to the methodology upon
request (perfective maintenance), or to adapt the
methodology to the changes made to the development
environment and/or the situational factors (adaptive
maintenance). Changes are applied to the methodology by
executing the relevant stages of the Development phase.

IV. EXAMPLE

In this section, we demonstrate the enactment of parts of
the UCDMD methodology through an example.

In the Initiation Phase, our example starts with
identifying the situational factors and mapping them to
requirements, as shown in Table I. Fig. 3 shows a use case
diagram produced for this set of requirements.

TABLE I. EXAMPLE OF SITUATIONAL FACTORS AND REQUIREMENTS

Degree of formalism required in the methodology
Situational

Factors
Degree of developers’ technical expertise

Technology innovation level of the target system

Maintainability Non-functional

Requirements Risk management

Specify requirements

Functional

Requirements

Break down into tasks

Design architecture

Test

Development

Figure 3. Example of a use case diagram for methodology development.

Use cases are then refined, and detailed descriptions are
provided for each of them. Table II shows the particulars of
the “Break Down into Tasks” use case. An architecture is
then defined for the methodology; we have adopted the
generic lifecycle [18] for our example. An important model
produced in this phase is the interaction overview diagram,
an example of which is shown in Fig. 4.

TABLE II. EXAMPLE OF A USE CASE DESCRIPTION

Use case: Break Down Into Tasks

ID: 3

Brief Description: The goal is to break down the requirements of the

current iteration into fine-grained development (implementation) tasks.

Primary Actors: Analyst

Secondary Actors: None

Preconditions:
- The requirements of the current iteration have been determined.

Main flow:

1. The use case is started when the Analyst requests the requirements of
the current iteration to break them down into fine-grained tasks.

2. Methodology instructs Analyst on how to break down requirements.

3. For each requirement of this iteration:
3.1. Analyst breaks down requirement.

3.2. Methodology instructs Analyst on how to store the tasks.

3.3. Analyst stores the tasks.
3.4. Methodology instructs Analyst on how to evaluate the results.

3.5. Analyst evaluates the results.

Postconditions: Fine-grained tasks are ready for the current iteration.

Alternative Flows:
- Suspend breaking down into tasks.

Figure 4. Example of an interaction overview diagram.

438Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 460 / 679

In the Development phase, type-independent analysis is
first performed. Design models are produced after defining a
type for the methodology: In our example, an agile
methodology has been targeted; therefore, an agile process
framework (from [22]) has replaced the initial architecture.
The design class diagram of our example, and the design
sequence diagram for “Break Down into Tasks”, are shown
in Fig. 5 and Fig. 6, respectively. The methodology is then
implemented based on the design models (see Fig. 7).

V. EVALUATION

In order to gain a better understanding of the merits of
the methodology proposed herein, we have conducted a
criteria-based evaluation of UCDMD; the results are shown
in Table III. The evaluation is based on the following
evaluation criteria, specially designed to check the
methodology for traits which a use-case-driven SME
methodology would be expected to exhibit: Use-case-related
[14], RE-related [2], general methodology-related [23], and
SME-related [15]. It can be observed that UCDMD satisfies
most of the criteria, faring especially well in the use-case-
related, RE-related and SME-related categories.

VI. CONCLUSION AND FUTURE WORK

Using an object-oriented, use-case-driven approach for
SME is a step forward; due to their functional nature, use
cases can be mapped to the coarse-grained activities which
form a methodology. On the other hand, using the object-
oriented paradigm provides SME with the numerous benefits
that the approach entails, including enhanced reusability,
encapsulation, and flexibility. Moreover, our approach is also
beneficial in facilitating the provision of tool support: The
models produced can be directly used for implementing
bespoke software support for the methodology.

Figure 5. Example of a design class diagram.

Figure 6. Example of a design sequence diagram.

Figure 7. Example of an implemented methodology (lifecycle view).

Future work can be focused on applying UCDMD in an
industrial-scale SME project. A parallel strand can proceed
with refining and enhancing the tool production features of
the approach. Future research can also focus on classifying
the use cases typically encountered in SME projects.

ACKNOWLEDGMENT

We wish to thank Mr. Mohammad Reza Besharati for

reviewing the Example and Evaluation sections.

REFERENCES

[1] J. Ralyté, S. Brinkkemper, and B. Henderson-Sellers, Situational
Method Engineering: Fundamentals and Experiences. Springer, 2007.

[2] O. Jafarinezhad and R. Ramsin, “Development of Situational
Requirements Engineering Processes: A Process Factory Approach,”
Proc. IEEE Computer Software and Applications Conf. (COMPSAC
12), 2012, pp. 279–288, doi: 10.1109/COMPSAC.2012.39.

[3] H. Gomaa, Software Modeling and Design: UML, use cases, patterns,
and software architectures. Cambridge University Press, 2011.

[4] R. Ramsin and R.F. Paige, “Process-centered review of object-
oriented software development methodologies,” ACM Comput. Surv.,
vol. 40, Feb. 2008, pp. 1–89, doi: 10.1145/1322432.1322435.

[5] B. Westfechtel, Models and Tools for Managing Development
Processes. Springer, 1999.

[6] H. Johnson, “An approach to software project management through
requirements engineering,” M.Sc. Thesis, Texas Tech University,
2010.

[7] C. Hug, A. Front, D. Rieu, and B. Henderson-Sellers, “A Method to
Build Information Systems Engineering Process Metamodels,” J.
Syst. Softw., vol. 82, Nov. 2009, pp. 1730–1742, doi:
10.1016/j.jss.2009.05.020.

[8] M.D. Taufan, “Method Management System: Rule-Based Method
Enactment Using MediaWiki and Semantic MediaWiki,” M.Sc.
Thesis, Radboud University Nijmegen, 2011.

[9] F. Karlsson and K. Wistrand, “Combining method engineering with
activity theory: theoretical grounding of the method component

439Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 461 / 679

concept,” Eur. J. Inf. Syst., vol. 15, Jan. 2006, pp. 82–90, doi:
10.1057/palgrave.ejis.3000596.

[10] J. Ralyté, “Requirements definition for the situational method
engineering,” Proc. Conf. Engineering Info Systems in the Internet
Context, 2002, pp. 127–152, doi: 10.1007/978-0-387-35614-3_9.

[11] R. Ramsin and R.F. Paige, “Iterative criteria-based approach to
engineering the requirements of software development
methodologies,” IET Software, vol. 4, Feb. 2010, pp. 91–104, doi:
10.1049/iet-sen.2009.0032.

[12] T. Olsson, J. Doerr, T. Koenig, and M. Ehresmann, “A Flexible and
Pragmatic Requirements Engineering Framework for SME,” Proc.
International Workshop on Situational RE Processes, 2005, pp. 1–12.

[13] M. Asadi and R. Ramsin, “Patterns of Situational Method
Engineering,” Proc. Software Engineering Research, Management
and Applications Conf. (SERA 09), 2009, pp. 277–291, doi:
10.1007/978-3-642-05441-9_24.

[14] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001.

[15] H. Agh and R. Ramsin, “Pattern-Based Model Transformation
Method for Applying Model-Driven Development to Method
Engineering,” unpublished, 2014.

[16] B. Henderson-Sellers and J. Ralyté, “Situational Method Engineering:
State-of-the-Art Review,” Journal of Universal Computer Science,
vol. 16, Feb. 2010, pp. 424–478, doi: 10.1.1.165.7993.

[17] Z. Shakeri Hossein Abad, M. Hasani Sadi, and R. Ramsin, “Towards
tool support for situational engineering of agile methodologies,” Proc.
International Asia-Pacific Software Engineering Conf. (APSEC 10),
2010, pp. 326–335, doi: 10.1109/APSEC.2010.45.

[18] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 7th
ed. McGraw-Hill, 2009.

[19] D. Firesmith and B. Henderson-Sellers, The OPEN Process
Framework: An Introduction. Addison-Wesley, 2001.

[20] S.W. Ambler, Process patterns: Building large-scale systems using
object technology. Cambridge University Press, 1998.

[21] E. Kouroshfar, H. Yaghoubi Shahir, and R. Ramsin, “Process patterns
for component-based software development,” Proc. International
Symp. Component-Based Software Engineering (CBSE 09), 2009,
pp. 54–68, doi: 10.1007/978-3-642-02414-6_4.

[22] S. Tasharofi and R. Ramsin, “Process patterns for agile
methodologies,” in Situational Method Engineering: Fundamentals
and Experiences, J. Ralyté, S. Brinkkemper, and B. Henderson-
Sellers, Eds. Springer, 2007, pp. 222–237, doi: 10.1007/978-0-387-
73947-2_18.

[23] M. Taromirad and R. Ramsin, “CEFAM: Comprehensive Evaluation
Framework for Agile Methodologies,” Proc. IEEE Software
Engineering Workshop (SEW 08), 2008, pp. 195–204, doi:
10.1109/SEW.2008.19.

TABLE III. RESULTS OF CRITERIA-BASED EVALUATION

UCDMD Evaluation Possible Values Criterion Definition Criterion Name

Yes Yes/Partially/No
Is it possible to describe all functional requirements as use

cases?
Descriptive potential

U
se

-C
as

e-
R

el
a

te
d

 E

v
a

lu
a

ti
on

 C
ri

te
ri

a

Yes Yes/No Are the work-products traceable to use cases? Use case traceability

Yes (activity diagrams) Yes (techniques), No Are use case steps modeled? Flow modeling

Yes Yes/No Is the use case model reviewed/revised during the process? Review and revision

Yes Yes/No Can the actors be mapped to different roles/teams?
Mapping of actors to

roles/teams

Yes Yes/No
Are any specific patterns/guidelines provided for applying

the use cases in SME?
Applicability

Business value, Development

risk

Architectural value,
Functional value, Business

value, Development risk

On what bases are the requirements prioritized?
Requirements

prioritization

R
eq

u
ir

em
en

ts
-E

n
g

in
ee

ri
n

g
-

R
el

a
te

d
 E

v
a

lu
a

ti
on

 C
ri

te
ri

a

Yes (driven by use cases) Yes (techniques), No Is the development process based on the requirements? Basis in requirements

Yes (use cases are updated at
the start of each iteration)

Yes (techniques), No
Does the development process allow changes to the
requirements?

Requirements change

Mapping to functional

requirements, methodology
type, or techniques

Mechanisms How are the non-functional requirements realized?
Realization of

non-functional

requirements

Explicitly Explicitly, Implicitly, No
Does the methodology explain the details of the development
process?

Process definition

G
en

er
a

l
M

et
h

od
o

lo
g

y
-R

el
a

te
d

E
v

a
lu

a
ti

on
 C

ri
te

ri
a

Yes (traceability, continuous

verification/validation,

iterative process)

Yes (techniques), No Does the methodology support quality assurance activities? Quality assurance

Yes (continuous verification/

validation, iterative process)
Yes (techniques), No Does the methodology support risk management techniques? Risk management

Yes (through reviews at the

end of each iteration)
Yes (how), No

Does the methodology allow the process and modeling

language to be tuned during its execution?
Flexibility

Yes (models facilitate the
implementation of tools)

Yes (how), No Is tool support provided or facilitated? Tool support

Yes Yes, No Can the products be traced to situational factors?
Traceability to

situational factors

S
M

E
-R

el
a

te
d

E
v

a
lu

a
ti

on
 C

ri
te

ri
a

Analysis, Design,

Implementation, Test,
Deployment, Maintenance

Analysis, Design,

Implementation, Test,
Deployment, Maintenance

Which phases of the generic lifecycle are covered by the

development process?

SME lifecycle

coverage

Assembly-Based, Extension-
Based, Paradigm-Based

Assembly-Based, Extension-

Based, Paradigm-Based,

Hybrid, Roadmap-Driven

Which SME approaches/strategies [16] are supported by the
development process?

Support for SME

strategies

440Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 462 / 679

Insights from the Defect Detection Process of IT Experts: A Case Study on Data

Flow Diagrams

Gul Tokdemir

Computer Engineering Department

Cankaya University

Ankara,Turkey

e-mail: gtokdemir@cankaya.edu.tr

Nergiz Ercil Cagiltay

Software Engineering Department

Atilim University

Ankara,Turkey

e-mail: necagiltay@gmail.com

Ozkan Kilic

Informatics Institute

Middle East Technical University

Ankara, Turkey

e-mail: ozkankilic@gmail.com

Abstract— Design diagrams employed in software development

process deliver groups of associated information about the

software to be developed. They enhance the perception of the

software engineers helping them better understand the

software system at various levels of system development

process. Today’s fast-changing business environment

necessitates the reflection of these changes into the operational

software systems. Hence, the changes needed in software

systems require software engineers to understand the system

design diagrams and update them according to the changes.

Therefore, it is very important for software engineers to

understand and construct the design representations reflecting

the software requirements correctly for the success of a

software project. In the literature, there are not many studies

conducted to better understand the behaviors of software

engineers during designing and understanding these

representations. Hence, the main aim of this study is to analyze

the defect detection process of software engineers during their

understanding of Data Flow Diagram (DFD) representations

which are used to reveal system processes at different levels of

abstraction and data flow requirements between them. Mainly,

the question which type of defects can be detected easily is

aimed to be answered. The results of this study show that

missing information type defects (Missing Process-MP and

Missing Dataflow-MD) are harder to detect than the

incomplete or incorrect type (incorrect or missing

Information-I) of defects.

Keywords-DFD; software design; diagrammatic reasoning;

defect detection.

I. INTRODUCTION

Diagrams can be more influential than sentential
representations depending on the usage [1], as they
communicate, and leverage knowledge that is crucial for
solving problems [2]. Diagrams provide condensed
information; hence, they are very effective in information
systems for transferring information between stakeholders of
the system during the system design phase. Moreover, during
the software engineering lifecycle phases, they may offer

reductions in cost and enhancements in understanding of the
system.

During software development, engineers need to
understand the system design from the diagrams, transform
the system view into programs by viewing whole system,
and check for consistency and errors resulting from
misunderstanding of the design. As the understanding level
of the engineers gets higher, their error correction
performance is expected to increase. Finding and correcting
these design errors or inconsistencies have a paramount
effect in successful system development on time and within
the predicted cost.

The aim of this study is to analyze the defect detection
process by the software engineers during their DFD
reviewing process. We believe that such analysis would
provide insights about the design diagrams and software
engineer’s defect detection process. The results of this study
are expected to provide insights to the researchers, software
companies, and to the educators to improve DFD cognitive
process. The State of the art section below contains related
studies found in the literature, Methodology section explains
the experiment, Result section analyzes the experiment
results and Discussion and Conclusion section talks about
the insights gained through this study.

II. STATE OF THE ART

Studies report that 40–50% of the development effort is
being spent for fixing errors that could be detected and fixed
early in the software development process [3]. Hence, defect
detection performed early in the software development
process is, an essential task as undiscovered defects may
cause critical problems later in the process. In this regard,
there are many studies mentioning defect detection activity
as important, because, as they disseminate to the subsequent
development phases, recovery would be more costly and
difficult [4][5][6].

Studies also report that, by using model-based
approaches, the defect detection rate could be increased in
the early stages of the software life-cycle [7][8][9].
Accordingly, many researchers analyzed engineers’

441Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 463 / 679

perception of design diagrams and defect detection process
of software engineers in ERD [10], DFD [10], and UML [4]
and their cognitive processes [11]. For instance, Hungerford
et al. [10] states that practice and proficiency in diagrams
improve defect detection process of software engineers.
Kumaresh and Baskaran [5] report that analysis of the
defects at early stages of the software development lifecycle
reduces development time, development cost and the
resources required for the process.

Even though the DFD modeling language is over 30

years old, because of its usage history and familiarity among

the software developers, many researchers, today, based

their studies on this notation [12][13]. Additionally, since

most of the current software systems’ documentations are

based on the DFD notations, for maintenance procedures the

technicians are still required to better understand this

notation. For instance Yuwen and Wang [14] report the

drawing of DFD is the key technology in the development of

system analysis and design [14]. According to them, DFD is

not only the key composing part of the logic model in new

system, but also the key basis in the system physical

designing [14].

However, in the literature, there are not many studies

conducted to better understand the reviewers’ performance

during the defect detection process. For instance, Moser and

Biffl report that the missing or incorrect type of information

is often detected in a later engineering process step [15].

Hence understanding the defect types that cannot be detected

easily could help the software system designers to better

represent this type of information in their representations.

Additionally, this information also can be used to better

guide the reviewers in different phases of software

development process accordingly.
Hence, in this study, defect detection process of software

engineers during their DFD reviewing process is analyzed to
obtain insights about the cognitive processes of the
engineers. Mainly, three different types of defects, namely,
Missing Process (MP), Missing Dataflow or information
(MD) and incorrect or missing Information (I) have been
seeded into the DFD representations. The following research
question is aimed to be answered is 'Which types of defects
(MD, I, or MP) are easy to detect in DFD representations?'

Data are collected through interviews and observations
while the IT experts work on the corresponding materials in
defect detection.

III. METHODOLOGY

The experimental study is conducted with 4 participants
using a study material which is derived from the study of
Hungerford et al. [10], which is adapted to the current
settings of this study and translated into Turkish. Participants
of this study were software engineers with average age of 32
(Table 1).

TABLE I. PARTICIPANTS’ INFORMATION

Participant Age Experience in

the field

Gender Experience

with DFD

P1 29 8 F 8

P2 28 7 M 1

P3 34 12 M 2

P4 35 12 M 3

Average 32 10 3

We have prepared two DFDs of the system with 17
defects seeded in total at two levels. The participants have
been provided the system description one week before the
experiment. During the experiment, participants were asked
to find the defects seeded in the DFDs, based on the system
description.

The defects are categorized into three types: MP, MD
and I. Table 2 summarizes the number of defects in the
DFDs according to each category defined here.

TABLE II. NUMBER OF DEFECTS IN EACH CATEGORY

Code Description # of Defects

MP Missing Process 2

MD Missing Dataflow/information 9

I Incorrect/ Incomplete 6

 Total 17

Table 3 depicts the defects seeded into both DFDs with
their defect types. Figure 2 shows the locations of the defects
(Fig. 1) at level 1 and 2 (Fig. 2).

TABLE III. DEFECT EXPLANATIONS

Defect Description DFD Defect

Type

01 End of job proposal process (1.4) is missing 1 MP

02 The entity named accounting should be job

costing section

1 I

03 Job request data should go from customer to

1.1. Job Evaluation Process

1 MD

04 Receipt information should go from process

“1.5 Payment Monitor” to the Customer

entity

1 MD

05 Job proposal data flow should go data store

named D2, instate of entity named accounting

1 I

06 The data flow from data store D1 to process

1.2 should be part information not customer

information

1 I

07 From entity named customer, to the missing

process named end of job proposal (1.4),

rejection information should go

1 MD

08 the missing process named end of job

proposal (1.4) to the data storage named D2,

end of job proposal information should go

1 MD

09 From process 2.1 to the process 2.2 purchase

order information should go

2 MD

10 From the entity supplier to the process 2.2,

approval date and time information should go

2 MD

11 The Data storage named D7 should be

supplier account, not customer account

2 I

12 From the process 2.2 to the storage D5,

instate of customer information, part

2 I

442Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 464 / 679

information should go

13 The direction of the data flow (order form)

from the entity supplier to the process 2.2 is

incorrect. It should be from the process 2.2 to

the entity supplier

2 I

14 Process 2.3 delivery is missing 2 MP

15 From the data storage D8 to the missing

process 2.3, order form information should go

2 MD

16 From the missing process 2.3 to the process

2.2, delivered part information should go

2 MD

17 From the missing process 2.3 to the data

storage D1, delivered part information should

go

2 MD

In Figure 1, there are five processes describing top level

relationships and data flow between processes. These five
processes define the top level diagram of an ERP sales
function module of a company. They include request
evaluation, proposal preparation, work order preparation,
work order close-up and payment follow-up processes.
These processes connected to each other through data flows.
Moreover, data is accumulated in data stores called customer
account, work order/proposal and personnel.

Figure 1. Defects’ Placement in DFD1

Similarly, Figure 2 depicts three sub-processes of
proposal preparation process and their data flow. It has three
processes which define second level DFD of proposal
preparation process. They include parts/stock, order and
delivery operations processes. These processes connected to
each other through data flows. Moreover, data is
accumulated in sx data stores called parts/stock, work order/
proposal, order form, customer account and supplier info.

As seen from Figures 1 and 2, the defects were seeded
into two DFD diagrams and the participants were asked to
detect them and take notes. During this process, the
participants were allowed to check the system description.
In the following section, the results of the defect detection
process are provided.

Figure 2. Defects’ Placement in DFD2

In this study, data is collected through Defect Detection
Report used by the reviewers, observation notes and semi-
structured interview sessions conducted by each reviewer.
The defect detection report has the defect numbers and the
explanation for the defects found. By using this form, the
reviewers were asked to note each defect that they detect
and describe their opinions about this defect as explained in
the explanation document provided in Appendix A. The
observations were conducted by one researcher and
observation notes were taken during each reviewer’s defect
detection process. The durations spent for detecting each
defect were recorded during the observation sessions and
later synchronized with the reported defects in the Defect
Detection Report. Additionally, by the same researcher, a
semi-structured interview session was conducted by each
reviewer individually. The interview sessions took around
30 minutes. The semi-structured interview questions were
formed as below:

1. Which types of defects were easy to detect for you?

2. Which defects were hard to detect for you?

3. Which factors do you think helped you to detect the

defects easily?

4. Which factors do you think maked it hard to detect

the defects?

This study is conducted with the contribution of four

participants who were asked to detect 17 defects seeded in

two DFDs. Since the main research question of this study is

based on the defects, the results of this study based on 68

cases (17 times 4). Additionally, this study aims to focus on

the behaviors of the participants in order to uncover the

complexity of human behavior in such a framework and

present a holistic interpretation of what is happening during

the review process. Nielsen and Landauer [16] also report

that studying with four or five subjects is enough to

understand and explain more than 80% of the phenomena.

Accordingly, in this study, the participants’ behaviors are

analyzed in depth from different dimensions. Since each

participant studied individually, we believe that this number

of subjects could provide a view for understanding the

phenomena.

443Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 465 / 679

IV. RESULTS

Table 4 shows the duration in seconds that each
participant (DPij) spent during each defect detection process.

TABLE IV. DEFECT DETECTION DURATION DATA

Defect Type Defect Dp1j Dp2j Dp3j Dp4j ADi

MP 14 993 993

I 13 386 60 678 70 299

MD 16 256 256

MD 07 145 236 191

I 12 114 347 69 177

MD 09 147 147

I 06 162 88 70 214 134

MP 01 133 113 114 120

MD 04 103 103

MD 03 89 89

I 02 6 163 47 72

I 11 45 45

I 05 36 36

MD 08

MD 10

MD 15

MD 17

As an example, in this table, Dp1 is calculated from the

observation data which shows the duration in seconds that
the participant P1 spend time for detecting the defect i (Di). It
is the duration starting from the time point of last defect
detection process until the defect detection of Di. ADi is the
average of the durations spent by each participant to detect
defect i (Di). As seen in Table 4, the defects D08, D10, D15 and
D17 were never detected. It is interesting that the defect type
of all of these defects that were not recognized by any of the
reviewers was MD type. On the other hand, most of the
defects of type I, detected in relatively less time spent (D2,
D5, D11). Similarly, the participants spent more time for
detecting defects D14 and only one participant could be able
to detect this defect.

We have analyzed this data according to the defect types,
as shown in Table 5. Accordingly, the detection rate for
missing Information (I) type of defects is calculated as
16/24=0.67. Hence, defects of type I and MP were detected
mostly; on the other hand the defects of type MD were
detected seldom.

TABLE V. DETECTED DEFECT TYPE

Defect

Type

Total

Possibilities Total Detected Detection Rate

I 24 16 0.67

MP 8 4 0.50

MD 36 6 0.17

The detection frequency Fi of defects is shown in Table
6. In this table, Fi represents the frequency of a detected
defect by participants. Its value is calculated by adding 1
point for each defect’s detection for defect i (Di). For
example, if the defect is detected by only one participant this
value is 1, if it is detected by three participants the Fi value
for that defect is calculated as 3. As seen from Table 6, four
defects 08, 10, 15 and 17 were never detected.

TABLE VI. DEFECT FREQUENCY FI

Defect Type Defect Fi

I 06 4

I 13 4

MP 01 3

I 02 3

I 12 3

MD 07 2

MD 03 1

MD 04 1

I 05 1

MD 09 1

I 11 1

MP 14 1

MD 16 1

MD 08

MD 10

MD 15

MD 17

The average frequency of defect detection according to
the defect types are given in Table 6. As seen from this table,
the MD types of defects are detected less frequently, and the
defect of type I detected most frequently. Parallel to this
finding during the interviews, three reviewers (P2, P3, P4)
reported that missing type of information were hard to detect.
For instance, P3 reported that “the missing procedures were
very hard to detect for me”. Similarly, during the interviews,
two reviewers (P1 and P2) reported that data flows were easy
to understand. For instance P2 reported that “Detecting the
data flow directions were easy. I easily detected the
incoming and outgoing data. It was also easy to decide the
data flow to each data store and which data should be read
from a data store. Detecting the data, that supposed to go to a
data-store but not shown in the design, was also easy”.
Moreover, we have asked participants about the factors that
helped them to find the defects easily. They noted that the
diagrams used to describe process were easy to detect. They
stated that the data flows and external storages were difficult
to follow in the diagrams. They said bigger and more
detailed shapes with color would have increased the
understandability of these diagrams.

V. DISCUSSION AND CONCLUSION

In this study, an experiment is conducted to analyze
defect detection performance of software engineers in
reviewing DFD diagrams. During the experiment, we had
provided materials to the participants, one week before the
experiment (Appendix A) and requested to find defects on
DFD diagrams compared to the explanations given. They
were asked to think aloud. We have recorded defect
detection duration of each participant. The results of this
study show that, missing information type defects (MP and
MD) are harder to detect than the incomplete or incorrect
type (I) of defects. Hence the defect detection frequency of
defects in average is higher for of type I defects (2.67) that
that of type MP (2.00) and type MD (1.20) defects.
Similarly, the detection rate of type I defects (0.67) is higher
than that of type MP (0.50) and type MD (0.70) defects.

444Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 466 / 679

According to the results of this study, the software
system designers may reconsider their designs especially for
the defects of type missing information, which are harder to
be detected in the future and may increase the cost of
software projects. We believe that further analysis of the
DFD defect detection process is expected to provide more
insights to the researchers, software companies, and to the
educators to improve DFD cognitive process.

REFERENCES

[1] J.H. Larkin and H.A.Simon, “Why a diagram is (sometimes)
worth ten thousand words,” Cognitive Science, 1987, vol. 11,
pp. 65-99.

[2] J. Zhang, “The nature of external representation in problem
solving,” Cognitive Science, 1997, vol. 21 i2. 179-217.

[3] B. Boehm and V.Basili, ”Software defect reduction top 10
list”, IEEE Computer, vol. 34, pp. 135–137, January. 2001.

[4] O. Laitenberger, C. Atkinson, M. Schlich, and K. El Emam,
“An experimental comparison of reading techniques for
defect detection in UML design documents,” Journal of
Systems and Software, August. 2000, vol. 53 n.2, pp. 183-
204.

[5] S. Kumaresh and R. Baskaran, “Defect analysis and
prevention for software process quality improvement,”
International Journal of Computer Applications, 2000, vol. 8
i7. 42L 47.

[6] G. Travassos, F. Shull, M. Fredericks, and V.R. Basili,
“Detecting defects in object-oriented designs: using reading
techniques to increase software quality,” ACM SIGPLAN
Notices, October. 1999, vol. 34 no. 10, pp. 47-56.

[7] R. Alur and A.Chandrashekharapuram, “Dispatch sequences
for embedded control models”, In Proc. 11th IEEE Real-Time
and Embedded Technology and Applications Symp. 2005,
vol. 11, pp. 508–518.

[8] L. Kof “Scenarios: identifying missing objects and actions by
means of computational linguistics”, In Proc 15th
International Requirements Engineering Conference, pp. 121–
130, 2007.

[9] L. Kof, R.Gacitua, and M. Rouncefield, P.Sawyer, “Ontology
and model alignment as a means for requirements validation”,
in International Conference on Software Engineering, pp. 46–
51, 2010.

[10] B.G.Hungerford, A.R.Hevner, and R.W.Collins,”Reviewing
Software Diagrams: A Cognitive Study,”, IEEE Transactions
on Software Engineering, February, 2004, vol. 30 no. 2, pp.
82-96.

[11] K.A. Ericsson and H.A.Simon, Protocol Analysis: Verbal
Reports as Data. revised edition, Bradford Books/MIT Press,
Cambridge, MA 1993.

[12] F. Chan, “The Role and Mechanism of Analogical Transfers
in Novices' Data Flow Diagram Problem Solving: The Effects
of an Explicit Hint and Alternative Training Methods, Senior
Honors Thesis, University of Hawaii, 2014.

[13] V. Repa, Object-Oriented Analysis with Data Flow Diagram.
InInformation Systems Development (pp. 419-430), 2013,
Springer, New York.

[14] S. Yuwen and K.Wang, A Method of Data Flow Diagram
Drawing Based on Word Segmentation Technique. In Frontier
and Future Development of Information Technology in
Medicine and Education, pp. 3269-3274, 2014, Springer,
Netherlands.

[15] T. Moser and S.Biffl, “Semantic tool interoperability for
engineering manufacturing systems” In Proc. Emerging

Technologies and Factory Automation (ETFA), IEEE
Conference, pp. 1-8, 2010.

[16] J. Nielsen and T.K. Landauer, “A mathematical model of the
finding of usability problems”, Proc. ACM INTERCHI'93
Conference, pp. 206-213, 1993.

APPENDIX A

Problem Definition

Assume Mavi Company has business in pipe sector. The
company’s work and process descriptions are given below.

There are several types of employees working for Mavi
Company, such as managers, sales staff and security guards.
Telephones are shared and several employees may have the
same office address. Security guards may be assigned to both
buildings and car parks. Sales staff provides consultation
services to customers by phone or face to face. Customers
are assigned to exactly two salespersons and employees
work with other employees in teams.

Each department can have more than one unit of the
company. Personnel works in the units and each employee
can work in one unit. Unit numbers and unit names are only
defined uniquely in that department.

Customers can make job requests to Mavi Company.
Mavi Company may reject this request, or if accepts, it
prepares a job proposal and sends it to the customer.

When a job proposal is prepared, necessary parts’
information is retrieved from parts file. Unit labor costs for
parts are retrieved from job costing section. In this way,
prepared job proposal is sent to the customer. Customer may
accept or reject the proposal. If the customer rejects it, job
proposal is closed. If accepted, the proposal is signed and
the first payment is withdrawal.

Accepted job proposal is used to create a work order to
follow the request in the company. For each customer’s each
job proposal, a single account is opened. A manager is
appointed for each work order. Some work orders may
include several customers. Orders associated with each other,
brought together more than one job are classified as a new
project. First invoice is sent to the customer at this step.

After the work orders are prepared, the necessary parts
are controlled from the stock. If the parts do not exist in the
stock, purchase is made using the amount information.
According to the purchasing information, suppliers are
identified; invoice is prepared and sent to the supplier. When
the supplier approves the invoice, date and time is recorded.
Each manufacturer must have a separate account. The
supplier should provide invoice for the manufactured parts.
This information is used to update the supplier info. Invoices
are controlled as the parts are delivered. After the delivery,
part information is updated in the stock.

Special promotional campaign is created for important
projects. These campaigns are handled either by Mavi
Company, or by a local organization like a school or an art
festival. Projects cannot be performed by both campaigns.
Each campaign introduces a single project.

445Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 467 / 679

SOME DESCRIPTIONS ABOUT THE RESEARCH

1. Assume you are employed to analyze the software

system of Mavi Company. In this document, you

are given information about the business process of

Mavi Company.

2. You are required to use this information in

analyzing the system to find the possible

errors/mismatches. These errors/mismatches may

exist because of incomplete or incorrect

requirements.

3. The errors/mismatches you found should be based

on the system definition and the other supporting

documents presented to you earlier. Assume the

document describes the company processes

correctly.

4. In this study, you are not required to create new

solutions to solve the problems or not required to

fix these problems.

5. You are given 2 hours to find the induced

errors/mismatches. Please adjust your time

accordingly.

6. Identify errors/mismatches and list them on the

forms provided. To describe the error/mismatch, if

possible, please specify the related process(es) and

data-flow information. If not possible, please use

most appropriate way to explain the

error/mismatch.

7. You can use any method or technique to find the

Identify errors/mismatches. However, during the

process, please don’t interact with anyone else.

8. In identifying the errors/mismatches, you can

review the documents provided to you as you want.

9. Please, try to think loudly as you are analyzing the

system design. While you are reading and

interpreting the documents, try to talk loudly.

please, please. In particular, when you identify

errors/mismatches, please indicate your findings

loudly.

DFD Notations

1. The DFD diagrams used in this study are developed by

Visio. The processes are represented by circles; the data

flow is represented through arrows as described below.

2. Data storage is represented as below:

3. External entity is represented as below:

4. In this study, you are given Context diagram (Level-0

DFD) and DFD of two processes in detail (Proposal

Preparation process and Stock control/ Proposal process).

5. There are 17 defects in DFD diagrams These can be

missing process, Missing Dataflow/information, Incorrect/

Incomplete data flow type defects

6. The top level process definitions are given in the figure

below. Proposal Preparation and Stock control/ Proposal

processes’ DFD will be given during the experiment.

446Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 468 / 679

Using Expert Systems for Coaching and Mentoring ICT Project Managers

Robert T. Hans
Department of Software Engineering
Tshwane University of Technology

Pretoria, South Africa
hansr@tut.ac.za

Ernest Mnkandla
School of Computing

University of South Africa
Florida, South Africa
mnkane@unisa.ac.za

Abstract— Several risks, dynamics and challenges,
including lack of skilled and experienced personnel, mobility
associated with project management experts and tough
economic conditions are just some of many issues that
information and communications technology (ICT)
organizations in the 21st century have to deal with.
Furthermore, these organizations are under constant pressure
to improve project success rate which are unacceptably very
low. Project managers who are ineffective in project leadership
due to poor project skills pose a serious risk to project success.
Some research studies indicate that the demand for ICT
project managers with proper knowledge and expertise is ever
increasing and the supply is nowhere near close in meeting the
demand. As part of providing a solution to the abovementioned
challenges and help equip ICT project managers with correct
skills through mentoring and coaching, this research study is
proposing the use of expert systems (ES). This proposal is a
response to calls that have been made by other studies in
project management that new approaches of developing
project managers must be pursued. The use of expert systems
to equip ICT project managers with the right skills and
expertise will help advance and improve their software project
management expertise. Just like ‘intelligent organizations’ that
use expert systems to improve their decision-making processes
in order to advance business efficiency and competitiveness so
should expert systems be used to coach and mentor less
experienced project managers. This research paper argues that
the use of ES for coaching and mentoring yield many benefits
for organizations.

Keywords- expert system; intelligence system; project

managers; coaching; mentoring; skills.

I. INTRODUCTION

Several risks, dynamics and challenges, such as, lack of
skilled and experienced personnel, volatility of human
experts [1] and tough economic conditions create a challenge
for many information and communications technology (ICT)
organizations in the 21st century. These ICT organizations
are under constant pressure to improve project success rate
through, amongst other things, the use of experienced project
managers who have great influence on project success [2] to
run their projects. These are some of the challenges that
organizations in the ICT sector have to contend with in their
quest to deliver value to both stakeholders and shareholders.

According to Schwalbe [3] the project management
framework consists of nine knowledge areas, which describe
the key competencies that project managers should possess
in all the nine knowledge areas in order to deliver on
projects’ mandates. However, a study by Hans et al. [4]

shows that ICT project managers in South Africa lack some
key project management competencies, and these include
problem-solving and leadership expertise. Project managers
who are ineffective in project leadership due to poor project
skills pose a serious risk to project success [5][6]. Project
managers may lack appropriate expertise due to a number of
reasons. They may lack skills because of not being properly
trained or mentored and were just appointed based on their
previous excellent performance in their former positions.

The above-mentioned challenges make it necessary for
ICT organizations to rethink their business practices of
training and mentoring their project managers. Moreover,
talent development for project and program managers
remains a top concern in organizations. This comes as no
surprise given that research studies indicate that experience
and project management expertise are key in delivering
successful projects [3][7][8]. Metaxiotis [9] indicates that the
demand for ICT project managers with proper knowledge
and expertise is ever increasing and its supply is nowhere
near close in meeting the demand. As part of providing a
solution in equipping ICT project managers with appropriate
skills through mentoring and coaching, this research study is
proposing the use of expert systems. The proposed solution
will result in project managers improving their software
project management expertise. The use of the proposed ES
would further address the skewed supply-demand ratio of
knowledge-based resources – the supply of skilled project
managers will be improved. It will also enable the training of
project managers in the real-world project environment as
requested by Ramazani et al. [10]. The use of the proposed
ES will also relieve project management experts from the
duties of mentoring and coaching which they sometimes do
reluctantly [11]. Ramazani et al. [10] are calling for fresh
approaches in the development of project managers, and this
paper’s proposal intends to fill that gap by proposing a new
approach in training, coaching, mentoring and development
of project managers through the use of expert systems. Even
though expert systems have been used in other areas of the
project management discipline, to the best knowledge of the
authors of this paper expert systems have not been used for
the development of project managers. Therefore, this
research paper proposes a novel approach to use expert
systems to provide the above mentioned services and thus
address the challenges which are plaguing the project
management discipline.

The remainder of this research paper proceeds as follows.
Section II presents a research methodology used in this

447Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 469 / 679

study. Section III discusses expert systems and their
application. Section IV presents a discussion on using expert
systems for coaching and mentoring ICT project managers.
Sections V presents the architectural structure of the
proposed ES, while Section VI discusses value add which is
derived from using expert systems for such initiatives.
Finally, conclusions, limitations of this research study, and
directions for future studies are presented.

II. RESEARCH METHODOLOGY USED

As pointed out previously, ICT project managers in
South Africa lack some key project management
competencies. This is a research problem which this study
seeks to address. A research question which will assist in
finding a suitable solution to the abovementioned problem is
the following:

Can expert systems be used for equipping ICT project
managers with appropriate skills?
An approach used by this research study to answer the

abovementioned research question is through the exploration
of relevant literature with the aim of establishing similar
cases where expert systems have been successfully used.
There is therefore neither data collection nor data analysis
performed in this research study.

III. EXPERT SYSTEMS: THEORY AND PRACTICE

Organizations are continuously searching for innovative
methods of reducing costs, improving decision making
processes and automating or simplifying routine tasks.
Therefore, organizational survival depends on finding ways
and practices of adapting to the continuous changing
competitive environment. Expert systems (ES) or intelligent
systems are one type of IT tools that organizations turned to
for addressing such challenges [12]. Avram [13] defines
expert systems as:

“Systems that use knowledge-based techniques to
support human decision-making, learning and action.”

ES contains knowledge and experience of experts in a
specific domain that anyone can use in solving problems
[14]. Expert systems are a branch or subset of artificial
intelligence [15][16]. Intelligent systems are considered
‘intelligent’ because they can solve a problem in a way
similar to a human expert [17].

Expert systems have found application in a wide range
of fields, such as manufacturing, business, finance, airline,
law, computer science, geology, education, mathematics and
medicine [16][18][19][20]. With each field, expert systems
have been used to solve different range of problems. For
example, some companies have implemented expert systems
to assist in performance appraisal processes [21]. Others
have used artificial intelligent systems for tutoring
undergraduate auditing and engineering students at various
universities [22]. Jenicke [17] cites three business
organizations, namely, Digital Equipment Corporation,
General Electric and Coopers & Lybrand that have
developed and are using expert systems in their respective
business domains. Digital Equipment Corporation uses its
expert system called XCON [23] for configuring VAX

systems which handle customer orders. XCON has resulted
in an improved customer order processing for the company.
General Electric uses an expect system called DELTA for
diagnosing and repairing the company’s diesel-electric
vehicles which are used for railroad maintenance [17]. On
the other hand, Coopers & Lybrand uses its expert system
called ExpertTAX [17] for providing expert advice to the
organization’s accountants so that they may in turn respond
intelligently to clients’ tax related questions. The system
acts as an intelligent advisor to the company’s employees
who seek its guidance for decision making. ExpertTAX
stores the expertise of the company’s experienced
accountants in its knowledge base component. Metaxiotis
[9] also makes mention of organizations, such as Singular
and the Portuguese Railways that have successfully
implemented expert systems in their business operations.
The discussion above illustrates that an ES may be used to
position an organization in a better strategic position in the
marketplace.

The literature has many research studies which cite the
usefulness of expert systems in assisting in decision making.
Expert systems may also play an important role in retaining
competitive project management knowledge which may be
transferred to less experienced project managers. This
assertion is also supported by Jenicke [17] who states that
expert systems are suitable for dissemination of knowledge
and expertise within their areas of application. The use of
intelligent systems for coaching and mentoring purposes has
become imperative because the supply of experienced
project managers with correct expertise is in short supply
[24] and some project managers lack some key project
management competencies. The use of expert systems for
equipping ICT project managers with appropriate skills
would help improve the supply of project managers with the
right skills set. Moreover, this proposal is also in line with
what other previous studies have established in terms of
using computer-based training for enriching employees, as
well as learners with much needed knowledge [5][22].

The proposed approach in developing ICT project
managers is in accordance with the Guide to the Project
Management Body of Knowledge [25] framework for
managing project human resources. The PMBOK Guide
(2012:105) states:

“Individual development (managerial and technical) is
the foundation necessary to develop the team.”

 Such development includes enhancing skills, knowledge
and capabilities of team members through, for example,
computer-based training [25]. Furthermore, according to the
PMBOK Guide (2012) one of the primary functions of a
project management office (PMO) is to ensure coaching,
training and mentoring of project managers. This research
paper is therefore in direct support of PMO functions.

Notwithstanding the differences in the role that a project
manager plays under PRINCE2 and PMBOK [26] a project
manager is still a key project stakeholder whose primary
responsibility is to steer a project to success. Such an
expectation therefore requires that a project manager be
properly skilled and this is the aim of this research study.

448Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 470 / 679

IV. USING EXPERT SYSTEMS TO COACH AND MENTOR

ICT PROJECT MANAGERS

The failure rate of projects is still unacceptably high and
several studies have highlighted these cases of failed
projects. On the other hand, Schwalbe [3] indicates that 97%
of successful projects were carried out by experienced
project managers who have correct project management
skills. However, as mentioned above the sad part is that
such project managers are in short supply [24] and
therefore, these findings further back the call made by this
paper for the use of expert systems to improve the situation.

It was mentioned above that expert systems have been
used for tutoring students and therefore, using them for
mentoring and coaching project managers would not be a
wrong concept. Expert systems may either use rule-based
(theory-based) or case-based (experienced-based) form of
reasoning in solving problems [22]. Expert systems which
make use of both rule-based and case-based techniques
would prove useful in training ICT project managers. This
assertion is based on the fact that people solve problems by
either using prior cases or rules depending on the task being
solved [22].

The use of ES for coaching and mentoring initiatives
would be beneficial to an organization and to the mentored
individuals in many ways. Firstly, it would ensure that
valuable expert knowledge is kept and preserved in the
knowledge base of an expert system for future use. Such
practical real-world knowledge from experts provides
aspiring ICT project managers with valuable learning
experiences [27]. In the case of project management, such
knowledge would pertain to project areas, such as [3][28]:
 knowledge in performing trade-off amongst project

triple constraint [3],
 knowledge in project risk management,
 knowledge in scope management, as well as
 knowledge in other areas that pertain to the eleven

knowledge areas of project management [28].
Furthermore, the knowledge base of the ES would also
include expert knowledge in project management areas in
which South African project managers were found to be
lacking key expertise as identified by Hans et al. [4].

The lack of project management expertise by project
managers in the abovementioned areas [5] have contributed
to the failure of ICT projects [29]. For, instance, a study by
Standish Group [30] indicates that less than a third of
projects finish on time and within budget. This indicates that
project managers have problems in dealing with two of the
three project constraints. Another study by Ibbs et al. [28]
shows that organizations in the ICT industry are struggling in
managing project risks. Although this has been a well-known
problem, little has been done by organizations to address it
[3]. Therefore, the use of an expert system for mentoring and
coaching project managers in this knowledge area will go a
long way in addressing this issue. Project scope management
is another key area that needs project managers to pay
attention to. Schwalbe [3] indicates that proper project scope
management is a contributing factor to project success. The

discussion above justifies the inclusion of project knowledge
on the stipulated areas above in the knowledge base of the
ES expert system.

Secondly, once the desired knowledge has been kept in
the ES knowledge base it can then be used to train, coach
and mentor both inexperienced and aspiring project
managers that an organization wants to groom. When an
inexperienced project manager uses an expert system, he/she
is able to learn (infer) how the system arrived at a particular
correct decision. Through such interactions with an ES, a
project manager is able to gain valuable real-world
knowledge and experience. Furthermore, such knowledge
transfer forms part of organizational culture transfer to ‘new’
project managers. The initiative of using ES to train, coach
and mentor novice project managers would be playing a
critical and imperative role of grooming new project
managers in-house and thus ensuring and perpetuating
consistency in the way an organization manages its projects.
Previous research studies show that organizations which
groom project managers internally are amongst those that
run successful projects [3]. Therefore, expert systems would
be playing a role of transferring knowledge and the problem-
solving strategies of experts to less experienced project
managers [22].

V. ARCHITECTURE OF THE PROPOSED EXPERT SYSTEM

According to Metaxiotis [9] and Jenicke [17], expert
systems have the following three basic main components:
 Knowledge base – The knowledge base contains the

knowledge needed for solving a specific problem. In
order for ES to solve human problems, human expert
knowledge should be captured in a knowledge base
[16]. In this case an ICT expert project manager’s
knowledge will be captured into the knowledge base of
the proposed ES. The previous section mentioned
some project management knowledge that should form
part of this component. The knowledge base may be
in various forms, such as, facts, theories, heuristics or
relationships. Typically, the knowledge base is
implemented in IF-THEN rules [16]. The development
of this component of an expert system is the most
challenging one [14].

 Inference engine – This component takes the input
that has been entered by the user through user interface
and then manipulates knowledge base using the
inference control procedure [17]. The control
procedure determines the order in which the
knowledge base will be searched [9]. It may start with
a set of conditions and then establish a conclusion or it
may start with a conclusion and then search the
knowledge base for conditions that meet the
conclusion [9][16][17].

 User interface – Through this component a novice
project manager is able to interact with the expert
system. He/she is able to ask the ES to test some
conclusions or enter information which the system will
use to find conclusions related to the entered

449Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 471 / 679

information [16]. In return, the expert system is able to
present its results and possibly prompt the user for
additional information via the same user interface. An
expert project manager also uses this user interface to
capture project management knowledge into the
knowledge base.

Figure 1 depicts the components of the architecture of
the proposed expert system, as discussed above.

VI. THE VALUE OF USING ES TO COACH AND MENTOR

ICT PROJECT MANAGERS

Information technology has become an indispensable
factor for every organization [31]. ES as an integral part of
IT provides an organization with an excellent opportunity of
managing knowledge in project management and also of
enabling knowledge transfer to inexperienced project
managers. Metaxiotis [9] stresses the importance of using
information technology by organizations in order to gain a
competitive advantage. Therefore, an organization can
obtain a competitive advantage from the use of ES through
knowledge retention (knowledge captured in ES) and
knowledge transfer (through using ES to coach and mentor
inexperienced project managers). A number of authors have
noted some benefits of using expert systems for training
human resources, and such benefits include:
 Continuous availability of services – services

provided by expert systems are always available
anywhere, unlike when such services are offered by a
human expert which might not be available or their
availability may be confined to a specific location [16].

 Costs savings. The maintenance of human expert
knowledge through the conventional way (for
example, training a new project manager) may be more
expensive. Therefore, the use of ES for training,
mentoring and coaching would result in costs savings
for organizations, a view also supported by both [17]
and [24]. The usage of ES reduces the training and
knowledge transfer cycle amongst staff members [9].

 Consistency - expert systems apply reasoning
consistently without any biasness unlike human
beings. This would ensure that consistency is
‘transferred’ to mentored managers. That is, ES
teaches project managers consistency in their
reasoning process [9].

 Keeping lessons learned and updating knowledge
base – with case-based expert systems current
decisions and incidents may be stored for statistical
and future case-based reasoning [14].

 Actively creating intellectual capital – the use of ES
creates organizational knowledge which will enable
the business to compete effectively. It facilitates the
continuous training of new project managers for an
organization. This contributes to the continuous
availability of human resource reserves [32].

 Promoting a learning culture in an organization
and empowering project managers – by adopting ES
an organization does not only remain in the cycle of
knowledge creation and knowledge sharing [17][32]
but also becomes a learning organization and at the
same time empowering its project managers.

 Figure 1. An architecture of the proposed expert system (adapted from [9][17])

Seek advice

Conclusion

Knowledge base
(Facts, Experience, Opinions,

Heuristics)

Inference engine
(Reasoning mechanism)

User interface
(Consultation, Feedback/Advice,

Conclusions)

External interfaces
(Databases, and other

external programs)

Transfer of
knowledge

Storing
knowledge

R
eq

ue
st

da

ta

Find conclusion
based on the query

D
at

a

Q
ue

ry

da
ta

So
lu

ti
on

 /
A

dv
ic

e

Novice Project
manager

ICT Project
expert

450Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 472 / 679

 Enabling on the job training (OJT) – On the job
training is very important for producing highly
competent employees [33] and would be employees. In
a competitive business environment where
organization cannot afford to send away employees for
training or they may have no capacity to provide such
training [34], the usage of expert systems for training
purposes enables such organizations to kill two birds
with one stone – allows companies to be productive
and also enables them to equip employees with much
needed skills.

 Provide learning anywhere and anytime – ES enable
any employee to learn anytime, and anywhere [35].

The use of expert systems further ensures efficient
transfer of knowledge without costing an organization too
much money and time. It also offers trainees a hands-on
experience rather than being passive learners. This kind of
training is consistent and repeatable, and these are the
elements which are missing with training offered by human
agents.

Over and above of the benefits mentioned on the usage
of expert systems, herewith below are some of the specific
benefits that accrue from the implementation of the
proposed expert system for mentoring and coaching ICT
project managers:
 Improvement of project management efficiency.

Given the short supply of ICT project managers with
appropriate and much needed project management
skills [9][34], the proposed ES will not only ensure
continuous supply of such managers but will also
contribute to the better management of ICT projects.
The proposed ES will focus on equipping project
managers with the identified lacking skills which
include problem-solving expertise, critical thinking,
leadership, tools expertise, etc. [4][10]. In other words,
the proposed ES will be aimed at mentoring and
coaching ICT project managers on the identified
critical skills gaps in project management.

 Meeting both the ‘demand and supply sides’ of
knowledgeable ICT project managers - It was
indicated earlier in this paper that currently there is a
skewed supply-demand ratio of knowledgeable ICT
project managers. The use of the proposed ES will
seek to balance this unfavorable supply-demand ratio.

 Facilitation of sharing of specific project
management know-how – Captured ICT expert
know-how will be transferred through the proposed ES
to new or novice project managers. As indicated before
in this paper such project management knowledge is
critical to project success and project managers with
such knowledge are in short supply and thus the use of
the proposed ES for addressing this will be a welcome
relief.

 Equipping project managers in the real-world
context – Project managers will learn project
management skills in the real world, as the expert
system will be based on real life experiences of project
management experts. A study by Ramazani et al. [10]

highlights the need to train project managers in the
environment and context they are likely to encounter at
work.

 Assists in overcoming some of the barriers
encountered by conventional knowledge sharing –
There are various barriers to knowledge sharing,
including lack of socialization among staff members
within organizations. Such a barrier inhibits transfer of
tacit knowledge between staff members, however the
use of the proposed ES would overcome such barriers
as knowledge would be residing in the ES system.

Furthermore, the use of the proposed ES to part
knowledge to new project managers lessens the approach of
learning through trial and error that project managers are
sometimes subjected to.

VII. CONCLUSION AND FUTURE WORK

If organizations hope to address the plight of ICT
projects’ poor track record and the lack of skilled project
managers, then they need to change their development
strategies of project managers. These sentiments have been
echoed by [10] who state that new approaches are needed in
developing project managers. According to Kilkelly [24],

“Project management is complex, and so to create good
 project managers and, subsequently, sound projects, it is

 critical to get the development right”.
The use of the proposed expert system for training,
mentoring and coaching new inexperienced ICT project
managers is one way of getting the development strategy
right as well as proposing a new way of training project
managers as called by Ramazani et al. [10]. The usage of an
expert system enables organizations to promote and
maintain excellence through knowledge management,
coaching and mentoring of their future project managers
with the aim of creating a better future for the stakeholders.

The discussion presented above has attempted to answer
the question of whether expert systems can be used to equip
ICT project managers with much needed skills in project
management. This research paper has argued that the use of
expert systems for coaching and mentoring new and novice
ICT project managers yields many benefits for ICT
organizations, with the main benefit being the enablement of
the transference of much needed project management know-
how between expert and novice project managers.

This research paper is part of the PhD research work of
the first author, where he intends to develop real-time
interactive project management intelligence (PMInt) tool
which is modelled after business intelligent tools [36]. Once
the PMInt tool has been developed, it will then be tested for
its effectiveness in improving decision making.

The usefulness of the proposed expert system for
coaching and mentoring novice information and
communications technology project managers needs to be
tested. The first challenge though is getting participation of
ICT project management experts when the proposed expert
system is developed. The experts might view the system as
meant to replace them [37] and this may lead to their lack of
participation in the development of the system. Secondly,

451Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 473 / 679

the complexity and exorbitant costs associated with the
development of expert systems [11] might be a challenge for
some organizations.

REFERENCES
[1] S. Kutti, B. Garner, and A. Ghosal, "Modelling expert

resource management systems", Kybernetes, vol. 28, issue 4,
1999, pp. 385-406.

[2] C. Standing, A. Guilfoyle, C. Lin, and P. E. D. Love, “The
attribution of success and failure in IT projects”, Industrial
Management & Data Systems, vol. 1061, issue 8, 2006, pp.
1148 – 1165.

[3] K. Schwalbe, Information Technology Project Management,
6th ed., USA: Thomson Course Technology, 2011.

[4] R.T. Hans and P.M.D. Rwelamila, “Knowledge Base of
Project Managers in the South African ICT Sector”,
Computer Science and Information Technology, vol 2, vol. 1,
January, 2012, pp. 455-478.

[5] L.A. Kappelman, R. Mckeeman, and L Zhang, “Early
warning signs of IT project failure: The dominant dozen”,
EDPACS, ABI/INOFRM Global, vol. 35, issue 1, 2007, pp.
1-10.

[6] L. Tichy, and T Bascom, “The Business End of IT project
failure”, Mortgage Banking, ABI/INOFRM Global, vol. 68,
issue 6, 2008, pp. 28-35.

[7] B. Little, “The principles of successful project management”,
Human Resource Management International Digest, vol. 19,
issue 7, 2011, pp. 36-39.

[8] J. Johnson, K.D. Boucher, K. Connors, and J. Robinson,
“Collaboration: Development & Management”, Software
Magazine – February/March, pp. 1-9, 2001.

[9] K. Metaxiotis, “Leveraging expert systems technology to
improve service industry”, European Business Review, vol.
17, issue 3, 2005, pp. 232-241.

[10] J. Ramazani and G. Jergeas, “Project managers and the
journey from good to great: The benefits of investing in
project management training and education”,
International Journal of Project Management,
http://dx.doi.org/10.1016/j.ijproman.2014.03.012, article in
press.

[11] K. Annaiahshetty and N. Prasad, “Expert System for Multiple
Domain Experts Knowledge Acquisition in Software Design
and Development”, 15th International Conference on
Computer Modelling and Simulation, 2013, pp. 196-201.

[12] T.A. Byrd, F. Shieh, and T.E. Marshall, “The development
and implications of the COMMU expert system”, Industrial
Management & Data Systems, vol. 96, issue 3, 1996, pp. 11-
16.

[13] G. Avram, “Empirical Study on Knowledge Based Systems”,
Electronic Journal of Information Systems Evaluation, vol. 8,
issue 1, 2005, pp. 11-20.

[14] M.A. Mach and A. M. Salem, “Intelligence Techniques for
business intelligence in healthcare”, IEEE Computer Society,
10th International Conference Intelligent Systems Design and
Applications, 2010, pp. 545-550.

[15] B.L. Raggad and M.L. Gargano, “Expert System: defection
and perfection”, Logistics Information Management, vol. 12,
issue 5, 1999, pp. 395 – 406.

[16] I.M. Shaluf and F. Ahamadun, “Technological emergencies
expert systems (TEES)”. Disaster Prevention and
Management, vol. 15, issue 3, 2006, pp. 414 -424.

[17] L.O. Jenicke, “The Expert Systems as a Decision Support
Tool”, American Journal of Business, vol. 3, issue 1, 1998,
pp. 47-52.

[18] E.T. Lee, “Intelligent factories using fuzzy expert systems”.
Kybernetes MCB University Press. vol. 25, issue 3, 1996, pp.
51-55.

[19] D. Corney, “Food bytes: intelligent systems in the food
industry”, British Food Journal, vol. 104, issue 10, 2002, pp.
787-805.

[20] H. Wu, Y. Liu, Y. Ding, and Y. Qiu, "Fault diagnosis expert
system for modern commercial aircraft”, Aircraft Engineering
and Aerospace Technology, vol. 76, issue 4, 2004, pp. 398-
403.

[21] M.G. Martinsons, “Human Resource Management
Applications Knowledge-based Systems”, International
Journal of Information Management, vol. 17, issue 1, 1997,
pp. 35-53.

[22] N. Wongpinunwatana, C. Ferguson, and P. Bowen, “An
experimental investigation of the effects of artificial
intelligence systems on the training of novice auditors”
Managerial Auditing Journal, vol. 15, issue 6, 2000, pp. 306-
318.

[23] J. Liebowitz, "Knowledge-based/expert systems technology in
life support systems", Kybernetes, vol. 26, issue 5, 1997, pp.
555 – 573.

[24] E. Kilkelly, “Blended learning: pathways to effective project
management”, Development and learning in organizations,
vol. 23, issue 1, 2009, pp. 19-21.

[25] Project Management Institute, A Guide to the Project
Management Body of Knowledge (PMBOK Guide), 5th ed.,
2012.

[26] R.M. Wideman, “Comparing PRINCE2 with PMBoK®”,
AEW Services, 2002, pp. 1-11.

[27] J.B. Arbaug, “Introduction: Project Management Education:
Emerging Tools, Techniques, and Topics”, Academy of
Management Learning & Education, vol. 6, issue 4, 2007, pp.
568-569.

[28] C. W. Ibbs and Y. H. Kwak, “Assessing Project Management
Maturity”, Project Management Journal, vol. 31, issue 1,
2000, pp. 32 - 43.

[29] L. Tichy, and T. Bascom, “The Business End of IT Project
Failure”, Mortgage Banking, pp. 28, 2008.

[30] Standish Group, “Chaos Report”, West Yarmouth, MA: The
Standish Group International Inc, 2004.

[31] S. Indrajani and Y. Lisanti, “Business Intelligence Design on
The Company”, IEEE Computer Society, Fourth International
Conference on e-Education, Entertainment and e-
Management, 2011, pp. 307-310.

[32] D.P. Nawinna, “Fostering Business Intelligence in Banks
through Knowledge Management: A case of Sri Lanka”,
Proceedings of the International Conference on Business
Management & Information Systems, 2012, pp. 377-385.

[33] T. Nakamura, Y. Kitaura, H. Maruyama, and A. Takashima,
“Analysis of Learners’ Behavior in Role-play Training for
Project Management Education”, Ninth IEEE International
Conference on Advanced Learning Technologies, 2009, pp.
144-146.

[34] Y. Tachikawa, H. Maruyama, T. Nakamura, and A.
Takashima, “A Method for Evaluating Project Management
Competency Acquired from Role-Play Training”, IEEE
Global Engineering Education Conference, 2013, pp. 162-
170.

[35] Z. Chunua, “E-Learning: The New Approach for Knowledge
Management (KM)”, International Conference on Computer
Science and Software Engineering, 2008, pp. 291-294.

[36] R.T. Hans and E. Mnkandla, “Modeling Software
Engineering Projects as a Business”, IEEE AFRICON 2013
Conference, 2013, pp. 1172-1176.

[37] T.A. Byrd, “Expert systems implementation: interviews with
knowledge engineers”, Industrial Management & Data
Systems, vol. 95, issue 10, 1995, pp. 3-7.

452Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 474 / 679

Towards Autonomic Context-Aware Computing for SaaS Through Variability

Management Mechanisms

Asmae Benali, Bouchra El Asri and Houda Kriouile

IMS Team, SIME Laboratory

ENSIAS, Mohammed V University

Rabat, Morocco

{asmae.benali, houda.kriouile}@um5s.net.ma

elasri@ensias.ma

 Abstract—Owing to the multi-tenancy of Software-as-a-

Service applications, the management of their resources

becomes a challenge and a crucial task in order to provide

highly configurable applications to thousands of tenants in a

shared and heterogeneous cloud environment. They need

dynamic context-aware configuration and intelligent strategies

for provisioning available and cost-efficient services. In this

sense, this paper identifies open issues in autonomic resource

provisioning and shows innovative management techniques for

these applications on cloud. Indeed, our work will focus on

implementing an autonomic management artifact of services

variability concerning the context. In this paper, we highlight

our process for the development of autonomic context-aware to
manage the SaaS variability.

 Keywords--multi-tenancy; context-aware; autonomic system;
SPL; SaaS

I. INTRODUCTION

The emergence of SaaS (Software-as-a-Service) provision
and cloud computing in general had recently a tremendous
impact on corporate information technology.
 While the implementation and successful operation of
powerful information systems continues to be a corner stone
of success in modern enterprises, the ability to acquire IT
(Information Technology) infrastructure, software, or
platforms on a pay-as-you-go basis has opened a new avenue
for optimizing operational costs and processes. Cloud
computing as defined by the NIST [1] as an IT model that
allows network to have an easy access to a shared set of
configurable computing resources. Cloud Computing
providers offer their services in three basic models: SaaS,
PaaS (Platform-as-a-Service) and IaaS (Infrastructure-as-a-
Service).
 A SaaS application is hosted by a provider in the cloud,
rented to multiple tenants and accessed by the tenants’ users
over the Internet [2]. Also, application resources are shared
among tenants. In the provisioning of a SaaS application,
various stakeholders with different objectives are involved,
i.e., providers of all cloud stack layers as well as tenants and
their users [1].
 Hence, an autonomic and dynamic configuration
management is necessary in order to offer these highly
configurable SaaS applications.
 Some configuration steps, e.g., performed by tenants, are
independent from each other. However, others are dependent,

e.g., tenant’s configuration choices depend on the pre-
configuration of the provider. Thus, these later depend on the
context-aware of the providers.
 In addition, stakeholders’ objectives may change over
time, e.g., if a tenant decides to change the tenancy contract.
Thus, the configuration process needs to support
reconfiguration of stakeholder pre-configurations and
subsequent ones being further affected.
 Our ongoing works are twofold. Firstly, we define
context-aware for a configuration management of SaaS
applications. Secondly, we suggest an autonomic
configuration management based on SPLE (Software Product
Line Engineering) [3].

The structure of this paper is as follows. We describe the
background in Sections II and III. Then, we show our
motivations in Section IV. Section V depicts our futures
contributions. In Section VI, we present the related work and
the state-of-art. Finally, we conclude this paper in Section
VII.

II. VARIABILITY-AWARE SYSTEM

 Variability is an ability of software artifacts that allows

them to be extended, modified, customized or configured to
meet specific needs [4]. In this section, we discuss, in

general, the literature concerning systems based on variable

modules. Several works have been proposed. We have

classified them according to the different phases of software

engineering, namely, elicitation time, design time, compile

time and binding time. The system variability may occur in all

these phases [5].

A. Elicitation Time

 It is precisely about managing the variability at the

customer’s requirements level, examining their priorities and

making appropriate choices. A variety of requirement

approaches have been proposed in recent works. Barney et al.

[6] showed that the management of software product value

depends on the context in which the product exists.

B. Design Time

 At design time, all variants and variations points are

defined in the software architecture or in a complementary

feature tree or table. Several approaches were proposed in this

phase to model software product lines by using feature

models starting with the FODA (Feature Oriented Domain

453Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 475 / 679

Analysis) approach [7]. This approach aims at capturing the

commonalities and differences points at requirement level.

C. Compilation Time

 During the compilation time, the variability described in

the architecture must be compiled in the software components

(e.g., core assets in a product line) by means of a variety of

programming techniques. Cardelli et al. [8] proposed a

framework where each module is separately compiled to a

self-contained entity and showed that this separation makes it

possible to link safely the compatible modules together.

D. Binding Time

 Binding time is a property of variation points to delay the

design decisions to a later stage, as new requirements or

different context conditions may require concretize the

variability at any time after design time. Trummer [9]

introduced a corresponding data model that is based upon the

Café (Cloud Application Framework) model. Applications

are composed out of components that may be provisioned
separately.

III. CONTEXT-AWARE SYSTEM

 An understanding of how context can be used will help

us determine what context-aware behaviors to support in our

future framework [5].

A. Context

 Before specifying our own definition of context to use, we

will look at how researchers have defined context in their own

work. The first work that introduced the term ‘context-aware’

was done by Schilit and Theimer [10]. They defined context

as location, identities of nearby people and objects, and

changes to those objects. Dey et al. [11] defined context

as:”... any information that can be used to characterize the

situation of an entity. An entity is a person, place or object

that is considered relevant to the interaction between a user

and an application, including the user and applications

themselves.”
 In our work, we will adopt this definition because it

allows context to be either explicitly or implicitly indicated by

the user.

B. Context-Aware System

 The first research investigation of context-aware

computing was discussed by Want et al. [12] in 1992. Since
then, numerous approaches attempts to define context-aware

computing were appeared. Hull et al. [13] defined context-

aware computing to be the ability of computing devices to

detect and sense, interpret and respond to aspects of a user's

local environment and the computing devices themselves.

Dey and Abowd [14] defined Context-Aware as:”A system is

context-aware if it uses context to provide relevant

information and/or services to the user, where relevancy

depends on the user’s task”. In our work, we will adopt this

definition because it remains the most generic.

IV. MOTIVATIONS: THE NEED OF AUTONOMIC COMPUTING

FOR THE SAAS ACCORDING TO THE TENANT-CONTEXT

 SPL have become a common skill for creating software

systems that share a common set of commonalities and

variabilities that distinguish specific products, thus promoting

the development of a family of related products.

 Deploying an application in the cloud provides to its owner

many advantages: cost reduction, scalability, high availability,

etc. However, the migration of an application or the

development of a new service in the cloud is not trivial

because of the large number of functional and non-functional

requirements to deal with [5].

 Figure 1. Configuration and instansiation of SaaS application.

 We show in Figure 1 how a multi-tenant SaaS application

is configured. Tenancy contracts define the provisioned

application functionality as well as QoS (Quality of Service)

guarantees. Thus, an Extended domain Feature Model (EFM)

[15] with attributes is convenient to express this variability
and a staged configuration as proposed by Czarnecki et al. is

applicable to create those contracts [16]. In contrast to

conventional SPL engineering, multiple tenancy contracts

and user variants are derived, but integrated into a single

application instance in the solution space. To handle this

variability, a self-adaptive application architecture was

proposed. In this paper, we focus on autonomic managing the

variability of SaaS applications by taking into account the

context-aware of the system.

V. TOWARD AUTONOMIC CONTEXT-AWRE MANAGEMENT

OF VARIABILY

 In this section, we will present the notion of autonomic

system, and our overview process to achieve autonomic

configuration.

A. Autonomic Systems

 Autonomic systems are self-regulating, self-healing, self-

protecting, and self-improving [17]. Therefore, Autonomic
computing capabilities can address the adaptation and

reconfiguration challenges of the SaaS cloud layer. Some key

open challenges are:

 Self-configuring: As stakeholder objectives change,

e.g., if a tenant decides to rent different functionality, the

tenant’s configuration needs to be reconfigured.

454Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 476 / 679

 QoS: Cloud Service Providers (CSPs) need to ensure

that sufficient amount of resources is provisioned to

ensure that QoS requirements of CSCs (Cloud Service

Consumers), such as deadline, response time, and budget

constraints are met.

 Security: Achieving security features such as

availability. If a coordinated attack is launched against

the SaaS provider, the sudden increase in traffic might

be wrongly assumed to be legitimate requests and

resources would be scaled up to handle them.

B. Overview of our Process

 Our autonomic system of management variability is

presented in Figure 2.

 Figure 2. System architecture for autonomic cloud management.

 Application Scheduler: The scheduler is responsible

for assigning each task in an application to resources for

execution based on user QoS parameters and the overall

cost for the service provider.

 Security and Attack Detection: This component
implements all the checks to be performed when

requests are received .

 The workflow of the process proposed which is depicted in

Figure 3.

 Figure 3.Workflow of our process proposed.

 Step 1: Specifies the context of the reconfigurable system.

 User variant configurations are instantiated as user

contexts in the SaaS application instance. The users of a

tenant have their own user context, each conforming to a user

variant configuration. The context of the reconfigurable
systems is specified by means of the OWL (Web Ontology

Language) [18]. This language provides a vocabulary for

describing system context knowledge and for specifying

conditions in the context.

 Step 2: Specifies the variability and commonality among functionality

and quality properties

 The stakeholders have varying requirements on

functionality and QoS. Therefore, we need to handle the

variability of both. Stakeholders' objectives consider
functional variability and variability among quality

constraints, e.g., performance, availability, and the server

location. We will use an EFM with mixed constraints and

group cardinalities.

 Step 3: defines stakeholders and their views on the extended feature

model

 A stakeholder either represents a person, a member of

an organization, or a third party that is involved in the

configuration process and has certain concerns regarding the

configuration of parts of the EFM. Views are defined by

mapping configuration operations specified for the EFM onto

groups and categories specified in the View Model. This later

defines stakeholders and their views on the extended feature
model [19].

 Step 4: Analyzes the reconfigurations before performing them.

 Process verification needs to ensure that the

configuration process is consistent with the EFM. This is

needed for error-correction and avoidance while it would
also help users keeping track of their configurations.

 Step 5: Analysis results.

 After the given analysis results, the previous

configuration can be updated or leveraged at run-time phase.

 Step 6: To Debugs the run-time reconfigurations.

 Given the fact that not all potential run-time failures can

be anticipated during system design, it is possible to set up
MoRE (Model-based Reconfiguration Engine) [20] with a

debugging-enabled reconfiguration strategy. This strategy

keeps the history of system configurations.

 Step 7: Keeps track of the reconfigurations.

 In the context of experimentation, MoRE can store trace
entries about the reconfigurations. This provides information

455Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 477 / 679

for a posterior analysis, which ranges from context

conditions to reconfiguration plans.

 Step 8: To deploy the system in the target platform.

 Once the development is finished, there is no interest in

debugging information any longer. Therefore, MoRE can be

set up with another reconfiguration strategy which lacks

debugging support but achieves better performance. We

suggest using MoRE featuring a performance-oriented

reconfiguration strategy tool.

VI. RELATED WORK

 This section presents work that is related to the concepts
of our configuration management, which copes with different

research fields. Mietzner et al. propose using SPL techniques

for configuring multi-tenant SaaS applications [21]. The

tenant’s configuration decisions are influenced by already

deployed services. Concerning our approach, tenants’ pre-

configurations are not influenced by the configuration of new

tenants. Cheng et al. [22] apply SPL techniques on

configurable SaaS applications. The description of the

application flexibility is created in domain engineering. This

catalog is then used to configure the application per tenant.

In contrast, we will use EFMs to model the functionality of

the application as well as QoS and assume the context-aware
of the tenant. Another concept which describes variability for

SaaS applications is given by Ruehl et al. [23]. This approach

can systematically show variability points and their

relationships. This work focuses on the creation of

descriptions of variability but not so much on the execution.

 Weissbach and Zimmermann [24] tackle the problem of

avoiding storing or processing data at undesired location by

data-flow analysis. In contrast to our work, this approach is

not context-aware. There are also numerous works on

context-aware service oriented systems. Du et al. [25]

controls data-flow between services to detect malicious
services. Context awareness with respect to the client is not

assumed. Azeez et al. [26] propose a multi-tenant service-

oriented architecture middleware for cloud computing.

They;concentrate on multiple users sharing an instance and

native multi-tenancy. Contrary to our work, using certain

services in context of the location is not considered. Bastida

et al. [27] discuss the steps that the service integrators should

follow to create context-aware service compositions and also

introduce a composition platform that supports the lifecycle

of dynamic compositions both at design-time and at runtime.

The context part is not explicitly defined in the complete

approach.
 Table I shows a comparison among several research

works in the area of management and configuration of cloud

environments. In the state of the art, some work has been

performed to combine the benefits SPLE with those of multi-

tenancy to facilitate the customization of SaaS applications

tailored to the tenant-specific needs. However, none of the

current approaches defines explicitly the context-aware of the

tenants and users in the complete approach in both design

time and run time phase (see Table I). Moreover, it provides

no support for context awareness which is one of the

keystones for the cloud computing in general and SaaS in
particular.

TABLE I. A comparison among research works on Cloud Environment

VII. CONCLUSION AND FUTURE WORK

 This paper presented our first steps towards autonomic

and dynamic context-aware configuration variability on the

SaaS applications. We identified requirements for a multi-

tenant aware SaaS reference architecture at design time as

well as at runtime. In addition, we have shown an overview

of our process which our framework will be based. We rely

Research

work

Adaptation

Type

Phase of system

variability

Adaptation

Space

Adaptation

Mechanisms

Environment

[20] Dynamic Design time Functional Variability SaaS

[21] On-demand Design time Functional and
non-Functional

Variability SaaS

[22] Dynamic Design time Functional and

non-functional

Variability SaaS

[23] Dynamic Run time Non-Functional Variability Data security in

the cloud

[24] Dynamic Run time Non-functional Variability IaaS

[25] Static Design time

and Run time

Functional variability Middleware

[26] Dynamic

Design time

and Run time

Functional and

context-aware

variability Composants

456Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 478 / 679

on autonomic system concept in order to allow a dynamic

and automatic management of variability for these

applications. Furthermore, our dynamic configuration

process allows deriving multiple variant configurations that

are independent from each other.

 Because SPL engineering is a well researched field, we

may benefit from developed tools that help to derive valid

tenant configurations and we propose to use NSGA-II (Non-

Dominated Sorting Genetic Algorithm) algorithms [28] to

optimize and select services. Additionally, we plan to take

into account context user’s evolution. As the cloud market

evolves constantly, changes in context can occur that require

the application environments to be reconfigured. e.g., a new
service is available. To deal with such changes, we propose

to adapt evolutionary tree and evolutionary algorithm.

REFERENCES

[1] P. Mell and T. Grance, “The nist definition of cloud computing,”

NIST Special Publication 800-145, National Institute of Standards and
Technology, Information Technology Laboratory, Sept, 2011, pp. 3-8.

[2] G. F. Chong and G. Carraro, “Architecture strategies for catching the

long tail,” Website, April, 2006, pp. 10-26. [retrieved: 08, 2014].
Available: http://msdn.microsoft.com/en-us/library/aa479069.aspx

[3] M. L. Griss, “Implementing product-line features with component
reuse,” in Proceedings of the 6th International Conerence on Software

Reuse: Advances in Software Reusability, London, UK, June, 2000,
pp. 137–152.

[4] D. M. Weiss and C. T. R. Lai, “Software product-line engineering: a

family-based software development process,” Addison-Wesley
Professional, Aug, 1999, 448 pages.

[5] A. Benali and B. El Asri, “Towards dynamic management of

variability and configuration of cloud Environments,” in press

[6] S. Barney, A. Aurum, and C. Wohlin, “A product management
challenge: creating software product value through requirements

selection,” Journal of Systems Architecture, vol. 54, no 6, June, 2008,
pp. 576-593.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.

Peterson, “Feature-oriented domain analysis (FODA) feasibility
study,” Technical report, CMU/SEI TR-21, USA, Nov, 1990, 148

pages.

[8] L. Cardelli, “Program fragments, linking, and modularization,” In
Proc. Symp. Principles of Programming Languages (POPL), ACM

Press, Mar, 1997, pp. 266–277.

[9] I. Trummer, “Cost-optimal provisioning of cloud applications,”

Diploma thesis, University of Stuttgart, Faculty of computer science,
electrical engineering and information technology, Germany, Feb,

2010, pp. 135 – 142.

[10] B. Schilit and M. Theimer, “Disseminating active map information to
mobile hosts,” IEEE Network, 8(5), Sept, 1994, pp. 22-32.

[11] A. Dey and G. Abowd, “Towards a better understanding of context and

context-awareness,” in CHI 2000 Workshop on The What, Who,
Where,When, and How of Context-Awareness, nov, 2001, pp. 304-

307.

[12] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge
location system,” ACM TIS, Jan, 1992, pp. 91-102.

[13] R. Hull, P. Neaves, and J. Bedford-Roberts, “Towards situated

computing,” International Symposium on Wearable Computers, Oct,
1997, pp. 146-153.

[14] K. Dey and D. Abowd, “Towards a better understanding of context and

context-awareness,” Georgia Institute of Technology, Atlanta, GA,
USA 30332-0280, Sept, 1999, pp. 271-350.

[15] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker, “Generative
programming for embedded software: an industrial experience report,”

In: D.Batory, C.Consel, W.Taha, GPCE 2002. LNCS, vol. 2487, Oct,
2002, Springer, Heidelberg (2002), pp. 156–172.

[16] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configuration

through specialization and multi-level configuration of feature
models,” Improvement and Practice Journal, April, 2005, pp. 143-169.

[17] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”

Computer, IEEE, Jan, 2003, pp. 41-50.

[18] D. Martin, M. Burstein, J. Hobbs, D. McDermott, S. McIlraith, S.
Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan,

and K. Sycara, “OWL-S: Semantic markup for web services,” Website,
Nov, 2004. [retrieved: 08, 2014].Available:

http://www.w3.org/Submission/OWL-S/

[19] J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau,
“Dynamic configuration management of cloud-based applications,”

In: SPLC ’12:16th International Software Product Line Conference –
Vol. 2, ACM, pp. 171–178.

[20] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Autonomic computing

through reuse of variability models at run-time: the case of smart
homes,” IEEE Computer Society Press, Los Alamitos, CA (2009), Oct,

2009, pp. 37-43.

[21] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variability

modeling to support customization and deployment of multi-tenant-
aware software as a service applications,” In (PESOS '09)

Proceedings, USA, May, 2009, pp. 18-25.

[22] X. Cheng, Y. Shi, and Q. Li, “ A multi-tenant oriented performance
monitoring, detecting and scheduling architecture based on SLA,” In

Proceedings of the Joint Conferences on Pervasive Computing, JCPC
'09, Dec, 2009, pp. 599-604.

[23] S. T. Ruehl and U. Andelfinger, “Applying software product lines to

create customizable software-as-a-service applications,” In
Proceedings of the 15th International SPL Conference, Volume 2,

ACM, Aug, 2011, pp. 16:1-16:4.

[24] M. Weissbach and W. Zimmermann, “Controlling data-flow in the
cloud,” in The Third International Conference on Cloud Computing,

GRIDs, and Virtualization, W. Zimmermann, Y. W. Lee, and Y.
Demchenko, Eds. ThinkMind, July, 2012, pp. 24–29.

[25] J. Du, W. Wei, X. Gu, and T. Yu, “Runtest: assuring integrity of data

flow processing in cloud computing infrastructures,” in Proceedings of
the 5th ACM Symposium on Information, Computer and

Communications Security, ser. ASIACCS ’10. New York, NY, USA:
ACM, Jan, 2010, pp. 293–304. [retrieved: 08, 2014]. Available:

http://doi.acm.org/10.1145/1755688.1755724.

[26] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D.
Leelaratne, S. Weerawarana, and P. Fremantle, “Multi-tenant soa

middleware for cloud computing,” in IEEE CLOUD, July, 2010, pp.
458–465.

[27] L. Bastida, F. J. Nieto, and R. Tola, “Context-aware service
composition: a methodology and a case study,” In SDSOA ’08:

Proceedings of the 2nd international workshop on Systems
development in SOA environments, New York, NY, USA, ACM,

May, 2008, pp. 19–24.

[28] A. Pratap, T. M. K. Deb, and S. Agrawal, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization :

NSGA-II,” Technical report, Indian Institute of Technology Kanpur,
Sep, 2000, pp. 849-858.

.

457Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 479 / 679

ASDeDaWaS: An Assistant System for the Design of Data Warehouse Schema

Nouha Arfaoui, Jalel Akaichi
BESTMOD

Higher Institute of Management

Bardo,Tunisia

e-mail: Arfaoui.nouha@yahoo.fr, Jalel.akaichi@isg.rnu.tn

Abstract—Data Warehouse has the capacity to integrate data

from different data sources for analyses purpose. Despite their

importance, many data warehouse projects fail. As cause, we

can mention, the poor communication between the

developer/designer and the stakeholders, and the bad design

that does not respond appropriately to the user requirements.

Our work is set in the context of Enterprise Data Warehouse,

and we propose a new methodology, Assistant System for the

Design of Data Warehouse Schema (ASDeDaWaS). It ensures

the design of the schema of the data warehouse taking into

consideration the users’ requirements and the available data

sources, minimizing the computer-scientists intervention.

Keywords-Data Warehouse Schema; Data Mart Schema;

Schema Design; Schema Integration.

I. INTRODUCTION

Data Warehouse (DW) is the “heart of architecture

environment and is the foundation of all decision support

system processing” [7], since it provides an infrastructure

that allows businesses to extract, clean and store vast

amount of data. It is defined as “a subject-oriented,

integrated, non-volatile, and time-variant collection of

data in support of management’s decisions” [17].

Concerning the warehousing projects, they are often

characterized by their complexity and their huge costs [1]

and they may fail during their achievements. According to

[1][4][8][9][15], the causes of failure can be summarized

as following:

 The nature of those projects requires long periods of

development.

 The users’ needs are generally poorly expressed by

either designers or developers and they are not based

on a common terminology.

 The absence of a good design that responds

appropriately to the users’ requirements.

 The users are, in many cases, not experienced

with the technologies of DWs.

 The immaturity and complexity of the design

methods and the lack of software tools that support

these methods.

 The nonexistence of the right design that ensures the

performance today and the scalability tomorrow.

The above difficulties lead to various problems such as

the stopping of projects during their implementation, the

exceeding of time and/or budget, and the rest.

In order to overcome the previous problems, we propose

a new methodology, namely, Assistant System for the

Design of Data Warehouse Schema (ASDeDaWaS). It

ensures the construction of the schema of the DW

incrementally taking into consideration both the users’

requirements and the available data sources. It focuses on

each department separately, which facilitates the detection

and the correction of possible problems and conflicts earlier.

It reduces, also, the computer-scientists intervention through

the automation of some tasks.

As working hypothesis, it is proposed to present the user

requirement as a star schema because it is widely supported

by a large number of business intelligence tools; also it has a

simple structure, so it is easy to understand the schema.

Concerning the data sources, it is proposed to deal with

Entity-Relationship (ER) [14] database because it adopts

the more natural view that the real world consists of entities

and relationships; it incorporates some of the important

semantic information and it can achieve a high degree of

data independence [14].

As contributions, we propose in this work:

 Using an assistant system to facilitate the collection

of users’ requirements by exploiting the previous

experiences.

 Using a new algorithm to cluster the schemas taking

into consideration their semantic aspect.

 Automating the schema integration technique to

merge the schemas to generate the logical schemas

of the data mart (DM), and the final schema of the

DW.

The outline of this work is as following:

 In the second section, we present the state of the

art. We summarize some methods that use the mixed

approach to design the DW.

 In the third section, we describe our proposed

solution and we resume every step.

 In the fourth section, we start by detailing the

first step that consists of collecting the users’

requirements using an assistant system. The

different requirements are modeled as star schemas.

 In the fifth section, the generated schemas are

clustered using a new algorithm ak-mode which is

an extension of k-mode. It takes into consideration

the semantic aspect when clustering the schemas.

 In the sixth section, we propose the application of

schema integration technique to ensure the

458Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 480 / 679

merging of different schemas existing within every

cluster. The proposed technique is composed by

schema matching and schema mapping.

 In the seventh section, we propose generating

multidimensional schemas from Entity-Relationship

(ER) databases.

 In the eighth section, we transform the conceptual

schemas that were generated from the users’

requirements to logical ones by adding the necessary

information extracted from the multidimensional

schemas. Using the logical DM schemas, we apply

the schema integration technique to build the final

schema of the DW.

 We finish this paper with a conclusion and future

work.

II. RELATED WORK

Three main approaches have been proposed in the

literature to conceive the DW: top-down, bottom-up and

mixed.

Top-down starts from the description of the needs of all

the users to construct the schema corresponding to the

entire DW [5]. According to Ballard et al. [3], this approach

has some disadvantages: it is a time-consuming process, it

is difficult to collect the different agreement on the data

definitions and business rules among all the different

workgroups, departments, and lines of business

participating. It can delay actual implementation, benefits

and return-on-investment and it is length task.

Concerning the bottom-up, the construction of the

global schema of DW starts from the different schemas of

DMs that are built taking into consideration the

requirements of the decision-making users responsible for

the corresponding specific business area or process [5]. The

problem with this approach is the redundancy and the

inconsistency of the data between the DMs [3].

The mixed approach takes advantages of the two

previous approaches [5]. It has the speed and the user-

orientation of the bottom-up and the integration enforced

by a DW in a top-down approach.

In the following, we present some work using the

mixed approach to generate the DW and we start by

“SelfStar” [6]. The proposed methodology is composed by

four steps. It requires human intervention to validate the

proposed schema until building the final DW schema. In

what follows, we briefly present each step:

 First step: Extracting from the data source, that is

expressed using the UML language, the candidate facts

and showing them in the intermediate schema. Since

the schema of the data source is not easy to be

understood by a no-computer scientist user, the system

presents a simplified representation automatically

extracted from the schema of the source. The user

selects the facts and the measures that correspond to his

needs. He selects also the operations that will be

applied on the measures.

 Second step: Generating the second schema by

proposing the different dimensions that can be used

with the extracted facts. The extraction of the

dimensions is done using: a source described by an

exploited schema containing classes and links, and an

incomplete decisional base containing one or many

facts.

 Third step: Generating a constellation schema (facts,

dimensions, and all possible hierarchies). This step

generates the candidate hierarchies for each

chosen dimension. They are extracted from the classes

that are related directly to the dimension using “1..N”

link type, and from the attributes of the dimension

excluding the attributes having distinct values. The

temporal dimension is associated with a standard

hierarchy: year, month, date.

 Fourth step: Generating the schema of the DW. In

this step the decision makers choose the relevant

parameters to their analysis. Then, the system generates

the final schema and stores customization metadata for

each user to reuse them later by attributing weights to

the used classes of the source.

Romero and Abelló [10] propose an approach that uses

the end-user information requirements which are expressed

as SQL queries and the logical model of the data sources.

The final result is a constellation schema. The automatic

process is divided into four different stages:

 Concept labeling: It serves to build the

multidimensional (MD) graph by applying the

labeling standards. For each query, it extracts the

MD knowledge.

 Multidimensional graph validation: Each MD-graph

that has been generated in the previous step is

validated in this stage by generating its

multidimensional normal forms.

 Finding representative result: From the previous

steps, more than one MD schema can be produced

for a given query. Besides, the dimensional data

could be considered as an alternative factless fact,

although in most cases it will not be relevant to the

end-user. This step serves to determine the

representativeness of new alternatives and this is

done according to some rules. Two sibling graphs

differ only in the labeling of one node. Therefore,

they have exactly the same labels except for one

node, which is considered a factless fact that plays a

role in one graph and a strict dimensional role in the

other. In short, sibling graphs do not provide new

interesting analytical perspectives. They are used to

analyze the potential factual data that a dimension

may contain. However, in most cases, the end-user

would not be interested in this type of analysis.

 Conciliation: It validates each input requirement and

generates a potential set of MD schemas for each

query. Then, it normalizes MD graphs

459Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 481 / 679

Giorgini et al. [13] propose a mixed approach to build

the DW. It starts with the requirement analysis that will be

mapped next to conceptual level. This step requires the

following tasks:

 Organizational modeling: It is centered on

stakeholders. It identifies the facts. It is composed by

three steps:

o Goal analysis: Analyzing each goal of each

actor in more details.

o Fact analysis: Determining all the relevant facts

and associating goals with facts.

o Attribute analysis: Determining all the attributes

that give a value when facts are recorded.

 Decisional modeling: It focuses on decision makers

to extract their information needs. It is composed

by four steps:

o Goal analysis: Identifying the decision makers

and establishing the dependencies between them.

o Fact analysis: Identifying the facts that

correspond to different objects of analysis and

associating the goals.

o Dimension analysis: Linking the fact to the

dimensions according to the decisional goals of

the decision makers.

o Measure analysis: Associating the measures to

each fact previously identified.

Once, they get diagrams that connect enterprise goals

to facts, dimensions and measures, they move to the

conceptual level by mapping the different elements

determined previously. They use two types of frameworks:

mixed design framework and demand-driven design

framework.

 Mixed design framework: The requirements derived

during organizational and decisional modeling are

matched with the schema of the operational database

in order to generate the conceptual schema for the

DW. This is done by performing the requirement

mapping, hierarchy construction and refinement.

 Demand-Driven Design Framework: The generation

of hierarchies cannot be automatic; here we need

the intervention of the designer. Indeed, through his

skills and experiences, he can fruitfully interact

with the domain experts to capture the existing

dependencies between attributes.

Compared to the previous solutions, ASDeDaWaS

follows all the necessary steps to generate the schema of the

DW. It combines the mixed approach, which generates the

logical schemas of the DM from the requirements and the

available data sources, and the bottom up approach, which

generates the DW schema from the DM logical schemas.

Moreover, it offers help using an assistant system to facilitate

the collection of the needs reducing the computer-scientists

intervention. It can be applied to different departments

having different information systems and different needs.

III. OVERVIEW OF ASDeDaWaS

In this section, we describe ASDeDaWaS briefly (Figure

1).

Figure 1. ASDeDaWaS steps.

It starts by collecting the requirements of the different

users. It uses an assistant system DwADS (Data warehouse

Assistant Design System) to facilitate the specification of

the elements basing on the stored traces of the previous

users. It defines, then, the possible facts, their measures,

and the dimensions with their attributes. From the collected

users’ requirements, it generates the corresponding schemas

that are represented as star.

In the second step, it clusters the different schemas using

a new algorithm ak-mode in order to get within one cluster

the closest schemas. The new algorithm is an extension of k-

mode. It takes into consideration the semantic aspect when

making the comparison. Next, for each cluster, it generates

the global schema. To achieve this goal, it uses the schema

integration technique that is composed by schema matching

and schema mapping. The schema matching extracts the

semantically closest elements as well as the conflicts and

presents them as mapping rules. Using the schema mapping

it merges the different schemas to get at the end the global

schema. This step allows the generation of conceptual

schemas of the DM from the users’ requirements. Then, the

conceptual schemas are mapped to logical ones. This is

done in two steps. In the first one, it extracts all possible

multidimensional schemas from the databases. In the second

step, it generates the logical schemas. Indeed, it updates

the conceptual schemas by adding the necessary

information extracted from the multidimensional schemas.

Finally, by merging the logical schemas, it builds the final

schema of the DW.

IV. COLLECTING OLAP REQUIREMENTS

In order to ensure a good design of DW, it is crucial to

start by the requirements that specify “what data should be

available and how it should be organized as well as what

queries are of interest” [5]. In our case, we need to move

460Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 482 / 679

through this step to extract the important objects of the

multidimensional schemas (facts, measures, dimensions, and

attributes). Despite its importance, not much attention has

been paid to this phase causing the failure of 85% of the

DW projects to meet business objects, and the no-

development of 40% of the DW projects [12].

A. The collection of requirements

To collect the requirements, we give the freedom to the

user to express his needs using an easy interface (Figure 2)

where he specifies the different objects composing a star

schema. This interface uses an assistant system DwADS

that helps the user to choose the appropriate objects because

the end users may find difficulties to specify their objects

[5].

Figure 2. The proposed interface to specify the users’ requirements.

Once the user validates his schema, the set of the

manipulated objects and the performed actions (add fact,

create dimension, and the rest) are stored respecting their

order over the time as a trace.

B. The Proposed Assistant System

Our assistant is based mainly on traces. Indeed, it starts

by storing the traces of each user during his session, then,

it suggests the useful elements after a comparison

phase. The system extracts from the trace the objects

through the use model and the actions through the

observation model. Concerning the comparison step, it uses

the episodes to detect the exact position of the user in order

to extract next possible objects. This system occurs during

the specification of requirements by suggesting to the user

the possible elements used to build a first schema basing on

the previous experiences.

DwADS performs two main tasks, as presented in Figure

3. The first one corresponds to the building of traces using

the use model and the observation model. The second task is

about exploiting the previous experiences using the episodes

as a method of comparison. This task includes, also,

suggestion of the possible next objects to manipulate.

Figure 3. The DwADS composition.

The Use Model (Figure 4): It is used to isolate the objects

from the current trace. The objects belong to the following

categories (C): “C: Domain”, ‘C: Model”, “C: FactTable”,

“C: Measure”, “C: DimensionTable”, “C:

DimensionAttribute”, and “C: Link”. These various

categories are linked into single schema through

“Contextualization” link. The latter does not present the

temporal aspect of the organization of different categories.

It, only, shows them connected.

Figure 4. The structure of the use model.

For each requirement specification, the categories are

instantiated which gives rise to many possible scenarios.

For example the instantiation of “domain” can be

“Commerce”, “factTable” can be “Transaction”, and the

rest.

The observation Model (Figure 5): It encapsulates all the

actions (||A: ||) handled by a single user during his session.

It gives a vision on the use of the application and more

precisely on how to deal with the existing objects extracted

from the use model.

461Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 483 / 679

Figure 5. The observation model.

The observation model is instanced once the application

is used. It gives different scenarios corresponding to the use

of different objects. The scenarios present the actions used

to instantiate the objects of the use model.

The trace is a succession of objects and actions over the

time. It is built using the use model and the observation

model. As example, in Figure 6 we have the trace

corresponding to the creation of a star schema having one

fact table “Transaction”, one measure “Gain” and three

dimensions “Customer”, “Product” and “Seller”, with their

attributes over the time.

Figure 6. Example of trace corresponding to the construction of star schema.

Exploiting the previous experiences. Each new trace is

stored. The set of existing traces in the database are

exploited in order to assist the current user by extracting the

useful objects. This exploitation is done through performing

two tasks. The first one consists of comparing the trace of

the current user with the previous traces in order to locate

him. The second task is about making the necessary

intervention by proposing the possible objects to use.

The comparison: To well exploit the previous traces, it is

important to start by locate the user e.g., defining his last

manipulated object to be able to predict the next possible

objects. The location is done using the episodes that are

extracted from the instantiation of the use model. For

example, Figure 7 corresponds to three possible

instantiation of the category “FactTable” that are

“Transactions”, “Patient” and “Product”.

Figure 7. Example of episodes corresponding to the instantiation of the

category “FactTable”.

Concerning the comparison, there are two cases:

 The system takes into consideration only the last

manipulated object, example: “Transaction” (Figure

8).

Figure 8. Example of comparing the last manipulated object.

 The system takes the whole trace into consideration,

example: “Commerce, StarSchema, Transaction”

(Figure 9).

Figure 9. Example of comparing the whole trace respecting the order of

objects over the time

.

The intervention: Once the system locates the user, it

extracts from the database the set of traces containing the

selected object or the set of ordered objects. The

462Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 484 / 679

intervention can be done in two different ways:

 The system can intervene by suggesting one next

object, example: “Seller”, “Country” and “Product”

(Figure 10).

Figure 10. Example of intervention by suggesting one possible object.

 The system can intervene by suggesting the rest of the

trace respecting the order of the objects, example:

“Seller, Name”, “Country, City” and “Product, Name”

(Figure 11).

Figure 11. Example of intervention by suggestion the rest of trace.

C. The structure of the generated schema

At the end of this step, we get a set of schemas

corresponding to the users’ requirements as example Figure

12.

Figure 12. Example of user requirement presented as a star schema.

Each one is represented as star schema having the

following structure:

 The fact table corresponds to the subject of analysis.

It is defined by a tuple: FN and MF { } with:

o FN: represents the name of the fact. e.g., “Sales”

o MF {m1, m2, m3, m4, …}: corresponds to the

set of measures related to the fact F, e.g.,

“Quantity, Price and Gain”.

 The dimension tables represent the axis of analysis.

Each one is composed by: DN and A{ } with:

o DN: corresponds to the dimension name, e.g.,

“Customer, Seller and Product”.

o A {a1, a2, a3, a4, …}: presents the set of

attributes describing the current dimension D,

e.g., for the dimension “Customer” the attributes

are “FirstName, LastName and Phone”.

V. CLUSTERING OLAP REQUIREMENTS

SCHEMAS

At the end of the previous step, we get a set of

schemas corresponding to the different requirements. In

order to exploit them, we propose their clustering

according to their domain using a new algorithm ak-

mode that takes the semantics aspect into consideration.

Clustering is the unsupervised classification of

patterns into groups called Clusters [2]. It involves

dividing a set of data points into non-overlapping groups,

or cluster of points [16], and this is exactly what we

aim to do with OLAP Requirement Schemas (ORSs),

i.e., grouping them with maximizing their similarity within

one cluster and minimizing it between clusters.

The clustering proposes different algorithms. To choose

the appropriate one, we compare them in term of “time

complexity”, as presented in Table I.

TABLE I. CLUSTER ALGORITHMS FOR CATEGORICAL DATA.

Algorithm Complexity Coefficient

K-MODE O (n) Simple Matching

ROCK O(kn
2

) Links

QROCK O(n
2

) Threshold

COOLCAT O (n
2

) Entropy

LIMBO O (nLogn) Information Bottleneck

MULIC O (n
2

) Hamming measure

We can notice that the k-mode has O (n), which is the

lowest complexity, cannot deal with our schemas because it

does not take into consideration the semantic aspect of the

elements; so, we extend it and we propose aK-Mode.

A. The Extension of Simple Matching Dissimilarity

Measure

Let Sch1 and Sch2 be two schemas belonging to the

same cluster.

Let Ci be the categories of elements existing in the

schema with Ci = {fact, dimension, measure, attribute}.

When we calculate the similarity between the elements of

the two schemas, we should take into consideration the

following points:

463Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 485 / 679

 The identical: We use the same elements name in

the two schemas.

 DeId (ei, ej) = 1 if ei and ej are identical and 0 if not.

 The synonymous: We use two different names that

have the same meaning.

 DeSy (ei, ej) = 1 if ei and ej are synonymous,

and 0 if not.

 The typos: We make mistakes when writing the

name of the element. In this case, we calculate the

degree of error. If it is low, we are in the case of

typing error. If it is high we are in the case of two

different words. In the following we only take into

consideration the first case.

 DeTy (ei, ej) = 1 if ei and ej are the same with the

existence of typing error, 0 if not.

 The post-fixe: We use post- fixes to design the

same thing.

 DePost (ei, ej) = 1 if one the two elements is the

post-fixe of the other, and 0 if not.

 The pre- fixe: We use pre-fixes to design the same

thing.

 DePre (ei, ej) = 1 if one of the elements is the pre-

fixe of the other, and 0 if not.

The degree of similarity between ei and ej (DeSim (ei,

ej)) is measured by the numeric value {0} or {1}, and it is

calculated as following formula (1):

DeSim (ei, ej): Sch1 x Sch2 {0, 1}

DeSim (ei, ej) = [DeId (ei, ej) + DeSy (ei, ej) + DeTy (ei,

ej) + DePost (ei, ej) + DePre (ei, ej)] (1)

The new formula (2) of the simple matching (SM)

dissimilarity measure is defined as following:

CoefSM (sch1, sch2) = [(MaxD – CoefD) / MaxD] +

[(MaxM – CoefM) / MaxM] + [(MaxF – CoefF) /

MaxF] + [(MaxA – CoefA) / MaxA] (2)

With:

 MaxD: It is the maximum number of dimensions

existing in the two schemas.

 CoefD: It is the number of similar dimensions

existing in the schemas using “DeSim”.

 MaxM: It is the maximum number of measures

existing in the two schemas.

 CoefM: It is the number of similar measures

existing in the schemas using “DeSim”

 MaxF: It is the maximum number of facts existing

in the two schemas.

 CoefF: It is the number of similar facts existing

in the schemas using “DeSim”

 MaxA: It is the maximum number of attributes

existing in the two schemas.

 CoefA: It is the number of similar attributes

existing in the schemas using “DeSim”

B. The ak-Mode Algorithm

 The algorithm of aK-mode is described as following:

a) Define the ‘k’ number of existing domains.

b) Select ‘k’ initial modes. The initial modes correspond to

the schemas that were selected randomly from each cluster.

c) Allocate a schema to the cluster whose mode is the

nearest to the cluster, using the formula (2).

Update the mode of the cluster after each allocation.

d) After all schemas have been allocated to the respective

cluster, retest the schemas with new modes and update the

clusters.

e) Repeat steps (b) and (c) until there is no change in

clusters.

VI. MERGING THE USERS’ REQUIREMENTS

SCHEMAS

In this part, we generate the schemas of the DM from

the existing clusters using the schema integration

technique that combines the matching and the mapping.

Compared to the others, our methodology does not require

the pre-integration phase since the used schemas have the

same model that was unified from the beginning.

A. Schema Matching

The schema matching is considered as one of the basic

operations required by the process of data integration [11].

It is used to solve the problem related to the heterogeneity

of the data sources by finding semantic correspondence

between the elements of the two schemas. This phase is

iterative; it takes two schemas as input each time to get

as output a set of mapping rules in order to facilitate

the merging task in the next step.

To ensure the effective schema matching, we focus on

linguistic matching of names of schemas’ elements and

according to Li et al. [18], it proceeds in three steps:

normalization, categorization and comparison.

 Normalization: Different names design the same

thing but they are written differently. They perform

tokenization (e.g., parsing names into tokens based

on punctuation, case, and the rest), expansion

(identification of the abbreviation, acronyms, and the

rest). So, we propose the use domain ontology,

lenvenshtein name, and the rest.

 Categorization: It is to group the elements

composing the schemas by categories: fact,

dimension, measures, and attributes to reduce the

number of one-to-one comparison eliminating

the unnecessary comparisons.

 Comparison: A coefficient of linguistic similarity

is calculated by comparing the tokens extracted from

the names of the elements using the formula (1).

464Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 486 / 679

B. Schema Matching Steps

The schema matching serves to extract the mapping

rules that will be used to facilitate the merging of schemas.

Our proposed methodology is composed by the following

steps:

 Categorization: It is to specify the category of each

element. This can reduce the risk of error which

provides a gain of time.

 Construction of the similarity matrix: It is about

using a similarity matrix to find the closest elements.

The cells contain the coefficient of similarity of the

different elements belonging to the same category

using the formula (1).

 Generation of the mapping rules: The rules visualize

the conditional relationships between the instances of

the categories. They are expressed as: “If Similar

(X, Y) then Action (X, Y)”, with:

o X and Y belong to the same category (fact,

measure, dimension, or attribute).

o Similar (): It is a function that specifies if the

two inputs are similar or not.

o Action (): It specifies the actions to perform.

They can be union, or intersection.

The different rules are stored into rules database.

C. Schema Mapping

Once we extract the mapping rules; we move to the next

where we apply those rules to merge the schemas. The

schema mapping is a qua-triple M = (sch1; sch2; T;).

“sch1” is the first schema, “sch2” is the second schema, “T”

is the target schema, and “” is a set of formulas over <sch1,

sch2; T>.

An instance of M is an instance of <s1, s2; t; i> over

<sch1, sch2; T; > that has a specific formula in the set i.

The formulas existing in i correspond to one of the

following functions:

 Union: R = union (ei, ej) implies that R contains all

the components of “ei” and all components of “ej”. It

is applied when the two elements are identical.

 Intersection: R= intersection (ei, ej) implies that R

contains the components that exist in “ei” and “ej”. It

is applied when the two elements are equivalent and

not identical.

VII. GENERATING MULTIDIMENSIONAL SCHEMAS

FROM DATABASE

In this section, we propose an algorithm to generate all

multidimensional schemas from the data sources. This

helps to construct the DM logical schemas by making the

necessary modifications. We suggest working with Entity-

Relationship (ER) model of the data source.

Our algorithm starts by extracting the potential facts and

dimensions. For each fact, it extracts all possible measures.

For each dimension, it adds the attributes.

Step 1: Normalize the ER model
Apply the 1NF, 2NF and 3NF to construct the ER

normalized:

 First Normal Form (1NF): It is that there should be

no nesting or repeating groups in a table.

 Second Normal Form (2NF): It is that the key

attributes determine all non-key attributes.

 Third Normal Form (3NF): I t is that the non-key

attributes should be independent.

Step 2: Build the tree from ER model
From the ER model, we extract the entities (Ef) having

n-ary relationships with other entities and those having

numerical attributes. They represent the potential facts.

Every Ef becomes to root of the tree. The number of trees

corresponds to the number of Ef entities. From the ER, we

extract the entities (E) that are directly linked to Ef

corresponding to the potential dimensions.

Step 3: Transform the tree to multidimensional model

 The root of each tree becomes the fact table.

 The existing numeric attributes become the

potential measures

 The measures are defined by an aggregation

functions that are specified by the user.

 The nodes that are directly linked to the

roots are transformed to dimensions keeping

their attributes and their primary keys.

 The primary keys of the children nodes become

foreign keys in the parents’ nodes.

Figure 13 presents an example of multidimensional

schema.

Figure 13. Example of multidimensional schema generated from an ER

database.

It is composed by one fact table “Fact_1”, three measures

“QuantityInStock, QuantityOrdered, Price”, set of keys

defining the primary key of the fact table, three dimensions

“Product, Customer, Seller”. Each dimension has its

primary key and a set of attributes.

465Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 487 / 679

VIII. THE DATA WAREHOUSE SCHEMA

 In this section, we generate the schema of the DW. To

realize this task, we need first to generate the logical

schemas of the DM.

A. Generating the Data Mart Logical Schemas

The purpose of this step is to move from the conceptual

schemas to the logical ones. At this level, we have two

types of schemas. The first ones were generated from the

requirements, they correspond to the Data Mart User

Schemas (DMUS)s and they are modeled as star. The

second ones were generated from the different databases,

they correspond to the Data Mart Multidimensional

Schemas (DMMS)s and they are modeled as star schemas.

The validation of DMUS is about adjusting the needs with

databases so that we have the source from which we can

extract data later.

In order to achieve this task, we compare the two types

of schemas to extract the closest ones, then, we update the

DMUS by adding the necessary information.

To compare the DM schemas, we start by classifying their

elements into the following categories: fact, measure,

dimension, and attribute. Using the similarity matrix, we

extract the closest schemas. The updating task has as

purpose transforming the conceptual schema to logical one.

To achieve this task, we need human intervention. Indeed,

we present the elements of two types of schemas and the

final user specifies the necessary elements to keep. For

example, Table II visualizes the elements extracted from

Figure 12 and those extracted from Figure 13 to specify the

elements of the final schema. For example, the attribute

“FirstName”, extracted from the conceptual schema, has its

corresponding attribute existing in the multidimensional

schema. It has as type “String”. This attribute is added to

the final schema with its type. The same process is applied

to the rest of elements.

Figure 14. The logical schema of the Data Mart.

Figure 14 corresponds to the logical schema of the DM

once the conceptual schema is updated.

B. Generating the Data Warehouse Schema

At this level, we have a set of logical DM schemas. To

generate the final schema of the DW, we propose the use of

schema integration technique as presented previously. It is

composed by schema matching and schema mapping. This

process is iterative. It takes every time two schemas as input.

We stop when we get one final schema.

IX. CONCLUSION AND FUTURE WORK

The DW has the capacity to integrate huge amount of

historical data for analysis purpose. It plays an important

role with organizations. Despite their importance, many

projects fail because of the absence of good design.

In this work, we proposed a new methodology to design

the schema of the DW reducing the computer-scientists

intervention. It takes into consideration the needs of each

department separately to facilitate the detection of possible

problems earlier, as well as existing databases to get at the

end the best schema. Indeed, it starts by collecting the users’

requirements using an assistant system that exploits the

previous experiences. Then, it clusters them using ak-mode

to build first DM schemas that are generated using the

schema integration technique. Besides, it revises those

schemas to generate the logical DM schemas that serve at

the end to build the final DW schema.

As future work, we propose dealing with other kind of

data sources (UML, XML files, and the rest). We propose,

also, taking into consideration the evolution of the schema

of the database.

REFERENCES
[1] A. N. AbuAli, and H. Y. Abu-Addose, “Data Warehouse Critical

Success Factors”, European Journal of Scientific Research, vol. 42

pp.326-335, 2010.

[2] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A

Review”, ACM Computing Surveys, vol. 31, 1999, pp. 264-323.

[3] C. Ballard, D . Herreman, D . Schau, R . Bell, E . Kim, and A .
Valencic, “Data Modeling Techniques for Data Warehousing”,

International Technical Support Organization, 1998.

[4] E. Börger, “High Level System Design and Analysis using Abstract

State Machines”, FM-Trends, 1998, pp. 1-43.

[5] E . Malinowski, and E . Zimanyi, Advanced Data Warehouse

Design, From Conventional to Spatial and Temporal
Applications, Springer Verlag Berlin Heidelberg, 2008.

[6] F. Abdelhédi, F. Ravat, O. Teste, and G. Zurfluh, “SelfStar: an

interactive system for the construction of multidimensional
schemas”, Informatique des Organisations et Systèmes

d'Information et de Décision (INFORSID), pp. 335-350, 2011.

[7] H. R. Nemati, D. M. Steiger, L. S. Iyer, and R. T. Herschel,
“Knowledge warehouse: An architectural integration of knowledge

management, decision support, artificial intelligence and data

warehousing”. Decision Support Systems, vol. 33, Jun. 2002, pp.
143–16.

[8] M. Golfarelli, “From User Requirements to Conceptual Design

in Data Warehouse Design”. In Data Warehousing Design and
Advanced Engineering Applications Methods for Complex

Construction, IGI Global, Hershey, 2009, pp. 1-16.

[9] M. Golfarelli, and S. Rizzi, “WAND: A CASE Tool for Data

466Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 488 / 679

Warehouse Design”. In Demo Proceedings of 17th International

Conference on Data Engineering (ICDE), pp. 7-9, 2010.

[10] O . Romero, and A. Abelló, “Automatic validation of

requirements to support multidimensional design”. Data Knowledge

Engineering, vol. 69, pp. 917-942, 2010.

[11] P. A. Bernstein, and S. Melnik, “Meta data management”. In

Proceedings of the IEEE CS International Conference on Data

Engineering. IEEE Computer Society, 2004.
[12] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik,

“LIMBO: Scalable Clustering of Categorical Data”. In

Proceedings of the 9th International Conference on Extending
Database Technology (EDBT), 2004, pp. 123-146.

[13] P. Giorgini, S. Rizzi, and M. Garzetti, “Goal- oriented requirement

analysis for data warehouse design”. In Proceedings of the 8th
International Workshop on Data Warehousing and OLAP

(DOLAP), 2005, pp. 47 - 56 .

[14] P. P. S. Chen, “The Entity-Relationship Model-Toward a Unified

View of Data”. ACM Transactions on Database Systems, vol. 1,
1976, pp.9-36.

[15] S. R. Gardner, “Building the Data Warehouse”. Communications

of the ACM, Vol.41, 1998, pp. 52-60.
[16] V. Faber, “Clustering and the Continuous k-means Algorithm”.

Los Alamos Science, vol. 22, 1994, pp. 138-144.

[17] W. H. Inmon, “Building the Data Warehouse. John Wiley & Sons
Inc, 2005.

[18] Y. Li, D . Liu, and W . Zhang, “A Generic Algorithm for

Heterogeneous Schema Matching”. International Journal of
Information Technology, vol. 11, 2005, pp. 36-43.

TABLE II. TRANSFORMATION OF THE CONCEPTUAL SCHEMA TO LOGICAL ONE.

Category Conceptual

level

Multidimensional level Logical level

Element Type Element Type

Fact Sales Fact_1 - Sales -

FactKey - SellerID Integer SellerID Integer

- ProductID Integer ProductID Integer

- CustomerID Integer CustomerID Integer

Measure Quantity QuantityInStock Double QuantityInStock Double

QuantityOrdered Double QuantityOrdered Double

Price Price Double Price Double

Gain - - Gain Double

Dimension Customer Customer - Customer -

DimensionKey - CustomerID Integer CustomerID Integer

Attribute FirstName CustomerName String CustomerName String

LastName CustomerLastName String CustomerLastName String

Phone CustomerPhone Integer CustomerPhone Integer

- CustomerStreet String CustomerStreet String

- CustomerCity String CustomerCity String

Dimension Seller Seller - Seller -

DimensionKey - SellerID Integer SellerID Integer

Attribute FirstName FirstName String FirstName String

LastName LastName String LastName String

- Phone Integer Phone Integer

- Fax Integer Fax Integer

Dimension Product Product - Product -

DimensionKey - ProductID Integer ProductID Integer

Attribute ProductName ProductName String ProductName String

Category ProductCategory String ProductCategory String

- ProductLine String - -

- ProductDescription String - -

467Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 489 / 679

Towards Implementation and Design of Multi-tenant SaaS Based on Variabiliy

Management Mechanisms

Houda Kriouile, Bouchra El Asri, M'barek El Haloui and Asmae Benali
IMS Team, SIME Laboratory

ENSIAS, Mohammed V University

Rabat, Morocco

Email: [houda.kriouile, mbarek.haloui, asmae.benali]@um5s.net.ma,
elasri@ensias.ma

Abstract—Software as a Service (SaaS) is a form of Cloud

Computing that involves offering software services on-line and

on-demand via Internet deemed a main delivery support. Multi-

tenancy is a tool to exploit economies of scale widely promoted by

SaaS model. Even so, the ability of a SaaS application to be

adapted to individual tenant’s needs seem to be a major

requirement. Thus, in this paper we introduce an approach

proposing a more flexible and reusable SaaS system for Multi-

tenant SaaS application. The approach introduced is based on

integrating a deployment variability that enables the customers

to choose with which others tenants they want or do not want to

share instances with a functional variability using Rich-Variant

Components.

Keywords-SaaS; Rich-Variant Component; Functional

Variability; Deployment Variability; Multi-tenancy.

I. INTRODUCTION

With the age of Cloud Computing, several forms of Cloud
services have emerged thanks to the Internet services
development and the customers' needs evolution, in particularly
the Software as a Service (SaaS) form. The latter refers to
software distribution model in which applications are hosted by
a service provider and made availability to customers over a
network, typically the Internet. A key enabler in Cloud
Computing to exploit economies of scale is the multi-tenancy,
a notion of sharing resources among a large group of customer
organizations, called tenants. But, the multi-tenant application
responds only to needs that are common to all tenants. So, a
plethora of work research has been performed to facilitate SaaS
applications customization according to the tenant-specific
requirements by exploiting benefits of both variability
management and multi-tenancy [1][2][3]. In the same vein, we
aim to create a flexible and reusable environment enabling
greater flexibility and suppleness for customers while
leveraging the economies of scale. For this purpose, we
propose a solution integrating a functional variability at
application components level and a deployment variability at
multi-tenants level as well.

This paper is divided into five main sections along with this
introduction. Section II provides an overview on variability
management mechanisms, Cloud Computing and Multi-
tenancy as a background concepts for our work research, then
deals with the incentives and motivations for the proposed
approach. Section III presents several approaches studied as
related work and positions our contribution. Section IV initiates

our contribution which consists on integrating functional and
deployment variabilities for SaaS applications. Section V
provides some outstanding of our approach and future works.
Finally, Section VI is a conclusion of the paper.

II. BACKGOUND AND MOTIVATION

In the following subsection, some variability management
mechanisms are presented, followed by a short introduction to
the Cloud Computing and the Multi-tenancy notions as a
background for our work. Finally, the motivation of our
contribution consisting on the need of managing variability for
Cloud environment is discussed.

A. Variability managment mechanisms

Variability is the ability of a software artifact to be adapted
for a specific context [4]. For example, it could be the ability to
be extended, configured, customized or modified. A request for
change requires the evolution of systems. Therefore, the
variability of the system or the software must be managed
during all lifecycle's phases (e.g., the specification phase, the
conception phase, the testing phase, the implementation phase,
etc.).

A variety of mechanisms and approaches are proposed for
the management of system's variability. These mechanisms
intervene at the level of the different lifecycle's phases.
Examples are cited bellow:

 Specification phase: Iqbal, Zaidi and Murtaza propose
a model for requirement prioritization using Analytical
Hierarchical Process (AHP) [5].

 Conception phase: Several approaches were proposed
in this phase to model software product lines by using
feature models as the Feature Oriented Domain
Analysis (FODA) approach [6], which aims to capture
the commonalities and the points of difference at
requirement level. Many other approaches provided
extensions to the FODA approach. Such as the
Feature-Oriented Reuse Method (FORM) [7], whose
main contribution is the decomposition of the feature
model layers to describe different perspectives
(capacity, environment, technology).

 Testing phase: Erwing and Walkingshaw propose
organizing the space of all variations by dimensions,
which provides scoping and structuring choices [8].
They consider the concept of ”variation programming”
for a flexible construction and transformation of all
kinds of variation structures [8].

468Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 490 / 679

 Implementation phase: Trummer proposed a
corresponding data model [9] that is based upon the
Composite Application Framework (Cafe) model [1].
Applications are composed out of components that
may be provisioned separately.

From the cited works above, the interest of variability
management mechanisms is evident. Particularly, these
mechanisms are useful for managing the functional variability
and the deployment variability into Cloud environment,
specially for Multi-tenant SaaS applications.

B. The Cloud Computing and Multi-tenancy

Cloud Computing as defined by the National Institute of
Standards and Technology (NIST) is the access via a
telecommunications network, on demand and self-service, to a
shared pool of configurable computing resources [10]. Cloud
Computing is the use of computing resources - hardware and
software - that are provided as a service over a network,
usually the Internet. Cloud Computing entrusts remote services
with a user's data, software and computation [10].

Our work focuses on Cloud Computing Services from the
kind of Software as a Service (SaaS). In this type of service,
applications are made available to consumers. Applications can
be manipulated using a web browser. As a tool to exploit
economies of scale, SaaS promotes Multi-tenancy [3].

Multi-tenancy is the notion of sharing resources among a
large group of customer organizations, called tenants. That is, a
single application instance serves multiple customers. But,
even though multiple customers use the same instance that
each of which has the impression that the instance is designated
only to them. This is achieved by isolating the tenants’ data
from each other. Compared to single-tenancy, Multi-tenancy
has the advantage that infrastructure may be used most
efficiently as it is feasible to host as many tenants as possible
on the same instance. Thus, maintenance and operational cost
of the application decreases [3]. In Multi-tenant SaaS
applications, the variability may have fundamentally different
sources (evolution, maintenance, tenant’s requirements, etc.),
but is naturally present [2].

C. Motivation: On the need of managing variability for the

Cloud Environment

The emergence of Cloud Computing has necessitated more
and more variability in the form of types of services, types of
deployment, and the different roles of Cloud participant. Thus,
variability modeling is required to manage the inherent
complexity of Cloud systems.

SaaS application are consumed by many customers that
have different requirements. Thus, customers that consume the
same application usually exhibit varying requirements needs.
Varying requirements usually necessitate varying software
architectures. In other words, when applications’ requirements
are changed, the software architectures of these applications are
modified to satisfy the changed requirements. Therefore, both
requirements and architectures have intrinsic variability
characteristics.

Moreover, other concerns are raised by Multi-tenancy. For
example the need to ensure the correctness of all possible
configuration of the application. It is not sufficient to guarantee
the correctness of a single application's configuration.

On the other hand, in Multi-tenant SaaS application, the
consumer does not have to worry about making updates and
upgrades, adding security and system patches and ensuring
service availability and performance. In addition to that, the
rapid elasticity and the resource pooling are essential Cloud
characteristics [10], which promote variability for Cloud
Computing environment and particularly for Multi-tenant
contexts.

III. RELATED WORK

Several research works have been performed in the context
of architectural patterns for developing and deploying
customizable Multi-tenant applications for Cloud environment.
Fehling and Mietzner propose the Composite-as-a-Service
(CaaS) model [11]. They show how applications built of
components, using different Cloud service models, can be
composed to form new applications that can be offered as a
new service. These applications have been designed in the
spirit of customization, thus their variability was modeled using
the application model and variability model from the Cafe
Framework [1], which allows exploiting economies of scale by
the use of highly flexible templates enabling increasing
customers base. Our work aims to exploit economies of scale
from two sides by the use of Multi-tenancy and the
introduction of the new concept of Multiview, that has not been
used in any of the related work studied.

In the context of the Late Binding Service - which enables
service loose coupling by allowing service consumers to
dynamically identify services at runtime - Zaremba, Vitvar,
Bhiri, Derguech and Gao present models of Expressive Search
Requests and Service Offer Descriptions allowing
matchmaking of highly configurable services that are dynamic
and depend on request [12]. This approach can be applied to
several types of services. In the remainder of their work,
Zaremba, Bhiri, Vitvar and Hauswirth apply their approach
[12] on the domain of Cloud Computing, more exactly on the
IaaS services that are highly configurable, change dynamically
and depend on requests [13]. This approach deals with a
different area of cloud application which is IaaS services.
Moreover, this approach does not propose a solution to exploit
economies of scale and only deals with one type of variability,
which is the deployment variability.

Ruehl, Wache and Verclas address the deployment
variability based on the SaaS tenants requirements about
sharing infrastructure, application codes or data with other
tenants [3]. They propose a hybrid solution between Multi-
tenancy and simple tenancy, called the mixed tenancy. The
purpose of this approach is to allow the exploitation of
economies of scale while avoiding the problem of customers
hesitation to share with other tenants [3]. Authors focus on the
deployment variability and neglect the functional variability
management.

In [2], an integrated service engineering method, called
service line engineering, is presented. This method supports co-
existing tenant-specific configurations and that facilitates the
development and management of customizable, Multi-tenant
SaaS applications without compromising scalability [2]. In
contrast to our approach, this method - as well as the other
approaches cited - does not address to the accessibility by roles,
which is allowed in our work by the use of Multiview concept.

469Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 491 / 679

<< RVC >> << RVC >> << RVC >> << RVC >>

<< RVC >> << RVC >> << RVC >>

Execution Engine Web

server

(...)

<<executes>>

(...)

2

n

1

(...)

Catalog of RVC based applications

Configuration Template

Rich-Variant Configurations

Multi-

Tenants

<<uses>>

The Multiview notion allows applications to dynamically
change the behavior according to the enabled user's role or
viewpoint.

 The next section deals with the initiation and the
explanation of the approach subject of our contribution,
consists of integrating the functional variability with the
deployment variability for Multi-tenant SaaS applications.

IV. TOWARDS THE IMPLEMENTATION AND THE DESIGN OF

MULTI-TENANCY SAAS

One of the main focuses of our team research is to work on
complex systems variability according to functional areas that
have initiated the concept of Multiview Component [14]. The
Multiview Component concept is a component model for
viewpoint in the perspective of View-based Unified Modeling
Language (VUML) approach [15].

Our work aims to define a way to design and descript
capabilities and variability of Rich-Variant services. In this
intention, our contribution is to establish a flexible and reusable
SaaS environment while exploiting economies of scale. That is,
our work in progress consists of providing Multi-tenant
applications based on Rich-Variant Components (RVC), which
allow customers to choose among other tenants who they want
or do not want to share the deployment with. This implies that
these composite SaaS applications are made up of a number of
RVC components; each one of which provides an atomic
functionality and modifies their behavior dynamically
depending on the Multi-tenant variability.

A glimpse of our architectural vision for the approach is
provided in Figure 1. All tenants use the same execution engine
that executes tenants' specific configurations by
communicating with a Web server. A tenant is a customer who
pays to use the application. It could be an enterprise, a
company or any kind of organization wishing to rent the
application.

Figure 1. The architectural vision

Each tenant has several users who are actually their
employees. These end-users will be categorized according to
their business and needs to form different roles or viewpoints.
So, applications which are based on RVC components behave
differently and this is according to the enabled role or
viewpoint thereof, as it was mentioned earlier.

The catalog is a formal description of all the applications
offered by a provider. It describes the functional variability of
each application and specifies the variability points of an
application to show how it could be customized.

For each application, the configuration template describes
the different RVC components that must be linked to create the
specific application. The configuration template contains
instantiations of the catalog related to the application. Thus, the
variability points of each RVC component that require specific
tenants information are not configured yet at this level.

Based on a particular configuration template, the Rich-
Variant configuration describes a specific application tailored
for a specific tenant with a dynamic behavior changing during
the execution according to the end-users' enabled role or
viewpoint. In addition, the parameters or variability points
provided by each RVC component are defined at the Rich-
Variant configuration level.

From the catalog, the Multi-tenants choose the features and
functionalities they need and specify the necessary parameters
to obtain their specific Rich-Variant configuration. This fact
enables the functional variability. Besides, the use of RVC
components allows more flexibility according to end-users
business.

In a further work, we plan to define a number of
deployment models. Namely a Public deployment model to
enable sharing deployment with all other tenants. A Private
deployment model to not enable sharing deployment with any
other tenant. And a Hybrid deployment model to enable
specifying with who share and who do not share the
component's instance. For each RVC component, the tenant
chooses one deployment model. Thus, we intend to allow the
variability of deployment by permitting customers to choose
with whom they want to share an instance of a particular RVC
component based on the aforementioned deployment models.

Our work has been implemented on a case study to
demonstrate the value and feasibility of the approach. The case
study consists of a SaaS application for managing private
schools, accessible from a web browser. Schools which are
tenants of the application benefit, undoubtedly, from
deployment variability and functional variability in a flexible,
reusable and dynamic environment according to the different
needs of the end-users (e.g., administrator, professor, student,
etc.).

V. OUTSTANDING AND FUTURE WORKS

In our research work, we seek to integrate both functional
and deployment variability. Also, we look to improve
reusability by the use of RVC components. In addition, our
approach enables flexibility according to the tenants'
requirements and the viewpoint or role activated, too. In our
approach, we aim to exploit economies of scale by the use of
Multi-tenancy concept as the most of approaches cited as
related work do. But, we also rely on the use of Multiview

470Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 492 / 679

notion predicating on the RVC components to exploit more and
more economies of scale.

As future works, we will define an new artifact based on
Rich-Variant Component enabling customers to choose to
share or not to share with other customers. The next step will
be devoted to the implementation of our approach by applying
it to the case study consisting of SaaS application for managing
private school so as to show its interest and improve it by tests
evaluation.

VI. CONCLUSION

The variability management, the RVC component notion
and the Multi-tenancy rationalization are key enablers for the
accomplishment of flexibility, reusability and exploiting
economies of scale in customizable SaaS applications. For this
objective, we have initiated in this paper our approach which is
primarily based on integrating two types of variability to create
a more flexible and reusable SaaS environment while
exploiting economies of scale. For this purpose, we introduced
the background knowledge of our work: variability
management mechanisms, Cloud Computing and Multi-
tenancy. Then, we showed the need of managing variability for
Cloud environments. Finally, we presented the Multiview
component concept to introduce our contribution. Our present
work is devoted to the implementation of our approach by
applying it to a case study showing its interest.

REFERENCES

[1] R. Mietzner, “A method and implementation to Define and Provision

Variable Composite Applications, and its Usage in Cloud Computing,”
Dissertation, University of Stuttgart, August 2010.

[2] S. Walraven, D. V. Landuyt, E. Truyen, K. Handekyn, and W.
Joosen, “Efficient customization of multi-tenant Software-as-a-Service
applications with service lines,” Journal of Systems and Software vol.
91, Jan. 2014, pp. 48-62.

[3] S. T. Ruehl, H. Wache, and S. A. W. Verclas, “Capturing Customers'
Requirements towards Mixed-Tenancy Deployments of SaaS-
Applications,” IEEE CLOUD, 2013, pp. 462-469.

[4] M. Aiello, P. Bulanov, and H. Groefsema, “Requirements and tools for
variability management,” Proc. the 2010 IEEE 34th Annual Computer
Software and Applications Conference Workshops (COMPSACW '10),
Washington, DC, USA, 2010, pp. 245-250,
doi:10.1109/COMPSACW.2010.50.

[5] M. A. Iqbal, A. M. Zaidi, and S. Murtaza, “A new requirement
prioritization model for market driven products using analytical
hierarchical process,” Proc. DSDE’10, IEEE, Feb. 2010, pp. 142-149.

[6] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” Technical
report, CMU/SEI TR-21, USA, Nov. 1990.

[7] K. C. Kang, S. Kim, J. Lee, K. Kim, G. J. Kim, and E. Shin, “FORM: A
feature-oriented reuse method with domain-specific reference
architectures,” Annals of Software Engineering, vol. 5, 1998, pp. 143–
168.

[8] M. Erwig and E. Walkingshaw, “Variation programming with the choice
calculus,” Generative and Transformational Techniques in Software
Engineering, Springer-Verlag Berlin Heidelberg, 2012, pp. 55-100,
doi:10.1007/978-3-642-35992-7_2.

[9] I. Trummer, “Cost-Optimal Provisioning of Cloud Applications,”
Diploma thesis, University of Stuttgart, Faculty of computer sciene, Feb.
2010.

[10] NIST. Definitoon of Cloud Computing - National Institute of Standards
and Technology, Gaithersburg, MD, 2009.

[11] C. Fehling and R. Mietzner, “Composite as a Service: Cloud Application
Structures, Provisioning, and Management,” it - Information Technology
Special Issue: Cloud Computing, April 2011, pp. 188-194.

[12] M. Zaremba, T. Vitvar, S. Bhiri, W. Derguech, and F. Gao, “Service
Offer Descriptions and Expressive Search Requests - Key Enablers of
Late Service Binding,” Proc. 13th International Conference on E-
Commerce and Web Technologies (EC-Web), Vienna, Austria, Sept.
2012, pp. 50-62, doi: 10.1007/978-3-642-32273-0_5.

[13] M. Zaremba, S. Bhiri, T. Vitvar, and M. Hauswirth, “Matchmaking of
IaaS cloud computing offers leveraging linked data,” Proc. 28th Annual
ACM Symposium on Applied Computing (SAC) , New York, NY, USA,
2013, pp. 383-388, doi:10.1145/2480362.2480440.

[14] B. El Asri, “A model of multiview components for VUML,” National
dissertation, Engineering School of Information Technology and System
Analysis (ENSIAS), Rabat, Oct. 2005.

[15] M. Nassar, “ VUML: a viewpoint oriented UML extension,” Proc. 18th
IEEE International Conference on Automated Software Engineering,
Oct. 2003, pp. 373-376, doi: 10.1109/ASE.2003.1240341.

471Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 493 / 679

 Applications Architecture for a Medium Sized Manufacturing Firm

Alicia Valdez

Research Center

University Autonomous of Coahuila

Coahuila, Mexico

aliciavaldez@uadec.edu.mx

Sergio Castaneda, Laura Vazquez, Azucena García

Research Center

University Autonomous of Coahuila

sergiocastaneda@uadec.edu.mx,

lauravazquez@uadec.edu.mx,

azucenagarcia@uadec.edu.mx

Abstract— Small and Medium Enterprises require new

technologies and methods of work organization that allow

them to improve their productive and competitive capacities.

The Enterprise Architecture is a methodology that defines

architectures for the use of the information in support of the

business strategy, looking for strategic alignment between

information technology and business processes. The

Applications Architecture is a partial architecture of the

enterprise architecture, which aims to define the best kinds of

applications needed for data management and support the

business processes, considering the strategic use of information

and technology for the competitive advantage of the company.

This research project designed and implemented an

application architecture in a medium-sized manufacturing

company using open source software, resulting in the

identification of strategic areas of opportunity for this

architecture, and the development of a basic web page to start

e-commerce activities, achieving 7% increase in sales of the

company, thus helping to raise productivity and

competitiveness.

Keywords-Application architecture; SME; Enterprise

architecture; e-commerce

I. INTRODUCTION

Productivity and competitiveness of the Small and

Medium Enterprises (SME’s), are important, because they

provide a high rate of employment, the Secretary of

Economy estimates that 7 of each 10 employees work in

SME’s [1].

Therefore, it is necessary to create a strategic solution to

improve the capabilities of these companies and respond

quickly to the challenges, either business related or

technological, which is today’s markets demand [2].

Enterprise Architecture (EA) is a methodology to

provide companies with a framework for the use of

information on business processes in ways that support the

business strategy [3].

The framework was created to provide a disciplined

approach to managing information systems, and

professional communication that would allow the

improvement and integration of tools and development

methodologies [4].

Recently the framework was updated by Ross, Weill,

and Robertson [5], cited by Bijata and Piotrkowski, where

the concept of Enterprise Architecture as Strategy (EAS),

has been proposed as an enterprise framework, composed of

three elements, operating model, enterprise architecture, and

information technology cooperation model; established as

an improvement of enterprise architecture, for an adjustment

in the strategy of the organization [6].

Harrel and Sage have mentioned that the key to

developing Enterprise Architecture is located in:

 Business processes.

 Data for processes.

 Technology.

 Interfaces with customers.

 Applications software.

where each factor has its own architecture and develops

its own tools that support it [7].

In Singapore, a research project of strategic alignment

between the business model and Information and

Communication Technology (ICT) was developed, in the

form of an architecture for small and medium engineering

and construction enterprises, focused on four shafts,

business strategy, strategy of ICT, business or

organizational infrastructure, and infrastructure of ICT [8].

This project was established, looking for the

transformation of the business sector aforementioned, to

prepare them to face the challenges of the XXI century,

supported by ICT, designed to acquiring new skills, using a

framework of enterprise architecture, the results of the study

were [8]:

 Some companies do not consider ICT as

strategic to their business.

 The practice of using ICT is mainly in

administrative functions.

 The exploitation of ICT for improving the

technical areas is low.

 Insufficient professionalism.

 Shortage of professional and technical

personnel.

 Insufficient use of technology.

 Methods of unproductive operation.

472Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 494 / 679

 Involved in domestic markets.

Ahlemann et al. [9] have proposed the EAM as a way to

deal with organizational complexity and change, make it

strategic for business management.

These studies have shown that results of strategic

alignment between ICT and business strategy are similar in

other countries.

One important activity of the pre-construction of the

Applications Architecture (AA) was the analysis of business

model, and the strategic planning, which discusses, among

other things, the mission, vision, geography, competitive

advantage, customers, suppliers, enterprise services, and

other important factors that relate to the definitions of the

business.

The AA is a partial architecture of the Enterprise

Architecture, that aims to define the best kind of data

needed to manage and support business processes

applications, also known as conceptual applications model

[10].

In the AA, it identifies every possible application to

manage the data and support the business, considering the

strategic use of ICT for competitive business advantage. As

an increasing number of functions and processes within

companies, it has also increased the number of computer-

based information systems, which are improving the

efficiency and quality of the areas and processes that

support [10].

The AA is a definition of what applications will manage

data, and provide information to people running business

processes. Applications enable the Information Systems (IS)

function to achieve its mission; this is to provide access to

the necessary data in a useful format at an acceptable cost.

Using as a source of information, the definitions of data

architecture, the data-matrix functions, the business model,

and the applications list, to propose candidate applications.

In this case study, an applications architecture was

designed, like a partial architecture of an enterprise

architecture, considering key processes in manufacturing

SMEs, the best practices and business modeling tools that

use these companies to develop it; with the objective of

supporting them in increased productivity and

competitiveness. An improvement proposal was designed

and implemented [11].

The methodology for the case study is shown in Figure

1, where the requirements analysis began with the

description of the current applications.

Figure 1. The methodology for AA.

The next step was a search of software tools for EA,

looking for accessible tools for SME’s. The selected

software was Essential Architecture Manager 3.0 [12], the

Figure 2 displays one view representing application

capability summary, which is searching for suitable

software solutions to SME’s.

Figure 2. View of Essential Architecture Manager for AA.

The AA was designed (the next section describes the AA

design widely), the assessment of options for opportunity

areas identified, and finally the implementation of the

solution.

The organization of this paper is as follows; Section 1 is

mentioning the concepts, studies about applications

architecture, and the methodology used in the case study;

Section 2 describes the Application Portfolio Management

(APM), as well as, the information required for the design

of the application architecture from the company; finally,

the implementation of the solution derived from the analysis

is shown.

A. State of the Art

Op’t et al. [13] have identified enterprise architecture as

a key driver for governing the changes in companies,

ensuring compliance in the implementation. Bernard [14]

has defined EA as a holistic management, planning, and

documentation activity, and has introduced the EA Cube

Framework and implementation methodology. Where were

defined lines of business as five sub-architectures, and three

common thread areas.

 Strategic initiatives.

 Business services.

 Information flows.

 Systems and applications.

 Technology infrastructure.

The three threads are:

 Security.

 Standards.

 Workforce.

473Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 495 / 679

―Newer approaches as business services, exemplifies

how EA can link strategy, business, and technology

components across the enterprise within a service bus that

encompasses platform independent horizontal and vertical

EA components‖ [14].

Some frameworks were updated for including EA as a

requirement, Control Objectives for Information and

Related Technologies (COBIT EA), repositioned as a

business framework for the governance and management of

enterprise IT, defining EA such a requirement; the domains

for EA in COBIT, namely business, information, data,

applications, and technology [15].

EA involves key elements as, strategy, business, and

technology; considering the basic Zachman’s Framework

[3], and notions from Spewak [9], and the new proposals as

EA Cube Framework [14].

The applications architecture proposed in this paper has

considered, analysis of the current applications, identifying

priority processes, developing and assessment of solutions

for achievement support on strategy business and

technology, which are related with the general assumptions

of EA, in applications architecture level.

Figure 3 shows the proposal for applications

architecture.

Agility and effectiveness in operations of the

manufacturing processes, as also, data sharing across the

company, were some of the advantages of using this

proposal.

Figure 3. Proposal for Applications.

II. NOTIONS

Some researchers have identified 5 fields or

categorizations related to decision making in IT [16]:

 IT Principles.

 IT Architectures.

 IT Infrastructure.

 Business needs and applications.

 IT Priorities and investments.

This set of activities have been named: The Application

Portfolio Management (APM), shown in Figure 4, with the

tools for each categorization [17].

Categories:

 IT Strategy: Is defined and governed by the

central IT staff, who report directly to the CIO

(Chief Information Office) or executive office

information, considering strategic maps,

strategy business, Scorecard for ICT, and Key

Performance Indicators (KPI’s).

 Business application needs: These needs are

analyzed according to the business

requirements, using Business Processes

Modeling (BPM), diagrams of the company and

Use Cases.

Figure 4. The Application Portfolio Management [17].

 IT Architecture: Is developed and maintained

by the staff, using standard components,

Enterprise Architecture diagrams, and UML

diagrams.

 IT Operation: The operation is managed by the

teams responsible for data centers and

networks; staff also supports users in daily

work, considering some tools like: Operating

data charts, configuration management

databases (CMDB), and catalogue of services.

 IT Project Management: Designed by staff

dedicated to IT projects according to priorities,

and using networking, Gantt graphics, and

diagrams resource planning.

 IT Investment: Planned, negotiated and

controlled by the central IT staff by cycles of

annual budgets, considering project portfolio,

budget planning, financial status, and risk

assessment projects.

The IT staff provides support in all categories related to

APM.

474Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 496 / 679

 The AA is the conceptual model of business

applications, composed of software applications to support

business processes; the basics premises for construction of

AA are shown in Table I, where the objective has been

defined as the best kinds of applications to manage data and

support the business processes, by using Essential EAM, as

a repository for the instances obtained [18].

The technological domains identified by the EAM for

applications were: systems implementation, environment

services, integration services, business systems, business

support services, and systems management. Each one has a

set of capabilities executed by applications. In Figure 5 the

domains and capabilities are shown.

TABLE I. OBJECTIVE, PRINCIPLES AND CAPABILITIES FOR AA.

AA Name Description

Objective Define the best kinds of

applications to manage

data and support

business processes.

Define the best applications that

support the business processes.

Principle Customizing minimum

packaged applications.

Minimize app package, customization

will improve the ability to ensure

ongoing maintenance and maximum

value obtained from the adoption of a

package solution.
Capabilities Analysis, design,

programming and

implementation of

information systems.

Search packaged

solutions tailored to the

needs of the SME’s

Provide technical

support for software

and hardware

throughout the

company.

Domain in the analysis, design,

programming and implementation of

information systems.

Domain in search packaged solutions

tailored to the needs of the SME’s

Domain to provide technical support

for software and hardware.

This set of capabilities represents the broad domain for

the applications in the companies. The IT staff must

consider the capabilities required for the optimum

functionality of the applications.

 A. Information of the Applications Architecture

The first step was to collect the information about the

current applications of the case study firm, for this purpose

was applied a description format including the next data.

 System name.

 Project manager.

 User department.

 User contact.

 Description.

 Status.

 Long-range issues.

 Business processes supported.

Figure 5. Technology domain for applications.

Technical aspects of the applications:

 The equipment, hardware, or physical

technology platforms used.

 The networks or communication platform used.

 The software platform used.

 Preceding systems (systems that must execute

before the application).

 Succeeding systems (systems that can be

executed after this application has been run).

The format was applied for each application in the firm.

Subsequently, the activity for to relate the applications

with the business processes of the company, was developed.

Opportunity areas for application and improvement were

detected.

Table II, shows some data for the matrix of business

processes-applications.

Other documents that have been analyzed for AA were:

 Data diagrams [19].

 Business model [10].

B. Design of the Application Architecture

The design of the AA has included some components

that describe the context for applications, which are:

 Applications information.

 Applications function.

 Applications supported by business process

 Executed by people roles

 Relation to business process.

 Figure 5 displays the components of the AA.

475Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 497 / 679

TABLE II: INSTANCES OF APPLICATION ARCHITECTURE.

Name Description Domain of App Performed

by business

processes

Stock
Information
System

Management

of the inputs

and outputs of
the company

general store.

Update catalog of

items, articles

inventory processing.

Registry

inputs and

outputs of
goods and

raw materials.

Quality Spreadsheets

records
quality of

finished

products.

Data of finished

products according to
production plan.

Verify the

manufacturin
g process

according

espefications
with

production.

Client IS Manage

Client

Portfolio.

Update Clients

Portfolio,Electronic

Billing.

Client

Portfolio.

Financial
IS

General
Financial

System.

Update chart of accounts,

sub and sub-sub. Update

Cost-Centers.policies for

debit and credit accounts.

Update the information of

credit banks.

Accounting
Manager.

The basis for the objective, principle, and capabilities for

AA were previously shown in Table I.

Figure 5. Application Architecture Design.

C. Needs Identified

The company has the applications support for the

management processes with IS in: Distribution, Finances,

Clients, Sales and Marketing, Product development, Stock

and others management processes, which are shown in

Table III.

The production and quality processes are supported by

spreadsheets, as these processes are essential in this

industry, has been programmed the acquisition, in short

term, of software to streamline processes throughout the

logistics chain.

By the other hand the electronic commerce is null, then

the recommendation is begin with a basic website that

including information about:

 Background of the company.

 Products and services.

 Scheme of manufacture.

 Quality model.

 Clients.

 Contact.

 Important information about the company.

The website was implemented by September 2013; a rise

in the sells was of 7% during the next two months.

The graphic with the access statistics website is shown

in Figure 6.

We are stressing–out that the company did not have a

website before, only mentioned in some industrial

directories as ―Infomaquila‖; when entering the e-commerce

in this first phase, there has been an increase of the hits and

visits to the website, resulting in a rise of the customers and

sales.

TABLE III: APPLICATIONS OF THE COMPANY.

 Company area Application Activities

Distribution Shipping Information

System.

Finance Finances Information
Systems.

Human

Resources

Personnel

administration.

Detect training needs

of business areas,
especially productive

areas for develop

entrepreneurial
training program.

Investment

Administration

Investments of the

company.

IT Provision of IT
support for company's

business processes.

Quality Manufacture that

meets production
specifications.

Testing and inspection

using ultrasonic
methods or industrial

inspection.

Sales and

Marketing

Management

customers.

Customer service.

Continuous

communication with

customers to identify

needs and complaints.

Stock Register the inputs and
outputs of goods and

raw materials.

Suppliers
management.

Product
development

Program production
cycles.

Cutting, marking,
machining and

forming of steel plates

and profiles.

476Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 498 / 679

The improvement proposal will be gradually

implemented, starting with applications and technology that

directly impacts on priority processes as quality and

production; continuing with human resources processes, the

Table IV shown estimated resources for opportunity areas.

 TABLE IV: ESTIMATED RESOURCES FOR OPPORTUNITY
AREAS.

Application Estimated

price

Delivery

time

Requirements for

installation

Manufacturing

System

$ 3,000.00 60 to 80

days.

Windows Server

2003 or higher, 2
Ghz or higher

processor, 4Gb Ram,

SQL Server Express
Edition.

Information

Systems for

Management
Training.

$ 1,000.00 21 to 30

days.

Windows 7 or

higher.

Proposal to
integrate e-

commerce

$ 1,000.00 21 to 30
days.

Windows Server.

Approximate calculations to June, 2014 in USD.

The manufacturing system has been the most important

need detected, since it would share information with

production and quality, furthermore shipment and finances.

Figure 6. Access statistics website

The next stage of the website is to add popular search

engines like Google, Bing, and, Yahoo; links and social

networking accounts, Google maps location, bilingual

website, online payments through Paypal system, and others

internet characteristics.

III. CONCLUSION

The final recommendations are for using software,

hardware, and next generation networks, with efforts of
successful practices for manufacturing industry that would
support key processes, and help incorporate them into
international markets, always looking for a return on
efficient investment.

This project helped to meet the needs of SME’s
companies to propose affordable solutions that make
business management resources and technology to solve
problems.

The contribution of the paper focuses on the
improvement proposal for the case study firm and the
development of applications solutions, detected by the
analysis.

The AA takes components of the Business Architecture,
and is associated with the Technology Architecture to
produce the EA complete.

Other findings in terms of improvement were: SME’s
have demonstrated alignment with business strategy to drive
a strong organizational culture and technological
infrastructure.

The company has acquired new skills through ICT.
The sharing of information with customers and suppliers

has improved considerably with the use of e-commerce and
networking.

REFERENCES

[1] Secretary of Economy, ‖SMEs news‖,http://economia.gob.mx/

[retrieved: 04-2014].

[2] G. Lopez and H. Tan, ―Impact evaluation of SME programs in
Latin America and the Caribbean‖, World Bank, Washington,
USA, pp. 4-10, 2010.

[3] J. Zachman, ―A framework for information systems
architecture‖, IBM systems journal, vol 26, 1987, pp. 276-
292.

[4] J. Zachman, ―Enterprise architecture artifacts vs. application
development artifacts (Part 2)‖, http://www.itu.dk [retrieved:
05-2014].

[5] J. Ross, P. Weill, and D. Robertson, ―Enterprise Architecture
as Strategy‖ , Harvard Business School Press, USA, 2006, pp.
10-20.

[6] M. Bijata and K. Piotrkowski, ―Enterprise architecture as a
tool to support the strategic management process in an
organization‖, Hyperion International Journal of Econophysics
& New Economy, vol. 7, pp. 177-189, 06- 2014.

[7] M. Harrel and A. Sage, ‖An enterprise architecture
methodology to address the Enterprise Dilemma‖, Journal of
Information Knowledge Systems Management, vol. 9, 2010,
pp. 211-237.

[8] B. Goh, ―Applying the strategic alignment model to business
and ICT strategies of Singapore’s small and medium sized
architecture, engineering and construction enterprises‖, Journal
of Construction Management and Economics, vol. 25, 02-
2007, pp. 157-169.

[9] F. Ahlemann, E. Stettiner, M. Messerschmidt, and C. Legner,
―Strategic Enterprise Architecture Management‖ , Springer,
Germany, 2013, pp. 5-16.

477Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 499 / 679

[10] S. Spewak and S. Hill, ‖Enterprise architecture planning,
developing a blueprint for data, application and technology‖,
Wiley publisher, USA, 1992, pp. 1-6.

[11] J. Schekkerman, ―Enterprise architecture good practices guide:
How to manage the enterprise architecture practice‖, Trafford
publisher, 2008, pp. 15-20.

[12] D. Rice, ―Review of essential architecture manager 1.0‖,
Journal of enterprise architecture, vol. 1, 05-2009, pp. 1-7.

[13] M. Op’t, E. Proper, M. Waage, J. Cloo, and C. Steghuis,
―Enterprise architecture creating value by informed
governance‖, Springer, Netherlands, 2009, pp. 24-31.

[14] S. Bernard, ―Enterprise architecture linking strategy, business,
and technology‖, AutorHouse, Third edition, USA, 2012, pp.
25-31.

[15] COBIT, ‖COBIT 5 makes enterprise architecture a mandatory
discipline‖,http://companies.mybroadband.co.za/ [retrieved:
07-2014].

[16] P. Weill and J. Ross, ―IT governance how top performers
manage IT decisions rights for superior results‖, Harvard
Business School, Boston, USA, vol. 320, 2004.

[17] G. Riempp and S. Gieffers-Ankel, ―Application portfolio
management: a decision-oriented view of enterprise
architecture‖, Journal of Information Systems & e-Business
Management, vol. 5, 08-2007, pp. 359-378.

[18] The Essential project,‖The Essential Project‖, 2013,
http://www.enterprise-architecture.org/ [retrieved: 03-2014].

[19] R. Elmasri and S. Navathe, ―Fundamentals of database
systems‖, Addison-Wesley, Sixth edition, USA, 2010.

478Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 500 / 679

Enhanced Search: An Approach to the Maintenance of Services Oriented

Architectures

Norman Wilde, Douglas Leal, George Goehring, Christopher Terry

Department of Computer Science

University of West Florida

Pensacola, FL, USA

e-mail: nwilde@uwf.edu, douglas.leal@gmail.com, pensacoder@gmail.com, cterry@students.uwf.edu

Abstract— This paper describes the use of search techniques to

ease the burden of software maintenance for Services Oriented

Architecture composite applications. Services Oriented

Architecture is a paradigm that offers many potential business

and social benefits, especially because it creates opportunities

for composite software applications that share data and

functionality across organizational boundaries. However, along

with these benefits will come new challenges in the

maintenance of these applications. The first necessity in any

software maintenance task is to comprehend how the existing

software functions. To gain this comprehension, maintainers

will need to study a bewildering variety of artifacts, ranging

from XML-based interface descriptions, through source code

in a variety of languages, to traditional text documents in many

different formats. For some years, we have been experimenting

with the use of modern search techniques, enhanced where

possible by rule-based reasoning, to aid maintainers of

composite applications in gathering the information they will

need to do their jobs. In this paper, we describe version 2 of

our SOAMiner search system and discuss how its design

emerged from our experiences. While SOAMiner is still a

prototype, we argue that search, enhanced and specialized for

Services Oriented Architecture can provide useful support to

maintainers of these very heterogeneous applications.

Keywords-Services Oriented Architecture; SOA; Software

Maintenance; Search; Rule-Based Systems.

I. INTRODUCTION

The last decade has seen the emergence of a new
paradigm for large scale software applications often called
Services Oriented Architecture (SOA). While definitions of
SOA vary, the term usually refers to large composite
applications implemented as large-grained services running
on different nodes and communicating by message passing
(see Figure 1). Implementation technologies differ, but often
follow the Web Services interoperability standards.

The SOA architectural style has great potential to achieve
business or social goals through interoperability across
organizational boundaries. As an example of SOA, consider
the CONNECT project, which provides a set of software and
standard interfaces for health information exchanges in the
United States [1]. The goal of CONNECT is to enable health
data to follow a patient wherever he may need treatment.

Figure 1. A SOA composite application with services from three partner

organizations exchanging messages.

However, to achieve such benefits over the long term,
SOA composite applications will have to be maintainable in
a rapidly changing world. Several authors have pointed out
characteristics of SOA that may make maintenance difficult
[2][3][4]. Often, one such characteristic is distributed
ownership, so that different services in the composite
application are operated and maintained by different partner
organizations. Thus, changes to specifications may need to
be negotiated, coordination of updates may be complicated
and the maintainer's information about some services may be
incomplete. The mix of partners may change unpredictably
over the application's lifetime, requiring quick re-engineering
to adapt as services are offered or withdrawn. Critical
security issues may emerge without warning, and it may be
difficult to identify their impacts without knowing how
partner services are implemented.

A traditional stumbling block in all software maintenance
has been the need for program comprehension. The first
question a maintainer must always ask is "how does the
software work now?" Changes made to a software system
without deep understanding can be highly error prone. A
particular maintainer's problem has always been the
delocalized software plan in which the original programmer's

479Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 501 / 679

strategy for addressing some specific issue has been
implemented by related code in several distant program
modules [5]. Subtle faults may be introduced if a maintainer
makes changes in one of these modules in ignorance of
possible effects in others.

In SOA, the delocalization is not confined to a single
executable but may spread across different services which, as
we have seen, may have different owners. While every
service has a published interface, which is sufficient to
invoke it, in practice there are often additional data and
operation sequencing constraints that must be learned by
experience or by study of documentation [6].

There has been a modest amount of recent research on
maintaining SOA applications. Papazoglou, Andrikopoulos,
and Benbernou categorize changes into "deep" and "shallow"
and discuss how to keep services compatible [7]. Several
authors have proposed dynamic analysis approaches that
analyze inter-process messages to pull together a view of
execution across the multiple services. An early tool of this
kind was IBM's Web Services Navigator, which provides
several visualizations of message logs [8]. A later paper from
the same group describes a process that looks more deeply
into message contents to identify data correlations between
different messages [9]. Yousefi and Sartipi propose
analyzing dynamic call trees from distributed execution
traces to identify features in a SOA application [10]. A
different reverse engineering approach, which does not rely
on executing the system, recovers concept maps from the
interface descriptions as a starting point for knowledge
engineering interviews with system experts [11].

Looking for a simpler and more flexible approach, for
some time our group has been researching ways to exploit
the power of modern search techniques and adapt them to the
specific needs of SOA maintainers. The overall project is
called SOAMiner and has gone through a series of
prototyping and exploration phases [12]. In this paper, we
will describe version 2.0 of SOAMiner, which incorporates
the experience from these earlier studies. SOAMiner is built
on top of the Apache Solr™ open-source search platform
[13]. The new version of SOAMiner provides a combination
of conventional text search, specialized search that exploits
the structure of many SOA artifacts, and rule-base
abstraction to provide summarized descriptions of SOA
services and data.

In the next section of this paper, we explain how these
three strategies emerged from our experience in applying
search to SOA. Then, in Section III, we illustrate their
application by showing how SOAMiner can address a
maintenance scenario for a simple SOA composite
application. Finally, in Section IV, we conclude with some
thoughts about SOA and the evolution of SOA systems.

II. SEARCHING SOA ARTIFACTS

In trying to comprehend a SOA composite application, a
maintainer must deal with a bewildering variety of artifacts.
These may include XML documents that describe service
interfaces, source code for service implementations, and any
conventional documentation that a service provider has
chosen to offer. In developing a search strategy for these

different classes of artifacts a key decision is the granularity
of response. If a search returns just the few words that match
the query, then the maintainer will struggle to understand
how these fit into the application as a whole. If a large
volume of surrounding text is also returned, then the
maintainer may be buried in extraneous details. In this
section, we discuss our experiences in searching these
different classes of SOA artifacts and the granularity we
have chosen for each class.

A. Searching XML Artifacts

When SOA is implemented using Web Services, then
much of the information about each service is coded in XML
format as specified in one or more of the Web Services
Standards ([14], Chapter 16). The most common standards
cover Web Services Description Language (WSDL) to
specify how to call a service and XML Schema Definitions
(XSD) to specify the data exchanged in messages. Some
SOA systems also use Business Process Execution Language
(BPEL) which is essentially a programming language
encoded in XML for orchestrating interactions among
services.

The XML artifacts may often be very large; we have seen
extreme WSDL's of over 1 MB and several thousand lines is
not uncommon for an XSD. Such files are often generated by
some tool but it may still be necessary for the maintainer to
study them himself when trying to comprehend a service.
The structure of these files does not facilitate human
navigation.

For example, to identify the data types being used by a
particular service a maintainer needs to read its WSDL
"bottom up", starting from a <service> tag near the end,
locating the <port> tag it contains, navigating from there to a
referenced <binding> tag, which in turn references the
<portType>. From there the <portType> encloses a set of
<operations> with <input> and <output> tags each pointing
to a <message> tag. However, the maintainer is still not
finished because in most cases each <message> simply
references the actual data types, which are either enclosed
within the <types> section near the beginning of the WSDL,
or possibly contained within a completely separate XSD file
[14].

Generic search approaches, such as a text editor's 'find' or
a document-oriented web search engine, do not work very
well on these XML artifacts. Such approaches ignore too
much context because they are unaware of the significance
of XML tag names and of the information conveyed by
element nesting. Figure 2 provides one example showing
how a port type is defined in a WSDL. Element nesting
determines that the messages relate to the operation and the
operation to the port type.

<!-- portType for the InventoryRepository process -->
<portType name="InventoryRepositoryPortType">
 <operation name="checkInventory">
 <input message="tns:InventoryRepositoryRequestMessage" />
 <output message="tns:InventoryRepositoryResponseMessage"/>
 </operation>
</portType>

Figure 2. Portion of a WSDL showing the definition of an operation

within a port type.

480Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 502 / 679

When SOAMiner searches XML, the basic granularity is
the element start tag, so that a search for "checkInventory"
would return just the <operation> tag from Figure 2. If the
system is large, the user can specify a faceted search to limit
the results to a single tag type. As well, in SOAMiner we
also attach to each tag its parent and any children in the
XML document. Thus, if using our search GUI, the user
could hover over that result and see the surrounding
<portType> and the <input> and <output> tags. That
provides the maintainer with a few more hints as to the
context of each search result so he can focus quickly on the
results that are of most interest.

B. Rule-Based Abstraction from XML Artifacts

However, we can do even better than that by exploiting
knowledge about the semantics of the different XML tags
through a process of rule-based abstraction. We have
implemented such abstractions in a component of SOAMiner
called SOAIntel. An expert can specify a set of rules for
SOAIntel to define an abstraction, which summarizes some
characteristic of a class of SOA implementations. For
example, the rules could describe the above mentioned chain
of reasoning to relate the service to the data items in its input
and output messages. The resulting abstraction would be a
compact description of the service, its operations, and their
messages.

Rules are encoded using the DROOLS Expert rule-based
system [15]. SOAIntel uses the rules and the DROOLS
reasoning engine to analyze the XML inputs and produce a
set of abstractions. These abstractions are then loaded into
the SOAMiner index so that they may also be returned by
SOAMiner searches. Thus, a maintainer searching on
"checkInventory" would also find that this operation is part
of a service abstraction named InventoryRepository and thus
see that its messages use an element called inventoryQuery,
etc.

The rule-based abstraction process is very flexible, so
that new rule sets can easily be added to cope with changes
to the Web Services standards or with specific maintenance
needs for any particular class of composite applications [16].

C. Searching Source Code and Documentation

The source code for a SOA service may be in any of a
multitude of languages; in fact one of the objectives of SOA
is to allow services written in one language to invoke
transparently services written in another. In several of the
most common languages, such as Java and C#, much of the
code is commonly generated within an Integrated
Development Environment (IDE). For example, a Java
developer using NetBeans will call a tool called wsimport to
read a WSDL interface description and generate Java classes
for the message data types and a shell service
implementation. The generated code can be rather obscure,
and as well makes use of many Java annotations to guide the
run-time environment as the service executes. While the
availability of generated code greatly reduces the amount of
code a service developer needs to program, it also creates
complex mechanisms that a maintainer may need to learn.

The diversity of source languages and run-time
mechanisms makes it very difficult to develop a general code
search tool with any intelligence. Instead, for now,
SOAMiner falls back on normal text search, to locate lines of
code matching a given query string.

The situation is similar for natural language
documentation, which may be in text, Portable Document
Format (PDF), HyperText Markup Language (HTML) or
some word processor format. In the future, it may be possible
to apply text mining techniques such as text classification
and text clustering to these documents, but for now
SOAMiner relies on general text search, using the facilities
of Apache Tika™ to parse each document format and extract
the text contents [17]. Since lines and even paragraphing
may not be meaningful for all document types, each
SOAMiner search simply returns the entire document
contents.

D. Search semantics for SOA

Software Engineers search software for many reasons,
but two very common ones are concept location [18] and
impact analysis [19]. Concept location has to do with finding
the places in a software system where some particular
concept is addressed. For example, one could ask "where are
font changes handled in this word processor?" and search for
the concept "font" in code, documentation, etc. On the other
hand, impact analysis is concerned with establishing the
scope of a needed change. If, for example, the Software
Engineer has determined that a particular function needs to
be modified, then he needs to look at all the places that
function is called so that he can see what the change may
impact.

One of the observations we made after working with the
first versions of SOAMiner was that the semantics of these
two kinds of search are really quite different. Concept
location will usually use natural language semantics and
most of the techniques used in search engines should be
applied. For example, queries should be stemmed and case
insensitive, so that "font" will match "fonts" or "Font".
Query words should break on punctuation or case changes so
that again "font" will match "font_change" or "fontChange".

However, for impact analysis the rules should be very
different and use identifier semantics. Normally the Software
Engineer will have located a particular variable or function
name, such as "fontChange", and only wants to locate
occurrences of that identifier. A search with natural language
semantics would return all text where either "font" or
"change" appeared, and that would be far too many places to
examine.

The solution adopted in version 2 of SOAMiner is to
provide two alternate indexes, one using natural language
semantics and the other using more restrictive identifier
semantics. The user may choose which to use for any
particular query depending on the results sought.

III. ILLUSTRATIVE EXAMPLE

To provide an example of the power of enhanced search,
we may apply it to a simple SOA composite application
called WebAutoParts.com, a hypothetical on-line automobile

481Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 503 / 679

parts dealer. The owners of WebAutoParts have adopted an
agile development strategy, in which a small amount of
internal code orchestrates commercially available services to
provide needed functionality quickly [20]. WebAutoParts is
an academic system, not a real application, so several of its
components are stubs instead of full code. Still it models the
complexity of a real application since it consists of in-house
services with BPEL and some other code artifacts, WSDL
artifacts that describe external services from well know
vendors (e.g., Amazon Web Services, StrikeIron.com), and
XSD schemas to define data types used in system messages
(see Table I). The application provides an order processing
work flow (see Figure 3) in which incoming orders are first
checked to confirm that inventory is available, then sales tax
and shipping are computed, and finally the order is stored
and a note placed in a message queue to trigger order
fulfillment (packing and shipping).

To illustrate the use of SOAIntel, two rule sets were
written that generate two different kinds of abstractions from
the XML files. The first abstraction is a compact service
summary that shows the service and port type, the operations
in that port type, and the names of the input and output
messages of each operation. For the great majority of
services this summary will obviate the need to step through
the WSDL tag by tag to understand the service interface.

The second rule set generates a data type summary
abstraction that shows the different data items making up a
message. During our earlier studies with the first version of
SOAMiner users requested this kind of summary to help
them navigate the complexities of data typing in SOA [21].
The Web Services standards give developers a wide variety
of ways to define the data in messages, and the definitions
may look very different even if the final message content is
much the same. For example, the data definitions may be in
different places, either in the <types> section of the WSDL
itself, or else located in an associated XSD file.

Figure 3. The WebAutoParts order processing work flow showing

internal (shaded) and external services.

TABLE I. WEBAUTOPARTS ARTIFACTS

File Type Files Lines

WSDL (XML) 6 2433

BPEL (XML) 2 189

XSD (XML) 2 64

JAVA (Code) 6 450

C# (Code) 3 336

Microsoft Word 1 718

HTML 1 374

PDF 1 230

The style of the definition can also vary widely since

developers may use different combinations of XSD
elements, references and complex types to say much the
same thing. (The different design patterns have been given
names such as Russian Doll and Venetian Blind, and each
has its own advantages and drawbacks in terms of re-
usability and visibility [22]). To reduce this confusion our
second rule set extracts a simple list of the data items making
up each message, independent of the location or form of the
definition.

To see how a maintainer could use enhanced search in
studying an application such as WebAutoParts, consider the
following hypothetical scenario. Employees of
WebAutoParts have reported that, occasionally when
packing and shipping an order, an item is found to be out of
stock, even though the order processing workflow showed
that inventory was available. Something in the computation
of stock levels is obviously in error. The problem is passed to
a software engineer for action. Let us suppose that this
software engineer has little previous experience with the
order processing work flow of Figure 3.

Table I enumerates the artifacts that describe
WebAutoParts. There are a total of 10 XML files, 9 code
files and 3 documentation files. These are loaded into the
SOAMiner Solr index using the parsers for XML, code and
documentation respectively.

As always, the software engineer's first question is "How
are stock levels computed now?" He uses SOAMiner to do a
concept location query on "stock". The results are shown in
column A of Table II. Just one documentation file was
located and he picks that as the starting point most likely to
give him an overview of the situation. The documentation
file turns out to provide a general description of order
processing and provides roughly the same information that
readers of this paper have already seen. While it mentions
briefly that stock levels are checked it does not say how. It
does, however, show the overall workflow and indicates
what services participate in it.

TABLE II. RESULTS OF QUERIES ON WEBAUTOPARTS

 Column A

concept location

"stock"

Column B

impact analysis

"numberInStock"

XML tags 2 element tags 2 element tags

Abstractions 2 message data items

abstractions

2 message data items

abstractions

Code lines 13 Java, 6 C# 9 Java, 3 C#

Documentation files 1 Word doc none

482Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 504 / 679

The software engineer next looks at the two abstractions,
which show the data items making up the
InventoryRepositoryRequestMessage and the
InventoryRepositoryResponseMessage. He can see
immediately that these are respectively the input and output
messages of an operation called checkInventory in the
InventoryRepository service. His query on "stock" matched a
data item named "numberInStock" which is contained in
both messages. (Concept location queries use the natural
language semantics index in which words break on changes
of case, so the query word "stock" matches
"numberInStock".)

It seems highly likely that the error involves in some way
the numberInStock data item and the checkInventory
operation. Thus next the software engineer does an impact
analysis query on "numberInStock". The query uses the
identifier semantics index so it will only find exact matches
to that string. The results are shown in Column B of Table II.
The query finds the same two XML tags and message data
items abstractions, but it locates a smaller set of code lines,
reducing the places the software engineer needs to look. The
code lines are in a Java implementation of the
InventoryRepository service and a shell C# implementation
of a test client to that service.

Now that he has the big picture, the software engineer
can start looking at code. Here he can make use of
specialized IDE's for Java or C# having their own very good
search facilities. Combining his overall view of the workflow
with a little analysis reveals a classic "omitted logic"
problem [23]; while InventoryRepository gets the correct
value for the numberInStock at any moment, there is nothing
to prevent a second order from checking that same stock
level before the first has completed order fulfillment, so the
same stock may be committed twice. As often occurs, the
error is not really "in" any particular service, but is a
consequence of implicit assumptions made as the different
services were orchestrated together.

IV. CONCLUSIONS

In this paper, we have argued that Services Oriented
Architectures will not attain their full potential unless these
applications can be rapidly maintained. SOA applications
will need to provide high availability in a world with
changing requirements, shifting partner alliances and
emergent security threats. Their maintainers will need to
gather information quickly to comprehend and respond
correctly to each challenge.

In confronting these challenges, maintainers will need
both good governance and good tools. In SOA, the term
"governance" refers to the set of policies, rules, and
enforcement mechanisms for developing, using, and
evolving SOA-based systems [24]. There is a great danger of
organizations trying to go too far too fast with SOA and
creating composite applications that go beyond the
organization's capacity to maintain. The scope of
applications, the range of implementation technologies and
the rate of requirements creep need to be limited to match
organizational capabilities.

If the organization provides a reasonable governance
framework, then well qualified software engineers with good
tools should be able to do the job. Our SOAMiner is only
intended as one example of the sorts of tools that will be
needed. The current version remains a prototype. There are
some places where it is less precise than we would wish, for
example in the handling of namespaces. The user interface
remains a work in progress. However, we feel that the
flexibility provided by the combination of modern search
with rule-based abstraction is well suited to the changing
world of SOA. The search techniques can be applied to just
about any kind of artifact encountered in a SOA system,
while the abstraction mechanism can leverage a rule base
that grows with experience. Thus, a search tool like
SOAMiner can provide some useful information almost all
the time, and can provide better and better information as
experience grows.

It will be interesting to see how well the SOAMiner
approach scales to real-world SOA. Limited experience with
one larger system indicated that the pure search aspects
provided excellent performance, which was to be expected
since the Solr search engine was developed with large data
sets in mind. The scalability of the rule-based abstractions
may be more problematic. Our limited experience so far is
that performance can depend on how well the rules are
crafted to exploit the DROOLS index structure.

The evolution of SOA systems will never be easy, but
with thoughtful governance, skilled software engineers and
good tools, it should be possible to manage the challenges.

ACKNOWLEDGMENT

Work described in this paper was partially supported by
the University of West Florida Foundation under the Nystul
Eminent Scholar Endowment. Apache, Apache Solr, and
Apache Tika are trademarks of The Apache Software
Foundation. Used with permission. No endorsement by The
Apache Software Foundation is implied by the use of these
marks.

REFERENCES

[1] "What is CONNECT?", Internet:
http://www.connectopensource.org/about/what-is-connect,
link accessed 2014.07.22.

[2] N. Gold and K. Bennett, "Program comprehension for web
services", International Workshop on Program
Comprehension (IWPC'04), June 2004, pp. 151-160, doi:
10.1109/wpc.2004.1311057.

[3] N. Gold, C. Knight, A. Mohan, and M. Munro,
"Understanding service-oriented software", IEEE Software,
Vol. 21, March 2004, pp. 71-77, doi:
10.1109/ms.2004.1270766.

[4] G. Lewis and D. Smith, "Service-Oriented Architecture and
its implications for software maintenance and evolution",
Frontiers of Software Maintenance, FoSM 2008, Sept. 2008,
pp. 1-10, doi: 10.1109/fosm.2008.4659243.

[5] S. Letovsky and E. Soloway, "Delocalized plans and program
comprehension", IEEE Software, vol.3, no.3, May 1986, pp.
41-49, doi: 10.1109/MS.1986.233414.

[6] S. Halle, T. Bultan, G. Hughes, M. Alkhalaf, and R.
Villemaire, "Runtime verification of web service interface

483Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 505 / 679

contracts", IEEE Computer, Vol. 43, March 2010, pp. 59-66,
doi: 10.1109/mc.2010.76.

[7] M. P. Papazoglou, V. Andrikopoulos, and S. Benbernou,
"Managing Evolving Services," IEEE Software, Vol. 28, No.
3, May/June 2011, pp. 49-55, doi: 10.1109/MS.2011.26.

[8] W. De Pauw, et al., "Web services navigator: visualizing the
execution of web services", IBM Systems Journal, Vol. 44,
No. 4, Oct. 2005, pp. 821-845, doi: 10.1147/sj.444.0821.

[9] W. De Pauw, R. Hoch, and Y. Huang, "Discovering
Conversations in Web Services Using Semantic Correlation
Analysis", IEEE 20th International Conference on Web
Services, ICWS'2007, July 2007, pp. 639-646, doi:
10.1109/ICWS.2007.200.

[10] A. Yousefi and K. Sartipi, "Identifying distributed features in
SOA by mining dynamic call trees", IEEE International
Conference on Software Maintenance (ICSM), Sept. 2011,
pp. 73-82, doi: 10.1109/ICSM.2011.6080774.

[11] J. Coffey, T. Reichherzer, B. Owsnick-Klewe, and N. Wilde,
"Automated Concept Map Generation from Service-Oriented
Architecture Artifacts", Proc. of the Fifth Int. Conference on
Concept Mapping CMC2012, Sept. 2012, pp. 49-56.

[12] E. El-Sheikh, et al., "Towards enhanced program
comprehension for service oriented architecture (SOA)
Systems", Journal of Software Engineering and Applications,
Vol. 6, No. 9, Sept. 2013, pp. 435-445, doi:
10.4236/jsea.2013.69054.

[13] "Apache Lucine, Apache Solr", Internet:
https://lucene.apache.org/solr/, link accessed 2014.07.22.

[14] N. Josuttis, SOA in Practice: The Art of Distributed System
Design, O'Reilly, 2007, ISBN: 0-596-52955-4.

[15] "Drools - JBoss Community", Internet:
http://drools.jboss.org/, link accessed 2014.07.22.

[16] G. Goehring, et al., "A knowledge-based system approach for
extracting abstractions from service oriented architecture

artifacts", International Journal of Advanced Research in
Artificial Intelligence (IJARAI), Vol. 2, No.3, 2013, pp. 45-
52, doi: 10.14569/IJARAI.2013.020307.

[17] "Apache Tika", Internet: http://tika.apache.org/, link accessed
2014.07.22.

[18] V. Rajlich and N. Wilde, "The role of concepts in program
comprehension", 10th International Workshop on Program
Comprehension, June 2002, pp. 271-278, doi:
10.1109/WPC.2002.1021348.

[19] M. Petrenko and V. Rajlich, "Variable granularity for
improving precision of impact analysis", International
Conference on Program Comprehension, 2009. ICPC'09, May
2009, pp. 10-19, doi: 10.1109/ICPC.2009.5090023.

[20] N. Wilde, J. Coffey, T. Reichherzer, and L. White, "Open
SOALab: Case study artifacts for SOA research and
education", Principles of Engineering Service-Oriented
Systems, PESOS 2012, June 2012, pp. 59-60, doi:
10.1109/PESOS.2012.6225941.

[21] L. White, et al., "Understanding interoperable systems:
Challenges for the maintenance of SOA applications", 45th
Hawaii International Conference on System Sciences
(HICSS), January 2012, pp. 2199-2206, doi:
10.1109/HICSS.2012.614.

[22] E. Hewitt, Java SOA Cookbook, O'Reilly, 2009, ISBN: 978-
0-596-52072-4.

[23] R. L. Glass, "Persistent software errors", IEEE Transactions
on Software Engineering, Vol. SE-2, No. 2, March 1981, pp
162-168, doi: 10.1109/TSE.1981.230831.

[24] G. Lewis and D. Smith, "Four pillars of service-oriented
architecture", CrossTalk, September 2007, pp. 10-13.
Available from: http://www.crosstalkonline.org/storage/issue-
archives/2007/200709/200709-Lewis.pdf, link accessed
2014.07.22.

484Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 506 / 679

Evaluation of the Applicability of CM3: Emergency Problem Management within
the Industry

Mira Kajko-Mattsson
ICT, KTH Royal Institute of Technology

Kista, Sweden
mekm2@kth.se

Joakim Snygg, Emil Hammargren
DSV, Stockholm University

Kista, Sweden
snygg@dsv.su.se, emil-ham@dsv.su.se

Abstract— Software has become one of the main villains of
many organizational problems, emergencies and crises.
Despite this, there is only one process model defining how to
manage emergency software problems. It is CM3: Emergency
Problem Management. In this paper, we evaluate the
applicability of the CM3: Emergency Problem Management
model within five companies. Our results show that the model
correctly manages the real-life emergency and crisis situations
that are dependent on malfunctioning software. This
evaluation shows that all the five companies have emergency
processes that reflect CM3 model’s architecture, however, to
different degrees. Additionally all the five companies have also
designated roles that act as focal points of information and
decision making during emergencies. Finally, only one
company has identified the organizations and systems, which
should be affected by the emergency process

Keywords-Problem management; operational levels; task
force team; software maintenance.

I. INTRODUCTION

More and more of the emergencies and crises
encountered today get generated due to malfunctioning
software [1][6]. Many times, their underlying software
problems may be of unpredictable and uncertain dimensions
[16]. Being of high severity, they may threaten to harm the
organizations’ businesses and survival, their stakeholders, or
the general public [8][10]. For this reason, software
organizations must be well prepared for protecting
themselves against all types of crises and emergencies by
creating a well-defined emergency and crisis management
process. It is only then they may guard themselves against
all kinds of unexpected financial, political, legal, media and
governmental impact and consequences. [7][9][11]

Emergency problem management is recognized as an
important maintenance activity type by the International
Software Engineering Standard - ISO/IEC 14764 [15].
Despite this, there are no process models providing
guidelines for how to manage unexpected emergency and
crisis problems. To our knowledge, there is only one model
dedicated to software emergencies and crises today. It
is CM3: Emergency Problem Management [4][5]. CM3
stands for Corrective Maintenance Management Model.

TABLE I. THE FIVE COMPANIES

Company Nr of Employees
Nr of IT

Employees
Domain

SAS > 12 000 150 Aviation
Northern Finance > 15 000 > 100 Finance
Bank and Loans > 15 000 700 Finance
Good Things > 25 000 500 Retail
Gladstone 1 000 1 000 Gaming

CM3: Emergency Problem Management was initially

designed at Scandinavian Airline Systems (SAS) [4][5].
Hence, it reflected the status of SAS emergency process
model. In this, paper, we study five industrial emergency
processes with the purpose of evaluating CM3: Emergency
Problem Management and further extend it with more
process elements. The five companies are SAS, Northern
Finance, Loans and Bank, Good Things and Gladstone.
Except for SAS, the companies have requested to stay
anonymous. Hence, we use their fictitious names. The
companies are briefly presented in Table I.

Scandinavian Airlines (SAS) is an aviation company
member and cofounder of the Star Alliance. SAS is the
ninth-largest airline in Europe.

Northern Finance operates within the financial sector.
They are a worldwide finance company with offices from
Asia to North America. However, their main business
market is located in Europe. The company provides
products and services in the financial sector such as trading,
management and insurances.

Bank & Loan ltd. works within the financial sector and
offers retail banking, asset management and financial
services. They have offices in Asia, Europe, and North
America, but their main business is in Scandinavia.

Good Thing Sales is one of the largest retail companies
in Scandinavia with more than 1500 retail stores. Finally,
Gladstone Gamer is one of the largest online gaming
companies in the world. However, compared to the other
companies in the study, this company is the youngest. Most
of the employees are concerned with different aspects of IT.

The remainder of this paper is as follows. Section II
presents our research method. Section III presents the
extended version of CM3: Emergency Problem Management
Section IV describes how it matches the industrial
emergency processes, and finally, Section V makes
conclusions and suggestions for future work.

485Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 507 / 679

Figure 1. CM3: Emergency Problem Management

II. METHOD

Our journey towards evaluating CM3: Emergency
Problem Management consisted of many stages.
Unfortunately, due to space restrictions, we cannot report on
them all. Our reader may however, follow them by studying
our former publications that describe the initial model design
[4][5][12][13][14].

In general, our work consisted of four major stages: (1)
design of the initial version of CM3: Emergency Problem
Management, (2) evaluation of the model in the context of
one financial company, (3) extension of the model, and
finally, (4) model evaluation within five companies.

In the first stage, we developed the initial version of
CM3: Emergency Problem Management within SAS [4][5].
This version is demarcated by the grey shaded area in Fig. 1.
It is a better structured reflection of SAS emergency process
model. Its main mission is to manage emergency software
problems as encountered in SAS flight booking systems.
When designing it, we had many unstructured and frequent
interviews and discussions with SAS emergency process
owner and emergency process executors. As a next step, we
compared the model to an emergency process model within
Northern Finance [12]. We chose this company mainly due
to two reasons: (1) its application domain differed from the
application domain at SAS and, therefore it provided a good
platform for studying the applicability of the model in a
different context, (2) emergencies in the financial sector
were highly time dependent where the business stake was
very high and where crisis had a substantial ripple effect on
other sectors of the national economy [10].

During the study of Northern Finance emergency
process, we interviewed Information Officer, Incident
Handler, Information Security Manager, and Emergency
Escalation Partner in a series of consecutive interviews
using four different questionnaires. All of them were very

comprehensive, semi-structured and open-ended. Altogether,
they consisted of 300 main questions and additional 60
follow-up questions [13].

After having studied the emergency process at Northern
Finance, we compared it to CM3: Emergency Problem
Management, which we then extended with several process
components. In Fig. 1, they constitute the components that
are not part of the grey-shaded area. They mainly concern
addition of Pre-Alert phase, Operational Level 4 for
managing crisis (see Fig. 1). When evaluating the model, we
used a semi-structured and open-ended questionnaire
consisting of 106 questions. On comparison with the
questionnaires used in the second stage, the questionnaire in
this stage was more of a comparative character whereas the
former ones were more of an explorative type.

The comparison was made within five companies. Two
of these were the companies that contributed to the creation
and extension of CM3: Emergency Problem Management.
These were SAS and Northern Finance. Three other
organizations were new organizations. These were Loans
and Bank, Good Things, and Gladstone.

Regarding the roles interviewed, at SAS and Northern
Finance, we interviewed the same roles anew. Regarding the
remaining organizations, we interviewed different roles. At
Loans & Bank, we interviewed their Production Group
Leader, a role in charge of task force teams. At Good Things,
we interviewed their Program Manager, the head of IT
security responsible for their incident management process
and their contingency management. Finally, at Gladstone,
we interviewed a shift leader, a role responsible for
coordinating and resolving the emergency situations.

III. CM3: EMERGENCY PROBLEM MANAGEMENT MODEL

CM3: Emergency Problem Management consists of six
process components. They are (1) identification of the

486Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 508 / 679

TABLE II. EMERGENCY PROCESS ROLES

Added stands for roles introduced to cm3 after this study

organisations/departments/teams involved in the emergency
process, (2) products to be managed by the emergency
process, (3) roles involved in conducting the emergency
activities, (4) the focal point of contact through which one
communicates all emergency problems, (5) the emergency
process and its phases, and (6) operational levels required for
handling the emergency process. Although most of these
constituents are present in any process model, their presence
is extremely important within the emergency process.
Inefficiencies in any of them may substantially affect the
process results. In this section, we present each process
component and the questions that have been asked for
inquiring about their credibility and usefulness within the
five companies studied. The questions are presented in Table
III.

A. Identification of Organization

Some software systems may be integrated with many
systems that are many times evolved and maintained by
several organisations. Hence, the first step when defining an
emergency process should be to identify all the organisations
involved in emergency situations.

To solve the problem efficiently, the collaborating
companies must organize themselves and agree on and create
a common emergency process model. For this reason, as
indicated by Questions 18-29, we inquired about whether the
companies studied involved other organizations in their
respective emergency processes, and if so, whether they have
agreed on a common emergency problem management
process model.

B. Identification of the Product and Service Scope

Not all products and services are critical to business or
safety. Therefore, as a next step, the organisations should
identify the products and services to be encompassed by the
emergency process. These products and services are usually
safety-critical and business-critical systems.

In addition to this, the organisations should define a pertinent
scale for recording the severity levels of the problems
encountered and determine which severity levels should be
covered by the emergency process. If the process covers
several severity levels, then one should define priorities for
each level and specify in what way the management of the
problems with different severity levels varies. Defining
severity and priority should aid organizations in taking quick
and appropriate measures preventing serious ripple effects
and emergency escalations.

Using Questions 15-17 in Table III, we have inquired
whether the organizations have identified the scope of
products and services to be covered by the emergency
process. We have also asked whether they have defined
severity and priority values for these products and services.

C. Designation of Roles

Designation of roles is especially important in emergency
and crisis situations where conflicts of authorities, clashes
over organizational domains, and organizational
jurisdictional differences are common [4].

As shown in Table II, CM3: Emergency Problem
Management identifies two groups of roles: permanent and
temporary. By permanent roles, we mean the roles
exclusively dedicated to manage the emergency situations.
They are: Emergency Administrator, Emergency Process
Manager, Task Force Leader, Task Force Team, and Crisis
Team. By temporary roles, we mean the roles temporarily
involved in the emergency process. They are Support
Personnel, System Users, System Managers, Temporary
Task Force Group Members, Temporary Crisis Management
Group Members and other roles which are either responsible
for the problematic system or are users of the system. Due to
space restrictions, we cannot describe these roles in greater
detail. We only list them and their main responsibilities in
Table II. Interested readers are however most welcome to
study them in [4][5][12][13][14].

487Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 509 / 679

When evaluating our model, we inquired about whether
the companies studied used permanent and temporary roles
within their emergency processes. We then went through
CM3‘s role list as presented in Table II and found out
whether they were applicable within the organizations
studied. At this step, we used Questions 73-82 in Table III.

D. Point of Contact

During emergencies, information flow increases
drastically. If not properly managed, it may cause loss of or
it may delay the delivery of important information thus
substantially intensifying the problem at hand and leading to
a worsened situation [9][10]. For this reason, organizations
should identify ways for how the emergency problems
should be reported and communicated within the
organization.

An emergency problem may be encountered in various
ways by various roles such as end users, system managers,
external organisations, or other. Each serious problem should
be immediately reported to the relevant group which
constitutes a focal point of contact. One should also specify
the group’s availability, both within and outside the office
hours. In CM3, such a point of contact is provided by
Operational Level 1 conducted by the Emergency
Administrator role (see OL 1 in Fig. 1). Please observe that
Operational Levels are not the same as Support Line Levels
within industry. For more information about Support Line
Levels, we welcome the reader to study [3].

Regarding the component Point of Contact, we used
Questions 83-87 for inquiring whether the organizations
studied have defined a focal point of contact for all their
emergency problems and whether they have defined its
availability.

E. Process Phases

As outlined in the upper part of Fig. 1, the emergency
process consists of three main phases. These are (1) Pre-
Alert Phase, (2) Alert Phases, and (3) Post-Alert Phases.
Below, we briefly describe them.

During the Pre-Alert phase – Emergency Preparation,
the organizations prepare for various unforeseen emergency
situations by defining or improving the emergency process,
by regularly practicing it and by creating various actions and
contingency plans [11]. During the Alert phase, the
organizations attend to the encountered emergency problems.
To effectively manage them, CM3 distinguishes between four
alert phases.

As soon as Support Personnel on Support Line 1 gets a
report on a serious problem, they are obliged to escalate it to
the focal point of contact which is Emergency Administrator
on Operational Level 1 (see Fig. 1). At this moment, the
problem and the process trades into the Alert Level 1 –
Normal Operation phase. This phase only lasts for a
predetermined period of time. Here, the Emergency
Administrator collects all the information about the problem,
monitors user reactions, evaluates problem severity and
disseminates information to all the parties concerned.

After some predetermined period of time, the problem
gets escalated to the next alert phase, Alert Level 2 –
Increased Attention. It is now the Emergency Manager who
becomes the owner of the problem. Together with one or
several System Managers, he evaluates and implements
possible workarounds, if any. The Emergency Manager acts
as a focal point of decision.

After yet some predetermined period of time, the
problem gets escalated to the Alert Level 3 - Emergency
Situation phase. Now, the Task Force Leader is in charge of
the emergency situation. His first action is to establish the
Task Force Team who commonly tries to resolve the
emergency problem. Finally, in cases when the problem
threatens the organization’s business and survival, the
organization steps into the highest emergency level, which is
Alert Level 4 – Crisis Situation. In this phase, the whole
organization stands on toes including business managers and
upper-level managers.

After the problem is resolved, the organization steps into
the Post-Alert phases. Here, CM3 distinguishes between two
post-alert phases. These are Post-Alert - Emergency Closure
and Post-Alert – Emergency Follow-Up. The Post
Emergency – Emergency Closure phase is mainly executed
by the Task Force Leader who writes a report on the
problem and distributes it to all the parties concerned. The
Post-Alert – Emergency Follow-Up phase, on the other hand,
is conducted by the Task Force Leader who together with
the Emergency Manager investigates the problem with the
purpose of finding root causes underlying the problem.
These causes provide an important feedback to process and
product improvement.

When interviewing the companies, using Questions 30-
52, we inquired whether they have defined pre-alert, alert
and post-alert phases, what they do within these phases and
what roles they involve.

F. Operational Levels

The whole emergency process is conducted on four
operational levels (see OLs in Fig. 1). The operational levels
are only defined within the context of emergency and crisis
management. They do not overlap with any other
organizational levels, such as for instance, Support Line
levels [3]. However, they may strongly co-operate with
them.

The designation of operational levels is very important.
The process execution is strongly dependent not only on the
emergency phase the process is in but also on the operational
level performing it. As summarized in Fig. 1, each group of
roles has clearly defined responsibilities for each phase and
operational level.
1) Operational Level 1:

The Operational Level 1 is mainly conducted by the
Emergency Administrator. It is involved in six process
phases, the Pre-Alert phase, the four Alert phases and one
Post-Alert phase – Emergency Closure (see Fig. 1). During
the Pre-Alert phase, the individuals possessing the role of the
Emergency Administrator exercise the emergency process
and provide feedback for its improvement.

488Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 510 / 679

TABLE III. EVALUATION QUESTIONAIRE

General questions
Q1: Name: Title: Department:
Q2: What is your job description and
how long have you worked within the
company and with similar tasks,
concerning the emergency process?
Q3: Company name: Business field:
Q4: Nr. of employees… In total:
Within the IT-department, Definitions
and scope of the emergency process
Q5: Does your company determine the
severity of incidents?
Q6: If yes, describe which
Q7: Does your company use priority
codes on problems/incidents?
Q8: If yes, describe which
Q9: Does your company differentiate
between software incidents and other
incidents such as hardware and/or
infrastructure related?
Q10: If yes, describe which
Q11: Does your company use a
structured Crisis Management process at
major disasters (such as fires etc)
Q12: If so can such processes be
triggered by software incidents?
Q13: Can software incidents be of
business critical magnitude?
Q14: Can software incidents be of a
crisis magnitude?

Q31: Which roles are active during
emergency initiation in the Normal
Operation Phase and what are their
responsibilities?
Q32: Who is the problem owner during
emergency initiation in the Normal
Operation Phase and what are his/hers
responsibilities?
Q33: Are there any time frames
associated with the Normal Operation
phase? e.g.
1) Time limits before it are allowed to
alter the system? 2) Time limits within
where information must be sent out? 3)
Other time limits or regulations?

Operational levels 1:
Q53: Do you have operational levels?
Q54: How many Operational levels do
you have?
Q55: What is their overall function?
Q56: Operational level 1:
Q57: Which are the responsibilities of
this operational level?
Q58: What activities do occur at this
level?
Q59: Which roles are active in this level?
Q60: What activities are these roles
involved in during Normal Operation?

Q85: Which are the target groups?
Q86: Are structured information
channels set up (or already existent)
during an emergency?
Q87: What are they?
Measurement Methods (and
analysis)
Q88: Does your company measure the
emergency process?
Q89: Exactly what do they measure?
Q90: What do you use it for?

Preparations and process
improvement
Q91: Does your company practice to
resolve emergency incidents (aka
scenario-based training)?
Q92: Does your company perform
process reviews concerning
emergencies? (e.g.: Review Document
Sittings.)
Q93: Does your company have technical
oriented training activities concerning
emergencies?
(e.g. contingency testing where the
primary site is taken down and a
secondary are used instead)
Q94: Does your company use any other
form of training concerning
emergencies?
Q95: Are there any analyses of the root
causes of the emergency problem? (i.e.
site-specific notes)
Q96: Is there any feedback to such
analysis?
Q97: If yes, describe who
Q98: Are processes and the methods of
working evaluated or analyzed?
Q99: If yes, describe which
Q100: Are there any couplings back to
the process from such analysis?
(e.g. lessons learned)
Q101: If yes, describe which

Operational level 2:
Q61: Which are the responsibilities of
this operational level?
Q62: What activities do occur at this
level?
Q63: Which roles are active in this level?
Q64: What activities are these roles
involved in during Normal Operation?

Increased Attention Phase:
Q34: Which activities are performed
during the Increased Attention Phase?
Q35: Which roles are active during the
Increased Attention Phase and what are
their responsibilities?
Q36: Who is the problem owner during
the Increased Attention Phase and what
are his/hers responsibilities?
Q37: Are there any time frames
associated with the Increased Attention
phase?

Operational level 3:
Q65: Which are the responsibilities of
this operational level?
Q66: What activities do occur at this
level?
Q67: Which roles are active in this level?
Q68: What activities are these roles
involved in during Normal Operation?

Emergency Situation Phase:
Q38: Which activities are performed
during the Emergency Situation Phase?
Q39: Which roles are active during the
Emergency Situation Phase and what are
their responsibilities?
Q40: Who is the problem owner during
the Emergency Situation Phase and what
are his/hers responsibilities?
Q41: Are there any time frames
associated with the Emergency Situation
phase?

Operational level 4:
Q69: Which are the responsibilities of
this operational level?
Q70: What activities do occur at this
level?
Q71: Which roles are active in this level?
Q72: What activities are these roles
involved in during Normal Operation?

Product and Service scope
Q15: Does your company have specific
products, services or systems that
especially initiate the emergency
process?
Q16: If yes, describe if there are subsets
and what is included in these subsets and
why?
Q17: If yes, what is not included in these
subsets and why?

Roles:
Q73: How many permanent roles are
involved within the emergency process?
Q74: How many temporary roles are
involved within the emergency process?
Q75: Does the following roles participate
in the emergency process:
Q76: • System owner/manager? Where
do they reside? Temporary/permanent?
Activities during normal operation?
Q77: • System specialist? Where do they
reside? Temporary/permanent?
Activities during normal operation?
Q78: • Business manager? Where do
they reside? Temporary/permanent?
Activities during normal operation?
Q79: • Business specialists? Where do
they reside? Temporary /permanent?
Activities during normal operation?
Q80: • Support personnel? Where do
they reside? Temporary/permanent?
Activities during normal operation?
Q81: • Programmers? Where do they
reside? Temporary/permanent?
Activities during normal operation?
Q82 • [Other roles]? Where do they
reside? Temporary/permanent? Activities
during normal operation?

Emergency Closure Phase:
Q42: Which activities are performed
during the Emergency Closure Phase?
Q43: Which roles are active during the
Emergency Closure Phase and what are
their responsibilities?
Q44: Who is the problem owner during
the Emergency Closure Phase and what
are his/hers responsibilities?
Q45: Are there any time frames
associated with the Emergency Closure
phase?

Organizational structure:
Q18: Are there other organizations
involved in the emergency problem
process?
(External maintenance or development
organizations as well as suppliers and
important customer that may be affected)
Q19: If yes, describe which:
Q20: Have you agreed with these
organizations on a common emergency
problem management process?
Q21: Are there differences in the
emergency problem process depending
on time of day (as in or out of office
hours, different contact areas)
Q22: If yes, describe which:
Q23: Do you use task forces on different
levels during emergency situations?
Q24: If so what is it called?
Q25: Are there any other groups of
interest in this context?
Q26: Can you be exposed to several
emergency situations simultaneously?
Q27: If so, how is this coordinated?
Q28: Are parallel solutions suggestions
developed?
Q29: If so; who decides on the solution
to be implemented?

Artifacts
Q102: Does your company use artifacts
for providing and managing the
execution of the emergency process
workflows? (e.g. checklists and case
management tools to support workflows
according to processes)
Q103: Does your company use artifacts
for operational management of a certain
domain or aspect of one?
(e.g. Configuration Management
databases, monitoring system, diagnosis
tools).
Q104: Does your company use artifacts
for contingency and recovery of business
critical system?
(e.g. double systems to reduce impact
and RAID and Back-Up solutions to
improve system recovery)
Q105: Do these tools support the
company´s working processes?
(e g adjusted for ITIL)

Emergency Follow-Up Phase:
Q46: Which activities are performed
during the Emergency Follow-Up Phase?
Q47: Which roles are active during the
Emergency Follow-Up Phase and what
are their responsibilities?
Q48: Who is the problem owner during
the Emergency Follow-Up Phase and
what are his/hers responsibilities?
Q49: Are there any time frames
associated with the Emergency Closure
phase?
Preparations Phase:
Q50: Which activities are performed
during emergency preparations?
Q51: Which roles are active during the
emergency preparations and what are
their responsibilities?
Q52: Are there any time frames
associated with the emergency
preparations?

Extra:
Q106: Are there any other

qualitative measurements used? (show the
paper with qualitative crisis measures)

Information flow / Point of
contacts
Q83: Which focal point(s) are serious
emergency problems reported to?
Q84: How is information disseminated?

Normal Operation phase
Q30: Which activities are performed
during emergency initiation in the
Normal Operation Phase?

489Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 511 / 679

The responsibilities of the Emergency Administrator role
vary during the Alert phases. In the first Alert phase, they
own the problem. Here, they confirm the problem, establish
an internal emergency log, record relevant information in it,
and distribute it to all the parties concerned. The information
basically specifies the problem, its occurrence, its cause,
expected impact, and other relevant data.

During the remaining Alert phases, the Emergency
Administrator continues administrating the problem, and
informing all the parties concerned about the status of the
problem. However, he no longer owns the problem. Finally,
in the Post-Alert phases, the Emergency Administrator
records all the problem information and informs all the
parties concerned about its resolution.

The Operational Level 2 is conducted by mainly two
roles: Emergency Manager and System Manager(s). The
Emergency Manager has many responsibilities. One of them
is to support the Emergency Administrator in all the
emergency situations. He also coordinates workarounds
received from the System Manager(s). The responsibility of
the System Manager(s), on the other hand, is (1) to be
available to the Emergency Administrator and the
Emergency Manager, (2) to provide them with the necessary
information and (3) to attend to the tasks requested by them.

2) Operational Level 2
The Emergency Manager and System Manager(s) start

having duties on Alert Level 2. During the Increased
Attention phase, the Emergency Manager becomes the
problem owner. However, he is continuously supported by
the Emergency Administrator with various administrative
tasks. He also involves System Manager(s) responsible for
the systems or system parts that got affected by the problem,
creates workarounds in cooperation with the System
Manager(s), and distributes information to the relevant
management.

During the remaining alert phases, the Emergency
Manager gets rid of his problem ownership. He now
supports the Task Force Team with various tasks.

During the Post-Alert phases, the Emergency Manager
continues to support the Task Force Team. He also evaluates
the emergency process, makes suggestions for improving it
and realizes them, if deemed relevant and necessary.

3) Operational Level 3
The Operational Level 3 is mainly conducted by the Task

Force Leader and Task Force Team. The roles and number
of participants in the team varies depending on problem type.
If, for instance, three systems are involved, then it
automatically implies that three System Managers and their
teams are involved.

The responsibilities of the Task Force Leader role start
during the Alert 3 phase. The Task Force Leader establishes
a Task Force Team and ensures that the team is in place.
Afterwards, the course of actions varies depending on the
problem. However, the Task Force Leader acts as a focal
point of entry for all the management contacts, ensures that
all parties concerned are informed, leads the Task Force
Team, co-ordinates the emergency activities, initiates
activities leading to the reduction of user impact, makes sure
that the initiated activities are taken according to the defined

procedures, and initiates workaround’s or other problem
solutions.

After the problem has been resolved, the Task Force
Leader produces a report containing (1) time when the
problem first occurred, (2) description of what happened and
why, (3) description of the impact, (4) measures taken to
limit the impact, (5) time stamp when the problem got
resolved, (6) description of the measures taken in order to
resolve the problem, (7) status of the emergency procedures
used, (8) action list for changes to the emergency procedures,
and (9) suggestions for how to prevent similar situations.

During the Post-Emergency – Follow-Up phase, the Task
Force Leader makes additional investigations of the problem
and its causes together with the Emergency Manager. If the
emergency problem is followed by a planned and scheduled
problem resolution, then they should monitor its resolution.

In this phase, the Task Force Leader has regular
meetings with the relevant roles and organisations or
departments during which they follow up all problems of
high severity. The goal is to find ways to avoid future
emergency situations. Hence, a vital task of this phase is to
specify measures to prevent the problems from occurring.
These measures should be recorded and delivered to the
process improvement process.

4) Operational Level 4
The Operational Level 4 is only active in clear crisis

situations. Crisis is an extraordinary situation that needs
involvement from top management whose responsibility is to
evaluate business threats and make important decisions on
finances, personnel and other resources. It is led by Crisis
Management Group and it is supported by Task Force Team.
The roles and number of its participants varies depending on
the crisis type.

During the interviews, using Questions 53-72, we
inquired whether the organizations studied have defined their
correspondences to CM3 Operational Levels, what roles are
involved in these levels and what their responsibilities are.

IV. EVALUATION OF THE CM3: EMERGENCY PROBLEM

MANAGEMENT MODEL

In this section, we present the evaluation results of CM3:
Emergency Problem Management within the companies
studied. When doing it, we follow the order of process
components as defined in Section III.

A. Identification of Organisations

All the five companies have defined an emergency
problem management process. However, only four of them
need to involve external organizations in their emergency
situations. All four of them have agreed on an emergency
problem management process model to be commonly run by
all the parties involved.

B. Identification of the Product and Service Scope

Only one organization identifies products and services
that undergo an emergency process. It is SAS. SAS does it
indirectly by classifying systems according to how soon they
should be recovered. In the remaining companies, the
products and services are too tightly coupled to one another

490Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 512 / 679

implying that a problem in one system might lead to a
substantial ripple effect within the whole organization or
even several organizations. Hence, all the products and
services undergo an emergency process. The process gets
enacted on the basis of an emergency case, its context,
severity value and a number of the affected functions or
customers.

All the organizations studied have defined severity and
priority (urgency) values for their products and services. An
example of how one organization formally calculates
severity levels is illustrated in [12]. One of the organizations
studied, however, does not have any formal definition of
severity and priority. Being within online gaming industry,
their severity is informally estimated by counting the number
of the affected users.

Except for SAS, when enacting their emergency
processes, the organizations mainly follow the urgency value
and the number of the reported incidents for the emergency
problem or the problem severity.

C. Emergency Management Roles

All the companies studied have defined both permanent
and temporary roles. Regarding the permanent roles, all the
companies have the equivalences of Emergency
Administrator, Emergency Manager and Task Force Leader.
However, their naming strongly differs. The role of
Emergency Administrator is, for instance, mainly conducted
by support personnel in two organizations. Other role names
corresponding to Emergency Administrator are Operation
Manager and Operator at a control department.

Regarding the role of Emergency Manager, we have
found out that all the companies use the Emergency Manager
role to different degrees; from providing assistance
concerning problem escalation to being very active in
supporting the emergency resolution process and to
providing quality assurance to the Task Force Leader.

Regarding the role of Task Force Leader, all the five
companies use this role as a single point of decision in the
Emergency Situation phase. The role is primarily responsible
for getting the impacted systems’ functionality up and
running and he has the authority to assign resources, if
needed.

Four out of five organizations involve Crisis
Management Group. The group is a meeting board
responsible for the overall IT and business coordination and
management. It deals with all crises related issues. It decides
when to declare disaster and when to start acting according
to the contingency plans.

Finally, our study has revealed the need for two
additional however very important roles, Crisis
Communicator and Crisis Security Manager. These roles are
implemented in four of the five organizations studied. The
responsibility of the Crisis Communicator is to manage
communication on emergency problems between the
organization and the public. The responsibility of the Crisis
Security Manager, on the other hand, is to monitor, handle
and coordinate staff and all types of security related issues,
and to arrange proper protection

All the companies studied use temporary roles in their
emergency processes, such as Support Personnel, System
Manager and Developer / Maintainer. Regarding Support
Personnel, they all have its corresponding role supporting
the customers in their daily operation. It is this role that may
overlap or may be merged with the role of the Emergency
Administrator.

D. Focal Point of Contact

All the companies studied have an appointed role, or a
group of roles, that act as a focal point of contact for all the
emergencies. The roles involved vary. At SAS, for instance,
Operational Level 1 corresponds to the first point of contact
during office hours. After a serious problem gets reported to
Support Line 1 [3], it automatically gets escalated to
Operational Level 1. Outside office hours, however, the
problem gets reported to Support Line 1 belonging to an
outsourced organization. This organization, in turn, contacts
Operational Level 1 in cases when they deem that the
reported problem is serious. Regarding the remaining
organizations, the Emergency Operator at Operational Level
1 corresponds to Support Line 1 being on duty around the
clock [3].

E. Process Phases

Due to the fact that the organizations studied have not
had any emergency standard to follow, they have defined
their emergency processes on their own. For this reason,
their models differ. Still, however, we could identify many
common parts.

1) Pre-Alert Phase
All the organizations studied prepare themselves for

various emergency and crisis situations. Hence, they have a
phase corresponding to CM3‘s Pre-Alert Emergency
Preparation phase. During this phase, they mainly review
the emergency process and its supporting documents. Four
out of five companies even conduct sporadic scenario-based
training several times a year.

Different roles are responsible for the pre-alert
emergency process within the organizations studied. They
are Contingency Manager and various other industrial
correspondences to CM3 Emergency Manager.

2) Alert Phases
Reporting on serious problems/incidents to Support Line

1 enacts the first emergency phase, Alert Level 1 – Normal
Situation, in four of the organizations studied. At SAS,
however, the problems get immediately escalated from
Support Line 1 to Operational Level 1, which, in turn,
initiates the emergency process.

As mentioned in Section 4.3, only SAS has explicitly
identified the Emergency Administrator role. In the other
companies, the role of the Emergency Administrator is
performed by other roles, such as support personnel or other
administrative or technical roles.

In four out of five companies, the problem gets escalated
to the next phase, the Alert Level 2 – Increased Attention
phase. In these companies, the problem is now owned by the
role corresponding to the Emergency Manager who tries to
find a workaround and makes preparations for the next alert

491Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 513 / 679

phase. In the fifth company, Good Things, severe problems
are directly escalated from Support Line 1 to their
correspondence to CM3’s Task Force Team which they call
24/7 Group.

All the companies studied have a phase corresponding to
the Emergency Situation phase during which the Task Force
Leader coordinates the resolution process. In three out of
five companies, the first task of this role is to form a Task
Force Team. In the other two companies, the Task Force
Leader assigns the emergency task to one or several
departments.

Regarding the Alert Level 4 – Crisis Situation phase, it is
practiced in four out of five companies studied. Here, all
business related decisions are made by the Crisis
Management Group. This phase is triggered only in very
critical business cases. The fifth company, which is a
relatively young company, does not practice crisis
management process yet.

Our study has revealed that the involvement of Crisis
Management Group is immensely important in making
critical decisions. Their decisions may override the decisions
of Task Force Group, even in cases when IT solutions are
more optimal than the business ones. Usually, this happens
when safety or business gains are more prioritized than
anything else. Scenario describing such cases is provided in
[12][13].

Regarding the CM3’s suggestion for determining time
period for each alert phase, only SAS does so. The other
companies continuously monitor the problem during the
early alert phases and escalate it to higher alert phases only if
the problem and its impact intensify.

3) Post-Alert Phases
Only two companies have explicitly defined a

correspondence to the CM3 Post-Alert Emergency Closure
phase, which is conducted by the Task Force Leader. Just as
in CM3, the Task Force Leader is responsible for the follow
up of the emergency cases. In the other three companies, the
ownership of this phase is assigned to an Emergency
Manager or Root Cause Analyst.

Irrespective of who owns the phase, all the companies
studied finalize their emergency processes by having a
meeting during which the problem is officially closed. In
addition, three of them write and disseminate a final report
on the problem and its solution.

Regarding the Emergency Follow-up phase, in four
companies, this step is conducted by the Task Force Leader
alone or in collaboration with other roles such as Emergency
Manager or Task Force Team Members. However, the tasks
defined for this phase are not always realized. Both root
cause analysis and process improvement may be conducted
on an ad hoc basis or they may not be conducted at all.

4) Operational Levels
Only one company has explicitly defined the operational

levels as defined in CM3. It is SAS. Regarding the remaining
companies, they have done it implicitly. They follow similar
levels; however, they do not call them operational levels.

All but one organization have correspondences to four
operational levels. Regarding the fifth organization, as has
already been mentioned, this organization is young. It has

not yet managed to implement the Crisis Situation phase.
Hence, it does not have any correspondence to Operational
Level 4.

The scenario of defining operational levels looks as
follows in the organizations studied. At their
correspondences to Operational Level 1, support personnel,
customer service representatives, or Emergency
Administrator are the main actors. They are problem owners
in the initial emergency phases, which they then hand over to
the roles on the next operational level.

The main actors at the industrial correspondences to
Operational Level 2 are the IT Support Coordinator, General
Escalation Point (GEP), Emergency Escalation Partner and
Emergency Manager (at SAS). All these roles have the
responsibilities corresponding to those of CM3’s Emergency
Manager

All the organizations studied involve correspondences to
CM3’s Task Force Teams on Operational Level 3. Three of
them actually use the same name. In one company Task
Force Leader was called Incident Handler. Only two
companies use different names such as 24/7 Group and Shift
Leader.

Regarding the industrial correspondences to Operational
Level 4, as mentioned earlier, only four organizations have
implemented it in their process models. They use the same
role names as in CM3. One company, however, calls the
CM3’s correspondence to Crisis Manager as Critical
Situation Manager (CSM).

V. CONCLUSION

Due to the fact that the software community lacks a
common emergency maintenance process model, many
organizations have defined their own local emergency
process models. In this paper, we have studied five industrial
emergency maintenance processes with the purpose of
evaluating the applicability of CM3: Emergency Problem
Management within five companies. The companies running
these processes differ in size, industrial domains and process
maturity. Despite this, with the use of an open-ended
questionnaire and CM3: Emergency Problem Management,
we could identify their common parts and directly map them
on CM3: Emergency Problem Management. Here, the CM3
model has acted both as a helpful tool for evaluating
industrial emergency process models as well as an excellent
tool for evaluating itself and its structure. It has helped us to
find many commonalities on how to meet emergency
situations and it has helped us to identify some minor
differences among the processes studied. Below, we briefly
list our findings, comment on them and comment on how
they contributed to enhance the quality of CM3: Emergency
Problem Management.

All the organizations studied have defined an emergency
problem management process to be either used locally for
managing their internal emergencies or as a common process
to be used together with their partners. Hence, they constitute
an appropriate forum for evaluating CM3: Emergency
Problem Management.

 Not all the organizations identify the scope of their
product and service portfolios that might be subdue

492Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 514 / 679

to emergency problem management. A strong
coupling among the systems and magnitude of the
potential ripple effect makes four out of five
organizations be very sensitive to all types of
emergency problems in all their systems. Hence, we
conclude that the design of products and services in
these companies is not amenable for defining and
enacting the emergency process. The organizations
must be on a constant alert about all types of
incidents that are encountered in all their products
and services. This is not an effective way of
managing organizational resources. As a remedy, we
suggest that the organizations studied make effort in
decoupling their critical systems so that the
emergency process may be isolated to a specific
system or even system part.

 Despite process differences in the organizations
studied, all the organizations have defined software
emergency process models that consist of pre-alert,
alert and post-alert phases and that include activities
and responsibilities that are organized in a similar
manner as CM3’s operational levels. [4][5][12][14]
However, the number and names of their alert
phases may vary. The pre-alert and alert activities
are actively conducted whereas the post-alert
activities such as collecting lessons learned were
sparse, and were usually only conducted in an ad
hoc manner. While studying the stages, we realized
that the pre-alert stage of CM3: Emergency Problem
Management needs to be explored more in depth.

 Two of the companies have defined an additional
emergency operational level, the level dealing with
crisis management. The other companies had a crisis
management processes, but this process was not
aligned with the emergency process. Crisis
management is used only in cases when a software
problem jeopardizes human life and/or company’s
financial position or survival. For this reason, we
have enhanced CM3: Emergency Problem
Management with a crisis phase, Crisis Situation, on
top of the emergency phase and added an additional
operational level, Operational Level 4, the level only
dealing with crisis management.

 Involving crisis management is more common in
financial and aviation sectors than in other sectors.
Still, however, the organizations studied have not
been able to optimally integrate crisis management
process with software problem management process.
By not having an integrated crisis management
process, a set of issues is raised when the two
processes work side by side: (1) how to deal with
single point of decision and (2) how to deal with a
focal point of information during high priority
emergency situations. At the moment of writing this
paper, SAS is in the process of connecting the
emergency incident process with the business crisis
management process.

 All of the companies have implicitly defined actions
to meet a software emergency situation, and these

actions were conducted by a number of predefined
emergency roles. These roles are either temporary or
permanent emergency maintenance roles. However,
four out of five have a clearly defined crisis
management group. In our study, we have identified
new roles such as Crisis Management Group, Crisis
Manager, Crisis Communicator, and Crisis Security
Manager. All these roles have been added to the
CM3 model due to its extension with an additional
alert phase, Crisis Situation, and an additional
operational level, Operational Level 4.

 All the companies had also identified focal points for
the information flow to and from the emergency
team. In all cases, it is support personnel that accepts
emergency problem reports and either continues
managing them or hands them over to CM3’s
correspondence to Emergency Administrator.

 Regarding CM3’s suggestion for determining time
period for each alert phase, only SAS does so. They
do so because they have specified rules for how
soon their systems should be up and running. The
other companies continuously monitor the problem
during the early alert phases and escalate it to higher
alert phases only if the problems and their impact
intensify. This is because not all problems are
directly recognized as very serious and urgent. To
make our model adaptable to this new finding, we
change the escalation rules from only time-
dependent to both time and impact dependent.

 Most of the companies conduct post-alert phases
mainly on an ad hoc basis. Reasons are many. One
of them is the fact that the organizations do not
designate enough resources for this important phase.
Another reason is the fact that the report on the
emergency problem and measures is disseminated
too late. Its receivers lose interest in taking any
measures whatsoever due to new problems that they
have to deal with instead.

 Only one company has explicitly defined
operational levels. The other companies have
implemented operational levels implicitly by
defining operational responsibilities and tasks and
making sure that they do not overlap across the
roles involved in emergencies.

Our evaluation study was huge. Hence, we could not
present all our findings. We only had to concentrate on the
most important ones. Using them as a basis, we may claim
that CM3: Emergency Problem Management is applicable
within the industry. There are many commonalities between
CM3: Emergency Problem Management and the industrial
emergency process models studied. We believe that our work
on CM3: Emergency Problem Management shows evidence
for the presence of software emergency processes and the
need for a standard that can aid practitioners in setting up
and evaluating their local processes.

Our work on CM3 is still in an early stage. Due to the fact
that the emergency process is very comprehensive and
complex, more studies are needed to fully evaluate the

493Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 515 / 679

model. In brief, the following research action points need to
be considered:

 The pre-alert phase needs to be further
investigated. Two actions are proposed: 1) to
survey training and education efforts, and 2) to
explore how lessons learned from previous
incidents can be used as feedback into the
emergency maintenance process.

 Evaluate CM3: Emergency Problem
Management within other industrial sectors such
as, for instance, health care and e-government.
Due to their nature, potential emergencies can
be disastrous in these fields.

 Coupling CM3: Emergency Problem
Management with crisis management. Several
issues are of interest such as mapping a single
point of technical decisions from the emergency
process onto a single point of organizational
decisions from the crisis management and vice
versa and define enterprise-wide agreements on
when to declare a crisis situation.

 Integrate CM3: Emergency Problem
Management with the development phases of
the software lifecycle, identify how they impact
each other and clarify borders between software
emergency maintenance and other processes
such as risk management, scheduled problem
management and the like.

Despite many action points required for evaluating the
model, we strongly believe that CM3: Emergency Problem
Management already provides solid guidance for software
organizations in their attempts to define and improve their
emergency software maintenance process models.

REFERENCES
[1] A. Brown and D. Patterson, "Embracing failure: A case for

Recovery-Oriented Computing (ROC)". In Proceedings of the
2001 High Performance Transaction Processing Symposium,
2001, pp. 3-8.

[2] M. Kajko-Mattsson, “Motivating the Corrective Maintenance
Maturity Model (CM3)”, In Proceedings of the Seventh IEEE
International Conference on Engineering of Complex
Computer Systems, IEEE, 2001, pp. 112-117.

[3] M. Kajko-Mattsson, Corrective Maintenance Maturity Model:
Problem Management, PhD thesis, ISBN Nr 91-7265-311-6,
ISSN 1101-8526, ISRN SU-KTH/DSV/R--01/15, Department
of Computer and Systems Sciences (DSV), Stockholm
University and Royal Institute of Technology (KTH), 2001.

[4] M. Kajko-Mattsson, C. Nielsen, P. Winther, B. Vang and A.
Petersen, "An Outline of CM3: Emergency Problem
Management," In Proceedings of EUROMICRO Conference
on Software Engineering and Advanced Applications, 2005,
pp. 292-303.

[5] M. Kajko-Mattsson, C. Nielsen, P. Winther, B. Vang and A.
Petersen, 2006. "Eliciting CM3: Emergency Problem
Management at Scandinavian Airline Systems", Journal of
Research and Practice in Information Technology, 2006, vol.
38, no. 4, pp. 303-316.

[6] D. L. Parnas, A. J. van Schouwen and S. P. Kwan,
"Evaluation of Safety-Critical Software" Communications of
the ACM, vol. 33, no. 6, pp. 636-648, June 1990,
doi:10.1145/78973.78974

[7] T.C. Pauchant, and R. Douville, 1993. "Recent research in
Crisis Management: a study of 24 authors’ publications from
1986 to 1991", Organization & Environment, vol. 7, no. 1, pp.
43-66, Jan 1993, doi: 10.1177/108602669300700104.

[8] C. M. Pearson and J. A. Clair, "Reframing Crisis
Management", Academy of Management Review, vol. 23, no.
4, pp. 59-76. Academy of Management, 1998, doi:
10.5465/AMR.1998.192960.

[9] E.L. Quarantelli, "Disaster Crisis Management: A summary
of research findings", Journal of Management studies, vol. 25,
no. 4, pp. 373-384, 1988. ISSN: 0022-2380

[10] A. Reilly, "Preparing for the worst: the process of effective
crisis management" in Organization Environment, vol. 7, no.
2, pp. 115-143, Jan 1993, doi:10.1177/108602669300700204.

[11] D. Smith, "Beyond contingency planning: towards a model of
crisis management", Industrial Crisis Quarterly, vol. 4, pp.
263-275, Jan 1990, doi:10.1177/108602669000400402.

[12] J. Snygg, M. Kajko-Mattsson, and E. Hammargren,
Comparing two software emergency process models. In: 2012
International Conference on Software and System Process
(ICSSP). Zürich: IEEE Conference Publications, 2012
pp.150-159

[13] J. Snygg and E. Hammargren, 2010. “Handling Crisis Within
CM3: Emergency Management Process” master thesis, Dept.
of Computer and Systems Sciences., Stockholm
University/Royal institute of Technology., 2010.

[14] M. Kajko-Mattsson, J. Snygg, and E. Hammargren, CM3:
Emergency problem management - A scenario-based
evaluation. In: Information Science and Digital Content
Technology (ICIDT), 2012 8th International Conference on
Jeju Island, Korea (South): IEEE, 2012, pp.379-386

[15] ISO/IEC 14764., (IEEE, std 14764-2006). Software
Engineering-Software Life Cycle Process-Maintenance, The
Institute of Electrical and Electronics Engineers, Inc., 2006.

[16] M. Kajko-Mattsson, Common Concept Apparatus within
Corrective Software Maintenance, Proceedings, International
Conference on Software Maintenance, IEEE Computer
Society Press: Los Alamitos, CA, Sep 1999, ISBN: 0-7695-
0016-1, pp. 287-297.

494Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 516 / 679

An Analysis of Domain and Application Engineering Co-evolution for Software Product
Lines based on Cladistics: A Case Study

Anissa Benlarabi
IMS Team, SIME Laboratory

ENSIAS, Mohamed V Souissi University
Rabat, Morocco

a.benlarabi@gmail.com

Amal Khtira
IMS Team, SIME Laboratory

ENSIAS, Mohamed V Souissi University
Rabat, Morocco

amalkhtira@gmail.com

Bouchra El Asri
IMS Team, SIME Laboratory

ENSIAS, Mohamed V Souissi University
Rabat, Morocco
elasri@ensias.ma

Abstract—Software product line engineering is a discipline for
large scale reuse, its main advantage is the ability to reuse a set of
domain assets in the development of a large number of products.
In order to achieve this benefit, the software product line must
cope with business requirements evolution. When dealing with
evolution, the most effort must be granted to the understanding
of the change and the identification of its impact because changes
happening to products must be propagated to domain artifacts
that are used for the whole family, and if the impact is not studied,
each product will evolve separately from the domain assets. Many
techniques were proposed to facilitate the impact analysis, such as
evolution traceability or documentation. However, they consider
only the change on the domain assets level and they underestimate
issues raised by the fact when products evolve separately from
the domain assets, which decreases the ability of the software
product line to derive all the products features. In this paper, we
tackle this issue by analyzing the co-evolution of software product
lines and their products. We use cladistics classification, which
was used in biology to construct their evolutionary trees, then we
compare the trees using mathematical analysis and we propose a
solution to restore the perfect co-evolution of the software product
line and its products. We carried out a case study on a Mobile
Media software product line to illustrate our approach.

Index terms— Software product lines; Co-evolution;
Cladistics.

I. INTRODUCTION

Software product line engineering [1] is a software engi-
neering discipline centered on reuse. It consists in developing
a set of domain assets, which can be reused to derive a set
of products for a particular market [2]. Its main goal is the
reduction of costs and time to market, which can only be
achieved by the continuous adaption of the domain assets
to the ever-changing user requirements. Hence, to maximize
benefits from the software product line common platform, the
evolution activity must be the pivot activity of the software
product line process development.

The primary aim for the evolution activity is the protection
of the software from the aging problem, which pictures
the fact of having a vital software for the organization but
which cannot be evolved [3]. Unlike single software, software
product line aging problem is not only caused by the loss
of knowledge but also by the inability of the software product
line to support all the features of the old and the new products.
This happens especially when the changes happening to the
products are not propagated to the domain artifacts, in this case

each product evolves separately from the domain artifacts and
the software product line will no longer be able to derive all
the features. Hence, instead of having a software product line
we will have a set of independent products.

The approach presented here aims at improving the under-
standing of how the software product line and its products
evolved in time and how they influenced each other during
their evolution. It focuses on analyzing the co-evolution of
the software product lines and their products. The change in
software product lines has two levels, the level of domain
engineering and the level of application engineering, the
evolution of each level impact the evolution of the other, our
co-evolution analysis helps identifying how the evolution of
products and the evolution of the core assets impacted each
other. In this paper, we focus on the impact of the changes
happening to products on the core assets because it was
less tackled by the researchers than the domain engineering
evolution impact. Co-evolution was extensively studied in
biology [4] to show how organisms influence each other
during their evolution. The co-evolution of host-parasite is a
famous example from biology [5]. Beside biology, the co-
evolution was studied also in software engineering [6] [7]
[8].Similarly to co-evolution in biology, we will study the co-
evolution of many populations of software. Our work consists
in a co-evolution model for software product lines based on
cladistics classification [9], which identifies the evolution path
of a group of organisms based on their shared characters and
classifies them in evolutionary tree. We start by establishing
the evolutionary trees of the software product line and its
products, then we perform a mathematical analysis to correct
divergences between their evolution paths. We illustrate our
approach through a case study on the mobile media software
product line [10], we started by applying the approach on
one product but we intend to experiment it on other products
and compare the obtained results. Currently, we consider that
all the products features must be derived from the domain
engineering; we do not consider the products specific features
that are not intended to be part of the platform.

In Section 2, we explain the co-evolution in biology, the
we present some co-evolution studies in software engineering
and we introduces the co-evolution of domain and application
assets. In Section 3, we propose present our approach through
a case study; we firstly study the evolution courses of the

495Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 517 / 679

software product line and its products through their evolution-
ary trees established using cladistics classification. Secondly,
we compare these resulted trees to extract their similarities
and divergences then we correct these divergences using a
mathematical analysis. We give a conclusion in Section 4.

II. RELATED WORKS

According to our literature search, works done to understand
how the evolution of domain engineering and the evolution
of application engineering influence each other rely mainly
on traceability links between the artifacts of the two levels.
A framework for traceability was proposed by Anquetil et
al. [11], the framework allows for tracing links between the
different artifacts and present them in a graphical view, the
developers can use the graphical view to know the impacted
artifacts by a change. Ajila and Kaba [12] proposed a tool
which gives operation instances modification, operations for
consistency checking, and operations for change impact anal-
ysis. The tool calculates the impact of a change on the basis
repositories that involved the software product line artifacts
and their relationships. Goknil proposed a meta-modeling
approach for requirements traceability management [13]. He
focuses on post-requirements traceability, in particular be-
tween requirements models and architectural models, the goal
is to determine which architectural components are impacted
by a requirement change. Traceability approaches consider the
traceability of links between the domain assets and the links
between the domain and the application assets as a basis for the
change impact analysis activity. However, they rely on human
knowledge which is too expensive and error prone. In addition,
they consider that the change happens only in the domain
assets. Our work allows for defining the impact of the change
by identifying the hidden links between the reference and the
application assets, it also improves the change understanding
through a synthesis of the history of the software product line
evolution and help predicting future changes by considering
changes that were implemented at a product level and may
be propagated to the reference assets and then to the other
products. Instead of relying on the human knowledge, we use
the evolution histories of the software product line and its
products and we analyze their co-evolution using cladistics
classification.

III. SOFTWARE PRODUCT LINES CO-EVOLUTION

In this section, we present the co-evolution principal, which
was used mainly in biology, and we give an insight on some
works that deal with the co-evolution in software engineer-
ing context. Thus, we introduce the co-evolution of domain
engineering and application engineering in software product
lines.

A. Co-evolution in Biology

Co-evolution of species in biology describes the situation
when an evolution of a population of species can affect another
population of species, and consequently induces its evolution.

It consists in a mutual evolutionary influence between two pop-
ulations [4]. A population in biology represents any group of
descendants of the same ancestor that appeared due to changes
of the ancestor characteristics. Understanding how popula-
tions co-evolve allows for determining how environmental
changes impact directly their evolution. The co-evolution of
host-parasite is a famous example of biological co-evolution.
Because parasites cause damages to their hosts, hosts develop
new capacities to resist to their parasites however parasites
also develop capacities to overcome this resistance [5]. There-
fore, a clearer understanding of hostparasite co-evolution will
point to new possibilities for organic farming and reduce the
application of ecologically harmful chemicals.

B. Co-evolution in Software Engineering

Co-evolution was tackled in other fields, such as software
engineering; we present here some works that showed the
necessity to take into consideration the co-evolution between
different layers of a solution to preserve its consistency and
correctness and also to reduce evolution costs.

Ruscio et al. [6] addressed the co-evolution of meta-models
and their related entities: models, transformations and tools,
especially the automated adaptation of these entities in order
to preserve their correctness and consistency. The authors
introduced a set of basic ingredient a co-adaptation solution
must provide, and they point out on the necessity to have
a unique technique for meta-models co-evolution regardless
the related entity type. They proposed the EMFMigrate tool,
which applies a set of migration rules on the related entities
depending on the change type and the relation between the
metamodel and the entity, because in some relations meta-
models changes may be independent and do not require a co-
evolution.

Kster and Trifu [7] tackled the problem of traceability
between the requirements and the architecture incited by the
fact that an important part of evolution costs are spent to locate
the impacted elements. He presents a case study on the co-
evolution between requirements and architectural design from
which he extracted a set of requirements for a solution of co-
evolution of architectural model and requirements model. Then
he proposed a solution using graphs in which elements from
both models are linked by decisions. The graph is dynamically
navigable, and helps identifying the change impact easily.

Seidl et al. [8] introduced the co-evolution of software
product lines. He stated that evolution of SPLs can harm
the mapping between features and realization artefacts, for
example if an implementation asset is deleted and a mapping to
it remains in the system, products that include features mapped
to this missing item will be invalid. For this reason, proposed
an approach to co-evolve the features mapping and the system
models, more accurately the feature model and the realization
artefacts. He made a classification of evolution scenarios either
in problem space (insert feature, delete feature, Split feature,
etc.) or in solution space (replace method, rename method,
etc.) into two groups: interspatial evolutions that reaches
beyond the boundaries of the originating space and intraspatial

496Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 518 / 679

Figure 1. Co-evolution approach for SPL

evolutions that impact only the space they are originating from.
Thus, he extended Eclipse by a set of remapping operators to
maintain the consistency of features mapping. These operators
will be sequentially executed after each interspatial evolution.

C. Domain and Application Assets Co-evolution in Software
Product Lines : a cladistics based approach

In this paper, we introduce the concept of co-evolution of
domain and application assets in software product lines, which
consists in comparing the evolution paths of the domain assets
and the application assets and then deducing if application
assets were changed independently from their domain assets.
Organisms co-evolution analysis relies mainly on the visible
characters of these organisms, in software the visible char-
acters are its features. Hence, we will consider only features
models; thus, we study the co-evolution of the domain features
model and the application features models.

To deal with such co-evolution, we propose an approach
based on Cladistics [9], which is a biological technique used
to understand how organisms evolve over time (see Fig. 1.), it
builds an evolutionary tree for a population by classifying its
members in a tree on the basis of the evolution of their physical
characters or the evolution of their behavior. The steps of our
approach are as follows:

• Building evolution history: in this step, we use the data
about evolution in order to establish the evolution path of
the software product line and each derived product. We
use cladistics classification, which gives a classification
of the members of a population based on their shared
characters. In the case of software product lines, the
characters of software are its features

• Co-evolution Analysis: in this step, we perform a math-
ematical analysis of the domain and applications assets
co-evolution through sets, we introduce the hypothesis of
our analysis and we represent the perfect co-evolution by
means of mathematical equalities

• Imperfect co-evolution correction: in this step, we present
mathematically the imperfect co-evolution on the basis of
the analysis we did in step 2 and we propose an algorithm
to correct.

Figure 2. Mobile Media SPL features model

In the following subsections, we will explain in more details
our approach and the techniques used in each step.

IV. DOMAIN AND APPLICATION ENGINEERING
CO-EVOLUTION ANALYSIS: A CASE STUDY

In this section, we present our approach co-evolution ap-
proach through a case study on the mobile media software
product line with one of its derived products. In the first
subsection, we present the mobile media software product line
and the derived product features, in the second subsection,
we construct their cladograms using cladistics classification,
a cladogram is a branching diagram which represents the
evolution path of a group of organisms based on their shared
characters. In the third section, we compare their cladograms
and we correct the detected imperfections using a mathemat-
ical analysis.

A. Mobile Media software product line

The Mobile Media software product line manipulates photo,
music, and video on mobile devices, such as mobile phones
and it has 200 derived products [10]. Many evolution scenarios
were performed on the mobile media software product line,
we take into consideration in our case study six evolution
scenarios. Hence, we have a population P1 formed by seven
releases of the software product line and a population P2
formed by the seven releases of a derived product. We present
the feature model of the seventh release of the mobile media
software product line in Fig. 2.

B. Building Evolution History

In order to build the evolution history for the populations
of the software product line and the product, we use cladistics
classification, which is a biological technique which classifies
a set of organisms derived from the same ancestor in a
evolutionary tree. In the following subsections, we give more
details about this technique and its application on the mobile
media software product line.

1) Cladistics Classification: Cladistics classification was
used in biology to construct evolutionary trees that shows
the evolutionary relationships among various biological or-
ganisms, on the basis of the similarities and differences in

497Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 519 / 679

their physical or genetic characteristics [9]. It assumes that
in a population of organisms, a new organism appeared due
to the change of the group characters. Hence, it identifies
the evolution path of these organisms based on their shared
characters. In the case when more than one possible tree
can be generated for one group we must choose the most
parsimonious evolutionary tree which is the shortest one. The
length of a tree is obtained by calculating the sum of all
the characters fits where the fit of a character is the number
of its occurrences on the tree. In addition to identifying the
evolution path of a taxonomic group, cladistics classification
helps identifying which character change is responsible for
the appearance of each organism and also the characters that
mostly participate to the evolution of the group. The steps of
the cladistics classification are:

• Select the population to be classified
• Identify the characters of the population and their differ-

ent states
• Classify the group on the basis of their shared characters

in an evolutionary tree called cladogram
• When having more than one cladogram in result, an

analysis of parsimony is required.

2) Evolutionary trees of mobile media and its product: We
follow the mentioned steps for the cladistics classification.

The first step consists in defining populations for which
we will study the co-evolution. a population is constructed
by a set of organisms derived from the same ancestor by
adding new characters or capabilities. in order to compare the
evolution path of the software product line mobile media with
the evolution path of its derived product, we must build their
evolution paths. We constructed two populations, the first one
P1 is formed by seven versions of the software product line
mobile media, while the second one P2 is formed by seven
versions of the derived product. In Tables 1 and 2, respectively,
we give a detailed description of the populations P1 and P2,
which we constructed on the basis of the feature models of
the different releases of P1 and P2:

After we defined the two populations P1 and P2, the second
step consists in defining the characters of each population. In
biology, the characters of organisms of a population represent
their visible traits, which could be physical or behavioral
characteristics. Hence, for each population, we will identify
its behavioral characters that are its features. By assuming the
hypothesis H0 of features Independence, the set of characters
of a population will be composed by independent features.
In Tables 1 and 2, respectively, we formulated the vectors of
features of the populations P1 and P2 as follow, the number
of features are 19 and 16 for A1 and A2, respectively:

A1 = {F1,i while i ∈ N, i ≤ 19},
A2 = {F2,i while i ∈ N, i ≤ 16}

In order to classify the versions of each population, we
will construct in the third step the features states matrices
that illustrate the states of features in each version. Each
feature has two states, the primitive state, which denotes the

TABLE I. MOBILE MEDIA SOFTWARE PRODUCT LINE POPULA-
TION

Version Description
V1.0 The first release of the mobile media software prod-

uct line, this release encompasses the following fea-
tures: Manage photos (F1,1), Create album (F1,2),
Delete album(F1,3), Create media (F1,4), Delete
media (F1,5), View media (F1,6), Sort media (F1,7),
Edit media label (F1,8)

V1.1 The second release of the mobile media software
product line, in which the following features were
added: Set favorites (F1,9) and See favorites (F1,10)

V1.2 The third release of the mobile media software prod-
uct line, in which the feature Copy media (F1,11)
was added

V1.3 The fourth release of the mobile media software
product line, in which the following features were
added: Send media (F1,12) and Receive media
(F1,13)

V1.4 The fifth release of the mobile media software prod-
uct line, in which the feature Add music media
management (F1,14) was added

V1.5 The sixth release of the mobile media software
product line, in which the following features were
added: Add video media management (F1,15), Cap-
ture videos (F1,16) and Capture photos (F1,17)

V1.6 The seventh release of the mobile media software
product line, in which the following features were
added: Play videos (F1,18) and Play music (F1,19)

TABLE II. DERIVED PRODUCT POPULATION

Version Description
V2.0 The first release of the product, this release en-

compasses the following features: Manage photos
(F2,1), Create album (F2,2), Delete album(F2,3),
Create Photo (F2,4), Delete Photo (F2,5), View
Photo (F2,6), Sort media (F2,7), Edit media label
(F2,8)

V2.1 The second release of the product, in which the
following features were added: Set favorites (F2,9)
and See favorites (F2,10)

V2.2 The third release of the product, in which the feature
Copy media (F2,11) was added

V2.3 The fourth release of the mobile media software
product line, in which the following features were
added: Send media (F2,12) and Receive media
(F2,13)

V2.4 The fifth release of the product, in which the feature
Print photo (F2,14) was added

V2.5 The sixth release of the product, in which, the feature
Capture photos (F2,15) was added

V2.6 The seventh release of the product, in which, the
feature Share photo in social websites (F2,16) was
added

nonexistence of the feature and it is represented by 0, and the
derived state, which denotes its existence and it is represented
by 1. The features state matrices of our populations P1 and P2
are presented in Tables 3 and 4, respectively. We construct
cladograms on the basis of these matrices by grouping versions
together based on their shared characters. In this steps we
used the tools PHYLIP to generate the coordinates of the
evolutionary trees of P1 and P2 from their features state

498Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 520 / 679

TABLE III. FEATURES STATES MATRIX B OF THE MOBILE MEDIA
SPL

B F1,1

..
F1,8

F1,9

F1,10

F1,11 F1,12

F1,13

F1,14 F1,15

..
F1,17

F1,18

F1,19

V0 1 0 0 0 0 0 0
V1 1 1 0 0 0 0 0
V2 1 1 1 0 0 0 0
V3 1 1 1 1 0 0 0
V4 1 1 1 1 1 0 0
V5 1 1 1 1 1 1 0
V6 1 1 1 1 1 1 1

TABLE IV. FEATURES STATES MATRIX C OF THE PRODUCT

C F2,1

..
F2,8

F2,9

F2,10

F2,11 F2,12

F2,13

F2,14 F2,15 F2,16

V0 1 0 0 0 0 0 0
V1 1 1 0 0 0 0 0
V2 1 1 1 0 0 0 0
V3 1 1 1 1 0 0 0
V4 1 1 1 1 1 0 0
V5 1 1 1 1 1 1 0
V6 1 1 1 1 1 1 1

matrices. In Fig. 3. we present the example of the input file
of P1. The output file of Phylip contains the coordinates of
the evolutionary tree of the population P1, we used the online
tool Phyfi which we present in Fig. 4 in order to compile this
file and generate the cladogram. The resulted cladograms of
P1 and P2 are illustrated in Fig. 5 and Fig. 6, respectively.

C. Co-evolution Analysis

In biology, the perfect co-evolution can be restored by iden-
tifying the branches that cause this divergence and extending
the cladograms by them. However, by assuming the hypothesis
H1 that features of the software product line are sufficient but
not necessary to derive all the features of the derived products,
we will eliminate the imperfection caused by branches that
exist in the software product line cladogram and are absent
from the products cladogams. Our hypothesis is based on the
fact that the software product line feature model take into
consideration commonality and also variability of products.
In this subsection, we will formulate our hypothesis about the
perfect co-evolution in software product lines. Thus, we verify

Figure 3. Input file for drawing the cladogram of P1

Figure 4. The coordinates of the cladogram P1

Figure 5. The cladogram of the Mobile Media SPL

these hypothesis for the two populations and we propose an
algorithm to correct the extracted imperfections

1) Perfect co-evolution modeling: We set three
hypothesis for the software product line, H0 and H1
are already explained above, in addition we formulated
a new hypothesis H2 on the basis of H0 and H1:

(H0) features independence: In the set of features A1
and A2, the features are independent from each other

∀i, j ∈ N, i ≤ 19, j ≤ n, F1,i 6= F1,j

∀i, j ∈ N, i ≤ 16, j ≤ m, F2,i 6= F2,j

(H1) domain features sufficiency: Each feature of the set A2
has a corresponding feature in the set A1

Figure 6. The cladogram of the derived product

499Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 521 / 679

∀j ∈ N, j ≤ 16,∃i ∈ N, i ≤ 19/F2,j = F1,i

(H2) features exclusion: This hypothesis is deduced from the
combination of H0 and H1. Each feature of A2 has only one
corresponding feature in A1{
F2,i, F2,j/i, j ≤ 16} ⊂ {F1,x, F1,y/x, y ≤ 19}
F2,i = F1,x

⇒ F2,j = F1,y

On the basis of the hypotheses H0 and H2, we deduce that
the relationship between the two cladogram of P1 and P2 must
respect the following inequality:

B ×A1 ≥ C ×A2 (1)

This inequality means that for each couple of leafs
L1i, L2i/0 < i ≤ k of the cladograms of P1 and P2, the
number of features of L1i must be superior to the number of
features of L2i. Assuming the hypothesis H1, the inequality
can be reduced to the following equality. The vector A3 =
{F3,i while i ∈ N, i ≤ 3} represents the features of the
software product line that are not supported by the derived
product, and the entries di, j of the matrix D are equal to 0
or 1 depending on weather the features exist in the product or
no :

B ×A1− C ×A2 =

d1,1 · · · d1,s

d2,1 · · · d2,s

...
. . .

...
dk,1 · · · dk,s

×

F3,1

F3,2

...
F3,i

...
F3,s

(2)

After the calculation of this equality we will obtain seven
equalities as follow:

∑19
i=1 b1,i × F1,i −

∑16
j=1 c1,j × F2,j =

∑3
j=1 d1,j × F3,j∑19

i=1 b2,i × F1,i −
∑16

j=1 c2,j × F2,j =
∑3

j=1 d2,j × F3,j∑19
i=1 b3,i × F1,i −

∑16
j=1 c3,j × F2,j =

∑3
j=1 d3,j × F3,j∑19

i=1 b4,i × F1,i −
∑16

j=1 c4,j × F2,j =
∑3

j=1 d4,j × F3,j∑19
i=1 b5,i × F1,i −

∑16
j=1 c5,j × F2,j =

∑3
j=1 d5,j × F3,j∑19

i=1 b6,i × F1,i −
∑16

j=1 c6,j × F2,j =
∑3

j=1 d6,j × F3,j∑19
i=1 b7,i × F1,i −

∑16
j=1 c7,j × F2,j =

∑3
j=1 d7,j × F3,j

(3)

2) Perfect Co-evolution for the Mobile Media
Software Product Line: By considering the features
states matrices of the mobile media and its product,
the inequality (1) can be expressed as follows:

1 1 · · · 0 0

1 1 · · · 0 0

...
. . .

...
1 1 · · · 1 1

 ×

F1,1

F1,2

...
F1,10

...
F1,19

≥

1 1 · · · 0

1 1 · · · 0

...
. . .

...
1 1 · · · 1

×

F2,1

F2,2

...
F2,10

...
F2,16

TABLE V. NEW FEATURES STATES MATRIX B′ OF THE MOBILE
MEDIA SPL

B’ F1,1

..
F1,8

F1,9

F1,10

F1,11 F1,12

F1,13

F1,14 F1,15

..
F1,17

F1,18

F1,19

F2,14 F2,14

V0 1 0 0 0 0 0 0 0 0
V1 1 1 0 0 0 0 0 0 0
V2 1 1 1 0 0 0 0 0 0
V3 1 1 1 1 0 0 0 0 0
V4 1 1 1 1 1 0 0 1 0
V5 1 1 1 1 1 1 0 1 0
V6 1 1 1 1 1 1 1 1 1

We calculate the equalities (3) for the mobile media software
product line and its derived product in order to deduce the
results of their co-evolution:

∑19
i=1 b1,i × F1,i −

∑16
j=1 c1,j × F2,j = 0∑19

i=1 b2,i × F1,i −
∑16

j=1 c2,j × F2,j = 0∑19
i=1 b3,i × F1,i −

∑16
j=1 c3,j × F2,j = 0∑19

i=1 b4,i × F1,i −
∑16

j=1 c4,j × F2,j = 0∑19
i=1 b5,i × F1,i −

∑16
j=1 c5,j × F2,j = F1,14 − F2,14∑19

i=1 b6,i × F1,i −
∑16

j=1 c6,j × F2,j = F1,14 − F2,14 + F1,15 + F1,16∑19
i=1 b7,i × F1,i −

∑16
j=1 c7,j × F2,j = F1,14 − F2,14 + F1,15 + F1,16

+F1,18 + F1,19 − F2,16

We notice that two imperfections was detected after the
calculation. They are underlined, the first in the fifth equality
and the second is in the last equality. These imperfections
are caused by the two features F2,14 ”Print photo” and F2,16

”Share photo in social websites”. The two features exist in
the product and are absent from the software product line.
The vector A3 is composed by the following features :(F1,14

”Add music media management”, F1,15 ”Add video media
management”, F1,16 ”Capture videos”, F1,18 ”Play videos”,
F1,19 ”Play music”, F2,14 ”Print photo”, F2,16 ”share photo
in social websites”). From the seven equalities we deduce the
matrix D of the inequality (1):

B×A1−C×A2 =

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 −1 0

1 1 1 0 0 −1 0

1 1 1 1 1 −1 −1

×

F1,14

F1,15

F1,16

F1,18

F1,19

F2,14

F2,16

3) Imperfect Co-evolution Correction: In order to correct

imperfections represented by the negative entries in the matrix
D we propose the following algorithm which will restore the
missing features to the software product line. By applying this
algorithm to the mobile media software product line, the two
features F2,14 ”Print photo” and F2,16 ”Share photo in social
websites” of he derived product will be added to mobile media
software product line states features matrix, in Table 5 we
present the new matrix B’ of the software product line.

Our approach allows for restoring the integrity of the soft-
ware product line, by propagating features that were developed

500Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 522 / 679

Figure 7. Imperfect co-evolution correction algorithm

on the products level to the domain engineering level. In
the presented case study the two features ”Print photo” and
”Share photo in social websites” of the derived product were
propagated to the mobile media software product line. The
approach aims at preserving the software product line from
the aging phenomenon by correcting the divergences between
products and the software product line that happened during
their evolution.

Our motivation is conducted by the main principal of
software product line engineering which is the ability of the
domain feature model to support all the features of the de-
rived products. Furthermore, cladistics classification technique
allowed us to restore the missing features to the corresponding
versions of the software product line in order to achieve
the perfect co-evolution of the software product line with
its products. This approach enables also the extension of the
software product line capabilities, for our example, the two
added features can be propagated to the other derived products
that manage photos. Thereby, it helps predicting new features
and anticipating new requirements, for example the feature
”Share photo in social websites” which we propagated to the
mobile media software product can also be adapted to include
other media such as songs and videos.

V. CONCLUSION

In this paper, we introduced the co-evolution of domain
and application engineering in software product lines, which
consists in identifying the evolution paths of the domain assets
and the application assets and finding if they are similar or
different. Our purpose is to preserve the ability of domain
engineering assets to derive the application assets even during
their evolution. This purpose can be achieved by propagating
the changes that happened to the products only to the software
product line. Co-evolution was extensively studied in biology
in order to understand how organisms influence each other
during their evolution. The co-evolution relies basically on

the physical characters or behaviors of organisms. Since the
features of a software represent its visible characters, we
consider only the co-evolution of feature models in this paper.

We used the biological Cladistics classification to build
the evolutionary trees of the software product line and its
derived products, then we perform a mathematical analysis
to extract similarities and differences between these trees.
Thereby, we propose an algorithm to propagate the missing
features that cause divergence between the evolutionary trees
to the domain feature model. We applied our approach to
the software product line of mobile media applications that
manage media such as songs, photos and videos on mobile
devices. We compared the evolution paths of the software
product line and one of its derived products, then we applied
our analysis to propagate the features that exists in the product
but are missed from the software product line to the domain
features model. As a consequence, we restored the ability of
the software product line to derive all the products features,
and also we extended its capabilities by the new features.

REFERENCES

[1] K. Pohl, G. Bckle, and F. J. van der Linden, Software product line
engineering: foundations, principles and techniques, Springer, 2005.

[2] P. Clements, L. Northrop, and B. W. Boehm, ”Software product lines :
practices and patterns”, Fondo Xavier Clavigero, S.J. ITESO, 2002.

[3] D. L. Parnas, ”Software aging”, in Proc. The 16th international conference
on Software engineering, 1994, pp. 279-287.

[4] P. R. Ehrlich and P. H. Raven, Butterflies and plants: a study in
coevolution Evolution, JSTOR, 1964, pp. 586-608.

[5] R. M. Anderson and R. M.May, ”Coevolution of hosts and parasites”,
Parasitology, 1982, vol. 85, no 02, pp. 411-426.

[6] D. Di Ruscio, L. Iovino, and A. Pierantonio, ”What is needed for man-
aging co-evolution in MDE?”. In Proc. The 2nd International Workshop
on Model Comparison in Practice, 2011, pp. 30-38.

[7] M. Kster and M. Trifu, ”A case study on co-evolution of software artifacts
using integrated views”. In Proc. The WICSA/ECSA, 2012, pp. 124-131.

[8] C. Seidl , F. Heidenreich, and U. Amann, ”Co-evolution of models
and feature mapping in software product lines”. In Proc. The 16th
International Software Product Line Conference, 2012, pp. 76-85.

[9] Brinkman, S.L. Fiona, and D. D. Leipe, Bioinformatics: a practical guide
to the analysis of genes and proteins, Vol. 43, John Wiley Sons, 2004.

[10] L. P. Tizzei, M. Dias, C. M. Rubira, A. Garcia, and J. Lee, ”Components
meet aspects: assessing design stability of a software product line”,
Information and Software Technology, Elsevier, 2011, vol. 53, no 2, pp.
121-136.

[11] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J. Royer, A. Rumm-
ler, and A. Sousa, ”A model-driven traceability framework for software
product lines”, Software Systems Modeling, Springer, 2010, 9, pp. 427-
451.

[12] S. A. Ajila and A. B. Kaba, ”Evolution support mechanisms for software
product line process”, Journal of Systems and Software, Elsevier, 2008,
vol. 81, no 10, pp. 1784-1801.

[13] A. Goknil, I. Kurtev, K. van den Berg, and J. Veldhuis, ”Semantics
of trace relations in requirements models for consistency checking and
inferencing”, Software Systems Modeling, Springer, 2011, 10, pp. 31-54.

501Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 523 / 679

EM
3
: Software Retirement Process Model

Mira Kajko-Mattsson

School of Communication and Information Technology

KTH Royal Institute of Technology

Sweden

mekm2@kth.se

Anna Hauzenberger, Ralf Fredriksson

Department of Computer and Systems Sciences

Stockholm University

Sweden

anna-hau@fc.dsv.su.se, rafr1976@student.su.se

Abstract—The software community has been so much focused

on creating and improving development and evolution

processes, so that it has completely forgotten retirement.

Today, there are no retirement process models whatsoever

despite the fact that many software organizations desperately

need guidelines for retiring their software systems. In this

paper, we elicit theory about software retirement process and

put it into a software retirement process model, which we call

EM3: Software Retirement Process Model. The elicitation has

been done within “If…”, a Nordic insurance company. The

model is based on two comprehensive case studies conducted

within two real-life retirement projects.

Keywords-case studies; software lifecycle; software

migration; software phaseout; software closedown; software

disposal.

I. INTRODUCTION

Research on software lifecycle process models has not
been well balanced so far. Most of the attention has been
paid to software development. Less focus has been put on
software maintenance. No research been made on software
retirement whatsoever.

Retirement is the disposal process whose aim is to end
the existence of a software system [11]. It consists of the
actual software system phaseout, removal of it from a regular
usage, migration of its still relevant parts to some other
system(s), closedown, and the archiving of it [1].

There are plenty of reasons why a system needs to be
retired. Some of them are the system age and complexity,
removal of its software and/or hardware platform, rules
embodied by the external environments, and the like.
Irrespective of the underlying reasons, retirement is an
extremely complex and difficult process. Hence, it must be
carefully planned and performed.

Right now, the concept of retirement is not well
established within software engineering [5]. Neither are there
any process models describing it. There are only very few
standards and these standards are not based on any real-life
studies [2][3]. Their contents has been mainly chosen in
ballots; hence, they are very general. At its most, they cover
a whole retirement process model within only a few pages.
Hence, they do not provide sufficient guidelines for the
organizations in their complex retirement work.

In this paper, we outline a retirement process model,
called EM

3
: Software Retirement Process Model. The model

is part of EM
3

standing for Evolution and Maintenance

In the second case study, we explored Steps taken in our research process.

Management Model. The model has been created within
“If…”, one of the leading property and casualty insurance
companies in the Nordic region. This company has recently
undergone nine retirement projects. We have studied two of
them: (1) the EXIT project performed in Sweden [8] and (2)
the CeRe project performed in Finland [9]. Our goal is to
provide a basis for creating theory in the domain of software
retirement, to evaluate current process standards and provide
feedback for their extension.

The two projects studied, differed in their prerequisites
and process designs. For this reason, we made two separate
case studies and put them into their respective process
models [8, 9]. In this paper, we first present the two models
and consolidate these them into one general model which we
then evaluate within “If…”.

The remainder of this paper is as follows. Section 2
describes our research method. Sections 3 and 4 present the
EXIT and CeRe projects. Section 6 evaluates and compares
the consolidated process model to the existing retirement
standards. Finally, Section 7 makes conclusions and
suggestions for future work

II. RESEACH METHOD

Our study was a typical design research [10]. Its goal was
to explore and model the domain of retirement by identifying
all its relevant process constituents and the relationships
among them. As illustrated in Figure 1, our exploration work
consisted of several consecutive phases.

502Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 524 / 679

TABLE I. THE EVALUATION QUESTIONNAIRE

In the first phase, the Literature Study phase, we made an

extensive and comprehensive literature study. We went
through various articles and standard process models
touching on retirement. None of them, however, provided us
with detailed information about the process. Only [2][3]
outlined very general models. Due to their very coarse-
grained nature, they did not provide any sufficient platform
for starting our work. Hence, we may claim that our results
are entirely elicited from scratch using the industrial support.

In the second and third study phases, the Case Studies
and Case Study Evaluation phases, we studied both the EXIT
and CeRe projects and evaluated them within the company
[8][9].

Regarding the EXIT project, we studied it by first
scrutinizing all the relevant project documentation. This
documentation included about 100 different documents
describing the retirement project, project plans, status
reports, activity lists, system overviews, reports from various
meetings such as steering groups, reference groups, and the
like.

In the study of the CeRe project, our first step was to
interview the CeRe project leader who presented the overall
retirement process to us. We then continued to scrutinize
relevant project documentation. This documentation
included about 30 various documents.

Due to the fact that CeRe was a Finnish project, all the
documentation was written in either English or Finnish. The
documents written in Finnish were translated to us to
Swedish by the CeRe project leader, either orally or in
written.

In both the EXIT and CeRe projects, the documents
studied did not fully describe the whole retirement project.
Hence, we had to complement our explorative study with a
series of interviews with the project leader and one operation
manager.

Based on the understanding gained, we created two
preliminary retirement process models for each of the
retirement project studied [8, 9]. These models outlined a set
of process activities in the EXIT and CeRe projects,
structured these activities into process phases and identified
roles involved in them. They were then presented to the
project managers. The goal was to evaluate their credibility

Figure 1. Phases in the EXIT project.

and adherence to the EXIT and CeRe projects, respectively.
The evaluation step resulted in some minor modifications to
the process models. These modifications are presented in
Section 6.

The process models of the EXIT and CeRe projects
covered various aspects of retirement. Hence, they differed
in their prerequisites and designs. As a next step, we
consolidated them into one general process model, which we
call EM

3
: Software Retirement Process Model. We then

evaluated the EM
3
 model within the company using tête-à-

tête interviews. The questionnaire used for the evaluation
purpose is presented in Table I.

Six people were involved in evaluating our retirement
process model. Two of them were retirement project
managers, one decision maker, one system analyst and
maintainer, one developer and one business manager. These
people were involved in at least one retirement project.

Finally, we compared our model to the standard models
[2][3]. To enable the comparison, we created a set of
comparison criteria. These criteria are listed in Table V. Due
to the fact that the standard process models studied are very
general, we could only define our comparison criteria on a
very general level.

III. THE EXIT PROJECT, CASE STUDY 1

In this section, we present the EXIT project. We first
present its context in Section 3.1. We then describe the
project in Section 3.2.

A. Context of the EXIT Project

Two legacy systems, Indra and Gliid, were going to be
retired and replaced with a system called LH. As illustrated
in Figure 2, the overall retirement process consisted of three
phases. These were (1) Pilot Study, (2) Replacement
Implementation, and (3) Retirement Realization.

In the first phase lasting for one year, “If…” made a pilot
study during which they examined Indra and Gliid and
decided that a replacement system, LH, would be developed
and Indra and Gliid would be retired.

503Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 525 / 679

Figure 2. Phases in the CeRe project.

During the second phase, lasting for two years, “If…”
was in the process of developing LH. In the next-coming two
years, it started the retirement of Indra and Gliid. In the fifth
year, both Indra and Gliid were closed down and only LH
has been used since then. The star banner in Figure 2 marks
the scope of the EXIT project.

B. The EXIT Project

The EXIT project consisted of four phases. They are (1)
Pre-Study (2) Preparation, (3) Conversion, and (4)
Closedown. Below, we briefly describe them.

1) Pre-Study: The goal of the Pre-study phase was to

investigate the systems to be retired, determine which of

their parts should be migrated and disposed off, identify

appropriate archiving and migration strategies, define a

retirement project and plan for it.
In this phase, one first investigated the types and

volume of business objects to be retired and migrated. One
then determined the archiving and migration needs to be
further used for identifying the appropriate migration and
archiving strategies. As a next step, one determined the
project scope. When doing it, one first analyzed Indra and
Gliid’s overall architecture and design and then identified
dependencies to other interfacing systems. Here, one
considered other systems and their users that were
dependent on the retiring systems.

Identification of the interfacing systems affected by the
closure of Indra and Gliid led to the identification of the
additional activities required for managing the retirement
project. In our case, one recognized a need (1) for
analyzing the migration and archiving strategies, and (2)
for making deeper analysis of adjacent systems and their
connections to the systems to be retired.

Finally, one defined a retirement project. The project
definition included risk management and creation of a
retirement plan. Risk management concerned risks such as
access to resources required, staff illness and various
technical risks [13]. The retirement plan, on the other hand,

covered most of the rudimentary project planning
activities.

2) Preparation: The goal of the Preparation phase was

to further analyze the systems to be retired, make a decision

on archiving and migration strategies, determine changes to

be made in the adjacent systems and in the replacing

system.
As a first step, one studied the business objects to be

migrated. The goal was to identify active objects and to
attend to the inconsistencies in them. An example of an
active business object is a car insurance.

For all the active business objects, one analyzed their
individual data fields in order to determine whether they
should be migrated to the new system. One also analyzed
special cases. An example of a special case is when one and
the same business object is administered by both systems,
namely, the retiring and the replacing systems.

For the data fields to be migrated, one created a
conversion table and a conversion testing plan. Testing
implied that one chose a specific numeric field, summed it
for all the business object instances to be migrated and
compared their sum to the corresponding sum in the new
system.

3) Conversion: As a first step in the Conversion phase,

one developed the automatic conversion method including

scripts and the automation process. This method was then

tested. The purpose was to estimate conversion time and to

assure a problem free conversion. When the tests were

successfully passed, one conducted both the automatic and

manual conversion. The conversion results were finally

tested to verify that the conversion was successful.

4) Closedown: Finally, in the Closedown phase, one

closed down the Indra and Gliid systems and removed their

dependencies to the adjacent systems.

IV. THE CERE PROJECT, CASE STUDY 2

In this section, we present the CeRe project. In Section
4.1, we first present its context. In Section 4.2, we describe
the CeRe project itself.

A. Context

 In the second case study, we explored the process of
retiring a system called Jyrki. Jyrki was internally developed
to be used for managing debts and credits. It had about 35
users. At the beginning of the CeRe project, it was 18 years
old. Together with eight other systems, it was installed on
HP 3000. In the first year, HP announced that HP 3000
would be phased-out in the future five years. For this reason,
“If…” decided to retire all the eight systems installed on this
platform.

Out of the eight systems, we focused our study on Jyrki
due to the following reasons: (1) it was the last system on the
HP 3000 platform to retire; hence, the project results were
fairly fresh, (2) having it as the last retirement project, “If…”
had matured with respect to its retirement management;
hence, the project provided us with feedback on a matured
retirement process; (3) almost all the project documentation

504Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 526 / 679

TABLE II. RETIREMENT CHECKLIST

was in English; hence, we could easily follow it, and (4)
many of the people involved in the retirement of Jyrki were
still available; hence, they could help us in this study.

In the second year, “If…” decided that relevant parts of
Jyrki would be migrated to an existing system called RE. RE
was a standard bought-in system installed on another
platform. The retirement work itself lasted for exactly one
year after the decision was made to retire it.

B. The CeRe Retirement project

As illustrated in Figure 3, the CeRe project consisted of two
main phases. They are (1) Initial Study and (2) Retirement.

1) Initial Study: The Initial Study phase took place in

the second year. Here, one made an inventory of all the

systems installed on HP 3000 and evaluated each of them.

Using the checklist presented in Table II, one identified

each system’s criticality, analyzed its structure, users,

contracts, and adjacent systems. One then studied the laws

and rules to be obeyed in the process.
The analysis conducted in this phase was very general.

Its goal was to provide a basis for planning future retirement
work and for determining the order of retiring the systems.
Later on, this analysis would be repeated for each of the
retiring system.

2) Retirement
Regarding the second phase, the Retirement phase, it

consisted of four sub-phases: (1) Pre-Study (2) Preparation,
(3) Realization, and (4) Closedown.

a) Pre-Study: The goal of the Pre-study phase was to

investigate the system to be retired, to determine which of

its parts should be migrated, disposed off and archived, to

identify appropriate archiving and reuse strategies, to

define a retirement project and plan for it.

When investigating the CeRe project, one used the
same checklist as in the Initial Study phase (see Table II).
The goal was to find out whether its results were still
relevant. This investigation was then complemented with
an additional study, this time focused on archiving

TABLE III. QUESTIONS DEALING WITH ARCHIVING PROBLEMS

problems. It was led by a series of questions that are listed
in Table III.

The Pre-study phase resulted in an updated plan of the
continued work. The plan covered (1) the specification of the
roles and activities required for conducting the work, (2)
specification of the business objects to be considered, and (3)
the identification of the overall strategies required for reusing
and archiving the business objects. In addition to the basic
strategic issues, the reuse strategy focused on confirming
that RE still constituted an appropriate platform for
migrating some parts from Jyrki. The archiving strategy, on
the other hand, focused on designating the technical solution
of the future archive. It was decided that Microsoft Access
would be used.

b) Preparation: The Preparation phase encompassed a

number of analyses on various levels, from business objects

down to the data field level. The goal was to determine

which business objects should be reused and archived and to

determine the migration impact on the RE system.

As illustrated in Figure 3, the Preparation phase
consisted of four sub-phases: (1) Analysis of Business
Objects, (2) Archive Preparation, (3) Reuse Preparation,
and (4) Identification of New Needs.

In the Analysis of Business Objects phase, one analyzed
which of the business objects should be reused and archived.
Here, one decided that only active objects, such as unpaid
invoices, were to be reused. The objects needed for future
retrieval should be archived. The rest should be disposed off.
One also decided that all the reused instances should be
easily traceable both in the archive and in the RE system.
With this, one expected to have control over the migrated
business objects.

For each type of a business object, one then analyzed its
instances to make sure that the right ones got migrated to the
RE system. Here, one generated lists of all the active
business object instances. One then analyzed them to
confirm that they had the right status. Finally, one flagged all
the reused instances to make them traceable.

In the Archive Preparation phase, one specified
requirements on the archive, identified business objects to be
archived and procedures for migrating data to the archive. As
a first step, one analyzed the objects on a data field level to
determine which of the fields should be archived and how
they should be retrieved.

505Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 527 / 679

Figure 3. Components in EM3: Software Retirement Process Model.

As a next step, one developed a simple archive prototype.
The purpose was to verify that the final archive would fulfill
the organizational requirements. One then tested it and
solved all the problems encountered in it. Finally, one made
a decision on how to test the final archive after it got
implemented.

The goal with the Reuse Preparation phase was to further
detail the reuse strategy, specify the conversion process,
revise the conversion requirements, determine testing
procedures, and the like. As a first step, one established
which types of business objects should be reused. For each
type, one analyzed its individual fields and decided on
whether they should be reused or not.

It is not easy however to reuse data fields in another
system. The declarations may substantially vary. To ensure
the quality of the reuse, one mapped the data fields in Jyrki
to the data fields in RE. For each of them, one then
determined a conversion approach, either manual or
automatic.

As a next step, one specified the order in which the
business objects should be converted. The order was
influenced by the dependencies among the objects. For
instance, customer objects should be converted first before
converting their insurances. One then determined the
conversion testing method. The method implied that one
chose a specific numeric field, summed it for all the
instances in Jyrki and compared their sums to the
corresponding sum in RE.

In the Identification of New Needs phase, one studied
whether the data migrated from Jyrki would affect RE. For
this purpose, one investigated whether the working routines
would have to be changed. This investigation resulted in the
identification of new requests for changes to be made in RE.

These changes were then implemented and tested. Finally,
one updated the Retirement Plan.

3) Realization: The Realization phase consisted of the

following sub-phases: Reuse, Archival, and Testing.
In the Reuse sub-phase, one first defined a conversion

method. One did it for both the manual and automatic
conversions. The goal was to secure that the conversion
would be conducted in the right order and that nothing would
be forgotten.

Regarding the manual conversion, one created a crib
supporting the manual work. For the automatic conversion,
one created a list identifying the automatic procedures,
specifying the data to be converted and their order.

As a next step, one implemented the automatic
procedures. Due to the fact that the RE system already
implemented the automatic conversion procedure, one did
not need to implement it. What one only needed was to
implement procedures accessing Jyrki’s data.

One then implemented and tested the conversion method.
When testing the manual method, one converted some
instances following instructions as specified in the crib. One
then controlled the results. Possible problems in the manual
conversion procedures were then attended to and tested
anew.

When testing the automatic conversion method, one
downloaded the data into the RE’s testing environment. One
then verified the results. In case of problems, one solved
them and tested the automatic procedures anew. Before
starting the conversion, however, one made sure that all the
preparations had been made correctly. For instance, one
checked whether all the required changes had been done to
RE. Finally, one migrated (converted) data to the RE system.
One conducted the manual conversion first. Both
conversions were then tested and approved.

The goal of the Archival phase was to create an archive,
migrate data to it and test. Using the stated requirements, one
started the development of the archive. One then developed
the automatic procedures to transfer data from Jyrki to the
archive. To be able to present the data in the archive, one
needed reports. About ten reports corresponding to the most
frequent searches in Jyrki were developed.

The migration of data to the new archive was tested using
a sample data first. While doing it, one created a user manual
and educational material. One then educated and trained its
users. Finally, one conducted the entire migration to the
archive. The migration was entirely automatic.

After the migration was fulfilled, one tested its results in
the last Testing sub-phase. One did it to secure the migration
correctness by comparing the data in Jyrki and the new
archive, using similar tests as in the Reuse sub-phase.

a) Close down: Before one conducted the final

conversion, one removed the opportunities to update Jyrki.

However, one waited for two months before disposing off

Jyrki and its hardware platform. This time period was a

security measure during which the users could attend to the

inconsistencies observed in Jyrki, RE, and the archive.

506Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 528 / 679

Figure 4. Design of EM3: Software Retirement Process Model.

V. RETIREMENT PROCESS MODEL

In this section, we outline EM
3
: Software Retirement

Process Model. We first provide its overview in Section
V.A. We then describe the retirement phases and roles
involved in them in Sections V.A and V.B, respectively.

A. Process Model Overview

As illustrated in Figure 4, EM
3
: Software Retirement

Process Model manages components such as (1) Retiring
system(s), (2) Replacing system(s), (3) Interfacing system(s),
(4) Users of the retiring system(s), (5) Users of the replacing
system(s), (6) Users of the interfacing system(s), and (7)
Archive. Our suggestion for a retirement process model is
depicted in Figure 5. It consists of four main phases:
1. Retirement Analysis: In this phase, one analyzes the

retiring system using either the checklist presented in
Table II or a decision matrix [4]. This activity is usually
initiated due to many reasons. Some of them are (1) high
maintenance cost, (2) removal of the software or
hardware platform of the retiring system, (3) duplicated
functionality in several systems [1].

2. Decision: In this phase, one decides whether the system
should continue to provide service or whether it should
be disposed off.

3. Retirement: If the decision has been made that the
system is to be retired, then the system undergoes a
retirement process.

4. Post-mortem Analysis and Sign-Off: After the retirement
has been realized, one analyzes the process, assures that
all the planned activities have been performed as
planned and that all the goals have been achieved, one
collects lessons learned, and finally, one signs off the
retirement process.

B. Retirement Process Roles

The EM
3
: Software Retirement Process Model retirement

process involves the following roles:

 Decision Maker (DM): set of managerial roles
responsible for planning and managing the retirement
process.

 Maintenance Organization (MO): organization
responsible for maintaining the archive.

 Operations Expert (OE): role possessing expert
knowledge of the system to be retired and the retirement
process to be conducted.

 System Manager (SM): role responsible for the
operation and maintenance of the system.

 System Analyst (SA): a role responsible for planning and
analyzing the system to be retired.

 Project Leader (PL): role responsible for the retirement
project.

 System Architect (SAR): role is responsible for knowing
the overall architecture of the systems to be retired. This
is a new role added to our model after the industrial
evaluation step.

 User (U): role using the system to be retired.

 Developer (D): role involved in the implementation of
the retirement process.

 Support Technician (ST): role responsible for operation
and support of the system to be retired.

C. Retirement Process Phases

 The retirement process consists of five phases (1) Pre-
Study, (2) Analysis, (3) Retirement Preparation, (4)
Retirement Realization, and (5) Close down. Below, we
describe each of them. As can be seen in Table IV, the total

507Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 529 / 679

TABLE IV. PHASES AND ACTIVITIES IN EM3: SOFTWARE RETIREMENT PROCESS MODEL. THE UNDERLINED ACTIVITIES WRITTEN IN
BOLD WERE ADDED AFTER THE MODEL EVALUATON. TE ABBREVIATIONS IN THE PARANTHESES IDENTIFY THE ROLES PERFORMING
THEM

508Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 530 / 679

process is structured into phases and activities. The goal is to
create a reference framework mapping out what activities are
relevant in what phase. However, the order of the activities
as listed in our model does not impose any specific order of
conducting them. Depending on the context at hand, these
activities may or may not be selected. If selected, then they
may be implemented in the order that is suitable for the
context at hand.

5.2.1. Pre-Study. The Pre-Study phase starts only after

one has made a decision that the system of concern is going
to be retired. Here, one makes a comprehensive and detailed
analysis of the retiring system. When doing it, one may use a
checklist as presented in Table II, the same checklist that has
been used in the more general Retirement Analysis phases.
The goal is to get an understanding of the retiring system and
to create an overall retirement plan.

5.2.2. Analysis. In this phase, one performs deeper
analysis of the retiring system in order to get an
understanding of the forthcoming retirement process. Here,
one identifies the business objects to be managed and their
underlying functionality. One then decides how they should
be handled and one designates retirement project dates. One
also decides on the quality levels for securing the
management of the business objects.

5.2.3. Quality Assurance. This phase starts after one has
determined which business objects should be quality assured.
It runs in parallel with Retirement Preparation and partly
with Retirement Realization. Here, one determines the rules
for quality assurance and conducts the quality assurance.

5.2.4. Retirement Preparation. In this phase, one (1)
prepares the system parts to be reused in the replacing
system, (2) one prepares the system parts to be archived, and
(3) one studies the impact of the conversion and retirement
processes on the interfacing systems.

5.2.5. Retirement Realization. In this phase, one
conducts the actual conversion and archival of the business
objects and their underlying functionality.

5.2.6. Close Down. In this phase, the retiring system gets
closed down and disposed off. Its data may be accessed only
in its archive.

VI. EVALUATION RESULTS

This section presents the results of evaluating our
retirement model. Section 6.1 first presents the evaluation
results of the EXIT and CeRe projects. Section 6.2 describes
the evaluation results of our model.

A. Evaluation of the EXIT and CeRe Projects

In the third phase of our study (see Case Study
Evaluation in Figure 2), the models of the EXIT and CeRe
processes were presented to the project managers responsible
for the respective retirement project. According to them, our
models were realistic and they fully reflected their retirement
processes. They had, however, some minor deficiencies.
These concerned lack of three important activities: Activity 5
(Manage Risks), Activity 9 (Determine budget) in the Pre-
Study phase, and Activity 2.2.7 (Determine the order of

converting the business objects) in the Analysis phase. They
also concerned lack of the role of System Architect.

According to our interviewees, risk management
constitutes an essential activity within retirement. Not doing
it implies a critical business risk by itself. Risk management
should be run continuously throughout the whole retirement
project. Due to the difficulties of integrating its activities
with our retirement model, we only mark their start in the
Pre-Study phase. However, in Figure 5, we place risk
management as a parallel phase to the entire Retirement
phase.

Regarding the second activity, the activity concerning the
determination of retirement project budget, our interviewee
from the EXIT project claimed that due to the project
criticality, it is very important to assign substantial resources
to the retirement project. Otherwise, one runs the risk of
underestimating the project scope and thereby fails with its
completion.

We admit that this planning activity is very important.
When creating process models of the individual processes,
we were mainly focused on identifying pure retirement
activities. On purpose, we left out many activities typical of a
traditional project planning. To remedy this, we have
expressed the need for more project planning activities with
three dots in Activity 10.

The third activity, Activity 2.2.7 (Determine the order of
converting the business objects) in the Analysis phase,
concerned the specification of the order of converting
business objects. Some objects, should be converted first
before converting the other objects. For instance, client
objects should be converted before their insurance objects.
As a response, we have added this activity to our model.

One role was claimed to be missing within the first
evaluation phase. It concerned System Architect. According
to both project managers, this role is indispensible in all the
retirement projects. Not only does this role know the system
to be retired but also all its architectural flaws and
deficiencies that should not be migrated to the new system.

B. Evaluation of EM
3
: Software Retirement Process Model

In the fifth phase of our research (see Retirement Model
Evaluation in Figure 2), the model was presented to six
software professionals within “If…”. As already mentioned
in Section 2, all of them were involved in at least one
retirement project.

According to the “If….”’s software professionals, our
retirement process model is realistic and appropriately
mirrors the retirement process. They have however had some
comments and suggestions for its improvement. Some of
them have been attended to by complementing the model
with additional activities. Those which could not be attended
to immediately constitute our suggestions for future work.

The activities that have been added are:

 Activity 6 in the Analysis phase (Determine how the
business objects which are going to be neither migrated
nor archived should be managed). It is important to
analyze and make decisions on all the objects in the

509Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 531 / 679

TABLE V. OUR COMPARISON RESULTS

retiring system. It is only then one may make sure that
one has not omitted any business object.

 Activity 2 in the Retirement Preparation phase
(Determine the maintenance organization which will
take over the archive) and Activity 2.3 in the Retirement
Realization phase (Transfer the archive to the
maintenance organization): These two activities are
very important. Our interviewees claim that the
maintenance organization should be designated as soon
as possible and that it should play the driving role within
the retirement project.

 Activity 3 in the Close Down phase (Assure that all the
planned activities have been conducted): According to
our interviewees, one needs an additional activity in the
Close Down phase to assure that all the planned
activities have been successfully implemented.

During the interviews, one issue was raised. It concerned
information dissemination and documentation. Information
dissemination has been regarded as a very important process
activity. If not properly performed, it may lead to many
problems. Regarding documentation, it is important that it is
pervasive throughout the whole process. Our interviewees
claim that all the process phases and activities should be
thoroughly documented to assure that retirement gets
implemented in a proper way. It is especially important that
the conversion and archiving processes, and archive manuals
are documented.

Our interviewees have also identified some problems
within their respective retirement projects. The problems are:

 Too little effort has been put into the analysis of the
retiring system: This has prolonged the retirement
process due to the fact that additional work was required
for repeating the analysis steps.

 Lack of resources: It is difficult to estimate the
resources required for retiring the system. This is due to
lack of retiring experience and too little effort put into
the analysis activities.

 Difficulties to man the retirement projects: It is difficult
to find individuals possessing the right competence for
retiring software systems.

 Retirement projects are not high priority projects:
Retirement projects are less prioritized than other
projects. This in turn prolongs their duration.

 Weak decision making: Retirement is a very complex
activity during which many important decisions are

taken. They concern decisions whether to migrate,
archive, or dispose off. Hence, key individuals must be
assigned clear responsibilities to make decisions. They
must also be members in the project and display interest
and engagement in the retirement work. Lack of it may
lead to the overall project delay.

Finally, our interviewees made a suggestion that one
should wait with the physical disposal of the system for a
while. In this way, one makes sure that no important activity
or decision has been missed. If, for some reason, defects
have been injected, one may still attend to them before it is
too late.

C. Comparison to Standards

In this section, we compare our retirement process model
with the standard process models as described in IEEE STD
10741991 [2] and ISO/IEC 15288 [3]. When doing this, we
follow the comparison criteria listed in Table V. Except for
the criteria concerning the roles, all the comparison results
are listed in Table V.

None of the standard process models suggests any roles
to be involved in the retirement process. Only the IEEE
model mentions a user role, who should be notified about the
closure of the system. Our model however has identified ten
different roles. These are listed and described in Section 5.2.

The broad portfolio of the roles identified in our model
indicates that the retirement project involves the majority of
the organizational roles ranging from user to various analyst
and design roles, to managerial roles and even to front-end
support roles [6]. This, in turn, indicates how complex and
comprehensive the retirement process model is.

As illustrated in Table V, none of the standard process
models include the activities during which one analyzes the
retiring and the replacing systems. In accordance with the
opinion of our interviewees, we believe that these are one of
the most important activities within the retirement process.
They could be compared to the requirements specification
activities. It is a common knowledge that a non-recognition
of the requirements, irrespective of what type of a project it
concerns, does not lead to successful project results. For this
reason, we claim that lack of analysis activities is a series
deficiency in the standard process models studied.

Only the ISO/IEC 15288 standard suggests identification
of archiving strategies. None of the standards proposes
migration strategy. In our opinion, identification of both
these strategies is very important. Identification of the
retirement strategy is a must. However, the identification of
the migration strategy should be an option. This is due to the
fact that not all retiring systems undergo migration. We
believe, however, that the inclusion of this strategy in the
retirement process model indicates that the retirement
process does not exist in a vacuum. Many times, parts of the
retiring systems have to be migrated to other new replacing
systems or other new archiving systems.

Only the ISO 15288 standard briefly mentions that the
interfaces to the adjacent systems should be considered.
None of the standard models suggests how the interfacing
systems and their users should be handled. In our opinion,

510Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 532 / 679

this is a serious omission. Improper management of the
adjacent systems may lead to big inconsistencies and
problems in their future operation. Hence, we suggest that
the interfacing systems and their handling should be highly
prioritized in a retirement process.

Both the standard process models studied include the
planning activities. However, they only recognize the need
for planning. They have not provided any suggestions
specific to the retirement planning process.

None of the standard process models studied included
risk management. We did not include it either in our
preliminary process model outline. Even if risk management
is a separate process, we strongly believe that it definitely
should be integrated with the retirement process. Retirement
and replacement imply many serious business risks. Not
considering them may jeopardize the whole retirement
process, and thereby, the organization’s future business
opportunities.

All the standard process models included the archival
activity. This activity however was only briefly mentioned,
even in our process model. We suspect that this activity is
quite complex. Hence, it should be further scrutinized in the
future.

Finally, none of the standards designates the maintenance
organization responsible for driving the retirement project
and for maintaining the archival. We believe that including
maintenance organization right from the beginning helps
avoid many future maintenance problems.

VII. FINAL REMARKS

In this paper, we have outlined a retirement process
model. The model is called EM

3
: Software Retirement

Process Model and it is part of EM
3
. It has been designed

and evaluated within “If…”, a company that has recently
undergone nine retirement projects.

Except for a very few standards, there are no retirement
process models whatsoever. Hence, we dare claim that our
work is unique and innovative. Our results are entirely
designed from scratch using the industrial support. Hence,
this paper is one of the first reports on this very complex
process. More work however needs to be made to both
validate and elaborate on our process model. We, therefore,
cordially invite the software community to help us with this
very exciting project.

REFERENCES

[1] S. W. Ambler, M. J.Vizdos, and J. Nalbone, The Enterprise
Unified Process :extending the Rational Unified Process
Upper Saddle River, N.J. :: Prentice Hall PTR, 2005.

[2] IEEE Standard for Developing Software Life Cycle
Processes, IEEE Std 10741991. 1991. The Institute of
Electrical and Electronics Engineers, Inc.345 East 47th Street,
New York, NY 10017-2394, USA, 1991.

[3] ISO/IEC 15288, Systems and Software Engineering – System
life cycle processes, IEEE Std 15288-2008, 2002.

[4] I. Jacobson, F. Lindström, Reengineering of old systems to an
object-oriented architecture. SIGPLAN Not. 26(11), 340–350,
1991.

[5] M. Kajko-Mattsson, “Common Concept Apparatus within
Corrective Software Maintenance” International Conference
on Software Maintenance, IEEE Computer Society Press: Los
Alamitos, CA, Sep 1999, pp. 287-297, ISBN: 0-7695-0016-1,
doi: 10.1109/ICSM.1999.792626.

[6] M. Kajko-Mattsson, L.-O.Tjerngren, A. Andersson, “CM3:
Up-front Maintenance”, Conference on Software Engineering
and Knowledge Engineering, Knowledge Systems Institute,
3420 Main Street, Skokie, IL, 60076, USA, 2001, pp. 371-
378.

[7] M. Kajko-Mattsson, “Corrective Maintenance Maturity
Model: Problem Management”, PhD thesis, Department of
Computer and Systems Sciences (DSV), Stockholm
University and Royal Institute of Technology (KTH), 2001,
ISBN Nr 91-7265-311-6, ISSN 1101-8526, ISRN SU-
KTH/DSV/R--01/15.

[8] M. Kajko-Mattsson, R. Fredriksson, A. Hauzenberger,
”Elicting a Retirement Process Model: Case Study 1”
International Conference on Computer Science and Software
Engineering, IEEE, 2008, doi: 10.1109/CSSE.2008.1364 .

[9] M. Kajko-Mattsson, R. Fredriksson, A. Hauzenberger,
“Elicting a Retirement Process Model: Case Study 2”,
International Conference on Innovation in Software
Engineering, IEEE, 2008, doi: 10.1109/CIMCA.2008.94.

[10] B. Laurel, Design Research: Methods and Perspectives, the
MIT Press, 2003.

[11] V. T. Rajlich, K. H. Bennett, A staged model for the software
life cycle. Computer 33(7) 2000.

[12] I. Sommerville, Software Engineering (8th ed.). Addison-
Wesley, 2007.

[13] M. Kajko-Mattsson and J. Nyfjord, “State of Software Risk
Management Practice”, International Journal of Computer
Science, IAENG, vol. 35, iss. 4, pp. 451-462, 2008.

511Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 533 / 679

Causality Control in Dynamic Platforms

Jacky Estublier, Germán Vega

Université Grenoble Alpes, LIG

Grenoble, France

{Jacky.Estublier, German.Vega}@imag.fr

Abstract— The increasing dynamicity of ubiquitous

environments and the rapid penetration of many sensors in our

day life are causes of concern for application designers and

developers. Indeed, they have to implement reliable

applications in a context in which the managed entities have a

very low level of abstraction; they are autonomous,

heterogeneous, and change in unpredictable ways. To simplify

developers work, there is a clear need to define a higher level

of abstraction in which these entities can be represented

homogeneously and managed systematically, irrespective of the

many technical details. To be used safely, this representation

must be causally related to the represented entities. Providing

a high level causal representation is very challenging, because

its implementation depends on the nature of the managed

entities, and because in ubiquitous systems the representation

and the system are evolving simultaneously and independently,

sometimes in incompatible ways. The paper describes a

systematic and extensible way to define and implement

causality, and presents the experience with the Apam system in

the domain of service platforms.

Keywords- component; model; services; platform; causality;

operational; OSGi.

I. INTRODUCTION

Almost every piece of information managed by a
program is a representation of something, either abstract
concepts (integers, strings), or real entities (persons, cars).
An important part of computing sciences has been devoted to
representations. In the 2000s, modelling proposed to make
more formal the relationship between a representation (a
model) and the system being represented, the System Under
Study (SUS).

When a part of the SUS is not directly accessible to the
machine (e.g., a part of the “real world”), building a
representation is a preliminary step before writing a program
that works on the SUS. A fundamental property of a model is
to provide a convenient representation of the SUS: it should
only represent what is needed at the right level of
abstraction, making the understanding easier, and making the
programs simpler. Therefore, even when the SUS is itself
abstract, it is often convenient to build “on top” of it, a
representation that fits better the needs.

Note that the SUS itself can be a representation of a
lower level system, making SUS and representation relative
concepts. Indeed, computer sciences make heavy use of
chains of representations, like abstraction layers in an
operating system.

The intuition often makes a distinction between SUS that
are part of the real world (e.g., cars and houses represented in

a database), and SUS that are electronic entities (files and
ports in an operating system). This intuition is often
misleading, machine world and real world are not two
separate worlds; after all, the machine too pertains to the real
world, and the SUS can include entities pertaining to the
machine.

However, what is relevant is that for electronic entities
changing the representation can be translated automatically,
and almost instantaneously, into corresponding changes on
the represented entity (e.g., closing a port or changing the
value of an integer Java variable). We say that the
representation is operational. It is of course not the case for
real world entities (changing the color of a car registered in a
data base does not actually change the color of the car itself).

For electronic entities, system changes can be directly
observed and translated into the corresponding
representation. We say that the representation is sensitive to
its SUS. For real world entities, it is a program, or an
administrator, that keeps the representation up to date, not
the entity itself.

A representation that is both operational and sensitive (as
illustrated in Figure 1) is said to be causally related to its
SUS, and causality is the relationship between a
representation and its SUS. Operationality and sensitivity are
reciprocal properties, making causality symmetric, and
making relative the concepts of SUS and representation.

Figure 1. Causality.

With the advent of modeling as a discipline, the
representation has become more formal and higher level,
often based on Object-Oriented concepts, making program
and representation pretty close, blurring even more the
boundary between system and representation.

With the recent irruption of many sensors and actioners
(ubiquitous computing, home automation, games, and so on)
the machine and the real world became intertwined, because
electronic devices have the property to be both in the
machine world and in the real world; we call it the shared
world.

512Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 534 / 679

Unfortunately, the electronic side of devices being very
low level, the need for an abstract and convenient
representation does not disappear (we still need to hide
heterogeneity, and many technical details like
communication and discovery protocols). Such a
representation of the shared world can be operational, i.e.,
changes on the representation can be automatically translated
into the corresponding actions on the associated device(s).

Conversely, devices being part of the real world, their
state can be changed by the real world itself (a temperature
sensor, for example). Being in the shared world, this (real)
change can be translated into the corresponding change into
its abstract representation, making the representation
sensitive to its SUS.

Causality is transitive allowing the definition of chains of
representation, of increasing abstraction, each layer being
still causally related to the “lowest” one. This property is
well known for operationality (the usual abstraction layers),
with causality it allows, for example, to represent and
manage sensor networks at the relevant abstraction level.
Therefore, causality allows program to work on the
representation as if working on the SUS itself, even for
dynamic and autonomous SUS. This is an important property
that simplifies dramatically the writing of program.
However, causality is a relationship that is very difficult to
enforce in practice, which explains why it is so uncommon.

We have experimented how causality can be defined and
managed in a systematic way in the case where the
representation is a model, close to Extended Entity-
Relationship (EER), and the SUS is a software services
platform (like OSGi [1]) both running on same computer.
However, this simplification does not reduce significantly
the generality because, in our system, everything is
represented as a service: the shared world entities (sensor
drivers are services), remote entities (their proxy are
services), and so on.

This paper is structured as follows: Section II describes
the representation layer (a component model), the execution
platform (the SUS) and how causality is defined. Section III
describes how the representation and the execution platform
are synchronized; Sections IV and V show how this
representation can be extended to handle provisioning and
how it can cope with failure; finally, we conclude with a
discussion of our validation and experience, the related work,
and perspectives.

II. THE APAM REPRESENTATION LAYER

The Application Abstract Machine (Apam) platform
proposes to its users (program and administrators) the
mechanisms to build models that are causally related to their
SUS. All representations in Apam conform to the meta-
model depicted in Figure 2.

Apam proposes a generic Entity-Relationship meta-
model (left part of the figure) that can be used to build any
abstract representation, particularly for real-world entities.
This generic meta-model has been specialized into a
component meta-model (center of the figure) that is used
specifically to represent services and running applications
(the machine-world) of a service platform like OSGi.

Figure 2. Apam Metamodel (simplified view).

Apam maintains a causality relationship between the
abstract representation of the application and its concrete
code artifacts (Java code in our case), both at development
and runtime.

At development time, causality is enforced by the Apam
compiler. The compiler ensures that the abstract relationships
defined by the component model are actually implemented at
the code level. For example, in the meta-model the relation
implements means that the resources provided and required
by the associated specification must be provided and
required by its implementations; the compiler checks that the
associated class really provides (implements, in the Java
sense) and requires (imports, in Java code) the interfaces
associated to the resources. The complete component model,
and its Java mapping, is fully presented in [2]. The Apam
compiler also performs byte code instrumentation to enable
monitoring and management at execution.

The causal relationship established at development-time
between the component representation and the actual code
allows reasoning about the application completely in
architectural terms. It also enables to control the execution of
the application by manipulating the model at runtime, as
presented in the following section.

III. CAUSALITY CONTROL

The component model and the causality control in Apam
have been primarily intended to monitor (sensitivity) and
drive (operationality), at high level, the execution of
applications on top of a service platform. The represented
SUS is the execution of application services. Those services
in turn can represent the state of devices, the sensed activity
or actions provided by actuators.

The service execution layer is based on the OSGi [1] and
iPOJO [3] platforms. OSGi provides the basic mechanisms
for deployment, live update and dynamic service discovery.
iPOJO provides the component container and dependency
injection mechanisms. In the execution platform, an
application is, at any given point in time, a particular
assembly of concrete OSGi service instances. The execution

513Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 535 / 679

platform handles the deployment and instantiation of the
actual Java code of services, and service binding is
automatically performed by the iPOJO container, using
injected fields in the class of the client service.

At the representation level, the application is represented
as a dynamic and reconfigurable architecture, composed of
component instances linked by wires. The APAM platform
controls the execution by continuously resolving the required
dependencies and changing the model.

To effectively drive the execution of the application, this
layer must be causally related to the actual service execution
layer, as illustrated in Figure 3. Each change of the
architecture, like creating components and wires is
transformed into actions in the execution platform. For
example, creating a wire from source instance s to target
instance t at the architectural level produces the injection of
the address of t into the fields of s in the Java code of the s
implementation. In this regard, the Apam representation is a
virtual machine executing the architectural application
description, on top of the underlying OSGi execution
platform.

Figure 3. Causality Managers.

However, in a dynamic and ubiquitous context there are a
number of external and uncontrolled events that may affect
the application execution; for instance, new devices can be
discovered / removed that need to be integrated / removed in
the application, legacy components can be installed in the
platform offering services required by the application, other
applications can be installed that may interfere with the
application. The execution platform automatically detects
three kinds of changes:

• Components that appear and disappear
• Property changes of a component
• Service binding request from a component
The representation also manages components, properties

and wires; indeed, in some cases, context changes, detected
by the execution platform must be transformed into the
corresponding change in the representation. For example, the
apparition of a new device is important for the application
architecture since it may trigger application adaptation to this
new context (like making use of such a device). This requires
bidirectional synchronization between the two platforms; that
is the responsibility of the causality managers.

A. Causality Managers

In a top-down view of the execution, the application
description presented in Section II is a specification that
must be enforced in the execution platform. In a bottom-up
view, the context changes detected by the execution platform

must be represented in the architectural layer, in order to
trigger the appropriate adaptations. There is thus a need to
enforce a causal relationship between the two platforms.

Both platforms share the concept of components having
properties and wires; at different levels of abstraction. For
the architecture platform, a component is a description (its
metadata), and wires are relationships between these
descriptions; while for the execution platform, components
are classes and objects, and wires are addresses into Java
fields. Properties are similar in both platforms.

Causality managers are in charge of keeping the two
platforms synchronized. Each causality manager is driven by
a model (illustrated in the middle part of Figure 3)
expressing its synchronization strategy along three axes:

1) What to change: as expressed above, the three shared
concepts to synchronize are components, properties
and wires (labeled C, P, W respectively in the
figure).

2) Direction to change: a causal manager may be
operational, propagating changes from the
architectural platform to the execution platform,
(labeled D for Downwards); or sensitive,
propagating changes from the execution platform to
the representation (labeled U for Upwards). In some
cases, both platforms collaborate to take a decision;
(labelled S for Symbiotic).

3) When to change: propagation can be Eager (labeled
E), meaning that it happens as soon as the change
occurs, or it can be Lazy (labeled L), meaning that
the propagation will be done only on demand by the
other platform.

For components directly specified using the APAM
component model, at development time, the Apam compiler
automatically includes the metadata described in Section II.
The Apam causal manager extracts this metadata from the
packaged component, and builds the corresponding
component in the architecture platform.

For other legacy component technologies, a causal
manager is in charge to extract the available information and
to build the corresponding architectural object. However this
requires a deep knowledge of each technology, hence a
specific manager (for instance, the legacy OSGi and iPOJO
managers in the figure).

B. The Apam Causal Manager

The strategy used by the native Apam component is an
immediate causality for components: CUE and CDE, i.e., as
soon as an Apam component appears (C for component),
whether in the architecture or execution platform (Upward,
and Downwards), it is immediately (Eager) synchronized on
the other platform.

The code of Apam native components is injected to
intercept all references to the fields of the required
dependencies. The need to resolve a wire (Wire) is detected
by the execution platform which decides, in symbiosis with
the architecture platform (Symbiotic) to immediately (Eager)
resolve the wire in both platforms, hence WSE
synchronization. Properties are not synchronized since they
are only known and used by the architecture platform.

514Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 536 / 679

C. Legacy Causal Managers

For the OSGi causal manager, the available information
is limited to the properties published in the OSGi registry;
and properties can be modified in both the architecture and
execution platforms, hence the PUE, PDE synchronization:
Properties are synchronized Upward and Downward Eagerly.
OSGi component can be created only by third parties in the
execution platform (they do not have factories), hence the
CUE synchronization.

iPOJO causal manager is still another case: iPOJO
factories can be used to create and instantiate components at
the architecture and at the execution platform layers.
Components created by the architecture platform must
immediately affect execution, hence the CDE
synchronization. Conversely, legacy iPOJO components are
synchronized up only when required: CUL synchronization.
Wires are Symbiotically, Eagerly synchronized (WSE).
Properties are only visible and used in the architecture
platform, and thus are not synchronized.

IV. PROVISIONING EXTENDED CAUSALITY

Thanks to the sensitivity property, in our case, the
representation allows monitoring the services currently
running in the execution platform and deployed by third
parties, using platform specific mechanisms. The
operationality property requires the capability to
add/remove/create entities (components and instances) at the
representation level, not only to manage those already
existing in the execution platform.

To satisfy this requirement, Apam includes the capability
to perform component provisioning. At the representation
level, this provisioning capability is used to satisfy the
dependencies of the application, when a resource is required.
In practice, to find the needed component(s) and resources
the Apam kernel looks into a number of search spaces.

Search spaces in turn are mapped to concrete service
repositories, of diverse and open-ended nature: it may
include components repositories, existing cloud services,
networked devices, or even remote platforms.

Figure 4. Provisioning managers.

Apam proposes provisioning managers as an extensible
mechanism to control the search spaces. Figure 4 shows the
currently defined provisioning managers, with their behavior.

A. Provisioning managers

We qualify as provisioning managers the managers in
charge of synchronizing the execution machine with other
platforms. We call platform any repository containing
services that provisioning managers can access from the
execution platform; directly by deployment, or indirectly
through a proxy. Provisioning managers synchronize an
“external” platform with the execution platform. We
distinguish Lazy vs. Eager and Dynamic vs. Static behaviors
for provisioning managers. Lazy and Eager have been
already discussed; Dynamic means that changes in the
external platform are “immediately” synchronized with the
execution platform; Static means that changes, if any, are not
synchronized.

B. Causal provisionning managers

Eager and Dynamic provisioning managers are those that
define what constitutes the execution context of the
application, since each change in their platform is
immediately perceived by the execution platform, which,
depending on its causality, the manager transfers its
perception to the architecture platform. Here, the context is
made of Apam and all the devices controlled by the device
manager. Other context managers can be defined and added
(dynamically or not) to the Apam system.

C. Lazy managers: an extended search space

The Lazy managers define the search space in the
following way: when Apam tries to resolve a wire, it looks
for a satisfactory target in the architecture machine. If the
target is not found Apam delegates resolution to available
Lazy managers, because lazy managers may know
components in their platform that are not (yet) present in the
architecture machine. These managers must implement the
method resolve (Dependency d, Composite context) which
returns if found an instance in the execution machine
satisfying the dependency d in the provided context.

The architecture machine invokes each lazy manager in
their priority order until one returns an instance t’. Apam
invokes the relevant causality manager to reify t’ as a t
instance in the architecture machine, and return t as the
resolution solution. If no manager finds a solution, the
resolution fails.

Many Lazy managers can be defined, Apam provides
with the standard distribution the OBR manager that can
deploy components from a list of bundle repositories; the
Distribution manager that looks for a component in another
remote Apam machine and returns a proxy towards the
selected remote component. The Cloud manager, based on
the Rose framework [4], returns a proxy toward a remote
service (WS, etc.). Other managers can be defined; they will
be called if registered as a dependency manager.

V. FAILURE HANDLING

Even with different search spaces, it is possible that the
execution platform fails to find a suitable service to satisfy
the dependencies of an application component.

In Apam, the failure reaction is specified at the
architecture level, in the component model. A dependency

515Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 537 / 679

declaration can express what should be the policy in case of
failure. The currently supported policies are:

• Optional dependency: nothing is done; the field
(wire source) will contain “NULL” as target value.

• Wait (duration): the current thread for which a wire
could not be resolved is halted until a valid target is found, or
until the time limit is reached.

• Exception (name): throws the exception specified
by the component.

• Hide: the source component is hidden for all
subsequent resolution; all its incoming wires are broken,
which may hide its clients and so on.

The hide strategy allows to backtrack the current
architecture (as long as dependencies are in the hidden
mode) and thus to explore automatically a wide range of
possibilities. But since all current architectures must be valid,
it is not allowed to remove (hide) components that are
explicitly part of the Application architecture.

VI. VALIDATION AND EXPERIENCE

Owing to its flexibility, adaptability and reliability, Apam
has been experimented, by academic and industrial teams, as
the central layer (often referred as the “dynamic
middleware”) of two large projects for home automation.

In OpenTheBox project, Apam is mostly used as the
central manager for set top boxes, in charge of providing
isolation, controlled collaboration between applications[5],
including the conflicting accesses to the shared devices [6].
In this case, each application is modeled as a composite, and
the contextual properties described in Section IV allow
specific policies for each application to be applied.

In the AppsGate project, the set top box is powerful
enough to support high level services, advanced
functionalities and innovative user interactions. In this
project, Apam builds an abstract “model of the world” based
on sensors and devices. The high level services are defined
as applications at specification and implementation levels,
and the execution automatically links the service to the
relevant devices.

VII. RELATED WORK

The use of models to represent a system at an appropriate
level of abstraction is generalized in software engineering.
However, as systems become more dynamic and directly
related to the physical world, there is a need to carefully
consider the representation relationship, as discussed in [7].

Our approach can be regarded as an example of the
general principle of models at runtime [8]: the Apam
architectural description is a model of the underlying
physical execution. As explained, this model is both an
abstract representation (sensitivity) and a prescriptive
specification (operationality) of the reality [9].

The abstract Apam application description is a model of
the valid space of application’s configurations, which
evolves by changes at both the execution and component
level. Thus, Apam model can be characterized as a
“Configuration space and variability model”, according to
the classification by Vogel et al.[10].

Apam uses architectural models as enabling technology
for runtime adaptability. As such, it can be related to many
works in dynamic architectures [11][12]. The main idea that
we borrowed is that runtime reconfiguration must be
reasoned and performed at the architectural level.

If we consider a top-down approach, based exclusively
on operationality, the application model is a prescription of
the execution, and, the Apam component meta-model can be
regarded as an Architecture Description Language. Our
meta-model combines the classical concepts of Software
Component Models [13] with the intrinsic evolution typical
of Service-Oriented Computing [14], in which the concrete
architecture is incrementally built as new services are
required or made available and bound at execution. In this
respect, our proposition can be related to other structural
service composition approaches, like SCA [15] or CALM
[16], however, these approaches do not define any runtime
reconfiguration mechanisms.

We can also think of the Apam runtime platform as a
middleware that manages the application execution. Our
approach shares then similar goals with reflective
middleware platforms [17] that propose an introspection
layer that reifies in a causal model the execution elements.

Similarly, some component models propose a reflective
runtime to allow introspection and reconfiguration [18][19].
The main difference is that these approaches make the
implicit assumption that architecture evolution is an
exogenous process, performed by external agents, like
administrators or autonomic managers. In our vision,
architecture evolution is a continuous, endogenous process,
intrinsic to the execution of each application.

Other experimental platforms have been designed
specifically for ubiquitous computing. For example, DiaSuite
[20] proposes a domain-specific component model to
describe the architecture and properties of
Sense/Compute/Control applications. The specialized model
enables static analysis and verification, beyond what is
proposed in Apam, however it doesn’t manage runtime
dynamicity.

Without surprise, it was the double synchronization
(upward and downward) that raised the most difficult
technical issues, and the trickiest bugs. Indeed, conflicting
changes on the “same” entity can happen “simultaneously”
in the model and in the platform. A large fraction of the code
is dedicated to solve (reconcile, choose, merge, prevent,
notify, etc.) these special cases. It also explains that full
causality is difficult to provide, and indeed, is not often
provided.

VIII. CONCLUSION

Best practice in software engineering emphasizes the need
to work with representations that are simple, homogeneous
and at the relevant abstraction level. For that reason, many
techniques like levels of abstraction or modeling have been
developed. In all case, there is the need to closely control the
relationship between the representation and the system
represented. Most often, this relationship is operational only:
the changes performed on the representation are propagated
to the underlying system, supposed to be passive.

516Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 538 / 679

The ever increasing interpenetration of the numeric world
and our life (smart phones, ubiquitous computing, home
automation, etc.) makes abstract representations even more
needed, but in the same time the represented system is
dynamic, autonomous and its changes are unpredictable. In
this case, both the system and its representation are active
and both are subject to unpredictable changes, possibly
simultaneous and incompatible. Therefore, the representation
must be both operational and sensitive, i.e., causal. The
realization of a causal representation is very challenging, but
at the same time, it is almost needed if reliable applications
are to be developed in such a context. The issue we have
addressed is a general approach to the development of a
causal representation.

In our work, the representation is similar to a traditional
model but metaclasses can be explicitly associated with the
kind of entities they represent. This association is extensible
in the sense that it is implemented in the form of plug-ins:
Maven plug-in at development time and Apam causality
managers at run time. The platform knows the association
and dynamically delegates the causality management to
currently plugged-in managers.

In our experimentation, the system represented is an
OSGi service platform. It is a limitation because the entities
represented are 1) only services, and 2) only those service
currently running in OSGi. We have overcome these two
limitations by making “everything” a service (proxies,
sensors, applications, etc.) and extending the OSGi platform
by an extensible provisioning layer, also made of plug-in
managers very similar to causal managers. An entity required
in the representation layer is automatically deployed in the
system (OSGi), and by causality it is created into the
representation. The different extensibility mechanisms
(causal metaclasses, causal managers, provisioning
managers) provide a fairly general framework for the
development and management of a causal representation.

The experience shows that causality can be provided
systematically and efficiently making much more feasible
the reliable development of the new kind of applications like
ubiquitous computing.

The Apam platform is available in open source, see [21].

ACKNOWLEDGMENT

Parts of this work have been supported by the European
CATRENE project AppsGate and the French ANR
“Investissements d’Avenir” project Open-The-Box.

REFERENCES

[1] OSGi Alliance, “OSGi Service Platform Core Specification
Release 4”, Aug. 2005. [Online]. Available from
http://www.osgi.org [retrieved: July, 2014]

[2] E. Damou. “ApAM : A development and execution
environment for ubiqutous applications”. PhD dissertation.
Université de Grenoble, France, Oct. 2013. [In french]
[Online]. Available from http://tel.archives-ouvertes.fr/tel-
00911462 [retrieved: July, 2014]

[3] C. Escoffier, R. S. Hall, and Ph. Lalanda, “iPOJO: an
Extensible Service-Oriented Component Framework”, in
Proceedings of the International Conference on Services
Computing, pp. 474-481, July 2007.

[4] J. Bardin, C. Escoffier, and Ph. Lalanda “Towards an
Automatic Integration of Heterogeneous Services and
Devices”, in Proceedings of the Services Computing
Conference, pp. 171-178, Dec. 2010.

[5] J. Estublier and G. Vega. “Managing Multiple Applications in
a Service Platform”, in Proceeding of the ICSE workshop on
Principles of Engineering Service-Oriented Systems, pp. 36-
42, June 2012.

[6] J. Estublier, G. Vega, and E. Damou. “Resource Management
for Pervasive Systems”, in Proceedings of the International
Conference on Service Oriented Computing, Lecture Notes in
Computer Science, vol. 7759, pp. 368-379, Nov. 2012.

[7] M. Jackson, “Aspects of abstraction in software
development”, Software & System modeling, vol. 11, no. 4,
pp. 495-511, Oct. 2012.

[8] G. Blair, N. Bencomo, and R. B. France, "Models@
run.time", IEEE Computer, vol.42, no.10, pp. 22-27, Oct.
2009.

[9] P-A. Muller, F. Fondement, B. Baudry, and B. Combemale.
“Modeling modeling modeling”, Software & System
modeling, vol. 11, no. 3, pp. 347-359, July 2012.

[10] Th. Vogel, A. Seibel, and H. Giese, “The Role of Models and
Megamodels at Runtime”, in Proceedings of the Workshop on
Models in Software Engineering, Lecture Notes in Computer
Science, vol. 6627, pp. 224-238, Oct. 2010.

[11] P. Oreizy and R. Taylor, "On the role of software
architectures in runtime system reconfiguration" Software,
IEE Proceedings, vol.145, no.5, pp.137-145, Oct. 1998.

[12] J. Magee and J. Kramer, “Dynamic structure in software
architectures”, in ACM SIGSOFT Software Engineering
Notes, vol. 21 Issue 6, pp. 3-14, Nov. 1996.

[13] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V.
Chaudron, “A Classification Framework for Software
Component Models”, IEEE Transactions on Software
Engineering, Vol 37, No. 5, pp. 593-615, Sept. 2011.

[14] J. L. Fiadeiro and A. Lopes, “A Model for Dynamic
Reconfiguration in Service-oriented Architectures”, in
Proceedings of the European Conference on Software
Architecture, Lecture Notes in Computer Science, vol. 6285,
pp. 70-85, Aug. 2010.

[15] OSOA, “Service Component Architecture Assembly Model
V1.00”, March 2007. [Online]. Available from
http://www.oasis-opencsa.org/sca-assembly [retrieved: July,
2014]

[16] G. Jung and J. Hatcliff, “A type-centric framework for
specifying heterogeneous, large-scale, component-oriented,
architectures”, Science of Computer Programming, vol. 75,
no. 7, pp. 615–637, July 2010.

[17] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The case-
for reflective middleware”, Communications of the ACM,
vol. 45, no. 6, pp. 33-38, June 2002.

[18] M. Léger, T. Ledoux, and T. Coupaye, “Reliable Dynamic
Reconfigurations in a Reflective Component Model” in
Prooceedings of the International Symposium on Component-
Based Sofware Engineering, Lecture Notes in Computer
Science, vol. 6092, pp. 74-92, June 2010.

[19] L. Seinturier, Ph. Merle, D. Fournier, N. Dolet, V. Schiavoni,
and J-B. Stefani, “Reconfigurable SCA Applications with the
FraSCAti Platform” in Prooceedings of the International
Conference on Service Computing, pp.268-275, Sept. 2009.

[20] D. Cassou, E. Balland, C. Consel, and J. Lawall. “Leveraging
Software Architectures to Guide and Verify the Development
of Sense/Compute/Control Applications”. in Proceedings of
the International Conference on Software Engineering, pp.
431-440, May 2011.

[21] Apam [Online]. http://adeleresearchgroup.github.com/ApAM
[retrieved: July, 2014].

517Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 539 / 679

Maintaining Vaadin Legacy Applications
using DSLs based on Xtext

Marcel Toussaint and Thomas Baar

Hochschule für Technik und Wirtschaft (HTW) Berlin
(University of Applied Sciences)

Treskowallee 8, 10318 Berlin, Germany
Emails: m.toussaint@web.de, thomas.baar@htw-berlin.de

Abstract—Vaadin, as a framework for the development of web
applications, enables programmers to develop web applications
purely in Java. The Vaadin framework has a clean architecture
and enjoys a vibrant community. The popularity of Vaadin is
certainly also due to numerous tutorials and small examples that
illustrate certain aspects of the framework. Vaadin applications,
once they became more complex than the appealing tutorials,
might run - as well as many other software projects - into
maintenance problems. In this paper, we report on a database ap-
plication, whose programmers followed the suggestions from the
tutorials rather strictly. Over time, it became harder and harder
to accommodate changes of the database structure since the Java
code made certain assumptions on the structure of database tables
at many different locations. The classical approach to handle such
a situation would be to refactor the entire Java code, which can
be very costly. An alternative approach is to use a domain-specific
language (DSL) to (a) capture those parts of the application that
might vary in future in form of a language, (b) to create a model
using this language that reflects the current application, and (c)
to change the model due to new requirements and to regenerate
those parts of the application that need to be adapted. The last
step (c) automates the work of a human software maintainer
who would adapt the application code manually due to new
requirements (e.g., a new database structure). In this paper, we
report on our initial experience when implementing the DSL-
based approach using the framework Xtext.

Keywords–Software design; Metamodelling; Data models; Soft-
ware maintenance; Graphical user interfaces; Database systems.

I. INTRODUCTION
Web applications became increasingly popular over the

last decade due to the multitude of different web browsers,
and the convenience for the user of utilizing a web browser
in a working environment. One of the main reasons for
their popularity is the ability to operate and to update web
applications without the need for distributing and installing
the software on every single client target platform.

A. The Open Source Web Application Framework Vaadin
Vaadin [1] is an open source web application framework

for Rich Internet Applications (RIA). Vaadin provides a server
side architecture in contrast to JavaScript libraries and browser
plugin based solutions. This means, that the majority or even
the entire internal program logic is executed on the server.
On the client side Vaadin supports Ajax and is based on
the framework Google Web Toolkit (GWT) [2]. One of the
major advantages of Vaadin is the possibility for the software
developer to write the code completely in Java. The framework

includes event driven programming and offers Java classes for
UI elements such as buttons and lists. In practice, this means
writing Vaadin applications is more similar to the development
of desktop applications than the traditional Web development
with HTML and JavaScript.

Vaadin uses a container-based concept to store and process
data objects from external sources (e.g., tables from a database
or input files). In this context, a container is a simple entity
containing a defined set of items. Each item again possesses a
defined set of properties together with their current values.

Figure 1. Vaadin’s Container Concept [1]

Figure 1 shows Vaadin’s architecture to bind UI elements
(e.g., subclasses of AbstractField) to a Property which
represents the corresponding attribute value of a data object
(e.g., an entry in a database table).

This architecture is very generic and widely applicable,
but has the shortcoming that Property objects do not have
a specific type. The information, which tables exist in the
database and what columns they have has to be stored in
the application code, together with boilerplate-code to access
the attribute values of database entries in a type-safe way.
Once the database table structure changes, specific parts of
the application code have to be changed as well.

B. Domain-Specific Languages & Xtext
Domain-specific languages are specialized computer lan-

guages matching a particular problem domain. They permit
software design solutions to be expressed using the same

518Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 540 / 679

terminology and level of abstraction as the specific problem
domain. Over the last few years there has been increased
interest in domain-specific languages due to their potential of
improving the productivity, quality and especially efficiency of
software engineering.

The open-source Xtext framework [3] provides a solid
toolkit for developing textual domain-specific languages. To
specify a language, a grammar written in Xtext’s grammar
language has to be created. Once this is done, the user can
create models in the specified language. Xtext supports this
concept even by generating grammar specific editors. In many
cases, the user wishes to generate other artifacts (e.g., source
code) from these models. Xtext provides special support for
implementing generators to produce such artifacts.

One of the key features of the Xtext framework is the
possibility of seamlessly integrating it into the Eclipse IDE in
form of a plugin. This plugin provides syntax highlighting for
the DSLs created combined with code-folding and -checking.
This toolset becomes handy in our scenario, because the
Vaadin framework is supported by a corresponding plugin in
the Eclipse IDE as well.

C. Tackling Software Maintenance with DSLs
Vaadin’s architecture for bridging the gap between UI- and

persistence-layer with the very generic classes Container,
Item and Property causes the problem, that the program-
mer has to keep certain information on the database structure
elsewhere in the Java code. Ideally this this information is kept
in a single place. In practice, however, this is often not the case
and the Java code suffers from the smell of Solution Sprawl
[4].

There are refactoring techniques to eliminate the smell
from the code, but refactoring is generally costly [4][5].
Furthermore, it is often not evident that the refactored versions
are really better with respect to performance, readability,
maintenance of the code. Note that many different quality
criteria can be applied to assess the code and some of them
might be complementary, i.e., the implementation code cannot
match all these criteria perfectly.

Once we accept that some legacy systems cannot be made
’perfect’ by refactoring due to the lack of financial and time
resources or the lack of skilled programmers we can look for
alternatives to deal with the current situation. One observation
is, that maintenance requests, e.g., to change the data structure
of the underlying database, requires a multitude of adaptations
in the application code and thus is considered to be costly.
However, these adaptations, that are traditionally done by a
programmer, could be automated, if we succeed in

(a) capturing the possible impact maintenance requests
might have on the application code (e.g., changing the
database structure also implies changing the UI) and
in

(b) generating the necessary code changes automatically.
Note that (a) is done by a suitable domain-specific language
and that (b) substitutes the work of a human programmer and
thus makes a maintenance operation for the legacy code much
less costly.

The rest of the paper is organized as follows: In Section II,
we dig into details of the legacy application we started from.
Throughout the paper, this application will serve as a running
example. In Section III, we present our approach on maintain-
ing legacy applications using Xtext DSLs. In Section V, we

outline future steps and summarize lessons learned so far.

II. A MOTIVATING EXAMPLE
At our university, a Web Application is used for man-

agement, revision and versioning of course programs. The
application has been developed with the Vaadin framework
and the developers strictly followed the recommendations
presented in several Vaadin showcase projects.

Figure 2 shows a simplified excerpt from the architecture
of this application. The database covers a multitude of entities,
which are represented by the application via specific domain
classes (e.g., the database table Users is represented by the
domain class TableUser). The corresponding application
logic and functionality is encoded in associated service classes.
Note that in the given example, only a subset of table columns
is represented by attributes of the domain class (i.e., the
column password is not represented). This is due to the fact
that some technical columns are not relevant in the context
of the applicable service object. The modalities of how and
especially the decision, which data should be presented in the
user interface, is encoded in a view class UserView.

«Application Tier»

«Business Class»
UserService

+getLogin(): String
+isAdmin(): Boolean
...

«Domain Class»
TableUser

- login : String
- isAdmin : Boolean
...

«MySQL Database»

«represents»

«Presentation Tier»

«Table»
Users

column login
column password
column isAdmin
...

«uses»

«Data Tier»

«Vaadin Application»

«View»
UserView

Figure 2. Simplified Excerpt from the Architecture

This implementation leaves us with one major disadvantage
concerning the maintainability: Java classes from each tier are
rendered deprecated artifacts as soon as the database definition
is changed or extended. This produces a large overhead during
the development process due to the fact that significant parts
of the Java code have to be kept in sync with the database
structure.

To illustrate this, consider the following example: if the
Users table in the database is to be extended by an addi-
tional attribute, the Java representation by the domain class
TableUser has to be updated accordingly to reflect such
change. To ensure that the new attribute can be used properly,
new functions to manipulate and to retrieve its value(s) must
be implemented in UserService. Furthermore, the behavior
of the corresponding UI class UserView concerning the new
attribute (i.e., whether the attribute should be displayed or be
editable in case of a list object) has to be defined manually.

519Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 541 / 679

To counter this problem, the usage of object-relational
mapping could provide a proper solution. O/R mapping allows
us to automatically convert data from the database content
to the Java objects and vice versa. By using object-relational
mapping, the concrete domain classes can be adapted automati-
cally, once the database structure has been changed. However,
since the UI classes depend on the domain classes, we still
would have to manually adapt them to conform to the altered
domain classes (and thus to the altered database structure).

III. USING DSLS TO MAINTAIN VAADIN APPLICATIONS
We started to explore an alternative approach to solve the

maintenance problems described above by using a DSL-based
infrastructure. The idea is to generate the domain classes,
which represent certain database tables, as well as the corre-
sponding UI classes by using specific code generators. These
generators have to regenerate all parts of the application, that
need to be adapted due to a maintenance request.

A. Combining multiple DSLs
As maintenance requests often concern several different

parts of the application (data, UI), we find it necessary to
spread the modeling layer across multiple, interrelated DSLs.
Figure 3 illustrates the concept of the ’integration model’.

«Meta Model»
DML

«Vaadin Application»

Domain Class

«MySQL Database»

«DML»
DataModel

Table Definition

«Meta Model»
UIML

UI Class

«UIML»
UIModel

«Xtext»

Figure 3. Overview of the Dependencies between Involved Artifacts

With the help of Xtext’s grammar language, we created the
abstract syntax (i.e., the meta model) for both a UI model
language (UIML) and a data model language (DML) for the
existing application. While the data model describes how the
data objects are composed and how they are stored, the UI
model describes the way these objects are presented to the user.
The (DML) provides a modeling language for the data objects
used in the MySQL context and their representation in the
Vaadin application. The concrete code fragments for both the
MySQL table definitions and the Java domain classes can be
automatically created by using a code generator. Analogously,
the Java classes for the UI are regenerated by code generators
based on the UIML.

B. Designing a DSL for Maintaining Implementation Code
When switching from the traditional approach of main-

taining implementation code to our DSL-based approach, one
of the biggest challenges is to design an appropriate DSL.
This DSL must take into consideration both all information a
maintaining request consists of and the current structure of the
implementation.

«Java Code (Vaadin)»

*

dataSource
0..1

*

MFeature

isMany
name

...

Container
visibleColumns : String []

Item
ValueChangeListener

Property

value

*

MEntity

name

 *

 *

1

visibleFeature *

Table

isSelectable: boolean
isImmediate: boolean

«Data Meta Model»«UI Meta Model»

MTable

Figure 4. Relationship between DSL and Implementation Code (Excerpt)

The upper part of Figure 4 depictures some content of the
meta models for our DSLs UIMLand DML. The lower part
presents relevant parts of the application code in form of a
UML class diagram. Our meta classes in the meta models
always start with a capital ’M’. An instance of MEntity
consists of many features (MFeature) and represents a
database table with its columns. The UIML consists of those
concepts that allow to specify how information is presented in
the application UI. For example, the concept MTable, which
refers to a concrete instance of MEntity, represents how
entities are displayed in the UI by the Vaadin class Table.

The lower part of Figure 4 shows the implementation
classes used for displaying database contents. Whenever the
content of a database table has to be displayed, an instance
of the Vaadin class Table is created and configured. The
configuration is done in terms of setting attributes such
as isSelectable, isImmediate, visibleColumns
or in terms of adding configuration objects, e.g., of type
ValueChangeListener or others. One observation is, that
the configurations of Table objects remain largely the same,
no matter what database entity is to be presented. In our
example, only the values for visibleColumns and the
dataSource (marked in red in Figure 4) differ among the
instances of Table. The visibleColumns is a list of
strings, containing all columnnames to be shown by the table.
The dataSource is a Container which holds a set of
instances of Item, which in turn consists of instances of
Property.

The connection between the upper and lower part of the
figure is marked by green arrows. They represent a concrete
mapping from model concepts to implementation classes. This
mapping encompasses the process of code generation. For
example, whenever our code generator processes an MTable
instance, it produces Java code by which a Table instance is
created and configured appropriately.

IV. RELATED WORK
The idea of substituting parts of an application written in

a conventional programming language such as C, C++ or Java

520Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 542 / 679

by one or multiple DSLs in order to increase productivity
and to reduce maintenance costs is not new [6]. The goal of
Language-oriented programming (LOP) [7][8] is to decompose
software systems into orthogonal parts that can be described
sufficiently detailed by using a DSL. Since the syntax of a
DSL is optimized towards a certain purpose, the hope is that
maintaining a DSL model is less demanding than maintaining
code written in a programming language.

Experience reports on applying LOP for the sake of re-
ducing maintenance costs have been published rarely. Klint
et al. report in [9] on a benchmark for the maintenance of
different DSL implementations. Some implementation (called
vanilla implementations) have been realized using conventional
programming languages (Java, JavaScript, C#) while others uti-
lized various DSL tools (ANTLR, OMeta, Microsoft Modeling
Platform). The results indicate that the usage of DSL tools is
(slightly) advantageous.

Fehrenbach et al. describe in [10] their system SugarJ
[11] and how a user can embed an external DSL in existing
programming code. As an example, they present how the
Java Pet Store application can be partly rewritten using four
DSLs, what makes the code more readable, type-safe and
maintainable. The difference to our work is that we use Xtext
instead of SugarJ and that we do not design our DSLs for
forward engineering the application from scratch. Instead, our
DSLs take the source code from existing legacy applications
heavily into account.

V. CONCLUSION AND FUTURE WORKS
This paper addressed maintaining problems of legacy appli-

cations. As an example, we have chosen a Vaadin application,
that displays database contents mainly in form of tables.
Whenever the structure of the database has changed, the
programmer has to adapt the Java classes implementing the
application’s UI accordingly. Doing this process manually is
tedious and error-prone.

We report on the experiences we made, when rewriting the
existing web application using DSLs. We focused on those
parts of the application, that need to be adapted whenever the
structure of the underlying database has changed. We make
some suggestions on how a DSL can be designed, such that this
DSL exactly covers those parts of the application, that might
be affected when adapting the application to new requirements.

In our opinion, the DSL has to be aligned to the existing
legacy code. To achieve this, we had to inspect the code and to
create corresponding UML class diagrams manually. In future,
this might be done automatically by appropriately tailored
reengineering techniques.

The main advantage of the proposed solution is that it
overcomes potential deficiencies of existing code by replicating
and regenerating the code in form of a comprehensible model
rather than having to refactor the internal structure of an
application. We have chosen the Xtext framework to define
DSLs and code generators. This decision has been made
due to Xtext’s excellent Eclipse integration including syntax
highlighting, code completion and static analysis.

REFERENCES
[1] Vaadin, “Vaadin homepage,” retrieved: October 2014. [Online].

Available: http://www.vaadin.com
[2] Google, “Gwt project homepage,” retrieved: October 2014. [Online].

Available: http://www.gwtproject.org
[3] Itemis, “Xtext homepage,” retrieved: October 2014. [Online]. Available:

http://www.eclipse.org/Xtext
[4] J. Kerievsky, Refactoring to Patterns. Addison-Wesley, 2004.
[5] H. M. Sneed, “Planning the reengineering of legacy systems,” IEEE

Software, vol. 12, no. 1, 1995, pp. 24–34.
[6] P. Hudak, “Modular domain specific languages and tools,” in Proceed-

ings of International Conference on Software Reuse (ICSR). IEEE,
1998, pp. 134–142.

[7] M. P. Ward, “Language oriented programming,” Software - Concepts
and Tools, vol. 15, 1994, pp. 147–161.

[8] M. Fowler, “Language workbenches: The killer-app for domain
specific languages?” 2005, retrieved: July 2014. [Online]. Available:
http://www.martinfowler.com/articles/languageWorkbench.html

[9] P. Klint, T. van der Storm, and J. Vinju, “On the impact of dsl tools on
the maintainability of language implementations,” in Proceedings of the
Tenth Workshop on Language Descriptions, Tools and Applications,
ser. LDTA ’10. New York, NY, USA: ACM, 2010, pp. 10:1–10:9.
[Online]. Available: http://doi.acm.org/10.1145/1868281.1868291

[10] S. Fehrenbach, S. Erdweg, and K. Ostermann, “Software evolution
to domain-specific languages,” in Proceedings of Software Language
Engineering (SLE), ser. LNCS, M. Erwig, R. F. Paige, and E. V. Wyk,
Eds., vol. 8225. Springer, 2013, pp. 96–116.

[11] S. Erdweg, “Sugarj homepage,” retrieved: July 2014. [Online].
Available: http://www.sugarj.org

521Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 543 / 679

Predicting Change Proneness using Object-Oriented Metrics and Machine Learning
Algorithms

Abdullah Al-Senayen, Abdurhman Al-Sahood
Computer Science, College of Computer Science & IT

King Faisal University
Al-Ahsa, Saudi Arabia

{aoaams, bo.dahm.99)@gmail.com

Mohammed Misbhauddin
Information Systems, College of Computer Science & IT

King Faisal University
Al-Ahsa, Saudi Arabia

mmisbhauddin@kfu.edu.sa

Abstract— Open Source Software (OSS) has become a huge
part of today’s software market and a good source for
investments. The establishment of the “National Program for
Free & Open Source Software Technology” by the top
research center (KACST) in Saudi Arabia to encourage the use
of OSS within the community is a major motivation to our
work. OSS comes with numerous challenges, one of which is
constant change. Being able to identify and measure the
change proneness in open source software will ensure saving
resources like time and effort. In this paper, we measure the
capability of classes of machine learning algorithms to predict
change proneness in OSS by using object-oriented metrics.
Four classes of machine learning algorithms were considered:
Probability-based, Function-based, Instance-based and Tree-
based. One complete version of the OSS was used as a training
set and tested on the subsequent version to predict the change.
The machine learning algorithms were compared based on
accuracy, specificity, sensitivity and root mean squared error.
We found that nearest neighbor algorithm performed better
than the other algorithms in terms of sensitivity and specificity.
In the future, we plan to test with different parameters to find
a better prediction model for software change proneness.

Keywords-open source software; object-oriented; change
proneness; maintainability; prediction.

I. INTRODUCTION
The concept of change is well-known in Software

Engineering and the series of changes made to a software
system is termed as Software Evolution [1]. The need for
evolving software comes because of incorporating new
functionality, modifying existing functionality or adapting to
new environment conditions etc. However, the impact of this
change on the whole system is based on the manner in which
the project was developed. According to Güneş Koru and
Liu [2], software development can either be closed source or
open source. On one hand, closed source projects are well
planned and executed. Hence, changes to such systems are
localized and can be dealt with in a less haphazard manner.
On the other hand, open source projects are developed in an
evolutionary manner [3] as a result of which the changes are
not restricted and scattered consistently throughout the
classes in the project.

OSS has come a long way since the start of its movement
in the 1970s. The vision of OSS has changed technology and
its market forever. It was the cause of a huge number of

breakthroughs. It gave us Google Android, Mozilla Firefox,
Linux, Apache, and many more. As OSS changed the world,
Saudi Arabia was not an exception. Although the OSS
ecosystem in Saudi Arabia is young and developing, it is
growing at a fast pace. One aspect of its growth is the huge
efforts done by King Abdul-Aziz City for Science and
Technology (KACST) actively working to promote the use
of OSS in Saudi Arabia. It is running a number of
international workshops on the uses of OSS and they are
helping in developing standards, awarding innovations, and
support academic research on the subject [4].

As OSS development grows in the kingdom and all
around the world, we need to consider the characteristics of a
good OSS [5]. Extensive research has been conducted over
the years to study the relationship between software metrics
and various software quality attributes like fault proneness
and maintainability [2], [6]-[20]. Around 40-70% of entire
cost of a software project is spent on maintenance [17]. The
probability that part of software might change is usually
referred to as change-proneness. Determining change-prone
classes helps in software maintenance, ensuring corrective
actions are initiated beforehand. Identifying these classes and
the factors that cause these changes is major issue faced
during software development. The factors that cause these
changes as characterized by Arisholm and Briand [21] as:

1. Structural characteristics of classes (e.g., their

coupling).
2. Coding quality of classes.
3. Factors that are captured by the defect history of

the classes in the previous release.
4. Change Management team skill and expertise.

In order to identify the causes of change-proneness, we

need to identify a rich set of metrics that cover the above-
mentioned factors, and hence, help in identifying the exact
factors that influence change. In this paper, we are going to
look into measures that link the structural characteristics of
the classes with their change proneness capability during
development. In order to obtain empirical evidence, we
analyzed a set of structural metrics and change data that
belonged to an open-source project, Heretrix [22]. The
change data was extracted comparing classes between
consecutive releases of the object-oriented project and the
object-oriented metrics from these releases. Metrics were

522Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 544 / 679

collected using tools such as ckjm (Chidamber and Kemerer
Java Metrics Suite) [23], Dependency Finder [24] and the
metric 1.3.6 plug-in in Eclipse [25]. Structural properties of
classes, as measured by these metrics, are then associated
with change-proneness. In this paper, we are going to treat
the aspect of predicting change proneness. Our aim is to
measure the capability of certain machine learning
algorithms, to predict change proneness in open source
software using object-oriented metrics. By being able to
predict these classes, we will ensure saving resources like
time, money and effort.

The rest of this paper is organized as follows. Section 2

comprises of a detailed literature survey of the various
studies done in the past that relate structural properties of
classes to their problem source such as change and defect
proneness. Section 3 provides the pre-requisite used for the
experiment including information on the open source project
and the various object-oriented metrics and machine learning
algorithms used. The Experimental Setup, Hypotheses and
Results are provided in Section 4 and 5, respectively. Results
from the experiment are then analyzed with respect to the
stated hypotheses in Section 6. Threats that may have
affected the validity of the results are highlighted in Section
7. Section 8 concludes the paper and emphasizes on scope
for future work based on our findings.

II. RELATED WORK
Gyimothy et al. [6] used open-source software and

object-oriented metrics to predict software faults comparing
linear and logistic regression models against machine
learning algorithms such as decision trees and neural
networks. Van koten and Gray [7] used Bayesian Networks
as the model to predict maintainability, which is quantified in
their approach as the number of lines of changed during a 3-
year period. They concluded that by using Bayesian
Networks, the model could predict maintainability more
accurately than regression-based models. Koru and Liu [2]
constructed a tree-based model to predict change-proneness
in two large open source projects. They suggested that
practitioners should start collecting static metrics and change
data to aid their maintenance effort. Zhou and Leung [8]
used Multivariate Adaptive Regression Spline (MARS) to
predict maintainability.

Eski and Buzluca [9] also used OO metrics to predict
change-proneness and its effect on testing effort. Unlike our
approach, they used data values from a single version of the
software and concluded that change-proneness can be
estimated correctly by selecting some optimal set of metrics.
Khomh et al. [10] and Romano et al. [11] also proposed a
change and fault prediction model but with assessing the
impact of anti-patterns rather than OO metrics. Anti-patterns
are code patterns with poor design choices.

Lu et al. [12] used statistical meta-analysis techniques to
investigate the relationships between OO metrics and
change-proneness. Elish and Khiaty [13] also used metrics to
predict change-prone classes. In their work, multiple
multivariate logistic regression models were built using
different sets of dependent and independent variables. They

concluded that prediction of change proneness is accurate
when product metrics are combined with evolutionary
metrics.

Peer and Malhotra [14] used Adaptive Neuro-fuzzy
Inference System (ANFIS) to predict change-proneness and
compared it against other approaches such as Bagging,
Random Forest and Logistic Regression. Malviya and Yadav
[15] used k-means clustering and used Chi-Test to decide the
cluster with goodness of fit among other clusters.

Research works that compared other machine learning
algorithms for their prediction capability like our work
recently gained a lot of momentum. Zhu et al. [16] also used
OO metrics to predict change-proneness using multiple
classification algorithms such as Naive Bayes, C4.5, k -NN,
SVM, and an associative classification method. Malhotra and
Khanna [17] investigated the effectiveness of logistic
regression models against other machine learning algorithms
such as Bagging, Random Forest and Multi-layer Perceptron.

Sun et al. [18] go a step forward by assessing a change
proposal and the ripple effects caused by it. They used
formal concept analysis to assess this effect of change and
then proposed a new metric to indicate systems ability to
absorb the change. Similarly, Giger et al. [19] went ahead in
predicting the type of code change rather than just locating
the change-prone parts of a system. While most researchers
used software code for change-prediction, Han et al. [20]
used design models and defined measures to predict
changeability at an earlier stage of software development.

It can be seen from literature that the use of object-
oriented metrics to predict change-proneness in open source
software is a very active area of research. In this paper, we
plan to measure the capability of certain machine learning
algorithms, to predict change proneness in open source
software using object-oriented metrics. Nevertheless, our
research work is different from others in many dimensions:

1. We used a complete version as the training set and

then used it over the subsequent version as the
testing set to predict the accuracy of the considered
algorithms whereas others simply use a single
version to build the prediction model [13]-[17].

2. We used classes of machine learning algorithms
rather than using a random set of algorithms for
comparison.

3. We used baseline prediction models (ZeroR and
OneR) to benchmark the evaluation criteria when
comparing multiple algorithms.

III. EXPERIMENT SETUP

A. Experiment Subject - Heretrix
We are focusing our research efforts on one particular

open-source project, the Heritrix Project [22]. Heritrix is an
open-source WebCrawler project started by the Internet
Archive in 2003. The software is open source to encourage
collaboration and joint development across institutions with
similar needs. The Heritrix project almost matches the
description of open-source projects: it includes a complete

523Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 545 / 679

history of code base, public mailing lists for open discussion,
a web site with documentation, and provides release notes
for bug tracking. Table 1 provides information regarding the
number of releases of the project, the total number of classes
and the percentage of classes that changed when compared to
its consecutive release. We limited the releases considered in
this work until version 2.

TABLE I. CHANGE DISTRIBUTION IN THE RELEASES OF HERITRIX

Version Number Total No. of Classes %
changed

0.2.0 120 60.83%
0.4.0 164 58.54%

0.6.0 201 35.82%
0.8.0 223 60.54%

0.10.0 246 30.49%
1.0.0 263 45.25%
1.2.0 301 56.81%

1.4.0 369 59.62%
1.6.0 411 17.52%

1.8.0 417 29.50%

B. Object-Oriented Metrics
In this subsection, we present the seventeen metrics that

we used to construct the prediction model. Chidamber and
Kemerer [26] proposed six of these metrics. We also
included some well-known size metrics and number of
dependency metrics available from [2]. The definitions of
these metrics are shown in Table 2, Table 3, Table 4, Table 5
and Table 6.

TABLE II. SIZE METRICS

Metrics Description
SLOC Source lines of code – nonempty and non-comment
NOA Number of attributes for a class
NOM Number of methods for a class
NPM Number of public methods for a class

WMC Weighted methods per class - sum of the complexities
of class’s methods.

TABLE III. COHESION METRICS

Metrics Description

LCOM
Lack of Cohesion in Methods. It counts the sets of
methods in a class that are not related through the
sharing of some of the class’s fields

TABLE IV. INHERITANCE METRICS

Metrics Description

DIT Depth of Inheritance – inheritance level from the object
hierarchy top

NOC Number of children – number of immediate descendants
of a class

TABLE V. COUPLING METRICS

Metrics Description

CBO
Coupling between Object Classes – number of classes
coupled to a class – can occur through inheritance,
function call, return and exceptions.

RFC
Response for a Class - number of different methods that
can be executed when an object of that class receives a
message

CA Afferent Coupling - how many other classes use the
specific class

TABLE VI. DEPENDENCY METRICS

Metrics Description

IIP
Inbound Intra-Package Dependencies - number of
classes within the same package that depend on this
class

IEP Inbound Extra-Package Dependencies - number of
classes in other packages that depend on this class

OIP
Outbound Intra-Package Dependencies Afferent
Coupling - number of classes of the same package that
this class depends on

OEP Outbound Extra-Package Dependencies - number of
classes of other packages that this class depends on

IIPM
Inbound Intra-Package Method Dependencies - number
of methods and fields in other classes of the same
package that depend on this class

IEPM Inbound Extra-Package Method Dependencies - number
of methods in other packages that depend on this class

C. Machine Learning Algorithms
In this subsection, we present the six machine learning

algorithms that we used to determine the change proneness
in the open source software. Of the machine learning
algorithms, we used two of them to establish baseline
accuracy: ZeroR and OneR algorithms. We selected one
machine learning algorithms from four different classes such
as Probability-based, Function-based, Instance-based, and
Tree-based algorithms.

Baseline Algorithms

• ZeroR algorithm [28] is a simple algorithm useful
for getting base line performance, in our case
accuracy. It ignores all predictors and relies on the
target. We used this algorithm to establish baseline
accuracy.

• OneR [28] creates a rule for each predictor in the
data. It then selects the rule with the smallest total
error as its one single rule. It constructs a frequency
table for each predictor against the target to create a
rule for a predictor. We used this algorithm to
establish baseline accuracy.

NaiveBayes (Probability-based ML Algorithm)

NaiveBayes algorithm [29] is a probability-based
algorithm. It requires only small amount of training set to
estimate the variables necessary for explanation. It assumes
that the presence or absence of a certain feature is unrelated
to the presence or absence of other features. It should be
stated that NaiveBayes is based on Bayes theorem.

524Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 546 / 679

Multilayer perceptron (Function-based ML Algorithm)
Multilayer perceptron [30] is a function-based algorithm.

It maps input data sets into appropriate output data set. It is
made up of multiple layer nodes in a directed graph that are
fully connected to each other. The network allows signals to
travel from the input to the output setting the weights as they
propagate through. These weights are tuned for each iteration
reducing the overall error for the training set.

Nearest Neighbor (Instance-based ML Algorithm)

Nearest Neighbor (Ibk) [31] is an Instance-based
algorithm also known as lazy learning algorithm. It does not
do any actual training or learning at first. It populate a
sample of the search space with instances whose class is
known. When an instance whose class is unknown is
presented for evaluation, the algorithm computes its k closest
neighbors, and the class is assigned by voting among those
neighbors. To prevent ties we use an odd number of k.

J48 (Tree-based ML Algorithm)

J48 is a tree-based algorithm [32] is a class of algorithm
that generates a pruned or unpruned C4.5 decision tree and
using a divide and conquers strategy to growing the decision
tree for each instance. A new unseen instance then traverses
the tree until a proper classification is reached.

IV. EXPERIMENT DESIGN
This section describes the design of the experiment. In

here, we define the goal of the experiment, the dependent
variables and the independent variable and how they were
calculated and the tools used in the experiment. This section
also gives the procedure of how the experiment was carried
out.

A. Goal of the Experiment
• Object of Study: Identify and Characterize change-

prone classes
• Purpose: Investigate the correlation between change

proneness of a class and the set of structural metrics
used in this experiment

• Perspective: From the viewpoint of the researcher
and practitioner

• Context: The experiment is conducted with open-
source projects and certain measurement tools that
are used to calculate the metrics

B. Experimental Variables
The dependent variables in this study are a Boolean

variable (Changed) that indicates whether a class changed
from one version to another. Any change made to a class
during the evolution of a new version from a previous
version reflects the change-proneness of that class.

The independent variables are the metrics used to
measure the structural properties of the classes. These
metrics are presented in section 3-B of this paper.

C. Experiment Hypotheses
Our major objective is to test whether we can predict

future changes to a class based on a set of structural metrics.
We want to demonstrate that the machine learning
algorithms were able to predict change-proneness when
compared to baseline algorithms.

We tested the following hypotheses on the case study:
H1: Probability-based algorithms perform better, in

terms of Accuracy, Specificity. Sensitivity and Error, than
baseline algorithms.

H2: Function-based algorithms perform better, in terms
of Accuracy, Specificity. Sensitivity and Error, than baseline
algorithms.

H3: Instance-based algorithms perform better, in terms
of Accuracy, Specificity. Sensitivity and Error, than baseline
algorithms.

H4: Tree-based algorithms perform better, in terms of
Accuracy, Specificity. Sensitivity and Error, than baseline
algorithms.

We tested the above-mentioned hypotheses by analyzing
the relationship between structural metrics of a class from an
early version of the system and whether any change occurred
to the class during the transition from the early version to a
later version.

D. Tools
In order to collect the change data from the system, we

used the Beyond Compare 2 [27] tool as a code comparison
tool. This tool provided us with information as to whether
the code changed from one version to another. Apart from
this, we used three measurement tools to obtain the OO
metrics. These tools are ckjm [23], Dependency Finder [24]
and the metrics 1.3.6 plug-in available for Eclipse IDE [25].

We then used Weka [33] for application of the different
machine learning algorithms. Weka is Java-based tool and
runs on any platform. The algorithms can either be applied
directly to a dataset or called from your own Java code. We
applied the stated algorithms in Section 3-C on the Heritrix
[22] project metric data collected as the test subject.

E. Experiment Procedure
In our study, we used an OSS to get the classes and run

different algorithms through them to get the number of
changes in the code compared to different versions of the
same class. We uploaded each version of the metrics from
Heritrix to Weka and performed different types of algorithms
with default settings for each algorithm provided by the tool.
We took the number of changes most of the classes were
affected with. The steps performed are as follows:

1. Step1: All the classes in version n are compared
with the corresponding classes in version n+1 to
detect changes. This detection is done using a class
comparison tool. Based on this information, we
populate the Class-change matrix with YES’s and
NO’s depending on whether the class changed from
the previous release or not.

2. Step 2: All the classes in a version for all the
versions are used as an input to a metric calculation
tool to calculate all the metrics used as independent

525Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 547 / 679

variable in the project. The results from this are
then used to populate the Class-metric matrix with
appropriate values.

3. Step 3: The input and output is then imported in the
data-mining tool Weka for application of the chosen
machine learning algorithms. A complete version is
used as a training set and the subsequent version as
the testing set. This process is repeated for all the
versions.

4. Step 4: The results of the algorithms in terms of
accuracy, root-mean squared errors, sensitivity, and
specificity are recorded and compared as shown in
the next section.

V. RESULTS
In this work, we collected four result values and used

them for comparing the various machine learning algorithms.

A. Accuracy
Accuracy is the percentage of how accurate the algorithm

is in predicting the change-proneness of a class based on the
OO metrics input. The accuracy of all the selected algorithms
across all versions and their average accuracy is shown in
Table 7.

TABLE VII. ACCURACY OF THE MACHINE LEARNING APPROACHES

 a. Values are percentages

B. Specificity
Specificity is the percentage of the values that were

originally “No” and also predicted as “No” as obtained from
the confusion matrix. After applying the algorithms, the
result was that the baseline specificity has a fair specificity
better than the other algorithms specificity. ZeroR algorithm
was the best giving perfect specificity for five times, as
shown in Table 8.

TABLE VIII. SPECIFICITY OF THE MACHINE LEARNING APPROACHES

 a. Values are percentages

C. Sensitivity
Sensitivity is the percentage of values, which were “yes”

and also predicted as “yes” as obtained from the confusion
matrix. After applying the algorithms, the result was that the
baseline sensitivity has a fair sensitivity better than the other
algorithms sensitivity. ZeroR algorithm was the best giving
perfect sensitivity for five times. Table 9 shows the
sensitivity result of all the algorithms on the given versions.

TABLE IX. SENSITIVITY OF THE MACHINE LEARNING APPROACHES

a. Values are percentages

D. Root Mean Squared Error (RMSE)
RMSE is the difference between values predicted by a

model and the values actually observed. After applying the
algorithms, the result was that the Multilayer Perceptron

 ACCURACY

 ZeroR OneR Naïve
Bayes MLP IBk j48

v0.2-
v0.4 58.5 69.5 80.0 71.3 64.6 71.3

v0.4-
v0.6 35.8 60.7 69.7 72.6 67.2 67.2

v0.6-
v0.8 39.5 62.3 57.4 59.2 62.3 62.0

v0.8-
v0.10 30.5 57.0 74.0 63.0 61.0 57.3

v0.10-
v1.0 54.8 63.5 64.3 66.9 70.3 68.4

v1.0-
v1.2 43.2 62.1 57.8 58.5 61.8 66.1

v1.2-
v1.4 59.6 62.0 53.1 62.0 61.8 62.6

v1.4-
v1.6 17.5 52.6 77.6 59.1 55.5 57.9

v1.6-
v1.8 70.5 74.0 75.5 74.6 76.0 75.3

45.5 62.6 67.7 65.2 64.5 65.3

 SPECIFICITY

 ZeroR OneR Naïve
Bayes MLP IBk j48

v0.2-
v0.4 100 54.4 33.8 44.1 39.7 33.8

v0.4-
v0.6 100 44.2 18.6 24.8 43.4 39.5

v0.6-
v0.8 0 13.6 4.5 14.8 9.1 14.8

v0.8-
v0.10 100 56.1 17.5 44.4 45.6 50.9

v0.10-
v1.0 0 11.8 7.6 7.6 11.8 9.7

v1.0-
v1.2 0 16.9 10.0 10.8 24.6 20.0

v1.2-
v1.4 100 47.0 13.4 37.6 36.2 38.9

v1.4-
v1.6 100 54.9 15.6 43.4 49.6 45.7

v1.6-
v1.8 0 2.0 5.1 1.7 7.5 3.1

55.6 33.4 14.0 25.5 29.7 28.5

 SENSITIVITY

 ZeroR OneR Naïve
Bayes MLP IBk j48

v0.2-
v0.4 100 86.5 89.6 82.3 67.7 75.0

v0.4-
v0.6 100 69.4 48.6 68.1 86.1 79.2

v0.6-
v0.8 0 46.7 32.6 42.2 43.7 46.7

v0.8-
v0.10 100 86.7 54.7 80.0 76.0 76.0

v0.10-
v1.0 0 33.6 30.3 36.1 48.7 42.0

v1.0-
v1.2 0 46.2 33.3 35.1 51.5 55.6

v1.2-
v1.4 100 68.2 30.5 61.8 60.5 63.6

v1.4-
v1.6 100 87.5 45.8 70.8 79.2 75.0

v1.6-
v1.8 0 16.3 29.3 17.9 36.6 23.6

55.6 60.1 43.8 54.93 61.1 59.6

526Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 548 / 679

algorithm had the lowest RMSE. Table 10 shows the RMSE
result of all the algorithms on the given versions.

TABLE X. RMSE OF THE MACHINE LEARNING APPROACHES

VI. DISCUSSION
 In this section, we will discuss our four comparison

criteria used. First, we have accuracy. After applying the
algorithms, the result was that all of the machines learning
algorithms have a fair accuracy better than the baseline
accuracy. Naive Bayes and Nearest Neighbor are better
considering both have given the comparatively better results
than the most and Naïve Bayes gave the highest percentage
with 68% as shown in Table 7. Then, there is specificity.
After applying the algorithms, the result was that the baseline
specificity has a fair specificity better than the other
algorithm’s specificity. ZeroR algorithm was the best giving
perfect specificity for five times as shown in Table 8. Next is
Sensitivity. After applying the algorithms, the result was that
the nearest neighbor algorithm was the only one with a better
average sensitivity percentage compared to the baseline
algorithm as shown in Table 9. Finally, we have RMSE.
After applying the algorithms, the result was that the
Multilayer Perceptron algorithm had the lowest RMSE,
which was better than the baseline algorithm as shown in
Table 10. Based on this analysis, we reject all the hypotheses
H1, H2, H3 and H4 as no class of machine learning
algorithm performs better than the baseline algorithms in
terms of all considered comparison factors: accuracy,
sensitivity, specificity and error.

VII. THREATS TO VALIDITY
This section discusses the threats to validity in this study

and the way they were treated throughout the experiment.

A. Construct Validity
Construct Validity is the degree to which the independent

variables and dependent variables accurately measure the
concepts they purport to measure. The dependent variables
we used in our study were change, which is a Boolean

variable as to whether the class changed or not. As the way
they are computed is straightforward, we consider them
constructively valid. If any, the way the size was calculated
can pose a slight threat if there is a better way for it.

B. External Validity
External Validity is the degree to which the results of the

research can be generalized to the population under study
and other research settings. A crucial threat lies with the size
of the case study considered. Only a single project releases
are considered in this study with 10 releases. This may affect
the generalization of the identified conclusions. On the same
lines, another valid threat that cannot be excluded until
extensive empirical results are collected is that the case study
will reflect the characteristics from a specific domain. In
addition, the data collected from the open source project was
by analyzing the code. Poor documentation can affect the
results of the analysis significantly.

C. Internal Validity
Internal Validity is the degree to which conclusions can

be drawn about the casual effect of independent variables on
the dependent variables. Apart from the variables considered,
our approach might have omitted other important variables
that can serve as predictors. In addition, the size of the open
source project can be considered as a potential threat as our
project was not very big, but significantly large.

VIII. CONCLUSION AND FUTUREWORK
This paper reported findings of an empirical study

conducted to investigate the measures that affect the change-
proneness of classes in an open source project. The goal was
to use a case study from the open source community in order
to explore the relationship between the structural
characteristics of the project and the change proneness of
classes within that project from one version to the other. The
study concluded a lot of interesting results that conform to
previous studies, such as size-related metrics and coupling
metrics are correlated with change proneness. In conclusion
to the experiment, we believe that using machine learning
algorithms to predict change proneness in open source
software using object-oriented metrics is an excellent field
for research and needs to be further investigated. In many
cases, we were able to identify that the baseline accuracy
performed better than the machine learning algorithms
considered. This result calls for more research for better
algorithms that can be used for prediction of change-
proneness.

It should be noted that we used the default setting of
Weka for all the machine-learning algorithms used.
Moreover, as a future step, we plan to change the settings of
certain parameters in these algorithms to find a better
prediction model for software change proneness. In addition,
we plan to make use of correlation and principal component
analysis to select only those metrics that seem to affect the
change-proneness. In addition, the study provided some
useful information regarding dependency relationships and
their association. Based on our findings, we suggest

 ROOT MEAN SQUARED ERROR

 ZeroR OneR Naïve
Bayes MLP IBk j48

v0.2-
v0.4 0.49 0.55 0.45 0.47 0.59 0.51

v0.4-
v0.6 0.53 0.63 0.54 0.48 0.57 0.55

v0.6-
v0.8 0.55 0.61 0.65 0.59 0.61 0.59

v0.8-
v0.10 0.55 0.66 0.50 0.56 0.62 0.61

v0.10-
v1.0 0.52 0.60 0.58 0.48 0.54 0.54

v1.0-
v1.2 0.51 0.62 0.64 0.51 0.61 0.53

v1.2-
v1.4 0.49 0.62 0.68 0.48 0.62 0.53

v1.4-
v1.6 0.57 0.69 0.46 0.55 0.66 0.61

v1.6-
v1.8 0.47 0.51 0.49 0.44 0.49 0.46

0.52 0.61 0.55 0.51 0.59 0.55

527Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 549 / 679

practitioners dealing with open source projects to collect
static metrics and change data as part of their development
effort. This data can be used to prioritize preventive action
on the classes that are still under development.

ACKNOWLEDGMENT
The authors acknowledge the support of King Faisal

University in the development of this work.

REFERENCES
[1] M. M. Lehman and L. A. Belady, Program evolution: processes of

software change. CA: Academic Press Professional, Inc., 1985.
[2] A. Güneş Koru and H. Liu, "Identifying and characterizing change-

prone classes in two large-scale open-source products," Journal of
Systems and Software, vol. 80, Jan. 2007, pp. 63-73, doi:
10.1016/j.jss.2006.05.017.

[3] E. S. Raymond, The Cathedral & the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. CA: O'Reilly Media,
Inc., 2001.

[4] King Abdulaziz City for Science and Technology, National Program
for Free & Open Source Software Technology. Available:
http://www.motah.org.sa. Retrieved: August, 2014.

[5] C. Årdal, A. Alstadsæter, and J.-A. Røttingen, "Common
characteristics of open source software development and applicability
for drug discovery: a systematic review," Health Research Policy and
Systems, vol. 9, Sept. 2011, pp. 1-16, doi:10.1186/1478-4505-9-36.

[6] T. Gyimothy, R. Ferenc, and I. Siket, "Empirical Validation of
Object-Oriented Metrics on Open Source Software for Fault
Prediction," IEEE Trans. Softw. Eng., vol. 31, Oct. 2005, pp. 897-
910, doi: 10.1109/tse.2005.112.

[7] C. van Koten and A. R. Gray, "An application of Bayesian
network for predicting object-oriented software
maintainability," Inf. Softw. Technol., vol. 48, Jan. 2006, pp.
59-67, doi: 10.1016/j.infsof.2005.03.002.

[8] Y. Zhou and H. Leung, "Predicting object-oriented software
maintainability using multivariate adaptive regression splines,"
Journal of Systems and Software, vol. 80, Aug. 2007, pp. 1349-1361,
doi: 10.1016/j.jss.2006.10.049.

[9] S. Eski and F. Buzluca, "An Empirical Study on Object-Oriented
Metrics and Software Evolution in Order to Reduce Testing Costs by
Predicting Change-Prone Classes," Proc. IEEE Fourth International
Conference on Software Testing, Verification and Validation
Workshops (ICSTW 11), IEEE, Mar 2011, pp. 566 – 571, doi:
10.1109/icstw.2011.43.

[10] F. Khomh, M. Penta, Y.-G. Guéhéneuc, and G. Antoniol, "An
exploratory study of the impact of antipatterns on class change- and
fault-proneness," Empirical Software Engineering, vol. 17, June 2012,
pp. 243-275,doi: 10.1007/s10664-011-9171-y.

[11] D. Romano, P. Raila, M. Pinzger, and F. Khomh, "Analyzing
the Impact of Antipatterns on Change-Proneness Using Fine-
Grained Source Code Changes," Proc.19th Working
Conference on Reverse Engineering (WCRE 12), IEEE
Computer Society,Oct. 2012, pp. 437-446, doi:
10.1109/WCRE.2012.53.

[12] H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen, "The ability of object-
oriented metrics to predict change-proneness: a meta-analysis,"
Empirical Software Engineering, vol. 17, June 2012, pp. 200-242,doi:
10.1007/s10664-011-9170-z.

[13] M. O. Elish and M. Al-Rahman Al-Khiaty, "A suite of metrics for
quantifying historical changes to predict future change-prone classes
in object-oriented software," J. Softw. Evol. and Proc., vol. 25, May
2013, pp. 407-437,doi: 0.1002/smr.1549.

[14] A. Peer and R. Malhotra, "Application of adaptive neuro-fuzzy
inference system for predicting software change proneness," Proc.
Advances in Computing, Communications and Informatics (ICACCI

13), IEEE, Aug. 2013, pp. 2026-2031, doi:
10.1109/ICACCI.2013.6637493.

[15] A. K. Malviya and V. K. Yadav, "Maintenance activities in object
oriented software systems using K-means clustering technique: A
review," Proc. CSI Sixth International Conference on Software
Engineering (CONSEG 12), IEEE, Sept. 2012, pp. 1-5, doi:
10.1109/CONSEG.2012.6349490.

[16] X. Zhu, Q. Song, and Z. Sun, "Automated Identification of Change-
Prone Classes in Open Source Software Projects," Journal of
Software, vol. 8, Feb. 2013, pp. 361-366, doi: 10.4304/jsw.8.2.361-
366.

[17] R. Malhotra and M. Khanna, "Investigation of relationship between
object-oriented metrics and change proneness," International Journal
of Machine Learning and Cybernetics, vol. 4, Aug. 2013, pp. 273-
286, doi: 10.1007/s13042-012-0095-7.

[18] X. Sun, B. Li, and Q. Zhang, "A Change Proposal Driven
Approach for Changeability Assessment Using FCA-Based
Impact Analysis," Proc. IEEE 36th Annual Computer Software
and Applications Conference (COMPSAC 12), IEEE, Jul.
2012, pp. 328 – 333, doi: 10.1109/COMPSAC.2012.44.

[19] E. Giger, M. Pinzger, and H. C. Gall, "Can we predict types of code
changes? An empirical analysis," Proc. 9th IEEE Working
Conference on Mining Software Repositories (MSR 12), IEEE, Jun.
2012, pp. 217-226, doi: 10.1109/MSR.2012.6224284.

[20] A.-R. Han, S.-U. Jeon, D.-H. Bae, and J.-E. Hong, "Measuring
behavioral dependency for improving change-proneness prediction in
UML-based design models," Journal of Systems and Software, vol.
83, Feb. 2010, pp. 222-234, doi: 10.1016/j.jss.2009.09.038.

[21] E. Arisholm and L. C. Briand, "Predicting fault-prone components in
a java legacy system," Proc. ACM/IEEE International Symposium on
Empirical Software Engineering (ISESE 06), ACM, 2006, pp. 8-17,
doi: 10.1145/1159733.1159738.

[22] P. Jack. Heritrix. Available:
https://webarchive.jira.com/wiki/display/Heritrix/Heritrix, Retrieved:
Sept. 2014.

[23] D. D. Spinellis. (2008). ckjm — Chidamber and Kemerer Java
Metrics. Available: http://www.spinellis.gr/sw/ckjm/, Retrieved: Sept.
2014.

[24] J. Tessier. Dependency Finder. Available:
http://depfind.sourceforge.net/, Retrieved: Sept. 2014.

[25] F. Sauer, Metrics 1.3.6. Available: http://metrics.sourceforge.net/,
Retrieved: Sept. 2014.

[26] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Trans. Softw. Eng., vol. 20, Jun. 1994, pp.
476-493, doi: 10.1109/32.295895.

[27] Scooter Software. Beyond Compare 2. Available:
http://www.scootersoftware.com/, Retrieved: Sept. 2014.

[28] I. H. Witten, E. Frank, M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, MA: Morgan Kauffman Publishers,
2011.

[29] D. Heckerman, D. Geiger, D. M. Chickering, "Learning Bayesian
networks: The combination of knowledge and statistical data,"
Machine Learning, vol. 20(3), Sept. 1995, pp. 197–243, doi:
10.1007/BF00994016.

[30] C. M. Bishop, Neural networks for pattern recognition, New York:
Oxford University Press, 1995.

[31] D. Aha, "Tolerating noisy, irrelevant, and novel attributes in instance-
based learning algorithms," International Journal of Man-Machine
Studies, vol. 36(2), Feb. 1992, pp. 267–287, doi: 10.1016/0020-
7373(92)90018-G.

[32] J. Quinlan, C4.5: Programs for Machine Learning. CA: Morgan
Kaufmann, 1993.

[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, "The WEKA Data Mining Software: An Update," SIGKDD
Explorations, vol. 11, Jun. 2009, pp. 10-18, doi:
0.1145/1656274.1656278.

528Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 550 / 679

Towards an Efficient Traceability in Agile Software Product Lines

Zineb Mcharfi, Bouchra El Asri, Ikram Dehmouch

IMS Team, SIME Laboratory

ENSIAS, Mohammed V Rabat University

Rabat, Morocco

{zineb.mcharfi@gmail.com, elasri@ensias.ma, ikram.dehmouch@gmail.com}

Abstract—In a volatile market, where it is difficult to

predict future needs, classical Software Product Lines

show limitations and become pricey. Therefore,

researchers managed to add supplements in order to

reach flexibility, and this led to the Agile Product Line

Engineering concept. However, this concept has not

gained yet sufficient maturity, and works are still

necessary to establish the best practices for putting Agile

Product Line Engineering into practice, especially when

it comes to their traceability. In this paper, we discuss

the correlation between agility and traceability

dimensions through the state of the art of traceability in

Agile Software Product Lines, and present our solution

based on markers and break-even point in order to

establish a traceability methodology in Agile Software

Product Lines.

Keywords-Software Product Lines; Agile Software Product

Lines; traceability; efficient traceability.

I. INTRODUCTION

Considering market growth and competitiveness,
companies try to achieve mass customization with lower
costs, reduce time to market, and insure product quality
while getting customer’s satisfaction. From a software
engineering point of view, Software Product Lines (SPL) is
a promising concept that helps dealing with those challenges
[1][2].

However, in some business environments, SPL may not
be enough reactive compared to market growth. In fact,
designing a SPL requires deploying important efforts and
time in order to speculate on future products and
functionalities that may be needed. Also, the Return On
Investment (ROI) of those efforts might be very small in a
volatile market [3]. Those constraints pushed developers and
researchers to look for improving SPL in order to gain
flexibility, which led to the concept of Agile Product Line
Engineering (APLE) [4]–[6].

Many researchers worked on the feasibility of combining
SPL and Agile Software Development (ASD) [3]–[6], as
both of them share the same objectives of increasing
productivity and software quality while optimizing

production time, even if they present differences in the
concept and practices [4]. Traceability might be considered
as one of the challenging points in combining SPL and
agility; the former, because of its complexity and need to
manage variability, requires traceability documentation to
assure consistency of the links between artifacts and
facilitate changes implementation [2], while the latter
advocates less use of documents [7].

In the present paper, we will illustrate, throughout a state
of the art, how the existing works manage traceability in
their Agile Software Product Lines (ASPL), depending on
the agile method used. We will also present our contribution,
a methodology based on the concepts of “markers” and
“break-even point” for an efficient traceability in ASPL.

The remainder of this paper is structured as follow: in
Sections II, we describe the concepts of SPL, ASD and
ASPL. Section III presents the traceability in SPL and a state
of the art of traceability in ASPL. We discuss our
contribution in Section IV and illustrate it in a case study in
Section V, before concluding in Section VI.

II. BACKGROUND AND MOTIVATIONS

In this section, we will first briefly introduce SPL and
ASD in order to present later the ASPL, a concept based on
the combination of the two previous ones.

A. Software Product Lines

As defined by Northrop [1], a SPL is “a set of software-
intensive systems that share a common, managed feature set
satisfying a particular market segment’s specific needs or
mission and that are developed from a common set of core
assets in a prescribed way”. It is used in the organizations
that produce numerous products answering specific needs,
but having many components in common. Those common
components (e.g., architecture, requirements, test plans,
schedules, budgets and processes description) are called
“core assets”. Adopting a SPL approach allows to produce
new systems by reusing the existing ones, in an organized
manner.

Accordingly, SPL is a combination of three major
interacting elements, called the SPL essential activities
[1][8]: (1) core asset development or Domain Engineering
(DE), (2) product development or Activities Engineering
(AE) and (3) technical and organizational management that
orchestrates those two activities.

529Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 551 / 679

SPL is by far considered as an up-front, proactive (in
opposite to reactive) reuse demarche [9]: it is based on a
production plan, involves both technical and organizational
management, is a direct consequence of the organization
strategy, and it is used to reach predictable results.

B. Agile Software Development

ASD is a concept based on the Agile Manifesto [7]. As
for SPL, ASD seeks to satisfy customer needs rapidly, while
insuring a good software quality, yet unlike SPL, the ASD
concept is based on simplicity, iterations, and reducing up-
front design [5].

ASD values, described in the Agile Manifesto, are
“individuals and interactions over processes and tools,
working software over comprehensive documentation,
customer collaboration over contract negotiation and
responding to change over following a plan” [7].

The Agile Manifesto defines also twelve principles for
ASD [7]. Hereinafter some: (1) customer satisfaction by
rapid delivery of useful software, (2) welcome changing
requirements, even late in development and (3) regular
adaptation to changing circumstances.

Thus, ASD shows values where SPL shows weaknesses,
especially when it comes to flexibility and adaptation to
changing requirements and circumstances.

Accordingly, some complementarity can be found
between SPL and ASD, which led to the APLE concept.

C. Agile Product Line Engineering: Software Product

Lines combined to Agile Software Development

As explained earlier, SPL need an up-front design, with
heavy processes and significant efforts. It helps answering
planned changes, but if it comes to unstable environments
with rapidly changing conditions, the investment in SPL
might be pricey [3]. On the other hand, ASD seeks to satisfy
customer requirements in a reactive way, promoting
continuous discussion with the customer, and avoiding up-
front developments.

According to Díaz et al. [3] and Ghaman et al. [5], the
combination of SPL and ASD principles allows eliminating
long term investment in up-front design, especially in
volatile markets where it would represent a non-profitable
investment in the long term with huge losses due to no-
longer useful core assets or never used ones. It allows also
dealing with situations where there is lack of knowledge
about domain engineering, or where no speculation can be
made.

Many works discuss the application of agility to SPL: In
[6], agility is used in the design phase and the benefices of its
introduction by gaining in speed are demonstrated. Noor et
al. [10] used a collaborative approach to introduce agility
when planning and scooping the Product Line (PL). They
used some agile development principles, such as valuing
customer collaboration and high degree of flexibility. Urli et
al. [11] described the application of agility for SPL evolution
through a case study, using Composing Feature Models
(CFM); they first built an information broadcasting system
for a limited academic structure, but then had to deal with
larger institutions and numerous customers, which

represented multiple devices and sources of information.
Therefore, they used a SPL demarche for the re-engineering
of their system and, as they had to interact continuously with
the customers, they sought lightness and introduced agility to
their approach. This decision helped them reach simplicity
(they decomposed the requirements in features with fine
granularity) and be more reactive to the customers’ needs.
Another approach was established by Ghanam and Maurer
[12], who used a Test Driven Development (TDD) method to
deal with agility in SPL. They introduced SPL demarche in
an agile environment that uses eXtreme Programing (XP),
and instead of using requirement documents to begin
development, they used Acceptance Tests (AT) generated
through the XP process as test artifacts, which are the basis
for the model adopted.

III. TRACEABILITY IN AGILE SOFTWARE PRODUCT LINES

In such a complex environment (i.e., ASPL), where we
have to manage variability in a constantly evolving context,
it is very important to insure traceability along the software
development process.

However, based on the observation made by the review
in [3], and completed with our literature analysis, we noticed
that very few researches deal explicitly with the problematic
of traceability in ASPL, knowing that managing traceability
is very important in such evolving environments. Therefore,
we choose to discuss the problematic of traceability in
ASPL, given the challenges that it presents.

A. Traceability in Software Product Lines

Traceability helps follow the components’ life, link
between different software artifacts, from requirements to
source codes and backwards and, in a larger scale, helps
verify that all requirements have been implemented and the
artifacts documented [13]. It is also a mean to consider
different architecture choices and identify errors, and to
facilitate communication between stakeholders [14].
Traceability is very helpful when it comes to maintenance
and evolution as it allows analyzing and controlling the
impact of changes [15].

SPL add complexity to the traceability due to their reuse
characteristics and the variability management [16]. Berg et
al. [17] proposes a conceptual variability model to deal with
traceability in SPL and consider that, in addition to the two
dimensions of traceability in a simple software (i.e., phases
of development and levels of abstraction), for SPL there is
need to add variability as a third dimension. They propose to
handle SPL variability, and especially the traceability
problematic, by adopting a three dimensions conceptual
variability model that uses feature modeling to manage
variability and traceability. Anquetil et al. [14][16] added a
fourth dimension, namely evolution, to link between the
different versions of every artifact, and a fifth one,
versioning, to trace components’ changes in time.

In the next section, we will draw up a state of the art of
traceability in ASPL, based on the five traceability
dimensions, as presented by Anquetil et al. [14]: (1)
refinement traceability that links abstract artifacts to more
concrete ones that realize them (no variability), (2) similarity

530Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 552 / 679

traceability for links between artifacts at the same level of
abstraction (requirements, design, etc.), (3) use-variability
traceability for instantiation links (from DE to AE), (4)
realize-variability traceability to link between the variant and
the artifact that realizes it at the DE level, (5) versioning
traceability to link two successive versions of an artifact.

B. State of the art of traceability in Agile Software Product

Lines

In this section, we will draw up a listing of works that
present a methodology for introducing agility in SPL, and
discuss those methods according to the following questions:
(1) What are the traceability dimensions (according to [14])
does the presented methodology cover? (2) Which agile
method is used? (3) At which stage of SPL is the agility
introduced? (4) How does it deal with traceability?

Our first observation is that not all the methodologies
found in literature propose solutions that take into
consideration traceability (Table I). One assumption might
be that it depends on the stage where agility is used. In fact,
in [24], agility was applied in scoping, and all the work was
focalized on it. In the other papers, at least refinement
traceability is covered.

Papers that approach the architectural problematic and
variation points [12][18][22][23] cover another dimension:
variability traceability, with a link type “realize”. The
approach presented in [12][18], which uses acceptant tests,
and the one that combines workflow and web services [22]
handle also the variability traceability with a link type “use”.

TABLE I. WORKS ANALYSIS ACCORDING TO TRACEABILITY

DIMENSIONS

Traceability dimensions

Refinement
Similari

ty

Variability

(Use)

Variability

(Realize)

Versioni

ng

[10][12][18]–

[22]
- [12][18][22]

[12][18][22][2

3]
[19]

TABLE II. WORKS ANALYSIS ACCORDING TO THE AGILE METHOD

Reference Agile method
Level of agility

application

How traceability is

applied

[23] Scrum Architecture

Using Product

Line Architectural
Knowledge

(PLAK)

metamodel and
Design decision by

documenting

adding features

and changing

features

[12][18] XP Requirements AT

[24] Agility principles Scoping -

[10]

Agility principles

applied though
Collaboration

Engineering

planning

ThinkLets +

collaborative

process

[19] Evo
Requirements
management

Impact Estimation
Tables (IET)

[20][21]

Agility principles
and XP at

« Preparing for

Derivation » phase

Product

Derivation
-

Reference Agile method
Level of agility

application

How traceability is

applied

[26]

Some agile
principles

(Flexible, quick,

adaptable, user-
oriented)

Design to
architecture

WebServices +

workflow +
WebPads-based

approach

In [19], versioning traceability is addressed through the

use of Impact Estimation Tables. Iterations (and accordingly
components changes) are listed for each goal per project and
per release.

In general, there is a lack in covering several traceability
dimensions in ASPL approaches literature. Also, concerning
the agile methods (Table II), many works are based only on
agility principles [10][20][24]. XP approach is also widely
used [12][18][20][21]. However, by using AT, [12] and [18]
cover three of the five traceability dimensions and propose
an approach that covers the entire process, from
requirements to code units.

IV. OUTLOOK AND CONTRIBUTION

Based on our researches, we found the study of ASPL a
challenging field that did not gain yet sufficient maturity,
especially when it comes to managing traceability. In fact, in
case of ASPL, we need to consider the agile characteristics
of the environment. Adding agility means frequent
requirements’ change, even late in development, and
continuous interaction with customers. Also, while agility
tries to avoid heavy processes and excessive documentation,
traceability needs more produced and maintained documents.

In the works related to ASPL, as discussed in the
previous section, there is lack of managing traceability: not
all the ASPL methodologies proposed in literature deal with
traceability and, for those taking it into consideration, the
agile configuration proposed doesn’t allow tracing the whole
PL chain, according to the five traceability dimensions
detailed in [14].

Moreover, referring to our literature analysis, we noted
that only papers presenting an automated refactoring
approach used traceability in an efficient way: only really
affected elements in the SPL are localized and modified
before rebuilding the SPL [12][18][19].

Thus, for our contribution, we propose a methodology
based on markers for efficient traceability in an ASPL
environment: in a SPL, every produced element is the result
of specific concatenation and instantiation of some product
line components. Knowing this combination helps tracing
efficiently the product generation path by targeting only the
concerned components. Based on this observation, we are
establishing an approach that consists of adding a marker to
every SPL component. Each marker is unique and
encapsulates the component characteristics and, as a product
is the result of specific core assets instantiation, it inherits
from those core assets’ characteristics. Therefore, the idea is
to identify the product with a marker composed from the
corresponding core assets’ ones, and to create a link between
the components and the products, based on those markers.
The marking step is added to the core assets generation

531Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 553 / 679

process (see Figure 1). However, a special treatment is
reserved to variation points. In fact, variants share
characteristics with their parent components (i.e., variation
points). Thus, instead of generating a new marker for the
variants, we use a function for “marker mutation”. This
function allows modifying the variation point marker to
generate the variant’s one, while keeping the former’s
characteristics and adding the latter’s specific ones. It helps
lighten the process, as we are in an agile environment, and
establishing a realize-variability traceability link. By the end
of this process, a multidimensional marking matrix is
generated. Its dimensions correspond to core assets and its
cells to a combination of the corresponding markers. Thus,
each derived product is distinguished by a marker that
corresponds to a specific cell in the multidimensional matrix
(see Figure 2). However, in order not to complicate the
matrix and to preserve the agility of the environment,
(tracing the whole product generation process might be
heavy and costly, and even useless regarding the traceability
purpose in the developed ASPL), we introduce the concept
of “break-even point”. It represents the point of balance
between the desired level of traceability detail and the costs
of building and maintaining the system. It is flexible and
depends on the level of traceability needed. The aim of this
break-even point concept is to define a traceability limit
based on which we select only the core assets needed for the
product traceability. The product marker is then assembled
depending on the composition of those core assets in the
product. In order to define the parameters to consider for
establishing a break-even point, we are conducting a study to
outline the limitations of traceability in an agile environment.
We aim to determine, through this study, the level of
traceability that does not penalize the agility of the ASPL,
and we intend to evaluate this approach using graph theory
principles, to prove that the selected subgraph (connection of
core assets) can effectively allow tracing the products’
generation paths, knowing the environment constraints.

Figure 1. Core assets marking process

Figure 2. Link between products and marking matrix

V. CASE STUDY

To illustrate our approach, we present hereafter a case
study of offers implementation in the case of a
telecommunication operator.

Telecommunication market is very competitive and each
operator has to be reactive to the market changes. Also, with
the expansion of smartphones and intelligent home
equipment, trend is for broadband, high speed data
transmission, and free short messages and calls. Therefore,
offers share the same objectives but present them in different
ways, depending on the proposed services, the pricing and
the customer’s subscription. Moreover, to reach reactivity,
the telecommunication operator needs to propose new offers
with new services frequently. Considering those elements,
and in order to optimize development and deployment costs,
providers of network solutions use ASPL to implement the
offers: stakeholders (i.e., marketing staff) are continuously
involved and offers frequently changing (agility); they share
the same bases (common components) and differ depending
on the services proposed and the customer’s subscription
(variation points).

Another telecommunication market constraint concerns
revenue problematic: a critical error generated after
deploying an offer may cause important financial losses if
not quickly fixed, depending on the volume of traffic and
data transmission. That’s why reactivity in tracing product
generation path is very important.

With our approach, each generated product will have a
marker composed from those of its components. Thus, we
can easily identify the concerned elements to be checked and
fixed. We can also identify the other impacted products and
the related test cases to execute them and verify the product
integrity (see Figure 3). When an offer is initiated by the
management (based on market statistics and indicators,
decision making system, etc.), it is implemented as a result
of the instantiation of concerned components (use cases,
design components, realization components and test
scenarios) of the ASPL. Each component has its unique
marker (UCi, DCi, RCi and Ti) and the generated product’s
marker (UC1, DC1, RC1, RC2, T1, T2, T3) is a result of
their concatenation.

532Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 554 / 679

Offers management

Offers use

cases

Offers design

components

Offers realisation

components
Offers test

scenario

New

product

(UC1,DC1,RC1,RC2,T1,T2,T3)
Figure 3. Simplified case study for telecommunication offers implementation

VI. CONCLUSION AND FUTURE WORK

Agile Product Line Engineering is a new promising
method in software engineering. It helps companies gain
flexibility, reactivity and customer satisfaction in a volatile
and competitive context while optimizing costs and efforts.

We discussed in this paper the problematic of traceability
in an ASPL through a state of the art, and proposed an
approach for ASPL traceability based on markers and break-
even points.

As the implementation of a break-even point requires a
balance between the desired level of traceability and the
costs of building and maintaining the agile system, our future
contribution will focus on the optimization of the granularity
and depth level of traceability in an ASPL.

REFERENCES

[1] L. M. Northrop, “SEI’s software product line tenets, ”IEEE
Softw., vol. 19, no. 4, 2002, pp. 32–40.

[2] K. Pohl, G. Böckle, and F. Van Der Linden, Software product
line engineering. 2005.

[3] J. Díaz, J. Pérez, P. P. Alarcón, and J. Garbajosa, “Agile
Product Line Engineering - A Systematic Literature Review,”
Softw. Pract. Exp., vol. 41, no. 8, 2011, pp. 921–941.

[4] K. Tian and K. Cooper, “Agile and software product line
methods: are they so different,” 1st Int. Work. Agil. Prod.
Line Eng. (APLE), collocated with 10th Int. Softw. Prod. Line
Conf., 2006.

[5] Y. Ghanam, F. Maurer, and K. Cooper, “A Report on the XP
Workshop on Agile Product Line Engineering,” ACM
SIGSOFT Softw. Eng. Notes, vol. 34, no. 5, 2009, pp. 25–27.

[6] R. Carbon, M. Lindvall, D. Muthig, and P. Costa, “Integrating
Product Line Engineering and Agile Methods : Flexible
Design Up-Front vs . Incremental Design,” in 1st
International Workshop on Agile Product Line Engineering
APLE06, 2006, pp. 1–8.

[7] M. Fowler and J. Highsmith, “The agile manifesto,” Softw.
Dev., vol. 9, 2001, pp. 28–35.

[8] L. Northrop and P. Clements, “Software Product Lines,”
Carnegie Eng. Inst., 2005, pp. 1–105.

[9] C. Krueger, “Eliminating the adoption barrier,” IEEE Softw.,
vol. 19, no. 4, Jul. 2002, pp. 29–31.

[10] M. a. Noor, R. Rabiser, and P. Grünbacher, “Agile product
line planning: A collaborative approach and a case study,” J.
Syst. Softw., vol. 81, no. 6, Jun. 2008, pp. 868–882.

[11] S. Urli, M. Blay-Fornarino, P. Collet, and S. Mosser, “Using
composite feature models to support agile software product
line evolution,” in Proceedings of the 6th International
Workshop on Models and Evolution - ME ’12, 2012, pp. 21–
26.

[12] Y. Ghanam and F. Maurer, “Extreme Product Line
Engineering : Managing Variability and Traceability via
Executable Specifications,” in 2009 Agile Conference, 2009,
pp. 41–48.

[13] J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mäder, and A.
Zisman, “Software Traceability: Trends and Future
Directions,” in ACM, 2014.

[14] N. Anquetil et al., “A model-driven traceability framework for
software product lines,” Softw. Syst. Model., vol. 9, 2010, pp.
427–451.

[15] Y. C. Cavalcanti et al., “Towards metamodel support for
variability and traceability in software product lines,” in
Proceedings of the 5th Workshop on Variability Modeling of
Software-Intensive Systems - VaMoS ’11, 2011, pp. 49–57.

[16] N. Anquetil et al., “Traceability for Model Driven , Software
Product Line Engineering 2 Software Product Line,” ECMDA
Traceability Work. Proc., 2008.

[17] K. Berg, J. Bishop, and D. Muthig, “Tracing software product
line variability: from problem to solution space,” Proc. 2005
Annu. Res. Conf. South Africain Inst. Comput. Sci. Inf.
Technol. IT Res. Dev. Ctries., 2005, pp. 182–191.

[18] Y. Ghanam and F. Maurer, “An Iterative Model for Agile
Product Line Engineering.,” SPLC, 2008, pp. 377–384.

[19] B. G. K. Hanssen and T. E. Fægri, “Process fusion : an
industrial case study on agile software product line
engineering,” J. Syst. Softw., 2008, pp. 843–854.

[20] P. O’Leary, F. M. Caffery, I. Richardson, and S. Thiel,
“Towards agile product derivation in software product line
engineering,” 2009.

[21] P. O’Leary and F. McCaffery, “An agile process model for
product derivation in software product line engineering,” J.
Softw. Evol. Process, 2012.

[22] M. Karam, S. Dascalu, and H. Safa, “A product-line
architecture for web service-based visual composition of web
applications,” J. Syst. Softw., vol. 81, no. 6, 2008, pp. 855–
867.

[23] J. Díaz, J. Pérez, and J. Garbajosa, “Agile product-line
architecting in practice: A case study in smart grids,” Inf.
Softw. Technol., vol. 56, no. 7, Feb. 2014, pp. 727–748.

[24] M. Balbino, E. S. De Almeida, and S. Meira, “An Agile
Scoping Process for Software Product Lines,” in SEKE 2011 -
Proceedings of the 23rd International Conference on Software
Engineering and Knowledge Engineering, 2011, pp. 717–722.

533Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 555 / 679

Implementing IT Service Management as an
Organizational Change: Identifying Factors Affecting

the Change Resistance

Marko Jäntti, Sanna Heikkinen
School of Computing

University of Eastern Finland
Email: {marko.jantti, sanna.heikkinen}@uef.fi

Abstract—When an IT organization decides to launch an IT
service management programme, the discussion among employees
after the decision is not always positive. New concepts, tools, roles
and responsibilities and methods, as well as changes in strategy
and culture may cause remarkable amount of change resistance
among both employees and managers of a software company. Or-
ganizational change management is a fruitful research topic due
to its challenging nature. It addresses employees’ feelings, success
factors of implementing strategic changes, role of change agents
and factors affecting change resistance. In this study, we examine
the IT service management programme as an organizational
change and change resistance related to this change. Our research
focuses on identifying symptoms of change resistance related to
adoption of IT service management best practice framework IT
Infrastructure Library (ITIL). The research problem of this study
is: How does change resistance occur in IT service management
programmes and how can it be decreased systematically? The
main contribution of this paper is to present findings collected
from five Finnish IT service provider organizations operating in
different domains.

Keywords—IT service management; organizational change;
change resistance.

I. INTRODUCTION

Transition from a software engineering company with
software lifecycle models to a service oriented company with
well-established IT Service Management (ITSM) processes
and tools is a long journey that involves numerous challenges.
Thousands of IT organizations world-wide use IT service
management best practice framework IT Infrastructure Library
(ITIL) in their service operations and globally, there are over
million ITIL certified IT specialists. Despite the existence of
ITSM best practices (ITIL [1], COBIT [2]), standards such
as ISO/IEC 20000-1:2010 Part 1: Service management system
requirements [3], maturity models and operational IT service
management models, carrying out an IT service management
programme successfully is a real challenge. The literature has
shown that most major change initiatives (not only IT-related)
seem to fail in the organizations. This has resulted in a need
to examine how organizations can implement organizational
changes successfully. There are strategic changes, such as
changes in strategic technology platforms, changes related to
service portfolio and changes in relationships between the
service provider and strategic suppliers. IT changes, in turn,
occur when somebody adds, modifies or removes IT services
and their components. Often, there is no need to distinguish

a strategic change from an organizational change because
typically organizational changes are strategic changes.

One of the most famous persons related to the research
field of organizational change is Kurt Lewin [4]. Lewin has
proposed several important concepts of managing change such
as action research, field theory, group dynamics and three step
model of change. Lewin has presented a cyclic action research
model that can be used to implement change. As a research
method, action research emphasizes the role of actions taken
during the research process. The method has been criticized
with claims that it provides results that cannot be generalized to
other organizations. Lewin applied a field theory for examining
the human behavior. According to the field theory, the human
behavior is related to both person and their environment. The
concept of group dynamics refers to the Lewins finding that a
group affects individual behavior while making decisions on
organizational change.

In order to keep ITSM programme sustainable and live,
one can apply organizational change models such as three
step model of change. Three step model of change consists
of three key stages: unfreezing, change and refreezing. During
the first phase (unfreezing), one should ensure that the need
for the change is understood in the organization and people
desire the change. In other models, this is called creating ur-
gency of change. During the second phase (change), a change
is implemented by introducing, for example, creating new
policies and procedures in the organization or communicating
new values or attitudes to people working in the organization.
In the third phase (refreezing), the focus is on reinforcing
and supporting the change. The three step model of change
addresses that organizational commitment must occur not only
during the change but also before and after a change. In the
ITIL framework, programmes that aim at continuous improve-
ment of services are called Continuous Service Improvement
Programmes (CSIP). CSIP is an ongoing formal programme
undertaken within an organisation to identify and introduce
measurable improvements within a specified work area or work
process [5].

Only few academic studies have addressed the organiza-
tional change perspective in implementing IT service manage-
ment programmes. The study of Tan, Cater-Steel and Toleman
[6] emphasizes the role of the committed senior management
in the ITSM projects success, as well as the role of a project
champion and the recognition of the need for an appropri-

534Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 556 / 679

ate change management strategy. Additionally, in the study
of Pollard and Cater-Steel [7] key success factors of ITIL
implementations included top management support, training,
virtual project teams, careful tool selection and use of external
consults. Additionally, there are studies that have focused on
conceptualising the ITSM projects [8]. The literature of organi-
zational change management deals with the concept of change
agents. Ford et al. [9] discuss how change agents may affect
the resistance of change. They comment that change agents
can participate in change resistance from their side by not
legitimizing changes, misrepresenting changes and not calling
for action (carrying out required actions). First, legitimization
of changes refers to the action where change agents provide
justification for changes, presenting clear rationale why the
change is needed in the organization, and enhance the readiness
for change adoption as well as increasing the likelihood of
change acceptance. Legitimization of an ITSM programme
might be, for example, a statement of required cost savings.
Additionally, one should pay attention how fast change shall
be adopted and what is extent of the change acceptance. The
schedule plays an important role for example, when two IT
service providers have agreed on merger by specified date.

Furthermore, Ford et al. [9], present that change resistance
should be seen as a resource instead of a negative issue. Three
types of value can be identified: existence value, engagement
value, and strengthening value. Existence value means that
change agents are able to keep conversation on change active
and may also attract new members to participate in discussion.
Conversation on ITSM programme may be started from service
desk workers and then extended to other service areas. This
conversation helps change agents to increase their understand-
ing of the change. Engagement value can appear when change
recipients engage in the change, for example, when they feel
that the change will affect them negatively or when they are
afraid of the organizations success. For example, a product
manager engages in creating service catalogues because he/she
feels that management does not understand the role of his / her
product within the product portfolio. The strengthening value
of resistance means that a conflict may strengthen recipients
commitment on the change. A conflict could be, for example,
a nature disaster or finding a common enemy, such as a tough
competitor.

A. Our Contribution

The main contribution of this study is to study

• How change urgency related to ITSM programmes is
communicated in the IT service provider organization?

• How IT service provider organizations introduce
changes related to ITSM processes?

• How does change resistance occur in IT service man-
agement?

• Which methods are used by organizations to decrease
the change resistance?

As results, this study provides new scientific knowledge
on means how ITSM-related change urgency is communicated
within an IT service provider, actions how organizational
change is introduced, evidence on how change resistance
occurs and methods how change resistance is decreased. The

results of this study can be used by continual service im-
provement managers, ITSM programme managers, portfolio
managers, service directors and other managers and team
leaders responsible for introduction of ITSM processes. The
remainder of the paper is organized as follows. In Section 2,
the research methods of this study are described. In Section 3,
the results of the study are presented. Section 4 is the analysis
of findings. The discussion and the conclusions are given in
Section 5.

II. RESEARCH PROBLEM & METHODOLOGY

The research problem of this study is: How does change
resistance occur in IT service management programmes and
how can it be decreased systematically? The research problem
was divided into the following research questions:

• How change urgency is communicated in the organi-
zation?

• How IT service provider organizations introduce
changes related to ITSM processes?

• How does change resistance occur in IT service man-
agement?

• Which methods are used by organizations to decrease
the change resistance?

A. Data Collection Methods

Data was collected from five IT service provider com-
panies in Finland. Companies operated in various business
domains (healthcare, energy, miscallenous services, bank and
insurance). These organisations were selected for this study
because they were representative cases of IT organisations with
many year’s experience in ITIL and ITSM. The following data
collection methods/sources were used during the study:

• Documentation (ITSM process descriptions)

• Archives (incident records, change request records,
service request records, email records)

• Interviews/discussions (service managers, directors,
development manager, product/service managers)

• Participative observation (ITSM Awareness training
periods in two organizations)

• Physical artefacts (Organization’s intranet, ITSM tool)

We used case study research and action research [10]
to collect the data on IT service management improvement
programmes and service management process improvement.
According to Yin [11], a case study is ”an empirical inquiry
that investigates a contemporary phenomenon within its real-
life context”. We used an exploratory case study with multiple
case design. However, we decided to keep organizations and
roles of respondents anoymous because it might be relatively
easy to combine a person to a role and because organizational
change management issues can be tricky and sensitive issues
within the organization. Results of the case study resulted in
change resistance-related information as by-product. Action
research was used because suits well to the studies of orga-
nizational change. In fact, the roots of action research are in
organizational change.

535Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 557 / 679

Fig. 1. Implementing ITSM Programmes

B. Data Analysis

The data of the case study were collected and analyzed
using a within case analysis technique [12] that focuses on
analyzing each case stand-alone before making any compar-
isons. Research findings were validated through discussions,
seminars and workshops with the representatives of case
organizations. In each case, the research team produced a case
study report which was delivered to the case organization’s
contact persons. A qualitative content analysis technique was
applied for case study material to build categories based on the
comments from IT service provider organizations’ managers
and employees.

III. ITSM PROGRAMMES AS ORGANIZATIONAL
CHANGES

In this study, we apply Lewins three step model of change
and its phases (unfreezing, change and refreezing) to organiza-
tional changes where the context of change is adoption of IT
service management process frameworks (IT Infrastructure Li-
brary) and service management standards. In unfreezing phase,
we should first identify what is the rationale behind the change,
what are the clear benefits of change, how to communicate
the urgency of change to employees and managers of the IT
organization and how to identify skilled and motivated change
agents. Figure 1 shows an example of how ITSM programme
could be implemented.

The change management model of Lewin is a very useful
tool for organizing the findings from IT service provider or-
ganizations change efforts. During the study we observed that
the change urgency related service management improvement
is created in IT companies by addressing customers or owners
need for a change or bottlenecks in the current IT infrastruc-
ture. The case organization’s representatives reported following
factors that triggered the adoption of ITSM frameworks in their
organization:

• “Our key customer would like to improve service level
management with us because they are not satisfied
with the current practices.”

• “We need defined service management processes be-
cause there have been plans on merging two organi-
zations together.”

• “The owners of the company encourage us to increase
service quality.”

• “IT customers are continuously requesting new types
of IT service reports. Producing those manually takes
a lot of time. The new tool should support effective
measurement and reporting.”

• “Customers are not interested in buying our new
product because it lacks some specific features.”

• “Our new management started a cost savings pro-
gramme. We need measurable processes in order to
improve, for example, the througtput times of pro-
cesses.”

A. How IT Service Provider Organizations Introduce Changes
Related to ITSM Processes?

During the second phase (change) of the three step model
of change, a change is implemented by introducing, for exam-
ple, creating new policies and procedures in the organization
or communicating new values or attitudes to people working
in the organization. In our study, we observed that the IT
service provider companies valued the following factors in
introducing ITSM processes. Many companies in our study
were implementing IT service change management processes.

• All the employees in the service area were provided
a half day process training (TR)

• Motivating employees why change management is
important (MT)

• A short general information package on ISO/IEC
20000 and ITIL Change Management (TR)

• Defining the scope of the process (P)

• Defining the processes in general level (P)

• Identifying the different types of changes: normal
change, standard change, emergency change (P)

• Practicing identification of changes with practical ex-
amples (E)

• Publishing roles and responsibilities (RR)

• Starting the Change Advisory Board practice (F)

• Publishing the schedule, goals and monitoring (MN,
G)

• Main focus should be in managing processes (P)

• Mapping the process improvement goals to organiza-
tional goals.(G)

• Meaningfullness of improvement work (ME)

• Ensuring that the right direction has been selected
(MN)

• Consistent human resource management plays impor-
tant role

• Proceeding in understandable steps (S)

• Integrated to annual goals (G)

536Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 558 / 679

• Tailoring ITSM to organization’s own context (not just
copy the processes from ITIL) (TA)

• Searching common good things (participative ap-
proach instead of orders) (PA)

• The goal should be to learn together and on individual
level (L)

• Inspire yourself and others (MT)

• Finding the levels of freedom in developing processes
(P)

B. How Does Change Resistance Occur in IT Service Man-
agement?

The following comments that address the change resistance
were captured from our industrial partners:

• “Change resistance occurs in coffee table discussions”

• “Why should we change existing functioning prac-
tices?”

• “This approach is not suitable for us. It is too unflex-
ible”

• “ITSM is yet another new ISM”

• “Does it make any sense to assign all the changes
including the minor ones to the Change Advisory
Board, it sounds very bureaucratic.”

• “I am not interested in participating in service man-
agement training, I just try to make this work better.”

• “I would say that the introduction of the new IT
service management system is painful because em-
ployees do not have enough knowledge on IT service
management processes.”

• “We should introduce some new practices that pro-
mote the IT service management. For example, we
could market the problem management process for
application managers by launching a campaign: Start
your day with a problem.”

• “I am little bit worried about how processed and daily
practices could be brought together.”

• “Can you mention why should we learn these ITSM
things if the managers only goal is to decrease the
number of people?”

C. Methods for decreasing the change resistance related to
ITSM

During the study we observed that organizations had used
or expressed the need for the following methods:

• “Why are they continously asking that how could we
improve things but they never tell us what has been
improved?”

• “In order to ensure that employees do not go back to
old practices, I needed to communicate the benefits of
release management in a weekly meeting during two
years. Sometimes, I felt a little bit frustrated, but at
the end I think it was worth it.”

• Reinforcing the new practices and create conditions
for giving up from old practices

• Training key persons and ensuring that they are com-
mitted in change

• Training the personnel, for example providing them
ITSM Awareness training

• Hiding the ITIL terminology to the background

• Creating justification for ITSM based on real service
operations, not based on ITIL framework.

IV. ANALYSIS

The data analysis was carried out by using qualitative con-
tent analysis technique for the case study material. The purpose
of the analysis was to create meaningful categories that can
be exploited by future studies in the area of organizational
change management. Regarding the first research question
(How change urgency is communicated in the organization?),
we identified that ITSM programmes are started because of
key customers’ requirements, management plans to outsource
or merge service operations, the company’s owners request to
increase the quality, dissatisfied customers or due to establish-
ment of cost savings programmes. The service improvement
programme may receive more negative comments and change
resistance if the reason behind the improvement is just to
outsource services to other parties.

Regarding the second research question (How IT service
provider organizations introduce changes related to ITSM
processes), we coded the findings and identified 11 categories:
Training (TR), Motivating (MT), Process (P), Examples (E),
Roles and Responsibilities (RR), Function (F), Monitoring
(MN), Meaningfulness of improvement work (ME), Goals (G),
Scope (S), Tailoring (TA) and Learning (L). Our findings
support earlier findings of Pollard and Cater-Steel [7] on
success factors in ITIL implementations. Common issues with
the study of Pollard and Cater-Steel were Process priority
and Training. The study of Pollard and Cater-Steel [7] and
Hochstein [13] also considered Top management support as
a success factor. In our case, Motivating category could have
been named as Top management category. Our Goals category
corresponds to Relevant and realistic objectives category in
the study of Stelzer and Mellis [14]. In this study, we did
not use the category Service culture but some categories, for
example, Learning could be part of the service culture. We also
established categories that were not visible in previous studies
such as the Function (based on a finding that service providers
tend to create new organizational structures to facilitate the
change) and Meaningfulness of improvement work (based on
a finding that management should empower employees to carry
out improvement).

Regarding the third research question (How does change
resistance occur in IT service management?), we observed that
change resistance occurs and is visible in daily events, such
as in coffee table discussions, not only after seminars held
by management. Employees may see the ITSM processes and
practices too bureaucratic, time consuming and unflexible. The
reason for this might be the large number of different types
of records (incidents, problems, changes, releases) the support
request may go through. In both training sessions and process

537Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 559 / 679

improvement discussions, we observed that employees were
afraid of that a Change Advisory Board function would cause
a bottleneck for processing small changes.

Regarding the fourth question (Which methods are used
by organizations to decrease the change resistance?) we estab-
lished the following categories:

• Better communication: “Why are they continously
asking that how could we improve things but they
never tell us what has been improved”

• Repeating the message: “In order to ensure that em-
ployees do not go back to old practices I needed to
communicate the benefits of release management in
a weekly meeting during two years. Sometimes I felt
frustrated but at the end I think it was worth it.”

• Reinforcing: “Reinforcing the new practices and create
conditions for giving up from old practices.”

• Training: “Training key persons and ensuring that they
are committed in change; training the personnel, for
example providing them ITSM Awareness training.”

• Terminology: “Hiding the ITIL terminology to the
background.”

• Business-based justification: “Creating justification for
ITSM based on real service operations, not based on
ITIL framework.”

Our analysis can be constructed into following recom-
mendations how to communicate the ITSM programme as
an organizational change to employees and managers: 1)
analyze the received questions and comments on the ITSM
programme and build clear counterarguments, 2) ensure that
there is enough communication on ITSM programme (vision,
goals, urgency) and that communication is done frequently, 3)
use multiple channels (training, seminars, newsletters, social
media) for communicating the benefits of ITSM programme
but ensure that the core message is always consistent and
clear, 4) explore whether change recipients (service personnel)
have understood the ITSM programme-related communication
correctly, 5) as a change agent use participative method to
invite people for planning the change and learning together, 6)
remember that talks do not necessarily lead to action. Thus,
one should define a clear action plan for the ITSM programme.
Action plan may cover improvements to processes, services or
employees’ competences.

V. CONCLUSION AND FUTURE WORK

The research problem of this study is: How does change
resistance occur in IT service management programmes and
how can it be decreased systematically? We used case study
methods to identify symptoms of IT service management -
related change resistance. Data was collected from case stud-
ies, ITSM seminars, ITSM training sessions and ITSM action
research periods with IT service provider organizations. Our
results contribute to the research field of service science and
organizational change. We identified triggers for establishment
of ITSM programmes, studied how change resistance is vis-
ible in ITSM and how IT companies deal with the change
resistance.

There are certain limitations related to our study. First,
data were collected from five IT service provider organizations
in Finland by using qualitative methods. Quantitative data
collection and analysis could have provided new insights to
the research topic. Second, we used qualitative content analysis
only for case study material. The content analysis could have
been used also for article material related to ITSM as an
organizational change. Third, case study research method has
received criticism that results from case studies cannot be gen-
eralized to other organizations. However, the research method
literature indicates that they can still be used to improve and
extend the theory. Further research could explore deeper the
establishment of IT service management programmes and how
change resistance has been taken into account in planning the
programme.

ACKNOWLEDGMENT

We would like to thank the case organization’s represen-
tatives for valuable feedback and responses that helped us to
perform this study.

REFERENCES

[1] Cabinet Office, ITIL Service Strategy. The Stationary Office, UK,
2011.

[2] COBIT 5, Control Objectives for Information and related Technology:
COBIT 5: Enabling Processes. ISACA, 2012.

[3] ISO/IEC 20000:1, Part 1: Service management system requirements.
ISO/IEC JTC 1 Secretariat, 2010.

[4] J. Helms-Mills, K. Dye, and A. J. Mills, Understanding Organizational
Change. USA: Taylor & Francis, 2009.

[5] OGC, ITIL Planning to Implement. The Stationary Office, UK, 2002.
[6] W.-G. Tan, A. Cater-Steel, and M. Toleman, “Implementing IT service

management: A case study focussing on critical success factors,”
Journal of Computer Information Systems, vol. 50, no. 2, 2009.

[7] C. Pollard and A. Cater-Steel, “Justifications, strategies, and critical
success factors in successful itil implementations in u.s. and australian
companies: An exploratory study,” Information Systems Management,
vol. 26, no. 2, pp. 164–175, 2009.

[8] J. Iden and T. R. Eikebrokk, “Understanding the ITIL implementation
project: Conceptualization and measurements,” in Proceedings of 2011
22nd International Workshop on Database and Expert Systems Appli-
cations. Washington, DC, USA: IEEE, 2011.

[9] J. Ford, L. Ford, and A. D’Amelio, “Resistance to change: The rest of
the story,” Academy of Management Review, vol. 33, no. 2, pp. 362–377,
2008.

[10] R. Baskerville, “Investigating information systems with action re-
search,” Commun. AIS, p. 4.

[11] R. Yin, Case Study Research: Design and Methods. Beverly Hills,
CA: Sage Publishing, 1994.

[12] K. Eisenhardt, “Building theories from case study research,” Academy
of Management Review, vol. 14, pp. 532–550, 1989.

[13] A. Hochstein, G. Tamm, and W. Brenner, “Service oriented it manage-
ment: Benefit, cost and success factors,” in Proceedings of the 2005
European Conference on Information Systems (ECIS 2005). AIS
Electronic Library, 2005.

[14] D. Stelzer and W. Mellis, “Success factors of organizational change
in software process improvement,” Software Process: Improvement and
Practice, vol. 4, no. 4, pp. 227–250, 1998.

538Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 560 / 679

Spider-PE: A Set of Support Tools to Software Process Enactment

SPEM Process Enactment in the CMMI-DEV and MR-MPS-SW Context

Carlos Portela, Alexandre Vasconcelos

Informatics Center (CIn)

Federal University of Pernambuco (UFPE)

Recife, Brazil

{csp3, amlv}@cin.ufpe.br

Sandro Oliveira, André Silva, Elder Silva

Postgraduate Program in Computer Science (PPGCC)

Federal University of Pará (UFPA)

Belém, Brazil

srbo@ufpa.br, {aandrecunhas, elderferreirass}@gmail.com

Abstract—In order to have a competitive software industry, it

is essential to adopt standards and reference models of

software processes quality. However, despite the growing

adoption of standards and models, the number of

organizations that adopt these is a small portion of the total

population of software organizations. This paper presents a set

of support tools to enactment of modeled processes in the

Software Process Engineering Metamodel (SPEM). This set of

support tools, called Spider-PE (Process Enactment), aims to

assist software organizations in the implementation of the

Capability Maturity Model Integration for Development

(CMMI-DEV) and Reference Model of Software Process

Improvement to Software (MR-MPS-SW) models. We expect

Spider-PE to be more easily adopted by software organizations

because it is based on models and standards largely accepted.

Furthermore, this set of support tools adopts free technologies

(non-proprietary) in order to reduce costs.

Keywords-Software Process Enactment; Quality Models;

SPEM; CMMI-DEV; MPS.BR.

I. INTRODUCTION

Achieving competitive advantage, to software companies,

involves not only product’s quality improvement and

parallel services, but also the process production and

software distribution [1]. In order to, nationally or

internationally, have a competitive software department, it is

essential the adoption of patterns, standards and reference

models when it comes to processes. In this context, the

Capability Maturity Model Integration for Development

(CMMI-DEV) [2] stands out internationally speaking, while

the Reference Model of SPI to Software (MR-MPS-SW)

stands out in the Brazilian scope [1].

Although the adoption of norms and reference models for

Software Process Improvement (SPI) is increasing, the

amount of organizations that adopt these models is a small

portion out of the total population of software organizations

[3]. Different studies were conducted in order to understand

why organizations do not adopt the standards and models

for process improvement, and they indicate to questions

regarding high costs, lack of support tools and bureaucracy

related to the big amounts of resources demanded by the

process execution [3][4]. Other studies were conducted in

order to identify the critical success factors in software

process improvement initiatives [5][6]. These studies take

into account the use of support tools as critical success

factor in a software process improvement program.

In this context, the purpose of this paper is to introduce

the set of support tools Spider-PE (Process Enactment),

which gives support to the flexible and semi-automated

process execution, and that is adherent to the quality models

CMMI-DEV and MR-MPS-SW. This set of tools is based

upon free standards and technologies and is the outcome of

the SPIDER Project (Software Process Improvement:

DEvelopment and Research).

Besides this introductory part, Section II discusses the
software process definition, execution and improvement
steps, and it also talks about related work. In Section III, a
set of tools Spider-PE and its components are presented.
Section IV discusses the analysis of the SPEM 2.0 models’
execution and the adherence to the CMMI-DEV and MR-
MPS-SW models. Section V presents the results obtained in
this research in both academy and industry. Finally, Section
VI presents a conclusion.

II. BACKGROUND AND RELATED WORK

In this section, we present the main concepts and

definitions of this research; then, we briefly describe the

related work.

A. Concepts and Definitions

To represent the elements that integrate the process, or in

other words, to build the software process models, it is

necessary a language to model them [8]. One of the

purposes of this type of representation is to facilitate the

software process continuous improvement because it

enables the understanding of the process in a visual and

representative manner among the elements that compose the

process [9].

In this domain, two approaches that have a large

acceptation in the software industry regarding the modeling

area were identified: Software Process Engineering

Metamodel (SPEM) [10] and Business Process Modeling

Notation (BPMN) [11]. The comparison between these two

539Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 561 / 679

standards and the justifications for the adoption of SPEM in

this research are presented by Portela et al. [12].

After modeled, the process enters in the stage of

execution, where it will be executed, controlled, validated

and improved in short incremental and iterative cycles [13].

According to Reis [14], this execution phase depends on an

automated mechanism that comprehends the modeled

process and guides the developers during their work, as well

as executes automatically some tasks.

In accordance with Oliveira et al. [15], one of the most

important evolutions in the field of software quality is in the

finding that the quality of the software product process is as

important as the quality of the final product. From this

affirmation, important software quality evaluation and

certification mechanisms emerged based on the maturity and

capability of the development organization in the

conduction of their processes. Therefore, two improvement

models are considered in this paper: the CMMI-DEV [2]

and the MR-MPS-SW [1], which has been largely adopted

in the Brazilian market.

B. Related Work

The WebAPSEE [16] environment allows the software

process management. Based on free software, this

environment uses its own visual language to model, the

WebAPSEE-PML that is based in the formal specification

defined in Reis [14]. França et al. [17] highlights the use of

this environment in the adoption of the MPS.BR level G in

an organization that develops software. However, there are

no explicit evidences that the environment supports some of

the results from this level, for example, the vertical

traceability.

The Ontology-based software Development Environment

(ODE) environment was designed based upon on a specific

ontology for Software Quality [18]. The project ODE

affirms that ADSs built based on anthologies allows an

easier integration with different tools that aids software

engineering activities.

The TABA station [19] aims to integrate support tools

according to organization specificities, software processes

and projects. The tool AvalPro supports the Process and

Product Quality Assurance group from an organization. The

tool Pilot supports the evaluation of improvement proposes

of a process in a systematic, planned and controlled way.

Using these tools, the TABA station presents an explicit

support to the CMMI levels 2 e 3 e the MR-MPS-SW levels

G to C processes areas.

The ImPPros environment [20] supports the

implementation of software processes in an organization

progressively. This approach takes into account the use of

quality models and norms that guide the continuous process

improvement and the software process transformation bases

on the possible mapping among these models and standards.

Differently from these other environments, the approach

presented in this paper introduces a execution formalism

based on the standard SPEM 2.0, allowing the process

model execution without using intermediary models, as it

can be seen in details in Section IV. Furthermore, this

approach considers the models CMMI-DEV and MR-MPS-

SW through the utilization of good practices related to the

institutionalization degree of the process execution in an

organization that develops software.

III. SPIDER-PE: SET OF SUPPORTING TOOLS

The set of supporting concept adopted in this paper

defines a set of technologies that can be integrated in order

to aid in the software process execution. In this context,

there are tools, techniques, procedures, processes, roles,

methodologies, frameworks, languages, standards, patterns,

and so on.

A. xSPIDER_ML: Enactment Language

Although the SPEM [10] is a standard defined by OMG

[11], it does not offer native mechanisms to automated

software process simulation and execution. Because of such

limitation, a language for execution was defined,

xSPIDER_ML. The xSPIDER_ML (eXecutable

SPIDER_ML) is an extension of the modeling language

SPIDER_ML [21], which is defined as a profile of SPEM

that aids the process execution flexibly [22].

The xSPIDER_ML’s structure was defined based on the

structure proposed by xSPEM [13], since the both

approaches have as goal turn the SPEM 2.0 into executable

language. This structure divided in packages provides ways

to define the conceptual structure to organizations,

providing the necessary notions to execute their developing

processes. Therefore, the xSPIDER_ML structure was

divided in five packages: xSPIDERML_Core,

ProcessParameters, ProjectVariables, EventTypes and

ProcessTrace.

In order to be clear, only a subset of concepts of these

packages will be presented, and they were selected in

accordance with their relevance to the understanding of the

components that composes the xSPIDER_ML. The

components are available in the technical specification [23].

The execution operates on the instantiated processes and

because of that, the elements of the SPIDER_ML are

gathered in the package xSPIDERML_Core. Besides these,

the package xSPIDERML_Core reuses the concepts and

elements offered by the xSPEM [13] and the SPEM 2.0 [10]

in order to provide all the necessary elements to define and

organize a software process for later execution. These

elements define the basis for all the remaining packages of

the xSPIDERML.

In this package, there is the component Activity, a

specialization of the WorkBreakdownElement and

WorkDefinition, which defines basic work units in a

process, as well as in a process per se. The class Process

540Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 562 / 679

represents a set of work definitions partially ordered with

the intention of achieving the development goals, such as

the delivery of a system. These processes are defined as

sequences of Phases and Milestones, and they express the

life cycle of a product being developed. Also in this

package, there is the class TaskUse that represents the

instance to a TaskDefinition (a class in the SPEM 2.0

structure and SPIDER_ML). This class must provide

information related to the resources that will be involved

during the execution of the task that it represents.

After the structure of the xSPIDER_ML’s components be

defined, it is necessary to define the rules that will be

applied in these elements and their relationships. In this

context, rules define ante and post conditions in the same

way as an inference engine of an expert system [14]. These

rules extend the SPIDER_ML’s semantic and consequently

the SPEM 2.0’s semantic in order to represent the dynamic

information inherent to the properties defined before. In

order to be clear, it is presented in this section an example of

these rules. The complete detailing of these basic rules is

available in [23].

According to the xSPIDER_ML’s structure, it is possible

to identify a common aspect to the TaksUse components.

One task can have a status notStarted, started, paused,

finished. An abstract observation of the operational

semantic of processes in execution related to this property

can be accomplished. Considering t as a task to be executed

and whose initial status is notStarted, the possible

transitional relationships for t are presented in Figure 1.

Figure 1. State Transition of a task t.

B. SPIDER_PE: Process Enactment Framework

The SPIDER-PE framework was defined in [31], and it

aims to support the flexible execution of software processes

adherently to the capability levels of the quality models

CMMI-DEV and MR-MPS-SW.

It was decided to work with the capability dimension

because it relates to the process execution definition

directly. Process’ capacity is the degree of refinement and

institutionalization that the process runs in an

organization/organizational unit [1].

The concept of framework adopted in this paper pictures the

customization of a process to follow one or more

recommendations of the quality models from the perspective

of a generic activity flow that are necessary to execute any

software process. Figure 2 presents three phases that

compose this framework. To a complete description of this

phases and its components; see

[31].

Figure 2. Phases of Enactment Process Framework.

The first phase of the framework is the Process

Management Phase that has three steps: Planning, Execution

and Monitoring. This phase has as goal the realization of the

planning step and the accompaniment of the process

execution according with the recommendations of the

quality models CMMI-DEV and MR-MPS-SW. In this

phase, the Process Policy is defined, the resources and the

schedule are estimated, and so forth. Besides that, this phase

has a sub phase called Execution of Process Activities,

which is defined as the second phase of the framework.

Therefore, the next phase is the Execution of Process

Activities, responsible for the actual process execution. In

this phase, the team is responsible for creating the work

products that are required to conduct the project’s activities.

To each work product generated, the Configuration

Manager must perform the versioning and the control of the

access. In the milestones and project’s control points, the

Quality Assurance team must verify the adherence of the

process and work products to the standards and templates.

The third and final phase of the framework consists in the

Application of the Execution Formalism, where the tool

Spider-PE is responsible to apply the execution formalism

defined in the technical specification of the xSPIDER_ML

[23]. The purpose of this phase is enable the Framework

SPIDER-PE to incorporate the rules and characteristics of

the xSPIDER_ML that allows the activities to be

instantiated by an execution machine and, consequently,

meet the concept of flexibility and semi-automated

execution specified in this language. Therefore, this phase

must occur in parallel to the other phases of the framework,

for this formalism must work on the activities of these

phases.

541Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 563 / 679

C. Spider-PE: Process Enactment Tool

The Spider-PE is a GPL – General Public License [24]

tool that brings a solution to the semi-automated software

process execution [25]. This tool was created as a desktop

environment using Java, and it was based on the use of free

technologies [26], such as the IDE Eclipse 3.7, the SGBD

MySQL 5.5, the objected-relational mapping framework

Hibernate 4.0, the library for object serialization XML and

vice-versa XStream, the library for creation and

manipulation of PDF files iText and the library to draw

diagrams based on the graph theory JGraph.

Beyond the free technologies used to develop the tool,

other free software systems were used to aid the activities in

the Spider-PE. The use of these tools allow the reuse of

functionalities that meet the recommendations of the quality

models CMMI-DEV and MR-MPS-SW, avoiding the

development of specific functionalities to meet certain

activities of the Framework SPIDER-PE. Hence, the

following tools were integrated to the Spider-PE:

 Subversion (SVN), a system that adopts the Apache License

of free software, and it is available in [27], to aid the

changing management;

 Redmine, a GPL license tool, available in [28], and that

allows the recording, monitoring, and accompaniment of the

possible solutions to the different problems that can arise

during the project execution;

 Spider-APF, that allows estimates to be made using the

Function Point Analysis (FPA); Spider-UCP, that is used to

measure the quantity of software from the perspective of the

Use Case Points (UCP); and the Spider-CoCoMo, that allows

time, effort and team quantity estimates to be using the

CoCoMo method – Constructive Cost Model;

 Spider-CL, that aids the process and work product evaluation

through objective criteria (described in evaluation

checklists);

 Spider-MPlan, which supports the measurement process,

which enables the definition, collection, analysis and

monitoring measures.

The tools developed by SPIDER Project are under the

GPL license and are available in [29].

The Spider-PE tool uses the concept of modules to

specify a particular set of features, grouped according to the

phases of the framework and the actors responsible for its

implementation. Thus, this tool has three modules:

Management, Process Management and Process Execution.

The first module to be accessed is the Directors module,

which is responsible for setting the tools described in the

Subsection 3.3.1. This module is also responsible for

converting the XML file that contains the process modeling

(built in Spider-PM [30] through notations of the

SPIDER_ML language) to the relational database. The

Administration module also allows the user to define a

Process Manager, who will be responsible for managing,

planning and monitoring the process.

Once defined, the Process Manager can access the

Process Management module. This module is based on the

adherence to the good practices in the quality models

CMMI-DEV and MR-MPS-SW; therefore, it is related to

the activities of planning and monitoring the process. The

Process Management module consists of three phases:

Planning, Execution and Monitoring. This module starts

from planning the process, where the Process Manager has

access to many features.

In the Execution Module Process, the human resources

allocated to specific tasks may perform semi-automated and

flexible process activities, as can be seen in Figure 3.

Figure 3. Enactment of a process task.

This module consists of the application of the execution

formalism xSPIDER_ML. This application occurs in

parallel to the steps of Process Execution and Monitoring in

the Management module and because of this, the formalism

runs concurrently with the activities of this module through

the execution engine.

For a full description of the modules and each

functionality; see the work of Silva et al. [25][26].

IV. SPIDER-PE EVALUATION

In this section, the set of support tools is evaluated from

each of its components.

A. SPEM Models Enactment

The execution language xSPIDER_ML presents itself as

a viable proposal for execution of process models defined in

the standard SPEM 2.0. First, it is necessary to model the

process in the Spider-PM [30] tool. This tool allows the

modeling of processes using the notations of SPIDER_ML

(profile SPEM 2.0). After the modeling stage, the Spider-

PM allows saving an XML with the process modeling. The

Administration module of the Spider-PE allows the user to

export the information from the modeled process, saved in

the XML file, to the relational database. By using the

JGraph library, it is possible to apply the rules and

formalisms implemented in the xSPIDER_ML under the

SPEM notation, as shown in Figure 3.

In this image, the user selected the task Instantiated Task

03 to change its state (Started, Paused, or Finished). By

selecting one of these states, the Spider-PE will be

responsible for applying an internal mechanism of inference

rules, and if there are no restrictions, the new information

will be recorded on the database.

B. Adherence to CMMI-DEV and MR-MPS-SW

The tool Spider-PE provides support to the

542Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 564 / 679

implementation of Level 2 of CMMI-DEV and Level F of

MR-MPS-SW, where the process is considered managed.

The choice of these specific levels is due to the fact that

they are initial levels and, therefore, tend to be more

complex to implement [7].

Thus, for each component of the Spider-PE, it were

identified Results of Process Attributes (RPA) of the MR-

MPS-SW and Generic Practices (GP) of the CMMI-DEV

that are supported by these components. To perform this

analysis of adherence, first it was defined component levels

of support of the Spider-PE related to the recommendations

of these quality models:

 Total: the components of the Spider-PE fully support the

systematization of the recommendations of a particular set of

RPA and GP;

 Partial: the components of the Spider-PE partially support

the systematization of the recommendations of a particular

set of RPA and GP. I.E., these components do not meet all

the recommendations of these models;

 Not support: the Spider-PE components do not support the

systematization of a particular set of RPA and GP

recommendations.

Figure 4 shows the relationship between the components

of the Spider-PE, the MR-MPS-SW’s RPA and CMMI-

DEV’s GP. This relationship was made from the analysis of

the required requirements to meet the recommendations of

these models by three experts (officially certified) in the

implementation and evaluation of these quality models.

Figura 4. Adherence between the Spider-PE Components to CMMI-DEV

and MR-MPS-SW.

To view the details of each of the recommendations of the

components listed in the first column of table in Figure 4, it

is necessary to consult the official guides of the MR-MPS-

SW [1] and CMMI-DEV [2] models. A complete analysis of

the adherence of Spider-PE, including the results, is

available in [25][31].

V. OBTAINED RESULTS

In this section, the results obtained in this research are

presented.

A. In Academy

An initial version of the proposal of this work has been

published and presented during the WTDQS - Workshop of

Theses and Dissertations in Software Quality [32]. This

research is characterized as a subproject of the SPIDER

Project, and it was accepted in the 2011/2012 cycle of the

PBQP-SW (Brazilian Program of Software Quality and

Productivity). In 2012, a comparative study of the patterns

of SPEM and BPMN modeling and the proposed

implementing xSPIDER_ML language was published in the

JSEA - Journal of Software Engineering and Applications

[12][22]. The Framework SPIDER-PE was the subject of a

dissertation defended at the Informatics Center in the

Federal University of Pernambuco (CIn/UFPE) [31]. The

research related to the Spider-PE tool was also published in

the Free Software Workshop [26] and was ranked among

the "Best Papers" in this event, and in the VIII Annual

Workshop of the MPS [25].

B. In Industry

The technologies presented in this article are used by the

authors in consulting projects related to process

improvement. First, the xSPIDER_ML, as well as the

results of this phase of the research, were used by

companies that are SPIDER project partners, such as the

FabSoft and the Pronto Digital, both located in Belém city.

Basically, the language aided on the steps of defining and

monitoring the projects. On the other side, the activities of

the Framework SPIDER-PE are widely adopted in the

implementation of the Level 2 of CMMI-DEV and F of

MR-MPS-SW in organizations in which the authors provide

consulting, located at Porto Digital (Recife city) and Farol

Digital (João Pessoa city). Finally, it is noteworthy that the

last feature of the Spider-PE tool was released in November

2013. Nevertheless, requests for using the tool in consulting

processes in a partnership agreement were made by the

company SWQuality (based in Recife city and subsidiaries

Maringá and Belém cities).

VI. CONCLUSION

The purpose of the Spider-PE is to support software

development organizations, so they can run their processes

flexibly and in a semi-automated way according to the

notations of SPEM and the recommendations of the quality

models CMMI - DEV and MR- MPS -SW. Therefore, the

purpose of the tool is to facilitate the adoption of these

standards and quality models for software development.

The set of tools also aims to help the software industry to

achieve more satisfactory levels of discipline from the

combination of patterns, models, procedures, tools,

techniques and methods that help in implementing the

process in an automated way that provides information

about the progress of the project.

543Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 565 / 679

A strong point of this proposal is that the tool is totally
free and allows the academic community and/or the industry
to contribute to the evolution and improvement of the tool.
However, the components of this tool must be customized
according to the profile and characteristics of the
organization that will use it. Moreover, this tool must be
implemented in the organizational department responsible
for the software development, requiring, therefore, a
strategic, tactical and operational effort of the senior
management so it can be deployed in a proper and
satisfactory manner.

REFERENCES

[1] Association for Promotion of Brazilian Software Excellence.
SOFTEX: General Guide for Software Process Improvement.
Available from: http://www.softex.br/wp-
content/uploads/2013/07/MPS.BR_Guia_Geral_Software_20
12.pdf 2014.08.02

[2] Software Engineering Institute. SEI: CMMI for Development.
Available from: http://www.sei.cmu.edu/reports/10tr033.pdf
2014.08.02

[3] M. Staples, et al. "An exploratory study of why organizations
do not adopt CMMI", Journal of Systems and Software, vol.
80, pp. 883-895, Jun. 2007, doi:10.1016/j.jss.2006.09.008.

[4] G. Leal, et al. “Empirical study about the evaluation of the
implantation of MPS.Br in enterprises of Paraná”, Proc.
Conferencia Latinoamericana En Informatica (CLEI 12), Oct.
2012, pp. 1-9, doi:10.1109/CLEI.2012.6427201.

[5] C. Almeida, T. Macedo, and A. Albuquerque. “Analysis of
the continuity of software processes execution in software
organizations assessed in MPS.BR using Grounded Theory”,
Proc. International Conference on Software Engineering &
Knowledge Engineering (SEKE 11), Jul. 2011, pp. 792-797.

[6] M. Montoni and A. R. Rocha, "An Investigation into the
Success Critical Factors in Initiatives Software Process
Improvement". Proc. Brazilian Symposium on Software
Quality (SBQS 11), Jun. 2011, pp. 151-165.

[7] S. Oliveira, et al. "A Proposal for Systemic Solution of a Free
Software Tools SUITE to Support to MPS.BR Model
Implementation", Magazine of Brazilian Program of Quality
and Productivity in Software, 2nd ed., pp. 103-107, 2010.

[8] H. Feiler and S. Humphrey, “Software Process Development
and Enactment: Concepts and Definitions”, Proc.
International Conference on the Software Processes - IEEE
Computer Society Press, Feb. 1993, pp. 28-40, doi:
10.1109/SPCON.1993.236824.

[9] M. Kellner and G. Hansen, Software Process Modeling.
Pittsburgh, PA: Carnegie Mellon University/Software
Engineering Institute, 1988.

[10] Object Management Group. OMG: Software & Systems
Process Engineering Meta-Model Specification. Available
from: http://www.omg.org/spec/SPEM/2.0/PDF 2014.08.02

[11] Object Management Group. OMG: Business Process Model
and Notation (BPMN). Available from:
http://www.omg.org/spec/BPMN/2.0/PDF 2014.08.02

[12] C. Portela, et al. “A Comparative Analysis between BPMN
and SPEM Modeling Standards in the Software Processes
Context”, Journal of Software Engineering and Applications,
vol. 5, pp. 330-339, May 2012, doi:10.4236/jsea.2012.55039.

[13] R. Bendraou, B. Combemale, X. Cregut, and M.-P. Gervais,
“Definition of an Executable SPEM 2.0”, Proc. Asia-Pacific
Software Engineering Conference (APSEC 07), Dec. 2007,
pp. 390-397, doi: 10.1109/ASPEC.2007.60.

[14] C. Reis, "A Flexible Approach for Evolutive Software
Process Enactment", PhD Thesis in Science Computer. Porto

Alegre, RGS: Informatics Institute, Federal University of Rio
Grande do Sul, 2003.

[15] S. Oliveira, A. Vasconcelos, and A. C. Rouiller. "A Proposal
of Environmental to Software Process Implementation",
INFOCOMP - Journal of Computer Science, vol. 4, pp. 71-78,
Mar. 2005.

[16] A. Lima, et al. “WebAPSEE: A Free and Flexible
Environment for Software Process Management”, Proc. Free
Software Workshop (WSL 06), Apr. 2006.

[17] B. França, E. Sales, C. Reis, and R. Reis. "Using the
WebAPSEE Environment in the MPS.BR Level G
implementation in CTIC-UFPA," Proc. Brazilian Symposium
on Software Quality (SBQS 09), Jun. 2009, pp. 310-317.

[18] G. Guizzardi, R. Falbo, and R. Guizzardi. “Grounding
Software Domain Ontologies in the Unified Foundational
Ontology (UFO): The Case of the ODE Software Process
Ontology”, Proc. Conferencia Iberoamericana de Software
Engineering (CIbSE 08), Feb. 2008, pp. 127-140.

[19] G. Travassos, “The Model Integration of TABA Station
Tools”, PhD Thesis in Science Computer. Rio de Janeiro, RJ:
COPPE, Federal University of Rio de Janeiro, 1998.

[20] S. Oliveira, “ProDefiner: A Progressive Approach to the
Definition of Software Processes in the Context of a Centered
Environment in Process”, PhD Thesis in Science Computer.
Recife, PE: Informatics Center, Federal University of
Pernambuco, 2007.

[21] R. Barros and S. Oliveira, “SPIDER_ML: A Language for
Software Process Modeling", Proc. Regional School of
Informatics (ERIN 10), Oct. 2010.

[22] C. Portela, et al. “xSPIDER_ML: Proposal of a Software
Processes Enactment Language Compliant with SPEM 2.0”,
Journal of Software Engineering and Applications, vol. 5, pp.
375-384, Jun. 2012, doi:10.4236/jsea.2012.56044.

[23] C. Portela and M. Gomes. xSPIDER_ML. Technical
Specification. Available from:
http://www.spider.ufpa.br/projetos/xspider_ml/xSPIDER_ML
.pdf 2014.08.05

[24] GNU Project. General Public License. Available from:
http://www.gnu.org 2014.08.05

[25] A. Silva, E. Silva, C. Portela, S. Oliveira, and A.
Vassconcelos. “Spider-PE: A Support Tool to Implementation
of Capacity of the MR-MPS Level F and CMMI-DEV Level
2", Proc. Annual Workshop of the MPS.BR (WAMPS 12),
Oct. 2012, pp. 186-194.

[26] A. Silva, E. Silva, C. Portela, S. Oliveira, and A.
Vassconcelos. “Spider-PE: A Support Tool to Software
Process Enactment adhering to CMMI-DEV and MR-MPS”,
Proc. Free Software Workshop (WSL 12), Jul. 2012.

[27] Apache Subversion. SVN Download. Available from:
http://subversion.apache.org/ 2014.08.08

[28] Redmine Project. Redmine Download. Available from:
http://www.redmine.org/projects/redmine/wiki/Download
2014.08.08

[29] SPIDER Project. Research Results. Available from:
spider.ufpa.br/index.php?id=resultados 2014.08.08

[30] R. Barros and S. Oliveira, “Spider-PM: A Support Tool for
Software Process Modeling", Proc. Annual Meeting of
Computing (ENACOMP 10), Oct. 2010.

[31] C. Portela, “Spider-PE: A Support Framework to Flexible
Enactment of Software Processes adhering to Quality
Models”, Master Dissertation in Science Computer. Recife,
PE: Informatics Center, Federal University of Pernambuco,
2012.

[32] C. Portela, A. Vasconcelos, and S. Oliveira. “Spider-PE: A
Support Set of Tools to Process Enactment adhering to
Quality Models", Proc. Thesis and Dissertation Workshop on
Software Quality (WTDQS 11), Jun. 2011.

544Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 566 / 679

On the Use of Ontology for Dynamic Reconfiguring Software Product Line Products

Thyago Tenório

Computing Institute
Federal University of Alagoas (UFAL)

Maceió, Brazil
ttmo@ic.ufal.br

Diego Dermeval

Department of Computer and Systems
Federal University of Campina

Grande (UFCG)
Campina Grande, Brazil

diegodermeval@copin.ufcg.edu.br

Ig Ibert Bittencourt

Computing Institute
Federal University of Alagoas (UFAL)

Maceió, Brazil
ig.ibert@ic.ufal.br

Abstract—Software Product Line (SPL) is a set of software
systems that have a particular set of common features and that
satisfy the needs of a particular market segment or mission. The
traditional SPLs focus on building software platforms at develop-
ment time. In contrast, modern systems of emerging domains (e.g.,
ubiquitous computing, service robotics and autonomic systems)
require new settings to perform dynamic reconfiguration. In this
context, Dynamic Software Product Line (DSPL) extends the
SPL concept to provide an efficient way to deal with software
adaptation at runtime. A key artifact in SPL is the feature
model. Such model is very important in the specification of SPLs,
representing the variability of the software and also supporting
the instantiation of applications. However, this model has some
limitations regarding its usage in DSPL. In order to effectively
provide dynamic reconfiguration of features, it is necessary to
represent such model in a formal way thus it can be automatically
monitored, retrieved and modified during the execution of a
product. Hence, we propose an ontology for feature modeling,
regarding its capabilities to handle changes in the feature models,
demanding less effort to be reconfigurable at runtime. In order to
illustrate the use of the ontology, a set of reconfiguration scenarios
in the domain of ubiquitous computing are presented.

Keywords–Ontology; Software Product Lines; Dynamic Soft-
ware Product Lines;

I. INTRODUCTION

Software Product Line (SPL) engineering is a paradigm
that advocates the reusability of software artifacts and the
rapid development of new applications for a particular domain.
These objectives are achieved by capturing the commonal-
ities and variabilities between the products from the same
domain in variability models (e.g., feature models). Software
Product Line engineering methods offer characteristics such
as rapid product development, reduced time-to-market, quality
improvement, and more affordable development costs [1].

The traditional methods for designing SPL focus on its
construction at development time, thus each product config-
uration is instantiated before a product is delivered to the
customer. However, the modern systems of emerging domains
such as ubiquitous computing, service robotics, unmanned
space and autonomic systems are increasingly requiring new
mechanisms capable to reconfigure their variability models
at runtime, i.e., without stopping the system’s execution. In
this context, Dynamic Software Product Lines (DSPL) extend
existing Software Product Line engineering approaches to
provide ways to handle with software adaptation at runtime
[2].

One of the key artifacts used in SPL engineering is the
feature model. Such model is widely used in the context of
SPLs to capture the common and variable functionalities of
products from a same domain. However, its informal repre-
sentation has several limitations regarding its usage in DSPLs,
for instance, it is difficult to automatically monitor, retrieve
and modify them at runtime [2].

In order to effectively provide dynamic reconfiguration
of products, it is necessary to represent feature models in a
formal way, as a result it can be automatically reasoned or
queried during the execution of a product. Meanwhile, some
studies use ontologies as an effective way to formally represent
feature models [3][4]. However, none of the existing studies
on ontology-based feature modeling provides explicit elements
(e.g., status of the features and product configuration model)
capable to allow product reconfiguration at runtime with less
effort.

Facing the potential benefits of using ontologies to repre-
sent feature models for DSPL purposes and the limitations of
existing ontology-based feature modeling approaches regard-
ing dynamic reconfigurations, we propose the OntoSPL ontol-
ogy. Such ontology presents an alternative way for modeling
ontology-based feature models. OntoSPL was conceived with
the purpose to be as much flexible as possible, since it specifies
a predefined structure of classes and properties and suggests
the creation of features model as OWL instances/individuals
of such structure. In addition, we present a set of SPARQL
queries, in different scenarios, that can be executed to auto-
matically reconfigure SPL products specified in OntoSPL.

The remainder of this paper is organized as follows. Section
II describes in details the OntoSPL ontology. Section III
presents the OntoSPL for DPSL Products and a set of SPARQL
queries for reconfiguring SPL products. Section IV compares
our work to related ones. Finally, Section V presents our
conclusions and points out future works.

II. ONTOSPL

This section presents the OntoSPL ontology. According to
the Guarino’s ontologies classification [5], such ontology is
a domain one, which aims to describe the main concept of
Software Product Line through the feature model diagram. The
variability of SPLs is commonly expressed through features
represented in this model. A feature is a property of the system
which is relevant to some stakeholder and is used to capture
similarities and variabilities in software systems.

Feature modeling has been proposed as an approach for

545Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 567 / 679

describing variable requirements for Software Product Lines
[6]. It is an important activity of the Software Product Line
development process, since it is in such phase that the common
and variable features of the product family are specified. In this
sense, OntoSPL provides an explicit conceptualization of the
essential elements involved in such diagram and is described
by the following elements: concepts, properties and relations.
In the sequel, the ontology is informally described (through
the description of feature model elements) and its concepts,
properties and relationships are further presented.

A. Informal description of the ontology

The ontology is inserted in the SPL Domain Engineering.
It describes the concepts involved in feature modeling, as
proposed by the Feature-Oriented Domain Analysis (FODA)
notation [7]. A feature model provides a graphical tree-like
notation that shows the hierarchical organization of features.
The root of the tree represents the whole SPL node, all other
nodes represent different types of features which are part of a
SPL.

Features are organized in feature models and can be one
the following types: mandatory, optional, alternative and or-
features. The mandatory type must be present in all products
derived from a Software Product Line. The optional one may or
may not be included into a product derived from a SPL, hence
its presence is optional. In the alternative feature, exactly one
feature from a set of features must be included in a product.
In the or-feature type, one or more features from a set of
features can be included in a product from a SPL. Moreover,
dependency rules between features may exist and can be of two
types: (i) Requires, when one feature requires the existence of
another feature (they are interdependent); and (ii) Excludes,
when one feature is mutually exclusive to another one (they
can not coexist). The Group element indicates a constraint in
a set of grouped features.

A feature constraint has also a name and can be classified in
Depend (Require), Exclude or Group. The Depend constraint
has a name, a set of source features and a set of target features.
Such constraint means that if all source features are selected
in a product, then, in the same product derived from a SPL, all
the target features must be selected too. The Exclude constraint
has exactly the same properties of the Depend one. It only has
a semantic difference, since if all source features are selected
in a product then any target features may not be selected in
such product. Finally, the Group constraint has a name, a set
of features and a constraint type which indicates a type of the
constraint on the group.

B. Description of the classes, properties and relationships

In this section, the classes, properties and relationships
of the OntoSPL are described. Figure 1 illustrates its hi-
erarchy of classes. Note that the description of the classes
on below follows the format ”Class Name(Class Attribute 1,
Class Attribute 2,...,Class Attribute n)”.

• SoftwareProductLine (name, description, Feature-
Model): this class represents an arbitrary Software
Product Line. It has primitive elements such as: name
and description. Moreover, a SPL contains a Feature
Model.

• FeatureModel (name, Feature, FeatureConstraint): this
class describes a Feature Model which represents the

Figure 1. OntoSPL classes hierarchy (OntoViz plugin
visualization).

hierarchy organization of the features of a SPL. It has
a set of features and a set of feature’s constraints.

• Feature (name, current state): this class represents a
resource available in the Software Product Line. It
may be classified into Mandatory, Optional, Alterna-
tive, OrFeature and RootFeature:

◦ Mandatory (name): this class represents a
mandatory resource of the SPL, i.e., it must
be present in all products

◦ Optional (name): this class represents an op-
tional resource of the SPL, i.e., it is optionally
present in any product.

◦ Alternative (name, exclusive, AlternativeFea-
ture): this class represents an alternative re-
source of the SPL. An alternative resource
specifies that two or more resources may not
co-exist.

◦ OrFeature (name, AlternativeFeature): this
class represents an or exclusive resource of the
SPL. An or exclusive resource specifies that
two or more resources may or may not co-
exist.

◦ RootFeature (name): this class represents a
root feature. A root feature represents the root
of the features tree. It is on top of a feature
model.

• FeatureConstraint (name): this class represents a con-
straint in the feature model. It may be classified into
Depend, Exclude or Group:

◦ Depend (name, SourceFeature, TargetFeature):
This class represents a constraint of the De-
pend type. As mentioned above, it has a set of
source features and a set of target features.

◦ Exclude (name, SourceFeature, TargetFeature):
this class represents a constraint of the Exclude
type. As mentioned above, it has a set of source
features and a set of target features.

◦ Group (name, SetFeatures, typeConstraint):
this class represents a constraint of the Group
type. It has a set of features and a String
typeConstraint which indicates the type of the

546Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 568 / 679

constraint. The types can be: (i) zero-or-one
feature exactly (0 or 1); (ii) At-least-one fea-
ture (1 or more); (iii) Exactly-one feature (1);
(iv) Any feature (0 or more); (v) All features
(n);

OntoSPL specifies a set of relationships between the ontol-
ogy classes. The two classes between the parentheses following
the property name represents, respectively, the source and
target classes of such property.

• hasRootFeatures (FeatureModel, RootFeature): speci-
fies that a FeatureModel contains a set of root features
(which may not be empty);

• hasSetOfAlternativeFeatures (Alternative,
Alternative): specifies that an alternative feature
must have at least one feature alternative. It is a
symmetric property;

• hasSetOfConstraints (FeatureModel, FeatureCon-
straint): specifies that a FeatureModel contains a set
of feature’s constraints;

• hasSetOfFeatures (Group, Feature): specifies that a
Group constraint contains a set of features (which may
not be empty);

• hasSourceFeatures (Depend/Exclude, Feature): speci-
fies that a Depend or Exclude constraint has a set of
source features (which must have at least one feature);

• hasTargetFeatures (Depend/Exclude, Feature): speci-
fies that a Depend or Exclude constraint has a set of
target features (which must have at least one feature);

• isBasedOn (SoftwareProductLine, FeatureModel):
specifies that a SPL is based on exactly one
FeatureModel. It is a functional property;

• isChildOf (Feature, Feature): specifies that a feature
is child of exactly one another Feature. It is a func-
tional property and it is also the inverse property of
isParentOf;

• isParentOf (Feature, Feature): specifies that a feature
contains a set of children features. It is the inverse
property of isChildOf.

C. Axioms of the ontology

The classes and relationships described above express a
taxonomy of the OntoSPL ontology. In order to describe it in
a detailed and formal way, it must be governed with axioms.
All axioms of the OntoSPL are defined in description logics
(DL) and the OWL syntax used to represent it is summarized
in Table I. The data properties, classes axioms and object
properties are, respectively, presented in Tables II, III and IV.

TABLE I. SUMMARY OF DL SYNTAX.

Notations Explanation
⊤ Superclass of all OWL classes
A ⊑ B A is a subclass of B
A ⊑ ¬ B A and B are disjoint class
A ⊓ B Class intersection
A ⊔ B Class union
A ≡ B Class equivalence
⊤ ⊑ ∀ P.A Range of property is class A
∃ / ∀ P.A allValuesFrom/someValuesFrom restriction

that for every instance of this class that has instances of property P, all
some of the values of the property are members of the class A

TABLE II. DATA PROPERTIES AXIOMS OF ONTOSPL.

Data Property Source Data Type
description SoftwareProductLine String
name SoftwareProductLine;

FeatureModel;Feature; String
FeatureConstraint

exclusive Alternative String
typeConstraint Group String
currentState Feature Boolean

TABLE III. CLASSES AXIOMS OF ONTOSPL.

Class Axioms

Alternative ⊑ Feature
Alternative Alternative ⊑ ¬Optional

Alternative ⊑ ¬Mandatory
Alternative ⊑ ¬ORFeature
Alternative ⊑ ¬Root
Depend ⊑ FeatureConstraint
Depend ⊑ ¬Exclude

Depend Depend ⊑ ¬Group
Exclude ⊑ FeatureConstraint
Exclude ⊑ ¬Depend

Exclude Exclude ⊑ ¬Group
Feature Feature ⊑ ⊤
Feature Constraint FeatureConstraint ⊑ ⊤
Feature Model FeatureModel ⊑ ⊤

Group ⊑ FeatureConstraint
Group Group ⊑ ¬Depend

Group ⊑ ¬Exclude
Mandatory ⊑ Feature

Mandatory Mandatory ⊑ ¬Optional
Mandatory ⊑ ¬Alternative
Mandatory ⊑ ¬ORFeature
Mandatory ⊑ ¬Root
Optional ⊑ Feature

Optional Optional ⊑ ¬Mandatory
Optional ⊑ ¬Alternative
Optional ⊑ ¬ORFeature
Optional ⊑ ¬Root
ORFeature ⊑ Feature

ORFeature ORFeature ⊑ ¬Mandatory
ORFeature ⊑ ¬Alternative
ORFeature ⊑ ¬Optional
ORFeature ⊑ ¬Root
Root ⊑ Feature

Root Root ⊑ ¬Mandatory
Root ⊑ ¬Alternative
Root ⊑ ¬ORFeature
Root ⊑ ¬Optional

Software Product Line SoftwareProductLine ⊑ ⊤

III. DSPL PRODUCTS RECONFIGURATION

In SPL engineering, the applications are built by reusing
domain artifacts and by exploiting the product line variability.
To create instances (products) of a Software Product Line, one
must choose the features that will be present in the product,
following the constraints of the features model.

A SPL product contains a specific subset of features. In
the DSPL context, by contrast, the requirements (expressed as
feature models) of these products vary at runtime. Thus, these
models must be reasoned or queried during the execution of
a product, allowing it to be self-reconfigured at runtime, as
required by DSPL engineering.

In this sense, OntoSPL may represent a single product
based on a SPL feature model specified. It is used as the
decision model on where the SPL variations are selected.
Hereafter, we present how to represent a product on the
ontology. Then, we present a set of dynamic reconfiguration
scenarios which were applied to a running example of the

547Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 569 / 679

TABLE IV. OBJECT PROPERTIES AXIOMS OF ONTOSPL.

Object Property Axioms
hasRootFeatures ∃ hasRootFeatures Thing ⊑ FeatureModel

⊤ ⊑ ∀ hasRootFeatures (∃ hasRootFeatures RootFeature)
hasSetOfAlternativeFeatures hasSetOfAlternativeFeatures ≡ hasSetOfAlternativeFeatures−

∃ hasSetOfAlternativeFeatures Thing ⊑ Alternative
⊤ ⊑ ∀ hasSetOfAlternativeFeatures (≥ 1 hasSetOfAlternativeFeatures Alternative)

hasSetOfConstraints ∃ hasSetOfConstraints Thing ⊑ FeatureModel
⊤ ⊑ ∀ hasSetOfConstraints (∀ hasSetOfConstraints (Depend ⊔ Exclude ⊔ Group))

hasSetOfFeatures ∃ hasSetOfFeatures Thing ⊑ Group
⊤ ⊑ ∀ hasSetOfFeatures (∃ hasSetOfFeatures Feature)

hasSourceFeatures ∃ hasSourceFeatures Thing ⊑ Depend
∃ hasSourceFeatures Thing ⊑ Exclude
⊤ ⊑ ∀ hasSourceFeatures (≥ 1 hasSourceFeatures Feature)

hasTargetFeatures ∃ hasTargetFeatures Thing ⊑ Depend
∃ hasTargetFeatures Thing ⊑ Exclude
⊤ ⊑ ∀ hasTargetFeatures (≥ 1 hasTargetFeatures Feature)

isBasedOn ⊤ ⊑ ≤ 1 isBasedOn Thing
∃ isBasedOn Thing ⊑ SoftwareProductLine
⊤ ⊑ ∀ isBasedOn (= isBasedOn FeatureModel)

isChildOf isChildOf ≡ isParentOf −

⊤ ⊑ ≤ 1 isChildOf Thing
∃ isChildOf Thing ⊑ Feature
⊤ ⊑ ∀ isChildOf (= isChildOf Feature)

isParentOf isChildOf ≡ isParentOf−

⊤ ⊑ ≤ 1 isParentOf− Thing
∃ isParentOf Thing ⊑ Feature
⊤ ⊑ ∀ isParentOf Feature

ubiquitous domain published in the literature, a simplified
smart hotel [8].

A. DPSL products configuration

OntoSPL supports the instantiation of products based on
the SPL in order to facilitate the reconfiguration of the product
when it is necessary. In this sense, the property current state
of the Feature class indicates whether the feature belongs or
not to a particular product. This property presents the follow-
ing range of values: {”eliminated” : string, ”selected” :
string}. Such a property can only receive the values: selected,
case the feature must be in the product, or eliminated, case the
feature must not be in the product.

Hence, one can reason in the ontology to perform dynamic
reconfiguration in an arbitrary product. After defining the
features that may be present in the product to be created, there
is only necessary to set the property current state for each
feature instantiated in a product.

For instance, Figure 2 depicts the feature model of the
Simplified Smart Hotel (extracted from [8]). Its mandatory
features are represented by a small filled circle above the
feature name (e.g., Automated Illumination). Optional features
are represented by a small circle not filled (e.g., Piped Music,
Security and Alarm). Alternative features share the same parent
feature and are graphically represented by a not filled arc below
the parent feature; such arc means that one and only one of
the child features must be chosen (e.g., Silent Alarm,Siren and
Visual Alarm). Finally, the or-features (e.g., Infrared Sensor
and Volumetric Sensor) are represented by a filled arc, in a
similar way to alternative features.

As shown in Figure 2, the gray features indicate which are
the selected features for a product configuration. The current
configuration of the simplified smart hotel includes the Piped
Music, Security, In Room Detection, Volumetric Sensor, Alarm,
Silent Alarm, Automated Illumination features and Lighting
by Occupancy features. However, the white features represent
potential variants of a product configuration [8].

B. Dynamic reconfiguration scenarios

Once a product is specified in the OntoSPL ontology, it can
be reconfigured dynamically according to different scenarios.
This section describes scenarios directly related to changes
in the type of a feature and also changes related to product
configuration.

In this sense, to specify this product in the OntoSPL ontol-
ogy, one must set the current state property of these features
to the ”selected” value and ”eliminated” for the others features.
For instance, in our running example, the gray features of
Figure 2 assume the ”selected” value in the OntoSPL, whereas
the white features assume the ”elimated” value.

In the sequel, we present three scenarios (specified in
SPARQL 1.1 [9]) which can be executed for changing SPL
products at runtime. Note that these scenarios are presented by
applying them to our running example, but they have generic
purposes.

1) Changing an optional feature to mandatory feature:
Changing an optional feature to a mandatory one demands
a simple change scenario in the requirements of a particular
feature. Such change does not have a great impact in the feature
model, since it is not necessary to create/remove features on
the feature model.

Let’s suppose, for an arbitrary reason, that an Smart Hotel
requires security requirements. In this context, there is the
need to make the ”Security” feature a mandatory one. This
way, the query on Figure 3 could be used to perform such
reconfiguration.

This query updates the property type of the feature being
changed. Note that, the optional type is deleted while the
mandatory type is inserted. As consequence, the feature will
be mandatory in the product.

2) Selecting an optional feature in a product: This is one
of the most common changing scenarios in SPLs. Usually, a
product is firstly generated according to customer’s needs at

548Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 570 / 679

Figure 2. Feature model of the simplified smart hotel (extracted from [8]).

��������	
������������	
��
������������	����
�����

��������������������
������������������	�������	��

�������� �!�������!�	
�"�������
#

�������� �!�������!�	
�$��%�����
#

������ �!�	
����!&'��(����&
#

Figure 3. Changing an Optional feature to Mandatory feature.

development time and includes several features and, in such
moment, a optional feature would not be selected to be in
the product. However, in a later moment, it is possible that a
client demands the inclusion of an optional feature that was
not previously addressed by the configured product.

In the DSPL context, it is important to specify a mechanism
which can reconfigure the product to reflect the current re-
quirements of the client. For instance, in our running example,
despite the hotel having alarm, the feature Bliking lights was
not originally selected to be in the Smart Hotel configuration.
However, in a changing scenario, the client would like to
include it in his product.

To achieve such change, it is necessary to change the
property that indicates that the feature is present or not in the
system in the ontology of the product at runtime. The update of
this property can be realized by the SPARQL query on Figure
4.

��������	
������������	
��
������������	����
�����

�������

�����	
���������	������ ��������!
"

�������

�����	
���������	������ 	������!
"

�����������	
������ #��$��������	 "

Figure 4. Selecting An Optional Feature in a Product.

As can be seen in the query, after setting the status of the
Bliking Lights feature as ”Selected”, such feature is included
in the product.

3) Changing an Alternative Feature: Usually, it is neces-
sary to select alternative ways to realize a product requirement.

The alternative type of features specifies a design space of
variations on which a product can use. A product configuration
requires the selection of one of the variants on such kind of
features, but it is possible that a client would be not satisfied
with the variant selected and wants to reconfigure a product
with another variant.

For instance, in our running example, the selected variant of
alarm is the silent type. However, one could require to change
from the Silent Alarm feature to the Siren one.

Figure 5 specifies a SPARQL query which makes such
variant change. This query is similar to the one presented in
Subsection III-B2, however, it is not only a selection of a new
feature, but rather the substitution of one feature by another.
Thus, there is the need to remove the existing feature and then,
add the new feature.

��������	
������������	
��
������������	����
�����

������

����������������	������ 	������!

�"��������������	����� ��������!

#

������

����������������	����� ��������!

�"��������������	����� 	������!

#

������

�"���	
������ �����

�����	
����� ������$���

�

Figure 5. Changing an Alternative Feature.

As defined in the query, the Silent Alarm would be elim-
inated from the hotel and the Siren would be enabled in the
product. After executing this query, the selected type of Alarm
is the Siren feature.

IV. RELATED WORKS

Using ontologies in the development of SPLs has been
addressed by several studies in the literature. In fact, it was
found some studies with the particular aim of using ontology
for representing feature models [3][4]. Furthermore, we have

549Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 571 / 679

found only one study which makes use of ontology-based
feature modeling in the design of DSPLs [10].

Wang et al. [3] presents a technique to design ontology-
based feature models, by representing feature models as OWL
classes and properties. Moreover, they use OWL reasoning
engines to check for inconsistences of feature configurations
automatically. However, since the features in such modeling
are represented as OWL classes and properties, every change
in the feature model requires a structural modification in the
ontology.

OntoSPL ontology presents an alternative way for model-
ing ontology-based feature models. It proposes a predefined
structure of classes and properties and suggests the creation of
features model as OWL instances/individuals of such structure.
This alternative way for feature modeling is more suitable than
the one of [3] for dynamic reconfigurations of features.

In order to change a feature model using Wang’s ontology
[3], for instance, adding a new feature, it would be necessary
to change the structure of the ontology and then it would be
also necessary to generate the ontology mapping code again.
Thus, applying such changes in an application would require to
stop the execution of the system. On the other hand, using the
OntoSPL, changes are performed at the instances level. This
characteristic allows to change instances at runtime, i.e., it is
not necessary to generate the ontology mapping code again
and hence, it would not be necessary to stop the application.

The work by Zaid et al. [4] also presents an ontology
to represent feature models based on OWL instances which
is similar to our ontology. However, it is focused on the
automatic consistency verification of feature models and it was
not conceived to support dynamic reconfiguration of features.
Thus, it does not consider important issues regarding changes
at runtime, for example, properties related to the status of the
feature.

Regarding the use of ontology in the development of dy-
namic Software Product Lines, Kaviani et al. [10] use ontology
to annotate feature models covering non-functional require-
ments modeling in the context of ubiquitous environments.
However, it also represents feature models as proposed in [3],
thus the same limitations regarding the impact of changes
in the feature model are also applicable to it. Moreover, it
is noteworthy that the dynamic reconfiguration effort using
the OntoSPL ontology is lower, since it is only necessary
to change product configurations through SPARQL queries
without needing to generate code to manipulate a product.

V. CONCLUSION AND FUTURE WORKS

In this paper, we presented the OntoSPL ontology, which
is used to specify feature models in a formal way with the
special aim to support automatic reconfigurations of products
in the context of Dynamic Software Product Line.

To illustrate how to reconfigure DSPL products using such
ontology, we also specified three SPARQL queries that were
applied to an existent running example in the literature.

This study can be considered as a first step towards
selecting a suitable way for formalizing feature models to be
used in the context of DSPLs. Future works should include
the conduction of a controlled experiment in different con-
texts to evaluate the effectiveness of OntoSPL in comparison
with other ontologies regarding its capabilities (e.g., time to
realize some change, flexibility and so on) for performing
reconfiguration at runtime. Moreover, we intend to incorporate
some consistency checking mechanism in OntoSPL to validate
product reconfigurations. We also intend to define a DSPL
process based on the OntoSPL.

ACKNOWLEDGMENTS
This work has been supported by the Brazilian institu-

tions: Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico (CNPq) and Coordenacão de Aperfeicoamento de
Pessoal de Nı́vel Superior (CAPES).

REFERENCES
[1] K. Pohl, G. Bockle, and F. Van Der Linden, Software product line

engineering. Springer, 2005, vol. 10.
[2] M. Hinchey, S. Park, and K. Schmid, “Building dynamic software

product lines,” Computer, vol. 45, no. 10, 2012, pp. 22–26.
[3] H. H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan, “Verifying feature

models using owl,” Web Semantics: Science, Services and Agents on
the World Wide Web, vol. 5, no. 2, 2007, pp. 117–129.

[4] L. A. Zaid, F. Kleinermann, and O. De Troyer, “Applying semantic
web technology to feature modeling,” in Proceedings of the 2009 ACM
symposium on Applied Computing. ACM, 2009, pp. 1252–1256.

[5] N. Guarino, Formal Ontology in Information Systems: Proceedings of
the 1st International Conference June 6-8, 1998, Trento, Italy, 1st ed.
Amsterdam, The Netherlands, The Netherlands: IOS Press, 1998.

[6] K. Czarnecki, C. H. Peter Kim, and K. T. Kalleberg, “Feature models
are views on ontologies,” in Proceedings of the 10th International on
Software Product Line Conference, ser. SPLC ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 41–51.

[7] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, Feature-
Oriented Domain Analysis (FODA) Feasibility Study, 1990.

[8] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Prototyping dynamic
software product lines to evaluate run-time reconfigurations,” Science
of Computer Programming, vol. 78, no. 12, 2013, pp. 2399 – 2413,
special Section on International Software Product Line Conference 2010
and Fundamentals of Software Engineering (selected papers of {FSEN}
2011).

[9] W3C, “Sparql 1.1 query language,” Available in
http://www.w3.org/TR/2012/PR-sparql11-query-20121108/, retrieved:
October, 2014.

[10] N. Kaviani, B. Mohabbati, D. Gasevic, and M. Finke, “Semantic annota-
tions of feature models for dynamic product configuration in ubiquitous
environments,” in Proceedings of the 4th International Workshop on
Semantic Web Enabled Software Engineering, in collaboration with
International Semantic Web Conference (ISWC), Karlsruhe, Germany,
2008.

550Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 572 / 679

A Formal Model of Use-Cases and Its Application in Generating

A Hierarchical Class-Structure

Sukhamay Kundu

Department of Computer Science
Louisiana State University, Baton Rouge, LA 70803

Email: kundu@csc.lsu.edu

Arnab Ganguly

Department of Computer Science
Louisiana State University, Baton Rouge, LA 70803

Email: agangu4@lsu.edu

Abstract—Creating an object-oriented design from user require-
ments, given as a set of use-cases, means deriving a detailed
class structure that can support an implementation of those
requirements. We introduce here the Augmented Finite-State
(AFS) model for a set of use-cases. An AFS model of a single use-
caseU incorporates the inputs, outputs, and operations for each
interaction in U , including the ”internal” dataflows among those
interactions. The AFS model for a set of use-casesU combines
the AFS models of individual use-casesUj ∈ U to account for
common interactions amongUj ’s and the control-flows among
Uj ’s. After we decompose the combined model into a unique set
of disjoint Maximal Linear Segments (MLSs), we derive one class
from each MLS and finally create the class-hierarchy based on
the next-relationship among the MLSs. One advantage of our
approach over those based on the concept-analysis is that the
AFS model gives a simple controller for the call-sequences of the
class-methods corresponding to eachUj .

Keywords–Augmented finite-state model; class hierarchy; object-
oriented design; refactoring; use-case model.

I. I NTRODUCTION

Software design is an essential part of any software de-
velopment effort. For an object-oriented software, the design
consists of the classes (their attributes, methods, and method-
parameters) and the relationships among those classes, which
includes the class-hierarchy and other associations. The design
gives a global view of the functionalities and structure of the
software, and plays a critical role in understanding, implemen-
tation, and analysis of the software.

Semi-automated generation of UML-models and class-
diagrams from natural language description of requirements
are discussed in [1][2]. Automated generation of UML-models
are discussed in [3][4]. These works are based on Natural
Language Processing, and rely on use-cases defined using a
semi-formal syntaxes and semantics. Cockburn [5] argued that
there is no formal syntax or semantics for writing use-cases.
Roussev [6] uses an informal notion of ”balance” of objects
involved in a use-case, and assumes the use-cases are given in
terms of pre-conditions, post-conditions and invariants on the
objects involved in the use-cases. The identification of objects
is a key missing step in [6]; also, the notion of ”balance” of
objects has a basic flaw because ”information” do not behave
like the physical quantities force, energy, and mass, and we
don’t have a principle like the ”conservation of energy” for
”information”.

Modeling means choosing a proper abstraction and a
suitable representation of it to facilitate its use. Finite-state
models and interaction-diagrams are often used in explaining
a class-structure design [7]. We use a reverse approach: we
first create an Augmented Finite-State (AFS) model of the use-
cases (interactions) that describe the requirements and then we
build the classes and their relationships from this model. This
gives a more systematic and precise (semi-formal) technique
compared to the other methods in the literature. A class design
involves identification and grouping of operations and their
supporting variables (inputs and outputs of the operations,
and other intermediate stored data to avoid recomputation)
in a way that minimizes the information overload. The AFS
model facilitates both of these steps by capturing the essential
operational details of the system’s functional requirement. The
identification of operational details for each use-case plays a
key role in our approach. The method presented here can be
regarded as a refinement of that in Kundu [8].

Many models are used in software engineering as effective
tools. For example,Finite-statemachines are used by Chow
[9] for automated software testing. Our AFS model has some
resemblance toX-machines[10]. In X-machines, a transition
between two states is labeled by an operation whereas in AFS
the labels are constraints; the dataflow items in AFS model
correspond to the concept of ”memory” inX-machines.

In Section II, we give the detailed formal definition of a
use-case, and Section III defines the AFS model of a set of
use-casesSections IV and V explain our AFS-based approach
for generating a class-hierarchy using a simplified set of use-
cases for a bank’s ATM machine. Section VI provides a brief
conclusion.

II. A F ORMAL DEFINITION OF USE-CASE

Jacobson [11] defines a use-case as a sequence (chain)
of interactionsU = 〈t1, t2, · · · , tn〉, which provides the user
a useful service, i.e., corresponds to a complete high-level
functional requirement. IfU1 andU2 are two use-cases, then
clearlyU1U2 is also a use-case. Henceforth, a use-caseU will
mean anelementaryuse-case, which cannot be decomposed
into a sequence of two or more disjoint smaller use-cases.

A. Interactiontj
Formally, an interactiontj = (inj, opj , outj) is a triplet,

whereinj = in(tj) is a set of input data-items,opj = op(tj)
is an operation, andoutj = out(tj) is a set of output data-items.

551Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 573 / 679

The inputsinj consist of two disjoint parts: user-inputsinu
j

and other ”external” (with respect toU) inputsine
j . The term

”interaction” meansinu
j 6= ∅; however, one possible exception

to this is that the last interactiontn in U may haveinu
n = ∅

(cf. Theorem 1). An operationopj may have multiple parts and
a user may provide different parts ofinu

j at different stages of
opj , with inj andoutj interleaved. The inputs toopj may also
include zero or more additional ”internal” data-itemsdi that
are generated by previousopi’s, i < j andti ∈ U . We refer to
suchdi’s asdataflows. The outputsoutj also consists of two
parts: user-outputsoutuj and external-outputsoutej ; because
parts ofoutuj maybe saved for use in other use-cases and hence
included in outej , we may haveoutuj ∩ outej 6= ∅. Clearly,
inj = inu

j ∪ ine
j andoutj = outuj ∪ outej . Henceforth, we use

tj andopj interchangeably when no confusion is likely. Figure
1 shows the structure of an interactiontj . We can regardopj
as a function ofinj and zero or moredi, i < j, i.e., in(opj) =⋃

i≤j ini. In contrast,in(tj) = inj and thustj is not exactly
the same asopj . The dataflowdj is not determined byopj but
by tk, k > j in U ; also,dj need not be a subset ofoutj .

t j
inu

j

ine
j

d j1
⋅⋅⋅ d j p

"internal" dataflow inputsd j1
, d j2

, ⋅⋅⋅, d j p
(j1 < j2 ⋅⋅⋅ < j p < j) for opj

outuj
outej

d j ⋅⋅⋅ d j

d j generated byopj to zero or moreopk, k > j

Figure 1. Structure of an interactiontj .

B. Use-CaseU

We formally define a use-case as a sequence of interactions
U = 〈t1, t2, · · · , tn〉 with the properties (1)-(4) below.

(1) inu
i ∩ inu

j = ∅ for i 6= j. A user should not be
required to provide the same input more than once in a use-
case. Ifopj , j > i, requires parts of the user-inputinu

i , then
opi may include those parts ofinu

i in the internal dataflow
item di generated byopi. However,outui ∩ out

u
j may be non-

empty because parts ofoutui might be repeated inoutuj (e.g., a
”confirm operation” prompt to the user for a critical operation
like deleting a file). We assume eachinj is as small as possible,
i.e., no unnecessary ”early” inputs and all ofinj is used inopj .
Likewise, we assume eachoutj is as large as possible, i.e., no
”late” outputs. For efficient input/output operations involving
files and databases, one may want to maximize each chunk of
information exchange but for modeling purpose these ”early”
and ”late” viewpoints are more logical.

(2) ine
i ∩ ine

j = ∅ = outei ∩ outej for i 6= j. As before,
if opj , j > i, requires parts ofine

i , then opi may include
those parts ofine

i in di. This is desirable if accessing the
external input data-items are computationally expensive.We
may also include parts ofouti in di to avoid recomputing
them in opj , j > i. (A non-emptyoutei ∩ outej would mean
parts ofoutei is overwritten byopj , j > i, based on additional
information available atopj .) Becauseopj does not use any
ink or dk, k > j, there is nocyclic dependencyamongopj ’s.

(3) di ∩ dj = ∅ for i 6= j. Any part of di can be made
available to eachopj , j > i, as needed.

(4) Each (tj , tj+1)-pair has an associatedtransition-
condition cj,j+1 which needs to be satisfied afteropj is
completed in order foropj+1 to start; cj,j+1 = true means
the condition is trivially satisfied. The conditioncj,j+1 does
not depend onink, k > j, and may depend only on parts
of in(opj). All non-trivial conditionsci,i+1, i ≤ j, contribute
directly or indirectly to the pre-condition foropj+1. We assume
for now thatcj,j+1 is evaluated byopj .

We write IuU =
⋃
inu

j andIeU =
⋃
ine

j , where the unions
are taken over allj, and finallyIU = IuU ∪ IeU . Similarly, we
write Ou

U =
⋃
outuj , Oe

U =
⋃
outej , OU = Ou

U ∪ Oe
U , DU =⋃

dj , andCU = {cj,j+1 : 1 ≤ j < n}. The entities inIU ,
OU , andDU are the names of data-items and not any specific
values for them. (An instance of a use-caseU , with concrete
values for the data-items inIU and hence concrete values for
the data-items inDU ∪OU , is called a scenario.)

If the use-caseU ′ is used after the use-caseU and we need
to use parts ofinu

j at tj ∈ U as parts ofinu
j′ at tj′ ∈ U ′, then

we can include those parts ofinu
j into outej and those parts

of outej can now become a part ofine
j′ . This avoids having to

provide the common parts ofinu
j and inu

j′ more than once.

A proper choice of the individual interactionstj in mod-
eling a use-caseU is a non-trivial task. A simpler or smaller
tj can help to reduce errors in determiningin(opj), out(opj),
and cj,j+1, but it can also introduce unnecessary details in
the design of a class-structure forU . A complex or largertj
can, on the other hand, prevent sharing interactions between
different use-cases. These issues are described next.

C. Merging Interactions

If we mergetj , tj+1 ∈ U into a single interactiontj,j+1,
then we haveinu

j,j+1 = inu
j ∪ in

u
j+1 and similarly forine

j,j+1,
outuj,j+1, andoutej,j+1. In general,dj,j+1 ⊆ dj ∪ dj+1, with
tj,j+1 hiding dataflows fromtj to tj+1 (making them internal
to opj,j+1); in the extreme case, we may havedj,j+1 = dj+1.
Also, opj,j+1 = opj◦opj+1, the composition (roughly speaking
in view of cj,j+1) of opj andopj+1, in that order. The new in-
teraction sequence〈t1, t2, · · · , tj−1, tj,j+1, tj+2, · · · , tn〉 has
less information aboutopj,j+1 (equivalently,tj,j+1) because
we know less about which parts ofinj,j+1 are used by which
parts ofopj,j+1 to produce which parts ofoutj,j+1 anddj,j+1.
There is, however, no change inIuU , IeU , Ou

U , andOe
U .

Except for the loss of some information as noted above, it
is safe to mergetj andtj+1 whencj,j+1 = true. In this case,
each use-caseU ′ containingtj will also containtj+1 and thus
we can replacetj and tj+1 by tj,j+1 in eachU ′.

The merging oftj andtj+1 has no impact on the condition
from tj−1 to tj,j+1, i.e., cj−1,(j,j+1) = cj−1,j , which will
be evaluated byopj−1. However, determining the condition
c(j,j+1),j+2 from tj,j+1 to tj+2 might pose a problem as shown
below. Consider the situation on the left-side in Figure2. The
part c̄j,j+1: ”x + z 6= 0” in c(j,j+1),j+2 = c̄j,j+1 ∧ cj+1,j+2

shown on the rightside in Figure2 is the result of ”pushing
down” the conditioncj,j+1: ”x 6= 0” through opj+1, which
givesxnew = xold − z, i.e.,xold = xnew + z, and thuscj,j+1:
”x 6= 0” = ” xold 6= 0” becomesc̄j,j+1: ”xnew + z 6= 0” =
”x+z 6= 0”. But a difficulty arises if we replace ”x = x−z” in
opj+1 by ”x = x2−z” because we cannot express nowxold in

552Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 574 / 679

terms ofxnew . We can, however, add the computation ”xold =
x” at the end ofopj and call itop′j , let opj,j+1 = op′j ◦ opj+1

andc(j,j+1),j+2: (xold 6= 0)∧ (y > x). But such tricks do not
always suffice as would be the case if ”x = x − z” in opj+1

is replaced by ”x = x − z/x”; opj+1 now needsx 6= 0 and
thus we cannot afford to do the test ”xold 6= 0” after opj,j+1.

opjx out j

opj+1:
{ y = y + z;
x = x − z}

z out j+1

c j , j+1: x≠0

c j+1, j+2: y > x

opj , j+1 ≡
opj opj+1

x, z out j , j+1

c(j , j+1), j+2: (x + z≠0) ∧ (y > x)

Figure 2. Illustration of a simple case ofc(j,j+1),j+2.

Even if we could define a suitablec(j,j+1),j+2, the creation
of tj,j+1 would prevent sharing just one oftj and tj+1

with another use-caseU ′, and this can be a good reason not
to createtj,j+1. On the other hand, if we have a use-case
U ′ = 〈· · · , tj, tj+1, t

′
j+2, · · · 〉 containing bothtj andtj+1 but

a different t′j+2, with c′j+1,j+2 = ”y ≤ x” = ¬cj+1,j+2 for
the pair(tj+1, t

′
j+2), then after we createtj,j+1 we will have

c′(j,j+1),j+2 = (x + z 6= 0) ∧ (y ≤ x) in U ′. Obviously, we
cannot mergetj and tk, k > j + 1, and keepU acyclic.

Theorem 1.For a use-caseU = 〈t1, t2, · · · , tn〉, there is
no loss of generality to assume that eachinj 6= ∅ for j < n
if some use-casesU ′ shareti ∈ U exactly uptotj .

Proof. If inj = ∅ and j < n, then cj,j+1 depends only
on

⋃
i<j ini and thus we can create the shortened use-case

U by merging tj into tj+1 as follows. We letcj−1,j+1 =
cj−1,j∧lift(cj,j+1), wherelift(cj,j+1) is the result of ”lifting
up” cj,j+1 through opj , and replaceopj+1 by op

j+1
=

opj ◦ opj+1. Note thatcj−1,j+1 can be evaluated byopj−1.
If there is another use-caseU ′ = 〈· · · , tj−1, tj , t

′
j+1, · · · 〉,

which is identical toU upto tj , then we can likewise create
the shortened use-caseU ′ by mergingtj into t′j+1, with op′j+1

replaced byop′
j+1

= opj ◦ op′j+1 and letting c′j−1,j+1 =

cj−1,j ∧ lift(c′j,j+1), where c′j,j+1 is the condition for the
pair (tj , t

′
j+1). Note that cj−1,j+1 ∧ c′j−1,j+1 = cj−1,j ∧

lift(cj,j+1) ∧ lift(c′j,j+1) = cj−1,j ∧ lift(cj,j+1 ∧ c′j,j+1) =
cj−1,j ∧ lift(false) = cj−1,j ∧false = false, as desired. The
shortened use-casesU andU ′ now share only uptotj−1. �

Two remarks are due here. First, mergingtj with tj+1 to
avoid inj 6= ∅ does not cost us in terms of its effect on the
class design. The methods forop

j+1
andop′

j+1
in the classes

for U andU ′ will now have some commonalities becauseopj
is a part of bothop

j+1
andop′

j+1
. However, we can refactor

the common part, if needed, to a parent class. Second, we do
not mergetj into tj−1 in the proof of Theorem 1 because if
there is an use-caseU ′′ that is identical toU only upto tj−1

then the merging would create an overloadedtj−1,j in terms
of outputs and the operationopj−1,j = opj−1 ◦ opj , and this

can cause problems with the condition for(tj−1,j , t
′′
j)-pair for

U ′′. If there is noU ′′, we could formtj−1,j to eliminatetj .

D. Decomposing an Interaction

If we can decompose anopj into a chain of suboperations
〈opj.1, opj.2, · · · , opj.m〉, m ≥ 2, then should we replacetj in
U by the chain of interactions〈tj.1, tj.2, · · · , tj.m〉, whereopj.p
corresponds totj.p? If we did, then we will havecj−1,(j.1) =
cj−1,j , c(j.m),j+1 = cj,j+1, and cj.p,j.(p+1) = true, 1 ≤ p <
m. This implies that it is safe to mergetj.p’s and hence the
decomposition is unnecessary. Note that becausecj.p,j.(p+1) =
true, there is no use-caseU ′ that includestj.p but nottj.(p+1).

E. Deleting an Interaction

In general, the deletion of atj ∈ U may not give a valid
use-case〈t1, t2, · · · , tj−1, tj+1, tj+2, · · · , tn〉. For example, if
tk, k > j, requiresdj generated byopj then removal oftj
makesopk inapplicable; hencetk needs to be removed. This
may, in turn, require othertm, m > k, to be removed and
so on. On the other hand, ifk > j is the smallest index such
thattk requiresdj then〈t1, t2, · · · , tj−1, tj+1, tj+2, · · · , tk−1〉
may not be a valid use-case because the output oftk−1 may
involve a prompt to the user to provide an input (inu

k 6= ∅).
The same argument shows that deletion oftk−1 may create a
problem, and so on. A similar argument shows that an initial
part of a use-case may not be a valid use-case. Likewise, a
tail part 〈tk+1, tk+2, · · · , tn〉 of a use-case may not be a valid
use-case because the output oftk may involve a prompt to the
user to provide an input and without that prompttk+1 becomes
meaningless.

III. A UGMENTED FINITE STATE (AFS) MODEL

The AFS model of a set of use-casesU , denoted by
AFS(U), combines the notions of finite state machines,
flowcharts, and Dataflow Diagrams (DFDs, which can be
regarded as high-level dataflow-abstractions of flowcharts). As
a finite-state machine, each statesj in AFS(U) corresponds
to an interactiontj in a use-case inU . Each transition(sj , sk)
corresponds to the next-interactiontk of tj in a use-case inU
that containstj, and associated with the transition (sj , sk) we
have the corresponding conditioncj,k. Clearly,cj,k is indepen-
dent of the use-case in whichtk is the next interaction aftertj ,
and it can be likened to a branching-condition in a flowchart.
We also have the dataflowsdi between interactions or states.
As before, we consider a statesj = tj to be synonymous
with the operationopj associated withtj . If |U| = 1, then
AFS(U) takes the form of a single chain. The condition
cj,k associated with transition(sj , sk) must be satisfied for
the transition to take place. For two transitions(sj , sk) and
(sj , s

′
k), sk 6= s′k, the conditionscj,k andcj,k′ must be disjoint,

i.e., cj,k ∧ cj,k′ = false. Unlike a flowchart, anAFS(U)
by definition does not have a cycle and this prevents cyclic
data-dependencies. The usual use-dependencies among data-
items in assignments and other computations in a flowchart are
replaced inAFS(U) by the higher-level abstractions inputs,
outputs, and dataflows associated with a state.

We formally defineAFS(U) = (S, s0, Sfinal, C, D, Iu,
Ie, Ou, Oe, τ, δ, φu, ψu, φe, ψe), where

1) S 6= ∅ is a set of states ands0 ∈ S is the start-state;
each statesj is reachable froms0 by a sequence of
transitions and has an associated operationopj .

553Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 575 / 679

2) Sfinal ⊆ S is the subset of final (terminal) states,
from which there are no transitions.

3) C = {ci,j : conditions associated with transitions
(si, sj)} =

⋃
CU , union over the use-casesU ∈ U .

4) D = {di: the internal dataflow item generated byopi
at si} =

⋃
DU , union over the use-casesU ∈ U .

5) Iu =
⋃
IuU , Ie =

⋃
IeU , Ou =

⋃
Ou

U and Oe =⋃
Oe

U , each union over the use-casesU ∈ U .
6) τ : S × C → S is the transition function.
7) δ : D → S × P+(S) is the function representing

the dataflows, whereP+(S) = the set of non-empty
subsets ofS, δ(dj) = (sj , Sj) = (δ1(dj), δ2(dj))
meansSj = {sk: sk usesdj generated atsj}, and
di 6= dj meanssi = δ1(di) 6= δ1(dj) = sj .

8) φu : Iu → P+(S) is the user-input function;φu(u′)
= {sk: sk requires user-inputu′}.

9) φe : Ie → P+(S) is the external-input function;
φe(e′) = {sk: sk requires external-inputu′}.

10) ψu : Ou → P+(S) is the user-output function.
11) ψe : Oe → P+(S) is the external-output function.
12) For eachsi /∈ Sfinal, the conditionsci,j are mutually

disjoint (i.e.,ci,j ∧ ci,k = false for j 6= k). We may
also assume that

∨
ci,j = true because otherwise

we can add a ”graceful” exit-transition to a new final
states′i with the transition-conditionci,i′ = ¬

∨
ci,j .

13) For anysi, sj ∈ φu(u′) for an user-inputu′, neither
of si andsj is reachable from the other. Similarly for
φe andψe. (But this is not required forψu.)

In what follows, we consider only the special case where
AFS(U) has a tree-structure. Recall that not all paths in a
flowchart, even in absence of cycles, may represent a valid
execution-path; likewise, if the transitions inAFS(U) form a
general acyclic digraph, then we may have paths from the start-
states0 to a final-state that do not represent a valid use-case
and this can severely complicate the derivation of a suitable
class-structure fromAFS(U). In the case of a tree-structured
AFS(U), each path from the start-states0 to a final-state
represents a valid use-case inAFS(U).

AFS(U) helps us to see the relationships among the use-
casesU in terms of their shared interactions. In particular,
it helps us to identify inconsistencies inconsistent orderof
operations, invalid dataflow dependencies, and missing in-
puts/outputs for the use-casesU . One must, indeed, resolve
all inconsistencies before attempting to create a class-structure
from U for the desired software.

IV. M ETHODOLOGY

Given the AFS-model of a single use-caseU , we use the
Class-Creation-Rules below to obtain a class that supportsan
implementation ofU . These rules can be used also, more
generally, for any linear chain of interactions. Initially, the
class-methods have no parameters and this has the advantage
of a simple control mechanism for executing the methods
in a class (see Section V-C). We may later use refactoring
to introduce new methods (possibly, with parameters) for
common or similar parts of the original class-methods, and
replace the common parts in the original methods by calls to
the new refactored methods with suitable parameter-values.

Class-Creation-Rules for a single use-caseU :
1. The variables are the internal dataflows, which

may include parts ofIU ∪OU .
2. The class-methods are the operationsopj ∈ U or

parts of them.

If |U| > 1, we can first create one class for each use-case
in U and then refactor common class-variables and methods to
create the final class-structure. A better method is to buildthe
class-structure directly from the combined modelAFS(U),
whose tree-structure directly leads to a tree-structured class-
hierarchy, with one class for each maximal linear segment
(MLS) of the tree. A linear segment inAFS(U) is a path
π in AFS(U), where each state inπ other than those at the
start and end ofπ has a single child (next) node.

We remark that the notationtj = (inj, opj , outj) implies
that if tj ∈ U is shared and equalst′j = (in′

j , op
′
j , out

′
j) ∈ U ′,

then inj = in′
j, opj = op′j , and outj = out′j . However, the

dataflowdj from opj in U may differ from the dataflowd′j
from op′j in U ′. For a tree-structuredAFS(U), withU,U ′ ∈ U ,
tj = t′j implies opj = op′j can computedj ∪ d′j , and thus we
can replace bothdj in U and d′j in U ′ by dj ∪ d′j . Viewed
another way, this simply points out that while the classes for
U andU ′ obtained by the Class-Creation-Rules may contain
different class variables due todj 6= d′j , when we merge those
classes to create a class-hierarchy the class containingopj =
op′j can include the variables for bothdj andd′j .

We illustrate below our method by deriving a class-
structure for a bank’s ATM-system with three high-level func-
tional requirements or use-casesU = {U1, U2, U3}, where
U1 = successful withdrawal,U2 = failed withdrawal due to
insufficient funds, andU3 = balance enquiry. We first derive a
class for eachUj using the Create-Class-Rules and then show
that the class-structure obtained by refactoring these classes
can be obtained directly fromU .

A. Informal Description of ATM

A user swipes a debit card in the ATM’s card-slot. The
ATM reads the debit card and prompts the user to enter the
PIN. We assume for simplicity that no invalid ATM card or
PIN is used, and there is no cash dispenser malfunction. The
ATM validates the PIN and asks the user to choose one of
two displayed options ”withdrawal” and ”balance-enquiry”. If
the user selects withdrawal-option, the ATM calculates and
displays the maximum allowable withdrawal amount based on
the available ATM cash and debit-card-account-information.
Then, the ATM asks the user to enter the withdrawal amount
and it reads that amount. Then, either the ATM displays the
updates to debit-card-account-info and dispenses the desired
cash, or it displays a transaction-fail-message when withdrawal
amount is too large. If the user selects balance-enquiry option,
the ATM displays the debit-card-account-balance. In each case,
the ATM writes a transaction-log for future audit analysis as
part of session-closing operation.

B. Formal Description of Use-CaseU1

We show below the decomposition ofU1 into four
interactionst1-t4 and also show eachopj in detail, including
its lower level operations. This simplifies the identification of
inputsinj, outputsoutj, dataflow itemsdj , and the transition
conditionscj,j+1 for U1, which are shown in Tables I and

554Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 576 / 679

II. The data-item ATMidAndOtherInfo inine
3 includes ATM-

cash-balance among others. The Transaction-Log-Information
(TLI) has many parts, including dateTime of transaction,
transaction amount, update of Bank-Debit-card-Account-
Detail-Info, etc. Differentoutej includes different parts of TLI.

U1: Successful withdrawal

t1: User swipes the debit card in the ATM’s card slot and
enters PIN when requested. [op1: ATM reads the
debit card number, then reads Bank-Debit-Card-PIN
Information based on the debit card number, displays
”Enter PIN” message, reads the PIN entered and vali-
dates it with Bank-Debit-Card-PIN information, reads
Bank-Debit-Card-Account-Detail Information for the
debit card number, and writes part-1 (debit card num-
ber, PIN, and transaction dateTime) of TLI]

t2: User sees the displayed transaction options and se-
lects the ”withdrawal” option. [op2: ATM displays
the transaction-options ”balance-enquiry” and ”with-
drawal”, requests the user to select an option, reads the
selected option (= ”withdrawal” forU1), and writes
part-2 (transactionOption = withdrawal) of TLI.]

t3: User sees the displayed max allowed withdrawal
amount and enters the desired withdrawal amount.
[op3: ATM calculates and displays the max al-
lowed withdrawal amount based on the ATM-cash-
balance (which is part of the external input AT-
MidAndOtherInfo) and the debit-card-account-detail
information (such as the single-transaction-limit, the
daily-withdrawal-limit for the card, today’s-current-
total-withdrawal, and the debit-card-account-balance).
Then, ATM requests user to enter the desired-
withdrawal-amount, reads it, and writes part-3 (max
allowed withdrawal amount) of TLI.]

t4: User takes the dispensed cash. [op4: ATM up-
dates ATM-cash-balance part of ATMidAndOther-
Info and the Bank-Debit-Card-Account-Detail infor-
mation (such as today’s-total-withdrawal and debit-
card-account-balance), displays the updated debit-
card-account-balance, displays ”collect-cash” message
(which includes the amount withdrawn), dispenses
cash for the withdrawal amount, and writes part-4 (up-
dates of ATM-cash-balance, this withdrawal amount,
debit-card-account-balance) of TLI.]

TABLE I. Inputs inj and outputsoutj for U1

in1

u: Debit-card number,
PIN number

e: Bank-Debit-Card-
PIN Info,
Bank-Debit-Card-
Account-Detail Info

in2
u: Selected Transaction

Option

in3

u: Desired Withdrawal
Amount
ATM-id-And-Other
Info

in4 u: Cash Collected

out1
u: "Enter PIN" message
e: Part-1 of TLI

out2
u: Transaction-options display,

"Select Option" message
e: Part-2 of TLI

out3

u: Max Allowable Withdrawal
Amount display,
"Enter Desired Withdrawal
Amount" message

e: Part-3 of TLI

out4

u: New BankAccountDetailInfo,
"Collect Cash" message

e: New BankAccountDetailInfo,
New ATMidAndOtherInfo,
Part-4 of TLI

TABLE II. Conditions cj,j+1 and data-itemsdj for U1

c1,2 true (no invalid card or PIN)

c2,3
"Withdrawal" = Selected
Transaction Option

c3,4

Max Allowable Withdrawal
Amount≥ Desired
Withdrawal Amount

d1
Bank-Debit-Card-Account-
Detail Info

d2 Selected Transaction Option

d3

Max Allowable Withdrawal
Amount,
Withdrawal Amount Desired

In general, the conjunction ofcj,j+1’s for the interaction-
sequence of a use-caseU does not give a pre-condition forU
because eachcj,j+1 is stated in terms of values of data-items
”after” the operationopj . ForU1, c2,3 ∧ c3,4 does give its pre-
condition. We considerd2 to be an ”implicit” dataflow from
op2 to op3 because execution ofop3 requiresc2,3 to be true.
Similarly, we considerd3 to be an implicit dataflow fromop3
to op4. (The controller to drive the execution of the methods
in the class forU1 will use d2 andd3; see Section V-C.) See
Figure 3, which shows the finite-state machine model and the
dataflow model forU1. There is no dataflow fromt1 to t2.

s1

s2

s3

s4

c1,2 = true

c2,3

c3,4

op1

op2

op3

op4

in1 out1

in2 out2

in3 out3

in4 out4

d2

d1

d3

Figure 3. FSM (left) and DFD (right) for the use-caseU1

s1

s2

s3

s4

in1 out1

in2 out2

in3 out3

in4 out4

d1

d2

d3

c1,2 = true

c2,3

c3,4

SuccessfulWithdrawal
ATMidAndOtherInfo
bankDebitCardPINinfo
bankDebitCardAccountDetailInfo
selectedTransactionOption
maxAllowableWithdrawalAmount
desiredWithdrawalAmount

// d1
// d2
// d3
// d3

readDebitCardPINinfo()
displayEnterPINmssg()
readAndValidatePIN()
readBankAccountDetailInfo()
writePart1TransactionLonInfo()
displayTransactionOptions()
readSelectedTransactionOption()
writePart2TransactionLogInfo()
displayMaxWithdrawalAmount()
displayEnterWithdrawalAmountMssg()
readDesiredWithdrawalAmount()
writePart3TransactionLogInfo()
updateATMandBankAccountInfo()
displayAccountDetailInfo()
displayCollectCashMssg()
dispenseCashOperation()
writePart4TransactionLogInfo()

// op1
// op1
// op1
// op1
// op1
// op2
// op2
// op2
// op3
// op3
// op3
// op3
// op4
// op4
// op4
// op4
// op4

Figure 4. AFS model (left) and class (right) for use-caseU1

C. AFS Model ofU1

Figure 4 showsAFS(U1), obtained by combining the
DFD and the FSM shown in Figure 3. It also shows the
SuccessfulWithdrawal-class obtained fromAFS(U1) based
on Tables I and II and the Class-Creation-Rules, and it is

555Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 577 / 679

suitable for implementingU1. The detailed analysis of each
tj identified several low level functions (methods) for the
associatedopj , and we have labeled each of those low-level
functions as ”//opj” in SuccessfulWithdrawal-class. One could
merge the functions with the same label ”//opj” into a single
function, and call itopj . If we let each merged function
opj have parameters corresponding to the dataflows to it and
let eachopj call opj+1, then we can eliminate all the class
variables exceptd1; even d1 can be eliminated if we use a
parameter inop2 and passd1 for it when called byop1. But
we keep the class variables as shown to simplify the design of
a single general purpose controller for any sets of use-cases.)

D. Merging and Decomposing Interactions inU1

We can merge interactionst1 andt2 or, equivalently, states
s1 ands2 in Figure 4 into a single state becausec1,2 = true.
This will not adversely affect handlingU2 and U3 because
both t1 and t2 are common toU2 andU3. We do not merge
s2 and s3 because that would prevent sharings2 (and its
associated operations, inputs, and outputs) betweenU1 and the
use-casesU2 andU3. On the other hand, we do not decompose
a tj , 1 ≤ j ≤ 4, into severaltj.k ’s corresponding to the
methods in Figure 4 having the label ”//opj” because that
does not give us a better sharing oftj,k’s among the use-cases
U = {U1, U2, U3}, and thus does not help in the design of a
class-structure forU .

E. Classes and Formal Description of Use-CasesU2 andU3

Shown below are the decompositions of the use-casesU2

and U3 into their component interactions. The use-caseU2

shares its first three interations withU1 andU3 shares its first
two interactions withU1. Note thatt10 ∈ U3 is the same as
t2 ∈ U1, even though the value of data-iteminu

10 = inu
2 is

different in U1 andU3; that difference is reflected inc2,3 6=
c10,11. The conditionc7,8 = ¬c3,4 gives c7,8 ∧ c7,8 = false
andc3,4 ∨ c7,8 = true. The pre-condition forU2 is c2,3 ∧ c3,8
and that forU3 is c2,11.

U2: Failed withdrawal due to insufficient funds

tj+4: Same astj in U1 for 1 ≤ j ≤ 3.

t8: User sees ”insufficient funds” message. [op8: ATM
displays insufficient funds message for the desired
withdrawal amount, and writes part-5 (”failed with-
drawal”, withdrawalAmount = 0) of TLI.]

U3: Balance enquiry

t9: Same ast1 in U1.

t10: Same ast2 in U1 except that the user selects the
”balance-enquiry” option.

t11: User sees account balance information. [op11: ATM
displays the account balance and writes part-6 (”bal-
ance enquiry”) of TLI.]

Table III gives the inputs and outputs for the interactions
t8, t10 andt11 in the use-casesU2 andU3. Table IV gives the
conditions for these new interactions.

TABLE III. Inputs and outputs forU2 andU3 that are different fromU1

in8 ∅ (empty)

in10
= in2

u: Selected
Transaction
Option

in11 ∅ (empty)

out8
u: "Insufficient Funds" message
e: Part-5 of TLI

out10
= out2

∅ (empty)

out11
u: Account Balance
e: Part-6 of TLI

TABLE IV. Conditions cj,k for U2 andU3 that are different fromU1

c7,8 = c3,8 =
¬ c3,4

Max Allowable Withdrawal
Amount < Withdrawal Amount Desired

c9,10 = c1,2 true (no invalid Card)

c10,11 = c2,11 "Balance Enquiry" = Selected Transaction Option

F. AFS Models forU2 andU3

We do not show the FSM and DFD forU2 andU3, but
their AFS models and the corresponding classes are shown in
Figures 5 and 6. As in the case ofU1, we could merge the
functions (methods) with the same label ”//opj” in Figures 5
and 6 into a single function and call itopj .

G. Merging of States forU2 andU3

We do not merges2 with s3 or s11 becausec2,3 andc2,11
are disjoint; likewise, we do not merges3 with s4 or s8.

V. CLASS STRUCTURE AND IMPLEMENTATION

The classes in Figures 4-6 together allow us to implement
the ATM described in section IV-A. We get the class-hierarchy
shown in Figure 8 when we eliminate the duplicate attributes
and methods in these classes using refactoring and combine
the classes into a hierarchy. We can also directly get the same
class-hierarchy, without creating the classes in Figures 4-6,
from the combined AFS model forU1-U3 shown in Figure 7.

A. Combining AFS Models

We use the following notion ofequivalentstates to combine
two AFS modelsM = AFS(U) andM ′ = AFS(U ′) for the
sets of use-casesU andU ′. Two statessj ∈ M ands′j ∈ M ′

are equivalent if all computations along the pathπ(sj) from
the start-state ofM upto sj are identical to those along the
pathπ′(s′j) from the start-state ofM ′ upto s′j in terms of the

s1

s2

s3

s8

in1 out1

out2in2

out3in3

out8in8

d1

d3

d2

c1,2 = true

c2,3

c3,8 = ¬ c3,4

InsufficientFund
ATMidAndOtherInfo
bankDebitCardPINinfo
bankDebitCardAccountDetailInfo
selectedTransactionOption
maxAllowableWithdrawalAmount
desiredWithdrawalAmount

// d1
// d2
// d3
// d3

readDebitCardPINinfo()
displayEnterPINmssg()
readAndValidatePIN()
readBankAccountDetailInfo()
writePart1TransactionLogInfo()
displayTransactionOptions()
readSelectedTransactionOption()
writePart2TransactionLogInfo()
displayMaxWithdrawalAmount()
displayEnterWithdrawalAmountMssg()
readDesiredWithdrawalAmount()
writePart3TransactionLogInfo()
displayInsufficientFundsMssg()
writePart5TransactionLogInfo()

// op1
// op1
// op1
// op1
// op1
// op2
// op2
// op2
// op3
// op3
// op3
// op3
// op8
// op8

Figure 5. AFS model and class for use-caseU2

556Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 578 / 679

order of computations and the underlying constraints. To be
precise,sj ands′j are equivalent if

1) For k < j, sk is equivalent tos′k.
2) The dataflows tosj and s′j are identical in terms of

the data-sources and the data-items.
3) The operations atsj ands′j are the same:opj = op′j ,

including the inputsinu
j = in′u

j and ine
j = in′e

j and
the outputsoutuj = out′uj andoutej = out′ej .

4) The dataflows fromsj ands′j are the same (dj = d′j).
5) The conditioncj−1,j in M is the same asc′j−1,j in

M ′, i.e., cj−1,j = c′j−1,j .

s1

s2

s11

in1 out1

out2in2

out11in11

d1 c1,2 = true

c2,11
d2

BalanceEnquiry
ATMidAndOtherInfo
bankDebitCardPINInfo
bankAccountDetailInfo
selectedTransactionOption

// d1
// d2

readDebitCardPINinfo()
displayEnterPINmssg()
readAndValidatePIN()
readBankAccountDetailInfo()
writePart1TransactionLogInfo()
displayTransactionOptions()
readSelectedTransactionOption()
writePart2TransactionLogInfo()
displayAccountBalance()
writePart6TransactionLogInfo()

// op1
// op1
// op1
// op1
// op1
// op2
// op2
// op2
// op11
// op11

Figure 6. AFS model and class for use-caseU3

The conditions (1)-(3) and (5) above imply we can assume
dj = d′j , i.e., condition (4) holds without loss of generality.
This can be seen as follows. Becauseopj = op′j can compute
each ofdj and d′j , it can computedj ∪ d′j and thus we can
replace each ofdj and d′j by dj ∪ d′j . The equivalence of
sj and s′j depends only on the states on the pathsπ(sj) and
π′(s′j), the inputs, outputs, and dataflows to and from those
states, and the transition-conditions alongπ(sj) and π′(s′j).
Note that the above definition of equivalence differs in many
ways from that in finite-state automata theory, where the state-
equivalence depends on what can happen in future from those
states; in particular, the final states play a critical role.In our
definition, the final-states have no special role.

B. Combining AFS models

SupposeU andU ′ are two (elementary) use-cases with one
or more equivalent states. (We can always imagine a dummy
start-state for a use-case, which just displays ”starting...” and
having no dataflow from this state. This will make the start-
state of all use-cases equivalent.) We can merge the pairs of
equivalent-states, one in each ofAFS(U) andAFS(U ′), and
the result is an AFS model having a tree-structure with two
terminal nodes (final states). We can repeat the process for
a set of use-casesU , merging a state inAFS(Uj) with its
equivalent-state (if any) the result of mergingAFS(Ui), 1 ≤
i < j. The final AFS modelAFS(U) does not depend on
the order in which we mergeAFS(Ui)’s. Figure 7 shows the
merged AFS model obtained from those in Figures 4-6.

The pathπ = 〈s1, s2〉 in Figure 7 gives the class ATM-
Transaction in Figure 8. The other classes in Figure 8 are
obtained from the single-state paths〈s3〉, 〈s4〉, 〈s8〉, and〈s11〉.
The next-relationship between the paths〈s1, s2〉 and 〈s3〉
makes Withdrawal-class a subclass of ATMTransaction-class
in Figure 8, and likewise for the other subclass-relationships.

We obtain the same class structure in Figure 8 if we start with
the classes in Figures 4-6 and apply refactoring [7].

s1

s2

s3

s4 s8

s11

in1 out1

in2
out2
= ∅

in3 out3
in11
= ∅ out11

in4 out4
in8

= ∅ out8

c1,2 = true

c2,3c2,11

c3,4 c3,8

d1 d1

d2

d3

Figure 7. Combined AFS model forU1-U3.

ATMtransaction

ATMidAndOtherInfo
bankDebitCardPINinfo
bankDebitCardAccountDetailInfo
selectedTransactionOption

// d1
// d2

readDebitCardPINinfo()
displayEnterPINmssg()
readAndValidatePIN()
readBankAccountDetailInfo()
writePart1TransactionLogInfo()
displayTransactionOptions()
readSelectedTransactionOption()
writePart2TransactionLogInfo()

//op1
//op1
//op1
//op1
//op1
//op2
//op2
//op2

BalanceEnquiry

displayAccount-
Balance()

writePart6Tran-
sactionLogInfo()

//op11

//op11

Withdrawal
maxAllowableWithdrawalAmount
desiredWithdrawalAmount

// d3
// d3

displayMaxWithdrawalAmount()
displayEnterWithdrawalAmountMssg()
readDesiredWithdrawalAmount()
writePart3TransactionLogInfo()

//op3
//op3
//op3
//op3

SuccessfulWithdrawal

updateATMandBankAccountInfo()
displayAccountDetailInfo()
displayCollectCashMssg()
dispenseCashOperation()
writePart4TransactionLogInfo()

//op4
//op4
//op4
//op4
//op4

InsufficientFund

displayInsufficient-
FundMssg()

writePart5Tran-
sactionLogInfo()

//op8

//op8

Figure 8. Class-hierarchy from the AFS model in Figure 7
It is worth pointing out that if we apply the concept analysis

technique [12] to the attributes (variables) and methods ofthe
classes in Figures 4-6, based on the use-relationship between
those variables and methods, then we would arrive basically
at the same final class structure in Figure 8, except that each
of the classes ATMtransaction and Withdrawal will become a
chain of simpler classes (involving a partitioning of variables
and methods in those classes). We will then simply merge those
chains to form the classes ATMtransaction and Withdrawal as
given in Figure 8. Note that a major part of buildingAFS(U)
involves, via the details of the interactions in the use-case
U , the identification of all class variables and methods, and
their use-relationships, and the latter are the inputs to concept
analysis. The only part ofAFS(U) which does not explicitly
appear in the class-structure and is not used in concept analysis

557Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 579 / 679

is the transition-conditions; they play, however, a critical role
in the correctness of the tree-structure ofAFS(U), its unique
decomposition into maximal linear segments (like〈s1, s2〉),
and in developing the controller (see Section V-C) to drive
the execution of the methods in the class-structure. In this
sense, our approach based on the AFS model is superior to the
concept analysis method. After all, there is not much value in
a class-structure design unless we clearly understand how to
control the calls to its methods.

C. Implementation

Figure 9 shows theexecutiondependencies among the
methods for the AFS model in Figure 7. Here,fj represents
the group of methods corresponding toopj (see Figure 8) for
statesj . A link (fi, fj) implies the execution offj follows
that of fi, partly becausedi generated byfi is required byfj
for its computations ordi is needed in determining whetherfj
can execute or not. It is not surprising that the links(fi, fj)
in Figure 9 parallel the links(si, sj) in Figure 7.

all

user and

external

inputs

(in8 =
in11 = ∅)

Memory

for

all class

variables

Controller for executing f j ’s

f1

f2

f3

f4 f8

f11

d1

d1, d2

d1, d2

d2

d3

d3

d3

in1

in2

in3

in4

Figure 9. The execution dependency among methodsfj
corresponding toopj in Figure 8;dj ’s are the dataflows.

There are many ways [13] to implement the dependencies
in Figure 9. The simplest and the best solution is a central
controller that works as follows. It first calls the root function
f1, and following the execution of anfj it tests the disjoint
conditionscj,k for the ”child” functionsfk of fj and calls
fk if cj,k is true. Another approach is to start with the root
function f1 as before but let eachfj evaluate the conditions
cj,k and callfk, if cj,k is true, as its last step, Here, changes in
U may require small modifications to severalfj ’s, depending
on how many classes are affected. In the first approach,
the modifications to the central controller can be completely
automated. As a third alternative, we can introduce parameters
to fj ’s and let eachfj storedj as a local variable in it and use
it as one of the parameters in the call to anfk. For Figure 9.
this meansf1 executes first and ends with a call tof2, with d1
as the parameter. Next,f2 ends with a call tof3 or f11, with
d1 andd2 as parameters. Likewise,f3 ends with a call tof4
with d1, d2, and, d3 as parameters, etc. This approach requires
fewer class-variables, but changes in requirements may cause
many changes in the definition and selection of the parameters.
This approach clearly gives a poor quality software.

VI. CONCLUSION

We have presented here a systematic, semi-formal method
to obtain a hierarchical class-structure, including the attributes

and methods for each class in the hierarchy, for an object-
oriented design of a software from its requirements given in
the form of a set of use-cases. We use two formal models:
(1) a detailed model of a use-case in terms of its inter-
actions (operations), which includes the user and external
inputs/outputs of each operation and the dataflows to/from
it, and (2) an Augmented Finite State (AFS) model for a
set of use-cases, which captures shared operations among the
use-cases, the points-of-divergence between use-cases and the
related control-flow conditions. The AFS model can help to
identify missing use-cases, missing interactions in the use-
cases, and the potential need to decompose some interactions
into simpler ones. If the AFS model has a tree structure, then
this directly gives a hierarchical class-structure suitable for
an object oriented implementation of the requirements. This
means, in principle, one could start from, say, a C-programP
and reverse engineer it to obtain an AFS model for it, and if the
AFS model has a tree structure then create a hierarchical class-
structure from that AFS model, and finally obtain an object-
oriented programP ′ with the same functionality asP .

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees
for some useful comments to improve the presentation.

REFERENCES

[1] D. K. Deeptimahanti and R. Sanyal, “Semi-automatic generation of uml
models from natural language requirements,”Proc. of the 4th India
Software Engineering Conference, pp. 165–174, 2011.

[2] L. Li, “Translating use cases to sequence diagrams,”Proc. of 15th IEEE
Intern. Conf. on Automated Software Engineering, pp. 293–296, 2000.

[3] D. Liu, K. Subramaniam, B. Far, and A. Eberlein, “Automating tran-
sition from use-cases to class model,”IEEE Canadian Conference on
Electrical and Computer Engineering (CCECE), vol. 2, pp. 831–834,
2003.

[4] G. S. A. Mala and G. V. Uma, “Automatic construction of object
oriented design models [uml diagrams] from natural language require-
ments specification,”Proc. of 9th Pacific Rim Intern. Conf. on Artificial
Intelligence, pp. 1155–1159, 2006.

[5] A. Cockburn, “Structuring use cases with goals,”Journal of Object-
Oriented Programming, 1997.

[6] B. Roussev, “The value added invariant: A newtonian approach for
generating class diagrams from a use case model,”WITUML, 16th
European Conf. on Object Oriented Programming, ECOOP-2002, 2002.

[7] M. Fowler, K. Beck, J. Bryant, W. Opdyke, and D. Roberts,Refactoring:
Improving the Design of Existing Code. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1999.

[8] S. Kundu, “Structuring software functional requirements for automated
design and verification,”Proc. 31st Annual IEEE Intern. Computer
Software and Applications Conf, COMPSAC-07, Jul 24-27, 2007.

[9] T. Chow, “Testing software design modeled by finite-state machines,”
IEEE Trans. Softw. Eng., vol. SE-4, no. 3, pp. 178–187, 1978.

[10] S. Eilenberg,Automata, Languages, and Machines. Orlando, FL, USA:
Academic Press, Inc., 1976.

[11] I. Jacobson,Object-Oriented Software Engineering: A Use Case Driven
Approach. Redwood City, CA, USA: Addison Wesley Longman
Publishing Co., Inc., 2004.

[12] G. Snelting and F. Tip, “Understanding class-hierarchies using concept
analysis,”ACM Trans. Prog. Lang. Syst., vol. 22(3), pp. 540–582, 2000.

[13] S. Kundu, “A canonical functional design based on the domination-
relationship among data,”Proc. 8th Asia Pacific Software Engineering
Conference, APSEC-2001, Dec. 4-7, 2001.

558Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 580 / 679

Fundamentals, Prospects and Challenges for Totally Functional Programming Style

Paul Bailes, Leighton Brough, Colin Kemp

School of Information Technology and Electrical Engineering

The University of Queensland,

St Lucia, QLD Australia

{p.bailes, l.brough, c.kemp}@uq.edu.au

Abstract—General recursive definitions contribute to the

complexity of programming. This complexity could be reduced

by reliance on established, well-understood programming

patterns. Catamorphism-based recursion patterns simplify

programming with little practical loss in expressive capability

compared to general recursion, including the capability of

defining new recursion patterns. Partial application of

catamorphisms, sub-catamorphic recursion patterns and

methods to symbolic data allows a comprehensive replacement

of symbolic data with functional, or what we describe as

“zoetic”, representations that inherently adopt the benefits of

catamorphism-based programming. The considerable promise

of this “Totally Functional” style confronts us with some

exciting technical challenges.

Keywords-component; Catamorphism, Fold, Functional,

Recursion.

I. INTRODUCTION

We contend that software is unduly complicated by the
pervasive need to program interpreters for the computations
inherent to symbolic data. By using instead functional
representations that embody the fusion of characteristic
interpretations into data, this pervasive complication can be
minimized if not avoided, and programming thus
significantly simplified.

Our essential argument develops in logical sequence as
follows:

 recursion patterns such as list “foldr”, which
generalize to catamorphisms on regular recursive
datatypes, suffice to express and simplify a very
wide range of common recursive definitions;

 other useful and simplifying recursion patterns are
also definable in terms of catamorphisms;

 catamorphisms thus embody practically as well as
theoretically (in terms of initial algebra semantics)
the behaviours characteristic to abstract data types;

 partial application of catamorphisms to typical
symbolic representations of data yield functional
representations that inherently possess these
characteristic behaviours, i.e., a kind of liveness
which we describe as “zoetic” from the Greek
“zoion” meaning “animal” (as in “zoology”);

 partial application of behaviours that are more
specialized than the generic catamorphism, but are
definable inevitably in terms of catamorphisms, also

yield zoetic data;

 programming with zoetic data simply involves their
application to appropriate operands (just as with
recursion patterns), rather than also having to
program with explicit recursion the characteristic
behavior of the datatype;

 creation of zoetic data can be effected by generator
functions which are the derived counterparts of
symbolic data constructors;

 this enables a new style of programming (which to
emphasise its distinctiveness from an earlier related
development of “Total Functional Programming” [1]
we call “Totally Functional Programming”, or TFP),
in which a comprehensive supercession of symbolic
data by functional representations can be achieved;

 while the comprehensiveness of the foregoing
program is unprecedented, important aspects of it are
discernable in (and thus validated by) related fields
of computer science.

The presentation of the argument in this paper follows the
above sequence.

The consequent comprehensive replacement of symbolic
data by functions requires first-class functions, hence we
implicitly adopt functional programming [2] and functional
languages. We choose Haskell [3] for purposes of
illustration.

II. CATAMORPHIC PROGRAMMING

An approach to programming based entirely on canonical
recursion patterns known as “catamorphisms” [4] is
beneficial, viable and self-sufficient. Catamorphisms are
more familiar as the list “reduce” or “foldr” functions of
functional programming, but apply to all regular recursive
types.

A. General Recursion Too Complex

Recursion patterns simplify and clarify programming,
compared to the use of general iteration/recursion. Consider
the case of recursively defining basic arithmetic operations
on the simplest recursive datatype, of Natural numbers, in
Fig. 1. This example exposes some key aspects of Haskell as
follows:

 declaration of datatypes (e.g., Nat) in terms of
constructor functions (e.g., Zero and Succ) and their
operand types where appropriate (i.e., Nat, thus
defining a recursive type);

559Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 581 / 679

data Nat = Zero | Succ Nat

add Zero b = b

add (Succ a) b = Succ (add a b)

mul Zero b = Zero

mul (Succ a) b = add b (mul a b)

exp a (Zero) = Succ Zero

exp a (Succ b) = mul a (exp a b)

Figure 1. General recursive renditions of basic arithmetic operations.

cataN Zero f x = x

cataN (Succ n) f x = f (cataN n f x)

add a b = cataN a Succ b

mul a b = cataN a (add b) Zero

exp a b = cataN b (mul a) (Succ Zero)

Figure 2. Catamorphic renditions of basic arithmetic operations.

 definition of functions by recursion equations;

 branching by pattern matching on function
arguments;

 function application by juxtaposition of operator and
operand(s).

(Further key novelties of functional languages and Haskell
in particular will be explained as introduced in examples
below.)

In this general recursive rendition of arithmetic
operations, the following deficiencies are apparent.

Apart from the suggestive naming of the type and its
constructors, there is nothing in the definition that compels
treatment of members of the type as naturals, or indeed
numbers of any kind;

Instead, the obvious isomorphism between the concrete
members of Nat and the abstract natural numbers needs to be
implemented by an implicit interpreter that converts symbols
into actions (in this case, iterative applications of other
functions);

A programmer needs to repeat the implementation of this
interpreter at each usage of Nat entailing not just extra effort
but the risk of inconsistent implementations leading to
inconsistent (erroneous) behavior.

Using however the “catamorphism” recursion pattern on
Nat - cataN - the rendition becomes that of Fig. 2 which
significantly remedies the above deficiencies, in that a
uniform interpretation of the symbolic data is provided - i.e.,
cataN - which moreover derives directly from the type
definition.

B. Catamorphisms as Practical Basis

The catamorphic pattern defined on Nat above
generalises for regular recursive types. For example, the
catamorphism - cataL - for (polymorphic) lists is as in Fig. 3.
Note how in Haskell the type polymorphism on type List is
signified by parameterization on list element type ‘t’.

data List t = Cons t (List t) | Nil

cataL Nil o b = b

cataL (Cons x xs) o b = o x (cataL xs o b)

-- versus

foldr op b [] = b

foldr op b (x:xs) = op x (foldr op b xs)

Figure 3. Catamorphisms and operations on lists.

sumR Nil = 0

sumR (Cons x xs) = x + sumR xs

-- versus

sumC xs = cataL xs (+) 0

appendR Nil ys = ys

appendR (Cons x xs) ys =

 Cons x (appendR xs ys)

-- versus

appendC xs ys = cataL xs Cons ys

Figure 4. List processing examples.

Observe also that (aside from a reordering of the usual
presentation of operands) cataL is exactly the familiar
“foldr” of functional programming (also known as “reduce”).

The reader will also observe that just as with Nat above,
operations on lists may be programmed using the uniform
interpretation offered by cataL applied to other operations
and data pertaining to the specific applications. See Fig. 4 for
a comparison of explicit recursive vs. catamorphic
definitions of some basic list processing functions. (Note
how in Haskell the form “(θ)” denotes the function
represented by operator ‘θ’, in this case binary addition
represented by ‘+’.)

What make catamorphisms attractive as a practical as
well as a theoretical basis for programming are their
properties as follows:

 generality - existence for all regular recursive types,
not just Nats or Lists

 expressiveness - sufficient to define at least any
function provably-terminating in second-order
arithmetic [5], i.e., practically-speaking any
reasonable function other than a Universal Turing
Machine or other programming language interpreter;

 essentiality - their embodiment of the initial algebra
semantics [6] of the respective underlying datatypes,
as the unique homomorphisms that define the
applicable notion of initiality itself;

C. Catamorphisms as Pragmatic Basis

There are however other recursion patterns that appear to
be necessary for the natural solution of programming
problems. For example, compare the catamorphic renditions
in Fig. 5 of the “insert” and “reverse” operations with their
definitions in Fig. 6 using respectively the paramorphic [4]
and “left fold” [2] recursion patterns. (N.B. our adoption
henceforth of customary concrete syntax for the List type.)

560Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 582 / 679

-- insert element into ascending list

insert e xs =

 fst $ cataL xs

 (\x (exs,xs) ->

 (if e<x then e:x:xs else x:exs, x:xs)

)

 ([e],[])

-- reverse order of list elements

reverse xs =

 cataL xs

 (\x xs’ -> (\rxs -> xs’ (x:rxs)))

 (\rxs -> rxs)

 []

Figure 5. Catamorphic definitions of “insert” and “reverse”.

insert e xs =

 paraL xs

 (\x exs xs ->

 if e<x then e:x:xs else x:exs

)

 [e]

reverse xs = lfold xs (\rxs x -> x:rxs) []

-- definitions of new recursion patterns

-- like cataL but op also has list tail xs

paraL (x:xs) o b = o x (paraL xs o b) xs

paraL [] o b = b

-- like cataL but op grouped from left

lfold (x:xs) o b = lfold xs o (o b x)

lfold [] o b = b

Figure 6. Alternative definitions of “insert” and “reverse”.

paraL xs o b =

 fst $ cataL xs

 (\x (pxs,xs)->(\o b->(o x pxs xs, x:xs))

 (b, [])

lfold xs o b =

 cataL xs

 (\x lxs -> (\b -> lxs (o b x)))

 (\b -> b)

 b

Figure 7. Catamorphic definitions of other recursion patterns.

Important new Haskell features used here are as follows:

 anonymous “lambda” functions, of the form
(\ arguments -> body)

 built-in list datatype, with constructors ‘:’ (for Cons)
and “[]” (for Nil);

 n-tuple data, with elements selected by pattern-
matching or by selector functions (e.g., “fst”);

 low-precedence function application denoted by ‘$’.

What allows us to continue to treat catamorphisms as a
basis in the face of the above is that these other recursion
patterns can be synthesized from catamorphisms without
recourse to general recursion. The recursion patterns (such as
paraL, lfold, etc.) can be defined using abstractions (higher-
order, as needed) from the definitions of the methods (such
as insert, reverse, etc.), e.g., as in Fig. 7.

D. Recursion Pattern/Application Hierarchy

The consequence of the above is that all the reasonable
methods (on regular recursive datatypes, such as natural
numbers, lists, trees, etc.) we would want to program, and all
the recursion patterns besides catamorphisms that we would
want to use to program them, can be derived in a hierarchical
manner, starting from catamorphisms and supplying
instantiating operands at each level of refinement.

For example, for lists:

 the root, catamorphism level of the hierarchy is
represented by cataL;

 the intermediate, recursion pattern level of the
hierarchy is represented by patterns derivable from
the root, e.g., paraL; lfold; etc.;

 the lowest, application level of the hierarchy is
represented by actual list operataions, e.g., length;
append; insert; reverse; etc.

Note that members of the hierarchy at all levels are
directly accessible from the root catamorphism, in some
cases more conveniently (e.g., length) and in some cases less
so when one of the intermediate recursion patterns is more
convenient (e.g., reverse). In particular, the identity property
of catamorphisms is that application of the catamorphism for
a type to the constructors of that type returns the
catamorphism, e.g., as follows:

cataN n Succ Zero = n

cataL xs (:) [] = cataL xs

III. ZOETIC DATA

The foregoing catamorphism-based recursion pattern
approach to programming enables us to bypass completely
symbolic data, and their interpretation. In the end, we
directly construct “zoetic” representations of data, i.e., as
functions, rather than the usual symbolic forms.

A. Catamorphic Zoetic Data (CZD)

CZD are the basic kind of zoetic data. They are formed
by the partial application to symbolic values of the standard
interpretation of their datatypes. The standard interpretation
of each datatype remain exactly as exposed above, i.e., its
catamorphism. As a result, each CZD is a function that
implements that catamorphism on the underlying symbolic
datatype.

Thus, the advantage of CZD is that their usages no longer
require any interpretations as reflected by explicit recursive
definitions or by the explicit application of the interpreter for
the type, i.e., its catamorphism. Instead, the CZD are simply
applied to appropriate catamorphism operands. For example,
compare the above definitions of arithmetic operations to

561Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 583 / 679

-- zoetic naturals

zero = cataN Zero

one = cataN (Succ Zero)

-- etc

-- zoetic arithmetic operations

addz za zb = za succ zb

mulz za zb = za (addz zb) zero

expz za zb = zb (mulz za) one

Figure 8. Zoetic natural numbers and operations.

those on natural number CZD as in Fig. 8. Observe how
zoetic naturals are simply the partial applications of cataN to
the symbolic values of type Nat.

A final key Haskell feature found in the above is partial
application of “curried” functions. For example, addz can
equally be thought of as a function of one parameter “za”
that returns a function of a further parameter “zb”, as well as
a function of the same two parameters. Thus, e.g.,
application of addz to the “zb” parameter of mulz denotes a
function that will add “zb” to its further actual parameter.

Now, we can define generators, i.e., the zoetic
counterparts of symbolic data constructors but independent
of them. For example, from specifications as in Fig. 9, we
derive the respective zoetic counterparts zero and succ of
Zero and Succ as in Fig. 10 (likewise for cons and nil). Note
that the identity property for catamorphisms and symbolic
data constructors applies for CZD and their generators, e.g.,
as per the identities as in Fig. 11.

-- generally

zn = cataN n

-- specifically

zero s z = cataN Zero -- as above

succ (cataN n) = cataN (Succ n)

Figure 9. Specifications of zoetic natural number generators.

zero f x

= cataN Zero f x

= x

succ zn f x

= succ (cataN n) f x

= cataN (Succ n) f x

= f (cataN n f x)

= f (zn f x)

-- similarly derivable

cons x zxs o b = o x (zxs o b)

nil o b = b

-- etc. for other types

Figure 10. Zoetic natural number generators.

succ zn succ zero = succ zn

zero succ zero = zero

cons z zxs cons nil = cons z zxs

nil cons nil = nil

Figure 11. Identities for CZD.

Just as with zoetic arithmetic, zoetic list processing also
entails simple, non-interpretive provision of relevant
catamorphic operands, e.g., as follows.

zappend zxs zys = zxs cons zys

zsum zxs = zxs addz zero

B. Subcatamorphic Zoetic Data (SZD)

The interpretation of symbolic data is not always given
by a catamorphism, but maybe by some other method that
can be defined catamorphically, i.e., found below
catamorphisms in the recursion pattern/application hierarchy,
hence “subcatamorphic”.

For example, in Fig. 12 the method “memb” interprets
binary trees as sets, with constructors Nd, Lf and Tip
respectively signifying set union, singleton and empty sets.
However, within the catamorphic programming paradigm
essential to TFP, these other methods (exemplified here by
memb) will be expressible as catamorphisms, e.g., as in Fig.
13.

As with CZD, we form zoetic data by the partial
application to the symbolic data of the interpreter for the
required characteristic behaviour. In this case, the partial
application “memb bt” (for some bt :: Bt) yields a function
that tests if some putative element e is actually a member of
the set represented by bt. That is, the SZD form of a set is the
familiar characteristic predicate representation.

data Bt t = Nd (Bt t) (Bt t) | Lf t | Tip

memb (Nd t1 t2) e = memb t1 e || memb t2 e

memb (Lf x) e = x==e

memb Tip e = False

Figure 12. Trees as sets.

memb s e =

 cataBt s

 (\t1’ t2’ -> t1’ || t2’)

 (\x -> x==e)

 False

-- catamorphism on Bt

cataBt (Nd t1 t2) n l t =

 n (cataBt t1 n l t) (cataBt t2 n l t)

cataBt (Lf x) n l t = l x

cataBt Tip n l t = t

Figure 13. Set membership as a catamorphism.

562Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 584 / 679

memb s e =

 cataBt s

 (\s1 s2 e -> s1 || s2)

 (\x e -> x==e)

 (\e ->False)

 e

Figure 14. Catamorphic set membership with closed terms.

memb s =

 cataBt s

 (\s1 s2 e -> s1 || s2)

 (\x e -> x==e)

 (\e ->False)

Figure 15. Catamorphic set membership as a characteristic predicate.

union s1 s2 e = s1 e || s2 e

single x e = x==e

empty e = False

Figure 16. Declarations of generators for zoetic sets.

Further, if we write the catamorphism operands as closed
terms as in Fig. 14, then, as a corollary of the identity
property of catamorphisms, these closed operands serve as
generators of characteristic predicates.

First, eta-reduction of the definition of memb exposes the
zoetic set/characteristic predicate clearly as in Fig. 15. Then
recognizing that the significance of the identity property is
that catamorphism operands serve as constructor
replacements, we see that catamorphism operands are
inherently generators of whatever is the result of the
catamorphism, in this case the zoetic set. So, finally
rewriting the above operands in more convenient equational
format gives the generator declarations of Fig. 16. The same
technique applies for any SZD, subject of course to the
condition that the characteristic method is definable as a
catamorphism (which as we have seen is practically always).

C. Recursion Patterns as SZD

Just as applications such as “memb” give rise to SZD, so
do the recursion patterns found below catamorphisms. For
example, partial applications of the form “lfold xs” give rise
to a class of list-like SZD, but which instead of having the
catamorphic/foldr behavior of list CZD, behave as “left
folds” with the binary operator ‘o’ grouped from the left.

Further, just as with zoetic sets above, when we express
the catamorphic definitions of recursion patterns with closed
operands e.g. as in Fig. 17, these operands are also effective
as generators. Continuing the example, first eta-reduce as in
Fig. 18 which exposes the zoetic left-folding list as an
identity between a partial application of the lfold method and
a catamorphism. Then we simply read off the operands to the
catamorphism and re-present them as generator declarations
as in Fig. 19.

lfold xs o b =

 cataL xs

 (\x lxs -> (\o b -> lxs o (o b x)))

 (\o b -> b)

 o b

Figure 17. Left fold as a catamorphism with closed terms.

lfold xs =

 cataL xs

 (\x lxs -> (\o b -> lxs o (o b x)))

 (\o b -> b)

Figure 18. Left fold as catamorphism partial application.

lcons x lxs o b = lxs o (o b x)

lnil o b = b -- NB same as nil CZD

Figure 19. Declarations of generators for left-folding zoetic lists.

D. Zoetic Data Hierarchy

The hierarchy of zoetic data (CZD and SZD) naturally
parallels that of catamorphisms, other recursion patterns, and
catamorphic methods as detailed above, in which descent in
the hierarchy from most general CZD to more specialized
SZD in achieved by application to appropriate operands.

For example, from a zoetic list zxs we can first derive the
variant lzxs with the same elements in the same sequence but
with left-folding behavior, by applying zxs to the left-folding
zoetic list generators thus:

lzxs = zxs lcons lnil

Next, we can calculate the reverse of zxs by applying
lzxs to the appropriate operands to left-fold as follows:

rzxs = lzxs (\rzxs x -> cons x rzxs) nil

Note that the zoetic nature of the resulting list is achieved by
use of the zoetic list generators cons and nil in the above,
rather than symbolic list constructors (:) and []. That is, if
conventional lists were the required result, we would have
written instead the following:

rxs = lzxs (\rxs x -> x:rxs) []

(Further note how in this case the operands to the left-
folding zoetic list lxzs are precisely those given to lfold
above in order to reverse a conventional list.)

If desired, we can define a self-contained reverse
operation, by application of successive sets of (sub-)
catamorphism operands in stages reflective of the above, as
per Fig. 20. A one-stage definition of zrev in Fig. 21 echoes
the direct definition of list reversal as a catamorphism further
above. This version however loses some of the transparency
of the two-stage definition that results from being able to
express zrev in its more natural left-folding form.

Finally, it one exists, we can always recover the symbolic
form of a zoetic datum by applying it to the symbolic
constructors, e.g., as in Fig. 22.

563Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 585 / 679

zrev zs =

 -- start with zs

 zs

 -- next transform into left-folding list

 lcons lnil

 -- finally give left-folding operands

 (\rzxs x -> cons x rzxs) nil

Figure 20. Staged defintion of list reverse.

zrev zs =

 zs

 (\x zxs’->(\rzxs -> zxs’ (cons x rzxs)))

 (\rzxs -> rzxs)

 nil

Figure 21. Direct catamorphic definition of list reverse.

-- an identity, not a function definition

cons 'a' (cons 'b' nil) (:) [] = "ab"

Figure 22. Recovery of symbolic from zoetic data.

IV. TOTALLY FUNCTIONAL PROGRAMMING

Supported by the techniques presented above, our key
key proposition in Totally Functional Programming (TFP) is
the combination of three complementary factors.

First, every data type has a characteristic behavior (for
pure structures such as naturals, lists, trees, etc. it is their
catamorphism; for more specialised types it is the
characteristic method for the type e.g., for sets it is the
memb(er) function);

Second, the complexity of conventional programming
derives significantly from the need to program the
interpretation of these inherent behaviours from symbolic
datatypes, which are typically intertwined with application-
specifics (e.g., the explicit recursive definitions of arithmetic
operations far above);

Finally, direct zoetic representations of data that embody
these behaviours are specified as the partial applications of
characteristic methods to the symbolic representations, and
can be exploited simply by application to the further
operands of the methods. The feasibility of TFP is enhanced
by direct generation of CZD and SZD without having
explicitly to apply the characteristic methods to symbolic
data.

A potential criticism of the key proposition of TFP is that
whereas it posits a single behavior or characteristic method
for each datatype, instead multiple methods are normal in
programming. Our response is that the zoetic data hierarchy
for each type adequately expresses any need for multiple
behaviours: at the summit of the hierarchy is the
catamorphism, from which all other behaviours can be
derived; more specific behaviours can be found lower in the
hierarchy. The designer of a zoetic datatype is thus free to
choose a relatively general (= more methods) or specific (=
fewer methods) behavior as circumstances require.

V. RELATED WORK

Aside from our own work (recently [7][8][9]), some
aspects of TFP have been presaged (and therefore in a sense
pre-validated) by others. However, none of these propose the
comprehensive replacement of symbolic data with
functional/zoetic representations as we do.

A. TFP in Functional Programming

Our conception of TFP can already be discerned in
various aspects of functional programing: Church numerals
[10] are CZD for the Nat type above; combinator parsers
[11] are SZD for context-free grammars.

B. Turner’s Total Functional Programming

Turner’s already-cited [1] related conception of TFP has
a common basis with ours in the avoidance of general
recursion in favour of recursion patterns such as
catamorphisms (and additionally anamorphisms - see below),
but does not eschew symbolic data as we do.

C. Language Design

The history of language design can be thought of as a
progressive retrofitting of “Church” concepts into a “Turing”
context. TFP culminates that process by the complete
replacement of Turing-style interpretation of symbolic data
with Church-style direct definitions of (higher-order)
functions. Some highlights of this process with particular
relevance to TFP are as follows (in reverse chronological
order).

Backus [12] repudiated general recursion for a fixed set
of “combining forms” (including list catamorphisms), but
without generalization to other types.

Dijkstra’s [13] emphasis on fixed control structures
rather than arbitrary control flows (“goto” statements) can be
thought of a similar in sprit to our (and Turner’s and
Backus’) repudiation of general recursion.

But long before, Backus equipped FORTRAN with the
catamorphism on natural numbers, in the form of the DO-
loop. Our TFP of course offers the programmer significantly
more facility than DO-loop programming.

It is evident from this paper that modern functional
languages (such as Haskell) at least encourage TFP.
However, in order to avoid surprising limitations on zoetic
operations, it will be necessary to adopt more powerful type
systems (see Future Directions/Type-checking below). Also,
in order to dispense with symbolic data completely, it will be
necessary to handle infinite structures zoetically (see Future
Directions/Codata and Corecursion below).

VI. FUTURE DIRECTIONS

TFP’s promise is also a stimulus to address some key
technical challenges, in the following respects.

With respect to computer science education: the
simplicity of recursion-pattern-based programming (no need
to program iteration or recursion; just “complete the blanks”
by supplying catamorphic recursion patterns with the
appropriate operands as in the examples above) suggests
applicability to introductory programming teaching.

564Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 586 / 679

anL nxt end seed =

 if end seed then []

 else

 let (nxtelt, nxtseed) = nxt seed

 in nxtelt : anL nxt end nxtseed

evens =

 anL (\s->(s+2,s+2)) (_->False) 0

odds =

 anL (\s->(s+2,s+2)) (_->False) 1

fibs =

 anL

 (\(fa,fb)->(fa,(fb,fa+fb)))

 (_->False)

 (0,1)

Figure 23. Anamorphic defintions of infinite streams.

Regarding type-checking: the convenient type inference
found in Haskell and other modern functional languages
does not accept some simple CZD (arithmetic on Church
numerals). It’s not yet clear if the existing candidates for the
necessary more complex type systems are prohibitively
inconvenient [14].

Regarding formal methods: just as catamorphisms (and
CZD) possess more specific (and useful) laws than induction
[15], what kind of more specialised laws are derivable
among more specialised zoetic data (i.e., SZD)? With respect
to course code refactoring: if zoetic data represent a clearer
way to write programs, they should equally represent a good
refactoring target, as indicated by some potentially useful
results already [16][17].

Finally, regarding processing of infinite structures:
catamorphisms are total functions on finite structures
(“data”), but for practical computing, processing
(“corecursion”) of (potentially) infinite structures (“codata”)
is clearly necessary (e.g., a stream of transactions against a
database; events to which a real-time operating system has to
respond; etc.). The clear path to a solution [1] entails
“anamorphisms” [4], as the categorical dual to
catamorphisms, to provide the effective basis for zoetic
representations of codata. For example, the anamorphism on
lists (“anL” a.k.a. “unfold”) can be used to define (infinite)
streams, as in Fig. 23. Note that in Haskell, the ‘_’ denotes
an ignorable formal parameter, useful in defining constant
functions. We are however yet to develop a presentation of
anamorphism-based zoetic codata in the same
comprehensive way that we have achieved for
catamorphism-based zoetic data.

VII. CONCLUSIONS

Totally Functional Programming has the promise to
fulfill the prospects of functional programming in several
ways. Fundamentally, the essence of functional
programming - “first class” functions - is exploited to
simplify programming by bypassing pervasive interpretation
with zoetic data that encapsulate the behaviours essential to

data.
Higher-order functions are also instrumental in realizing

the pragmatics of TFP - for each type, a hierarchy from
general (CZD) to specific (SZD) entities exists, the
specialization relationship being implemented by application
to catamorphism operands.

Finally, as signified by the “front of stage” role it gives to
zoetic data (compared to their hitherto relegation as
theoretical curiosities as “Church” data representations), TFP
completes an important stage in the last sixty or so years of
work of restoring the Church perspective programming into
the otherwise Turing-dominated worldview.

REFERENCES

[1] D. A. Turner, “Total Functional Programming”, J. Universal
Computer Science, vol. 10, no. 7, 2004, pp. 751-768.

[2] J. Hughes, “Why Functional Programming Matters”, The
Computer Journal, vol. 32, no. 2, 1989, pp. 98-107.

[3] The Haskell Programming Language,
http://www.haskell.org/haskellwiki/Haskell, retrieved: 11
August 2014.

[4] E. Meijer, M. Fokkinga, and R. Paterson, “Functional
Programming with Bananas, Lenses, Envelopes, and Barbed
Wire”, Proc. FPCA 1991, LNCS vol. 523, 1991, pp. 142-144.

[5] J. Reynolds, “Three approaches to type structure,
Mathematical Foundations of Software Development”, LNCS
vol. 185, 1985, pp. 97-138.

[6] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens,
“Generic Programming - An Introduction”, in S. Swierstra, P.
Henriques and J. Oliveira (eds.), Advanced Functional
Programming, LNCS, vol. 1608, 1999, pp. 28-115.

[7] C. Kemp, “Theoretical Foundations for Practical ‘Totally-
Functional Programming’ ”, PhD Thesis, The University of
Queensland, St Lucia, 2009.

[8] P. Bailes and L. Brough, “Making Sense of Recursion
Patterns”, Proc. 1st FormSERA: Rigorous and Agile
Approaches, IEEE, 2012, pp. 16-22.

[9] P. Bailes, L. Brough, and C. Kemp, “Higher-Order
Catamorphisms as Bases for Program Structuring and Design
Recovery”, Proc. IASTED SE, 2013, pp. 775-782.

[10] H. Barendregt, The Lambda Calculus - Its Syntax and
Semantics 2nd ed., North-Holland, Amsterdam, 1984.

[11] G. Hutton, “Higher-order functions for parsing”, Journal of
Functional Programming, vol. 2, 1992, pp. 323-343.

[12] J. Backus, “Can programming be liberated from the Von
Neumann style? A functional style and its algebra of
programs”, Comm. ACM, vol. 9, 1978.

[13] E. Dijkstra, “Goto Statement Considered Harmful”, Comm.
ACM, vol. 11, 1968, pp. 147-148.

[14] D. Vytiniotis, S. Weirich, and S. L. P. Jones, “Boxy types:
inference for higher-rank types and impredicativity”, Proc.
ICFP 2006, 2006, pp. 251-262.

[15] G. Hutton, “A Tutorial on the Universality and
Expressiveness of Fold”, Journal of Functional Programming,
vol. 9, 1999, pp. 355-372.

[16] J. Launchbury and T. Sheard, “Warm Fusion: Deriving Build-
Catas from Recursive Definitions”, Proc. FPCA 1995, ACM,
New York, 1995, pp. 314-323.

[17] S. Mak and T. van Noort, Recursion Pattern Analysis and
Feedback, Center for Software Technology, Universiteit
Utrecht, 1986.

565Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 587 / 679

Using Automatic Code Generation Methods for Reusable Software Component

Development: Experience Report

Elif Kamer Karataş, Barış İyidir

Defense System Technologies Division

Aselsan

Ankara, Turkey

{ekkaratas, biyidir}@aselsan.com.tr

Abstract— Quality of reused components becomes one of the

dominating factors on the overall quality of the software when

the component-based approach is adopted for development. In

cases where reusable components are developed to be

compatible with reference architecture, the contracts of the

components are predefined. Nevertheless, the detailed design

and implementation of the component depends mostly on the

experience of the developers. The quality and the productivity

of component development process can be improved by

systematic sharing of domain knowledge and experiences. In

this paper, automatic code generation is adopted in order to

achieve systematic distribution of this knowledge throughout

developers. Also, the experiences gained during the application

of automatic code generation approach for the development of

components that communicate via serial channel protocols are

shared.

Keywords-code generation; domain specific languages;

domain knowledge

I. INTRODUCTION

The proposed automation method is aimed to be used in
Embedded Real-time Control Software (ERCS), which is
mission critical software that collects data from its sensor
environment and processes them with control algorithms to
give the proper commands to its actuation environment. The
quality of software in such systems is of great importance
since the cost of any failure is very high.

Project Specific Components
(System specific algorithms, User interface, etc)

Reusable

Software

Component-1

Reusable

Software

Component-1

Reusable

Software

Component-1

Reusable

Software

Component-1

Sensor-1 Sensor-2 Actuator-1 Actuator-2

Real Time Control System Software

Figure 1. Real-Time Control System & Software Architecture.

The real-time control system architecture and the
corresponding layered software architecture are given in
Figure 1. The reusable software components, which are the
main candidates for automation in this study, are responsible
for the communication with the surrounding sensors and

actuators to receive data and to give commands. These
components are developed according to Interface Control
Documents (ICDs) delivered together with the sensor or
actuator hardware.

In ERCS software, the analysis of defects showed that the
average ratio of errors originating from reusable components
is 23.48%, which is the primary motivation of quality
improvement studies on these components. Difficulties in
sharing domain rules and experiences with developers and
also the difficulties in proving the conformance to such rules
are regarded as significant obstacles on the way to improve
the quality and productivity.

Generative programming is defined as a class of tool
technology that captures knowledge about how to generate
code by enabling automation [1]. Generators are usually
based on domain specific notations and they close the gap
between high-level system description and executable [2].
Since auto generated codes enforce domain rules and best
practices, they provide an effective way for uniformly
sharing of domain knowledge among development teams.
This study aims the systematic distribution of domain
knowledge and expertise using automatic code generation
methods.

The paper is organized as follows: Section 2 gives a brief
literature review. The proposed method for automatic code
generation is described in Section 3. Case studies and the
results obtained are given in section 4. Section 5 discusses
the results and proposes future works. Starting from section 3
of this text the term “component” will refer to mention
reusable components in ERCS.

II. LITERATURE

Software development began with the employment of
low level binary machine language and went along with the
introduction of assembly language, high-level languages,
modeling languages and Domain Specific Languages (DSLs)
for providing increased abstraction for developers while
performing the generation of source-code automatically [3].
Although code generation without modifications by
developer seems impossible, developers are exempted from
writing large amounts of repetitive or trivial code sections
and have more time to focus on their core engineering
problems [3][4].

 The advantages of automatic code generation mentioned
by Cullum [5] are:

566Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 588 / 679

 Code generation enables enhanced consistency since
it serves as a repository of reuse. Also, each
application developed by automatic code generation
will have the same structure independent of the
developer.

 Quality will be improved since the amount of
manually written code –which is a source of quality
variations-, is decreased.

 Productivity is increased since code generators can
produce thousand lines of code very fast and these
codes are correct by construction.

III. PROPOSED METHOD

For the systematic distribution of domain knowledge and
best practices throughout the component development
process, we propose automatic code generation as a plug-in
to the model-based IDE (i.e., Rhapsody [6]) used for
software component development in our projects. The
reusable components given in Figure 1 are targeted for
automation since the quality of these components affects all
the projects they have been used.

The proposed automation process has two main phases,
as given in Figure 2, namely, (i) ICD transcription, which is
the process of transforming natural language message
definitions to machine readable XML (Extensible Markup
Language) format, and (ii) model-based code generation.

- Natural Language

ICD

-ICD XML Template

-UML Based IDE

Implementation

Artifacts

1. ICD Transcription

- Developer

- XML Editor

-ICD XML Instance

2. Model Based Code

Generation

-Code Generation

Plug-in

-Architecture Contracts

Figure 2. Proposed Automatic Code Generation Method.

One major obstacle on the automatic implementation of
component-device communication protocol defined in ICDs
is that the ICDs are prepared in natural language, and
requires human interpretation. In order to accomplish
automatic code generation, representation of the device ICDs
in a machine readable format is mandatory. Another
important problem is the variability of message structure
defined in device ICDs. In the scope of this study,
commonality & variability analysis is performed and device
ICDs are modeled as an XML template, as given in Figure 3.
The XML template given in Figure 3 will be described in
detail in the following subsections.

A natural language ICD is the input to the ICD
transcription phase where the proposed XML template given
in Figure 3 is used as a guideline. The transcription activities
are performed manually by the developer with the help of an
XML editor. The output of this phase is an ICD XML
instance, which is conformant with our domain model and
includes the information content of a natural language
document (such as communication parameters, message
definitions, etc.) in a machine readable format.

Figure 3. Proposed ICD XML Template.

A cross section of a sample XML instance, that models a
“Sensor State” message with the message identifier “0x24”
and contains payload fields for oil tank temperature and
pump pressure is given in Figure 4. The oil tank temperature
is expressed with 8 bit data which is mapped to a float
variable in code generation phase. The mapping algorithm is
described with the value of most significant bit (i.e. -100)
and the precision value (i.e. 0.78125).

Figure 4. A section from XML instance (Sensor State Message).

XML instance is the input to the code generation phase
together with the architecture-based component contracts.
Automatic code generation is performed by invoking the
code generation rules embedded into a tool that is developed
as a plug-in to our current development environment. At the
end of code generation, the outputs are various
implementation artifacts such as attributes, operations,
events, type definitions, state chart diagram elements, etc.
Some of the artifacts after code generation phase are given in
Figure 5.

Figure 5. Snapshot of auto-generated model elements.

567Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 589 / 679

The detailed information on the construction of the XML
template and the code generation activities are given in the
following subsections.

A. ICD XML Template Structure

According to the model given in Figure 3, not every
interface definition has a header checksum part, and in case
of its existence the size and algorithm for its computation is
variable. Also, data bytes in the payload part of messages can
be converted to float or double values with some processing.

Although the structure of the messages defined in ICDs
does not display variation depending on the direction of
messages (transmit and receive directions), due to their
semantics and behavioral differences our model
distinguishes transmit and receive messages. From the
components point of view, in addition to the content of a
received message the information of to which transmit
message it is a response to, is also important for the
behavior.

Another variation point in message contents is how to
decode the values encoded within byte sequences. Decoding
methods extracted from the ICDs can be grouped as;

 Bit field definitions

 Float/double value transformation from discrete byte
sequences with a given resolution

 Direct casting of byte sequences to short, integer,
float, double, etc. values.

B. Implementation of Component Device Communication

Protocol

For each component, there is a device (sensor, actuator,
etc.) that it communicates over physical channels (serial,
CAN, Ethernet, etc.) with conformance to an ICD. Since
message parsing functionality is common for components in
this study, this functionality is seen as the most suitable
candidate for automation. Also, automatic implementation of
enlisted messages, enumerated values, and numerical
constants in the ICD are in the scope of this study.

TABLE I. XML TO IMPLEMENTATION MAPPING RULES

XML Element Implementation Artifacts

Interface Settings Serial port parameters (baud rate, parity,
etc) and structure of messages (header, id,

size, crc, etc.)

Type definitions and
message payload

Enumerations and structures

Receive message names Message specific parser function

declarations

Receive message
payload

Message specific parser function
implementation

Decoding algorithm type Converting byte sequences to target

language types(float, int, etc.)

Checksum algorithm and
data length

Checksum function implemention

Basic transformation rules can be applied after translation

of ICD into XML file. The mapping rules from XML
elements to implementation artifacts are described in Table I.

Figure 6. Code generated from XML instance.

Using the transformation rules and sample XML instance
given in figure 4 automatic code generation is done. The
automatically generated code for parsing oil temperature is
given in Figure 6.

C. Implementation of Component Interfaces

Apart from the physical interface with devices, reusable
software components also have contracts with the internal
project specific components. While realizing these contracts
different design alternatives can be adopted and different
assumptions can be made by the developers. Also, it is
difficult to prevent and diagnose the cases where different
components have conflicting design decisions. In the scope
of this study, critical interfaces and their expected design
decisions are identified to provide a common behavior
through the contracts. Our intention is to embed this
common behavior into the component automatically by state
chart design and reaction implementation.

TABLE II. CONTRACT TO IMPLEMENTATION MAPPING RULES

Contract Element Implementation Artifacts

Component mode information States

Component mode change indication state transitions

Component activation request state reception and response to

activation request

Component setting request State reception and response to

component setting request

Component deactivation request State reception and response to

component deactivation request

Basic transformation rules from contract elements to

implementation artifacts are given in Table II. Also a sample
auto generated statechart implementation with the given
rules is shown in Figure 7. The main states of the
component, transitions between common states and common
reactions are auto generated.

Figure 7. Example statechart implementation.

568Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 590 / 679

IV. CASE STUDY

In order to evaluate the effectiveness of the proposed
method, a group of software components which are
previously implemented with traditional methods are re-
generated by the proposed method. Since these traditionally
developed software components are already being used in
the system, these components are seen as golden units. In
order to provide the same functionality with golden units,
automatically generated software components need to have
approximately the same number of source lines. This
assumption is based on the fact that automatic code
generation process aims to generate the same code as
traditional development. Under the given assumption, the
effectiveness of proposed can be measured by comparing the
source code line counts of automatically generated
component and traditionally developed components.

TABLE III. CASE STUDY METRICS

Metric Name SC1 SC2 SC3

Number of messages received 5 8 13

Number of data typed needed 4 12 21

Number of data fields transmitted 34 27 96

Total code line count for traditionally

developed component

3524 3663 6378

Total code line count with proposed
approach

1339 1357 2071

Auto-generated code rate(%) 37.9 37.04 32.42

The proposed automation method is applied to 3 different

software components (SC1, SC2, and SC3), which are
already available in our component repository. The source
line count measurements related to traditionally and
automatically developed components are given in Table III.
In order to give information about the size and complexity of
the interfaces, the number of messages in the receive
direction, the number of distinct data types required to
implement the content of the receive messages, and the
number of data fields carried within receive messages are
also shown in Table III.

The results indicate that proposed method is applicable to
devices that have different interface complexities, since the
automatically generated code ratio remains approximately
the same for different components with different interfaces.

V. CONCLUSION AND FUTURE WORK

Based on our case studies, we can state that with the
current scope of our proposed method, it is possible to
achieve over 32% automatic code generation. It is estimated
that this rate can be increased up to 50% with the addition of
potential functionalities and behaviors that are scoped out in
the first phase of our study. Considering that the automated
code section handles most of the low level parsing operations
and establishes a basis for the infrastructure of the
components, we assess 30% as an effective automation rate
for our domain. Another advantage of the automation is that

it removed some mechanical actions during manual
development, such as several type and function definitions
and implementing predetermined reactions to requests in
known states.

By enabling automatic code generation in one of the most
error prone sections of component development, namely the
“parser codes”, we estimate that quality costs will be
decreased in the long run and unit integration process can be
completed more efficiently.

In addition to its direct effects to the component
development, XML template based approach establishes a
guideline for developers while inspecting the ICDs provided
to them since it makes explicit the information content
required for the accurate implementation of a component-
unit interface. Although in scope of this study, the
transformation of ICDs written in natural language to XML
format is performed manually in order to increase the
efficiency and usability of the proposed approach we plan to
develop a wizard to guide the user during the ICD XML
instance creation process. In the long run, we hope that
software developers will not need to transcript ICD XML
from the natural language document, but instead unit vendors
will design their communication protocol on this wizard,
thus its output will be ready to use by the code generation
tools.

The current scope of the proposed method includes the
message parsers, common states, transitions between
common states, default reactions in the common states and
the required attributes, types, and events to implement them.
In the later phases of the study, the code generation
capability will be extended to include the message sending
functions and the realization of unit type specific interfaces.

REFERENCES

[1] R. Slaghi, and A. Strohmeier, “Better Generative Programming with
Generic Aspects,” Technical Report, Software Engineering
Laboratory, Swiss Federal Institue of Technology, Switzerland,
2003.

[2] K. Czarnecki, “Generative Programming: Principles and Techniques
of Software Engineering Based on Automated Configuration and
Fragment-Based Component Models,” Ph.D. dissertation, Department
of Computer Science and Automation, Technical University of
Ilmenau, Germany, Oct. 1998.

[3] D. P. Gluch, A. J. Kornecki, and I. N. Sneddon, “Automated Code
Generation for Safety-Related Applications: A Case Study,” Proc.
International Multiconference on Computer Science and Information
Technology, pp. 383–391, 2006.

[4] K. Fertalj and M. Brcic, “A Source Code Generator Based on UML
Specification”, International Journal of Computers and
Communications, Issue 1, vol. 2, 2008.

[5] S. Cullum, “The Effect of Automatic Code Generation on Developer
Job Satisfaction,” Technical Report No:2007/19, Open University,
U.K., Sept. 2007

[6] E. Gery, D. Harel, and E. Palachi, “A Complete Life-Cycle Model-
Based Development System,” In Proceedings of the Third
International Conference on Integrated Formal Methods, 2002, pp. 1-
10.

569Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 591 / 679

Automatic Classification of Domain Constraints for Rich Client Development

Manuel Quintela-Pumares, Daniel Fernández-Lanvin, Alberto-Manuel Fernández-Álvarez, Raúl Izquierdo

Computer Sciences Department

University of Oviedo

Oviedo, Spain

e-mail: manuel.quintela@gmail.com, dflanvin@uniovi.es, alb@uniovi.es, raul@uniovi.es

Abstract— The current trend in web development, powered by

the popularization of technologies like Ajax or platforms like

iOS and Android, leads developers to gradually leave the classic

light-weight web client in favor of rich clients. These clients

manage not only presentation logic, but also business rules that

transform part of the domain model that afterwards must be

reintegrated in the server. This temporary duplication and

transformation of part of the domain model force developers to

deal with the management of the domain constraints that must

be retrieved and applied in the client. This is a complicated and

error prone task that usually involves redundant design and

implementation on both sides. This work describes a tool that,

given a domain model with its complete set of constraints, and

the subset of classes that are required in the client,

automatically identifies those constraints that the client

requires and that can be applied separately from the server,

classifying them according to their level of dependency with

the server.

Keywords-rich clients; constraints; OCL; UML.

I. INTRODUCTION

The architecture of web applications has been

continuously evolving since the popularization of the

primitive transactional script based systems. The current

trend, powered by the popularization of technologies like

Ajax or mobile platforms where native applications connect

to the internet, leads developers to gradually leave the classic

web light-weight client model, in which the client deals

mostly with presentation logic [1], to a more distributed

model, in which a Subset of the Domain Model (SDM) is

retrieved and transformed in the client, to be redelivered

back to the server to be reintegrated with the complete

domain model (CDM) located on the server [1][2][3]. Some

well-known web applications, like Google Docs or Google

Calendar, are good examples of this approach.

This rich Internet application (RIA) architectural model

carries a better user experience, since the classical delay

between requests is mitigated [4]. However, it also involves

important issues during the design and implementation [5].

The temporary splitting of the domain model, and its later

reintegration in a multi user environment, force developers to

figure out which of the constraints of the model should be

checked in the client [6], whether they should be

transformed, and which and how they should be checked

again once the transformed sub-domain is reintegrated in the

server [7].

Identifying at design time the constraints that can be

safely verified on the client is a tricky job, and finding out if

the existing ones can be modified -so that they can be located

on the client- is a complicated and error prone task. Even

when some constraints could be fully checked on the client, a

redundant checking must be done back in the server for

security reasons [8], requiring a redundant implementation.

Also, if there are different teams working at client and

server side, human coordination problems can lead to

inconsistencies. This problem is aggravated by the ever

present changes in the requirements, making the constraints

variable in both client and server. All these elements make

the design and implementation of constraints a very

complex, tedious and error prone task, especially as

requirement changes accumulate over time [8].

All these problems would be avoided if we could

automatically determine which of the constraints can be

checked in the client and which cannot, and how they should

be managed all along the process. This would support de

dynamic generation of the control logic that manages those

constraints in the client, avoiding redundant implementation

and turning the development process more agile.

In our understanding, all the information we need for that

can be deduced, for a specific SDM, from the information

contained in the CDM in terms of entities, relationships and

constraints.

To address these problems, we have designed a tool that

can aid developers to easily produce the client subset using

the CDM, its UML (Unified Modeling Language) [9] class

diagrams and OCL (Object Constraint Language) [10]

constraints as input parameters. A new class model will be

generated for the client, maintaining the relations according

to that subset, and discarding all unrelated classes, relations,

methods and constraints. Since some of the constraints will

require information from the server to be checked, and

involve different levels of coupling, the tool automatically

identifies and classifies the constraints that are relevant to the

client by their dependency degree: (a) Completely

independent of the server, (b) Can be dependent to the server

in some circumstances and (c) Completely dependent to the

server.
The rest of this paper is organized as follows. Section II

describes the method we propose for the automatic
classification of constraints. Section III provides an example
illustrating how the tool works. Section IV addresses the
related work. Section V presents the conclusion and future
work. The acknowledgement closes the article.

570Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 592 / 679

II. METHOD FOR THE AUTOMATIC CLASSIFICATION OF

CONSTRAINTS

We propose a method where the designer creates the

UML model for the CDM located on the server, including its

constraints described in OCL, as he/she would usually do,

and then determine the classes and interfaces from the server

model that corresponds to the SDM. With this information, a

new class model and a new set of constraints are generated

for the client. The constraints for the client are analyzed and

automatically classified according to their level of

dependency with the server, detecting those that may be

problematic and require special attention.

The tool we have developed for implementing this

method is a programmatic API written in Java that

automatically generates the SDM from the CDM. Its

implementation is based on EMF Ecore [11] class models

and OCL files [10]. The input is the Ecore and OCL files that

describe the server model, and the classes that belong to the

SDM. The output will be a new Ecore file with the class

model for the client, a new OCL file with the constraints that

can be checked on the client, and an additional text file with

information about the modifications of the class diagram,

and the analysis, classification and documentation about the

constraints.

Figure 1. Inputs, outputs and processes that the tool carries out.

A. Analizyng the CDM and its constraints

The tool first analyzes the classes in the model, their

attributes, methods and relationships. To ease the analysis of

the cardinality constraints described in the class model

relationships, those constraints are automatically transformed

to OCL language, so that they can be processed

homogenously with the rest (Figure 1, I.).

For every constraint, it collects information about the

classes that are being referenced in its body, as well as the

attributes that are being referenced and their primitive types,

or the return type and parameters that are being used from

their methods.

With all this information, the constraints are classified

(Figure 1, II.) applying the following criteria:

 Attribute constraint: A constraint that only concerns a

single attribute of the context class. We deduct this by

observing the parameters that receive the operations of

the constraint. If it contains a single property call whose

type is of a primitive type, it is classified as an attribute

constraint.

 Object constraint: A constraint that concerns more than

one attribute of the context class. We deduct this as we

did with the attribute constraint. If it contains different

property references whose types are primitive types, it is

an object constraint.

 Class constraint: A constraint that concerns several

instances of the context class, and not elements of any

other class. We determine this by observing if the types

of the references (navigations, property accesses or

method invocations) or parameter calls correspond to

the context class, and not any other classes.

 Domain constraint: A constraint that makes reference in

its operation to elements of other classes different than

the class of its context. We calculate this in the same

way that class constraints, but if a class has a different

type than the context class, it is a domain constraint.

B. Generating the SDM for the client

After analyzing the CDM, the tool uses the subset of

classes that the designer has selected to generate the SDM

(Figure 1, III.). The new class model will contain only the

classes described in the client subset. The relationships

affecting the SDM classes are maintained in the new model.

Those that connect any of those SDM classes to any class

outside the SDM are processed as follows:

 Association, aggregation and uses relationships: If a

class within the client subset has any of these types of

relationship with a class outside the client subset, the

relationships and the classes outside the client subset

will be removed from the SDM.

 Inheritance relationships: A parent class can exist

without its child classes, but in a class model a child

class does not make sense without its parent classes. To

address this problem, if a child class is included in the

client subset by the designer, the tool automatically

571Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 593 / 679

includes its parent class. If there are various levels of

inheritance above the selected child class, all the

inheritance hierarchy for that class will be recursively

included in the client subset.

 Interface relationships: We take the same approach as in

inheritance relationships.

 Composition relationships: Composition is a

relationship that models a strong relationship between a

component and a container class, tying their lifecycles

tightly. We consider that a component class can make

sense without its relationship with a container class, but

not the other way around. If the client subset includes a

container class, we automatically include also its

component classes and their composition relationships

even if the designer did not consider them for the client

subset. As in inheritance relationships, if the

automatically included component classes are also

containers of other classes, their components will be

recursively included in the client subset.

 Methods: If the classes included in the client subset

contain methods whose signature contains classes

outside the client subset, those methods will be deleted

from the class. We consider that, if those classes are

kept outside the client subset, the methods that make

reference to them will not be needed on the client.

C. Selecting and classifying the constraints for the client

The tool will select the OCL constraints whose context

matches the elements in the client subset. The rest of the

constraints will be discarded for the client (Figure 1, IV.).

Constraints whose context is not in the SDM will not be

considered due to the fact that there will not be any object of

those classes in the SDM object graph.

The tool will also warn the designer about the level of

dependency of each constraint with the server (Figure 1, V.).

We define three levels of dependency:

1. Completely independent: All attribute and object

constraints are completely safe for being checked

independently on the client, since all the elements

needed to check those constraints are already within

the SDM object graph.

2. Potentially dependent:

a. Class constraints may or may not be checked safely

within the client. This will depend upon how the

behavior of the client objects is defined. If every

object of that class is always on the client, the

constraint will be always safe. If the objects are

requested from the server under request, the

constraint could not be safe without some

previous communication with the server in order

to retrieve the required objects.

b. Domain constraints that exclusively make reference

to classes within the client subset are in the same

circumstances as the class constraints. Their

safety depends on the way the model is being

managed. If a constraint needs information from

objects that are not currently on the client,

communication with the server will be required.

3. Completely dependent: Domain constraints that

make reference to classes that are not in the client

subset will always be dependent from the server,

since they reference elements that are not

considered on the client. These constraints should

be delegated to the server, or when possible, be

reformulated by the designer so that at least part of

their operations can be checked on the client,

delegating the rest to the server.

The output of this whole process is an Ecore file with the

resulting SDM, a text file with the results of the

modifications made from the CDM, and the analysis of the

constraints related to the client and their classification. It also

generates an OCL file containing the constraints that can be

checked on the client without modification (those classified

as completely independent or potentially dependent), and

excluding the completely dependent (they cannot be checked

on the client without modification).

III. THE ROYAL AND LOYAL EXAMPLE

The Royal and Loyal model [10] is a popular example

usually used to explain the OCL language. We used a

version of it to show the way the tool works if we need to

develop a rich client for managing the addition of new

Loyalty Programs. Figure 2 shows the Ecore model of the

CDM located on the server, simplified for displaying only

class names and references.

Figure 2. The Royal and Loyal Ecore model as CDM.

572Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 594 / 679

The version we used for this example has 22 constraints

defined. After being analyzed by the tool, it automatically

generates 28 additional constraints based on the cardinalities

of the relationships of the class model, resulting a total of 50

constraints to process.

The model in our rich client will have the following

classes from the CDM located on the server: “Service”,

“ServiceLevel”, “LoyaltyProgram” and “ProgramPartner”.

Those classes will allow us to define new Loyalty Programs,

partners, and the services they provide. The other

functionalities that the full model provides, such as defining

customers or managing their subscriptions to loyalty

programs are out of the scope of this client.

Figure 3. The resulting Ecore model as SDM generated by our tool for the

client.

In Figure 3, we show the resulting SDM. Figure 4 presents

the information it provides about the methods that have been

deleted from the original class (due to their dependence from

elements outside the client model), and also about the

relationships that have been deleted from the original model.

Deleted classes:
Transaction, Customer, CustomerCard, Membership,
LoyaltyAccount, Burning, Earning, Transaction Report,
TransactionReportLine
--
Deleted Methods:
Customer-> enroll, selectPopularPartners,
enrollAndCreateCustomer, addTransaction, getServices
--
Deleted relationships:
Service ->Transaction: transactions
LoyaltyProgram -> Membership: memberships
LoyaltyProgram -> Customer: participants
ServiceLevel -> Membership: membership

Figure 4. The tool generates information about the classes, methods and
relationships that are deleted in the process.

Regarding the constraints, it generates a plain text file

describing those that affect each class, classifies them, and

points out if they can be checked on the client or not. It

detects 14 related to this SDM, 13 of them are classified as

domain constraints and 1 as attribute constraint. After

analyzing the dependency of these constraints, 1 is detected

as completely independent, 9 as potentially dependent, and 4

as completely dependent. Figure 5 shows one constraint of

each level of dependency as an example.

context Service::upgradePointsEarned(amount : Integer)
post postServiceUpgradePointsEarned: calcPoints() =
calcPoints@pre() + amount
 Classification: attribute
 Context Class: Service
 Referenced Classes: []
 Classes in context operation: [Service]
 Dependency: Completely independent
--
context LoyaltyProgram inv firstLevel:
levels->first().name = 'Silver'

Classification: domain
 Context Class: LoyaltyProgram
 Referenced Classes: [ServiceLevel]
 Dependency: Potentially dependent
--
context ProgramPartner inv totalPoints:
deliveredServices.transactions.points->sum() < 10000
 Classification: domain
 Context Class: ProgramPartner
 Referenced Classes: [Service, Transaction]
 Dependency: Completely dependent

Figure 5. A selection of three of the resulting constraints, each one with a
different level of dependency.

There are some constraints that can always be checked on

the client without communicating with the server, like the

postcondition for “upgradePointsEarned”.

Some of the constraints have all the elements needed for

checking the constraint in the client model, but it may need

to communicate with the server to update the data, like the

“firstLevel” invariant.

Other constraints reference elements outside the client

model, that is, objects of that class don’t exist on the client,

like the “totalPoints” invariant.

The problem of having constraints on the client that

reference elements that only exists on the server can be

solved in several ways. The most straightforward way would

be delegating the checking to the server. However, if we still

want to make the checking on the client, it can be achieved

by adding some kind of proxy that requests from the server

the dependent values needed to check that constraint.
Finally, it creates an OCL file with the constraints that are

completely independent, and potentially dependent (10 in

total). It excludes the completely dependent ones since they

refer to classes that are not on the SDM. The user should use

this information to figure out the best way to adapt those

dependent constraints for the SDM.

573Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 595 / 679

IV. RELATED WORK

There are several proposals that encourage locating more

responsibilities on the client side rather than delegating them

to the server. Hallé and Villemaire’s [12] proposal is

centered on rich clients that connect with web services, a

system that checks the preconditions defined on the service

interface on the client side before making the request,

avoiding an unnecessary expenditure of resources on the

server. Heidegger and Thiemann [13] add annotation-like pre

and postcondition support to Javascript, a language widely

used to develop rich clients where developing complex

business logic is more common every day. The work

presented by Zhang [14] suggests to move all business logic

to the client, and leaving on the server only a database

accessible through REST services. Leff and Rayfield [15]

show a client designed to work in mobile environments

where connection can be lost, defining mechanisms that

support offline functionality and maintaining the integrity

when the client is back online. All these proposals recognize

the benefits of moving tasks to the client side and try to

address some aspects of making integrity checks on clients.

However, in all of them the responsibility of deciding which

constraints are relevant on the client must be manually done

by the developer.

Other authors try to solve the implementation problems of

having constraints on a rich client [16][17], since popular

tools to address business rules and validations are still very

limited on this scenario. Rule engines, like Drools [18] or

ILog [19], are a suitable solution for the server side, but they

are not designed to deal with the ones located on the client.

Tools to address client side validations like Struts [20],

jQuery Validation Plugin [21], or Simfatic [22] are still

limited to simple form checking, but are not designed to

cover the complexity that client side business rules can

require.

Liang et al. [16] propose a system in which validations are

defined on an XML file, managing constraints that involve a

combination of several attributes on the client’s forms. This

automates the implementation of part of the client side

constraints, and improves the maintenance process.

However, they explicitly left out of their scope the more

complex and problematic class and domain. Schmidt et al.

[17] designed a rule engine for the client side based on the

RETE algorithm, where the constraints are defined on a file

on the server. While they support the definition of complex

constraints and even their delegation of to the server, the

specific constraints affecting the client have to be manually

specified. Most of these solutions would benefit with our

proposal.

Louwsma et al. [7] analyzes the problems derived from

managing constraints in a rich client for a GIS, where the

user can add elements to the map over a graphic interface

that will be updated to a central database. They propose a

framework based on UML and OCL for the specification of

constraints, and suggest several constraint classification

criteria, but their implementation is hard-coded and delegates

all the constraint checking to the database. They identify the

problem of having constraints that can affect both client and

server, proposing as future work that some types of

constraints should be validated on the client for a better user

experience, as well as automatic classification and detection

of conflicting constraints, and their automatic

implementation from a central specification.

Other previous works specifically address the problem of

deciding how to split applications between different

machines in an automatic way. Proposals like J-Orchestra

[23] or Coign [24] process existing compiled applications,

analyzing the way their different elements communicate. By

means of code instrumentalization, they provide stubs to

allow the division in different parts that can communicate,

maintaining the same functionality. Also, Yang et al.

designed a platform based on the Hilda language [25] with a

runtime in both client and server that decides dynamically

which elements of the application should run on the client

and which on the server, basing on the characteristics of the

client device.

All these approaches use different strategies to decide

which the optimal distribution of their components is, by

gathering information about the application behavior (like

communication delay between elements, the size of the data

transmitted, memory usage, capacity of the devices, or the

demand by users of a certain functionality). However, none

of these proposals deals with the problem of constraint

redistribution. They add proxies to communicate the

different split elements of the original design but do not

change them to support constraint checking in order to

maximize UI usability and responsiveness. All these

solutions could benefit from automatic constraint

classification and modification techniques in those cases in

which client responsiveness is a priority.

Outside the scope of rich client development, techniques

for automatically adapting OCL constraints have been

developed to fit different purposes. Hassam et al. [26]

propose techniques for automatically maintaining the

consistency of the OCL constraints after applying

modifications to the UML model. For each change made to a

model, their tool identifies the OCL constraints affected by

it, and then decides if the constraints have to be removed

because they are no longer relevant, of if they can be

automatically modified to be consistent with the modified

model. Cabot and Teniente [27] developed techniques for

automatically modifying constraints and domain models to

achieve a more efficient integrity checking. For doing that,

they develop techniques for simplifying OCL constraints,

identify which operations trigger certain OCL constraints,

and reformulate the constraints in the most efficient way

given the possible operations found in the model.

These proposals acknowledge the problem of delegating

to the designer the task of revising existing OCL constraints

for achieving certain objectives when that tasks can be

deduced from the UML model. In addition to this, although

they are designed to solve scenarios different than the one we

574Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 596 / 679

propose, the principles behind the identification of which

OCL constraints need attention, and some of the automatic

modification mechanisms described in them could be useful

for future developments of our tool.

V. CONCLUSION AND FUTURE WORK

The proposed tool deals with the generation of the new

domain model for the client, selecting and classifying the

constraints for the client, and automatically identifying the

conflicting elements of the constraints that are not

completely independent from the server. At its current state,

it removes from the designer the responsibility of modeling

the part of the client class model that overlaps with the

server, providing useful documentation about the constraints

that potentially affects the client.

If the designer wants to make a domain model on the

client where as many as possible validations are made

locally, the tool can help him/her to make better informed

decisions while trying to modify the constraints and the

client model to fit that purpose.

This approach can also complement the existing tools that

deal with the implementation of constraints on the client, but

currently delegate to developers the responsibility of

organizing them.

We have previously developed means to achieve

automatic error recovery in rich clients [28], letting the

developer to choose which parts of the model require this

mechanism and which do not, so that the overhead this

recovery techniques involve is avoided where not needed.

We believe that the information this tool provides can be

used to find a way to automatically identify the parts of the

client model that may benefit from the automatic error

recovery and discard the ones that do not.

These tasks of analyzing, identifying and classifying the

constraints managed with this tool are a first step. With this

support, we can use this information to automatically modify

the domain model and its constraints in a way that the

resulting client can validate as many constraints as possible,

minimizing communication with the server, and relieving the

designer from finding out the required transformations that

can be deduced automatically. Techniques for the automatic

modification of constraints and domain models to achieve a

more efficient integrity checking have already been studied,

like the ones proposed by Cabot and Teniente [27], as well as

techniques for adapting OCL constraints after the

modification of UML models like Hassam et al. [26]

proposals. We believe we can adapt some aspects of these

techniques for our future needs regarding the automatic

modification of constraints.

ACKNOWLEDGMENT

This work has been funded by the Department of Science

and Technology (Spain) under the National Program for

Research, Development and Innovation: project TIN2011-

25978 entitled Obtaining Adaptable, Robust and Efficient

Software by including Structural Reflection to Statically

Typed Programming Languages.

REFERENCES

[1] J. Duhl, “White paper: Rich internet applications,” Tech.
report, IDC, 2003.

[2] J. Allaire, “Macromedia Flash MX—A next-generation rich
client,” Macromedia white Pap., no. March, 2002.

[3] J. Garrett, “Ajax: A New Approach to Web Applications |
Adaptive Path,” 2005. [Online]. Available from:
http://www.adaptivepath.com/ideas/ajax-new-approach-web-
applications/ 2014.08.20

[4] A. Bozzon, S. Comai, P. Fraternali, and G. Carughi,
“Conceptual modeling and code generation for rich internet
applications.,” in Proceedings of the 6th international
conference on Web engineering ICWE 06, 2006, vol. 1, p.
353.

[5] J. Preciado and M. Linaje, “Designing rich internet
applications with web engineering methodologies,” Web Site
Evol., pp. 23–30, 2007.

[6] A. Mesbah and A. Van Deursen, “An Architectural Style for
Ajax,” in 2007 Working IEEEIFIP Conference on Software
Architecture WICSA07, 2006, pp. 9–9.

[7] J. Louwsma, S. Zlatanova, R. Lammeren, and P. Oosterom,
“Specifying and Implementing Constraints in GIS—with
Examples from a Geo-Virtual Reality System,”
Geoinformatica, vol. 10, no. 4, pp. 531–550, Jan. 2007.

[8] Z. L. Z. Liang and S. J. S. Jianling, “A field-oriented
approach to web form validation for Database-Isolated Rule,”
in 2009 IEEE International Conference on Systems Man and
Cybernetics, 2009, no. October, pp. 4607–4612.

[9] “Object Management Group: UML 2.4.1 Superstructure
Specification.” [Online]. Available from:
http://www.omg.org/spec/UML/2.4.1/ 2014.08.20

[10] J. Warmer and A. Kleppe, The OCL, Second edition.
Addison-Wesley, 2003.

[11] “Eclipse Modeling Framework Project - EMF.” [Online].
Available from: http://www.eclipse.org/modeling/emf/
2014.08.20

[12] S. Hallé and R. Villemaire, “Browser-based enforcement of
interface contracts in web applications with BeepBeep,”
Comput. Aided Verif., pp. 648–653, 2009.

[13] P. Heidegger and P. Thiemann, “JSConTest: Contract-Driven
Testing and Path Effect Inference for JavaScript.,” J. Object
Technol., vol. 11, no. 1, p. 6:1, 2012.

[14] W. Z. W. Zhang, “2-Tier Cloud Architecture with maximized
RIA and SimpleDB via minimized REST,” Comput. Eng.
Technol. ICCET 2010 2nd Int. Conf., vol. 6, pp. V6–52–V6–
56, 2010.

[15] A. Leff and J. Rayfield, “Programming model alternatives for
disconnected business applications,” Internet Comput. IEEE,
no. June, pp. 50–57, 2006.

[16] Z. L. Z. Liang and S. J. S. Jianling, “A field-oriented
approach to web form validation for Database-Isolated Rule,”
in 2009 IEEE International Conference on Systems Man and
Cybernetics, 2009, no. October, pp. 4607–4612.

[17] K. Schmidt, R. Stühmer, and L. Stojanovic, “Gaining
reactivity for rich internet applications by introducing client-
side complex event processing and declarative rules,” in
AAAI 2009 Spring Symposium: Intelligent Event Processing,
2009, pp. 67–72.

[18] “Drools - JBoss.” [Online]. Available from:
http://drools.jboss.org/ 2014.08.20

[19] “IBM - ILOG,” Mar-2014. [Online]. Available from:
http://www.ibm.com/software/info/ilog/ 2014.08.20

575Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 597 / 679

 [20] “Apache Struts 2 Validation.” [Online]. Available from:
http://struts.apache.org/development/2.x/docs/validation.html
2014.08.20

[21] “jQuery Validation Plugin.” [Online]. Available from:
http://jqueryvalidation.org/ 2014.08.20

[22] “Simfatic Forms.” [Online]. Available from:
http://www.simfatic.com/ 2014.08.20

[23] E. Tilevich and Y. Smaragdakis, “J-orchestra: Automatic java
application partitioning,” in ECOOP ’02 Proceedings of the
16th European Conference on Object-Oriented Programming,
2002, pp. 178–204.

[24] G. Hunt and M. Scott, “The Coign automatic distributed
partitioning system,” in OSDI ’99 Proceedings of the third
symposium on Operating systems design and implementation,
1999, no. February, pp. 187–200.

[25] F. Yang et al., “A unified platform for data driven web
applications with automatic client-server partitioning,” in
Proceedings of the 16th international conference on World
Wide Web - WWW ’07, 2007, p. 341.

[26] K. Hassam, S. Sadou, V. Le Gloahec, and R. Fleurquin,
“Assistance System for OCL Constraints Adaptation during
Metamodel Evolution,” in 2011 15th European Conference on
Software Maintenance and Reengineering, 2011, pp. 151–
160.

[27] J. Cabot and E. Teniente, “Incremental integrity checking of
UML/OCL conceptual schemas,” J. Syst. Softw., vol. 82, no.
9, pp. 1459–1478, Sep. 2009.

[28] M. Quintela-Pumares, D. Fernández-Lanvin, R. Izquierdo,
and A.-M. Fernández-Álvarez, “Implementing automatic error
recovery support for rich web clients,” in WISE’10
Proceedings of the 11th international conference on Web
information systems engineering, 2010, pp. 630–638.

576Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 598 / 679

A Classification Schema for Development Technologies

Davide Taibi, Christiane Plociennik

University of Kaiserslautern

Kaiserslautern, Germany

{taibi, christiane.plociennik}@cs.uni-kl.de

Laurent Dieudonné

Liebherr-Aerospace

Lindenberg, Germany

laurent.dieudonne@liebherr.com

Abstract— Software and hardware development

organizations that consider the adoption of new methods,

techniques, or tools often face several challenges, namely to:

guarantee process quality, reproducibility, and standard

compliance. They need to compare existing solutions on the

market, and they need to select technologies that are most

appropriate for each process phase, taking into account the

specific context requirements. Unfortunately, this kind of

information is usually not easily accessible; it is incomplete,

scattered, and hard to compare. Our goal is to present a case

study on a classification schema we applied on the avionic

domain to help decision makers to easily find, compare and

combine existing methods, techniques, and tools based on

previous experience. The results show that the schema helps to

transfer knowledge between projects, guaranteeing quality,

reproducibility, and standard compliance.

Keywords—process improvement; technology classification;

technology selection; tool selection; method selection; process

configuration.

I. INTRODUCTION

The software and hardware market is evolving
continuously and companies that develop software or
hardware need to keep improving their processes by
introducing new technologies, in order to be able to keep
pace with other competitors on the market.

Finding a product development process that guarantees
quality and reproducibility often takes years. Moreover, in
certain domains, such as avionics, the process must comply
with a set of standards, such as DO-178 [13].

The introduction of a new technology may break the
consistency and standards compliance of the process. To
limit this risk, two major aspects must be considered. First,
the objectives and prerequisites for each process step must be
fully documented and structured. Second, the contribution of
each method and tool intended to be used must be limited to
the objectives set by each domain process activity and their
role in each process step must be fully described.

A structured framework, enabling the classification of the
technologies in the process activities would speed up the
integration of new technologies and contribute to
guaranteeing compliance with the company processes.

To facilitate the classification of technologies, the
Reference Technology Platform (RTP) has been developed.
RTP is a set and arrangement of methods, workflows, and
tools that allow interaction and integration on various levels
in order to enable efficient design and development of
(complex) systems [20].

In the context of the ARAMiS project [16], a
classification schema based on the RTP has been developed.
It classifies technologies along two dimensions: abstraction
levels and viewpoints.

In this paper, we present a use case on the application of
this schema in the avionic domain. Moreover, we also
introduce an implementation of the schema we developed:
the Process Configuration Framework Tool (PCF) [8].

The results of this work suggest that the classification
provides a useful framework for decision makers and allows
them to base their decisions on previous experience instead
of on personal opinions. Moreover, the classification allows
them to guarantee process quality, reproducibility and
standards compliance. Finally, it facilitates knowledge
transfer from project to project or between employees.

The remainder of this paper is structured as follows:
Section II describes related work; Section III introduces the
classification schema, while Section IV describes the avionic
use case. In Section V, we introduce the PCF tool and
discuss the benefits of the schema in Section VI. Finally, we
draw conclusions in Section VII and provide an outlook on
future work.

II. RELATED WORK

In this section, we introduce the most common
technology classification schemas.

An early work on technology classification is Firth et al.
[19] from 1987. It classifies software development methods
according to the stages of the development process
(specification, design, and implementation) and the view
(functional, structural, and behavioral). This schema is two-
dimensional like our schema, and its views dimension is
similar to our viewpoints dimension. However, the second
dimension is rather different: Firth et al. focus on the process
stages, while we map these onto the viewpoints dimension.
Our second dimension is concerned with abstraction instead.

Another early work is the Experience Factory, published
in the late 1980s [3] and updated in 1991 [4] and in 1994 [5].
Here, software development artifacts are described in so-
called experience packages along with empirical evidence on
how they have been used previously. The main goal of the
Experience Factory is to provide a framework for software
reuse to help software engineers make decisions based on
company experience.

Compared to our work, the Experience Factory is a more
general concept. In the Experience Factory, an object for
reuse can be any software engineering artifact, including
products, requirements documents etc. Furthermore, the
Experience Factory does not provide a specific schema for

577Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 599 / 679

storing different technologies for reuse, and it does not
include algorithms for searching or combining technologies.
Another approach to technology classification developed in
parallel to the later experience factory versions is the C4
Software Technology Reference Guide (C4 STR), a catalog
containing more than 60 technologies.

Compared to our work, the C4 STR provides a huge
number of technologies in its schema. Nonetheless,
compared to our schema, the attributes it uses are not as
detailed and there is neither a reference to context nor to the
impact.

The C4 STR was later merged with the Experience
Factory approaches by Birk [5]. In the late 1990s, this
evolved into a new concept of experience management.
Based on this work, more publications evolving this schema
and extending the Experience Factory idea [12] appeared.

Ploskonos [18] developed a classification schema for
software design projects. The goal is to facilitate the
adaptation of generic process descriptions and methods to
individual processes. Design projects are classified into one
of four groups: Usability, Capability, Extension, and
Innovation. Each group is associated with certain process
characteristics that help the user set up the actual process.
This approach is narrower than ours: It focuses on
classifying processes according to the project type, omitting
other characteristics such as project size or domain.

III. THE CLASSIFICATION SCHEMA

In this section, we introduce the classification schema
applied, as foundation for our case study. The schema is
aimed at providing a complete engineering tool chain for
collecting and integrating technologies to support the
activities of a structured development process.

The paper addresses the development of big, complex
projects in the industry, which are spread out over several
years and occupy many employees.

Industries usually work with requirements-based process
models planning the different baselines in order to ensure the
accomplishment of these baselines on time via different
phases of realization. Each phase and each step of the
processes usually produces artefacts used as inputs for the
next phase(s) or step(s). These models are derived from, or
include, the V-Model [23], which is traditionally used inside
the iterations made for the accomplishment of each baseline.
Additionally to the iterations, other concepts like definition
of phases, definition of objectives, periodical assessments,
definition of roles, forward and backward traceability, etc.
are traditionally used in these development processes, and
have widely inspired current agile methodologies, like
SCRUM [23].

The schema presented in this paper represents a generic
development model covering the industry development
processes. The instances of the generic development model
are naturally dependent on the industry development
standards and on the company itself.

 The information provided in this schema, enables
decision makers to find the most appropriate technology
based on their interaction and integration on various levels.
This contributes to the efficient design and development of

complex systems. Furthermore, the schema can give an
overview of methods and tools used in past projects. Via the
different planning phases, assessment meetings and
accomplishment summaries inherent to the industry
processes and performed periodically during each project
development, the decisions made, the quality and special
uses of the tools, methods and technologies, can be collected
during the whole development life cycle of each project. This
contributes to building a knowledge database, addressing
both best practices and pitfalls, adapted to the company
development processes. Hence, new projects do not have to
start from scratch, but can benefit from previous experience.
The same applies for new employees: The schema can help
them to familiarize themselves quickly with the methods and
tools available for each phase of the development process.
Thus, the schema facilitates knowledge transfer inside a
company.

The schema can be represented as a matrix with
viewpoints as columns and abstraction levels as rows. The
viewpoints of the classification are defined as
“Requirements”, “Functional”, “Logical”, and “Technical”.
These viewpoints can be mapped to the three phases of the
development process where the requirements viewpoint
coincides with the requirements capture phase, the functional
and logical viewpoints are related to the design phase, and
the technical viewpoint is related to the construction or
implementation phase (see Figure 1).

In the generic version of the schema, the abstraction

levels resemble the decomposition of the system into sub-
systems, components, and sub-components or units (see
Figure 1). For specific application domains (e.g., automotive,
avionics and railways), a different, domain-specific set of
abstraction levels can be defined. For example, in the
avionics domain, abstraction levels are defined as
“Aircraft”, “System”, “Equipment”, and “Item” (see
Figure 2). Each cell of the schema represents a step of the
product development process that must be performed starting
from the topmost and leftmost cell to the rightmost, as shown
by the arrows in Figure 1.

The output of each step leads to the realization of
artifacts contributing directly to the fulfillment of the process
objectives required by the domain or indirectly by focusing
artifacts needed by other cells, which are inputs for later

Figure 1. Generic representation of our classification schema.

578Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 600 / 679

steps. The objectives specified by the domain process depend
on the development phase and the abstraction level.

Starting at a given abstraction level, the requirements

suitable for this abstraction level must first be captured in the
requirement viewpoint. These filtered requirements are the
outputs of this viewpoint and are necessary to start the design
of the system. During the design phase, the function network
determined in the functional viewpoint is needed first in
order to perform decomposition and/or structuration of the
identified functions, realized in the logical viewpoint. Once
the objectives of the logical viewpoint have been achieved,
the construction of the system can be started in the technical
viewpoint. Iterations are possible, among others to introduce
new requirements or to consider realization constraints
appearing a posteriori that influence the system design.

At the end of an abstraction level, the requirements
derived from the design and thus from the requirement
viewpoint not being fulfilled at this abstraction level are used
as a basis for the next abstraction level. They are captured in
the requirement viewpoint at the new current abstraction
level, where similar work as for the previous abstraction
level is performed again.

To allow partial and iterative development, the transition
from one cell to the next is controlled by a set of transition
criteria. Transition criteria support the evaluation of the risks
of starting the next development step although the objectives
of the current step are only partially fulfilled. The current
fulfillment of the objectives can then be controlled and will
be realized after several iterations.

To fulfill the objectives of each matrix cell, the system
and software engineers have to use methods that must mostly
be supported by tools. Depending on the category of product
to be developed, its requirements, the abstraction level, and
the focus set in the current development iteration (e.g., which
objectives are addressed), the methods and tools may differ,
and the technology chain used can also be integrated
differently. The transition criteria between the process steps
must be supported by the methods as well.

IV. APPLYING THE CLASSIFICATION SCHEMA IN THE

AVIONICS DOMAIN

In this section, we sketch an example of a use case of the

classification schema in the avionics domain.

In the avionic industry, two main processes are defined

and address two different aspects corresponding to the two

branches of the V-Model: the Development Process and the

Integral Process [14]. The combination of both main

processes defines abstraction levels (Aircraft, System,

Equipment/Item, Software, Hardware, etc.) and specific

processes for each of them. Iterations can be done inside an

abstraction level, or inclosing them. The overall resulting

applicable development process can be summarized like the

following suite of development phases, where the previous

ones are required by the next ones: Aircraft Requirements

Identification, Aircraft Function Development, Allocation of

Aircraft Function to Systems, System Requirements

Identification, Development of System Architecture,

Allocation of System Requirements to Items, Item

Requirements Identification, Item Design (corresponds to

Software and Hardware Development, both having specific

processes), Item Verification, System Verification, and

Aircraft Verification.

These different phases can be well mapped onto the

generic development model, among others by instancing the

abstraction levels and by specifying the objectives of the

viewpoints for each abstraction level, according to the

company and project needs.

For example, at the system level, the System

Requirements Identification corresponds to the Requirement

Capture Viewpoint, the Development of System Architecture

is realized via the Functional and Logical Viewpoints, the

Allocation of System Requirements to Items belongs to the

Technical Viewpoint, where the decision is taken on which

technology will be involved to realized the Items (Item

Design corresponds to Software and Hardware

development). The Verification phases are realized in the

Technical Viewpoint of corresponding abstraction levels,

where the integration activity is performed. For each phase,

objectives concerning safety assessments, validation,

verification, etc. are defined via the Integral Process and

should be met in order to move to the next phase, or must be

accomplished during a next iteration. The same logic applies

when moving to the next abstraction level.

The same principles apply for all the other abstraction

levels. This is also true for the Software and Hardware

development, but with different steps inside the phases and

different objectives, because they are defined by specific

processes specified in the avionics standards DO-178C [13]

and the DO-254 [21].
We consider the development of a safety-critical system

– a Flight Control System (FCS). We give an example on
how the regular avionic development process, according to
the civilian aircraft and systems development process
guidelines ARP4754A [14], can be mapped on the
classification schema (see Figure 2).

Here, we briefly introduce how to use the classification
schema efficiently by describing the most important
development process steps and their artifacts.

Figure 2. Example of classification schema for the avionics domain.

579Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 601 / 679

Based on the high-level aircraft requirements and design
decisions, the requirements on the FCS must first be
captured, expressed, and validated precisely (requirement
viewpoint). The artifacts for this step are the functional and
non-functional requirements that contain the goals of the
system (e.g., “control the three axes of the aircraft: pitch,
yaw, and roll”), the operational requirements (e.g.,
operational modes), the safety requirements (e.g., which
criticality for which surface/axis), the high-level
performance requirements (e.g., aircraft response time
following cockpit control requests), etc. The requirement
capture can be facilitated with use-cases, such as
SysML/UML, or with requirements tools using structured
text.

Once captured, the requirements must be validated,
which is a transition criterion for proceeding to the next step.
Different activities and requirements types are analyzed
using different technologies, according to the avionics
standards.

Based on these requirements, the behavior of the system
is then analyzed and a functional architecture in the form of a
network of the essential functions covering the major system
functionalities must be formulated (functional viewpoint). An
example of a major functionality at the system abstraction
level is the altitude control via the pitch axis, which is
realized by the elevator surfaces. Essential functions are
those realizing the functionality and having an external
interface with other parts of the system, for example actuator
control, acquiring of the surface position, synchronization
with the other surfaces, etc. For example, block definition
diagrams from the SysML and signal flow diagrams are well
suitable to model the functions network.

Once the definition of these functions and their related
requirements is completed, a Functional Hazard Assessment
(FHA) must be performed [14]. The FHA produces safety
requirements and design constraints for the next design step
which are necessary to make decisions about the
decomposition and structuration of the functions in order to
realize a suitable system design. In this next step (logical
viewpoint), these essential functions are structured,
completed, and/or decomposed in order to shape the
components to be realized on this abstraction level – here
named “logical components”. The logical architecture
determination is also efficiently supported by the
SysML/UML technologies, and the behavior can be well
designed via control flow diagrams, state machines, etc.
Simulation technologies can be used to validate the
interactions and behavior between the logical components,
once they are correctly formalized.

Based on these components and their inherited
requirements (the logical components are derived from the
functions of the functional viewpoint, which are themselves
derived from the requirements of the requirement viewpoint),
technical solutions suitable for this abstraction level are
identified or existing technical solutions are chosen
(technical viewpoint). These technical solutions are called
“technical components” in this paper. The requirements
expressed by the logical components drive the selection of
the technical components.

Iterations inside an abstraction level are feasible for
introducing new requirements, or for increasing the
reusability rate by considering already existing technical
components. As a consequence, the structuring
(decomposition and composition) of the logical components
may be performed in a different way. A configuration
management system is mandatory for managing the different
alternatives and versions.

At the end of the technical viewpoint, different validation
activities (part of the transition criteria) must be
accomplished, like a Preliminary System Safety Assessment
(PSSA), a preliminary common cause analysis (CCA), etc.
[14] in order to validate the decisions made in the functional,
logical, and technical viewpoints.

If the already existent technical components fulfill
exactly the requirements expressed by the logical
components mapped onto them, the work is completed and
the associated requirements are considered as fulfilled. This
is an ideal case of reusability and will probably not arise very
often at higher abstraction levels such the Aircraft and the
System levels, but may arise at the Equipment or Item level.

The technical components that do not exist yet or that do
not completely fulfill the requirements expressed by the
logical components mapped onto them, and the logical
components that are still too complex to be allocated to a
particular technical solution are both inputs for the next
abstraction level. They express requirements that have not
been fulfilled at the current abstraction level and must be
dealt with at the next one. Thus, the work on the next
abstraction level can start.

The traceability, required by avionics processes at the
different abstraction levels, is performed 1) between the
viewpoints of the same abstraction level and 2) between the
abstraction levels. For this second case, the traceability is
performed between the technical and logical viewpoints of a
given abstraction level and the requirement viewpoint of the
next abstraction level.

For example: For 1), the technical components (technical
viewpoint) are assigned to the logical components (logical
viewpoint) that drove their selection. For 2), on abstraction
level AL, each technical component not already realized and
each logical component that cannot be mapped to a technical
component must be addressed on abstraction level AL-1.
They express requirements to be captured in the requirement
viewpoint of AL-1. The requirements expressed at the
Requirement viewpoint of AL-1 are then linked to the
requirements expressed by the corresponding technical and
logical components from the abstraction level AL.

The other abstraction levels follow the same logic for
each step with methodology objectives, process objectives
and artifacts, and similar activities that need to be carried
out. All of them can be well mapped in the classification
schema.

For example, at the Aircraft abstraction level, similar
process activities as for the system level are realized, like an
FHA, a Preliminary Aircraft Safety Assessment (PASA), and
a CCA. For the equipment abstractions level, a Fault Tree
Analysis (FTA) is required as well as a Common Mode
Analysis (CMA), etc. For the software abstraction level, the

580Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 602 / 679

avionics standard DO-178 [13] defines different phases
(called “processes”, such as the Software Requirements
Process and the Software Design Process) with several
objectives requiring numerous artifacts, such as requirements
and detailed design descriptions, validation and verification
artifacts, etc., which can be performed by using different
methods and tools (e.g., for verification: Classification Tree,
Equivalence Partitioning, Cause-and-Effect Analysis), with
each containing pros and cons, depending on the context of
the current development.

Another issue that belongs to the top-down process
explained here is that the reusability of existing solutions
potentially fulfilling parts of the system also requires suitable
and standardized methods and tools. Existing technical
solutions may also consist of components developed outside
the company, such as a microcontrollers, software libraries,
etc. with other degrees of quality and using different
processes. In any case, these existing solutions need to be
completely and suitably characterized and must be integrated
efficiently into the development process.

 However, reusability is not a separate activity that can be
transposed directly as a technology that can be integrated
into the schema. In fact, it influences different activities,
such as the decomposition in the design phase at the logical
viewpoint, the accurate characterization of the existing
solutions and the deployment activity at the technical
viewpoint, etc. All these aspects related to reusability must
also be taken into account in these activities. For example, it
should be possible to integrate a systematic deployment
process and its related techniques as explained by Hilbrich
and Dieudonné [15] into the schema via these activities. As
an example for this case, the software applications that are to
be mapped optimally onto electronic execution units (ECU)
need to be decomposed and structured in a way that makes
them well compatible with the capabilities of the ECUs in
order to allow the use of a minimum number of ECUs.
However, on the other hand, the ECUs must be formalized
completely and their description must be easily accessible by
the system and software architects in order to influence the
system design and to be correctly selected during

deployment. In ARAMiS, we also provide a template for
formalizing multicore processor capabilities in a form and on
an abstraction level that can be used by system and
equipment engineers. The formalization must be performed
by the software and hardware engineers who design the
ECUs. A noticeable advantage is to be able to validate per
analysis or per simulation more aspects of the system, like
the timing reactions, or the resource consumption.

These activities related to reusability are scattered across
different cells of the matrix. At present, they need to be taken
care of by the system designer. It would be helpful if they
could be better integrated into the chain of methods and tools
in the future.

V. IMPLEMENTING THE CLASSIFICATION SCHEMA IN PCF

The proposed schema has been implemented as a web
application in the PCF tool [8]. PCF allows users to search
for technologies based on abstraction levels and viewpoints
as defined in the schema. Furthermore, PCF adds two more
aspects to provide information about previous experience
using a specific technology: Context and Impact. Hence, the
data schema in PCF is based on three models as defined in
[9] (as shown in Figure 3):

 Technology: includes a set of attributes for describing
a technology in as much detail as possible.

 Context: includes information on the context, such as
application domain, project characteristics, and
environment in which the respective technology has
been applied.

 Impact: includes previous experience on applying a
specific technology in a specific context.

The PCF tool contains a search feature that allows users
to search for technologies based on the attributes defined in
the models in Figure 3. This enables the user to search for
technologies used in projects with specific characteristics,
e.g. projects fulfilling a certain industrial standard.

Basic use cases for PCF, as shown in Figure 4, are:

 Search for a technology based on context
requirements (not mandatory)

Figure 3. PCF Data Schema.

581Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 603 / 679

Figure 4. PCF Use Case.

o List view
o Matrix view

 View details for a technology

 View related context

 View details for a context

 View related impacts

 View details for a related impact
Moreover, PCF implements the schema for different

domains (avionics, automotive, and railways).

Figure 5. An example of the schema in the avionic domain implemented in

PCF.

Figure 5 shows an example of the schema represented in

PCF for the avionics domain. This figure includes the
methods mentioned in the use case or directly the tools
realizing them, as well as several other technologies for the
avionics domain in addition to those mentioned above. In
this version of the tool, we do not consider interoperability
issues. The next version of the tool will address the challenge
of interoperable tool chains.

VI. BENEFITS

The classification schema provides benefits for different
people working in software projects, especially for project
managers, software engineers, and technology providers
(software and hardware vendors).

The use case indicates that, from the point of view of
software engineers and decision makers, the classification
schema provides an effective platform for searching for
existing technologies. For industry domains strongly based
on process based development, it also provides a toolbox for
accurately specifying the use of each technology for rigorous
process steps.

The main benefit for the ARAMiS project was that
creating the classification schema for the avionics domain
helped us to improve the schema. Several changes to the
schema have been suggested based on issues raised during
the application of the schema concept in practice. Another
major benefit for the ARAMiS project was the identification
and specification of methods and tools for improving the
integration of multicore processors for safety-critical
domains.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a use case reporting on the
usage of a classification schema in the avionics domain and
its implementation in the PCF tool.

The schema is aimed at collecting and integrating
methods and technologies to support the activities of a
structured development process. It allows decision makers to
find the most appropriate technology based on their
interaction and integration on various levels to enable
efficient design and development of complex systems.

The schema provides a matrix representation of the
development activities classified into viewpoints and
abstraction levels that enables users to easily search for the
most appropriate technologies throughout the whole
development lifecycle.

The use case shows that the schema helps process
managers to keep track of the technologies used in previous
projects and to maintain traceability throughout the whole

582Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 604 / 679

process. Moreover, the schema can be useful to enable
knowledge transfer inside the company.

Supported by the ARAMiS project and its partners,
future work will include the collection of existing
technologies to create a baseline for the platform. Moreover,
we are planning to run an empirical study to validate the
effectiveness of the schema.

ACKNOWLEDGMENT

This paper is based on research carried out in the
ARAMiS project, funded by the German Ministry of
Education and Research (BMBF O1IS11035Ü).

REFERENCES

[1] A. Rajan and T. Wahl, “CESAR - Cost-efficient methods and
processes for safety-relevant embedded systems”, Springer, 2013,
ISBN: 978-3-7091-1386-8.

[2] K. Pohl, H. Hönninger, R. Achatz, and M. Broy, “Model-based
engineering of embedded systems - The SPES 2020 Methodology”,
Springer, 2012, ISBN: 978-3-642-34614-9.

[3] V. Basili and D. Rombach, “Towards a comprehensive framework for
reuse: A reuse-enabling software evolution environment”, Technical
Report, University of Maryland, 1988.

[4] V. Basili, D. Rombach, “Support for comprehensive reuse”, Software
Engineering Journal, vol. 6, Sep. 1991, pp. 303-316, ISSN: 0268-
6961.

[5] V. Basili, G. Caldiera, and D. Rombach, “Experience factory”, In:
Encyclopedia of Software Engineering, Marciniak, John J., Ed., New
York: Wiley, pp. 469-476, 1994.

[6] A. Birk, “A knowledge management infrastructure for systematic
improvement in software engineering”, PhD dissertation, Stuttgart,
Fraunhofer IRB Verlag, 2000.

[7] K. Schneider, J.P. Hunnius, and V. Basili, “Experience in
implementing a learning software organization”, IEEE Softw., vol.
19, May 2002, pp. 46-49.

[8] P. Diebold, L. Dieudonné, and D. Taibi, “Process configuration
framework tool”, Euromicro Conference on Software Engineering
and Advanced Applications 2014, in press.

[9] P. Diebold, “How to configure SE development processes context-
specifically?”, 14th International Conference on Product-Focused
Software Process Improvement (PROFES 2013), Springer, Jun. 2013,
pp. 355-358, ISSN: 0302-9743.

[10] P. Diebold, C .Lampasona, and D. Taibi, “Moonlighting Scrum: An
agile method for distributed teams with part-time developers working
during non-overlapping hours”, Eighth International Conference on

Software Engineering and Advances, IARIA, Oct. 2013, pp. 318-323,
ISBN: 978-1-61208-304-9.

[11] A. Jedlitschka, N. Juristo, and D. Rombach, "Reporting experiments
to satisfy professionals' information needs", Empirical Software
Engineering, 2013, doi: 10.1007/s10664-013-9268-6. [Online].
Available from: http://publica.fraunhofer.de/documents/N-
266529.html. Last access 2014.07.21.

[12] A. Jedlitschka, D. Hamann, T. Göhlert, and A. Schröder, “Adapting
PROFES for use in an agile process: An industry experience report”,
Sixth International Conference on Product-Focused Software Process
Improvement (PROFES 2005), Springer, Jun. 2005, pp. 502-516,
ISSN: 0302-9743, ISBN: 3-540-26200-8.

[13] RTCA DO-178C, “Software considerations in airborne systems and
equipment certification”, Dec. 2011.

[14] SAE ARP4754 Rev. A, “Guidelines for development of civil aircraft
and systems”, Dec. 2010. Available from:
http://standards.sae.org/arp4754a. Last access 2014.07.21.

[15] R. Hilbrich and L. Dieudonné, “Deploying safety-critical applications
on complex avionics hardware architectures”, Journal of Software
Engineering and Applications (JSEA), vol. 6, May 2013, pp. 229-235,
ISSN: 1945-3124.

[16] ARAMiS project, “Automotive, railway and avionics multicore
systems”. [Online]. Available from: http://www.projekt-aramis.de/.
Last access 2014.07.18.

[17] SPES_XT project, “Software platform embedded systems”. [Online].
Available from: http://spes2020.informatik.tu-muenchen.de/spes_xt-
home.html. Last access 2014.07.18.

[18] A. Ploskonos and M. Uflacker, “A classification schema for process
and method adaptation in software design projects”, Tenth
International Design Conference (DESIGN 2008), May 2008, pp.
219-228.

[19] R. Firth, W. G. Wood, R. D. Pethia, L. Roberts and V. Mosley., "A
classification scheme for software development methods", Technical
Report CMU/SEI-87-TR-041, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1987.

[20] P. Reinkemeier, H. Hille, and S. Henkler, “Towards creating flexible
tool chains for the design and analysis of multi-core systems”, Vierter
Workshop zur Zukunft der Entwicklung softwareintensiver,
eingebetteter Systeme (ENVISION 2020), colocated with Software
Engineering 2014 conference, Feb. 2014. [Online]. Available from:
http://ceur-ws.org/Vol-1129/paper37.pdf. Last access: 2014.07.21.

[21] RTCA DO-254, “Design Assurance Guidance for Airbone Electronic
Hardware”, Apr. 2000.

[22] K. Forsberg and H. Mooz, “The Relationship of System Engineering
to the Project Cycle”, First Annual Symposium of National Council
on System Engineering, Oct. 1991, pp. 57-65.

[23] K. Schwaber and M. Beedle, “Agile software development with
Scrum”, Prentice Hall, 2002, ISBN: 0-13-067634-9.

583Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 605 / 679

Working With Reverse Engineering Output
for Benchmarking and Further Use

David Cutting and Joost Noppen

School of Computing Science
University of East Anglia

Norwich, Norfolk, UK
Email: {david.cutting,j.noppen}@uea.ac.uk

Abstract—Various tools exist to reverse engineer software source
code and generate design information, such as UML projections.
Each has specific strengths and weaknesses, however no stan-
dardised benchmark exists that can be used to evaluate and
compare their performance and effectiveness in a systematic
manner. To facilitate such comparison we introduce the Reverse
Engineering to Design Benchmark (RED-BM), which consists of
a comprehensive set of Java-based targets for reverse engineering
and a formal set of performance measures with which tools
and approaches can be analysed and ranked. When used to
evaluate 12 industry standard tools performance figures range
from 8.82% to 100% demonstrating the ability of the benchmark
to differentiate between tools. Most reverse engineering tools
can provide their output in the Extensible Metadata Information
(XMI) format. Theoretically this should ensure tool interoperabil-
ity but in practice the implementation of the XMI standard varies
widely to the point where outputs cannot be exchanged between
tools. In addition, this severely hinders the systematic usage of
reverse engineering tool output, for example in a benchmark
or for use in other analysis. To aid the comparison, analysis and
further use of reverse engineering XMI output we have developed
a parser which can interpret the XMI output format of the most
commonly used reverse engineering applications, and is used in
a number of tools. These tools offer the facility for standalone
examination of one or more XMI files, comparison between
outputs for benchmarking or measurement, the use of XMI
within Eclipse to generate UML projections in UMLet, and use of
reverse engineering output in combination with other sources of
relationship information. Given the imperfect performance of the
majority of the reverse engineering tools tested by the benchmark
a future direction of research is the combination of different
sources of information, multiple tool output or other data, to build
a more complete and accurate picture of structural relationships
within source code.

Keywords–Reverse Engineering; Benchmarking; Tool Compar-
ison; XMI; Software Comprehension; UML; UML Reconstruction.

I. INTRODUCTION

Reverse engineering is concerned with aiding the com-
prehensibility and understanding of existing software systems.
With ever growing numbers of valuable but poorly documented
legacy codebases within organisations reverse engineering
has become increasingly important. In response, there are a
wide number of reverse engineering techniques, which offer
a variety in their focus from Unified Modelling Language
(UML) projection to specific pattern recognition [1][2][3].
However, it is difficult to compare their effectiveness against
each other, as no standard set of targets exist to support this
goal over multiple approaches, a problem also found in the

verification and validation of new tools and techniques [4].
Any performance evaluations which do exist are specific to
an approach or technique. It is impossible, therefore to gain a
comparative understanding of performance for a range tasks,
or to validate new techniques or approaches. To address this
gap, a benchmark of such targets, the Reverse Engineering to
Design Benchmark (RED-BM) was created that can be used
to compare and validate existing and new tools for reverse
engineering.

The use of benchmarks as a means to provide a stan-
dardised base for empirical comparison is not new and the
technique is used widely in general science and in computer
science specifically. Recent examples where benchmarks have
been successfully used to provide meaningful and repeatable
standards include comparison of function call overheads be-
tween programming languages [5], mathematical 3D perfor-
mance between Java and C++ [6], and embedded file systems
[7]. Our benchmark provides the ability for such meaningful
and repeatable standard comparisons in the area of reverse
engineering.

Previous work reviewing reverse engineering tools has pri-
marily focused on research tools many with the specific goal of
identification of design patterns [2][3][8][9][10], clone detec-
tion [11] or a particular scientific aspect of reverse engineering,
such as pattern-based recognition of software constructs [12].
A previous benchmarking approach for software reverse engi-
neering focused on pattern detection with arbitary subjective
judgements of performance provided by users [13]. The need
for benchmarks within the domain of reverse engineering to
help mature the discipline is also accepted [4].

To make further use of reverse engineering output, for
example, between tools or for re-projection of UML, an Object
Management Group (OMG) standard, the XML Metadata
Interchange (XMI) format [14], is provided. XMI is a highly
customisable and extensible format with many different inter-
pretations. In practice tools therefore have a wide variation in
their XMI output and exchange between reverse engineering
tools, useful for interactive projection between tools without
repetition of the reverse engineering process, is usually impos-
sible. This variance in XMI format also hinders use of XMI
data for further analysis outside of a reverse engineering tool,
as individual tools are required for each XMI variation.

During the creation of the reverse engineering benchmark,
two tools were developed which could analyse Java source
code identifying contained classes, and then, check for the

584Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 606 / 679

presence of these classes within XMI output. Further work
based upon the identification and analysis of variances within
different reverse engineering tools’ output, along with a desire
to be able to integrate such output within more detailed
analysis, led to the creation of a generic XMI parser (Section
III). The parser solves the problem of XMI accessibility
through generic use and abstract representation of structural
data contained in XMI files of multiple formats. This parser
is used by further tools for structural analysis or comparison
as well as automated UML re-projection within Eclipse.

The remainder of this paper in organised as follows: in
Section II, we introduce our benchmark, and show it’s appli-
cation to industry tools (Section II-E). Section III concerns our
work to make further use of reverse engineering output through
the development of a generic XMI Parser. Finally, Section IV
summarises work to date and details our current and future
direction of research.

II. THE REVERSE ENGINEERING TO DESIGN
BENCHMARK (RED-BM)

RED-BM facilitates the analysis of reverse engineering
approaches based on their ability to reconstruct class diagrams
of legacy software systems. This is accomplished by offering
the source code of projects of differing size and complexity as
well as a number of reference UML models. The benchmark
provides a set of measures that facilitate the comparison of
reverse engineering results, for example class detection, to
reference models including a “gold standard” and a number
of meta-tools to aid in the analysis of tool outputs.

The benchmark allows ranking of reverse engineering
approaches by means of an overall performance measure that
combines the performance of an approach with respect to a
number of criteria, such as successful class or relationship
detection. This overall measure is designed to be extensible
through the addition of further individual measures to facilitate
specific domains and problems. In addition the benchmark
provides analysis results and a ranking for a set of popular
reverse engineering tools which can be used as a yardstick
for new approaches. Full details, models, targets, results as
well as a full description of the measurement processes used
can be found at [15]. Although based on Java source code,
the concepts and measurements are applicable to any object-
oriented language and the benchmark could be extended to
include other languages.

A. Target Artefacts
Our benchmark consists of a number of target software

artefacts that originate from software packages of varying
size and complexity. The range of artefacts is shown in
Table I where large projects are broken down into constituent
components. In addition the Table contains statistics on the
number of classes, sub-classes, interfaces and lines of code
for each of the artefacts.

The benchmark artefact targets represent a range of com-
plexity and architectural styles from standard Java source
with simple through to high complexity targets using dif-
ferent paradigms, such as design patterns and presentation
techniques. This enables a graduated validation of tools, as
well as a progressive complexity for any new tools to test and
assess their capabilities. Also, included within RED-BM are
a set of gold standards for class and relationship detection

TABLE I. SOFTWARE ARTEFACT TARGETS OF THE RED-BM

Software
Target Artefact Main

Classes
Sub
Classes

Inter-
faces

Lines of
Code

ASCII Art Example A
Example A 7 0 0 119
ASCII Art Example B
Example B 10 0 0 124
Eclipse
org.eclipse.core.
commands

48 1 29 3403

org.eclipse.ui.ide 33 2 6 3949
Jakarta Cactus
org.apache.cactus 85 6 18 4563
JHotDraw
org.jhotdraw.app 60 6 6 5119
org.jhotdraw.color 30 7 4 3267
org.jhotdraw.draw 174 51 27 19830
org.jhotdraw.geom 12 8 0 2802
org.jhotdraw.gui 81 29 8 8758
org.jhotdraw.io 3 2 0 1250
org.jhotdraw.xml 10 0 4 1155
Libre Office
complex.writer 11 33 0 4251
org.openoffice.java.
accessibility.logging

3 0 0 287

org.openoffice.java.
accessibility

44 63 1 5749

All bundled code
(sw + accessibility)

241 173 33 39896

against which tool output is measured. These standards were
created by manual analysis supported by tools, as described in
Section II-D.

Artefacts were chosen for inclusion on the basis that they
provided a range of complexity in terms of lines of code and
class counts, used a number of different frameworks, offered
some pre-existing design information and were freely available
for distribution (under an open-source licence). Two artefacts
(ASCII Art Examples A and B) were created specifically for
inclusion as a baseline offering a very simple starting point
with full UML design and use of design patterns.

Cactus, although depreciated by the Apache Foundation,
has a number of existing UML diagrams and makes use of a
wide number of Java frameworks. Eclipse was included pri-
marily owing to a very large codebase which contains a varied
use of techniques. The large codebase of Eclipse also provides
for the creation of additional targets without incorporating new
projects. JHotDraw has good UML documentation available
both from the project itself and some third-party academic
projects which sought to deconstruct it manually to UML.
As with Eclipse, Libre Office provides a large set of code
covering different frameworks and providing for more targets
if required.

B. Measuring Performance
RED-BM enables the systematic comparison and ranking

of reverse engineering approaches by defining a set of perfor-
mance measures. These measures differentiate the performance
of reverse engineering approaches and are based on accepted
quality measures, such as successful detection of classes
and packages [16][17]. Although seemingly both trivial and
essential within a reverse engineering tool, these measures
provide a basic foundation for measurement to be built on, and
represent the most common requirement in reverse engineering

585Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 607 / 679

for detection of structural elements. Further, as seen in Section
II-E, these measures are alone capable of differentiating wide
ranges of tool performance. The performance of tools with
respect to a particular measure is expressed as the fraction of
data that has been successfully captured. Individual measures
are then used in conjunction to form a weighted compound
measure of overall performance. In our benchmark we define
three base measures to assess the performance of reverse
engineering tools and approaches:

• Cl: The fraction of classes successfully detected
• Sub: The fraction of sub-packages successfully de-

tected
• Rel: The fraction of relationships successfully de-

tected

Each of these measures are functions that take a system to
be reverse engineered s and a result r that is produced by a
reverse engineering approach when applied to s. The formal
definition of our three base measures are as follows:

Cl(s,r) =
C(r)

C(s)
, Sub(s,r) =

S(r)

S(s)
, Rel(s,r) =

R(r)

R(s)
(1)

where
C(x) is the number of correct classes in x
S(x) is the number of correct (sub-)packages in x
R(x) is the number of correct relations in x
The overall performance P of a reverse engineering ap-

proach for the benchmark is a combination of these perfor-
mance measures. The results of the measures are combined
by means of a weighted sum which allows users of the
benchmark to adjust the relative importance of, e.g., class
or relation identification. We define the overall performance
of a reverse engineering approach that produces a reverse
engineering result r for a system s as follows:

P(s,r) =
wCLCL(s, r) + wSubSub(s, r) + wRelRel

wCL + wSub + wRel
(2)

In this function, wCL, wSub and wRel are weightings that
can be used to express the importance of the performance
in detecting classes, (sub-)packages and relations respectively.
The benchmark results presented in this article all assume that
these are of equal importance: wCL = wSub = wRel = 1.

C. Application of the Benchmark
To analyse the effectiveness of our benchmark, we apply

a range of commercial and open source reverse engineering
tools (shown in Table II) to each target artefact. Each of the
tools is used to analyse target source code, generate UML
class diagram projections (if the tool supports such projections)
and export standardised XMI data files. Although the source
code target artefacts used for testing are broken down into
the package level for analysis, the reverse engineering process
is run on the full project source code to facilitate package
identification. The output produced by each of the tools is
subsequently analysed and compared to the reference UML
documentation using a benchmark toolchain we specifically
created for comparison of class detection rates (see Section

II-D). Finally, we perform a manual consistency between the
standard tool output and XMI produced to identify and correct
any inconsistencies where a tool had detected an element but
not represented it within the generated XMI.

Figure 1. Reference Class Diagram Design for ASCII Art Example A

When analysing the results a wide range of variety can
be observed even for simple targets such as Example A, one
of the simplest targets with just 7 classes, as depicted in
Figure 1. Please note that although Example A only con-
tains generalisation and composition relationships other target
artefacts contained associations, and these were included in
the measurement. It can be seen in Figure 2 that Software
Ideas Modeller failed to identify and display any relationship
between classes. Other tools such as ArgoUML [18] (Figure
3) were very successful in reconstructing an accurate class dia-
gram when compared to the original reference documentation.

Figure 2. ASCII Art Example A Output for Software Ideas Modeller

Figure 3. ASCII Art Example A Output for ArgoUML

In stark contrast to tools which performed well (e.g.,
Rational Rhapsody and ArgoUML) a number of tools failed

586Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 608 / 679

to complete reverse engineering runs of benchmark artefacts
and even crashed repeatedly during this procedure. The result
of which is that they are classified as detecting 0 classes for
those target artefacts. While some tools failed to output valid
or complete XMI data, a hindrance to their usability and ease
of analysis, this has not affected their performance evaluation
as their performance could be based on our manual analysis
of their UML projection.

TABLE II. LIST OF TOOLS AND VERSIONS FOR USE IN EVALUATION

Tool Name
(Name Used)

Version Used (OS)
Licence

ArgoUML 0.34 (Linux)
Freeware

Change Vision Astah Professional
(Astah Professional)

6.6.4 (Linux)
Commercial

BOUML 6.3 (Linux)
Commercial

Sparx Systems Enterprise Architect
(Enterprise Architect)

10.0 (Windows)
Commercial

IBM Rational Rhapsody Developer for Java
(Rational Rhapsody)

8.0 (Windows)
Commercial

NoMagic Magicdraw UML
(MagicDraw UML)

14.0.4 Beta (Windows)
Commercial

Modeliosoft Modelio
(Modelio)

2.2.1 (Windows)
Commercial

Software Ideas Modeller 6.01.4845.43166
(Windows)
Commercial

StarUML 5.0.2.1570 (Windows)
Freeware

Umbrello UML Modeller
(Umbrello)

2.3.4 (Linux)
Freeware

Visual Paradigm for UML Professional
(Visual Paradigm)

10.1 (Windows)
Commercial

IBM Rational Rose Professional J Edition
(Rational Rose)

7.0.0.0 (Windows)
Commercial

D. Benchmark Toolchain

To facilitate effective analysis and ease reproduction or
repetition of the results a toolchain was developed for use
within RED-BM, consisting of two main components (jcAnal-
ysis and xmiClassFinder), combined to measure the rate of
class detection. The steps followed in the application of the
benchmark are shown in Figure 4 with the developed tools
highlighted.

Figure 4. RED-BM Process with Toolchain Elements Highlighted

1) jcAnalysis: This tool recurses through a Java source tree
analysing each file in turn to identify the package along with
contained classes (primary and sub-classes). The list of classes
is then output in an intermediate XML format (DMI). For every
target artefact, jcAnalysis’ output was compared against a
number of other source code analysis utilities, including within
Eclipse, to verify the class counts. A manual analysis was also
performed on sections of source code to verify naming.

2) xmiClassFinder: This tool analyses an XMI file from a
reverse engineering tool and attempts to simply identify all the
classes contained within the XMI output (the classes detected
by the reverse engineering tool in question). The classes
contained within the XMI can be automatically compared
to input from jcAnalysis (in DMI format) for performance
(classes correctly detected) to be measured.

Once an analysis had been completed, a manual search
was then performed on the source code, in XMI output, and
within the reverse engineering tool itself, to try and locate
classes determined as “missing” by the toolchain. This step
also served to validate the toolchain, in that classes identified
as “missing” were not then found to be actually present in the
reverse engineering output.

E. Evaluation of Analysis Results
For the analysis of the results produced by the reverse en-

gineering tools, we use a standard class detection performance
measure for all targets (CD, formula 2).

To further refine the evaluation of the reverse engineering
capabilities of approaches, we divide the artefacts of the
benchmark into three categories of increasing complexity; C1,
C2 and C3. These categories allow for a more granular analysis
of tool performance at different levels of complexity. For
example, a tool can be initially validated against the lowest
complexity in an efficient manner only being validated against
higher complexity artefacts at a later stage. Our complexity
classes have the following boundaries:

• C1: 0 ≤ number of classes ≤ 25

• C2: 26 ≤ number of classes ≤ 200

• C3: 201 ≤ number of classes

The complexity categories are based on the number of
classes contained in the target artefact. As source code grows
in size both in the lines of code and the number of classes it
becomes inherently more complex, and so, more difficult to
analyse [19][20]. While a higher number of classes does not
necessarily equate to a system that is harder to reverse engi-
neer, we have chosen this metric as it provides a quantitative
measure without subjective judgement.

The bounds chosen for these categories demonstrated a
noticeable drop-off in detection rates observed in many of the
tools (Table III). However, any user of the benchmark can in-
troduce additional categories and relate additional performance
measures to these categories to accommodate for large scale
industrial software or more specific attributes, such as design
patterns.

Finally, we use the compound measure CM, which contains
the three complexity measures with weighting as follows:
wC1 = 1, wC2 = 1.5, wC3 = 2; giving a higher weighting
to target artefacts that contain more lines of code.

Using these performance measures a wide range of results
between the tools used for analysis can be seen. Some tools
offer extremely poor performance, such as Rational Rose and
Umbrello, as they crashed or reported errors during reverse
engineering or UML projection, failing to detect or display
classes and relationships entirely for some targets. As a general
trend, the percentage of classes detected on average declined as
the size of the project source code increased. As the number of
classes detected varied significantly in different tools (Figure

587Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 609 / 679

Figure 5. Overall Class Detection (CD) and Compound Measure (CM) Performance by Tool

TABLE III. CRITERIA RESULTS BY TOOL

Criterion >
∨ Tool

CD
%

C1
%

C2
%

C3
%

CM
%

ArgoUML 100 98.15 75 100 88.27
Astah Professional 100 97.62 100 100 99.47
BOUML 100 92.59 75 100 86.42
Enterprise Architect 100 66.67 62.22 100 80.00
Rational Rhapsody 100 100 100 100 100.00
MagicDraw UML 100 98.15 100 100 99.38
Modelio 47.33 95.92 29.66 12.02 36.54
Software Ideas Modeller 86.41 62.15 41.48 46.04 48.10
StarUML 47.11 47.22 23.47 31.16 32.17
Umbrello 9.2 35.79 5.95 0 9.94
Visual Paradigm 12.42 38.18 51.68 16.67 33.12
Rational Rose 8.69 38.05 1.09 0 8.82

5) so did the amount of detected relationships, to a degree
this can be expected as if a tool fails to find classes it would
also fail to find relationships between these missing classes. In
this figure the difference between the standard class detection
measure CD and the compound measure CM becomes clear
as, for example, ArgoUML was very strong in class detection
but performed at a slightly lower level on relation detection,
which is explicitly considered in the compound measure. It
is also interesting to note that Visual Paradigm offered better
performance for the compound measure as opposed to class
detection highlighting its superior ability to deal with relations
and packages as compared to class detection.

Overall our benchmark identified IBM Rational Rhapsody
as the best performer as it achieved the maximum score for
our compound measure (100%) with two other tools, Astah
Professional and MagicDraw UML coming in a close second
scoring in excess of 99%. As the poorest performers our
work highlighted Umbrello, Visual Paradigm and notably IBM
Rational Rose which scored the lowest with a compound
measure of just 8.82% having only detected 8.69% of classes.
A detailed breakdown of the performance of the tools for
individual targets is provided with the benchmark [15].

III. XMI PARSER

As previously mentioned the XMI standard is highly
fragmented and cannot be used as designed to interchange
information between tools. It is also desirable to be able
to make use of reverse engineering output for further use
or analysis (for example, within a benchmark). Therefore,
building from the knowledge gained in creating the toolchain
for the benchmark, the simple xmiClassFinder tool, a XMI
Parser was created.

This is a generic component designed for integration within
other projects consisting of a Java package. The parser is capa-
ble of reading an XMI file, of most common output formats,
recovering class and relationship information in a structured
form. Data access classes are provided, which contain the
loaded structural information, and can be accessed directly
or recursively by third-party tools. As a self-contained utility
package, the XMI Parser can be developed in isolation to tools
making use of it and be incorporated into tools when required.
A number of tools have been and continue to be developed
within UEA to make use of reverse engineering information
through implementation of the XMI Parser.

A. XMI Analyser

XMI Analyser uses the generic XMI Parser to load one or
more XMI files which can then be analysed. Features include
a GUI-based explorer showing the structure of the software
and items linked through relationships. A batch mode can be
used from the command line for automated loading of XMI
files and analysis. XMI Analyser is primarily used for testing
revisions to the XMI Parser, as an example application and
also for the easy viewing of structural information contained
within XMI, as shown in Figure 6.

XMI Analyser is also capable of comparison between mul-
tiple XMI files generating a report highlighting any differences
found. This analysis can inform decisions as to the accuracy of
the reverse engineering data represented in reverse engineering
output.

588Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 610 / 679

Figure 6. XMI Analyser Structure Display

B. Eclipse UMLet Integration
One of our desired outcomes was the ability to re-project

UML outside of a specific reverse engineering tool. Such a
capability would not only allow for detailed UML projections
without access to the reverse engineering tool, but also pro-
gramatic projection, for example in an interactive form. The
Eclipse UMLet Integration, the interface of which is shown in
Figure 7, is in the form of a plugin for the Eclipse Framework.
The XMI Parser and supporting interfaces are included along
with a graphical window-based interface and a visualisation
component. This tool can load one or more XMI files and
associate them with open or new UMLet documents. These
documents can then be used to automatically generate a UML
class diagram projection containing the structural elements
contained within the XMI. An example of a re-projection
within UMLet can be seen in Figure 8; please note, however,
owing to a limitation in our UMLet API relationships are
recovered but not shown.

Figure 7. Eclipse Visualisation Interface

Figure 8. Eclipse UMLet Re-Projection of UML

C. Java Code Relation Analysis (jcRelationAnalysis)
The jcRelationAnalysis tool is a generic utility designed

to analyse and comprehend the relationship between elements
(classes) in Java source code. This is accomplished by first
building a structural picture of the inter-relationships between
elements, such as classes, contained within a source code
corpus, initially from reverse engineering output, for which
the XMI Parser is used. The ultimate intention of the tool is
to work with combinational data from a number of different
sources to compare or augment relationship information. This

tool is now being used and further developed within our current
and future research (Section IV).

IV. CONCLUSION AND FUTURE DIRECTION

To analyse the effectiveness of RED-BM we applied it to a
range of reverse engineering tools, ranging from open source
to comprehensive industrial tool suites. We demonstrated that
RED-BM offers complexity and depth as it identified clear
differences between tool performance. In particular, using the
compound measure (CM) RED-BM was capable of distin-
guishing and ranking tools from very low (8.82%) to perfect
(100%) performance.

The XMI Parser allows tools to make direct use of reverse
engineering output overcoming the fragmentation issues. The
capability of direct use of reverse engineering output is clearly
demonstrated through the ability for UML to be re-projected
within UMLet, and also used in other tools for further analysis.

The future direction of our work will be to combine reverse
engineering output with other sources of information about
a source corpus, for example mining repository metadata or
requirement documentation. The jcRelationAnalysis tool is
being used as a programmable basis for integration of different
sources of information into a common format of relationships
between source code elements. These relationships, be they
direct and found through reverse engineering, such as gen-
eralisations, or semantic in nature and found through other
means, will be used in combination to form a more complete
understanding of a software project.

Such analysis will aid both general comprehension of
software and also change impact analysis by identifying re-
lationships between elements not immediately obvious at the
code or UML level.

REFERENCES
[1] G. Rasool and D. Streitfdert, “A survey on design pattern recovery

techniques,” International Journal of Computing Science Issues, vol. 8,
2011, pp. 251–260.

[2] J. Roscoe, “Looking forwards to going backwards: An assessment of
current reverse engineering,” Current Issues in Software Engineering,
2011, pp. 1–13.

[3] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato, “A comparison of
reverse engineering tools based on design pattern decomposition,” in
Software Engineering Conference, 2005. Proceedings. 2005 Australian.
IEEE, 2005, pp. 262–269.

[4] S. E. Sim, S. Easterbrook, and R. C. Holt, “Using benchmarking to
advance research: A challenge to software engineering,” in Proceedings
of the 25th International Conference on Software Engineering. IEEE
Computer Society, 2003, pp. 74–83.

[5] A. Gaul, “Function call overhead benchmarks with matlab, octave,
python, cython and c,” arXiv preprint arXiv:1202.2736, 2012.

[6] L. Gherardi, D. Brugali, and D. Comotti, “A java vs. c++ performance
evaluation: a 3d modeling benchmark,” Simulation, Modeling, and
Programming for Autonomous Robots, 2012, pp. 161–172.

[7] P. Olivier, J. Boukhobza, and E. Senn, “On benchmarking embedded
linux flash file systems,” arXiv preprint arXiv:1208.6391, 2012.

[8] S. Uchiyama, H. Washizaki, Y. Fukazawa, and A. Kubo, “Design
pattern detection using software metrics and machine learning,” in First
International Workshop on Model-Driven Software Migration (MDSM
2011), 2011, p. 38.

[9] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann, “An approach
for reverse engineering of design patterns,” Software and Systems
Modeling, vol. 4, no. 1, 2005, pp. 55–70.

[10] N. Pettersson, W. Lowe, and J. Nivre, “Evaluation of accuracy in design
pattern occurrence detection,” Software Engineering, IEEE Transactions
on, vol. 36, no. 4, 2010, pp. 575–590.

589Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 611 / 679

[11] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” Software Engineering,
IEEE Transactions on, vol. 33, no. 9, 2007, pp. 577–591.

[12] M. Meyer, “Pattern-based reengineering of software systems,” in Re-
verse Engineering, 2006. WCRE’06. 13th Working Conference on.
IEEE, 2006, pp. 305–306.

[13] L. Fulop, P. Hegedus, R. Ferenc, and T. Gyimóthy, “Towards a bench-
mark for evaluating reverse engineering tools,” in Reverse Engineering,
2008. WCRE’08. 15th Working Conference on. IEEE, 2008, pp. 335–
336.

[14] OMG et al., “Omg mof 2 xmi mapping specification,”
http://www.omg.org/spec/XMI/2.4.1, 2011, [Online; accessed
December 2012].

[15] UEA, “Reverse engineering to design benchmark,”
http://www.uea.ac.uk/computing/machine-learning/traceability-
forensics/reverse-engineering, 2013, [Online; accessed May 2013].

[16] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 15, no. 2, 2003,
pp. 87–109.

[17] G.-C. Roman and K. C. Cox, “A taxonomy of program visualization
systems,” Computer, vol. 26, no. 12, 1993, pp. 11–24.

[18] ArgoUML, “Argouml,” http://argouml.tigris.org/, 2012, [Online; ac-
cessed December 2012].

[19] N. E. Fenton and S. L. Pfleeger, Software metrics: a rigorous and
practical approach. PWS Publishing Co., 1998.

[20] B. Bellay and H. Gall, “A comparison of four reverse engineering tools,”
in Reverse Engineering, 1997. Proceedings of the Fourth Working
Conference on. IEEE, 1997, pp. 2–11.

590Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 612 / 679

Software Relialibility Markovian Model Based on Phase-Type Distribution

Mindaugas Brazenas, Eimutis Valakevicius

Department of Mathematical Modeling

Kaunas University of Technology

Kaunas, Lithuania

e-mail: mindaugas.brazenas@yahoo.com; eimval@ktu.lt

Abstract— The paper focuses on creating of a software

reliability model based on phase type distribution. Usually, the

length of intervals between the moments of fault detection and

correction have unknown distributions. In this paper, a new

approach how to approximate any distribution of positive

random variable by mixture and convolution of exponential

phases, known as the general type of phase-type distribution, is

proposed. The optimization algorithm of Local Unimodal

Sampling (LUS) is applied to estimate parameters of phase-

type distribution. After such procedure, the dynamics of a

software reliability model can be described by a continuous

time absorbing Markov chain. The probabilities of the

resulting absorbing Markov chain are used to compute

performance measures of the software reliability model.

Keywords-software reliability model; phase–type distribution;

absorbing Markov chain; performance measures.

I. INTRODUCTION

Software reliability is the failure probability of the
software under investigation. The situation on creating
software reliability models is clearly explained in the
following citation from the Wikipedia: “Over 225 models
have been developed since early 1970s, but how to quantify
reliability still remains unsolved. There is no single model
which can be used in every situation. There is no model
which is either complete or fully developed” [1].

A software reliability model allows forecasting the
software reliability at any moment of time. One of the
important problems in creating models is an assumption
about distribution of the length of intervals between the
moments of fault detection. Some of authors assumes that
the length of intervals is distributed according to the
exponential law [2][3]. For example, the model developed by
Moranda and Jelinski [4] assumes an exponential time
between failures having parameter that time intervals of
detection software faults follow exponential law with the
parameter proportional to the number of faults remaining in
the system. The similar assumptions are used in [5][6].
Recently, non-homogenous Poisson processes became
popular for describing stochastic behavior of the number of
detected faults, because of their simplicity [7][8][9]. Beside
the mentioned distributions, other models that are based on
Weibull [10], hyper geometric [11], Pareto [12] and other
distributions [13] are investigated.

The use in the software reliability model of any non-
exponential distributions is complicated from the computing

point of view. Therefore, in this paper, a novel approach to
apply a convolution and mixture of exponential distributions,
called the Phase-Type (PH) distribution, to approximate time
distributions of fault detection and fixing is suggested. It is
known that the PH distribution can approximate an arbitrary
probability distribution of a positive random variable with an
arbitrary accuracy by adjusting the phase structure [14].
Some authors use concrete structure of PH distributions,
such as Erlang and hyper exponential [15], Cox [16], or
others. The concrete structure of the PH distribution may not
approximate the desired distribution with the required
accuracy. Many models have been utilised for evaluating the
quality of a software using reliability but very little focus on
general type of three phase distribution. Hence, this paper
mainly focuses on this direction. Using such distribution, the
performance of the model can be described by an absorbing
Markov chain [14].

The paper is organized as follows. Section II gives
description of software reliability model under consideration.
Section III describes the algorithm for finding the structure
and parameters of approximating PH distribution. The
algorithm for constructing the set of all possible states of the
system and transition matrix between states is given in
Section IV. The modelling results are presented in Section V.
The paper is concluded in Section VI.

II. DESCRIPTION OF THE MODEL

Let us describe the conceptual model of a software
reliability model. Say, that the software contains a fixed
number of faults Fc (fault count). Assume that the fault

detection time follows some distribution ������� and fixing
time of detected faults obeys another distribution law �������. The modelling process can be represented as the
queuing system (see Figure 1).

Figure 1. The process of identifying and fixing faults in software.

It is proposed to approximate any general distribution of
a positive random variable by the general phase-type
distribution (GPH). The phase-type (PH) distribution is
defined as the absorbing time distribution of Continuous-
Time Markov Chain (CTMC). The detected fault enters the

591Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 613 / 679

queue if the previously detected one is not fixed yet. The
process of detecting and fixing faults ends when all the faults
are identified and fixed. The developed software reliability
model gives probabilistic measures of the process.

III. PARAMETER ESTIMATION OF THE PHASE-TYPE

DISTRIBUTIONS

Parameter estimation of general phase-type distribution is
one of the most challenging problems.

The precision of approximation of non-markovian model � by markovian one �∗ depends on how well distributions ���� , ���� are approximated by phase-type distributions 	
���, 	
��� . There are several methods to search for
optimal phase-type distribution parameters: moment

matching method [17][18], expectation maximization

method [19][20][21][22], and others. We will search for the

optimal parameters by employing a vector optimization

algorithm.

The phase-type distribution 	
��, �, which has three
exponential phases (see Figure 2),

Figure 2. The general structure of PH distribution with three phases.

is determined by 12 variables :

� � ���, ��, ���, � �
��� ��� ������ ��� ������ ��� ���� (1)

The coordinate �� , � � 1,2,3	of the vector � (1) denotes
the probability of process starting in ith phase. The intensity

rates of transition from one phase to other are defined in

matrix . For example, the value ��� indicates the average
transition number from the first phase to the third one per

unit of time. The auxiliary vector � � ���, ��, ��� : � ��� �! denotes rates the absorbing state (black circle)
from each phase is reached. For example, the value ��
indicates the rate of transition from second phase to

absorbing state. The transition rates satisfy the following

equalities and unequalities

���, ���, ��� " 0,���, ���, ���, ���, ���, ���, ��, ��, �� $ 0,��� � ���� % ��� % ���,��� � ���� % ��� % ���,��� � ���� % ��� % ���.
 (2)

The problem of finding optimal parameters of 	
��, �
is transformed to a problem of finding the vector '∗ ∈ �), *�,
such that ∀' ∈ �), *� ∶ -�'∗� . -�'� . Here -�∙� is an
objective function;), * – lower and upper bounds of vector '. The mapping of vector ' to the set of parameters of the
phase-type distribution 	
��, � is carried out in the
following way

' � ���, ��, … , ���� → � ≔ �34,35,36�34735736 ,�� ≔ �8, ��� ≔ �9, ��� ≔ �:,��� ≔ �;, �� ≔ �<, ��� ≔ �=,��� ≔ ��>, ��� ≔ ���, �� ≔ ���.	
 (3)

The objective function, to be minimized, is defined as an

area between the density functions ?��; 	A� and ?BCD��; 	�, �, as
 E � F |?BH��; 	�, � ?��; 	A�|I> J� (4)

The estimation of E (4) is obtained by the following
expression

 EK��LMN , ∆�; �, � � ∑ |?BH��Q; 	�, � ?��Q; 	A�|∆�MQR� ,

�Q � �S 0.5�∆�, 	U � V3WXY∆3 Z (5)

where: �LMN denotes the end value of discretization and ∆� –
the step of discretization. After the discretization the

objective function (4) has the form

 -�'� ≔ EK��LMN , ∆�; �, �; 	' → �,. (6)

The lower and upper bounds of ' are defined as

) � [0,0, … ,0\]̂]_
��

` ,
* � �1,1,1, λb�3 , λb�3 , … , λb�3\]]]]]^]]]]]_

=
� ,
 (7)

where λb�3 – is the maximal transition rate. Using the
mapping ' → �,, the optimal parameters of the phase-type
distribution are obtained from solution '∗, which is given by
a certain optimization algorithm.

592Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 614 / 679

IV. SYSTEM STATE GRAPH CONSTRUCTION ALGORITHM

The scheme of the process of detecting and fixing faults

in software after approximating the arbitrary distributions by

PH distributions is represented in Figure 3.

Figure 3.The process of detecting and fixing faults in software after

distribution approximation.

The algorithm for constructing the set of states and the

transition matrix for markovian model �∗ is described in
this section. The set of states of the system is defined by the

vector c � �S�, S�, S�, S8� , where S� ∈ d1,2,3e denotes the
index of an active phase of 	
��� and S� � 0 indicates that
there is any active phase in 	
��� ; S� ∈ d0,1, … , �f 1e
denotes a number of detected faults which are waiting in the

queue; S� ∈ d1,2,3e denotes the index of an active phase of 	
��� , S� � 0 indicates that there is any active phase in 	
���;S8 ∈ d0,1, … , �fe – denotes a number of fixed faults.
The number of detected faults in the state c is defined
according the formula

 f�c� � !dQ4g>e % S� % !dQ6g>e % S8. (8)

All the states are enumerated by the mapping

 �h � 	i�c� ∈ d0,1, … , jb�3 1e, (9)

where jb�3 denotes the number of states: jb�3 � 16�f��f % 1�. The mapping i�c� is defined as
 i�c� � ��f % 1��4S��f % 4S� % S�� % S8. (10)

The inverse mapping im���h� is obtained by the formulas
 im���h� � nf, o%�f, q%4, �h%��f % 1�r, (11)

where: q � stmst%�uv7��uv7� , o � �m�%8
8 , f � �m�%uv

uv , and % is a
reminder operator.

The vector * � nw>, w�, … , wxyz{m�r of boolean variables
(false or true) are used to determine all the possible states of

the system. The following sets of states are used: |�M�}
contains initial states of the system; | contains all possible
states of the system; |M~ includes states which are going to
be investigated in the next iteration and |}b~ is the
temporary set of states obtained from the investigated states

after one iteration. Each state contained in these sets is

represented by its index �h.
The transitions rates between all states are stored in the

matrix �7 � ����7�; 	�, � � 0, jb�3 1.

The algorithm for generating the set of possible states of

the system consists of the following steps:

1) Mark all the states as not investigated: wst≔ ?q���	�	���	��q��	��	U��	�U�����-q��J	����,	 �h � 0, jb�3 1

2) Calculate the initial probability vector :

 �st7 ≔ 0, �h � 0, jb�3 1 ��n��,>,>,>�r7 ≔ �����, � � 1,2,3

3) Determine the initial states of the system:

 � � 1,2,3: ����� � 0	 ⇒ |�M�} ≔	|�M�} ∪ in��, 0,0,0�r

4) Determine the initial values of the sets:

 | ≔ |�M�} , |}b~ ≔ |�M�} ����7� ≔ 0; 	�, � � 0, jb�3 1

5) Determine the states that have to be

investigated:

 |M~ ≔ |}b~

 Clear the temporary set |}b~ ≔ ∅

 Let d|M~e~ be an �-th element of the set |M~. � ≔ 1
6) Find the coordinates of the state vector to be

investigated:

 c ≔ im�nd|M~e~r, �h: � i�c�

7) Let us denote the set of the state vectors, that can

be reached from the state c, by |∗ ≔ ∅ and the
set of transition rates, at which all states in set |∗ are reached from the state c, by λ∗ � ∅.

8) Find the elements of the sets |∗ �	 dc�, c�, … , cQe and λ∗ � dλ�, λ�, … , λQe .
The algorithm will be described later.

9) Update the transition rates matrix:

 �stst�7 ≔ λ�;	�h� � i�c��, � � 1, S

10) Include not yet investigated states into the sets |and |}b~ (see Figure 4)

 for i from 1 to k

 �h� ≔ i�c��

593Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 615 / 679

 if wsh� � ?q��� then

 |}b~ ≔ |}b~ ∪ ��h��, | ≔ | ∪ ��h��

 endif

 endfor

Figure 4. Pseudocode for including not investigated states into the sets

|and |}b~.

11) Mark the current state c as investigated:

wst ≔ �jw�

12) If � < fqjJ�|M~� then � ≔ � + 1 and go to
step 6.

13) If |}b~ ≠ ∅ go to step 5.

14) Create the final transition rates matrix � =
����� and the initial probability vector ��0� from
�7and�7�0� (see Figure 5).

 for i from 0 to fqjJ�|� − 1
 � ≔ i�d|e��,
 �� ≔ �s

7

 for j from 0 fqjJ�|� − 1

 � ≔ ind|e�r,
 ��� ≔ �s�

7

 endfor

 endfor

Figure 5. Pseudocode for creating final transition rates matrix and initial
probability vector.

15) The end of the algorithm.

The explanation of the step 8 in detail follows.

Denote by the vector c = �S�, S�, S�, S8� the state of the
system. There are four events that make the system to

change the state: e1 – the change of an active phase in

	
��� , e2 – the detection of fault, e3 – the change of an
active phase in 	
��� and e4 – the correction of fault. The
pseudocode needed to process these events is shown in the

Figures 6, 7, 8, and 9.

 for � from 1 to 3

 if S� > 0, �Q4�
��� > 0 then

 |∗ ≔ |∗ ∪ d��, S�, S�, S8�e,
 �∗ ≔ �∗ ∪ ��Q4�

����

 endif

 endfor

Figure 6. Pseudocode for processing the e1 event.

 if S� = 0 then

 if f�c� < �f then

 for � from 1 to 3

 for � from 1 to 3

 if S� > 0, �Q4
��� > 0, ��

��� > 0, ��
��� > 0 then

 |∗ ≔ |∗ ∪ d��, 0, �, S8�e,
 �∗ ≔ �∗ ∪ ��Q4

�����
�����

����

 endif

 endfor

 endfor

 else

 for � from 1 to 3

 if S� > 0, �Q4
��� > 0, ��

��� > 0 then

 |∗ ≔ |∗ ∪ d�0, 0, �, S8�e,
 �∗ ≔ �∗ ∪ ��Q4

�����
����

 endif

 endfor

 endif

 elseif S� > 0 then

 if f�c� < �f then

 for � from 1 to 3

 if S� > 0, �Q4
��� > 0, ��

��� > 0 then

 |∗ ≔ |∗ ∪ d��, S� + 1, S�, S8�e,
 �∗ ≔ �∗ ∪ ��Q4

�����
����

 endif

 endfor

 else

 if S� > 0, �Q4
��� > 0 then

 |∗ ≔ |∗ ∪ d�0, S� + 1, S�, S8�e,
 �∗ ≔ �∗ ∪ ��Q4

����

 endif

 endif

 endif

Figure 7. Pseudocode for processing the e2 event.

 for � from 1 to 3

 if S� > 0, �Q6�
��� > 0 then

 |∗ ≔ |∗ ∪ d�S�, S�, �, S8�e,
 �∗ ≔ �∗ ∪ ��Q6�

����

 endif

 endfor

Figure 8. Pseudocode for processing the e3 event.

594Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 616 / 679

 if S� = 0 then

 if S� > 0, �Q6
��� > 0 then

 |∗ ≔ |∗ ∪ d�S�, 0,0, S8 + 1�e,
 �∗ ≔ �∗ ∪ ��Q6

����

 endif

 else

 for � from 1 to 3

 if S� > 0, �Q6
��� > 0, ��

��� > 0 then

 |∗ ≔ |∗ ∪ d�S�, S� − 1, �, S8 + 1�e,
 �∗ ≔ �∗ ∪ ��Q6

�����
����

 endif

 endfor

 endif

Figure 9. Pseudocode for processing the e4 event

V. MODELING RESULTS

Assume that a software program contains 10 faults

(Fc=10) and suppose that the length of intervals between the

moments of fault detection has the following Weibull

density function

?������ � 8
	� �8	��m>.� �m {�.�, � $ 0. (12)

The distribution of the length of intervals between the

moments of fixing faults has the following Weibull density

function

?������ � �.�
	�.9 ��.�	�.9�>.� �m {4.6, � $ 0. (13)

The discretization parameters are �LMN � 8 , ∆� �0.0625.
The distributions ?���, ?��� are approximated by the

phase-type distributions ?BH���n�;	����, ���r ,

	?BH���n�; 	����, ���r with three phases. The following
optimal parameters for ?BH�z�n�;	����, ���r and

?BH���n�;	����, ���r density functions are estimated using the
optimization algorithm LUS [23] and parameter mapping

given in Section III.

 EK��� � 0.012693, ���� ¢ �3.456 ⋅ 10m8, 0.767,0.233�,

��� ¢ � 1.516 0.002 1.5090.584 2.348 0.0051.782 7.819 15.604�,
 EK��� � 0.010634, ���� ¢ �0.008, 1.397 ⋅ 10m8, 0.992�,	

��� ¢ � 1.236 0 01.913 16.338 6.7700.897 0.331 1.402�

The comparision of means and standard deviations

between original and approximated distributions are given

in the Tables 1 and 2.

TABLE I. MEAN AND STANDARD DEVIATION OF ORIGINAL,
DISCRETIZED AND APPOXIMATING DISTRIBUTIONS OF TIME FOR FAULT

DETECTION

 Distri-

bution ¥�¦�
Discretized

distribution ¥§�¦�(deviation,%)
Phase-type

distribution ¨©�¦�(deviation,%)
Mean 0.6798 0.6769

(0.43%) 0.6958 (2. 35%)
Standard

deviation
0.8569 0.8364

(2. 39%) 0.8588 (0.22%)
TABLE II. MEAN AND STANDARD DEVIATION OF ORIGINAL,

DISCRETIZED AND APPOXIMATING DISTRIBUTIONS OF TIME FOR FAULT

CORRECTION

 Distri-

bution ¥�ª�
Discretized

distribution ¥§�ª�(deviation,%)
Phase-type

distribution ¨©�ª�(deviation,%)
Mean 1.3854 1.3841

(0.09%) 1.4000 (1. 05%)
Standard

deviation
1.0747 1.0719

(0. 26%) 1.1126 (3. 53%)

The graphs of the original and approximated density

functions are represented in Figures 10 and 11.

Figure 10. The density functions ?��� (blue) and ?BH��� (red).

Figure 11. The density functions ?��� (blue) and ?BH��� (red).

The markovian software reliability model has 466 states.

The state probabilities are computed by the following

formula

595Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 617 / 679

���� � ��0��«} . (14)

All possible states are grouped according the number of

detected faults that are placed in the queue. The values ¬M���, that there is a certain number n of faults waiting in
the queue, are obtained by probability summation within

each state group

 ¬M��� � ∑ �����,�,Q5RMim��d|e�� � �S�, S�, S�, S8�, U � 0, �f 1, (15)

where d|e� is the ith element in the set |. The graph of the
values ¬M��� is shown in Figure 12.

Figure 12. The probability functions (of time) of certain number of

faults waiting in the queue.

Similarly, all possible states of the system are grouped

according the number of fixed faults. The values �M���, that
there is a certain number n of fixed faults, are obtained by

probability summation within each state group

 �M��� � ∑ �����,			�,QRMim��d|e�� � �S�, S�, S�, S8�, U � 0, �f, (16)

where d|e� is the ith element in the set |.
The graph of values �M��� is shown in Figure 13.

Figure 13. The probabilitiy functions (of time) of a certain number of

fixed faults.

The density function of time of fixing all errors is shown

in Figure 14.

Figure 14. Density function of distribution of time necessary to fix all
10 faults.

The most probable that the time needed to fix all 10 faults

is about 16 units of time.

VI. CONCLUSION AND FUTURE WORKS

In this article, a continuous time absorbing Markov chain

model of software reliability was proposed. Non-markovian

distributions of the length of intervals between the moments

of fault detection and correction are approximated by the

general phase-type distributions with three phases. The

model generalizes other software reliability models in which

various types of distributions are used. The probabilistic

measures of detecting and fixing faults of created software

are presented. The proposed model can be useful in

estimating and monitoring software reliability, which is

viewed as a measure of software quality. Therefore, it can

be concluded that this model is more realistic then others for

a detection of software faults.

 In the future, the following modified software reliability

model will be created and investigated. The detected fault

must be fixed before searching for the next one with the

assumption that the distributions can change depending on

number of detected/fixed faults. Examples of the application

how a model help to have better software will be added.

REFERENCES

[1] List, “List of software reliability models”, available:

http://en.wikipedia.org/wiki/List_of_software_reliability

_models [retrieved: July, 2014].

[2] B. Zachariah and R. N. Rattihalli, “Failure size proportional

models and an analysis of failure detection abilities of

software testing strategies,” IEEE Transactions on

Reliability, vol. 56, n. 2, 2007, pp. 246-253.

 [3] Y. P. Wu, Q. P. Hu, M. Xie, and S. H. Ng, “Modeling and

analysis of software fault detection and correction process by

considering time dependency,” IEEE Transactions on

Reliability, vol. 56, n. 4, 2007, pp. 629-642.

[4] P. Moranda and Z. Jelinski, “Final report on software

reliability study, MADC report number 63921,” McDonnell
Douglas Astronautics Company, 1972.

 [5] J. Musa, A. Iannino, and K. Okumoto, “Software reliability

measurement, prediction, application,” McGraw Hill,

NewYork, 1987.

[6] A. Goel and K. Okumoto, “Time-dependent error-detection
rate model for software reliability and other performance

596Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 618 / 679

measures,” IEEE Transactions on Reliability, R–28 (3),
1979, pp. 206–211.

[7] A. L. Goel, “Software reliability models: assumptions,

limitations and applicability,” IEEE Trans. Software Eng.,
SE-11, 1985, pp. 1411–1423.

[8] S. S. Gokhale and K. S. Trivedi, “Log-logistic software

reliability growth model,” Proc. 3rd IEEE Int’l. High-
Assurance Systems Eng., Symp IEEE CS Press, 1998, pp.

34–41.

[9] M. Ohba, “Inflection S-shaped software reliability growth

model,” Stochastic Models in Reliability Theory, (S. Osaki
and Y. Hatoyama, eds.), Springer-Varlag, Berlin, Germany,

1984, pp. 144–165.

[10] S. Quadri and N. Ahmad, “Software reliability growth

modeling with new modified Weibul testing-effort and

optimal release policy,” International Journal of Computer
Applications, Vol. 6, No.2, 2010, pp. 1-10.

[11] Y. Tohma, R. Jacoby, Y. Murata, and M. Yamamoto,

“Hypergeometric distribution model to estimate the number

of residual software faults,” Proceedings of the 13th Annual

International Computer Software and Applications,

Conference (COMPSAC’89), 1989, pp. 610-617.

[12] Y. Aamsidhar, Y. Srinivas, and A. Brahmini, “Software

reliability growth model based on Pareto type III

distribution,” International Journal of Advanced Research in

Electrical, Electronics and Instrumentation Engineering, Vol.

2, No.6, 2013, pp. 2694-2698.

[13] S. Inoue and S. Yamada, “Lognormal process software

reliability modeling with testing-effort,” Journal of Software

Engineering and Application, Vol. 6, 2013, pp. 8-14.

[14] M. F. Neuts, “Matrix-Geometric Solutions in Stochastic

Models: an Algorithmic Approach”, Dover Publications Inc.,

1981.

[15] H. Okamara and T. Dohi, “Building Phase-Type software

reliability models’, 17th International Symposium on

Software Reliability Engineering (ISSRE'06), November

2007, pp. 289-298.

[16] V. Bubnov, A. Tyrva, and A. Khomonenko, “Model of

reliability of the software with Coxian distribution of length

of intervals between the moments of detection errors,” IEEE

35th Annual Computer Software and Applications

Conference Workshops, COMPSACW, 2011, pp. 310-314.

[17] A. Bobbio, A. Horváth, and M. Telek, “Matching three

moments with minimal acyclic phase type distributions,”

Stochastic Models, 21, 2005, pp. 303-326.

 [18] H. András and T. Miklós, “Matching More Than Three

Moments with Acyclic Phase Type Distributions,”

Stochastic Models, 23, 2007, pp. 167-194.

 [19] S. Asmussen, O. Nerman, and M. Olsson, “Fitting Phase-

Type Distributions via the EM Algorithm,“ Scandinavian

Journal of Statistics, Vol. 23, No. 4, December 1996, pp.

419-441.

[20] R. Sadre and B. R. Haverkort, “Fitting Heavy-Tailed HTTP

Traces with the New Sratified EM-Algoritm,” IT-NEWS

2008 – 4th International Telecommunication Networking

Workshop on QoS Multiservice IP Networks, 2008, pp. 256-

261.

[21] A. Risha, V. Diev, and E. Smirni, “An EM-based technique

for approximating long-tailed data sets with PH

distributions,” Performance Evaluation, 55 (2), 2004, pp.

147–164.

[22] L. J. R. Esparza, “Maximum likelihood estimation of pahse-

type distributions,” Kongens Lyngby 2010, IMM-PHD-

2010-245.

[23] E. Pedersen and A. J. Chipperfield, “Local Unimodal

Sampling”, Hvass Laboratories Technical Report no.

HL0801, 2008.

597Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 619 / 679

Vergil: Guiding Developers Through Performance and Scalability Inferno

Christoph Heger∗, Alexander Wert∗ and Roozbeh Farahbod†
∗Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Email: {christoph.heger, alexander.wert}@kit.edu
†SAP AG, 76131 Karlsruhe, Germany

Email: roozbeh.farahbod@sap.com

Abstract—Software performance problems, such as high response
times and low throughput, are visible to end users and can have
a significant impact on the user experience. Solving performance
problems is an error-prone and time-consuming task that is
ideally done with the help of experienced performance experts.
They often provide solutions in the form of work activities to
developers such as to move functionality from one component
to another in order to solve performance problems. Existing
approaches are mostly model-based and mainly neglect the
code base and measurement-based techniques. They can miss
important details from the implementation, configuration and
deployment environment of the application. In this paper, we
propose a novel approach in the field of software performance
engineering with the goal to solve recurring performance and scal-
ability problems based on a systematic process and formalization
of expert knowledge. Starting with a set of detected performance
problems in the target system, our proposed approach supports
developers by identifying, evaluating and ranking of solutions,
and by providing a work plan sketching the implementation of
the selected solution. In an example with a Java EE application,
we show the solution of a software bottleneck through result
caching.

Keywords–Software Performance; Software Engineering; Soft-
ware Measurement; Performance Evaluation.

I. INTRODUCTION

Over the last decade, software performance practitioners
have been documenting recurring performance problems and
their identified root causes and solutions as performance anti-
patterns (for example in [1][2]). The documentations include
general definitions and solutions to the performance problems
but nevertheless, solving recurring performance problems is
still a manual and time-consuming task that requires expertise
in software performance engineering [3], rigorous performance
evaluation techniques [4], and a deep understanding of the
system under study. After the presence of a performance
problem has been observed and the root cause (or root causes)
has been identified with the help of a performance expert, the
solution process often includes a comprehensive analysis of
the solution space and usually consists of (1) identification
of possible changes, (2) evaluation of the performance impact
of each possible change on the particular system, (3) effort
estimation for applying one or more changes, and (4) deciding
what changes to be applied to the system.

Currently, to the best of our knowledge, there are no
approaches that help developers with the implementation of a
performance and scalability solution with providing an ordered
set of work activities at the code level. Existing approaches
for solving performance problems, for example [5][6][7][8],
are model-based. A shortcoming of model-based approaches
is that not all performance problems can be solved at the

model level [7] when the implementation, measurement-based
experiments and monitoring-driven testing techniques are
neglected. Additionally, cost factors and constraints have to be
taken into account when a variety of solution choices exists.
Furthermore, decision support mechanisms have to be integrated
in order to support developers in selecting the most appropriate
solution [9]. Only [8] considers using the effort estimation
of the designer for the necessary design model changes in
selecting a solution among alternatives. Jing Xu also uses the
determined changes to suggest what should be changed in an
abstract way, but not how to do it concretely [8]. Nevertheless,
the existing approaches neither consider an existing code base,
measurement-based testing techniques nor do they integrate
decision support mechanisms or support the developer for
implementing a solution at the code level.

In light of these observations, we are developing the
Vergil approach (named after the ancient Roman poet Publius
Vergilius Maro, Dante’s guide through the inferno in The Divine
Comedy [10]) that guides developers from a performance or
scalability issue to solutions, by providing hypotheses about
what to change, evaluating the changes in the context of the
particular application and ranking the solutions to support
developers in making a decision. Solution alternatives are
provided as ordered lists of work activities sketching the
implementation of the solutions for developers. Additionally,
in order to support developers in making a decision on which
solution to implement when different alternatives exist, it is
necessary that developers estimate the effort to implement a
certain solution. Therefore, developers often expect concrete
work activities when asked for estimating the necessary effort.
Vergil targets the development and maintenance phase of the
software systems life cycle when an executable application
implementation is available.

The core idea of Vergil is a process to identify and
evaluate solutions to existing performance problems in a given
application context, and to rank and recommend the most
suitable of such solutions to the developers together with a
description on how to implement them. The conceptual founda-
tion is the formalization of performance expert knowledge into
hypotheses about what to change and when. The goal of the
approach is twofold: to make expert knowledge and methods
for performance problem solution easily available to developers
(who are not necessarily experts in performance engineering)
and to guide them through the solution process with automation
and tools [11].

In this paper, we introduce the overall concept of Vergil.
The remainder of the paper provides an overview of Vergil’s
overall process, individual process activities, involved artifacts
and how process activities and artifacts are connected.

598Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 620 / 679

In summary, we provide the following contributions in this
paper:

1) We introduce Vergil’s process, for exploring, evaluat-
ing and ranking of hypotheses to determine solutions
of recurring performance and scalability problems.

2) We formalize performance problems as symptom
traces in applications, and solutions as change hy-
potheses.

The remainder of the paper is structured as follows: In
Section II, we introduce the process, its activities, and the
artifacts of Vergil. In Section IV, we demonstrate the solution
of a software bottleneck within a Java EE application through
result caching. We present and discuss the related work in
Section V and finally, conclude the paper in Section VI, also
outlining our plan for future work.

II. THE VERGIL APPROACH

The main goal of Vergil is the provisioning of solutions
(e.g., to split an interface or to move functionality to a
certain component) to developers for solving performance
and scalability problems. Vergil combines the strengths of
a systematic process and the consideration of cost factors
and constraints of model-based performance improvement
approaches, for example [5][8][6], and extends them with
the introduction of measurement-based performance problem
solutions at the code level by means of monitoring-driven
testing techniques, decision support mechanisms for selecting
the most appropriate solution and work plans sketching the
implementation of the solution.

There are two roles involved in Vergil as shown in Figure 1:
Performance experts, who provide their knowledge about how
to solve performance problems, and users (e.g., developers or
other stakeholders; henceforth referred to as developers) who
use Vergil to solve performance problems. The knowledge of
performance experts about how to change a system is formalized
in rules (henceforth called Change Hypotheses). Knowledge
about how a change can propagate and impact other parts of
the application is formalized in Propagation Rules. In each use
case, developers provide the information about the problem
context. They provide the Performance Problem Model by
means of specifying the symptoms (e.g., high response times,
high CPU utilization, or high memory utilization) and where
they observe the symptoms in the application. They also provide
the Source Code of the application, a Test Environment where
the application can be deployed and the running application can
be monitored during the execution of load tests, the Performance
Requirements of the application as well as the willingness
to change certain parts of the application, and constraints as
Developer’s Preferences.

Vergil uses all artifacts to test the applicability of Change
Hypotheses and to evaluate which changes are leading to a
performance improvement either with measurements and/or
performance models. Vergil discards solutions that are not con-
forming with the Developer’s Preferences. For each determined
solution, Vergil derives a Work Plan with activities sketching
the implementation of the solution. Developers estimate the
implementation effort of each work plan. Vergil ranks the
solutions based on all the collected information throughout

VergilOverview

Performance Problem

Source Code

Ranked Solutions &
Work Plans

Performance Requirements

Test Environment

Vergil
Developer's Preferences

Change Hypotheses

Propagation Rules

Estimated Effort

Use Case

Expert Knowledge

Figure 1: Vergil Overview.

the process and presents the ranked list as feedback to the
developer. Developers can then discuss the solution proposals
and implement the selected solution with the help of the Work
Plan.

The process consists of four major activities as shown in the
BPMN diagram [12] of Figure 2. In the context of this paper,
we are focusing only on the overall concept of Vergil. The
details of the activities Propagate Work Activities and Estimate
Effort of Work Plans are described in [13].

A. Extract Models

The process starts with the Extract Models activity [14] that
takes the source code of the application as input. The source
code is parsed into the Source Code Model (SCM), for example
with the Java Model Parser and Printer (JaMoPP) [15] for Java
source code. An architecture performance model (APM) is
extracted from the source code (in the context of this paper
from Java) or when such a model already exists, it is imported.
In the context of this paper, the APM is a Palladio Component
Model (PCM) [16]. PCM is a software architecture simulation
approach to analyze software at the model level for performance
bottlenecks and scalability issues. It enables software architects
to test and compare various design alternatives without the
need to fully implement the application or buying expensive
execution environments. PCM has already been used to detect
and solve performance problems [7]. The PCM is created
from the source code using the Software Model Extractor
(SoMoX) [17]. The APM provides an architectural view of
the application and is used to evaluate architectural change
hypotheses in the remainder of the process. During the APM
extraction, the Correspondence Model (COM) is build that
links APM and SCM model elements, for example interfaces.
A correspondence expresses the equality relation of two model
elements in different meta-model instances. The SCM, APM,
and COM are forwarded to the Explore Change Hypotheses
sub-process.

B. Explore Change Hypotheses

The sub-process consists of the four activities Test Change
Hypotheses, Propagate Work Activities, Evaluate Work Activ-
ities, and Extract Work Plans. Before we are going into the
details of each activity in the remainder of this section, we
introduce the performance problem model and our concept of
change hypotheses. Change hypotheses provide the knowledge
about what can be changed to solve a performance problem.
The hypotheses are an important cornerstone in Vergil and are
rules expressing what to change and when.

599Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 621 / 679

�������	
����	����������
�����������

�����������
���������

��������
���

� ��	�����

�	��!���
���

� ��	�����
�"��� �

���������

��!�����#
���������$%���

��!�����#��&�����%
���������$%���

'����(�)�����!�����#
���������$%���

��!�����#
���������

���*�&�� �
'�+!���&����

���������
'!���

������
���������

�������	���&���

��������	�������

���*�&�� �
��)��&
,��� ��%

����&���
�**���*

���������

��!�����#����������

��������&���%��**��

���*�&�� �
��)��&�$%��

�!� �
�%�

�"��� �
$%���

'���
��!����

��!�������� ��%

�"����
������

���������

��!�����#
���������

'����%���!�����#
���������

,�	�����-�
���*���� ���!� ���%��$%��.

�������%�� ��$%���#
�� ���� �!������*�&�� ��$%��

Figure 2: Vergil Process Overview.

Definition 1: A performance problem is a symptom trace
through the application. It is formalized through a model of
its root cause(s) expressed by its symptom(s), the workload
specification [18] including the usage profile, and location(s)
inside the application as shown in Figure 3. The resulting
model is henceforth called Performance Problem Model (PPM).
A performance problem can have any number of other per-
formance problems as cause expressed through the causedBy
relation. One or more symptoms belong to a performance
problem. A symptom can be among others: high CPU utilization,
high response time, high memory utilization or high network
utilization. A location is the referenced element of the SCM like
a class, method, or statement where the symptoms are observed.
The workload specification describes the workload (e.g., the
number of users and their think time in a closed workload
scenario) and the usage profile under which the symptom can
be observed. The workload specification is formalized as a
finite state machine and probabilistic usage behavior by means
of Markov chains [18].

Performance Problem
1 1..*

SymptomLocation
1 1

1

0..*
causedBy

High Response
Times

High CPU Utilization
High Memory

Utilization
...

Workload Specification

Figure 3: Performance Problem meta-model.

The PPM can be automatically extracted from a tool such as
DynamicSpotter [19] or instantiated manually by the developer
and is given as input to the process.

Definition 2: A change hypothesis h consists of a set of
preconditions that must be fulfilled in order to be applicable
in the problem context, a set of transformation rules that
apply the changes of the hypothesis to the application on
the defined level of abstraction (e.g., APM, SCM, etc.), a set
of postconditions that test if the expected effect has taken
place, and a work plan model template for creating the initial
work plan model as shown in the meta-model in Figure 4.
The conditions can test structural or behavioural properties
of the application. A condition can consist of any number of
structural (on the SCM, PPM and APM model) and behavioral
(on measurement or prediction results) conditions testing static
and dynamic requirements of the hypothesis. The conditions
are rules expressed as logical predicates in first-order logic.
First-order logic has already been used before in literature to
formalize performance antipatterns [20]. The formalization of
the changes depends on the level of abstraction. For example,
in the case of APM and SCM (basically Java source code),
graph rewriting rules (in place transformations) are used to
transform the models. In the case of modifying parameter values
in configuration files, simple text replacement rules are used.

Change Hypothesis

Precondition

APM Rule

Transformation Rule
11..*

SCM Rule Configuration Rule

11
Work PlanTemplate

PostconditionCondition
1..*1

StructuralCondition BehaviouralCondition

11..*

Figure 4: Change Hypothesis meta-model.

600Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 622 / 679

In the following, we provide an example of a hypothesis
that caching the results of calling a method can improve
performance:

The behavioural precondition of the hypothesis that caching
the results of calling a method can improve performance
ensures that the method m producing the results is deterministic.
Deterministic means that for each method input i ∈ I and for
all method calls cm of method m there exists only one result
r ∈ R in the set of results so that cm(i) = r. The formalization
of the precondition as one basic predicate BP is as follows:

∀i ∈ I,∀cm ∈ methodCalls(m),∃!r ∈ R : cm(i) = r (1)

where m denotes the method whose results shall be cached.

The structural precondition of the hypothesis matches a
pattern in the SCM and PPM where a method is referenced
from a performance problem with the “High Response Time”
symptom and where the method implements an interface
method. The structural precondition is formalized through the
BP where m denotes the method (referenced by the performance
problem) and m′ denotes the interface method in the set of all
methods:

∃m,∃m′ ∈Methods ⊂ SCM : ∃p ∈ PPM :

impl(m,m′) ∧ ref(p,m) ∧ has(p,HighRespT imes) (2)

The postcondition of the hypothesis ensures that the number
of method calls of m has decreased after the changes of the
hypothesis have been applied.

Taking the PCM as APM, the transformation rule of
the hypothesis targets the PCM instance of the application.
The performance-relevant behaviour of a method in PCM is
modelled through a Service Effect Specification (SEFF) [16]
(basically a series of actions) that can contain among others
BranchAction, InternalAction, and ExternalCallAction elements.
A BranchAction models a branch and can take the probabilities
for each transition. An ExternalCallAction models the call to
a method of another component. On an abstract level, caching
results means that there is a probability P that the result
is in the cache. This can be modeled in its simplest form
by means of putting the ExternalCallAction EA, calling the
method whose results shall be cached, inside a BranchAction
that has the probabilities P for the cache hit transition
and 1 − P for the cache miss transition (modeled through
a ProbabilisticBranchTransition). Therefore, the rule simply
wraps EA in the SEFF into a BranchAction.

The work plan model (WPM) template of the hypothesis is
a blue print to create the initial work activities. A hypothesis
knows the work activities resulting from the changes but not
the possible side-effects. For example, a hypothesis to split
an interface knows the work activity “Split”. The work plan
meta-model is introduced in the context of the Extract Work
Plans activity in the remainder of the paper.

This concludes the hypothesis example. In the following,
we describe the activities of the sub-process:

1) Test Change Hypotheses: The Explore Change Hypothe-
ses sub-process starts with the Test Change Hypotheses activity
that takes the change hypotheses H , the test environment, the
performance requirements and the models as input. In this
activity, the applicability of change hypotheses is tested, and

the effect of the hypotheses’ encapsulated changes is evaluated
to build solutions. Jing Xu [8], Mauro Drago [21] and Diaz-
Pace et al. [22] already considered performance evaluation
of changes. The exploration algorithm selects sets of change
hypotheses with fulfilled precondition and evaluates their effect
through instantiating the changes in the context of the particular
application and on the hypothesis’ level of abstraction (e.g.,
architecture performance model, source code, or configuration
file) and evaluates the performance. Vergil only considers
changes that can be applied automatically. To give an example,
two approaches for automated model refactoring for solving
performance problems are presented in [23] and [8].

The set of change hypotheses H is the input for the
EXPLORE procedure of the exploration algorithm as shown in
Figure 5 (line 5). The current algorithm uses backtracking (as
suggested by Arcelli and Cortellessa [9] and used in [24]) to find
solutions that fulfill the performance requirements. The basic
backtracking algorithm loops over all h ∈ H \H ′ and evaluates
the precondition of h after the changes of the hypotheses in H ′

have been applied (line 6-7). If hPreCon evaluates to true, the
hypothesis h is evaluated. The postcondition of h is evaluated
on the returned evaluation result (line 8). When hPostCon

evaluates to true then h is added to H ′ (line 9-10). When the
changes of a hypothesis are applied, the impacted elements of
the application are identified as well as how they are impacted
and also returned in result. The information is used to build
the work plan models and its initial work activities based on
the template. When hPostCon is not fulfilled, then the loop
continues with the next hypothesis h ∈ H \ H ′ (line 17).
When the postcondition and the performance requirements are
fulfilled, the hypotheses composition H ′ is added as solution
to solutions (line 12).

The performance requirements are expressed as upper bound
of a performance metric. For example, the performance metric
can be the response time of a method, the CPU, memory and/or
network utilization of a server the application is running on. The
performance evaluation and the postcondition also ensure that
the changes do not lead to a performance degradation [9]. If the
postcondition is fulfilled, but the performance requirements are
not fulfilled, the procedure EXPLORE calls itself recursively
with hypotheses composition H ′ and the set of hypotheses
H (line 14). The result of the algorithm is the set solutions
that consists of sets of change hypotheses. Mathematically,
the basic algorithm can miss solutions as it does not check
all possible combinations of hypotheses (for practical reasons).
However, a variation of exploration algorithm to test all possible
compositions has to neglect the pre- and postcondition tests.

The performance improvement in Line 8 is either estimated
by means of prediction through APM or determined through
measurement-driven testing techniques on the System Under
Test (SUT) as shown in Figure 6. The SUT consists of the
deployed application and the Test Environment (TE). The TE
is a testing and monitoring environment where the application
can be deployed and executed. Part of the TE is a load
generator (e.g., HP LoadRunner [25], Apache JMeter [26])
and a representative load test for the application that is used
to simulate users using the application. The load test itself
consists of: a usage profile (how the application is actually
used by its users), and the number of users to simulate and
their think time (in a closed workload scenario). The usage

601Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 623 / 679

1: Set H ← Change Hypotheses
2: Set H ′ ← ∅
3: Set solutions← ∅
4:
5: procedure EXPLORE(Set H’, Set H)
6: for all h ∈ H \H ′ do
7: if evaluate(hPreCon, H

′) then
8: result← evaluate(h,H ′)
9: if evaluate(hPostCon, H

′) then
10: H ′ ← H ′ ∪ {h}
11: if solved(result) then
12: solutions← solutions ∪ (H ′, result)
13: else
14: explore(H ′, H)
15: end if
16: else
17: Continue
18: end if
19: end if
20: end for
21: end procedure

Figure 5: Exploration of Change Hypotheses.

profile is often a probabilistic behaviour. Given a currently
visited web site, a user visits another web site or selects a
certain element with a certain probability. The probabilistic
usage profile and intensity-varying workload is specified in two
types of models. A finite state machine specifies the possible
interactions with the Web-based software system. Based on
the finite state machine, the probabilistic usage is specified
in corresponding user behavior models by means of Markov
chains [18]. Markov4JMeter [27] implements such an approach
for probabilistic workload generation by extending the workload
generation tool JMeter. The probabilities can be determined
from real-user monitoring of a deployed application running
in production or manually through the expected usage of the
application when no deployed application is available. In the
latter case, a common, non-probabilistic usage profile is used.

Figure 6: Evaluation Mean Alternatives.

For measurement-based experiments by means of
monitoring-driven testing techniques on the SUT, our Adaptable
Instrumentation and Monitoring (AIM) agents are deployed on
the servers of the TE to instrument Java bytecode to monitor
the application under load and to sample the resource utilization
(CPU, network, etc.) of the servers. AIM provides means to
automate the adaptation of instrumentation instructions. In
experiment-based performance engineering, this feature can be
utilized to automate a series of experiments to make manual
interventions between individual experiments unnecessary.
AIM specifies an extendable language to describe a desired
instrumentation and monitoring state on an abstract level. It
parses instances of the instrumentation description model and

realizes instrumentation and monitoring instructions utilizing
bytecode instrumentation, sampling and interception of the
underlying Java Virtual Machine (JVM). A separate publication
on AIM is in progress.

When the effect of changes is evaluated, the evaluation
starts in Current State (cf. Figure 6) where a series of
reference measurements S0 is obtained. In the case of a
SUT → SUT ′ evaluation, the measurements are obtained by
means of monitoring-driven testing techniques with AIM and
the execution of a workload. The source code transformation
rules are applied to the SCM. The transformed SCM is used
to transform the source code, for example in the case of Java,
with JaMoPP. Configuration transformation rules are applied to
the configuration files. Component configurations specified in
the source code are treated as implementation transformation
rules. The application of the transformation rules creates the
SUT ′. The series of evaluation measurements S1 from the
SUT ′ are then obtained analogous to S0.

In the case of a APM → APM ′ evaluation, the resource
demands for the calibration of the APM instance are obtained
from the SUT . To determine the resource demands, the
corresponding source code regions are instrumented with AIM
to derive cumulative distribution functions CDFs through
experiment-based measurements with the SUT . The determined
resource demands are inserted into the APM instance. The series
of reference measurements S0 is obtained through simulating
the calibrated APM instance. The transformation rules are
applied to the APM instance to create the APM ′. In the
Target State, APM ′ is simulated to derive the evaluation
measurements S1, as a prediction for the measurements
expected from SUT ′.

In both evaluation scenarios, the estimated performance
improvement is determined as the difference S0 − S1. After
the Target State is reached and S1 is obtained, the changes
are reverted (cf. Figure 5, line 8). The solutions and the
corresponding WPMs fulfilling the requirements are forwarded
to the Propagate Work Activities activity.

2) Propagate Work Activities: In this activity, the WPMs are
completed by identifying all impacted elements of a solution
and determining for any impacted element the required work
activity. Vergil uses impact propagation rules to accomplish this
task. The directly affected elements are identified during the
instantiation of a change hypothesis (because it is applied to
these elements). The WPM template of the change hypothesis
provides the initial set of work activities. Changes can ripple
through the application impacting other elements that are in
a relationship (side-effects). To complete the WPMs, the side-
effects and their work activities are determined through impact
propagation rules [28]. Impact rules know if and how a work
activity propagates itself to other elements, for example, when
an interface in SCM is referenced from a “Split” work activity,
then the rule knows that a class implementing that interface
has to be splitted too. A side-effect can also be that new
tests have to be added when a new interface is going to
be created. Another example for such a follow-up activity
is the redeployment of a component if the implementation will
undergo changes. Rules are also used to conclude follow-up
activities. The completed WPMs with the propagated impact
and the corresponding solutions are forwarded to the Evaluate
Work Activities activity.

602Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 624 / 679

3) Evaluate Work Activities: In the Evaluate Work Activities
activity, the work activities are validated against the Developer’s
Preferences. Their referenced elements are tested if they can be
changed. Developers express their willingness or unwillingness
to execute a certain type of change on a grading scale. They
can also express what cannot be changed, such as legacy parts
of the application or the database. Arcelli and Cortellessa [9]
already raised the concern that cost factors and constraints (e.g.,
the database cannot be changed) have to be taken into account
when proposing solutions. Solutions whose WPMs contain
unchangeable elements are discarded, removed from the set
of solutions and the corresponding WPM is deleted. In the
case of Java programs, Vergil takes unchangeable elements into
account through the specification of the full qualified name or
namespaces by the developers. For example, if a work activity
references an element in the APM then an architecture impact is
concluded. If the architecture is unchangeable, then the solution
is discarded. The set of remaining solutions and WPMs are
forwarded to the Extract Work Plans activity.

4) Extract Work Plans: In the Extract Work Plans activity,
a list-based representation of the WPMs for the developers
is extracted. The list of work activities sketches the imple-
mentation of the corresponding solution for developers. It also
serves as foundation for the Estimate Effort of Work Plans
activity. The list structure is determined through the refinedBy
and dependsOn relations between work activities in the WPM.
The refinedBy relation expresses the parent-child relationship
of work activities whereas the dependsOn relation expresses
the order of work activities.

Work Activity

Impacted Element

Atomic Activity

Composite Activity
Work Plan

1..*1

1
1..*

SplitMergeSwapReplace

AddDeleteUpdate

Move

0..11

dependsOn

refinedBy

Figure 7: Work Plan meta-model.

Definition 3: A work plan is an ordered set of work
activities. A work activity can be atomic such as add, delete,
or update an element like a class, interface, and method
or composite such as split, move, merge, swap, or replace
elements [29]. A composite activity can be composed of other
composite and atomic activities and is broken down until it is
expressed through atomic activities. Refinement rules are used
to break composite activities in the WPM down into atomic
activities.

Work plans are not prescribing how the solution has to be
concretely realized in the application. Jing Xu already motivated
in [8] that the solution suggests what should be changed in
an abstract way, but not how to do it concretely because there
can be a host of ways. Vergil accomplishes this by modelling
only abstract work activities sketching the implementation of
a solution. The work plan can also, if necessary, list follow-
up activities such as redeployment work activities and testing
activities. The Explore Change Hypotheses sub-process ends
after the extraction of the work plans is completed and forwards

them together with the solutions to the Estimate Effort of Work
Plans activity.

C. Estimate Effort of Work Plans

In the Estimate Effort of Work Plans activity, the effort for
any work plan application is estimated by developers. This is
a manual task done by the developers themselves because the
effort can vary between individual developers depending on
their knowledge, experience and practice. Vergil accepts the
effort as unit less quantities for all atomic work activities. This
leaves the decision of the concrete unit of measurement by
the developers. Chosen once (in the current execution of the
process), the unit of measurement has to remain the same for
all work activities and work plans. The effort can be estimated,
for example, in person (-hours, -days, or -months) [8]. The
total effort estimation for a work plan is the computed sum
of the unit less quantities of each atomic work activity. The
consideration of the estimated effort takes the costs of solution
alternatives into account [8], [9]. The solutions and the work
plans with estimated effort are forwarded to the Rank Solutions
activity.

D. Rank Solutions

In the Rank Solutions activity, the solutions are ranked
through the rating of a multi-criteria decision analysis. The
rating takes costs and constraints into account to support
developers in deciding on an appropriate solution when a
variety of choices exists [8][9]. The rating is done similar
to [30] with a combination of the Analytic Hierarchy Process
(AHP) [31] and the Simple Multi-Attribute Rating Technique
(SMART) [32] taking the performance impact, cost factors,
constraints and the developer’s preferences into account. In the
first step, AHP is used to obtain the priorities of the criteria.
In pairwise comparisons, the developer judges the importance
based on a fundamental scale of absolute numbers [31]. The
priorities are given as input to SMART. SMART is a method of
the multi-attribute utility theory. In contrast to the AHP where
decision-making is done through pair-by-pair comparison of
alternatives requiring human intervention, SMART ranks the
solution alternatives based on the information already collected
throughout the process using the given priorities (henceforth
referred to as weights).

SMART uses a decision table consisting of m crite-
ria C1, C2, . . . , Cm as rows and n solution alternatives
A1, A2, . . . , An as columns. The cells contain the value of
the alternative with respect to the criteria. Each criteria has
an assigned weight wi as dimensionless, normalized number
originating from the developer’s judgements (e.g., the impor-
tance of performance improvement, effort, or the willingness
to change the architecture, etc.). For all alternatives, SMART
computes the rating xj of alternative Aj as follows:

xj =

∑m
i=1(wi aij)∑m

i=1 wi
, j = 1, 2, . . . , n (3)

where aij is the normalized value of criteria Ci and alternative
Aj .

The list of solutions is sorted descending according to
the computed SMART ratings x1, x2, . . . , xn. The solution
with the highest SMART rating in the list is placed on top.

603Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 625 / 679

Developers are then able to review and discuss the proposed
solutions based on the work plans, the impacted elements—and
how they are actually impacted, the costs, and the estimated
performance improvement and to select a solution they are
willing to implement. The selected solution and its work plan
are the final result of the process.

III. DISCUSSION

In this section, we clarify the current implementation
status of Vergil’s framework, the dependency on component-
based software architectures and programming languages, and
different categories of refactoring changes.

A. Automation of process activities

Currently, there are implementation prototypes for the two
activities Rank Solutions and Propagate Work Activities. The
activities of the Explore Change Hypotheses sub-process are
intended to be automated in the near future. The Estimate
Effort of Work Plans activity is not automated. However, Vergil
still supports the developer by providing work plans sketching
the implementation steps. In our next steps, we are designing
the architecture of Vergil’s framework based on the feedback
we have received. Our goal is to design an architecture that
allows tailoring the process to the specific needs of a use
case. To give an example, in a certain use cause, it might
be infeasible to estimate the implementation effort for each
solution alternative. Instead, it is only feasible to estimate
the implementation effort of the top-k solution candidates.
Therefore, the solution alternatives must be ranked based on
the criteria (neglecting the implementation effort) to identify
the top-k solution candidates. In such a scenario, the rank
solutions activity must occur twice in the process: (1) before
the Estimate Effort of Work Plans activity, and (2) thereafter
considering only the top-k candidates. In another use case,
the developer may want to have all solution proposals in the
ranking regardless of their conformity with the Developer’s
Preferences. In this case, the Evaluate Work Activities must be
skipped.

B. Extension of the framework

Conceptually, Vergil is designed to be applicable to ap-
plications following component-based architecture and object-
oriented design principles. The implementation of Vergil in
the context of our research focuses on the Java programming
language and the Palladio Component Model, which are both
established means in industrial practice. We designed Vergil’s
framework to use exchangeable plugins to be able to support
different programming languages and technologies. We specify
and provide interfaces to implement plugins, e.g., to support the
C# programming language. However, to make Vergil support
other languages, there are certain key aspects that must be
considered: programming language and technology specific
knowledge encapsulated in Vergil’s artifacts must be changed,
extended, or developed to work with different languages and
technologies.

C. Proposal of non-automatic evaluable solutions

In general, the changes of a change hypothesis can be
assigned to one of the following three categories: (A) auto-
matically executable, (S) semi-automatically executable, and

(M) manually executable. Each category determines the ability
to apply the changes of a change hypothesis automatically
and the demand of human intervention, in order to evaluate
the performance improvement of a change hypotheses (or a
solution in general). The execution of refactorings in a work
plan can also be categorized into (A), (S), and (M). As a result,
we distinguish between nine possible categories of solutions
described by the tuple:

Solution Category = Cat(DoAEv, DoAEx) (4)

where DoAEv determines the Degree of Automation (DoA) for
evaluating the changes of a change hypothesis (the application
of changes to the system respectively) and DoAEx determines
the degree of automation for the execution of a work plan.

Categories (A,A), (A,S), and (A,M) are expected to
require no human intervention to evaluate the performance
improvement of a change hypotheses. Category (S, S) and
(M,M), on the other hand, require human intervention. The
category is often determined through the complexity of the
refactoring. For example, simple refactorings like changing
annotations are categorized as automatically executable. Refac-
torings categorized as semi-automatically or manually exe-
cutable require the implementation of refactorings prior to their
evaluation which is infeasible in most cases (cost vs. benefit
trade-off). In order to avoid the implementation of changes
just to evaluate the performance improvement, Vergil can still
provide solution proposals in terms of work plans but without
evaluating the performance improvement accompanied to the
risk of introducing a performance degradation. Nevertheless, the
proposal of such solutions can still be valuable for developers.

IV. MEDIASTORE EXAMPLE

In this section, we provide an outlook on the validation of
Vergil. We present an excerpt of the Test Change Hypotheses
activity by evaluating the change hypothesis given as example
in Section II-B to cache the results of a method with the
high response time symptom in a APM → APM ′ evaluation
scenario. The example is structured as follows: In the current
state, measurement-driven experimenting techniques are used to
determine the resource demands from the SUT and to calibrate
the APM. The calibrated APM is simulated to obtain the series
of reference measurements S0. Then, the hypothesis’ changes
are applied to transform the APM into APM ′. The APM ′

is simulated to obtain the series of evaluation measurements
S1 (cf. Figure 6 and Section II-B1). To present preliminary
results, we also show the response time measurements before
and after implementing the changes in Figure 8.

We use a MediaStore [16] application as a simple use
case example accessing the database and processing the data.
The MediaStore allows its users to upload and store audio
files as well as to download audio files encoded in a less
or equal audio bit rate compared to the uploaded one. The
application is implemented in Java EE and is deployed in a
GlassFish 4 application server with Derby 10.10 as the database
management system. The application server and the database
management system are located on separate nodes. A short
overview of the most relevant components for the example
is shown in Figure 9 as excerpt from the PCM model. Only
features relevant for the example are shown here and other

604Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 626 / 679

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

Response Time [s]

P
ro

ba
bi

lit
y

Measured w/o Cache (SUT)
Predicted w/o Cache (PCM)
Predicted with Cache (PCM')
Measured with Cache (SUT')

Figure 8: Measured and predicted response times.

PCM features can be found in [16]. We use the PCM model
as APM in the example. The PCM model shows the resource
container, on which the WebGUIBean, MediaStoreBean,
AudioAdapterBean, and EncoderBean components are
deployed. The resource container corresponds to the node in
the Test Environment on which the MediaStore is deployed
for measurement-based experiments. The SEFF models the
performance-relevant behaviour of the MediaStoreBean’s
download method and consists of the external call action to
fetch an audio file from the database and the external call action
to encode the audio file in a specified audio bit rate.

Figure 9: MediaStore PCM model excerpt.

We consider a scenario where multiple users download an
audio file α ∈ AudioF iles, |AudioF iles| = 81 randomly with
a bit rate β ∈ B = {32, 64, 128, 160} that is less compared to
the uploaded bit rate of 190 kBit/s to force the re-encoding
of α with bit rate β. Mathematically, the encoding function is
defined as follows:

encode(α, β) = α′ (5)

where α′ is the re-encoded audio file α in the desired bit rate
β. The simulated usage profile is as follows: Users login, select
the desired audio file α and bit rate β randomly following a
uniform distribution, download the re-encoded audio file a′,
and logout. We simulate three power users with zero think time
who execute the usage profile in a closed workload scenario
using HP LoadRunner.

We instrument the WebGUIBean’s download method with
our AIM agent and monitor the response time of the method.
Therefore, the agent adds code statements at the beginning
and the end of the method’s body at the byte code level. The
instrumentation (manipulating the byte code) is already fully
automated. The added byte code instructions measure the time it
takes to execute the method. In the monitoring results, shown as
cumulative distribution function in Figure 8 (as dashed red line),
we observe a measured median response time r̄mea = 14.29s
of the SUT in the applied workload and usage scenario. This
is high in our considered scenario. The high response times
are caused by the re-encoding of α.

We use the hypothesis (given as example in Section II-B)
that caching the results of calling the encode method can
improve performance. The encode method (as formalized in
Equation 5) fulfills the precondition as it returns for the same
input tuple (α, β) the same result α′. The size of an object
cache is often specified by the number of elements that can
be added to the cache before eviction takes place. In the case
of a data access profile following a uniform distribution like
in this example, the cache hit probability P only depends on
the size of the cache and the total number of elements. For
example, to achieve a hit probability P = 0.8, the cache size
can be determined as follows:

d|AudioF iles| ∗ |B| ∗ P e = d81 ∗ 4 ∗ 0.8e = 260 (6)

where the result is rounded to the next integer. In general, the
size of the cache can be limited by the amount of memory
that is available for caching objects. For the APM → APM ′

evaluation of the changes, we use the PCM model as shown
in Figure 9, as APM. We extract the resource demands for
the internal actions (not shown in Figure 9) in the SEFF of
IAudioDBAdapter.getFile and IEncoder.encode
with measurement-driven experiments on the SUT. The extrac-
tion is done (semi-) automatically. We are currently working
on the full automation of resource demand extraction for PCM
models with measurement-based experiments in the context of
our publication about AIM. We calibrate the PCM model with
the determined resource demands and simulate the usage profile
and workload to obtain the series of reference measurements
S0. In S0, also shown as cumulative distribution function in
Figure 8 (as dashed blue line), we observe a predicted median
response time r̄pre = 14.39s in the current state of the APM.

In order to evaluate the hypothesis, we manually transform
the SEFF IMediaStoreBean.download as shown in
Figure 10. How the transformation can be automated is shown
in literature [7][23][33]. We introduce a BranchAction and two
ProbabilisticBranchTransitions (PBT) to simulate the cache. We
assign the hit probability P = 0.8 to the CacheHit PBT and the
miss probability 1−P = 0.2 to the CacheMiss PBT. We assume
the cache access time to be negligible, based on our practical
experience (fetching an α′ from the cache takes on average
0.02µs in the SUT ′ with the implemented caching solution).

605Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 627 / 679

Figure 10: SEFF in target state of APM ′ with simulated cache.

The simulation results S1 (denoted as blue line) for PCM ′

are shown in Figure 8 as cumulative distribution function. The
simulation predicts a median response time r̄′pred = 2.95s.
Based on the evaluation results, a performance improvement
of 487% is estimated for the changes of the hypothesis.

To validate the simulation results, we also executed
the SUT → SUT ′ evaluation. We implemented the
cache as an Enterprise Java Bean with the help of
Google’s Guava libraries [34]. In the implementation of
the MediaStoreBean.download method, the cache is
checked first for the tuple (α, β). When the audio file cannot
be obtained from the cache, α is fetched from the database
and re-encoded with bit rate β. The resulting α′ is added to
the cache. We set the cache size to 260 objects and repeated
the load test. The initial warm-up of the cache is done during
the ramp-up phase of the load test. In the monitoring results
(as shown in Figure 8 denoted as red line), we observe the
measured median response time r̄′mea = 2.71s. The measured
response times show a performance improvement of 527%.

V. RELATED WORK

The comprehensiveness of Vergil’s process leads to a broad
area of related fields of research. In the following, we cite
only the most important and most relevant approaches to
performance problem solutions due to space constraints. The
interested reader may refer to [21][35] for more details about
meta-heuristic approaches and generic design space exploration
approaches. We categorize related approaches into model-based
and measurement-based performance solution approaches.

A. Model-based Performance Solution

In [35], Cortellessa et al. present a model-based approach to
automatically detect and solve performance antipatterns. Their
approach targets the early design phase and the suggestion of
architectural design changes to overcome performance problems.
The goal of their proposed process is to modify a software
system model to produce a new model without the performance
problems of the former one [35]. They formalize antipatterns
(often defined in natural language) as logical predicates in first-
order logics [20][36]. Arcelli et al. present the automation
of the model refactoring to improve the performance by
applying model differences based on a Role-based Modeling

Language [6][23]. Their approach suggests developers how to
refactor models in order to remove problems. In the context
of the approach of Cortellessa et al., Trubiani and Koziolek
present the detection and rule-based solution of performance
problems in Palladio Component Models in [7]. In [9], Arcelli
and Cortellessa raise the need to take cost factors and constraints
into account when a variety of solution choices exists and to
integrate decision support mechanisms to support designers
in selecting the most appropriate solution(s). In [8], Jing Xu
presents a rule-based approach to detect and solve performance
bottlenecks and long-path performance problems based on
performance models. Models are modified with the help of the
rules in ways that can be converted to design changes, which are
then done manually. The costs for changing the design (carried
out manually) is taken into consideration and can discourage
rules from selecting changes, on a cost-effectiveness basis and
for practical reasons. The proposed design changes describe
what should be changed, and in what way, but not how to do
it. The search is an iterative process. In each round, multiple
alternatives can be created and the performance improvement is
evaluated. When multiple design change branches are obtained
at the end of each round, the performance improvement and
weight of each branch is listed and ranked. Solutions are
provided at the performance model level. Designers have to
transfer the solutions from the performance model level to the
design model level. In [37], Martens et al. propose an approach
for automated performance improvement of component-based
software systems based on meta-heuristic search techniques
and rules applied to Palladio Component Models to find
solutions for performance problems. In [21], Mauro Drago
automates the detection-solution loop to automatically generate
and propose design alternatives as feedback to the designer
to improve non-functional properties of a software design.
Quality-driven transformations are used to generate alternatives.
Queuing Networks are used with estimated service demands
to predict non-functional properties of each alternative. Diaz-
Pace et al. [22] propose a framework to assist the software
architect in the design of software architectures meeting quality
requirements. Rules are used to change the design of the system.
Currently, only rules to improve modifiability are supported that
are applied to a graph-based representation of the architecture.
The modifiability is evaluated with change impact analysis
to determine the cost of changes while the performance is
predicted with a simple performance model.

Neither of the approaches presented above considers an ex-
isting code base and measurement-based performance problem
solutions nor do they support the developer in implementing the
solution with an ordered list of work activities. The detection of
performance problems with measurements and/or performance
models is not in focus of Vergil. Also, Vergil targets the software
development and maintenance phase of a systems lifecycle,
when an implementation of the application is available. Vergil
calibrates performance models with resource demands obtained
from the system under test providing a more representative
evaluation.

B. Measurement-based Performance Solution

Currently, to the best of our knowledge, there is no
measurement-based performance solution approach that consid-
ers a comprehensive process for performance problem solution.
In [14], Trevor Parsons uses monitoring-based techniques to

606Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 628 / 679

extract a performance model of a Java EE application. The
performance model is searched for detecting EJB-specific
performance antipatterns. Problem solution is not part of the
approach. To improve the deployment of components, Malek
et al. introduce a framework [38] that guides the developer
in the design of their solutions for component redeployment
for large distributed systems. The goal is to find a deployment
architecture that exhibits desirable system characteristics or
satisfies a given set of constraints. They use runtime monitoring
and consider quality of service (e.g., latency, availability).
Aled Sage presents in [39] an approach for the observation-
driven configuration of complex software systems. The author
uses established statistical methods from manufacturing, called
Taguchi Methods, and experiments to find configurations such
as communication concurrency that meet the needs of various
stakeholders. Lengauer and Mössenböck [40] propose the use
of iterated local search methods to automatically compute
application-specific Java garbage collector configurations. The
selected configuration candidates are evaluated with monitoring-
based techniques. The evaluation results are used to solve an
objective function to determine the best configuration. In [41],
Chen et al. use measurement-based experiments and source
code changes in the context of object relational mapping only
to prioritize the solution of performance problems based on the
estimated performance improvement. However, their proposed
approach does not consider performance problem solution.

Existing measurement-based approaches are focused mainly
on a particular problem and its solution at the configuration
level or at the architecture level. Neither of the approaches also
considers the solution of performance problems at the code
level nor do they provide a comprehensive process guiding the
developer from a problem to a solution with work activities.
Also, neither of the approaches consider cost factors and
constraints for selecting the most appropriate solution when a
variety of solution alternatives exist.

VI. CONCLUSION

Vergil guides developers from a detected performance
or scalability problem to a solution. The proposed process
explores hypotheses about what solutions can be applied to the
software system, evaluates the performance improvement based
on measurements and/or performance models, and ranks the
solutions with respect to performance improvement, cost factors,
constraints and the developer’s preferences. The solutions are
presented as an ordered list of work activities, sketching the
implementation of the solution without prescribing to the
developer how the solution is actually implemented. Strong
concepts already used in existing model-based approaches
are brought together and are extended with measurement-
based performance problem solutions at the code level and
the integration of decision support mechanisms to support
the developer in selecting the most appropriate solution when
a variety of choices exists. Vergil provides a comprehensive
process for solving performance problems in the development
and maintenance phase of an application’s lifecycle where an
implementation exists and where the solution of performance
problems is known as expensive [42]. In this work, we presented
the main idea, the details of the process and its activities as well
as the formalization of performance problems and performance
expert knowledge. Using an example, we presented promising

preliminary results as a proof of concept for measurement-
based performance problem solution and the calibration of
performance models. We are currently working on the validation
of the overall approach on a case study with a large open
source e-commerce system. Additionally, we plan to conduct
an empirical study with software performance consultants and
developers.

ACKNOWLEDGMENT

The authors would like to thank Jonas Kunz and Sven
Kohlhaas for their support that contributed to the paper. This
work is supported by the German Research Foundation (DFG),
grant RE 1674/6-1.

REFERENCES

[1] C. Smith and L. Williams, “More new software performance antipatterns:
Even more ways to shoot yourself in the foot,” in CMG-CONFERENCE-,
2003, pp. 717–725.

[2] B. Dudney, S. Asbury, J. Krozak, and K. Wittkopf, J2EE antipatterns.
Wiley, 2003.

[3] C. U. Smith, “Performance engineering of software systems,” Addison-
Wesley, vol. 1, 1990, p. 990.

[4] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java
performance evaluation,” ACM SIGPLAN Notices, vol. 42, no. 10, 2007,
pp. 57–76.

[5] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and C. Trubiani,
“Approaching the model-driven generation of feedback to remove
software performance flaws,” in Software Engineering and Advanced
Applications, 2009. SEAA’09. 35th Euromicro Conference on. IEEE,
2009, pp. 162–169.

[6] D. Arcelli, V. Cortellessa, and C. Trubiani, “Antipattern-based model
refactoring for software performance improvement,” in Proceedings of
the 8th international ACM SIGSOFT conference on Quality of Software
Architectures. ACM, 2012, pp. 33–42.

[7] C. Trubiani and A. Koziolek, “Detection and solution of software
performance antipatterns in palladio architectural models.” in ICPE,
2011, pp. 19–30.

[8] J. Xu, “Rule-based automatic software performance diagnosis and
improvement,” Performance Evaluation, vol. 69, no. 11, 2012, pp. 525–
550.

[9] D. Arcelli and V. Cortellessa, “Software model refactoring based on
performance analysis: better working on software or performance side?”
in Proceedings 10th International Workshop on Formal Engineering
Approaches to Software Components and Architectures, Rome, Italy,
March 23, 2013, ser. Electronic Proceedings in Theoretical Computer
Science, B. Buhnova, L. Happe, and J. Kofroň, Eds., vol. 108. Open
Publishing Association, 2013, pp. 33–47.

[10] Virgil. [Online]. Available: http://en.wikipedia.org/wiki/Virgil [retrieved:
08, 2014]

[11] C. Heger, “Systematic guidance in solving performance and scalability
problems,” in WCOP ’13: Proceedings of the 18th international doctoral
symposium on Components and Architecture. New York, NY, USA:
ACM, 2013, pp. 7–12.

[12] O. M. Group. Business process model and notation (bpmn). [Online].
Available: http://www.omg.org/spec/BPMN/2.0 [retrieved: 08, 2014]

[13] C. Heger and R. Heinrich, “Deriving work plans for solving performance
and scalability problems,” in EPEW. Springer, 2014, pp. 104–118, (in
press).

[14] T. Parsons, “Automatic detection of performance design and deployment
antipatterns in component based enterprise systems,” Ph.D. dissertation,
University College Dublin, 2007.

[15] Jamopp. [Online]. Available: http://www.jamopp.org [retrieved: 08,
2014]

[16] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, no. 1, 2009, pp. 3–22.

607Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 629 / 679

[17] S. Becker, M. Hauck, M. Trifu, K. Krogmann, and J. Kofron, “Reverse
engineering component models for quality predictions,” in Software
Maintenance and Reengineering (CSMR), 2010 14th European Confer-
ence on. IEEE, 2010, pp. 194–197.

[18] A. Van Hoorn, M. Rohr, and W. Hasselbring, “Generating probabilistic
and intensity-varying workload for web-based software systems,” in
Performance Evaluation: Metrics, Models and Benchmarks. Springer,
2008, pp. 124–143.

[19] A. Wert, J. Happe, and L. Happe, “Supporting swift reaction: Automati-
cally uncovering performance problems by systematic experiments,” in
Proc. of the 35th ACM/IEEE Int’l Conference on Software Engineering,
ser. ICSE ’13. New York, NY, USA: ACM, 2013, pp. 552–561.

[20] V. Cortellessa, A. Di Marco, and C. Trubiani, “An approach for modeling
and detecting software performance antipatterns based on first-order
logics,” Software and Systems Modeling, 2012, pp. 1–42.

[21] M. L. Drago, “Quality driven model transformations for feedback
provisioning,” Ph.D. dissertation, Italy, 2012.

[22] A. Diaz-Pace, H. Kim, L. Bass, P. Bianco, and F. Bachmann, “Integrating
quality-attribute reasoning frameworks in the arche design assistant,” in
Quality of Software Architectures. Models and Architectures. Springer,
2008, pp. 171–188.

[23] D. Arcelli, V. Cortellessa, and D. Di Ruscio, “Applying model differences
to automate performance-driven refactoring of software models,” in
Computer Performance Engineering. Springer, 2013, pp. 312–324.

[24] M. Drago, C. Ghezzi, and R. Mirandola, “A quality driven extension to
the qvt-relations transformation language,” Computer Science - Research
and Development, 2011, pp. 1–20.

[25] HP LoadRunner. [Online]. Available: http://www.hp.com/go/loadrunner
[retrieved: 08, 2014]

[26] JMeter. [Online]. Available: https://jmeter.apache.org [retrieved: 08,
2014]

[27] Markov4JMeter. [Online]. Available: http://www.se.informatik.uni-kiel.
de/en/research/projects/markov4jmeter/ [retrieved: 08, 2014]

[28] S. Lehnert, Q. Farooq, and M. Riebisch, “Rule-based impact analysis
for heterogeneous software artifacts,” in Software Maintenance and
Reengineering (CSMR), 2013 17th European Conference on. IEEE,
2013, pp. 209–218.

[29] ——, “A taxonomy of change types and its application in software
evolution,” in Engineering of Computer Based Systems (ECBS), 2012
IEEE 19th International Conference and Workshops on, April 2012, pp.
98–107.

[30] F. Moges Kasie, “Combining simple multiple attribute rating technique
and analytical hierarchy process for designing multi-criteria performance
measurement framework,” Global Journal of Researches In Engineering,
vol. 13, no. 1, 2013.

[31] T. L. Saaty, “The analytic hierarchy and analytic network processes
for the measurement of intangible criteria and for decision-making,” in
Multiple criteria decision analysis: state of the art surveys. Springer,
2005, pp. 345–405.

[32] W. Edwards, “How to use multiattribute utility measurement for social
decisionmaking,” Systems, Man and Cybernetics, IEEE Transactions on,
vol. 7, no. 5, 1977, pp. 326–340.

[33] A. Koziolek, H. Koziolek, and R. Reussner, “Peropteryx: automated
application of tactics in multi-objective software architecture opti-
mization,” in Proceedings of the joint ACM SIGSOFT conference
(QoSA+ISARCS’11). New York, NY, USA: ACM, 2011, pp. 33–42.

[34] Google Guava-Libraries. [Online]. Available: http://code.google.com/p/
guava-libraries/ [retrieved: 08, 2014]

[35] V. Cortellessa, A. Martens, R. Reussner, and C. Trubiani, “A process to
effectively identify “guilty” performance antipatterns,” in Fundamental
Approaches to Software Engineering. Springer, 2010, pp. 368–382.

[36] V. Cortellessa, A. Di Marco, and C. Trubiani, “Performance antipatterns
as logical predicates,” in Engineering of Complex Computer Systems
(ICECCS), 2010 15th IEEE International Conference on. IEEE, 2010,
pp. 146–156.

[37] A. Martens, H. Koziolek, S. Becker, and R. Reussner, “Automatically
improve software architecture models for performance, reliability, and
cost using evolutionary algorithms,” in Proceedings of the first joint
WOSP/SIPEW international conference on Performance engineering.
New York, NY, USA: ACM, 2010, pp. 105–116.

[38] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “An extensible frame-
work for autonomic analysis and improvement of distributed deployment
architectures,” in Proceedings of the 1st ACM SIGSOFT workshop on
Self-managed systems, ser. WOSS ’04. New York, NY, USA: ACM,
2004, pp. 95–99.

[39] A. Sage, “Observation-driven configuration of complex software systems,”
2010.

[40] P. Lengauer and H. Mössenböck, “The taming of the shrew: Increasing
performance by automatic parameter tuning for java garbage collectors,”
in Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’14. New York, NY, USA: ACM,
2014, pp. 111–122.

[41] T.-H. Chen et al., “Detecting performance anti-patterns for applications
developed using object-relational mapping,” in Proceedings of the 36th
International Conference on Software Engineering, ICSE, 2014, pp.
1001–1012.

[42] B. W. Boehm, Software Engineering Economics, 1st ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1981.

608Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 630 / 679

A Domain-Specific Language for Modeling Performance Testing
Requirements Analysis and Design Decisions

Maicon Bernardino, Avelino F. Zorzo, Elder Rodrigues, Flávio M. de Oliveira
Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Porto Alegre, RS, Brazil
bernardino@acm.org, eldermr@gmail.com, {avelino.zorzo, flavio.oliveira}@pucrs.br

Rodrigo Saad
Dell Computers of Brazil Ltd.

Porto Alegre, RS, Brazil
rodrigo saad@dell.com

Abstract—Performance is a fundamental quality of software
systems. The focus of performance testing is to reveal bottlenecks
or lack of scalability of a system or an environment. However,
usually the software development cycle does not include this effort
on the early development phases, which leads to a weak elicitation
process of performance requirements. One way to mitigate that
is to include performance requirements in the system models.
This can be achieved by using Model-Based Testing (MBT) since
it enables to aggregate testing information in the system model
since the early stages of the software development cycle. This
also allows to automate the generation of test artifacts, such as
test cases or test scripts, and improves communication among
different teams. In this paper, we present a set of requirements
for developing a Domain-Specific Language (DSL) for modeling
performance testing of Web applications. In addition, we present
our design decisions in creating a solution that meets the specific
needs of a partner company. We believe that these decisions help
in building a body of knowledge that can be reused in different
settings that share similar requirements.

Keywords—performance testing; domain-specific language.

I. INTRODUCTION AND MOTIVATION

Performance testing can be applied to improve quality of
a Web-based service or application hosted on cloud com-
puting or virtualization environments, since it supports the
verification and validation of performance requirements [1].
Furthermore, it also supports evaluation of infrastructure’s
resource consumption while the application is under different
workloads, e.g., to accurately measure the resources required
by an application that will respect the established Service
Level Agreements (SLA). Despite the fact that performance
testing is a well-known technique to validate performance
requirements of an application or service, there is a lack of
a modeling standard or/and language to support the specific
needs of the performance testing domain.

Nevertheless, there are some notations, languages, and
models that can be applied to represent a system behavior,
e.g., UML (Unified Modeling Language) [2], UCML (User
Community Modeling Language) [3], CBMG (Customer Be-
havior Modeling Graph) [4], and WebML [5]. Some available
modeling notations, e.g., UML testing profiles, rely on the
use of textual annotations on models, i.e., stereotypes and
tags, to support the modeling of performance aspects of an
application. The use of notations, languages or models improve
the performance testing activities, e.g., reducing misinterpre-
tation and providing a common document to stakeholders,
system analysts and testers. Moreover, the use of a well-
defined and concise notation, language or model, can support
the use of Model-Based Testing (MBT) to generate inputs to
the performance testing automation process, e.g., test data, test
scenarios and scripts can be automatically generated [6].

However, despite the benefits of using a UML profile to
model specific needs of the performance testing domain, its
use presents some limitations: (a) most of available UML
design tools do not provide support to work with only those
UML elements that are needed for a specialized language.
Thus, the presence of unused and not required elements
may result in an error-prone and complex activity; (b) UML
diagrams are restricted to the semantics that is defined by
Object Management Group (OMG) [2]. Therefore, in some
cases the available UML elements and their semantics can
restrict or even prevent the modeling of some performance
characteristics of the Web domain.

It is important to highlight that UML is useful to analyze
and design the architecture and the behavior of a system.
Furthermore, it is a standard notation that does not imply in an
implementation decision; besides, it is helpful for representing
higher level concepts and the initial glossary domain. When
compared to UML, Domain-Specific Languages (DSLs) are
less general, and are based on an implementation strategy.
That is, UML is used at an implementation independent level,
whereas DSLs are used at an implementation dependent level.
DSLs are restricted languages that can be used to directly
model concepts in a specific problem domain. These languages
can be textual, like most programming languages, or graphical.
Furthermore, each DSL is a domain-specific code generator
that maps domain-specific models into the required code.

In spite of the fact that performance testing is an active
research field, researches investigating how to apply MBT
approaches to automate the performance testing activities
essentially started to be reported in the last decade and it is
still on its early stages [6][7][8]. Furthermore, the lack of a
standard to represent performance testing information is one
of the major challenges to be explored from both, academic
and industrial practitioners.

In this work, we discuss the requirements and design
decision on the development of a modeling notation for
performance testing. Thus, we propose a DSL that focus on
meeting specific needs for modeling performance testing of
Web applications. In this context, we also discuss the use of
our DSL to support an MBT approach to generate performance
testing artifacts to test these applications. Our contribution is
twofold: (a) we identify a set of requirements, specific to our
research context, that are not fully addressed by any known
languages, model or notation. Thus, we elicit some practical
scenarios that language providers and/or implementers may
consider supporting; (b) we report our design decisions in
supporting these requirements for an in-house solution. These
decisions, in turn, may be reused or adapted to improve
existing tools or devise new ones targeting similar needs.

This paper is organized as follows. Section II dis-

609Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 631 / 679

cusses background on performance testing, DSL and related
work. Section III presents the context in which our work
was developed. Section IV describes the domain analysis
process. Section V enumerates the elicited requirements,
which we address with specific design decisions, discussed
in Section VI. Section VII briefly presents an example of
use. Section VIII concludes the paper.

II. BACKGROUND

A. Performance Testing

Software Performance Engineering (SPE) [9] describes and
provides support to improve the performance through two
distinct approaches: an early-cycle predictive model-based,
and a late-cycle measurement-based. Performance testing is
an essential measurement-based activity in the software de-
velopment process, since it helps to identify bottlenecks that
impact performance and scalability in a system. It is used to
understand the behavior of a system under a certain workload.

According to Meier et al. [1], performance testing can be
applied in different domains of applications, such as desktop,
Web services, and Web applications. The process of designing
and executing performance testing to a specific domain is
composed by a set of well-defined activities. Therefore, to
support the performance testing process, as well as its activi-
ties, a set of tools has been developed, e.g., HP LoadRunner
or Microsoft Visual Studio. Some of these tools support the
generation of performance test scenarios and scripts through
Capture and Replay technique or just manually coding scripts.
Another technique that can be applied is MBT, which is useful
to automate the performance testing process. A few academic
and industrial performance testing tools based on models
can be found in the literature, e.g., SWAT [6], MBPeT [10]
or PLeTs [11]. Despite the existence of some MBT tools,
few of them use the same model, i.e., a modeling standard
for performance testing has not yet been set. Furthermore,
there are some theoretical notations that do not allow test
automation, e.g., UCML [3].

B. Domain-Specific Language

DSLs, also called application-oriented, special purpose or
specialized languages, are languages that provide constructs
and notations tailored for a particular domain. DSLs are spe-
cific domain and problem-oriented computer languages [12].
DSLs are created to solve specific problems of a particular
domain, e.g, in our case performance testing. However, to
create a DSL, a domain analysis phase is required, which
leads to a solid body of knowledge about the domain. During
this phase, the domain’s rules, features, and properties must
be identified and documented. Currently, there are several
tools, called Languages Workbenches (LWs), to support the
creation and maintaining of a DSL, such as Eclipse Modeling
Framework (EMF) [13], MetaEdit+ [14], among others. These
tools are not restricted to analysis and code generation, LWs
allow a DSL developer to create DSL editors with similar
power to modern IDEs [12]. Thereby, a DSL can be classified
in accordance with its creation techniques/design, that are the
following: internal, external, and based on LWs.

Therefore, the use of DSLs presents some advantages, such
as [15]: (a) better expressiveness in domain rules, allowing
to express the solution at a high level of abstraction. Con-
sequently, domain experts can understand, validate, modify

or develop their own solutions; (b) improves the communi-
cation and collaboration among software project stakeholders;
(c) supports artifacts and knowledge reuse. Inasmuch as DSLs
can retain the domain knowledge, the adoption of DSL allows
the reuse of the retained domain knowledge by a mass of
users, including those that are not experts in the domain; (d) a
DSL can provide a better Return Of Investment (ROI) than a
traditional model. Despite that, the use of DSLs can present
some disadvantages, such as [15]: (a) high cost to design and
maintain a DSL, especially if the project presents a moderate
or a high complexity. (b) high cost for training DSL users, i.e.,
steep learning curve; (c) difficulty to define an adequate scope
for a DSL; (d) a company could become dependent of an in-
house language that is not used anywhere else; (e) in case of
executable DSLs there are issues related to the performance
loss when compared to source code written by a developer.

C. Related Work
The DSL community currently lacks evidence on the driving

factors on the development of a DSL for the performance
testing domain, its corresponding requirements and design
decisions. There are few works describing DSLs require-
ments [16][17]. Whilst Kolovos [16] presents the core require-
ments and discuss the open issues with respect to the DSL re-
quirements. Athanasiadis [17] describes the key requirements
for a DSL to the environmental software domain, and discusses
its benefits. However, these works present only an incipient
discussion about the design decisions and, are not focused on
the performance testing domain.

Conversely, there are some works [18][19] reporting design
decisions for creating DSLs. Kasai et al. [18] proposed de-
sign guidelines that covers the following categories: language
purpose, realization, content; concrete syntax; and abstract
syntax. Frank [19] suggests guidelines to support the design
decisions on a DSL development, aka DSML. Moreover, the
author presents a useful discussion concerning the design
decisions to DSLs. Although these studies are relevant, the
design decisions were not taken to meet real requirements (i.e
industrial requirements), but only based on the DSL creators
knowledge and academic experience.

Some studies propose similar DSLs for the testing do-
main [20][21]. Bui [20] presents a DSL, DSLBench, for
benchmark generation, while Spafford [21] presents a DSL,
Aspen, for performance modeling. Different from our DSL
proposal, focused in the measurement-based approach, Aspen
supports the predictive-based approach. However, these works
do not present any feedback from industrial cases where these
DSLs are used, or discuss where they succeed or fail when
applying on an MBT approach. Gatling [22] proposed an
internal DSL based on industrial needs and tied to a testing
tool. Unlike our proposal that provides a graphical DSL to
represent the performance notation, Gatling provides only a
textual DSL based on the Scala language. Moreover, our DSL
is not tied or dependent of any performance testing tool or load
generator. Wert et al. [23] present a novel automated approach
for performance problem detection, in which they combined
systematic search based on a decision tree with goal-oriented
experimentation. However, this work is not based on MBT.

III. CONTEXT

This study is being conducted in cooperation with the Tech-
nology Development Lab (TDL) of a global IT company. This

610Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 632 / 679

cooperation aims to develop new strategies and approaches
for software testing. The software process adopted by TDL
is briefly described as follows. First the development teams
implement the unity tests, which performs the preliminary
tests in a dedicated development environment. After a stable
version that meets its requirements is available, it is pub-
lished in the test environment for the test team to perform
functional and integration tests. If failures are found, the
development team removes faults from the application and
the process is restarted. If no failure is found, the software
version becomes available for the performance testing team to
perform load and stress testing in a new environment (called
performance environment). It is important to mention that for
some applications, sometimes the complexity or size of the
production environment is so high that testing is executed
only in a partial production environment and proportional
estimations are used [10]. Finally, when the application meets
the defined quality requirements, e.g., response time, that
version is deployed to the production.

Empirical evidences of our previous work [24], developed in
collaboration with the TDL, indicate that a performance MBT
approach is valuable to mitigate the effort to generate per-
formance scripts. Our findings also indicate that performance
testing teams, usually, choose notations and modeling tools
by their own convenience. Thus, many models can be found
across the company performance testing teams, which leads
to a segmented knowledge about applications requirements.
Hence, the use of different models can present other issues,
such as inhibit communications among testing teams and
increases the possibility of requirements misinterpretation. To
attenuate these issues, it is necessary that a single notation
is used across the entire performance testing division. Since
there is not a standard modeling language to model the specific
needs of the performance testing domain, we focused our effort
on investigating and proposing a DSL to this domain.

IV. DOMAIN ANALYSIS

Before we start to describe our DSL, it is important to
mention some of the steps that were taken prior to the
definition of the requirements and design decisions. These
steps were taken in collaboration with researchers from our
group and test engineers from TDL.

The first step is related to the expertise that was acquired
during the development of a Software Product Line (SPL) to
generate MBT tools called PLeTs [11]. This SPL was split in
two main parts: one to analyse models and generate abstract
test cases from those models, and; another that would take the
abstract test cases and derive actual test scripts to be executed
by performance testing tools. Actually, our SPL is divided
in four main features: parser, test case generation, script
generation, and execution. Several models were studied during
the first phase of the development of our SPL, e.g., UCML,
UML Profiles, Finite State Machines (FSM). Likewise, several
performance testing environments and tools were studied, such
as HP LoadRunner, Microsoft Visual Studio, among others.

The second step is related to the use of some of the above
models and tools to actual applications, such as TPC-W and
Moodle. Furthermore, we also used some of the products
generated by our SPL to test those applications. Some of
other real applications from our partner were also tested in
the context of our collaboration. Those real applications were

tested in very complex environments, which gave us a very
thorough understanding of the needs a testing team has.

Besides that, we also based our DSL on well-known con-
cepts from SWEBOK, IEEE Std. 610.12-1999, IEEE Std.
829-2008, and other literature, such as Meier et al. [1].
These references were chosen to mitigate the bias, provide a
theoretical basis and ensure the coherency among concepts,
features, and properties of the performance domain. The
above steps provided us with a small Performance Testing
Body Of Knowledge (PTBOK) that is used to define the
performance testing requirements and design decisions for
our DSL. Furthermore, prior to create any DSL to support
modeling performance testing in the target DSL, the TDL
first considered the use of off-the-shelf solutions, provided that
specific requirements were met.

V. LANGUAGE REQUIREMENTS

This section enumerates the requirements we collected from
our expertise and also from the software engineers from
TDL. These requirements are related to features and concepts
from performance testing domain. Moreover, we discuss some
mechanisms for implementing the proposed DSL.

RQ1) The DSL must allow to represent the performance
testing features. One of the main functions of the performance
testing is to reveal bottlenecks of a system. Therefore, the
applications should be measured and controlled in small parts
that can be defined as transactions. This allows to measure the
performance quality for each activity of a system. For instance,
to define the response time SLA based on these transactions.

RQ2) The technique for developing our DSL must be based
on LW. Since we do not want to develop new tools, i.e., editor
or compiler, as in an external DSL; neither we intend to embed
our DSL in a GPL, we will base our DSL on a LW. This will
allow us to focus on the analysis domain and development of
the new DSL rather than spend effort on implementing new
tools or having to choose a GPL language that might not be
appropriate for the DSL that we want.

RQ3) The DSL must support a graphical representation of
the performance testing features. This requirement does not
concern the language itself, but the LW that will support its
development. Thereunto, we desire that the LW supports a
graphical-based editor for creating DSLs. Moreover, the LW
should allow to implement the domain concepts, their trans-
lation rules, designing symbols and elements of the language,
and also to generate different code for different tools.

RQ4) The DSL must support a textual representation. The
proposed DSL should also include a custom language that is
close to a natural language. This will facilitate its adoption by
test engineers that are used to use textual representation. The
language should have features and keywords that remember
the performance testing domain.

RQ5) The DSL must include features that illustrate perfor-
mance counters. In performance testing there are many per-
formance counters, e.g., response time or network throughput,
that provide means to analyze both application quality level
and host infrastructure.

RQ6) The DSL must allow to model the behavior of different
user profiles. This requirement is a specific function of the
performance domain, which should allow that the behavior of
different user profiles, such as a buyer or a new clients, is
modeled according to the System Under Test (SUT). In our
context we will focus on Web applications.

611Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 633 / 679

RQ7) Traceability links between graphical and textual rep-
resentations should require minimal human intervention/effort.
Traceability is an important feature in software solutions,
mainly when involve model transformation, e.g., translation
from a graphical to a textual representation. The proposed DSL
should automate the mapping process of graphical elements of
the model to their respective textual counterparts.

RQ8) The DSL must be able to export models to formats
of specific technologies. This requirement should ensure that
models written in our proposed DSL can be exported to
the format of the input of specific testing tools, e.g., HP
LoadRunner, MS Visual Studio or Apache JMeter.

RQ9) The DSL must generate model information in a
eXtensible Markup Language (XML) file. This requirement
aims to ensure that we can export our DSL to any other
technology in the future. That is, we export all information
from the system model into a XML file, so anyone that wants
to use our solution can import the XML into their technology.

RQ10) The DSL must represent different performance test
elements in test scripts. The modeled diagram using the pro-
posed DSL must represent multiples elements of test scripts,
such as conditional or repetition control flows, among others.

RQ11) The DSL must allow the modeling of multiple
performance test scenarios. Performance testing is responsible
to carry out testing of part of or the whole system under normal
and/or stress workload. The DSL, therefore, should be able
to generate multiples performance test scenarios, i.e., under
normal and stress workload conditions.

Currently, to the best of our knowledge, no existing lan-
guage or model (commercial or not) meets all of the presented
requirements. Therefore, given the automation needs of perfor-
mance testing, we propose a DSL for modeling performance
testing of Web applications.

VI. DESIGN DECISIONS

In this section, we describe our design decisions for creating
a DSL that supports the requirements discussed in Section V.
For each design decision, we mention the associated require-
ments that are being dealt with.

DD1) To use a LW that supports graphical DSLs (RQ2,
RQ3). To attend these requirements we performed a literature
review on existing LWs, including academic, commercial or
open-source. The work of Erdweg et al. [25] presents the state-
of-the-art in LWs and defines some criteria (the authors call
them features) that help someone to decide which tool should
be adopted. Given the requirements of our proposed DSL, we
chose the MetaEdit+ from MetaCase [14], because it supports
most of the features evaluated by work.

DD2) The features of the performance testing domain will
be used in an incremental way (RQ1, RQ5). Developing a
DSL requires a series of phases, such as analysis, design,
implementation, and use [26]. Usually researchers focus their
attention to the implementation phase, but only a few of them
focus on the analysis of the domain and design of the DSL.
Nevertheless, there are some methodologies for domain anal-
ysis, which helps to unravel the knowledge about the problem
domain analyzed. Among them we can highlight Domain
Specific Software Architectures (DSSA), Feature-Oriented
Domain Analysis (FODA), and Organization Domain Mod-
eling (ODM). Some works present an approach based on the
formalization of domain analysis through ontologies [27][28].
Thus, in order to determine the features that represent the

performance testing domain, we adopted a strategy to identify
and analyze the domain using an ontology [29]. This ontology
provides the basis for determining the concepts, relationships,
and constraints that represent the performance testing domain.
Besides the ontology, we have used the PTBOK (Section IV).

DD3) To provide a graphical language capable of repre-
senting the behavior of user profiles for different performance
test scenarios (RQ6, RQ11). To attend these requirements
we analysed different models and graphical representations
that support performance testing. Among the approaches and
techniques, the most relevant for our work were UML profiles.
Besides that, it is also important to mention a theoretical
language proposed by Scott Barber for modeling users behav-
ior, called UCML. Based on these different approaches and
techniques, the graphical language will have visual elements
capable of representing the behavior of different user profiles.
Besides the flow of activities that the user performs in the
SUT, the graphical language will have visual elements to
represent the performance test scenarios settings, including
information about the performance testing domain, such as
number of Virtual Users (VU), test duration, metrics to be
evaluated (response time, memory available, processor time,
among others). It is also possible to include the randomization
and execution probabilities for each interaction that a VU
executes during performance testing. Another very important
feature is that the DSL can represent abstract data that will be
instantiated in activity of the performance testing process, for
example, during the generation of the performance test scripts.

DD4) To create a textual representation in a semi-natural
language (RQ4). Behavior-Driven Development (BDD) [30] is
an agile software development process, in which acceptance
testing, mainly functional testing, is essential to advance
to next phase of a software project, since it facilitates the
understanding among testing and development teams and
stakeholders. Usually, tests are described in natural language
in order to ensure this common understanding regarding the
system requirements for all project members. Even though
it is common to find languages that use natural language to
describe functional testing, e.g., Gherkin [30], to the best of
our knowledge none of them includes performance testing
features. Therefore, we intend to extend this language, to
include the performance testing features described in Sec-
tion IV. Gherkin is interpreted by a command line tool called
Cucumber, which automates the acceptance testing execution.

DD5) To provide automated traceability between the graph-
ical and textual representations (RQ7, RQ10). Traceability is
an important feature that should be mapped in the implemen-
tation of a DSL. Thus, it is required that the LW allows the
creation of translation rules among models. In this case, the
mapping among the graphical elements with their respective
assets of the textual representation must be provided. It is
important that this mapping is not an one-to-one mapping.
Some graphical elements can be mapped to several instances
of the textual elements. For example, a graphical decision point
can be mapped to several textual scripts, one for each branch
present in the graphical representation. In order to solve this
mapping, algorithms such as the Chinese Postman Problem
can be used.

DD6) To support the integration of the DSL with other
technologies (RQ8, RQ9). It should be able to export the
models (test scenarios, abstract test cases, etc.) described in
the DSL to other formats, such as XML or HP LoadRunner

612Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 634 / 679

and MS Visual Studio input formats. The ability to export data
in XML format will allow future users of the language to use
it with other technologies or IDEs.

VII. DSL FOR MODELING PERFORMANCE TESTING

This section presents the DSL we developed to meet the
requirements described in Section V and based on the design
decision from Section VI. Our DSL is composed of three parts:
monitoring, scenario, and scripting.

Monitoring: The performance monitoring part is responsi-
ble for determining all servers used in the performance testing
environment. For each server (i.e., application, databases, or
even the load generator), information on the actual testing
environment has to be included, e.g., IP address or host
name. It is worth mentioning that even the load generator
has to be described in our DSL, since we can also monitor
the performance of the load generator. Sometimes, the load
generator has to be split in several servers if we really want
to stress the application or database server. For each host,
it is possible to indicate the performance counters that will
be monitored. This monitoring part requires that at least two
servers have to be described: one that hosts the application
(SUT) and another to generate the workload and monitor the
performance counters of the SUT.

Scenario: The performance scenario part allows to set user
and workload profiles. Each user profile is associated to test
scripts. If a user profile is associated with more than one test
script, a probability is attributed between the user profile and
each test script, i.e., it describes the probability that that test
script is executed. In addition to setting user profiles, in this
part, it also is important to set one or more workload profiles.
Each workload profile of is composed of several elements,
defined as follows: (a) virtual users: number of VU who will
make requests to the SUT; (b) ramp up time: time it takes for
each set of ramp up users to access the SUT; (c) ramp up
users: number of VU who will access the SUT during each
ramp up time interval; (d) Test duration: refers to the total time
of performance test execution for a given workload; (e) ramp
down users: defines the number of VU who will left the SUT
on each ramp down time; (f) ramp down time: defines the time
it takes for a given ramp down user stop the testing.

Scripting: The performance script part represents each of
the test scripts from the user profiles in the scenarios part.
This part is responsible for determining the behavior of the
interaction between VU and SUT. Each test script includes
activities, such as transaction control or think time between
activities. The same way as there is a probability for executing
a test script, which is defined in the scenarios part, each test
script can also contain branches that will have a user distribu-
tion associated to each path to be executed, i.e., the number
of users that will follow each path. During the description of
each test script it is also possible to define a decision table
associated to each activity. This decision table [12] represents
the decisions that is taken by a user based on the response
that an application provides. Actually, the decision table will
be used to guarantee that the user distribution rate is achieved.

A. Example of Use: TPC-W
This section presents a small sample of the graphical rep-

resentation described in previous sections. We instantiate the
modeling performance testing process through the proposed
DSL for the TPC-W e-commerce Web application. The goal

Figure 1. Graphical representation of a performance test scenario model.

is to give some understanding of the requirements and design
decisions of a language to model user behavior, as well as
the performance test scenarios. The graphical representation
contains elements for virtual users, test duration, ramp up time,
ramp up users, ramp down time, think time, among others.

Figure 1 gives an example of a performance test scenario
model that represents the SUT functionalities divided into
three scripts: Browser, Shop e Order. Each script has a
percentage of the VU that will execute such script. For each
script, a VU has a probability of buying a product from the
site. This probability is bigger for script Order and smaller
for script Browser. Due to space limitation this is not shown
in this paper. The model also shows the interaction behavior
of three different user profiles: Browsing, Shopping e
Ordering. Basically, the user profiles differ from one an-
other on the probability that they will order, shop or browse.

A snippet of the Browser script is presented in Figure 2.
The model is composed of six activities, five of them with
transaction control, shown by dashed border figures. The
model also contains a Think Time of 15 seconds (Clock ele-
ment) and three Data Table, e.g., Transaction Data.
In some cases, there is the necessity to store the results of
processing of an activity into global variables or parameters,
so that this data can be used in other activities, for example to
decide a path in a decision point (see Category choice).
The model also shows a transaction composed by a set of
activities, see the Search Products transaction, which is
composed of Search request and Search result.

Figure 2. Performance test scripting model of the Browser script.

VIII. LESSONS LEARNED AND FINAL REMARKS

Basically, the main lessons we have learned from the
requirements and design decisions of our DSL are: (a) there

613Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 635 / 679

are several techniques to achieve the best possible results from
requirements elicitation process, such as interviews, ethnogra-
phy, domain analysis, among others. We have used domain
analysis to understand and capture our domain knowledge,
and to identify of reusable concepts and components. Thus,
we learned that eliciting requirements based on domain anal-
ysis, having as output the PTBOK, was effective to identify
what we needed for our DSL; (b) domain analysis based on
ontologies is a good alternative to transform the concepts and
relationships from the ontology into entities and functionalities
of the DSL. There are several methods and techniques for
describing this approach, for instance [27][28]; (c) one of
the disadvantages of using DSLs is the high cost of training
users who will use the DSL, i.e., steep learning curve [15].
However, based on our previously experience using several
load generator tools in an industrial setting, this disadvantage
can be handled pragmatically, since the cost for a new staff to
learn several load generators technologies is higher than com-
pared to our DSL. Nonetheless, this drawback must be proved
with empirical evidences; (d) Global Software Development
refers to software development geographically or globally
distributed, which aims to streamline the process of product
development. In such scenario it is common that infrastructure
and performance teams are located in different countries. For
this reason, it is important to adopt a standard language for
creating scripts and models for performance testing, hence we
chose the English as default for the textual representation of
our DSL, implicitly we avoid a cacophonous language [12];
(e) we adopt an incremental development methodology for
creating our proposed DSL. This methodology allows us to im-
prove the DSL on each interaction, which is composed by the
following steps: analysis, development, and utilization [15].

This paper presented a set of requirements elicited in
the context of an industrial partner. Through a pilot study
and based on our PTBOK, we collected specific needs for
performance modeling adoption to create a DSL for model-
ing performance testing, and argue that existing models and
languages do not meet the specificity of the requirements at
hand. We then presented our design decisions for creating
a DSL. We claim that the reported requirements and design
decisions as the two contributions of this work, since currently
few studies bring such discussion. Our work adds to that
in the sense that the elicited requirements evidence practical
scenarios that other load generators may consider supporting;
the design decisions, in turn, may be reused or adapted to
improve existing DSLs, models or languages, or even new
ones, targeting similar requirements.

IX. ACKNOWLEDGMENT

Study developed in the context of PDTI 001/2014, financed
by Dell Computers with resources of Law 8.248/91.

REFERENCES

[1] J. Meier, C. Farre, P. Bansode, S. Barber, and D. Rea, Performance
Testing Guidance for Web Applications: Patterns & Practices. Microsoft
Press, 2007.

[2] OMG, “Object Management Group,” 2014, URL: http://www.omg.org
[retrieved: 08, 2014].

[3] S. Barber, “User Community Modeling Language (UCML) for perfor-
mance test workloads,” Sep. 2003, URL: http://www.perftestplus.com/
articles/ucml.pdf [retrieved: 08, 2014].

[4] D. Menascé, V. Almeida, R. Fonseca, and M. Mendes, “A Methodology
for Workload Characterization of E-commerce Sites,” in 1st ACM
Conference on Electronic Commerce. ACM, 1999, pp. 119–128.

[5] N. Moreno, P. Fraternali, and A. Vallecillo, “WebML modelling in
UML,” IET Software, vol. 1, no. 3, pp. 67–80, June 2007.

[6] M. Shams, D. Krishnamurthy, and B. Far, “A Model-based Approach
for Testing the Performance of Web Applications,” in 3rd International
Workshop on Software Quality Assurance, 2006, pp. 54–61.

[7] D. Krishnamurthy, M. Shams, and B. H. Far, “A Model-Based Per-
formance Testing Toolset for Web Applications,” Engineering Letters,
vol. 18, no. 2, pp. 92–106, 2010.

[8] M. B. da Silveira et al., “Generation of Scripts for Performance Testing
Based on UML Models,” in 23rd International Conference on Software
Engineering and Knowledge Engineering, Jul. 2011, pp. 258–263.

[9] M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software
Performance Engineering,” in Future of Software Engineering, 2007,
pp. 171–187.

[10] F. Abbors, T. Ahmad, D. Truscan, and I. Porres, “MBPeT - A Model-
Based Performance Testing Tool,” in 4th International Conference on
Advances in System Testing and Validation Lifecycle, 2012, pp. 1–8.

[11] E. M. Rodrigues, L. D. Viccari, A. F. Zorzo, and I. M. Gimenes, “PLeTs
Tool - Test Automation using Software Product Lines and Model Based
Testing,” in 22th International Conference on Software Engineering and
Knowledge Engineering, Jul. 2010, pp. 483–488.

[12] M. Fowler, Domain Specific Languages, 1st ed. Addison-Wesley, 2010.
[13] EMF, “Eclipse Modeling Framework,” 2014, URL: http://www.eclipse.

org/modeling/emf/ [retrieved: 08, 2014].
[14] S. Kelly, K. Lyytinen, and M. Rossi, “MetaEdit+: A Fully Configurable

Multi-User and Multi-Tool CASE and CAME Environment,” in 8th

International Conference on Advances Information System Engineering.
Springer, 1996, pp. 1–21.

[15] D. Ghosh, “DSL for the Uninitiated,” Queue, vol. 9, no. 6, pp. 10–21,
2011.

[16] D. Kolovos, R. Paige, T. Kelly, and F. Polack, “Requirements for
Domain-Specific Languages,” in 1st Domain-Specific Program Devel-
opment, Jul. 2006, pp. 1–4.

[17] I. N. Athanasiadis and F. Villa, “A Roadmap to Domain Specific Pro-
gramming Languages for Environmental Modeling: Key Requirements
and Concepts,” in ACM Workshop on Domain-Specific Modeling, 2013,
pp. 27–32.

[18] G. Karsai et al., “Design Guidelines for Domain Specific Languages,” in
9th OOPSLA Workshop on Domain-Specific Modeling, 2009, pp. 7–13.

[19] U. Frank, “Domain-Specific Modeling Languages: Requirements Analy-
sis and Design Guidelines,” in Domain Engineering, 2013, pp. 133–157.

[20] N. Bui, L. Zhu, I. Gorton, and Y. Liu, “Benchmark Generation Using
Domain Specific Modeling,” in 18th Australian Software Engineering
Conference, Apr. 2007, pp. 169–180.

[21] K. L. Spafford and J. S. Vetter, “Aspen: A Domain Specific Language
for Performance Modeling,” in International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, 2012, pp. 1–11.

[22] Gatling, “Gatling Stress Tool,” 2014, URL: http://gatling-tool.org [re-
trieved: 08, 2014].

[23] A. Wert, J. Happe, and L. Happe, “Supporting Swift Reaction: Automat-
ically uncovering performance problems by systematic experiments,” in
35th International Conference on Software Engineering, May 2013, pp.
552–561.

[24] E. M. Rodrigues et al., “Evaluating Capture and Replay and Model-
based Performance Testing Tools: An Empirical Comparison,” “forth-
coming” in International Symposium on Empirical Software Engineering
and Measurement, 1–8 2014.

[25] S. Erdweg et al., “The State of the Art in Language Workbenches,” in
Software Language Engineering, 2013, vol. 8225, pp. 197–217.

[26] M. Mernik, J. Heering, and A. M. Sloane, “When and How to Develop
Domain-Specific Languages,” ACM Computing Surveys, vol. 37, no. 4,
pp. 316–344, 2005.

[27] R. Tairas, M. Mernik, and J. Gray, “Models in Software Engineering,”
M. R. Chaudron, Ed. Springer, 2009, ch. Using Ontologies in the
Domain Analysis of Domain-Specific Languages, pp. 332–342.

[28] T. Walter, F. S. Parreiras, and S. Staab, “OntoDSL: An Ontology-Based
Framework for Domain-Specific Languages,” in 12th International Con-
ference on Model Driven Engineering Languages and Systems, 2009,
pp. 408–422.

[29] A. Freitas and R. Vieira, “An Ontology for Guiding Performance Test-
ing,,” “forthcoming” in International Conferences on Web Intelligence
and Intelligent Agent Technology, 2014, pp. 1–8.

[30] M. Wynne and A. Hellesoy, The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. The Pragmatic Bookshelf,
Jan. 2012.

614Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 636 / 679

Inverted Run-Time Behavior of Classic Data Structures on Modern Microprocessors:
Technical Background and Performance Guidelines

Michael Bogner, Andreas Hofer, Maria Hronek, Franz Wiesinger

University of Applied Sciences Upper Austria
Department of Embedded Systems Engineering

Hagenberg, Austria
Email: {michael.bogner, andreas.hofer, maria.hronek, franz.wiesinger}@fh-hagenberg.at

Abstract—Classic data structures, such as vectors and lists are
used for storage and organization of data. Certain basic oper-
ations have a specified run-time behavior, which is essentially
influenced by the choice of the data structure. However, fur-
ther advances in the development of modern microprocessors
have achieved sophisticated optimizations in hardware. These
optimizations affect the run-time behavior of certain operations,
which further affects the choice of data structures. This paper
presents the results of our research activities focused on the im-
pacts of these changed conditions. We selected various algorithms
and operations frequently used in todays software development.
Remarkable differences and modified characteristics will be
discussed. The performances of both selected data structures,
namely vector and list, have been determined empirically using
the programming language C++. The results are interpreted and
discussed in terms of run-time complexity and modern processor
development.

Keywords–performance patterns; sequence container; run-time
complexity; modern microprocessors;

I. INTRODUCTION

The performance of microprocessors increased greatly in
recent years. This was possible mainly because of sophisticated
optimizations in processor architecture, achieved by modern
processor development. One substantial reason for the high
processing speed of modern Central Processing Units (CPUs)
is the hierarchy of various storage levels of cache memory
on the processor die. But, in our consideration, also the
main memory is important. It is critical to organize data
as efficiently as possible in the main memory in order to
get maximum performance. Different container data structures
allow us to select the appropriate organization. However,
not all container types benefit in the same way of modern
processor architecture, which leads to different performance
gains. Under these changed conditions, current approaches
need to be reconsidered.

For the comparison in this paper, we have selected data
structures from the Standard Template Library (STL) of the
widely used C++ programming language. As performance is
a key aspect, we decided to avoid languages which have
managed runtime features or rely on virtual machine support,
or use Just-In-Time compilation (JIT) and garbage collection.
C++ compiles to native code, is platform independent and
comes with efficient container implementations of the STL,
which substantially reduces interfering side effects.

The selected containers are std::vector and std::list. Both
are basic sequence containers, but as generally known, rely on

completely different implementations. The std::vector uses a
strict byte-sequence and therefore guarantees a contiguous stor-
age space in memory [1]. In contrast, the std::list is a doubly
linked list which represents the simplest form of a graph-based
data structure, except for the rarely used single linked list.
This is a significant difference for the microprocessor, and this
paper analyses right this aspect. Advanced data structures like
sets and trees are variants of these basic implementation types.
Usually, they use hash functions or other optimizations to gain
algorithmic benefits. But these algorithmic optimizations are
not directly related to the performance of the microprocessor.

The theory teaches that each data structure has its advan-
tages depending on the scenario. Operations such as inserting,
deleting, or accessing elements have a proven run-time behav-
ior, which is described by the asymptotic run-time complexity
or the big O-notation [2]. This notation makes it possible to
specify the run-time as a function of the problem size. Or in
other words algorithms can be classified by how they respond
to changes in the container size. In software development, this
classification essentially influences the choice of data structure.

For the reasons mentioned above, this paper investigates
whether classical selection criteria for list and vector, de-
scribed by the O-notation are still valid or not. In order to
achieve the objective, prototype implementations on both data
structures were evaluated. The performances were determined
empirically on a common workstation; for details, see Section
III-B. To measure the run-time and the run-time behavior,
various algorithms and operations were selected, which are
frequently used in today software development. The results
were interpreted and discussed in terms of run-time complexity
and modern processor development. Finally, the main rules
that can be held responsible for the results are filtered out, to
get general performance patterns. These performance patterns
represent some guidelines for todays software development on
modern microprocessors.

Already Niklaus Wirth noted the importance of data struc-
tures in order to create effective applications [3], as data
organization is highly relevant. There are quite a lot text
books and papers introducing elementary and advanced data
structures and corresponding algorithms like [4], including
its O-notation. Professional usage of the C++ standard tem-
plate library containers and their performance guarantees are
covered by Musser et al. [5]. To analyse already existing
applications, Liu and Rus [6] present a tool for detecting
poor data structure selection in C++ programs, which gives
a context sensitive performance advice. An automated tool to

615Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 637 / 679

generate cost models of given data structures is introduced by
Jung [7]. After a training phase to understand the effect of
architectural behavior, the statistical data are then fed into a
machine learning model which tries to determine the optimal
data structure. Its vision is to build it into data structure
libraries so that the compiler can automatically select the best
implementation.

The paper has the following structure: The first Section
presents a short introduction. Section II describes the develop-
ment of modern processor architectures and why that prefers
specific data structures. Section III presents the methodological
approach of the test procedure. Also the selected performance
tests are presented. The most distinctive test results are pre-
sented and analyzed in Section IV. Section V shows the main
rules that can be held responsible for the results, whereas the
final thoughts are presented in Section VI.

II. MODERN PROCESSOR ARCHITECTURES

This section gives important background information that
can be made responsible for the special effects discussed in
this paper. These include a short introduction of the properties
of modern processor architectures and their effect on classic
data structures. Especially, the memory architecture and how
modern CPUs optimize memory accesses are points which
are addressed, because almost exclusively array data structures
benefit from certain optimizations of modern microprocessors,
as we see below. Particularly, in view that the memory access
is a growing bottleneck, such things can be critical and lead
to significant shifts in the performance analysis.

According to Moore’s Law, the integration density of
transistors on integrated circuits doubling every two years [8]
[9], which made more complex and fast CPUs possible. Thanks
to a better understanding of the architecture, the Instruction
Level Parallelism (ILP) and increasing clock speeds allows
to raise the processor performance considerably long time.
Described by ILP, the executed Instructions Per Clock cycle
(IPC) of the processor were increased. This was achieved by
techniques such as pipelining, super scalarity, out-of-order-
execution, branch-prediction or speculative execution [10].

One of the biggest challenges during this development was
to design memory systems that can provide the processor fast
enough with data. Because the increase in speed of modern
processors is not accompanied by a corresponding acceleration
of the memory systems. This means that memory access is
quite slow in relation to processor performance. Figure 1 shows
the development of memory and processor performance since
1980 - note the logarithmic scaling in this diagram to be able
to display the large gap in this development. The memory line
starts with 64 KiB DRAM 1980 and reached an annual latency
increase of factor 1.07. The speed increase at the processors
reached factor 1.25 until 1986, 1.52 until 2004 and 1.2 after
2004 [11].

Not only the latency, but also the bandwidth to the memory
system is important for the CPU. These two points stay
in strong conflict to each other. Therefore, a technique for
increasing the memory bandwidth often results in an increase
of latency, and vice versa. The higher the speed of processors
grows, the harder it is to realize a memory, which can provide

Figure 1. Performance of processors and latency of the memory plotted over
time [11].

data fast enough in a few clock cycles. Therefore, the memory
system was an increasing bottleneck [12].

To minimize this problem at least, modern processors have
various cache levels on die. The purpose of the cache is to
take the last used memory words, whereby the new access
to them is greatly accelerated. If a sufficiently large amount
of the required data is present in the cache, the effective
memory latency shrinks enormously. This advantage is tried
to maximize with several cache levels [12].

To reach their target, caches feature a variety of op-
timization; many of them use the memory address of the
corresponding data (address locality): The so-called spatial
locality refers to the observation that memory locations, that
are numerically similar to locations which were accessed
recently, will be accessed in the near future with increased
probability. This property is exploited by caches reading more
data than requested, in the assumption to predicting future
accesses. Such optimizations are called prefetching, as data
will be already prefetched from the main memory [12]. In
terms of the performance tests in this paper, it should be noted
that almost exclusively array data structures benefit from these
optimizations, because of their contiguous memory order. For
lists with a scattered memory order, such optimizations are
nearly useless.

III. METHODOLOGICAL APPROACH

This section shows the methodological approach perform-
ing the test. The selected tests are described and their purpose
is explained. Also, the test system is presented with the hard-
ware and software base. Finally, criteria of the test procedure
are determined.

A. Selected performance tests

In principle, we selected various algorithms and operations
frequently used in todays software development. We tried to
figure out the respective advantages and disadvantages of the
two data structures on an modern microprocessor and want to
illustrate if classical selection criteria for list and vector are still
valid. In Table I, the selected performance tests are presented.
The first tests will cover basic operations, such as inserting or
deleting elements. Subsequent test cases also check moving,
comparing, swapping or sorting items in the containers - in

616Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 638 / 679

various combinations and executions. Not all test cases modify
the size of the data structures; some only change the order of
the data within the containers or are read-only tests. Details
are noted in Table I.

TABLE I. SELECTED PERFORMANCE TESTS: EXECUTED TEST CASES
AND THEIR DESCRIPTION AND PURPOSE

Test case Description

Filling
data
structures

This is one of the most common operations in general. The elements
in each of the newly declared containers are inserted at the back. In
addition, also a vector is tested which gets the final size communicated
via vector::reserve.

Clearing
data
structures

It is tested how quickly a filled container can be cleared completely.
Since vector::clear does not change the capacity, for a fair comparison
a new container is created using vector::swap.

Insert
front

Also the insertion of elements on other positions are meaningful test
scenarios. In this test case, additional elements will be inserted at the
front of already filled containers.

Insert
middle

It is measured how long it takes to insert additional elements in the
middle of already filled data structures. The respective advantages and
disadvantages of the two test candidates can be very well shown in
this test case.

Insert
sorted

In contrast to insert middle, in this test case the insertion point must be
found first, so the elements in the data structures have to be accessed.
The test starts with empty containers.

Reversing
data
structures

This test case reverses the order of the values in the containers. The
first value becomes the last one, the second value the last but one
etc. Therefore, the last value becomes the first value of the reversed
container. It is shown how efficient elements in the containers can be
swapped.

Is sorted It is checked whether sorted containers are actually sorted. It just
depends on how fast the data structures can be run through and
accessed, making this text case clearly different from the previous.

Calculation
of the
arithmetic
mean

The arithmetic mean is calculated over the containers. Similar to the
previous point it must be iterated through the data structures. Not
merely elements must be compared with each other, but also arithmetic
operations occur.

Delete
all occur-
rences of
a number

In this test case, the deletion of specific numbers is measured. This pro-
cess is repeated with all numerical values until the data structures are
completely empty. Also different implementation variants are tested
using the vector, to show the respective advantages and disadvantages.

Stable
sort

A frequently occurring operation is also the sorting of data structures,
which is represented by this test case. As the sorting algorithm of the
std::list is stable, the vector uses also a stable sorting algorithm for a
fair comparison.

Delete all
duplicates

Every container is filled ten times in a row with the same number. It
will be measured how long it takes to delete all duplicates. With one
run though the data structures, the size is reduced to a tenth of its
original value, what this test case clearly differ from the others.

Double
each
element

Each element in the containers is placed next to the current position
again. Thereby the container size is doubling. The advantages and
disadvantages of the vector compared to the list can be illustrated
nicely in this test case.

B. Test system

The performance tests took place on the following system:

• Intel R© CoreTM Processor i5-3570K, 4 x 3.40GHz

• Corsair R© Memory 16 GiB DDR3-1333 CL9

• Intel R© Media Series DH77EB Mainboard

• Samsung R© SSD 830 Series 256GB, SATA 6Gb/s

• Microsoft R© WindowsTM 7 Home Premium 64-bit
with Service Pack 1 (March 2013)

The chosen test system represents a common workstation,
no high-end device or special hardware. This should demon-
strate the general validity of the test results on widespread
available systems. The Intel R© CoreTM family has not changed

significantly in those points relevant for the test, eg. from used
Ivy Bridge model to the current Haswell architecture. The
respective tests were implemented using Visual Studio 2010
Ultimate with Service Pack 1 and was compiled with compiler
version 16.00.40219.01. Furthermore, the x64 version was
used as a release build. The default settings of Visual Studio
were used, with optimization level ”O2 maximize speed”.

C. Criteria of the test procedure

In order to ensure meaningful results, the following criteria
have been defined:

• It was ensured that there is no main memory overflow.
Because outsourcing of data on the hard drive would
lead to significant performance degradation. The con-
tainers are small enough to find place in the main
memory in any case.

• Dynamic frequency scaling (Enhanced Intel R©
SpeedStep R© Technology (EIST) and Intel R© Turbo
Boost Technology) has been disabled. Therefore, the
processor is running with the base clock of 3.4 GHz
during the tests.

• Every test result has been repeated several times
and the arithmetic mean has been extracted from the
times of the measurements. This avoid measurement
errors and reduce the possible impact of background
processes from the operating system. Details will be
shown in Section IV.

• To evaluate the run time behavior, five different con-
tainer sizes were selected for each test case.

• The selected value type of each data structure is
integer. Therefore, each element represents a four-byte
signed value.

IV. PRESENTATION AND ANALYSIS OF THE RESULTS

Three test cases out of the twelve shown in section III-A are
now presented and analyzed in detail. These most distinctive
test cases, which provide particularly remarkable results are
”Filling data structures”, ”Insert sorted” and ”Stable sort”. The
results were interpreted and discussed in terms of run-time
complexity and modern processor development.

A. Filling data structures

In this test case, the elements in each of the newly declared
containers are inserted at the back. In addition, also a vector
is tested which gets the final size communicated via vec-
tor::reserve, avoiding typical resize operations. The respective
container sizes and the results are shown in Figure 2. In order
to ensure sufficient runtime, each test ran 100 times and run
times were summed up.

The vector dominates this comparison against the list.
Beyond that the vector that has reserved all required memory
before the measurement is nearly three times as fast as the
normal vector. Both containers allow the insertion at the end
with the run-time complexity of O(1), but there are significant
differences in detail: the vector allocates memory always for
multiple elements, to avoid of requesting new memory every

617Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 639 / 679

0

500

1000

1500

2000

2500

100 Mio. 200 Mio. 300 Mio. 400 Mio. 500 Mio.

se
co

n
d

s

elements

Fill

list

vector

res. vector

Figure 2. Filling data structures: The elements are inserted at the back. The
res. vector gets the final size communicated via vector::reserve.

time. But if the vector is stored in a too small memory
area, the entire container must be copied into a larger storage
area, because of the contiguous memory order. Of course, the
reserved vector does not have this problem, because it gets the
final size at the very beginning.

For the list, it does not matter where the elements are
stored in the memory. Because it is a doubly linked list with
a tail pointer, it has also direct access to the last element.
However, due to the link pointers, much more memory must
be requested, and also the correct connectivity of the list nodes
must be ensured. Much more salient is that the list must
request for each node separately new memory. There must be
permanently found free space on the heap, which represents a
considerable overhead. This explains why the vector dominates
the list.

B. Insert sorted

In this test case, both containers insert the same random
numbers in sorted order. Before a new number can be inserted,
the insertion position must be found. The range of these
numbers moves between zero to 10,000. At the beginning,
both data structures are empty. Figure 3 shows the results with
different container sizes for vector and list.

0

500

1000

1500

2000

2500

3000

100000 200000 300000 400000 500000

se
co

n
d

s

elements

Insert sorted

list

vector

Figure 3. Insert sorted: list and vector in each case insert the same random
numbers in sorted order.

It can be seen that the vector dominates this comparison
very clearly. Because of its direct access to every element, the
vector could use a binary search algorithm to find in O(log(n))
the insertion position. However, the list must be run through

linearly element by element. But this is not the only reason
for the big advantage of the vector. Figure 4 shows a vector
comparison, once with linear and once with binary search
algorithm. The binary search algorithm is of course faster,
but the difference is not large enough to justify the enormous
advantage over the list.

0

20

40

60

80

100

120

140

100000 200000 300000 400000 500000

se
co

n
d

s

elements

Vector comparison: linear vs. binary search algorithm

linear

binary

Figure 4. Vector comparison linear vs. binary search algorithm: The vector
is with both algorithms much faster than the list.

Since the actual insertion of elements in a list takes hardly
any time, finding the insertion position and allocating a new
list node are responsible for the high run-time of the list. When
the list must be linearly traversed, the address of the successor
node can only be determined if the current list node is already
loaded from the memory. Because of this data dependency,
neither the compiler, nor the CPU has any opportunities to
optimize. This explains the poor performance of the list.

1

10

100

1000

10000

100000 200000 300000 400000 500000

se
co

n
d

s

elements

Insert sorted in logarithmic scale

list

vector

Figure 5. Insert sorted in logarithmic scale: In addition to the better run-time,
also the better run-time behavior of the vector can be seen.

On the other side, the vector can be very well optimized
thanks to its well-defined data order in the memory. It must be
shifted on average half of the container on every insertion, but
this takes in relation significantly less time than the list requires
finding the insertion position and allocating a new list node.
Figure 5 shows the same results as in Figure 3 in logarithmic
scale. The vector needs O(log(n)) to find the insertion position
and O(n) to insert elements within the container. Although
the list find the insertion position in O(n) and insert elements
within the container in O(1), the vector has not only the better
run-time, but also the the better run-time behavior.

618Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 640 / 679

C. Stable sort

In this test case, it is measured 1,000 times to sort the data
structures. Both containers will be filled with the same random
numbers in the range of zero to 10,000. Since list::sort is a
stable function [13], for a fair comparison std::stable sort is
used for the vector. Both functions guarantee a time complexity
of O(n ∗ log(n)) [14]. Figure 6 shows the results of this
comparison.

0

200

400

600

800

1000

1200

1400

1600

100 Mio. 200 Mio. 300 Mio. 400 Mio. 500 Mio.

se
co

n
d

s

elements

Stable sort

list

vector

Figure 6. Stable sort: The same random numbers are sorted stable. It is clearly
seen that the vector is in advantage, thanks to direct access and compact data.

1

10

100

1000

10000

100 Mio. 200 Mio. 300 Mio. 400 Mio. 500 Mio.

se
co

n
d

s

elements

Stable sort in logarithmic scale

list

vector

Figure 7. Stable sort in logarithmic scale: despite identical time complexity,
the better run-time behavior of the vector can be seen.

Again, the vector dominates this test relatively clear. The
direct access on each element in O(1) and the much more
compact data structure of the vector have a positive effect
again. Although both sorting algorithms guarantee a time
complexity of O(n ∗ log(n)), the vector also has a better run-
time behavior, as shown in Figure 7. The O-notation only
represents the worst case for the growth of the running time,
which does not have to occur.

V. EVALUATION

On the basis of theoretical considerations of vector and
list, most people would think that it depends on the specific
test case which container dominates which test. The run-time
complexity of the data structures is quite equal in most of the
used tests. But as the results show, a significant advantage of
the vector can be seen. The vector dominates all tests with
a single exception: ”Insert front”. There, the list has a clear
advantage, because no element must be shifted. The smallest
differences in run-time and run-time behavior show the test

cases ”Insert Middle”, ”Is sorted” and ”Calculation of the
arithmetic mean”. But even there the vector is at least twice
as fast as the list, thanks to the direct access (”Insert Middle”)
and the faster linear traversing (other two test cases). In the
test cases ”Double each element”, ”Delete all occurrences
of a number” and ”Delete all Duplicates” it is important to
consider the characteristics of the vector. Linear traversing
and the following insertion or deletion leads to unnecessarily
high running times. But thanks to the direct access, elements
could be doubled or deleted within the container with very less
shift operations, which leads to a significant domination of the
vector over the list. At the test cases ”Clearing data structures”
and ”Reversing data structures” the vector is approximately
ten times faster than the list. This is possible because of the
comprehensible storage area of the vector, all elements can
be cleared at once and the elements within the container can
be easily swapped. The run-time behavior is quite equal in
”Reversing data structures” but at ”Clearing data structures”
the vector has also the better run-time behavior.

But, what are the reasons for this clear result under the
given test conditions? In this section, the main rules are filtered
out from the amount of data that can be held responsible for
these results. We have worked out four performance patterns
representing some guidelines for todays software development
on modern microprocessors.

1) Linear traversing the data structures: It is found
across all tests that linear traversing of the data struc-
tures leads to significant differences in the duration
time between vector and list. The vector benefits from
the consecutive order of the elements in memory.
This leads firstly to a maximum utilization of the
limited caches. On the other hand it can be very well
optimized, for example when elements are loaded
speculatively already in advance. Such optimizations
are becoming increasingly important, because main
memory is becoming more and more slowly in rela-
tion to processor performance.
The elements of the list are scattered in memory, so
they must be found costly and the memory access
is poorly predictable. The address of the successor
node can only be determined, if the current node
has been read from the memory. Through this
data dependency, the access to a list node can
hardly be optimized, pre-loading data from memory
(prefetching) is often impossible. Therefore, it takes
far too long to go through a list.

2) Access to items: Often, a data structure should
not be linear iterated, instead it must be random
accessed on particular elements. The vector benefits
from being able to access any element in constant
very short time. This benefit allows to more than
compensating other disadvantages. For example,
when elements within a data structure should be
inserted, deleted or swapped. The vector could use
a binary search algorithm to find a specific element
within a sorted container and also benefits from his
direct access at sorting or reversing the container.
The list does not have this advantage; direct access
is only at the beginning and the end of the list
possible. For any other element, the list must be

619Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 641 / 679

linearly traversed starting from the ends - with the
same problems as shown previously.

3) Inserting and deleting elements: The insertion and
deletion of elements at different positions of the data
structures shows an ambivalent picture. At the end of
the container the vector allows a very fast insertion
and deletion of elements. The vector allocates mem-
ory always for multiple elements, to avoid requesting
new memory every time. If the vector is stored in
a too small memory area, the entire container must
be copied into a larger storage area, because of the
contiguous memory order. It is also possible to tell the
vector the final container size at the very beginning,
so all memory is requested directly whereby elements
can be inserted even faster. When elements should be
deleted at the end, the vector needs not to free any
memory or iterate through the container, instead the
elements can simply be cutted off, without changing
the capacity of the container.
The list, however, must be run through in any case,
with the exception of the first and the last node. Also,
every time a new element is inserted or deleted, the
list must request new memory or free used memory
on the heap, which represents a considerable over-
head. In addition, because of the administrative data,
significantly more memory is used and the correct
connectivity of the list nodes has to be ensured.
Therefore the list needs significantly more time at
the end of the container for such operations.
But the farther away from the end of the container
elements should be inserted or deleted, the sooner
the list has the advantage. The structure (interlinking)
of the list has to be changed only locally. The vector
must move a substantial number of elements when
inserting or deleting, depending on the distance to the
end of the container. This is an expensive operation.
Therefore, insertion or deletion at the beginning of
the vector should be avoided if possible. Usually
this problem could be avoided or at least alleviated
by clever optimizations or simply by using std::deque.

4) Memory and cache utilization: An aspect that
should also be addressed is the high memory con-
sumption of the list. The random order of the list
nodes in memory leads to a high share of administra-
tive data. At least two pointers need to be stored per
element in a doubly linked list. What leads to 16 bytes
per element management data in a 64-bit application.
If there is not enough main memory available, it
would lead to a significant drop in performance,
because data must be outsourced on the hard drive.
Beyond that, this large administrative data make the
limited caches ineffective, because more overhead
and less useful data are stored. The random order
of the list nodes leads also to a high number of
load operations from main memory, because in the
worst case every list node must be loaded separately.
On the other side the vector requires very little
administrative data and therefore allows storing data
very compact. This allows utilizing the main memory
and the limited caches best. And because of the

contiguous storage area, multiple vector elements can
be loaded at once from the main memory.

VI. CONCLUSION AND FUTURE WORK

Summarizing, it can be said that modern microprocessors
show a quite different run-time behavior for certain opera-
tions than one would expect looking at the corresponding
O-notation. In the mentioned cases, it is simply misleading
following the O-notation, which finally results in low perfor-
mance of the application.

Certain optimizations of modern microprocessors prefer
data structures with a coherent storage area. For lists, opti-
mizations such as pre-fetching algorithms, are nearly useless,
because of the data dependency of the link-pointer. The address
of the successor node can only be determined if the current
list node is already loaded from the memory, which makes
it nearly impossible for modern microprocessor architectures
to optimize the access to subsequent data. Against this back-
ground and the increasingly limited memory system, expensive
memory accesses should be designed as predictable as possible
and data should be kept compact to utilize the limited cache
best. Such challenges prefer data structures with a coherent
storage area.

It turns out that classical selection criteria for list and vector
have been undermined by modern processor development in
some way. So far, the insertion or deletion of elements within
the amount of data was a clear domain of the list, since no
shift operations are necessary. Today, even the shifting of the
vector elements up to a specific position is more efficient than
the linear iteration through the list to find the insertion position.
If one takes into account certain characteristics of the vector,
such data structures should clearly be preferred.

In the future, the performance of CPUs will still increase
and additional potential for optimization will continue to
prefer data structures with a comprehensible storage area.
The so-called prefetching, the speculative load of data from
memory, brings an enormous advantage for the vector. The
data dependency of the list, which allows neither the CPU nor
the compiler to optimize usefully, is a serious problem. This
should be considered in software development.

Future work will evaluate additional data structures to
get a more comprehensive picture about the run-time and
the run-time behavior of different data structures on modern
microprocessors.

REFERENCES

[1] G. Pomberger and H. Dobler, Algorithms and Data Structures - A
Systematic Introduction to Programming. Pearson Studium, 2008.

[2] D. E. Knuth, “Big omicron and big omega and big theta,” SIGACT
News, vol. 8, no. 2, Apr. 1976, pp. 18–24.

[3] N. Wirth, Algorithms + Data Structures = Programs. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1978.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press, 2009.

[5] D. R. Musser, G. J. Derge, and A. Saini, STL Tutorial and Reference
Guide: C++ Programming with the Standard Template Library, 2nd ed.
Addison-Wesley, 2009.

620Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 642 / 679

[6] L. Liu and S. Rus, “Perflint: A context sensitive performance advisor
for c++ programs,” in Proceedings of the 7th annual IEEE/ACM In-
ternational Symposium on Code Generation and Optimization, Seattle,
WA, 2009, pp. 265–274.

[7] C. Jung, “Effective techniques for understanding and improving data
structure usage,” Ph.D. dissertation, Georgia Institute of Technology,
2013.

[8] G. E. Moore, “Cramming more components onto integrated circuits,”
Proceedings of the IEEE, vol. 86, no. 1, 1998, pp. 82–85.

[9] G. E. Moore, “Progress in digital integrated electronics,” Electron
Devices Meeting, 1975 International, vol. 21, 1975, pp. 11–13.

[10] J. L. Hennessy and D. A. Patterson, Computer Organization and Design
- The Hardware / Software Interface, 5th ed. Morgan Kaufmann, 2013.

[11] J. L. Hennessy and D. A. Patterson, Computer Architecture - A
Quantitative Approach, 5th ed. Morgan Kaufmann, 2011.

[12] A. Tanenbaum, Computer Architecture: Structures - Concepts - Basics,
5th ed. Pearson Studium, 2006.

[13] B. Stroustrup, The C++ Programming Language, 4th ed. Addison-
Wesley, 2013.

[14] U. Breymann, C++ - Introduction and professional Programming,
9th ed. Carl Hansen, 2007.

621Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 643 / 679

Benchmarking the Performance of Hypervisors on Different Workloads

Devi Prasad Bhukya, Carlos Gonçalves, Diogo Gomes, Rui L. Aguiar

Instituto de Telecomunicações, Universidade de Aveiro, Aveiro, Portugal

bdeviprasad@av.it.pt, cgoncalves@av.it.pt, dgomes@av.it.pt, ruilaa@ua.pt

Abstract—Many organizations rely on a heterogeneous set of

applications in virtual environment to deliver critical services to

their customers. Different workloads utilize system resources at

different levels. Depending on the resource utilization pattern

some workloads may be better suited for hosting on a virtual

platform. This paper discusses a framework for benchmarking

the performance of Oracle database workloads, such as Online

Analytical Processing (OLAP), Online Transaction Processing

(OLTP), Web load and Email on two hypervisors, namely Xen

and VMware. Further, Design of Experiments (DOE) is used to

identify the significance of input parameters, and their overall

effect on two hypervisors, which provides a quantitative and

qualitative comparative analysis to customers with high degree

of accuracy to choose the right hypervisor for their workload in

datacenters.

 Keywords—Virtualization; DOE; Full Factorial Design; Main

Effect; Interaction Effect

I. INTRODUCTION

Virtualization [1][2][3] is a technology where user can run
more than one operating systems on a single system side by
side. Initially, computer hardware was designed to run a single
operating system at a time with a single application. This
leaves most machines vastly underutilized. Virtualization lets
user to create more than one Virtual Machine (VM) on a single
physical machine and run different operating systems in
different VMs with multiple applications on the same physical
computer. Each VM shares the resources of that one physical
computer across multiple environments under the monitoring
of a Virtual Machine Monitor (VMM) or Hypervisor [4].

Virtualization works by inserting a thin layer of software
called hypervisor directly on the computer hardware or on a
host operating system. The virtualization architecture [5] we
are using to do this experiment is by directly inserting the
hypervisor on the hardware, which is called Bare-Metal
architecture. Virtualization creates a virtual version of an
operating system, a server, a storage device or network
resources. The areas where virtualization is used are mainly
network virtualization, storage virtualization and server
virtualization. Virtualization is the best option available today
for maximum utilization of the system resources by sharing of
application and database. This helps to reduce the number of
servers, hardware devices in the data center, which not only
reduces the infrastructure and maintenance costs but also,
reduces power consumption. The major benefit of using a
Bare-Metal architecture is the overhead of a layer can be
avoided; smaller footprint of the underlying Operating System
(OS) uses considerably less system resources thereby granting
the hypervisor and its VMs access to more Central Processing

Unit (CPU) cycles, available memory and storage space on the
hardware platform.

There are different types of virtualization, for different
approaches. User has a choice to select any type of
virtualization depending on his application/workload need. The
main categories are Storage virtualization, Hardware
virtualization, Network virtualization and Server virtualization.
There are three types of virtualization techniques [6] that are
mainly used i.e., Full Virtualization, Para Virtualization and
Hardware Emulation.

Different workloads utilize hypervisor resources at
different levels and depending on the resource utilization
pattern some workloads may be better suited for hosting for
particular hypervisor. This study is intended to compare how
different Oracle workloads, such as Online Analytical
Processing (OLAP), Online Transaction Processing (OLTP),
Web Load and Email applications perform on different
hypervisor environments. The rest of the work is organized as
follows: Section 2 discusses about state of the art. Section 3
explains experimental procedure. Section 4 presents
benchmarking analysis. Section 5 discusses about related work
and Section 6 presents the conclusions.

II. STATE OF THE ART

Actually, performance of any system depends on various
system and application factors. Higher performance is
achieved in any system by tuning its individual system factors.
Optimal values for each system tunable factor should be
obtained by conducting several experimental runs and it takes a
long time and blocks valuable resources such as cost,
manpower and time. In traditional approach, performance
benchmarking analysts are not aware of the experimental
designs and analysis techniques often reaching misleading
conclusions due to the following mistakes, such as: variations
caused by experimental errors are not taken into account;
important system parameters are not controlled; effects of
different factors are not isolated; simple One-Factor-At-a-
Time(OFAT) [22]designs are used; interactions among various
factors are ignored; and too many experiments are conducted.

In addition, traditional performance tuning and
benchmarking of hypervisor systems continues to be a tedious
and time-consuming job with respect to any workloads. Since
the features of upcoming hypervisor products are so complex,
benchmarking needs in depth knowledge of the product and its
domain. In the real world, hypervisor customers usually comes
with a benchmarking requirement for their product with their
competitors to software service based company and they will
always go for a cost effective way of benchmarking. They also
identify systems having many parameters that require careful
hand tuning to get good performance.

622Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 644 / 679

In this work, a DOE methodology is proposed to overcome
the above drawbacks and misleading conclusions of traditional
approach of a hypervisors performance tuning and
benchmarking experimentation.

III. EXPERIMENTAL WORK

The goal is to compare two hypervisors performance in
Oracle workloads. In this study, we are interested to know
how the hypervisors factors interact with the oracle workload.
We conducted the benchmarking of the hypervisor with test
bed configuration, as shown in Figure 1. Table 1 represents the
hardware and their configuration. To virtualize a system two
types of hypervisors are used Xen and VMware. The two
hypervisors are identified as their kernel configurations are the
same.

Figure 1. Architecture of virtualizing the system.

TABLE I. DESCRIPTION OF SYSTEM HARDWARE

Hardware Configuration

Processor
Intel(R) Core(TM) 2 Duo CPU E7500 @ 2.93

GHz

NIC Intel PRO/1000 PT

Physical

memory
160 GB

RAM 4 GB

Since real database workloads are hard to obtain,

benchmarks [7] were used as the database workloads in this
research. Orion [8] is a tool for predicting the performance of
an Oracle database without having to install Oracle or create a
database. Orion is expressly designed for simulating Oracle
database Input/output (I/O) workloads using the same I/O
software stacks as in Oracle database. For each type of
workload, Orion can run tests at different levels of I/O load to
measure various performance metrics like Mbps, IOPS (Input
Output per Second) and I/O latency. The Orion benchmarks
developed by Oracle are widely accepted for testing the
performance of Oracle database systems under various
workloads. The Orion was installed in the VM and the
application was pumped using Orion tool and its corresponding
throughput (Mbps) recorded.

The performance of hypervisor depends on its various
system factors. Each hypervisor have several factors associated
with each other. Due to test lab availability and server
limitation for this paper work, we have decided to take three
important system factors of hypervisor with two levels and one
factor with four levels at application level. These limitations
are due to available servers in the present test lab. The vendors
are set of two levels like Xen and VMware; Virtual CPUs

(VCPU) with two levels like 1 GHz and 2GHz; Random
Access Memory (RAM) with two levels like 1 GB and 3 GB,
and Workloads are set of four levels i.e., OLTP, OLAP, Web
load and E-mail. Table 2 summarizes the factors and levels.

TABLE II. DESCRIPTION OF FACTORS AND THEIR LEVELS IN THE EXPERIMENT

Factor Level 1 Level 2 Level 3 Level 4

Vendor VMware Xen - -

Workloads OLTP OLAP Web load
Email

load

VCPU 1GHz 2GHz - -

RAM 1GB 3GB - -

TABLE III. DETAILS OF ORION

Application factors Specification

No. Of disks 1

Disk Size 20GB

Run Type Advanced

Time Taken 9 min (Random);15 min (Sequential)

In this paper, the workloads are simulated by using an

Orion benchmark tool with their individual read write ratio,
application block size and workload type. Table 3 represents
the specifications of Orion while simulating the workloads in
hypervisor benchmarking. Further, benchmarking of
hypervisors for various real world workloads, such as OLAP,
OLTP, Web load and E-mail workload have been proposed.
The workload factors and their levels are summarized in Table
4. Table 5 describes the description of the VM system
configuration. In this experiment, Windows Server 2003 guest
operating system used. On the guest operating system the
benchmark tool Orion version 10.2.0.1.0 were installed and
VM configuration have been changed as per test case.

TABLE IV. DESCRIPTION OF THE WORKLOADS PROFILE

Workload
Read : Write

Ratio

Application

block size

(kb)

Application

type

OLTP 70:30 8 Random

OLAP 100:0 1024 Sequential

Web load 90:10 16 Random

Email load 50:50 4 Random

TABLE V. DETAILS VIRTUAL MACHINES

Virtual Machine Description

VCPU 1 GHz,2 GHz

RAM 1 GB, 3 GB

Operating System
Windows Server 2003 Enterprise

Edition (64-bit) with Service Pack 2

ORION 10.2.0.1.0

IV. BENCHMARKING ANALYSIS

To benchmark hypervisors over different workload, we

used Design of Experiments (DOE), a robust statistical

methodology, for optimizing the experiments. DOE [9][10] is

used for performance tuning, optimization as well as screening

the few vital factors to control the process. A process modeling

method, DOE is defined as: A systematic and rigorous

approach to engineering problem-solving that applies

principles and techniques at the data collection stage so as to

623Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 645 / 679

ensure the generation of valid, defensible and supportable

engineering conclusions. By using the interaction analysis

features of DOE, one can benchmark their products. DOE can

be applied for benchmarking framework and it has systematic

procedure, as shown in Figure 2. In this study, benchmarks the

hypervisor are also done in four steps: 1. objective of the

experiment; 2. experimental design; 3. conducting experiment;

and 4. data analysis.

Figure 2. Flow chart of experiment.

Initially, we have to set the goal in the first stage of our

experiment. Objective of the experiment plays an important
role in any experiment as it is the area where experimenter
identifies the problem and purpose of comparison; parameters
of comparison; and also estimates the budget, schedule and
resources for the experiment. The next step is experimental
design where the experimenter will design the experiment like
identifying the factors and levels, the design, the tools to be
used in the experiment, etc. The design we choose in this paper
is Full Factorial Design [11]. This design provides an option to
conduct the runs of every combination without leaving any
level of any factor. In this study, we have chosen four factors
to benchmark the hypervisor and used statistical tool called
Minitab [12] for DOE. The full factorial design has generated
96 test runs for this experiment. While generating test cases,
the experimenter has the option of selecting techniques like
replication, randomization and blocking in the experiment to
reduce the experimental errors. The next stage is to conduct the
experiment. In this stage the experimenter runs each test case
and measuring the output using Orion tool. The experiment
was carried out as per test case and the outputs were measured
in MBPS. Each run were noted in the Minitab tool. Before
analyzing the performance benchmarking of application
workload, we need to check whether the response data is
statistically sound or not in Minitab tool. The response data
was tested with some prime data analyses namely, check for
outlier [13], check for normality [14], check for any pattern
and presence of time trend with the residuals of the response
data [15]. In our experiment, we found that response data
passes all above statistical test for further analyses.

A. Main Effects Study

The effect of the factor over the response is analyzed by
using the main effect [16] feature of the DOE as shown in
Figure 3 and it shows that performance of VMware is better
when compared to Xen; performance of OLAP is better

compared to the remaining chosen workloads, such as OLTP,
Web load and email; performance of VCPU 1 is better than
VCPU2; and performance of RAM with 1 GB has better
performance when compared to RAM with 3 GB.

Figure 3. Main effects of factors vendors, workloads, VCPUs and RAM.

B. Interaction Effect
The combined effect of two or more than two different

factors can be shown through DOE interaction effect [17]. The
presence of interaction effect gives an idea about the impact of
one factor on the level of the other factor. Figure 4 shows the
interaction effect of hypervisors with workload over its
throughput. It clearly reveals that VMware has better
performance than Xen on most of the workloads. Eventually,
the performance of OLTP workload is the same in both the
hypervisors.

Figure 4. Interaction effects of hypervisors and workloads.

Figure 5 shows the interaction effect of hypervisors and
VCPU. It shows that the performance of VMware has better
performance than Xen. Further, the performance of VMware is
better at 2GHz VCPU than 1GHz VCPU by 0.1633%. The
performance of Xen is better at 1GHz VCPU than 2GHz
VCPU by 1.7539%. The overall performance of VMware is
better compare to Xen while using VCPU resources in VM.

624Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 646 / 679

Figure 5. Interaction effect of hypervisors and VCPUs.

Figure 6 shows the interaction of hypervisors and RAM. It
gives the information that the performance of VMware has
better performance than Xen on both the RAM size. Although,
the performance of VMware is better at 3GB RAM than 1GB
RAM by 2.1991%. However, the performance of Xen is better
at 1GB RAM than 3GB RAM by 3.9221%.

Figure 6. Interaction effects of hypervisor and RAM.

V. RELATED WORK

Many researchers have considered the performance of
hypervisors but few of them focused on benchmarking the
hypervisor technologies with workloads. The following papers
are analysed to understand about the hypervisor performance
and benchmarking in the present work.

Vijay Vardhan Reddy [18] conducts different performance
tests on three hypervisors namely ESXi, Xenserver and KVM
under private cloud environment. The author gathered the
performance metrics of the mentioned hypervisors with
various benchmarks tools such as Passmark, SIGAR and
Netperf. The output of the paper was indicated that ESXi
server and XEN server shows impressive performance in
compare to KVM.

Andrea and Riccardo [19] investigated a quantitative
comparison between Xen and KVM hypervisors. Their
experiments shows that CPU performance provided by Xen
hypervisor is best compare to KVM while increasing number
of virtual machines runs concurrently on host which was using
para-virtualized approach.

Walters et al. [20] evaluated the performance of Xen,
OpenVZ, VMware Server for High Performance Computing

(HPC) using OpenMP and MPI benchmark. In their
experiments, it found that VMware server had worst
performance compare to other hypervisors in most of the cases.
In this work, they focused on HPC application performance.

Xavier et al. [21] studied the performance evaluation of
container based virtualization technologies for HPC
environments. They evaluated trade-off between Linux
vServer, OpenVZ and Linux Containers for HPC systems. The
results show that container based virtualization as alternative to
HPC context when performance and isolation are required.

We believe our work is matching to the work presented in
this section. We presented a framework for benchmarking the
performance of Oracle database workloads, such as Online
Analytical Processing (OLAP), Online Transaction Processing
(OLTP), Web load and Email on two different hypervisors.
We used DOE framework in our work to identify the key
interaction among hypervisors and workload input factors with
respect to their output. The output of the research paper may
help the end users, IT industries to select the suitable
hypervisor and workloads for their datacentre infrastructure
requirements

VI. CONCLUSION

In this work, we have used the DOE for benchmarking the
hypervisor on different oracle workloads. The outcome of the
study shows that VMware outperform when compared to Xen.
The experimental evaluation of hypervisors performance was
done effectively by using DOE methodology. The
investigating phenomena suggest that virtualizing their
datacenters with Oracle database having maximum application
on OLAP workload are recommended to choose VMware over
to Xen. This approach also provides good product comparative
analysis to customers with high degree of accuracy with good
predictabilities in product improvement, product marketing
and product selection.

ACKNOWLEDGEMENT

This work was supported by project Cloud Thinking
(CENTRO-07-ST24-FEDER-002031), co-funded by QREN,
“Mais Centro” program.

REFERENCES

[1] Smith, James E. "A unified view of virtualization." In
Proceedings of the 1st ACM/USENIX international Conference
on Virtual Execution Environments, pp. 1-1. ACM, 2005.

[2] Kroeker, Kirk L. "The evolution of virtualization."
Communications of the ACM, pp. 18-20,52, no. 3,2009.

[3] Devi Prasad Bhukya, and S Ramachandram, “Performance
Evaluation of Virtualization and Non Virtualization on Different
Workloads using DOE Methodology”, IACSIT International
Journal of Engineering and Technology, pp 404-408,
Vol.1,No.5, 2009.

[4] Chen, Siming, Mingfa Zhu, and Limin Xiao. "Implementation
of virtual time system for the distributed virtual machine
monitor." In Computing, Communication, Control, and
Management, 2009. CCCM 2009. ISECS International
Colloquium on, pp. 571-576, vol. 4, IEEE, 2009.

[5] Wang, Jiang, Sameer Niphadkar, Angelos Stavrou, and Anup K.
Ghosh. "A virtualization architecture for in-depth Kernel

625Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 647 / 679

isolation." In System Sciences (HICSS), 2010 43rd Hawaii
International Conference on, pp. 1-10, IEEE, 2010.

[6] http://www.vmware.com/files/pdf/VMware_paravirtualization.p
df

[7] Devi Prasad Bhukya, and Ramachandram S. "A Case Study of
Identifying Benchmarking the Relative Performance of SAN
Switches” – Proceedings of the International Conference on
Software Engineering Theory and Practice (SETP-09), pp 120-
127, Orlando, USA, July 13-16, 2009.

[8] www.oracle.com/technology/software/tech/orion/index.html

[9] D. C. Montgomery, “The use of Statistical Process Control and
Design of Experiments in Product and Process Improvement”,
IEE Transactions, 24, 5, pp. 4-17, 1992.

[10] Antony, Jiju, and Frenie Jiju Antony. "Teaching advanced
statistical techniques to industrial engineers and business
managers." Journal of Engineering Design pp 89-100, 9, no. 1,
1998.

[11] Mutnury, Bhyrav, Nam Pham, Moises Cases, Daniel N. De
Araujo, and Greg Pitner. "Design issues in telecommunication
blade systems and their resolution through design of
experiments." In Electronic Components and Technology
Conference, 2009. ECTC 2009. 59th, pp. 1887-1893. IEEE,
2009.

[12] MinitabInc, http://www.minitab.com/products/minitab/

[13] Belsley, David A., Edwin Kuh, and Roy E. Welsch. Regression
diagnostics: Identifying influential data and sources of
collinearity. Vol. 571. John Wiley & Sons, 2005.

[14] Montgomery, and Douglas C. Design and analysis of
experiments. John Wiley & Sons, 2008.

[15] Mason, Robert L., Richard F. Gunst, and James L. Hess.
Statistical design and analysis of experiments: with applications
to engineering and science. vol. 474. John Wiley & Sons, 2003.

[16] Keppel, Geoffrey. Design and analysis: A researcher's handbook
. Prentice-Hall, Inc, 1991.

[17] Federer, Walter Theodore, "Experimental design", Experimental
design. 1955.

[18] Reddy, P. Vijaya Vardhan, and Lakshmi Rajamani. "Evaluation
of Different Hypervisors Performance in the Private Cloud with
SIGAR Framework.", International Journal of Advanced
Computer Science and Applications, 2014, pp. 60-66, vol.5,
no.2

[19] Chierici, Andrea, and Riccardo Veraldi. "A quantitative
comparison between xen and kvm." Journal of Physics:
Conference Series., 2010, vol. 219. no. 4, IOP Publishing

[20] Walters, Chaudhary, Cha, Guercio Jr., and Gallo, "A
comparison of virtualization technologies for HPC”, IEEE
International Conference."Advanced Information Networking
and Applications, 2008.

[21] Xavier, Marcelo, Fabio, Tiago, Timoteo, Cesar , "Performance
evaluation of container-based virtualization for high
performance computing environments”, IEEE Euromicro
International Conference on Parallel, Distributed and Network-
Based Processing (PDP), 2013

[22] Czitrom, Veronica. "One-factor-at-a-time versus designed
experiments." The American Statistician, 1999, 126-131

626Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 648 / 679

Performance Engineering Using Performance Antipatterns
in Distributed Systems

Chia-En Lin and Krishna Kavi
Department of Computer Science and Engineering

Unitersity of North Texas
Denton, TX USA

chiaen@unt.edu, Krishna.Kavi@unt.edu

Abstract—Performance analysis of software systems is complex
due to the number of components and the interactions among
them. Without the knowledge of experienced experts, it is futile
to diagnose the performance anomaly and attempt to pinpoint
the root causes in the system. Design patterns are a formal way of
documenting best practice approaches in software development
and system architecture design. Software performance antipat-
terns are similar to design patterns in that they indicate what to
avoid and how to fix performance problems when they appear.
Although the idea of applying antipatterns is promising, there
are gaps in matching the symptoms and generating feedback
solutions for redesign. In this work, we analyze performance
antipatterns to extract detectable features, influential factors,
and resource involvements so that we can lay the foundation to
detect their presence. We propose a system abstraction layering
model and suggestive profiling methods as the infrastructure in
building the framework for performance antipattern detection
with solution suggestions. It is used in the refactoring phase of
the performance modeling process, and is synchronized with the
software development life cycles. Proposed tools and utilities are
implemented and have been used on real production servers with
RUBiS benchmark.

Keywords–Performance Engineering; Anomaly Detection; Per-
formance Antipattern; Profiling.

I. INTRODUCTION
Developing a software system that meets its specifications

demands continuous verification and validation efforts in it-
erative development cycles running from analysis and design,
to implementation and deployment. During these processes,
engineers build the system by creating design plans, and main-
taining expected functional and non-functional properties of
the specifications. Testing and debugging activities take place
alongside the development. Similar to conventional functional
debugging, non-functional properties must also be tested and
appropriate fixes be made to meet the requirements. The com-
plexity of modern software systems makes it difficult for the
designer to assure compliance of non-functional requirements.

Design patterns are a formal way of documenting best
practices in software development and system architecture
design. The documented solutions are represented in a pattern
language, which addresses a description of the solution to the
problem, and the benefit gained from applying the process [1].

Since the usability of design patterns is still fairly abstract
in terms of pattern matching, they are not easily adapted and
applied in practice. Computing environment or context can
be thought of as a multidimensional attribute set which has
great impact on the execution of applications and systems.
To better match the problem description, a design pattern has
to provide specific context information for which the design

pattern is intended. In most cases, the context provides detailed
descriptions in a natural language to identify the scenario
where the pattern is applicable and not applicable. Designers
can look up the patterns and see if the scenario matches. Once
found, they can apply the solution as a best practice to assure
the result of the design is in fact the best possible.

Although patterns are promising and of great help in system
development, some gaps between practice and application
still exist. One of the obstacles results from the process of
identifying the exact context and matching the scenario to
the system under design. The context description of a design
pattern is usually described informally in natural language;
it is usually the responsibility of experienced domain experts
to decide if the match is effective. For a relatively large-
scale system, the complexity increases quickly making design
patterns unusable.

Software design patterns can be thorough in treating
functional design problems, but they do not address other
aspects of the design. This leads to another gap in applying
design patterns. Although the solutions to the design problems
optimize the components of the system while building, they do
not give clues to the quality of the design. In other words, only
functional enhancements are ensured, whereas non-functional
properties such as availability and reliability are not fully
covered.

Smith et el. [2] are among the early proponents of per-
formance design patterns. Principles of performance-oriented
design are used as strategies in the development life cycle.
They are embedded during the fundamental design practice
which is later documented as performance patterns. Although
performance patterns proposed are to address the performance
issues, they are presented at higher levels, while the context
can only be determined after the implementation of the pattern
has been chosen.

Instead of following the same format of design patterns,
the performance patterns are published from a different per-
spective, documenting potential bad practices that lead to
poor performance. They tell us what not to do and how
to fix a problem when it appears. Such patterns are called
antipatterns. Performance antipatterns are similar to design
patterns in that they document recurring problems, but state
the scenarios from the opposite side of best practices. If the
scenarios match with a performance antipattern, the predictive
outcome of performance can be poor. The solutions of how
to avoid the pitfalls are documented as solution descriptions
analogous to best practices. The advantage of adapting per-
formance antipatterns over performance patterns in practice
is that they are easier to apply and are clearly guided due

627Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 649 / 679

to the explicit coverage of the scenario description space.
However, antipatterns inherit one obstacle that is common
with design patterns. It is still not straightforward to apply
and gain the benefits from the solution. In this work, the
focus is on targeting performance antipatterns in software
development, and proposing approaches and tools to make the
pattern application process more performance aware.

A novel framework that assists in performance debugging
of distributed software systems is described in this work. To
alleviate the obstacles of applying performance antipatterns
during the software development life cycles, real performance
indices are made available in our framework. Real performance
baselines can be established so that the performance of the
designed system can be compared to discover performance
deficiencies. With the established facilities, contexts of per-
formance antipatterns can be documented with practical met-
rics. It will assist practitioners to match, detect, and apply
performance antipatterns quantitatively. For each system or
sub-component being evaluated, the framework creates profiles
in what is called suggestive profiling. When used during the
development life cycle, it provides a realistic means both for
antipattern detection and suggested solutions during the refac-
toring phase of a performance debugging process. Information
regarding the root causes of the detected performance problem
can be used to assist the redesign efforts. An effective solution
can be devised and used to eliminate the identified performance
anomaly.

The main contributions of our work are (a) an analysis
of performance antipattern for detectable features, influential
factors, and resource involvements (b) the proposition of a
system abstraction layering model and suggestive profiling
methods as foundations for performance antipattern detec-
tions, root cause analysis, and redesign suggestions, and (c)
a performance antipattern detection and solution suggestion
framework to be used in the refactoring phase of a performance
modeling process, synchronized with the software development
life cycles.

The structure of the remainder of this article is as follows.
Analysis of performance antipatterns and how they are used in
the design processes are introduced in Section II. The frame-
work to adapt performance antipatterns in system and software
development is presented in Section III, with the description of
innovative fundamental architectures and suggestive profiling
tools. Section IV describes the proposed process of perfor-
mance antipattern detection and solution refactoring using the
framework. Section V illustrates implementations and setup
of the framework with examples. Section VI describes works
that are closely related to ours. Finally, Section VII provides
conclusions about this work and future extensions.

II. PERFORMANCE ANTIPATTERN
A. Performance Antipattern Analysis

Performance antipatterns were originally described by
Smith and Williams [3][4][5]. Similar to the format of design
patterns, documentation of an antipattern consists of the name
of the pattern, the problem it addresses, and the best solution
to solve the problem.

The first step in applying antipatterns in the design pro-
cess is to extract the problem description and the feasibility
for detecting the pattern in real systems. Since the research
community frequently refers to these as fundamental antipat-
terns, there are additional attributes that highlight their usage

features. For example, to be able to detect the existence of
performance antipatterns, values of performance indicators
have to be acquired to decide whether a specific symptom
exists. Some of these can be determined by just a single value,
while others require multiple samples over time. The former
can be categorized as Single Value (SV), and the latter as
Multiple Value (MV) antipatterns. These annotated attributes
of a performance antipattern are summarized as Detectable
Features (DF). A detectable feature is the extraction derived
from the problem description statements, which serve as the
essential indicators of existence of the pattern.

To apply solutions to overcome performance antipattens,
the problem description is interpreted to extract the forces
seen in the pattern description. Associated forces are defined
as Influential Factors (IF) extracted from each antipattern will
be used as the clues to the root causes. Forces can be extended
when new forces are discovered from new archives. In a
general system and software development context, the factors
include:
Design Design factor is concerned with software objects and

how well they are established in the design and imple-
mentation. It often relates to the policy in the design of
resource sharing and recycling, as well as the arrange-
ments of processing steps. Different design approaches
result in different computing behaviors, and performance
outcomes.

Algorithm Algorithm factor is distinct from Design in the
way that software components can apply different strate-
gies to achieve the same computation goal. The designer
can adapt a strategic approach for computing and use
different structures to manage data. Different complexities
of the algorithms lead to different execution times.

Configuration Software development usually leaves options
for configurations to let the user fine tune the behavior of
the application to fit the usage expectation. While systems
are ready to run, different management policies with
corresponding configuration options can lead to different
performance behaviors.

Threading Multitasking has been one of the frequent models
used in software systems to cope with the complexity
of parallel and distributed environments. Thread, as an
abstract execution unit, plays a key role in carrying out
a task along with other peer threads. Individual thread
behavior, thread coordination, and management policies
play a significant role in the overall system performance.

B. Design Processes with Performance Antipatterns
In most systems, the debugging activities are continuous

along with an iterative software development life cycle. Anal-
ogous to general debugging activities, the performance debug-
ging activity should also be embedded in the development
process and run concurrently with the development processes
to ensure the expected performance is on the right track. Taken
from a generic modeling process, life cycle phases are put in
order from requirement analysis and design to implementation
and deployment testing. The life cycle is always iterative to
make incremental improvements for each round. During the
development process, engineers extract the required informa-
tion to create models that assist in analyzing the design and
planning for further verification and testing. These models
are related to functionality of the system, and are used for
validation and verification debugging purposes. Performance

628Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 650 / 679

Performance

Interpreter

Performance

Model

Software

Model

Transformation

Extraction

Performance

Indices

Modeling Analysis Refactoring

Feedback Generation

Figure 1. Performance Modeling Life Cycle with Performance Antipattern
Refactoring

debugging, on the other hand, requires further information
to facilitate performance analysis and evaluation. In software
performance engineering [6], a model-based performance anal-
ysis approach is adopted to generate performance data. They
are created with the information about the architecture of
the system, the capacity of its components, and the expected
behavior of the system. Additional estimations such as re-
quest types and potential workloads are also needed for the
modeling. The derived performance models are then used to
produce quantitative numbers such as time duration, system
utilization, and throughput. These values serve as indicators
formally known as performance indices. The combination of
these indices is used to predict the performance of the system.

The performance modeling process is depicted in Figure 1.
The process is split into three phases. The modeling phase is
the main stage of the system and software life span. Regular
software models are built by following the life cycle phases.
This software modeling phase is overlapped with performance
modeling, because the updated performance attributes are
gathered from the modeling activity as soon as the latest design
revision is available. The second phase is analysis, and its goal
is to create corresponding models for performance analysis
and prediction. In this phase, model-to-model transformation
is taking place. System and software models are transformed
into performance models with information such as designated
architecture, its topological layout, and available resources.
In the analysis process, performance indices are obtained by
solving the performance models using queueing network tools.
These indices are used as indicators to forecast performance.
Performance indices are interpreted in the third phase called
refactoring. The goal of refactoring is to reflect the latest per-
formance attributes and determine the satisfaction of the design
in terms of performance qualification. If the performance does
not meet the requirement, feedback can be generated to initiate
design changes according to the interpreted results to resolve
the performance issues. Engineers are obliged to check the
predictive performance indices, and respond accordingly with
changes to ensure the performance is acceptable. Analogous to
software life cycles, the performance modeling process should
proceed iteratively in an incremental order to synchronize with
the original software model, create and analyze performance
models to generate up-to-date performance indices, and give
feedback with design changes for better performance.

In the performance engineering process, the goal is to
detect a performance anomaly in the design and resolve the
issue effectively and precisely. However, performance indices
can only provide the location of the problematic components

 Performance

Model and Solver

Feedback Generator

Interpreter and

Software

Model

AntiPattern
Performance

Transformation

Extraction

Modeling Analysis Refactoring

Indices

Output

Performance Baseline

Feedback and Redesign

Synchronization Detection and Solution

Figure 2. Refined Performance Modeling Life Cycle with Performance
Antipattern Refactoring

anomaly. To be able to come up with a change of plan, the
practitioner must look into the design of the system to find
the cause and estimate the performance penalties accordingly.
It is difficult for performance experts to reason using only
performance indices if the system being built is relatively new.
This is where performance antipattern can help; especially
in the refactoring phase. Running parallel with interpretation
steps, an antipattern detection engine can be installed to
assist performance antipattern identification. Once detected,
the known solutions can be provided as feedback suggestions
to remodel the system.

Antipattern detection mechanisms largely depend on the
problem description to discover instances of a performance
anomaly in the system, while feedback adjustments depend on
the solution description. Ideally, the performance antipattern
mechanism should be easy to adapt and build an engine
for detection and find a solution. Figure 2 depicts the in-
tegrated process of the software development modeling and
performance modeling processes. Both of the processes are
synchronized in the modeling phase. In the refactoring phase,
mechanisms of antipattern detection are integrated to assist
in identifying performance problems and generate solutions
accordingly as feedback for redesign. The integrated process
is synchronized incrementally and iteratively with the software
modeling.

Although the promises of performance antipatterns, or
design patterns in general, are great, the intricate nature of
documenting a scenario and its environment in a comput-
ing system makes direct application of antipatterns difficult.
If the goal is to put it into automatic practice, there are
many gaps and challenges. One example of deficiency is the
difficulty in recognizing the context where the performance
antipattern exists. For instance, in unbalanced processing-
extensive processing antipattern, the problem description states
“the extensive processing impedes overall response time.” It is
left to the discretion of engineers to realize what exactly the
response time change is and how it should be modeled in the
specific application. Another example in the ramp antipattern,
the statement like “processing time increases” in the problem
description, has to be determined by the engineers as to what
is the significance of time indices in modeling so as to detect
the symptom in the specific application.

Another noticeable hurdle in applying performance an-
tipatterns is getting the solutions as feedback. Inherited from
generic design patterns, solution descriptions are essential parts
in pattern documentation that carry key expert knowledge.
The secret to completing the performance modeling process

629Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 651 / 679

TABLE I. SYSTEM ABSTRACTION LAYERS

Division Layer Design Abstraction

Software System

Sub-System Integration

Component Composition

Task Configuration

Thread Execution

Platform Layer Abstraction

Middleware Resource Management

Operating System Scheduling Policy

Hardware Layer Abstraction

Execution Unit Processing Element

largely depends on the precision of solutions, which enables
debugging processes to tweak the design to overcome the
performance pitfalls mentioned in the antipattern. The problem
with context ambiguity, similar to the counterparts of per-
formance antipatterns in detection the mechanism mentioned
above, appears in the solution description as well. For ex-
ample, in more is less antipattern, to determine whether the
architecture can meet its performance goals by staying below
the thresholds, one has to decide the appropriate value for
the threshold. The threshold value is not only affected by the
underlying architecture attributes; it can also be affected by the
degree of discretion which in turn depends on the context of
the application. Another example, in Traffic Jam antipattern,
one of the solutions is to provide sufficient processing power to
handle the worst-case load. The processing power adjustment
is an open issue to be determined to remedy the bottleneck.
These examples show that applying performance antipatterns
in the refactoring phase would need reasoning tools to assist
the feedback generation. In other words, once an instance
of antipattern has been identified, applying the solution de-
scription to generate feedback for system improvement is not
straightforward. Tools that can reason about the context for the
specific system should be available to enable the reasoning
process. This is where profiling approaches can be useful,
which are described in the next sections.

III. PERFORMANCE EVALUATION FRAMEWORK
A. System Abstraction Layers

Since performance results derive from the integration and
cooperation of software and system architecture, an abstract
structure is proposed to help us identify essential elements of
the performance forces and express how they organize and
play different roles in computing. A system and all its entities
is modeled in a structure called System Abstraction Layers
(SAL). The modeled layers consist of three divisions from top
to bottom: software, platform, and hardware. Table I depicts
the contents of each layer and their design abstraction. Each
design abstraction represents orthogonal forces from a system
development activity that affect the behavior of the elements
in the layer.

In the software layer, systems are realized by the integration
of sub-systems, each of which is responsible for a specific
functionality. For each subsystem at the software layer, entities
of software in terms of components and libraries are composed
to create the sub-system. Each component in this setting is
executing the tasks designated. The abstraction of task control
can be related to configuration if the tuning mechanism is
available for the software entity. The real execution in the

software layer to carry out the tasks of a component is given
to the elementary execution entity known as the thread. The
abstraction is also compatible with the implementation using
only the processes, where each process is treated as a special
main thread.

Many software systems need to take advantage of using
services from middleware to ease the complexity of developing
and deploying applications. Middleware is used to manage
the communication resources and hide the interaction details
from the users, especially for distributed systems. In a broader
sense, it also manages the server resources by regulating
how control and information flow is distributed under the
designated architecture topology. Below the middleware, it
is the operating system that provides services for resource
management and process scheduling. The platform layer is
about resource management where the system and its software
entities reside and access the computing resources.

The bottom layer of the server under the platform layer
is related to hardware component organization. It is where
the actual performance is measured. Performance revealed
from the hardware layer depends on the grade of components
installed. Utilization of hardware components can be acquired
from this layer which includes processors, memory, network,
and disks among others.

With the defined conceptual layers in SAL, each of them
relating to a specific design abstraction, we can describe a
performance scenario flexibly both at higher and lower layers.
A high level scenario expression can be refined and mapped
to its corresponding lower level counterparts. Through the
process of mapping, we can identify the related elements
in each layer and reason about the forces associated with
them. This lays out the foundation to detect the case of a
performance anomaly, when the root cause elements can be
identified in the hierarchical approach. To accommodate the
context information, the structure of layers can be represented
with a description language. The performance context of a
system or application can likewise be expressed.

B. Performance Suggestive Profiling
The purpose of profiling in our framework is to identify

the performance anomaly and to locate the root causes. Once
performance antipatterns appear in the performance modeling,
the practitioner should be able to detect and get the suggestive
solutions depending on the current context of the system to
remedy the problem. To gain the causality reasoning capability,
the proposed profiling mechanism is set to conform to the
system abstract layers. The profiling mechanism can also serve
as the toolkit to access the performance baselines in the SAL
structure. For the assistance role, the profiling mechanism
should be compatible to both software development and the
performance modeling process, making it easy to adapt in
all phases in the process. The profiling mechanism should be
easy to setup for performance testing and evaluation. Since
profiling is also applied to the baseline, profiling can aid in
detecting antipatterns and suggest solutions. With these design
requirements in mind, the following discussion provides the
design rationale and discusses the components of the profiling
mechanism, the context where they can be applied, and how
they can be utilized in the system development.

Conventional software profilers usually focus on the source
code or its corresponding executable binaries to get statistical
measurements of the software package or library. The infor-

630Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 652 / 679

TABLE II. SUGGESTIVE PROFILING METHOD IN THE SYSTEM
ABSTRACT LAYER CONTEXT

SAL Context Profiling Method Suggestive Profiling Method
Subsystem,
component

Path-Oriented Alternative Path options

Thread Thread Behavior Thread Behavior comparisons
Middleware Networking Profiling Request traces and communication

protocol verification
Hardware System Resource Pro-

filing
Physical and Abstract resource sum-
marization

mation includes frequency and duration of routines such as
function calls. The goal of a conventional profiler is program
optimization. System profilers focus on resource usages of the
server. They monitor the state of hardware resources such as
processors, and report consumption summaries. All of these
profiling mechanisms are essential to our purpose. However,
more precision and reasoning structures are needed to achieve
our goal. We need the following:

• Specific timeline information that can identify not only
spatial hot spots but also the temporal features.

• Profiling information from one layered aspect that can
relate to another, such that a reasonable mapping can be
inferred.

• Profiling information that can be summarized and com-
pared with the associated computing context.

• Inter and intra communication should be integrated in the
profiling mechanism.

To this end, we put together the profiling mechanism
needed to fulfill the requirements of our purpose. In particular,
our goal is to assist in performance antipattern detection, as
well as feedback generation. In addition, software systems
often run in networked environments; the profiling mechanism
needs to flexibly accommodate and adapt to distributed settings
as well. In Table II, the profiling mechanisms are categorized
into contexts that are matched to SALs. Each of the profiling
methods is given a brief description followed by its suggestive
profiling method. The purpose of the method is to explore other
available options in the same context level of the system to give
leeway in enhancing the performance result or avoiding bad
practices. The practitioner can take advantage of the suggestive
profiling approach to explore design options to achieve better
performance. In the performance refactoring phase for antipat-
tern detection, exploring the suggestive solution methods may
provide a clue to a final solution.

1) Path Profiling: The framework adapted the terminology
of Path Profiling from data flow analysis [7], and the pathwise
decomposition concept from path-oriented analysis [8]. The
concept of path-oriented profiling is based on the measurement
of different execution paths. If we can make the most common
path execute faster, the response time may be shorter. Path
profiling also provides insights on improving performance by
revising the chances of executing certain paths, or improving
the efficiency of the path. If the frequency of execution of
a path is relatively high, the savings in execution time can
become significant. The dependency of paths and associated
components can be identified.

Path profiling can be seen mostly at the level of software
components and libraries, and in the programs. In the software
layer, execution path is the lowest unit of refinement for
the software system. For each thread, path profiling is also
essential to discover performance problems. Software elements
can be explored along the execution path.

The concept of execution path can be extended to accom-
modate information flows. Information flow tracking in the
program is done to understand the pattern of execution paths as
certain requests are being executed. It can also be extended to
include communication routes that connect the execution path
between server nodes. The high level view of path profiling
can be observed at the subsystem level where interactions
between clients and servers use different routes. Alternative
routes between them may be the result of dispatching policy
or adapting flexible algorithms to react to traffic congestions.

2) Thread Behavior Profiling: A thread is a sequence of
instructions and the representation of a logical computational
unit, which can be scheduled to run by the operating system.
A pool of working threads can be initialized before the
real workload picks up and be ready to respond without
delay. Adapting this thread model also has the benefit of
executing true concurrency in a multicore environment. Thread
Behavior profiling is about the observation of thread creation,
execution, destruction, and management of threads. At the
system architecture level, processor affinity can be monitored
as multithreaded programming specifies the arrangements. The
combination of resource distribution and the management pol-
icy such as the number of threads and their running priorities
affect the overall performance. Threads can also be viewed as
another form of dynamic path, because every thread runs on
its own copy of instructions. The observation and summary of
individual threads can be performance indicators of how well
they coordinate and cooperate.

The context of thread profiling is at the task level where
the system adapts a multithreaded programming model to carry
out designated services. Depending on the features of the
application, a threading system usually provides facilities to
adjust the behavior of threads to improve their performance.
A thread is the lowest logical task unit that we can monitor
in the profiling. It provides the flexibility of measurement in
both higher and lower levels of the system. At the higher
level, an end-to-end performance scenario can be profiled by
integrating thread behavior profiling in each subsystem with
the information flows. At the lower level, each task and its
resource usage by a specific thread can be analyzed. The
flexibility of thread monitoring facilitates the whole system
profiling at a fine-grained level.

3) Network Profiling: Networked systems have become the
infrastructure for every computing system no matter where it
resides, either in enterprise clusters, virtual hosts, or Clouds.
The complexity of interaction patterns among servers increases
exponentially. As the network becomes the computing plat-
form, it isnecessary to profile and monitor network traffic. Our
model classified the networking in the context of middleware
and includes proxy, router, programming middleware, and
other network topologies such as multi-tier and clustering. Net-
work profiling focuses on getting information about requests
and responses, and the underlying communication protocols.
Measurement information can be about the number of requests
at the higher level, and the number of network packets at a
lower level. It can also look into the data that packets carry, and
profile the characteristics of the request message. Performance
of the network activities can contribute to either the network
interface capacity such as queueing buffers, or the processing
speed of the server.

Network profiling information can be referenced by its
connected systems and software components to make more

631Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 653 / 679

informed design decisions. It can also contribute to the con-
struction of analytical models such as queueing networks with
more realistic estimation of queue lengths and arrival rates.
Finally, for information flow analysis, networking profiling
facilitates visualization of the activities in detail, and provides
the overall picture of the networked components and systems.

4) Resource Profiling: Conventional resource profiling is
about profiling physical resource usage. The resource here
refers to the hardware components of the server architecture.
The higher capacity the server has, the higher the performance.
In practice, cost, overhead, and other limitations can affect the
choices and ability to obtain more capacity. Resource profiling
gives information about resource characterization of the server
and its computational capacity. It usually hints at the potential
performance outcome of the system.

One puzzle of resource profiling is in the context of
the software abstraction layer, where engineers often want
to know precisely the resource consumption of a specific
software entity. For example, if the load a working thread
contributed to a processor load can be calculated, then the total
resource requirements can be estimated given the number of
threads. Physical resource monitoring alone cannot fulfill the
job because it is hard to get a clear view of workload of a
working thread without being affected by other programs and
the operating system management policies.

To estimate the resource consumption of a software entity,
instead of applying measurement and estimation using a sys-
tem utility, we turn to resource consumption estimation using
the number of instructions executed. Resource profiling in a
software entity can be abstracted to the lowest level of com-
putation using instructions before putting them into operation.
These instructions are the ones that are consuming resources.
Therefore, the system resources that need to accommodate
these executions can be estimated. Depending on the type
of resource, a processor’s workload can be approximated by
the number of instructions running on it. The instructions
can be further categorized by the type of memory access
that can have different number of cycles. For a storage disk,
the number of I/O accesses resulting from the execution
can also be counted toward resource consumption. Advanced
resource modeling such as register and cache behavior can be
devised to extract the measurements. We name this type of
resource profiling as abstract resource profiling in contrast to
the physical resource profiling method discussed above. The
mapping between software entity and the abstract resource
can be clearly identified and the resource consumption can
be reasonably estimated.

The application of resource profiling can be applied to
most of the system. Software systems usually adapt monitoring
mechanisms to extract the information from system hardware
components. Abstract resource profiling will need the other
profiling mechanisms in the suggestive profiling to supply the
measurement. All the conventional resources in the antipattern
domain, such as CPU, Memory, Network, and Disk, can
participate in resource profiling.

5) Request and Workload Profiling: Workload plays an
influential role on the performance. Although the profiling
method is not categorized into any system abstract layer, it
affects every part of the system. Depending on request patterns,
one subsystem or component may have a larger workload then
that of the others. If the workload exceeds the planned capacity
of components, a bottleneck would occur. Similar considera-

tions apply to the performance impact of threads, in that they
may spend more time processing requests, and the throughput
may suffer. In the context of middleware, interactions between
servers may take longer under heavy workload due to waiting
for responses. In the system architecture layer, the computing
workload coming from the above layers has a direct impact
on resources and overheads when switching between tasks to
meet the services.

The request and workload profiling provides information
about the impact on each context of the system. Engineers can
evaluate the scenario of request pattern in each focused context
independently. The profile relating only to an individual con-
text can be used as a specific source of information to focus
on that particular design improvement. On the other hand, the
profiler can characterize the workload, so that the design of
the system can be adjusted flexibly if it is possible to increase
the performance. For example, if the profile of the request
is CPU bound, engineers may consider distributing them as
evenly as possible to available servers. Another alternative
solution occurs when CPU bound requests prefer to be sent to a
CPU with higher performance. We also note that both physical
and abstract resource profiling information can be used to
characterize workloads. This information can help engineers
understand the impact of requests.

In practice, request types and their temporal patterns are
dynamic, and the workload characteristic is not known a priori.
The suggestive profiling mechanism can be used at deployment
to selectively monitor requests, and create the workload profile
associated with the context. The profiling can select time
periods or focus on a specific component for performance
monitoring.

IV. DETECTION AND SOLUTION SUGGESTION PROCESSES
To be able to use suggestive profiling in performance

antipattern detection and solution feedback, one has to un-
derstand performance baseline. Performance baseline is the
summary of current performance of the system. It can be
used for performance debugging to check against requirements.
Preliminary performance evaluation can be obtained by estab-
lishing the baseline of the target system or components. The
content structure of the baseline is compatible with the system
abstraction layer, in which path-oriented, threading, network-
ing, and resource profiles are recorded. In each context of
the profiling, performance metrics such as execution time and
process utilization are available for verification. Performance
baseline can be created for every element in each context of
suggestive profiling method including subsystem, component,
thread, network, and hardware component. Depending on
the needs of debugging activity, engineers can zoom in on
targeted components and their interactions when high level
information is not enough. In short, performance baseline is
an agile performance filtering and debugging tool used in the
software development process to collect targeted performance
snapshots.

With performance baseline as the debugging framework
used in the system development process, activities in per-
formance modeling processes can share the data it collects.
Since both of the processes are synchronized, the performance
metrics collected are reflected in the latest status of the system.
In the refactoring phase, performance antipattern detection
and solution suggestion feedback mechanism can be executed
with the help of suggestive profiling. Performance baseline

632Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 654 / 679

is accessed to extract the metrics of the detectable features
needed with each antipattern. The value of detectable features
can be checked to see if the symptom appears. If not detected
then the antipattern does not exit, and no action is needed. If
detected, the solution may be applied to solve the performance
anomaly in the system. Antipattern solution can point to
problem spots and give approaches to resolve the problem.
As discussed in previous sections, refactoring dilemma exists
because we need more clues to generate detailed feedback
for redesign and eliminate the anomaly. To close the gap,
suggestive profiling can be used to narrow down the root
causes.

We recall that the suggestive profiling method consists of
profiling path, thread behavior, networking, and resources in
the layered context defined in SAL, and each profile can be
evaluated independently. In order to converge on to the root
cause, we examine the suspicious context revealed by profil-
ing. Within the root cause, performance metrics gathered by
the profiling mechanism are verified against the performance
antipattern symptoms to discover corresponding solutions.
For example, if the root cause specifies a component is the
bottleneck in the system, we can further analyze execution
time profiles of paths, and make a specific solution suggestion
in refactoring. Although we reason at the specific component
level, levels higher and lower than the root cause context can
also be inferred for potential redesign options. For example,
if the root cause is a thread’s performance, execution paths at
a higher level or resources at a lower level can be inferred as
the relevant factors. Solution suggestions can therefore provide
more relevant information.

V. CASE STUDY
A. Framework and Tools Implementations

The suggestive profiling was implemented using Pin tool
[9]. An associated data analytic framework for performance
debugging, antipattern detection, and solution suggestions were
created to work with the tool. Together they can trace each
executed instruction of an application for path-oriented anal-
ysis. It also provides other instrumentation points including
basic blocks, routines, images, and complete application. These
abstractions can be used to identify call graphs, accesses to
libraries, and inter and intra component communication, which
can easily fit in the system models.

In the framework, our tool includes following utilities to
facilitate suggestive profiling:

• Data collection, processing, and management for different
profiling methods.

• Communication between software components and sys-
tems is profiled with the help of protocol plugins. Each
plugin specifies the pattern of interactions.

• System resource monitoring, logging, and analysis.

B. Experimental Setup in Production Systems
RUBiS [10] was setup on Xen 3.1.2 virtual machines

hosted on Dell Optiplex 960 with 4 CPU and 4GB RAM. Each
virtual machine runs on one virtual CPU and 512MB RAM.
Each virtual server is connected to a virtual network interface
with a unique network address. The virtual network connection
is created by an ethernet bridge, and a DHCP server is setup
to assign unique network address to each virtual server.

RUBiS was installed with Apache2 httpd [11], JBoss AS
4.3.2 [12], and MySQL [13] as the web server, application

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10
Worker1/Worker2 ratio of lbfactor

0

2000

4000

6000

8000

10000

Di
sp

at
ch

in
g

Co
un

ts

4736

4712

7897

3888

8603

2822

7285

1749

8403

1749

9186

1628

8001

1243

9090

1150

8366

1000

8617

969

Worker1

Worker2

Figure 3. Number of Requests Dispatched to worker1 and worker2 of JBoss

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10
Worker1/Worker2 ratio of lbfactor

0

5

10

15

20

Se
co

nd
s

8.123315

2.350059

12.887895

0.220794

17.827325

9.338566
7.698771

0.443234

15.782923

0.007625

12.409006

0.00636

7.409484

0.007834

15.588295

0.008298

18.105297

0.006028

7.685043

0.005853

Worker1

Worker2

Figure 4. Average Execution Time of Requests Dispatched to worker1 and
worker2 of JBoss

server, and database respectively. The suggestive profiling
Pin tool was installed on the web server to generate the
performance baseline for the web server, and to demonstrate
performance antipattern detection and solution feedback sug-
gestions. On each server virtual machine, we measure the
load with sysstat utility to collect CPU, memory, network,
and disk usage every one second. All the traces and logs
generated from the suggestive profiling Pin tool, and the
system utility measurement logs are collected afterward to
avoid interferences with the workload of the server.

C. Performance Antipattern Detection and Solution Sugges-
tion

The proposed framework is applied to detect root causes
using the exemplified performance antipatterns in this study.
Once a performance antipattern is documented and relevant
context-dependent solution suggestions are recorded, they can
be supplied directly as possible solutions. Practitioners have
the option to choose between applying documented solutions,
or creating a new antipattern instance that is specific to the
scenario of the system under review. A short discussion for
each antipattern studied in our case study are described below.
• Unbalanced Processing Antipattern

Description Problem occurs when processing connot
make use of available processors.

Application Best practices of dispatching between an
Apache Web Server(WS) and multiple JBoss Appli-
cation Servers(ASs).

Detection Unbalanced processor utilization or service

633Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 655 / 679

time duration observed between ASs.
Solution Adjust dispatching configurations by making

changes to the proportion of load sent to different
wrokers, using lbfactor in mod jk.

Experiment Experiment using default transition work-
load with 500 users whose requests are served by two
JBoss ASs and one Apache WS is presented with dif-
ferent ratios of lbfactors. Figure 3 depicts the number of
requests dispatched from WS to either worker1 of AS1
or worker2 of AS2. The load balance ratios are marked
as the ticks on x-axis. We observed that the number
of requests to worker1 and worker2 are approximately
proportional to the weight of the lbfactor. Figure 4
depicts the execution times of requests dispatched from
WS to worker1 or worker2 with different dispatching
ratios. The represenation is not liner, but it reflects
the scenario in which the preferred node spends more
time processing because of the improper load setting.
Both the dispatching number and the time duration with
different ratio are interrelated.

• More is Less Antipattern

Description Problem occurs when a system spends more
time trashing than accomplishing real work because
there are too many processes relative to available
resources.

Application Best practices of deciding what is the ap-
propriate number of working threads needed to serve
in an Apache Web Server.

Detection Comparison of throughputs between settings
using different number of threads.

Solution Adjust the number of threads based on pefor-
mance.

Experiment In this experiment, the RUBiS benchmark
with different sets of configurations was run, and the
outcome of the performance baselines and their differ-
ences were observed. Figure 5 depicts a test run with
800 users using various sets of worker configuration
shown in the legend. The numbers in the legend corre-
spond to the order of Apache httpd server’s configura-
tion variables: StartServers, MinSpareThreads, MaxS-
pareThreads, ThreadsPerChild, MaxRequestWorkers,
and MaxConnectionPerChild. For each request types
from the benchmark, the corresponding average re-
sponse time in seconds is shown.

• God Class Antipattern

Description Problem occurs when a single class either
performs all of the work or holds all of the data of the
application.

Application Checking both design and implementations
for better object-oriented paradigms.

Detection The number of control or data flow in a pro-
gramming class that is higher than predefined threshold.

Solution Refactor the design and implementations of the
detected class.

Experiment Developer documentation of
httpd states that, all requests pass through
ap process request internal() in request.c of the
web server. We want to observe the information
flow and its frequencies when a real workload is
used. Before checking the flow of information to

1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 19 20 21 23 24 25 26
Request Types

0

1

2

3

4

5

6

Se
co

nd
s

1,1,1.1,1,0

1,2,4.2,4,0

1,3,9.3,9,0

1,4,16.4,16,0

1,5,25.5,25,0

1,6,36.6,36,0

1,7,49.7,49,0

1,8,64.8,64,0

1,9,81.9,81,0

1,10,100.10,100,0

1,11,121.11,121,0

1,12,144.12,144,0

1,75,250.25,250,0

Figure 5. RUBiS Benchmark with 800 Users Using Various Sets of MPM
Configuration

the targeted function from suggestive profiling tool,
symbol table of the ap process request internal()
function is extracted from the Executable and Linkable
Format (ELF) of httpd to find the static address of
the function. This information is used to acquire the
structure of instructions in execution order. Request
flow information collected from suggestive profiling
tool is checked with the static structure of the function
to produce the request flow graph at run time. It
should be noted that this type of analysis is possible
only when source code is available.

VI. RELATED WORKS
In the following subsections, approaches related to perfor-

mance antipattern detection, diagnosis, and solutions that are
closely related to our work are discussed.

A. Performance Antipattern Detection
Performance antipattern detection has been addressed in

different systems and models. Performance detection in com-
ponent based enterprise systems was proposed in [14], where a
rule-based performance diagnostic tool is presented. The tool
can work with EJB applications, in which data from runtime
systems is extracted and applied with rules for antipattern
detection. The method is limited to EJB systems. Another
performance detection and solution approach presented in [15]
discusses the performance antipattern in the context of the
Palladio Component Model (PCM) [16] software architecture
modeling language. A queueing model is derived from the
software model in PCM, and is solved to generate perfor-
mance indicators. The predictive values are matched against
performance antipattern rules in PCM to determine whether
an antipattern exists. Once detected, solutions can be applied.
It uses iterative processes to solve antipattern one by one. A
similar approach but using Architecture Description Language
(ADL) can be found in [17]. In [18], performance antipatterns
are presented using logical predicates. The problem description
for an antipattern is interpreted and presented using first
order logic equations. The approach focused on antipattern
presentation and detection. In [19], Performance Problem
Diagnostics (PPD) approach combines search techniques with
systematic experiments for performance antipatterns detec-
tions. The search is based on a decision tree technique to locate
possible root causes, while the detection strategies are based
on goal-oriented experiments. All these techniques described

634Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 656 / 679

above are based on models and heuristics, and do not describe
how to understand baseline performance or setting threshold
values at which system configurations should be changed. Our
framework relies on runtime data collection to understand
performance bottlenecks and how to tune system parameters.

B. Automatic Diagnosis and Feedback Generation
In [20], a rule-based automatic software performance di-

agnosis framework is proposed for detecting performance
bottlenecks. Layered queueing models are used to generate
performance predictions. The generated performance indices
are checked against predefined rules to detect performance
bottlenecks. The rules will also suggest mitigation approaches
to reduce operations or add resources. The solution feedback
is largely dependent on the definition of the rules. The success
of the system depends on the extensibility of the rules. The
feedback solution depends on translating performance model
attributes in design, which are not provided. A similar ap-
proach is presented in [21], which extracts software and system
architecture and creates a queueing model for performance
anomaly detection. In the feedback process, the architecture
model is used for redesign considerations. Our framework
does not use queueing modules, but relies on profiling. An
approach is proposed to address these concerns regarding
detection and solution feedback with real system thresholds so
that performance antipatterns can be applied in real practice. In
[22], a special detection approach for finding the most guilty
performance antipattern is proposed. The process checks per-
formance antipattern symptoms against system requirements,
and filters out the ones that do not violate them. The final list
of performance antipatterns are ranked using scores calculated
from equations defined for specific performance criteria. In our
current framework, we do not rank the antipatterns. However,
the use of baseline will eliminate some antipatterns from
consideration, if the performance is acceptable.

C. Solution Suggestions
There are many published approaches suggesting solutions

to overcome performance bottlenecks. Our discussion here
focuses on the ones that are related to performance anomaly
detection and root cause analysis. In [23], the performance
anomaly clustering method is used to narrow suspicious com-
ponents in distributed systems. Clusters are used to chain
components together when they are affected by the same
root causes. The clustering is based on the similarity of the
performance indices. To identify the problematic performance
spots, relationships between groups of clusters are compared.
Thus performance anomalies are identified at higher levels:
such as the server level. Further diagnosis steps will need to
rely on the practitioner’s system knowledge. A framework for
controlling system configuration parameters to adjust perfor-
mance was proposed by Stewart et al. [24]. The coverage of the
approach depends on the number of controlled configuration
used. In practice, it is not feasible that every configuration
and manifestation can be covered. Our approach collects data
on the software and the system, and establishes the perfor-
mance measurement specifically reflecting the real scenarios
of the system under performance debugging. To discover the
root causes, systematic processes are proposed which provide
suggestive performance anomaly solutions.

VII. CONCLUSION AND FUTURE WORK
In this paper, we address a critical need in detecting

peformance bottlenecks, relating them to known antipatterns
and utilizing appropriate soultions. Our approach is based on
suggestive profiling methods for different levels of abstrac-
tions. Common profiling include path-oriented profiling, thread
behavior profiling, networking profiling, and system resource
profiling. For each of these profiling methods, we include a
suggestive profiling method, and we suggest alternatives for re-
engineering the software system to achieve better performance.
Request and workload profiles can also be generated through
the suggestive profiling tool. This technique is used in the
solution suggestion during refactoring phase of performance
engieering, and is synchronized with software development
cycles. The suggestive profiling tool and the framework utility
tools have been implemented and demonstrated using RUBiS
benchmark to evaluate performance bottlenecks.

There are limitations in matching some performance an-
tipatterns with detectable features, and thus they cannot be
detected directly. Most of these undetectable antipatterns are
due to design decisions. Thus, an intimate knowledge of
the designs can help in the detection and elimination of
those performance antipatterns. If the design decisions can be
systematically codified, then it will be possible to extend our
framework to other performance antipatterns.

In the future, we plan to further analyze factors influencing
antipatterns in different domains including high-performance
computing, e-commerce or workflow data management, and
extend the framework with appropriate tools. We also plan to
make the framework Cloud-ready, so that general performance
antipatterns in the computation of distributed systems can be
categorized, detected, and resolved systematically.

ACKNOWLEDGMENT
This work is supported in part by the NSF Net-Centric and

Cloud Software and Systems Industry/University Cooperative
Research Center and award 1128344. The authors would also
like to thank Dr. Shih-Kun Huang of National Chiao Tung
University, Taiwan for his assistance with this project, and
valuable comments and suggestions to improve the quality of
the paper. We also acknowledge David Struble for his help in
proofreading.

REFERENCES

[1] R. Johnson, R. Helm, J. Vlissides, and E. Gamma, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1995.

[2] C. U. Smith and L. G. Williams, Performance solutions: a practical
guide to creating responsive, scalable software. Addison-Wesley
Reading, 2002, vol. 1.

[3] C. U. Smith and L. G. Williams, “Software performance antipatterns.”
in Workshop on Software and Performance, 2000, pp. 127–136.

[4] C. U. Smith and L. G. Williams, “New software performance antipat-
terns: More ways to shoot yourself in the foot,” in Int. CMG Conference,
2002, pp. 667–674.

[5] C. U. Smith and L. G. Williams, “More new software performance
antipatterns: Even more ways to shoot yourself in the foot,” in Computer
Measurement Group Conference, 2003, pp. 717–725.

[6] C. U. Smith, “Introduction to software performance engineering: Ori-
gins and outstanding problems,” in Formal Methods for Performance
Evaluation. Springer, 2007, pp. 395–428.

[7] T. Ball and J. R. Larus, “Efficient path profiling,” in Proceedings of the
29th annual ACM/IEEE international symposium on Microarchitecture.
IEEE Computer Society, 1996, pp. 46–57.

635Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 657 / 679

[8] J. Huang, “State constraints and pathwise decomposition of programs,”
Software Engineering, IEEE Transactions on, vol. 16, no. 8, 1990, pp.
880–896.

[9] C.-K. Luk et al., “Pin: building customized program analysis tools
with dynamic instrumentation,” in Acm Sigplan Notices, vol. 40, no. 6.
ACM, 2005, pp. 190–200.

[10] Rubis web site. [Online]. Available: http://rubis.ow2.org/ [retrieved:
August 2014]

[11] Apache http server project web site. [Online]. Available:
http://httpd.apache.org/ [retrieved: August 2014]

[12] Jboss application server web site. [Online]. Available:
http://jbossas.jboss.org/ [retrieved: August 2014]

[13] Mysql community server web site. [Online]. Available:
http://dev.mysql.com/ [retrieved: August 2014]

[14] T. Parsons, “Automatic detection of performance design and deployment
antipatterns in component based enterprise systems,” Ph.D. dissertation,
Citeseer, 2007.

[15] C. Trubiani and A. Koziolek, “Detection and solution of software
performance antipatterns in palladio architectural models.” in ICPE,
2011, pp. 19–30.

[16] F. Brosig, S. Kounev, and K. Krogmann, “Automated extraction of
palladio component models from running enterprise java applications,”
in Proceedings of the Fourth International ICST Conference on Per-
formance Evaluation Methodologies and Tools. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engi-
neering), 2009, p. 10.

[17] V. Cortellessa, M. De Sanctis, A. Di Marco, and C. Trubiani, “Enabling
performance antipatterns to arise from an adl-based software architec-
ture,” in Software Architecture (WICSA) and European Conference
on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP
Conference on. IEEE, 2012, pp. 310–314.

[18] V. Cortellessa, A. Di Marco, and C. Trubiani, “Performance antipatterns
as logical predicates,” in Engineering of Complex Computer Systems
(ICECCS), 2010 15th IEEE International Conference on. IEEE, 2010,
pp. 146–156.

[19] A. Wert, J. Happe, and L. Happe, “Supporting swift reaction: Automat-
ically uncovering performance problems by systematic experiments,”
in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 552–561.

[20] J. Xu, “Rule-based automatic software performance diagnosis and
improvement,” Performance Evaluation, vol. 67, no. 8, 2010, pp. 585–
611.

[21] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An
analytical model for multi-tier internet services and its applications,” in
ACM SIGMETRICS Performance Evaluation Review, vol. 33, no. 1.
ACM, 2005, pp. 291–302.

[22] V. Cortellessa, A. Martens, R. Reussner, and C. Trubiani, “A process
to effectively identify guilty performance antipatterns,” in Fundamental
Approaches to Software Engineering. Springer, 2010, pp. 368–382.

[23] S. Iwata and K. Kono, “Clustering performance anomalies based on
similarity in processing time changes,” IPSJ Online Transactions, vol. 5,
no. 0, 2012, pp. 1–12.

[24] C. Stewart, K. Shen, A. Iyengar, and J. Yin, “Entomomodel: Un-
derstanding and avoiding performance anomaly manifestations,” in
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2010 IEEE International Symposium on. IEEE,
2010, pp. 3–13.

636Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 658 / 679

Performance Optimisation of Object-Relational Database Applications in Client-Server
Environments

Zahra Davar∗, Janusz R.Getta†, Handoko‡

School of Computer Science and Software Engineering, University of Wollongong
Email: ∗zd991@uowmail.edu.au, †jrg.@uow.edu.au

, ‡h629@uowmail.edu.au

Abstract—The optimisation of object-relational database ap-
plications implemented as a mixture of object-oriented and
non-procedural code, requires accurate balancing of the data-
processing load between the client side and the server side. When
there are large amounts of procedural code and less efficient and
overly simple algorithms, the majority of the data processing
takes place on the client side. As a consequence it usually increases
the amounts of data transmitted to the client side and also,
the amounts of time needed to process data on the client side.
This paper shows how object-relational database applications can
be optimised through a better balancing of the data processing
load between the client and the server sides. A collection of
transformation rules is developed, which replaces the typical iter-
ative structures of procedural code with the equivalent structures
of non-procedural code. The software patterns proposed in the
paper allow for the automatic optimisation of object-relational
applications.

Keywords–Object-Relational Application; Performance; Trans-
formation Rule; Software Patterns.

I. INTRODUCTION

Object-relational mapping and the efficient implementation
of object-relational applications, have recently received great
deal of attention, especially in commercial environments [1].
Over the past decade, the performance of object-relational
applications has become a serious challenge for programmers
and database researchers [2].

An object-relational database application is a typical
client/server application [3]. In relational systems, the ma-
jority of query processing is performed on the server side
[4]. Object-relational mapping makes the relational database
system available on the server side and visible to an application
programmer as a collection of classes of objects on the client
side. This means that, relational tables or stored procedures
on the server side are wrapped into classes on the client side,
so that objects and methods can be used on the client side
as well. This is why object-relational database applications
are typically implemented in the object-oriented programming
language embedded with the simple non-procedural statements
of the Object Query Language (OQL).

Programmers, access data on the client side through it-
erations over the classes of objects or over the results from
the processing of OQL statements. Such an approach to
the implementation of object-relational applications tends to
reduce the amount of non-procedural code and to significantly
simplify the code when accessing the object-oriented view
of the database. For instance, a traversal of an associations
between two classes of objects, is implemented as nested loops
which iterate over the objects [5]. Programmers typically focus

on the logic of an application rather than on how the data
will be processed on the client side. This approach to the
implementation of an object-relational application, is the main
cause of two serious performance problems.

First, the iterations over the large classes of objects on the
client side require transferring large amounts of data from the
server side. Second, to process these data on the client side,
a programmer uses the algorithms which are not as efficient
as algorithms which can process the same data on the server
side. For example, a traversal of an association on a client side
is typically implemented as a join of two relational tables on
a server side [5]. Then implementation of join operation on
the server side with a hash-based or index-based algorithms
is much more efficient than implementation of the same join
operation on the client side with a nested loop algorithm.

Implementing efficient object-relational applications is a
serious challenge. There are a number of ways to solve this
problem. Recognising the control structures of an application
so that it can be rebuilt with more non-procedural code is one
solution. This means that, only the objects needed to satisfy
the filtering conditions of the application are transferred from
the server side to the client side. By using this approach,
each relational application written by a programmer can be
restructured so as to achieve the same results faster.

This paper, presents a set of transformation rules which
can eliminate the iteration over a large number of objects and
reduce the amounts of data transmitted over a network by
changing the control structures of an application. By applying
the rules, some of the procedural components are replaced with
OQL statements. This results in faster and more efficient per-
formance of the application. This paper also proposes software
patterns which can be used by an application programmer.
These patterns, allow the automatic optimisation of object-
relational applications.

In the remainder of this paper, experimental results are
presented in Section II to show the scale of the problem.
Section III reviews the existing research on performance tuning
of object-relational applications. The transformation rules are
presented in Section IV. Software patterns for different styles
of programs are presented in Section V. Section VI contains
the conclusion and suggested future work.

II. CASE STUDIES/EXPERIMENTS
Experiments, were conducted using the TPC-H benchmark

database which has 300 MB of relational data. The Lucid Lynx
Ubuntu system running on 3.33GHz Intel(R), Core(TM)2, Duo
CPU with 3.25GB RAM was used to run the applications.
The examples were run in Java Persistence API (JPA) format

637Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 659 / 679

and in the NetBeans 7 environment. Various experiments were
performed for different size databases and the run-time of the
applications was measured, using NetBeans run-time clock. In
all examples, the Supplier class, consists of 3000 objects and
the Lineitem class varies between 400,000 objects to 1,800,000
objects.

In this section, two sets of experiments are presented
to show the motivation of this research. In each set of
experiments, the run-time of two different applications with
the same output is measured and compared. In each set of
experiment, the first application is the original inefficient
version of the application and the second one is the improved
version. The first set of experiments, presents anti-join
traversal and the second, illustrates counting from aggregation
applications.

A. Anti-Join Traversal
The following anti-join application, is used to identify

suppliers whose products have never been ordered.
{Query query1 = em.createQuery
("SELECT s FROM Supplier s", Supplier.class);
List list1 = query1.getResultList();
while(iterator1.hasNext())

{Query query2 = em.createQuery
(" SELECT l FROM Lineitem l
WHERE l.L_SUPPKEY="
+query1.getInt("s.S_SUPPKEY"));

List list2 = query2.getResultList();
Iterator iterator2= list2.iterator();
boolean found = false;
while (iterator2.hasNext())
if (query1.getInt("s.S_SUPPKEY") ==

query2.getInt("l.L_SUPPKEY")){
found=true; } }

if (!found) {
System.out.println
("ITEM " + query1.getInt("s.S_SUPPKEY")
+ "not exist in LINEITEM ");

found = false; } }

Figure 1. Application C.

To test the performance of Application C, the run-time of
the application with different sizes of the class Lineitem is
recorded.

Figure 2. Execution Time for Application C.

Figure 2 shows the result of running the nested loop struc-
ture of the anti-join application with different size Lineitem
classes. The run-time of Application C started from 30 seconds
with 400,000 objects in the Lineitem class and increased to
approximately 130 seconds for 1,700,000 objects.

Next, Application D is implemented using a left outer
join clause. Using this, only the objects which satisfy the
anti-join condition transfer to the client side. This anti-join
application, has the same output as Application C but in the
shorter run-time.

{Query query = (Query) em.createQuery
("SELECT s FROM Supplier s
LEFT OUTER JOIN Lineitem l WHERE

s.S_SUPPKEY=l.L_SUPPKEY", Supplier.class);
List list1 = query.getResultList();
Iterator iterator1= list1.iterator();}

Figure 3. Application D.

Figure 4 shows the run-time of Application D for different
size Lineitem classes. The run-time was varied, between 2-4
seconds.

Figure 4. Execution Time for Application D.
Figure 2 and Figure 4 clearly show that Application D

is much more efficient than Application C. The run-time
for Application C, took 30 seconds with 400,000 objects in
the Lineitem class and increased to approximately 2 minutes
for 1,700,000 objects. Implementing the anti-join application
with a left-outer-join, instead, caused a run-time of between
2 to 4 seconds. On average, Application D ran 26 times
faster than Application C. Therefore, to implement an anti-
join application for large database with complex objects,
the implementation of Application D is more efficient than
Application C.

B. Counting Objects

Two different applications were run for counting objects
from a class. Both applications retrieve the same outputs.
Application E is implemented with two SELECT statements,
which iterates on the results of the first SELECT statement.
This application finds the same objects in Lineitem class
and counts them. Application E, is implemented by nested
SELECT statements as follows:

638Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 660 / 679

{ Query query1 = em.createQuery
("SELECT Distinct l_Suppkey FROM Lineitem l");

List list1 = query1.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext())
{ Query query2 = em.createQuery
("SELECT COUNT(*) FROM Lineitem l

WHERE
l_Suppkey= list1.l_Suppkey ");

List list2 = query2.getResultList();
Iterator iterator2= list2.iterator();}}

Figure 5. Application E.

Application E was run several times with different size of
databases. The results of running Application E are set-out in
Figure 6.

Figure 6. Execution Time for Application E.

Figure 6 shows that, the run-time of Application E took
1.5 hours for 400,000 objects and increased to around 6 hours
for 1,800,000 objects.

Application F is implemented by reconfiguring Application
E. Application F, used a Group by clause to group the results
of counting the same objects and transfer them to the client
side. This approach, eliminates the necessity for iteration over
all of the objects in the class.

{Query query = (Query) em.createQuery
("SELECT l.l_Suppkey,
COUNT(l.L_Suppkey) As total
FROM Lineitem l
GROUP BY l.l_Suppkey
ORDER By total");
Number countResult=
(Number) query.getResult();}

Figure 7. Application F.

The results of running Application F with different sizes
of Lineitem class is presented in Figure 8. The run-time of
Application F varied between 3 and 5 seconds.

Figure 8. Execution Time for Application F.

A comparison of Figures 6 and 8 shows a very large
performance difference between Application E and Application
F. Application F was 55 times faster than Application E.
The experimental results show that by reconfiguring object-
relational applications so that fewer objects are transferred to
the client side and more data-processing is done on the server
side, better performance of the application is achieved.

III. RELATED WORK

Agarwal [6] proposed the idea of using a client-side
object cache in order to increase the performance of the
application and suggested that the actual performance was
greatly dependent on the degree to which the application can
take advantage of data stored in the object cache. The problem
in this method, however, is that the complexity of the query
must be managed so that it can return instances of commonly
used classes with minimum use of joins. In 2006, P. V Zyl et
al. focused on comparing the performance of object databases
and object-relational mapping tools. This research discussed
object-relational mapping in open source applications [7].
This approach, however, only dealt with one framework and
was not tried on the distributed or multi-user frameworks
which are often used by developers. R. Kalantari et al.
compared the performance of object and object-relational
database systems. They suggested a number of factors which
system developers must consider when selecting a database
management system for persisting objects [8] but it was done
based on basic query implementation which means that, it
did not consider complex queries involving two or more
objects. This also means that it is less than optimal for todays
applications with complex queries. Rahayu et al. discussed
the performance evaluation of object-relational transformation
methodology. The aim of this research was to clarify the
efficiency of the operations on relational tables based on
certain object-relational transformation methodology [9]. The
performance of object-relational transformation methodology
was also compared with that of the conventional relational
model. This work, however, did not involve the dynamic
parts of the object orientation. Meng et al. proposed a some
transformation rules for object-oriented database systems.
The rules used in this research were designed to transform
the structural part of an object-oriented database schema into
an equivalent relational schema [10]. These rules provided
a relational view of the object-oriented database schema for

639Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 661 / 679

relational users. This research is limited, however, to the
structure of a relational front end for object-oriented database
systems. The idea of translating queries from an SQL into
an OQL in an automatic way, was suggested by Mostefaoui
et al. Their method was based on graph representations [11].
A formal approach for translating object-oriented database
queries into equivalent relational queries was proposed by
Yu et al. who used the same method as Mostefaoui et al.
[11][12]. These works, however, did not consider all the
possible forms of SQL queries. In addition, the methods
suggested were not general enough to be extended to other
clauses and they could not address the performance problem
of object-relational applications. Grust et al., developed the
FERRY language which was designed as an intermediate
language which acts as glue that permits a programming
style in which developers access database tables using their
programming language’s own syntax and idiom [13]. In 2010,
the same authors extended this approach by proposing the
FERRY-based LINQ to SQL approach [14]. Both papers
were based on compiling the first-order functional programs
into SQL which is not an applicable approach in industry.
Recently, Chen et al. proposed a framework which can
detect and prioritise instances of object-relational mapping
performance anti-patterns [15], and therefore, improve the
systems response time. This is useful but this approach can
detect performance bugs and leaves the debugging process
for the developer. In our previous work, performance tuning
of object-oriented applications in distributed frameworks was
discussed. The structure of the proposed approach needs to
be upgraded in order to be more efficient. Also, the approach
in [16] is only applicable to distributed frameworks and
the templates are not general enough to be applicable to
complicate applications. It should also be noted that the idea
presented in [16], was not sufficiently evaluated through
experimental results.

IV. TRANSFORMATION RULES

The transformation rules presented in this paper convert
the non-optimised version of the object-relational database
applications into optimised ones in order to provide the neces-
sary efficiency and high speed. The configuration of object-
oriented application has been changed by replacing certain
procedural parts of the code with non-procedural code. The
transformation rules create equivalent applications, where less
data is transferred from the server and more data-processing
is done on the server side. The transformation rule is applied
to the non-optimised version of the program which is an
input component and the result is an optimised version of the
program, which is an output component. By using more OQL
code and changing the structure of the input component, the
output component is implemented.

In this paper a filtering (selection) transformation rule,
an association anti-traversal rule and an aggregation rule are
presented. The rule for Association Traversal (presented in
our previous work) is presented here, in order to make the
JAVA pattern of this specific rule which is obtained in Section
V meaningful. Except Association Traversal rule, other rules
are designed based on the recent experimental results. In the
following algorithms, a text p r o c e s s i n g means any block
of Java code.

A. Selection/Filtering Transformation Rule

Each relational application, can include an iteration over
one class of objects (selection) which filters the outputs. For
this case, the configuration of the application is changed from
a program with one SELECT statement and one IF clause
(as shown in Algorithm 1), to a program with one SELECT
statement and one WHERE clause (as shown in algorithm 2).
Therefore, some procedural parts of the code, are replaced
with non-procedural code. Figure 9 is the input component
algorithm for the filtering rule.

Algorithm 1: Input component
Iteration over one class of objects
1 for each t in (SELECT * FROM Class) do
2 if ϕ [t.t1, t.t2, ..., t.tn] then
3 p r o c e s s i n g
4 end
5 end

Figure 9. Input component for Selection Rule.

Figure 10 presents the algorithm of the output component,
after applying the above changes to the input component.

Algorithm 2: Output component
Filtering
1 for each t in (SELECT * FROM Class WHERE ϕ
[t1, t2, ..., tn]) do

2 p r o c e s s i n g
3 end

Figure 10. Output Component for Selection Rule.

An example of ϕ [t1, t2, ..., tn] is: Class.Objecti=2.
Non-relational conditions in the input component ϕ
[t.t1, t.t2, ..., t.tn], will convert to ϕ [t1, t2, ..., tn] in the
output component. This means that, references to the objects
(t.t1), are removed and the output component operates on
the name of the properties (t1). The structure of the entire
expression and all contents, however, remain unchanged.

B. Association Anti-Traversal/Anti-Join Transformation Rule
A common input component algorithm, for the anti-join

rule is introduced in Figure 11. The input component, includes
a variable which is False by default. This variable will become
true if the SELECT statement finds any object from class 2,
which satisfies the same condition as the object in class 1.
Anti-join applications, retrieve objects from the second class,
which do not exist in the first class.

640Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 662 / 679

Algorithm 3: Intput component
Anti-Join by Variable
1 for each t in (SELECT * FROM Class 1) do
2 Found = False
3 for each s in (SELECT * FROM Class 2 WHERE

Class 2.Memberj = Class1.t)do
4 Found = True
5 Exit
6 end
7 If not Found p r o c e s s i n g

8 end

Figure 11. Input Component for Association Anti-Traversal.

The algorithm of the output component for association anti-
traversal is presented in Figure 12. Our experimental results
show that the algorithm presented in Figure 12, can be used as
an input component for any possible implementations of the
anti-join’s input components.

Algorithm 4: Output component
Anti-Join by Left outer join
1 for each p in (SELECT * FROM Class1 Left Outer

Join Class2 on Class2.Memberj = Class1.Memberi)
do

2 if Class2.Memberj is Null then
3 p r o c e s s i n g
4 end
5 end

Figure 12. Output Component for Association Anti-Traversal.

In our approach, the output component is written by only
one SELECT statement. The left-outer-join is used in the
output component of this rule to select the objects with the
same condition and makes it unnecessary to transfer them to
the client side.

C. Aggregation
Based on our recent experimental results, the input compo-

nent of the aggregation rule is designed as Algorithm 5. The
rule, can support all different types of aggregation applications.
The aggregation rule is based on finding similar objects in a
class and then applying the aggregation function. For instance,
for counting similar objects from a class of objects, F(x) can be
a COUNT(*) in the input component and COUNT(Memberi) in
the output component. Algorithm 5, is designed using nested
SELECT statements. In this algorithm, F(x) is the function
related to the specific aggregation type, which is used by the
application developer. This function can be MIN, MAX, SUM,
AVG, or COUNT.

Algorithm 5: Input component
Aggregation with nested loop
1 for each t in (SELECT a.Memberi FROM Class a) do
2 for each s in (SELECT F(x) FROM Class b

WHERE b.Memberi=a.Memberi) do
3 p r o c e s s i n g
4 end
5 end

Figure 13. Input Component for Aggregation.

Algorithm 6 presented in Figure 14, used Group by clause
to group the necessary objects and transfer them to the client
side.

Algorithm 6: Output component
Aggregation with grouping objects
1 for each t in (SELECT Memberi, F(x) FROM Class

Group by Memberi) do
2 x = getInt(Memberi)
3 y = resultset(F(x))
4 p r o c e s s i n g
5 end

Figure 14. Output Component for Aggregation.

By using the Group by clause, less objects will be trans-
ferred from the server side to the client side. This means that,
less run-time is needed to run a application.

D. Iterations over two classes of objects/Association Traversal
Rule

Algorithm 7, includes two nested SELECT statements
which performs the JOIN operation. Algorithm 7 is the input
component for association traversal applications.

Algorithm 7: Input component
Iterations over two classes of objects
1 for each t in (SELECT * FROM Class1 WHERE ϕ
[t1, ..., tn]) do

2 for each s in (SELECT * FROM Class2 WHERE γ
[s1, s2, ..., sn] + γ’ [< s1, t1 >, ..., < sn, tn >]) do

3 p r o c e s s i n g
4 end
5 end

Figure 15. Input Component for Association Traversal.

In the output component, two SELECT statements are
merged into one SELECT statement with a JOIN clause. More
non-procedural code is used to write the output component.

641Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 663 / 679

Algorithm 8: Output component
Join
1 for each p in (SELECT * FROM Class1 Join Class2 on
2 γ’ [< t1, s1 >,< t1, s2 >, ..., < tn, sn >]
3 Where
4 ϕ [t1, ..., tn] ‖ γ [s1, s2, ..., sn] do
5 p r o c e s s i n g
6 end

Figure 16. Output Component for Association Traversal.

An example of the function: γ′

[< s1, t1 >,< s2, t1 >, ..., < sn, tn >] in the input component
is Class2.Memberi = Class1.Memberj . They are the relational
conditions of the application. The filtering conditions of
Class2 are presented as γ [s1, s2, ..., sn]. Concatenation in the
output component can merge the non-relational conditions
of both classes [16]. By using this rule, filtering conditions
were applied to the objects on the server side and as a result,
only necessary objects which satisfy the JOIN condition will
transfer to the client side. This means that much data will
remain on the server side. This leads to changing the balance
of the data-processing between server and client and, as a
result, enhances the performance of the application.

V. SOFTWARE PATTERNS FOR OBJECT-RELATIONAL
APPLICATIONS

An input component of any transformation rule, is a
non-optimised version of an object-relational application. An
object-relational application can be written in different ways,
and these require a large number of rules to support and
optimise them. To use the transformation rules, input compo-
nents based on what most application programmers use, were
needed. To solve this problem, number of software patterns in
JAVA programming language have been suggested. The soft-
ware patterns presented are based on new implementation of
the rules and they are all standardised with the JAVA template.
As long as the input component, which is the non-optimised
version of the application is consistent with the following
patterns, then the rules can be applied to the application and
optimise it. Depending on the application, the name of the
objects, the classes, the functions, the relational conditions
and the non-relational conditions will change. Object-oriented
programmers need to replace the statement inside < >, with
the appropriate statement of their own code. The other parts
of the pattern remain unchanged.

A. Selection/Filtering Template (SF.Temp)
The input component of the first rule in Section IV-A, must

be be consistent with the following template:

{ Query query1 = em.createQuery(
<Any SQL SELECT STATEMENT

WHICH RETRIEVE OBJECTS>);
List list1 = query1.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext()){
{
if <CONDITIONS> then
<JAVA code>;
}

}

Figure 17. Selection/Filtering Template (SF.Temp).

CONDITIONS can be any filtering conditions for the class.
For instance: Class1.Objecti =X

B. Association Traversal Template (AT.Temp)
If the input component matches this style, the output

component of the rule for iteration over two classes of
objects, which is presented in Section IV-D, is the optimised
configuration of the application. In the algorithm, ’n’ and
’n-1’ are used to show the order of the tables. For instance,
if there are two classes of objects, n must be considered as 2
and this means that the outer loop is analysed class 1, while
the inner loop is analysed class2:

{ Query query’n-1’ = em.createQuery
<SQL SELECT statement from CLASS’n-1’>;
<GET VARIABLE> ;

<NON-RELATIONAL CONDITIONS of CLASS’n-1’>;
List list1 = query’n-1’.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext()){

<VARIABLE> = query’n-1’.getInt(1);
Query query’n’ = em.createQuery
<SQL SELECT statement from CLASS’n’>
where <RELATIONAL CONDITIONS>;
List list2 = query’n’.getResultList();
Iterator iterator2= list2.iterator();
while (iterator2.hasNext())
{

<NON-RELATIONAL CONDITIONS of CLASS’n’>;
}
<JAVA code>;
} }

Figure 18. Association Traversal Template (AT.Temp).

Assume that, ’t’ is an object variable which get the objects
from the first class and ’s’ is another object variable which
get the objects from the second class. Then: An example of
’NON-RELATIONAL CONDITIONS of CLASS1’:
ϕ [t.t1, t.t2, ..., t.tn]. Example: Class1.Objecti =X.
An example of ’RELATIONAL CONDITIONS’ :
γ’ [< s1, t1 >, ..., < sn, tn >]. Example:
Class2.Objectj=Class1.Objecti.
An example of ’NON-RELATIONAL CONDITIONS of
CLASS2’ :
γ [s.s1, s.s2, ..., s.sn]. Example: Class2.Objectj=Y.

C. Anti-Join Template (AJ.Temp)
If the input component of the rule, matches this anti-join

style, then it can be modified according to the rule, which is

642Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 664 / 679

presented in IV-B.

{ Query query1 = em.createQuery(
<SQL SELECT statement from CLASS1>);
GET VAR = FALSE;
List list1 = query1.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext()){

Query query2 = em.createQuery(
<SQL SELECT statement from CLASS2>
where
<RELATIONAL CONDITIONS

between CLASS1 and CLASS2>;
List list2 = query2.getResultList();
Iterator iterator2= list2.iterator();
while (iterator2.hasNext())
{
if <ANTI-JOIN CONDITION>{

VAR = True,
Exit;

} }
if VAR=FALSE

{ <JAVA code>;
}

}
}

Figure 19. Anti-Join Template (AJ.Temp).

An example of <ANTI-JOIN CONDITION> is:
list1.Memberi=list2.Memberj .

D. Aggregation Template (AG.Temp)
The general template to use the aggregation rule, is pre-

sented as below.

{ Query query1 = em.createQuery
("SELECT <a.Memberi> FROM <CLASS a>");
List list1 = query1.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext())
{
Query query2 = em.createQuery
("SELECT <F(x)>
FROM <CLASS b>
WHERE
<AGGREGATION CONTITION>);

List list2 = query2.getResultList();
Iterator iterator2= list2.iterator();
while (iterator2.hasNext())

{
if <AGGREGATION CONTITION> then

}
<JAVA code>;
} }

Figure 20. Aggregation Template (AG.Temp).

To use the output component presented in IV-C, the appli-
cation must match the following style. F(x) can be any type
of the aggregation: MIN , MAX , SUM , AVG or COUNT.

E. n Associations Template
Assume that F: Filtering, C: Condition, J: Java Code, JC:

Join Conditions, V: Variable, A: Array, AGC: Aggregation
Conditions and OV is an object variable which can keep the

results from one template and passes it to the other template.
The object variable, takes the results from each template and
pass it to the next template. At the end of each template, the
object variable is updated to the new object variable which
includes new results from the current template and this object
template is ready to use in the next template. Therefore,
generally all the templates can be presented as:
TF < F,C,OV, J >
TTA < F1, F2, C, JC,OV, J >
TAJ < F1, F2, C,OV, J >
TAG < A,F,AGC,OV, J >

For n association, the template will be a mixture of
the above templates. To mix the templates, ’J’ must be
replaced with the desire template. Also, OV from the first
template must pass to the next template. The inner most class
is considered as class 2. For instance, let us assume that
there are 3 classes: Student Name(Class1), Course(Class2),
Marks(Class3) and the programmer would like to find all the
student names which start with A and then find who does not
take Maths and then find who gets a mark above 50 in other
courses. In this case, there is a filtering at the beginning for
class1, then an antijoin of class1 and class2 and at the end
association of traversal between class2 and class3. By using
the above short templates, the following template was written
for this example:
TF < F,C,OV,< TAJ >> ——-> TF ,A J < F,C,<
OV, F1, F2, C,OV, J >> ——-> TF ,A J ,T A < F,C,<
OV, F1, F2, C, JC,< OV, F2, F3, C, JC,OV, J >>>

Now by replacing each actual template instead of the
name of the template, the final template will design. To make
the above example more applicable, the actual templates are
replaced in the last achived template (TF ,A J ,T A < F,C,<
OV, F1, F2, C, JC,< OV, F2, F3, C, JC,OV, J >>>).

{\\Filtering template\\
Get OV;
Query query1 = em.createQuery(
<Any SQL SELECT statement
which retrieve objects>);
List list1 = query1.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext())
{if <CONDITIONS> then
{\\Anti join template\\
Get OV;
Query query2 = em.createQuery(
<SQL SELECT statement from CLASS1>);
GET VAR = FALSE ;
List list1 = query2.getResultList();
Iterator iterator2= list1.iterator();
while(iterator2.hasNext())
{Query query3 = em.createQuery(
<SQL SELECT statement from CLASS3>
where <RELATIONAL CONDITIONS
of CLASS1 and CLASS2>;

List list2 = query3.getResultList();
Iterator iterator3= list2.iterator();
while (iterator3.hasNext())
{VAR = True;
Exit;}}

643Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 665 / 679

if VAR=FALSE {\\Join template\\
Get OV;
Query query4 = em.createQuery(
<SQL SELECT statement from CLASS1>);
<GET VARIABLE> ;
<NON-RELATIONAL CONDITIONS of CLASS1>;
List list4 = query4.getResultList();
Iterator iterator4= list1.iterator();
while(iterator4.hasNext())
{<VARIABLE> = rset4.getInt(4);
if <CONDITIONS> then{
Query query5 = em.createQuery(
<SQL SELECT statement from CLASS2>
where
<RELATIONAL CONDITIONS

of CLASS1 and CLASS2>);
List list5 = query5.getResultList();
Iterator iterator5= list5.iterator();
while (iterator5.hasNext()){
if <NON-RELATIONAL CONDITIONS

of CLASS2> then
<JAVA code>; } } } } } } }

Figure 21. n Associations Template.

After obtaining the final design of the input component
template, the rules can be applied. To do this, the developers
must first find out which styles their application consist of.
Then they can use the n Associations Template to build their
application step by step. Then the rules can be applied to
the application and the result is the optimised version of
the application. By replacing the short form with the actual
template, the final template is achieved as above.

Figure 22. Use templates to prepare the input component

Figure 22, shows how theoretically the templates can be
applied to the above example. The templates, however, were
applied on the real applications, but the presentation of these,
is beyond the scope of this paper.

VI. CONCLUSION AND FUTURE WORK
This paper attempted to solve the problem of implementing

efficient object-relational applications in client-server frame-
works. Certain transformation rules, which can shift more data-
processing to the server side, have been proposed. Using this
approach, decreases the amount of data transfer from the client
side to the server side. Therefore, only the essential objects will
be transferred from the server side to the client side. Software
patterns of the rules are also presented to make the rules more
applicable. The correctness of the rules did not fit in the scale

of this paper. Future work will introduce a support tool, which
can apply the patterns automatically to the applications.

VII. ACKNOWLEDGMENTS

The authors wish to gratefully acknowledge the help of Dr.
Madeleine Strong Cincotta in the final language editing of this
paper.

REFERENCES
[1] J. Orsag, ”Object relational mapping”, D. thesis, Comenius University,

Bratislava, Slovakia, 2006.
[2] J. Duhl and C. Damon, ”A performance comparison of object and rela-

tional databases using the Sun Benchmark”, In Proc. ACM Conference
on object-oriented programming systems, languages and applications
(OOPSLA ’88), New York:Norman Meyrowitz, 1998, pp. 153-163.

[3] S. Son, I. Yoon, and C. Kim, ”A Component-Based Client/Server Appli-
cation Development Environment using Java”, In Proc. IEEE Computer
Society Conference on the Technology of Object-Oriented Languages
and Systems (TOOLS ’98), Washington, 1998, pp. 168.

[4] M. J. Franklin, B. T. Jnsson, and D. Kossmann, ”Performance tradeoffs
for client-server query processing”, In Proc. of the ACM SIGMOD
international conference on Management of data (SIGMOD ’96), 1996,
Jennifer Widom (Ed.), New York, pp. 149-160.

[5] R. Ramakrishnan and J. Database Management Systems. New York:
McGraw-Hill, 2002.

[6] S. Agarwal, ”Architecting Object Applications for High Performance
with Relational Databases”, In OOPSLA Workshop on Object Database
Behavior, Benchmarks, and Performance, Persistence Software, Inc,
1995.

[7] P. van Zyl, D.G. Kourie, and A, ”Comparing the performance of
object databases and ORM tools.Boake”, In Proceedings of the annual
research conference of the South African institute of computer scientists
and information technologists on IT research in developing countries
(SAICSIT ’06), 2006, Judith Bishop and Derrick Kourie, pp. 1-11.

[8] R. Kalantari and C. H. Bryant, ”Comparing the performance of object
and object relational database systems on objects of varying complexity”,
In Proceedings of the 27th British national conference on Data Security
and Security Data (BNCOD’10), 2010, Lachlan M. MacKinnon (Ed.),
Springer-Verlag, Berlin, Heidelberg, pp. 72-83.

[9] J. Wenny Rahayu, E. Chang, T. Dillon, and D. Taniar, ”Performance
evaluation of the object-relational transformation methodology,” Data
Knowl. Eng, vol. 38, no. 3, pp. 265-300, 2001.

[10] W. Meng, C. T. Yu, W. Kim, G. Wang, T. Pham, and S. Dao,
”Construction of a Relational Front-end for Object-Oriented Database
Systems”, In Proc. IEEE Computer Society Conference, 1993, pp. 476-
483.

[11] A. Mostefaoui, and J. Kouloumdjian, ”Translating Relational Queries
to Object-Oriented Queries According to ODMG-93.”, In: ADBIS,
Springer, 1998, pp. 328-338.

[12] C. Yu, Y. Zhang, W. Meng, W. Kim, G. Wang, T. Pham, and S. Dao,
”Translation of Object-Oriented Queries to Relational Queries”, In: Proc.
of the 11th Int. Conf. on Data Engineering, 1995, pp. 90-97.

[13] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber ”FERRY: database-
supported program execution”, In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of data (SIGMOD ’09), Carsten
Binnig and Benoit Dageville, ACM, New York, 2009, pp. 1063-1066.

[14] T. Schreiber, S. Bonetti, T. Grust, M. Mayr, and J. Rittinger, ”Thirteen
new players in the team: a FERRY-based LINQ to SQL provider”, Journal
of VLDB, vol. 3, no.2, pp. 1549-1552, 2010.

[15] T. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora,
”Detecting performance anti-patterns for applications developed using
object-relational mapping”, In Proc. the 36th International Conference
on Software Engineering (ICSE 2014), ACM, New York, USA, 2014,
pp. 1001-1012.

[16] Zahra Davar, Janusz R Getta, ”Performance Tuning of Object-Oriented
Applications in Distributed Information Systems” Presented in 16th
International Conference on Enterprise Information Systems (ICEIS
2014), Lisbon, Portugal, 2014.

644Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 666 / 679

Web Accessibility on Thai Higher Education Websites

Rattanavalee Maisak
Edith Cowan University

School of Computer and Security Science
Perth, Western Australia
r.maisak@our.ecu.edu.au

Justin Brown
Edith Cowan University

School of Computer and Security Science
Perth, Western Australia

j.brown@ecu.edu.au

Abstract—This paper examines web accessibility compliance in
a sample of universities in Thailand. The Thai government has
made a commitment to higher education and e-learning and
has also signed on to the Convention on the Rights of Persons
with Disabilities (CRPD). This paper shows that the web
accessibility does not appear to be adopted by the universities
examined in this study, with minimal compliance to the W3C
Web Content Accessibility Guidelines 2.0. In particular, the
Perceivable and Operable aspects of the guidelines seemed
problematic in terms of the numbers of reported accessibility
errors.

Keywords-web accessibility, higher education, WCAG,
evaluation.

I. INTRODUCTION
In the context of a web connected world, it falls to

governments and organizations to focus on how they develop
online information that is accessible to all, including people
with disabilities. The World Health Organization (WHO)
estimates that there are over 600 million people with
disabilities living across the world moreover, some of those
people experience barriers in accessing information and
communication technologies [1]. As a result, countries such
as Australia, the United States of America and Canada have
developed and promoted web accessibility in their policies in
order to minimize the barriers which prevent disabled people
from participating in those societies. This paper examines
accessibility in the Thai context, as the Thai government has
made a formal commitment to the development of e-learning
in Thailand as well as that of web accessibility.

The Thai government has been a signatory to the
Convention on the Rights of Persons with Disabilities
(CRPD) since 2007 [2]. In terms of the CRPD, the Thai
government devotes significant resources to ensuring that
people with disabilities in Thailand have equal rights with
others. The Rehabilitation of Disabled Persons Act 1991 and
the National Education Act 1999 were passed in order to
improve learning opportunities of Thai students with
disabilities [3][4]. However, research indicates that there is
still a lack of educational facilities for students with
disabilities in Thailand resulting from insufficient law
enforcement and negative attitude of stakeholders [5].
Consequently, the needs of students with disabilities are not
adequately supported through educational options. It is the
belief of these authors, and of the wider literature that

students with disabilities should be treated as equals,
especially in the context of access to education suitable to
their needs. As higher learning predominately takes place
within a nation’s university sector, this research aims to
investigate the accessibility of Thai higher education
websites. The rationale is that the level of accessibility of
these university websites will in some small way reflect
Thailand’s adherence to its own legal requirements for
equitable access to higher education.

II. RESEARCH QUESTIONS
This paper examines the research questions of ‘what

level of web accessibility is apparent in Thai universities
against WCAG 2.0 guidelines’ and ‘against which aspects of
the WCAG are the most issues seen’? The paper will
address these questions by examining a number of Thai
university websites, looking at both the main university
webpages and publically visible pages containing e-learning
content.

III. LITERATURE REVIEW

A. Accessibility Guidelines
Web accessibility is not a new concept and one can trace

its origins back to the mid twentieth-century. The Americans
with Disabilities Act (ADA) approved by the U.S. Congress
in 1990 cemented protections against discrimination to
Americans with disabilities. It guarantees equal opportunity
for individuals with disabilities in terms of public
transportation (in Title II), public accommodations (in Title
III) and telecommunications relay services (in Title IV) [6].
The potential protections of the Rehabilitation Act, ADA and
the popularization of the Internet support the need to make
the web accessible [7].

The World Wide Web Consortium (W3C) created the
Web Accessibility Initiative (WAI) on 7 April 1997 in order
to develop protocols and guidelines that ensure the web for
all [8]. The Web Content Accessibility Guidelines (WCAG)
were created in order to promote the accessibility of
websites. The WCAG 1.0 guidelines were released on 5 May
1999 and were replaced with WCAG 2.0 in 2008. The aim of
WCAG 2.0 is to increase the accessibility of websites for
people with disabilities according to the four POUR
principles [9].

“Perceivable” means that web content and user interface
modules must be offered to users in multiple formats in order

645Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 667 / 679

to meet users' perceptions. “Operable” means that the user
interface and navigation components should be designed in a
way that they work properly, especially in terms of assistive
technologies. “Understandable” is about making websites
understandable in terms of language levels, correcting errors
and predictability. “Robust” refers to the capacity of
websites to be interpreted by a variety of user agents.

WCAG 2.0 is divided into 12 guidelines, which are
classified according to three conformance levels (A, AA and
AAA) in order to respond to the different needs of people
with disabilities. Moreover, WCAG 2.0 concerns problems
of interference on the use of the page by unsupported
technologies through four critical failures:

1. Checkpoint 1.4.2 Audio control - the control over
audio is available to pause or stop.

2. Checkpoint 2.1.2 Keyboard trap - keyboard focus
can be moved throughout webpage.

3. Checkpoint 2.2.2 Pause, stop or hide – providing
the control over moving, blinking, scrolling, or auto-
updating information which display more than five
seconds.

4. Checkpoint 2.3.1 Three flashes or below threshold
– content must not flash more than three times in one
second.

WCAG claims that if a webpage does not meet those
requirements, then people with disabilities will not be able to
utilize the content of the given web page. There is a body of
literature which argues that WCAG 2.0 provides guidelines
only, and that they are not definitive when it comes to
deciding if a webpage is accessible or not. However, this
paper will be using WCAG 2.0 as the standard against which
webpages will be evaluated.

B. Web Accessibility Evaluation
Automated tools are powerful evaluation tools for

locating inaccessible elements in a website, however, relying
on one tool cannot guarantee the accessibility of whole
website [10]. The W3C provides a list of over 100 checkers
in term of “Complete List Web Accessibility Evaluation
Tools”, with these tools ranging from page-at-a-time
checkers through to whole of site conformance evaluators
[11]. Generally, automated tools are based around web
accessibility standards and can typically be locally installed
on a desktop environment, as a cloud service or as a local
browser extension. One of the advantages of cloud based
tools is that they do not platform specific as are most
browser based plug-ins.

Manual testing is an alternative method, though in most
cases should be considered a complimentary method to
automated assessment. The evaluation of websites for
accessibility requires human inspection moreover, W3C also
recommends the combination of expertise and users in
evaluation processes [12]. Automated tools are also
troublesome in terms of presenting false positives and false
negatives, issues that can usually be overcome by human
evaluation. Obviously, the trade-of is that an automated
assessment can cover a lot of pages or an entire site in a short
period of time, whereas human evaluations can typically
address only a small number of the total pages in a site.

C. Related Work
The evaluation of web accessibility for top international
university websites reported that the websites of universities
across different countries and regions had accessibility
issues [13]. The study utilized a multi method approach
using four automatic tools and manual tests, with the
websites being selected from Times Higher Education
Ranking. By looking at the average accessibility errors,
universities in Asia were the most inaccessible websites
followed by North America, Europe and Oceania (Australia
and New Zealand). Moreover, the results when examining
university policy indicated that less than half of those
policies provide specific technical actions for resolving
accessible websites issues. This implies that university
websites may not be reliable resources to find accessibility
solutions.

A study comparing the accessibility of one hundred
universities’ website in The United States of America
indicated that the university webpages failed to meet basic
WCAG 1.0 guidelines, especially priority 2; moreover, the
university homepages had the highest number of errors [14].
The authors suggest that universities should ensure
compliance with web accessibility standards such Section
508 and WCAG guidelines in order to support services and
facilities available to students with disabilities. However,
the study used the superseded WCAG 1.0 guidelines and an
automated tool called “Test Accesibilidad Web (TAW)”.

 A study of the accessibility of Spanish university
websites demonstrated that there was low level of
accessibility conformance on Spanish university websites
with 95.50% of webpages failing to meet the UNE 139803
[15]. The UNE 139808 is based on WCAG 1.0 and is the
Spanish government’s policy document regarding accessible
web content. Moreover, the study showed that over 60% of
webpages failed HTML and CSS Validations. Again, this
study use automatic tools, such as TAW, the W3C
Validation Service and the W3C CSS Validation Service.

The investigation of accessibility in 20 Finnish higher
education‘s institutes websites revealed that the tested
websites had low inaccessibility levels in priority 1 (14
websites) and priority 2 (12 websites), followed by the high
inaccessibility levels in priority 2 (8 websites) and the full
accessibility level in priority 1 (6 websites) [16]. The study
used TAW with the recommendations of Finnish Quality
Criteria for web Services which is based on WCAG 1.0 and
is published by the Finnish government. The authors
suggest that those websites should be modified in order to
achieve the full accessibility level (as defined in their
study).

Finally, a study evaluating web accessibility and
usability at Thailand Cyber University (TCU) for totally
blind users stated that none of the selected webpages met a
minimum requirement of WCAG 2.0 in automated testing
[17]. The author claims that TCU which is the biggest e-
learning provider in Thailand and that the entire website has
endemic accessibility problems.

646Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 668 / 679

IV. RESEARCH DESIGN

A. Scope of Investigation
From the larger study on which this paper is based, nine

higher education websites in Thailand were selected from the
top five ranked Thai universities [18], two open universities,
one special college for students with disabilities and one
online institution. We chose this list as it offered a variety of
institutions and delivery modes, from online only through to
mixed mode and disability specific. Seven representative
webpages were tested from within each of the university web
sites, including the university homepage, library, webmail
login page, contact us, e-learning portal homepage, e-
learning forums and publically available e-learning content.
There is a significant body of literature regarding web
accessibility auditing methodology, most of which indicate
that common pages (that most web sites would have) should
be evaluated as a priority. The Website Accessibility
Conformance Evaluation Methodology (WCAG-EM) 1.0
also indicates that accessibility evaluation should include the
common webpages of the target website such as homepage,
login page and contacts page [19]. Moreover, homepage and
level one (all links visible from the homepage) of a website
are appropriate for accessibility auditing [20][21]. As this
paper examined university web pages, an effort was made to
audit pages from the university websites as well as any
available e-learning content, which are typically housed in
systems different to those containing the main university
website. The universities examined in this study represented
a number of different types, including;

• Common: primarily an on-campus teaching mode
with some support for online delivery

• Open: primarily an online institution, with some
required on-campus delivery, such as exams and
tests.

• Online: a purely online teaching environment.
• Special: mixed mode of delivery aiming at

supporting students with a variety of disabilities
The breakdown of the four groups in this study in terms

of web pages (N = 189) examined by automated assessment
is Common (105 webpages), Open (42 webpages), Online
(21 webpages) and Special (21 webpages).

B. Method
A number of researchers suggest the advantages of

combining automated and manual testing techniques in
order to ascertain the level of accessibility of websites
[12][22]. Automated testing is driven by those systems that
can scan a web page or an entire site and report on the errors
that can be tested without human intervention, such as
issues with alt text, color contrast and markup validation.
Manual testing sees ‘expert’ human evaluators examine a
smaller subset of pages, looking at visual and coding
elements to see where violations against WCAG 2.0 exist,
as well as where actual usability issues may be apparent.
The webpages were evaluated by automated and manual
testing based on WCAG 2.0 guideline at level A and AA.

SortSite [28] was used to audit all pages at level one of
each of the websites (i.e., all pages linked from the
homepage), whilst WAVE was used on each of the seven
pages being examined (as WAVE is page-at-a-time tool)
manually. Manual evaluations were conducted for the same
seven pages, and for each of the seven pages we counted the
number of failures identified based on WCAG requirements,
with the results being categorized by POUR principles.
Table I shows the breakdown of WCAG 2.0 in terms of
checkpoints, for A and AA only. As Table I illustrates, the
Perceivable principle contains the most checkpoints (and
points of potential failure), with nine at level A and five at
level AA, through to Robust with only two checkpoints at
level A.

TABLE I. POUR PRINCIPLES CHECKPOINTS ACROSS LEVELS A-

AA

Principle Level A Level AA % of total
Perceivable 9 5 36.84
Operable 9 3 31.58
Understandable 5 5 26.32
Robust 2 0 5.26
Total 25 13 100%

The scoring values are ‘0’ and ‘1’, with a ‘0’ score meaning
that no violation of a checkpoint was identified using either
the automated tools or via manual assessment. A score of
‘1’ did indicate that the page in question produced a
violation of a given WCAG 2.0 checkpoint. Figure 1 shows
an example of the data collection against the POUR
principles using the various testing methods used in this
research, being automated multi-page, automated page at a
time and manual assessment.

Figure 1. Example of data collection

V. RESULTS AND DISCUSSION
The collected data was tested for normal distribution. The

Shapiro-Wilk test was used and found to be non-normally
distributed with p < .05 [30]. Therefore, the analysis used
nonparametric tests for comparing the differences in the

647Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 669 / 679

mean scores. The focus of the analysis was on the errors
found overall as well as the distribution of errors across the
POUR principles.

TABLE II. MEAN OF POUR VIOLATIONS

 P O U R

Chi-Square 12.888 10.946 4.487 4.144
df 3 3 3 3

Asymp. Sig. .005 .012 .213 .246
a. Kruskal Wallis Test
b. Grouping Variable: course mode

Table II demonstrates that there were statistically

significant differences in mean scores of the webpages
regarding POUR violations at Perceivable, X2 (3, N = 189) =
12.89, p = .01, Operable, X2 (3, N = 189) = 10.95, p = .01
however, there were not statistically significant differences
in mean scores of the webpages regrading the course mode
category at Understandable, X2 (3, N = 189) = 4.49, p = .21
and Robust, X2 (3, N = 189) = 4.14, p = .25. It can be
interpreted that there are differences in the mean scores of
the webpages (in terms of errors) regarding POUR
violations at Perceivable and Operable principles, but not
Understandable and Robust principles, which could be
caused by the lower number of checkpoints and thus lower
number of potential error points available within these
principles. A Post hoc test was conducted to determine
which university groups are different (Table III).

TABLE III. VIOLATIONS PER PAGE AGAINST UNIVERSITY TYPE

 GROUPS P O U R

Common

Mean 2.74 2.18 1.86 .75
N 93 93 93 93

SD 1.950 1.628 1.486 .816

Open

Mean 2.15 1.94 1.39 .61
N 33 33 33 33

SD 1.839 1.478 1.116 .788

Online

Mean 2.00 2.50 1.64 .57
N 14 14 14 14

SD 1.301 1.557 1.550 .756

Special

Mean 1.22 1.06 1.17 .33
N 18 18 18 18

SD .943 1.211 1.200 .485

By looking at the average errors in the POUR principle
per page, most errors were found at the Perceivable
followed by Operable, Understandable and then Robust
principles. The Perceivable and Operable outnumber Robust
violations, with almost double the number of errors. For
example, the Common group had the average error at

Perceivable (2.74 errors per page) and Operable (2.18)
compared to Robust (0.75). This dataset indicates that most
Thai institution websites have common accessibility
problems related to providing information in multiple
formats and lack awareness of control over the web
interface (see Figures 2 and 3). By looking at the different
course modes, the results indicate that the Special group
performs the best in terms of web accessibility with the
lowest numbers of errors at all POUR principles with
average 1.22, 1.06, 1.17 and 0.33 respectively (see Table
III). This may be because the special institutions are
strongly committed to providing accessible resources and
educational services for students with disabilities and is
perhaps not surprising that those webpages contain content
which is fit for purpose.

Figure 2. Breakdown of violations within Perceivable

By looking at the Perceivable principle, the highest total
numbers of errors were found at checkpoints 1.1.1-Non text
Content and the checkpoint 1.3.1-Info and Relationships
with 108 errors (see Figure 2). Furthermore, the highest
number of errors were found at checkpoint 1.1.1-Non text
Content with 69 errors (Common), 23 errors (Open), 9
errors (Online) and 7 errors (Special) and the checkpoint
1.3.1-Info and Relationships with 75 errors (Common), 17
errors (Open), 10 errors (Online) and 6 errors (Special)
respectively. This implies that most Thai institution
websites have serious problems related to alternatives for
non-text content and web structure and relationships (such
as inconsistent use of heading styles to denote page
structure).

648Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 670 / 679

Figure 3. Breakdown of violations within Operable

By looking at the Operable principle, the highest total

numbers of errors were found at the checkpoint 2.4.4-Link
purpose with 96 errors (see Figure 3). The breakdown of
errors at checkpoint 2.4.4-Link purpose were 64 errors
(Common), 21 errors (Open) and 5 errors (Online and
Special). The dataset indicates that the websites would have
critical problems in terms of descriptive links, with the most
prevalent issue being the ‘read more’ link issues, which
users of assistive technologies find to be singly
uninformative.

Figure 4. Breakdown of critical failures

By looking at the critical failures, most errors were

found at the checkpoint 2.2.2 followed by 2.3.1, 2.1.2 and
1.4.2 for all groups. The most errors were found at the
checkpoint 2.2.2 Pause, Stop, Hide with 17 errors
(Common), 6 errors (Open), 4 errors (Online) and 1 errors
(Special) (see Figure 4). The dataset indicates that Thai
institutions have problems involving the control over
moving, blinking, scrolling, or auto-updating information
which displays for more than five seconds – especially in
terms of slideshows and carousels found on website
homepages.

Figure 5 indicates the total number of errors found
across the nine university sites for the seven pages tested in
each of those sites. The results show that the university
homepages had the most number of accessibility errors, not
an uncommon finding in the literature [23][24] followed
closely by the library pages. This is due in part to the
number of links, content and multimedia items that both of

these pages tended to contain, with contact us pages being
problematic due to poor form design (lack of labels) and
that the correct page language was not indicated (having
English instead of Thai). Whilst the latter issue is not
something every user would notice, lack of correct language
identification for a page is an automatic fail of the
Understandable principle, level A.

Figure 5. Total violations across tested pages

The e-learning pages that were tested tended to fair

better than the main university pages due to their general
lack of multimedia content, with most of the content being
text based materials coming out of e-learning tools such as
Moodle [29]. Content management systems such as Moodle
also address WCAG 2.0 guidelines to varying degrees [25],
which is likely to have also contributed to a slightly higher
level of accessibility for these pages as opposed to the main
university pages.

VI. CONCLUSIONS
Whilst this paper represents the analysis of part of a

larger research project, it does show that in terms of the Thai
university system, there is still much work to be done in the
web accessibility space. The results indicate that these
university websites have accessibility problems even though
the Thai government has signed the Convention on the
Rights of Persons with Disabilities (CRPD). In particular,
special institutions were created to provide an accessible
online learning experience for students with a variety of
disabilities, though in this study it seems even the web pages
in that site were far from accessible (though better than the
other non-specialist sites).

The limitation of this research is that the number of tested
webpages is relatively small because there are only two open
universities and one online institution in Thailand, which
were examined in this study along with the top five
universities. Moreover, the limitation of scoring method is
that is essentially a binary one or zero, picking up the
presence of an error but not the specifics of the error (which
will be detailed in the larger study). However, we feel that

649Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 671 / 679

the data presented here indicates that Thai universities are
not offering an accessible online learning experience to
people with disabilities. Whilst the possible causes of the
current situation are beyond the scope of this paper, it seems
likely they are the same as other institutions across the globe,
including lack of awareness, lack of policy and lack of
WCAG 2.0 implementation, testing and knowledge [26][27].
We recommend that the Thai government strengthen its
policy and requirements around accessibility of online
technologies, and that this policy is clearly communicated to
stakeholders in the government and education arenas.

VII. REFERENCES

[1] World Bank, World report on disability, in Main report 2011.
[2] The United nations, Convention on the Rights of Persons with

Disabilities n.d.
[3] S. L. Carter, “The Development of Special Education Services in

Thailand,” International Journal of Special Education, vol. 21, pp.32-
36, 2006.

[4] Commission, O.o.t.N.E., National Education Act of BE 2542
(1999). Bangkok: Seven Printing Group, 1999.

[5] T. Cheausuwantavee and C. Cheausuwantavee, “Rights, Equality,
Educational Provisions and Facilities for Students with Disabilities in
Thailand: Legal and Practical Perspectives over the Past Decade,”
Disability, CBR & Inclusive Development, vol. 23, pp.70-91, 2012.

[6] The U.S. Department of Justice, A Guide to Disability Rights
Laws, 2009.

[7] E. Ellcessor, “Bridging Disability Divides: A critical history of web
content accessibility through 2001,” Information, Communication &
Society, vol. 13 , pp. 289-308, Apr. 2010,
doi:10.1080/13691180903456546.

[8] W3C. W3C Mission. 2012; Retrieved February 2014 from:
http://www.w3.org/Consortium/mission.html

[9] W3C. Web Content Accessibility Guidelines (WCAG) 2.0. 2008;
Retrieved March 2014 from: http://www.w3.org/TR/WCAG20/

[10] P. A. McLellan, “Web Accessibility,” (Master's thesis). 2011;
Available from ProQuest Dissertations and Theses database. (UMI
No. 1493599).

[11] W3C. Complete List of Web Accessibility Evaluation Tools. 2006;
Retrieved March 2014 from:
http://www.w3.org/WAI/ER/tools/complete

[12] E. R. de Souzaand and C. Mont'Alvão, “Web accessibility: evaluation
of a website with different semi-automatic evaluation tools,” Work: A
Journal of Prevention, Assessment and Rehabilitation, vol. 41, pp.
1567-1571, Feb. 2012, doi: 10.3233/WOR-2012-0354-1567.

[13] S. K. Kane, J. A. Shulman, T. J. Shockley and R. J. Ladner, “A web
accessibility report card for top international university web sites,”
The 2007 international cross-disciplinary conference on Web
accessibility (W4A). ACM, May 2007, pp. 148-156, ISBN: 1-
59593-590-8

[14] M. Eyadat and J. Lew, “Web accessibility factor a key focus for
serving students,” Review of Business Research, vol. 11, pp. 29,
October 2011.

[15] J. M. Fernández, J. Roig, and V. Soler, “Web Accessibility on
Spanish Universities,” Evolving Internet (Internet), IEEE, Sept.
2010, pp. 215-219, ISSN: 2156-7190, ISBN: 978-1-4244-8150-7

[16] B. J. Hashemian, “Analyzing web accessibility in Finnish higher
education,” ACM SIGACCESS Accessibility and Computing, Sept.
2011, pp. 8-16. ISSN: 1558-2337

[17] S. Kuakiatwong, “Evaluating Web Accessibility and Usability at
Thailand Cyber University for Totally Blind Users,” World
Conference on E-Learning in Corporate, Government, Healthcare,
and Higher Education, Oct. 2010, pp. 1904-1907. ISSN:
1880094835

[18] Webometrics. “Webometrics Ranking : Ranking Web of
Thailand Universities,” Retrieved February 2014 from:
http://www.webometrics.info/en/asia/thailand

[19] W3C. Website Accessibility Conformance Evaluation Methodology
1.0. 2012; Retrieved April 2014 from:
http://www.w3.org/TR/WCAG-EM/

[20] S. Hackett and B. Parmanto, “Homepage not enough when
evaluating web site accessibility,” Internet Research, vol. 19,
pp. 78-87, 2009.

[21] M. Vigo, J. Brown, and V. Conway, “Benchmarking web
accessibility evaluation tools: measuring the harm of sole reliance on
automated tests,” The 10th International Cross-Disciplinary
Conference on Web Accessibility, ACM, May 2013, pp. 1-10,
doi:10.1145/2461121.2461124.

[22] C. Power, H. Petrie, A. P. Freire and D. Swallow, “Remote evaluation
of WCAG 2.0 techniques by web users with visual disabilities,”
Universal Access in Human-Computer Interaction. Design for All and
eInclusion, vol. 6765, pp. 285-294, 2011.

[23] K. A. Harper and J. DeWaters, “A quest for website
accessibility in higher education institutions,” The Internet
and Higher Education, vol. 11, pp. 160-164, 2008.

[24] J. Lazar, P. Beere and K. D. Greenidge, “Web accessibility in
the Mid-Atlantic United States: a study of 50 homepages,”
Universal Access in the Information Society, vol. 2, pp. 331-
341, November 2003.

[25] T. Elias, “Universal instructional design principles for
Moodle,” International Review of Research in Open and
Distance Learning, vol. 11, pp. 110-124, March 2010.

[26] P. Bohman, “University web accessibility policies: a bridge not quite
far enough,” World Conference on Educational Multimedia,
Hypermedia and Telecommunications, 2004, pp. 5395-5400,
ISBN: 1880094533

[27] D. A. Bradbard, C. Peters, and Y. Caneva, “Web accessibility policies
at land-grant universities,” The Internet and Higher Education,
Association for the Advancement of Computing in Education
(AACE), Jan. 2010, pp. 258-266, ISBN 978-1-880094-53-2

[28] Powermapper. SortSite. 2014; Retrieved February 2014
from:http://www.powermapper.com/products/sortsite/index.htm

[29] R. William, Moodle 2.0 E-Learning Course Development. 2011;
Packt Publishing Ltd.

[30] R. Patrick, “Approximating the Shapiro-Wilk W-Test for non-
normality,” Statistics and Computing, 1992, pp. 117-119, ISBN:
0960-3174

650Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 672 / 679

A Usability Inspection Approach to Assist in the Software Development Process

Priscila Silva Fernandes, Bruno Araújo Bonifácio

Institute of Exact Sciences and Technology (ICET/UFAM)

Federal University of Amazonas

Itacoatiara, Brazil

{pry.bila, brunobonni}@gmail.com

Priscila Silva Fernandes, Tayana Uchôa Conte

Software Engineering and Usability Group (USES)

Institute of Computing (IComp)

Federal University of Amazonas

Manaus, Brazil

{priscila.fernandes, tayana}@icomp.ufam.edu.br

Abstract— Several approaches have been proposed to ensure

the quality of interactive systems. However, interactive systems

continue to reach users with malfunctions, such as usability,

communicability and interaction errors. Researches show that

the lack of usability knowledge in software development

organizations is an obstacle for usability evaluation. Our

research goal is to popularize usability inspections so that even

novice inspectors are able to perform it. Aiming to provide an

approach to be used during the development process of web

application, we have proposed the WE-QT technique. We are

using an experimental methodology to evolve our technique

and transfer it from the academy to industry. This paper

presents a new comparative study; the results show that WE-

QT technique is more efficient than and as effective as the

compared technique.

Keywords-usability inspection; novice inspectors; web

application; experimental study.

I. INTRODUCTION

Interactive systems have been widely developed and used
nowadays. Integrating this growth to web services, users are
able to be more connected. Despite the great evolution of
web applications, and the existence of various approaches
addressing their development [1], users sometimes
experience malfunctions when interacting with them. These
malfunctions are generally caused by the poor interaction
design [2].

Web applications with bad interaction design leads not
only to users dissatisfaction and frustration, but also to
rework during the development and maintenance phases,
costs surpass, and market disadvantage [3]. Usability is a
quality factor that can improve interaction design of software
products [4][5]. Therefore, improving usability of web
application can minimize users‘ interaction difficulty and
improve the quality of these applications [6][7]. However,
researches show that a large fraction of this problem is
originated on the development process of these systems,
which sometimes does not embody Human Computer
Interaction (HCI) principles and methods for the
development and evaluation of these applications [8][9][10].
Some authors [8][9][10] state that developers do not use,
avoid or incorrectly apply HCI principles. This fact is due to
the scarcity of knowledge and experience in concepts and
practice of HCI area.

We proposed the Web Evaluation – Question Technique
(WE-QT) [11][12] seeking to assist software developers
performing usability inspections, and hence to improve the
quality of the software products. The WE-QT technique is
currently in the third version. We are using an experimental
methodology to evaluate and evolve our technique [14]. This
paper presents a comparative experimental study between the
new version of WE-QT and its base technique, the Web
Design Perspectives-based Inspection – Reading Technique
(WDP-RT). Results show that our technique is as effective
as and more efficient when compared to WDP-RT. Future
work includes running studies with a major sample and
comparing WE-QT to other methods.

 The remaining of this paper is organized as follows.
Section II addresses usability concepts and methods, along
with the description of the new version of the WE-QT
technique. Section III describes the experimental
methodology and the results of the study. Section IV
presents the conclusions.

II. USABILITY EVALUATION

According to Krug [15], users do not want to spend time
trying to discover what the web application is about, figuring
out whether an unusual button is actually a link, or how to go
back to a previous visited page. Several researches propose
approaches to ensure the quality of software product. Some
propose tools and techniques specific to evaluate usability
[6]. Usability evaluation methods can be divided into two
groups: usability inspections and usability tests [16][18].
Usability inspection consists of a detailed interface analysis
by an expert, while usability test seeks to uncover problems
based on user observation [6]. Usability test is often more
expensive because it requires users‘ time and specific
material or infrastructure, such as usability labs [6]. Usability
inspection was proposed as a better cost-effective method
[6]. The majority of the researches focus on usability tests
[8]. Our work, however, is centered on usability inspections.
We also restricted the software products to web applications,
and the target public to novice inspectors. Literature provides
similar works [10][21][22][23][24][25][26][27]. Conte et al.
[10] proposed the Web Design Perspective-Based Usability
Evaluation Technique (WDP). The WDP is a checklist
technique that uses the Nielsen‘s Heuristic Evaluation [2]
illuminated by the three web-design perspective:
Presentation, Conceptual and Navigation [10]. The authors

651Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 673 / 679

Figure 1. Extract of the WE-QT technique.

state that the technique is feasible, however inspectors had
difficulties to apply the technique due the lack of knowledge
and experience in usability and inspections [10]. Gomes et
al. [27] propose the WDP-RT technique. The WDP-RT has
the WDP technique as base and it is detailed in the next
subsection.

A. WDP-RT

WDP-RT is a reading technique specific designed to
inspectors with little knowledge on usability and inspections.
The WDP-RT technique consists of a three pages document
containing instructions to assist the evaluator uncovering
usability problems. The reading approach provided by the
WDP-RT technique does not simplify the inspections to
novice inspectors and it is generally very time consuming,
since inspectors have to read the three-page-document to
carry out the inspection. The results of empirical studies to
evaluate the WDP-RT technique indicated that the inspectors
still have difficulty on understanding its instructions and
applying it [28]. The WDP-RT technique is available at [33].
Both WDP and WDP-RT techniques require training on
usability and on the technique before the inspection.

B. The WE-QT Techqnique

The WE-QT technique is an approach to guide novice
evaluators performing usability inspections, and has the
WDP-RT as base [11][12]. This research focused on novice
inspectors aiming to reach industry workers that have little
experience/knowledge on human-computer interaction
concepts and practices, more specifically on usability and
inspections. Our technique is composed by questions [12].
The questions lead the inspector through a flow that is
adaptable by the elements present on the interface [14]. The
mapping, provided by the question flow is illustrated in
Figure 1.

The WE-QT technique is currently in its third version.
Our technique does not require training on usability or on the
technique itself before utilizing it. Since this approach can be
applied by development team itself, reducing the need of
executing usability tests or hiring an expert inspector, it is
considered a cheaper option to improve the quality of web
application. Some improvements made for the third version
of the WE-QT technique are as follows: (1) Adding
descriptions/examples to illustrate each question/affirmative,
aiming to increase the information to assist the novice

652Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 674 / 679

inspectors to better judge possible problems, Table I shows
an extract of the descriptions and examples of the
questions/affirmatives; (2) Implementing the scope of the
inspected elements, we added questions addressing pop-ups
and logins; (3) Adding initial instructions on how to conduct
an inspection flow; (4) Relocating some questions, aiming to
avoid mistakes concerning switching pages when the
inspection flow is executed.

TABLE I. ILLUSTRATION OF THE EXAMPLES PROVIDED BY THE WE-
QT TECHNIQUE – THIRD VERSION.

Question/Affirmative Example

I cannot see the messages easily

If the message source is small, or

if the message is in a difficult
location to be seen

Does the page inform you in

which part of the application you

are at?

Some mechanism to inform you

on which page of the system you

are at

Is the page part of a page

sequence of a task (e.g., a
registration with several steps)?

A registration form with several

steps, or a form with several pages

Are the mandatory fields to be

filled in well defined?

Defined by a symbol as ―*‖ or a

similar one

III. EMPIRICAL EVALUATION

Following the experimental methodology, we designed a
observational comparative study to evaluate the WE-QT
technique. As the WE-QT has the WDP-RT as its base
technique, we initially used the WDP-RT technique as the
compared technique. We used statistical test to analyze the
quantitative data and we present the subjective results. The
second observational study is detailed below.

We selected 16 students from the third year of
Information System course at the Federal University of
Amazonas (UFAM), which were attending an Analysis and
Design class. All the participants were familiar with Web
applications. One participant had high knowledge and
experience on usability, three participants had medium, four
of them had low and the others had none. We divided them
into two groups: Group 1 (participants used the WE-QT
technique) and Group 2 (participants used the WDP-RT
technique). All the participants carried out the inspection
individually. Table II shows the participants characterization
regarding usability knowledge and experience. The
participants had also participated in another study,
concerning usability of models, in which it was provided two
hours of usability training.

The evaluation object was the MPS.Br Portal [20]. This
application is responsible for providing information
concerning the MPS.Br program. The MPS.Br is a
nationwide program, equivalent to the CMMI [29], for
software process improvement in Brazilian organizations.
The MPS.Br aims to establish a feasible pathway for
organizations to achieve benefits from implementing
software process improvement at reasonable costs, especially
small and medium-size enterprises [30]. It was the same
application used in the feasibility study, as described in [11].
However, due to the large number of pages to be evaluated

in the feasibility study, we only selected two tasks, with two
web pages each, to be executed by the inspectors during the
evaluation. The following tasks comprised the inspection‘s
context: Obtain information about the Implementation
Guides. These guides describe orientations on how to
implement some expected results of the MPS.Br program
and access the presentations provided by the MPS.Br Portal,
such as presentations about the MPs.Br program, workshops,
and projects.

We used Morae (version 3.3) usability testing software to
capture the inspection section of each inspector and to assist
the collection of the perceptions of each inspector during the
evaluation. Subjective data was gathered at the completion of
the inspection phase using post-inspection questionnaires.
We provided the subjects with the Inspection Guide and a
Consent Form (all the subjects signed the consent form
before starting the inspection).

To support the mapping process of the WE-QT
technique, we developed an automated tool called WE-QT
Assistant. The support tool was designed to minimize the
effort of the inspectors during the problem detection phase.
Therefore, the tool was developed to be located at the left
side of the screen, allowing the inspection to be performed
without the need to switch windows. The left side of Figure
2 illustrates the WE-QT Assistant. The Assistant provides
text boxes in order to allow the inspectors describing the
identified usability problems instead of needing an extra
document to report the problems.

TABLE II. SUMMARY OF INSPECTION RESULTS PER SUBJECT

No

Usabil.

Exp.

Discr

ep.

No

Real

Prob.

False-

positiv

es

Time

(min)

Effectiv.

(%)

Effic.

(Prob.

/hour)

W
E

-Q
T

1 None 9 7 2 37 7,22% 11,35

2 Low 17 9 8 37 9,28% 14,59

3 Low 26 16 10 35 16,49% 27,43

4 Medium 28 14 14 22 14,43% 38,18

5 None 37 31 6 72 31,96% 25,83

6 None 65 55 10 75 56,70% 44,00

7 Medium 31 25 6 39 25,77% 38,46

8 None 30 22 8 53 22,68% 24,91

W
D

P
-R

T

9 None 13 7 6 80 8,64% 5,25

10 Low 21 9 12 86 11,11% 6,28

11 Medium 43 24 19 109 29,63% 13,21

12 High 19 9 10 65 11,11% 8,31

13 Low 65 44 21 163 54,32% 16,20

14 None 24 15 9 104 18,52% 8,65

15 None 31 21 10 107 25,93% 11,78

16 None 13 6 7 77 7,41% 4,68

In order to minimize the threats to validity, we developed

a tool to support the WDP-RT technique as well. The tool is
similar to the WE-QT Assistant, and also has text boxes to
problem description and it is located on the left side of the
screen.

653Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 675 / 679

Figure 2. Subject using the WE-QT technique during the study.

In this study, we used the effectiveness and efficiency
indicators. These indicators have been employed in other
studies concerning usability inspection methods as well
[10][11][19]. Effectiveness is defined as the ratio between

the number of detected problems and the total of existing
problems; and Efficiency is defined as the ratio between the
number of detected problems and the time spent in the
inspection.

We also collected participants‘ subjective impressions of
the techniques through a post-inspection questionnaire,
which was based on the Technology Acceptance Model
(TAM) [31]. This model aims to examine a new technology
usage and verify the user perceptions concerning usefulness
and ease-of-use, the key determinants of individual
technology adoption.

The experiment was used to test the following
hypotheses concerning to the effectiveness and efficiency
(null and corresponding alternative hypotheses are given):

 H01: There is no difference between the effectiveness
of techniques WE-QT and WDP-RT.

 HA1: The effectiveness of the WE-QT technique is
greater than the effectiveness of the WDP-RT
technique.

 H02: There is no difference between the efficiency of
techniques WE-QT and WDP-RT.

 HA2: The efficiency of the WE-QT technique is
greater than the efficiency of the WDP-RT technique.

The inspection phase was carried out by each subject
individually. They were provided with the instruments to
accomplish the inspection and received instructions about the

evaluation by the moderator. Subjects from Group 1 (WE-
QT) were provided with a three minutes presentation on how
to conduct an inspection flow, while subjects of Group 2
(WDP-RT) were provided with information concerning the

inspection flow plus a five minutes exemplification of
usability problems detection using the WDP-RT technique
and its instructions. It is worth to mention that the subjects
from Group 1 did not receive training on the WE-QT
technique. Once the inspector understood the procedures, the
inspection process began. Figure 2 shows a subject from
Group 1 evaluating the MPS.Br Portal with the WE-QT
Assistant (WE-QT technique, problem detection and
description); it also illustrates in the interface of the
application an example of an uncovered problem. One
researcher acted as the facilitator, being responsible for
conducting the detection phase and passing the initial
information to the subjects. After the detection phase, the
subjects received the post-inspection questionnaire by e-mail
and they could answer them at home.

At the end of the inspection phase, the researches
elaborated a list containing all usability problems detected by
the inspectors, without duplicates. Then, a meeting attended
by the researchers and a control group formed by usability
specialists took place. The list of problems was discriminated
to classify these problems into real problems or false
positives. To eliminate any possible influence during the
discrimination meeting, the problem list did not contain any
information about witch technique uncovered witch
problems. The authors of the technique did not influence the
discrimination, they were not allowed to comment or give

654Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 676 / 679

their opinion about whether the discriminated problems were
real problems or false-positives.

A. Results

After the discrimination meeting, we were able to
analyze the gathered data. We computed the number of
detected problems, false-positives, time spent during the
inspection phase, efficiency and efficacy for each inspector
of each group.

1) Quantitative results: As a result of the inspection, the
inspectors identified a total of 135 real problems, including
both techniques. The WE-QT group detected a total of 97
problems, while the WDP-RT group uncovered 81. Table III
shows the averages for the time, and effectiveness and
efficiency indicators. Regarding the efficiency indicator,
inspectors detected an average of 31.91 defects per hour
using the WE-QT technique. Table II presents the overall
result of the usability evaluation for each inspector,
including their experience level.

TABLE III. AVERAGE EFFECTIVENESS AND EFFICIENCY PER GROUP.

Technique

Average

Effectiveness

(%)

Average

Efficiency

(Prob/hour)

Average

Time (min)

Total

Known

Defects

WE-QT 23,07 28,09 46,25 97

WDP-RT 20,83 9,29 98,88 81

We carried out a statistical analysis using the statistical

tool SPSS (SPSS Statistics version 17.0), and α = 0.05. This
choice of statistical significance was motivated by the small
sample size used in this experiment.

Concerning H1: Effectiveness of Techniques WE-QT
and WDP-RT, we compared the two samples, Group 1 (WE-
QT) and Group 2 (WDP-RT), using the Mann-Whitney test,
a non-parametric test, we found no significant differences
between the two groups (p = 0.753). These results show that
both techniques provided similar effectiveness when used to
inspect the MPS.Br Portal. Figure 3 shows the boxplot with
the distribution of effectiveness per subject, per technique.

Regarding H2: Efficiency of Techniques WE-QT and
WDP-RT, the boxplots with the distribution of efficiency per
subject, per technique (see Figure 4) show that Group 1
(WE-QT) was considerably more efficient than Group 2
(WDP-RT) to inspect the usability of the MPS.Br Portal:
Group 3‘s median is significantly higher than Group 2‘s.
When we compared the two samples using the Mann-
Whitney test, it confirmed significant statistical differences
between the two groups (p = 0.021), which supports the
alternative hypothesis HA2, and therefore rejects the null
hypothesis H02. These results suggest that the WE-QT
technique efficiency was significantly higher than the WDP-
RT‘s. Results show that effectiveness of both techniques is
similar; however the WE-QT technique was nearly three
times more efficient then the WDP-RT technique.

Figure 3. Boxplots for number of defects found per subject per technique.

Figure 4. Boxplots for efficiency per subject per technique.

2) Subjective results: When we proposed the WE-QT
technique, one of our aims was to improve users‘
satisfaction when using the technique, therefore we are also
evaluate this aspect in this study. We collected the subjects‘
opinions with respect to key determinants of individual
technology adoption, perceived ease of use and usefulness;
collected with the post-inspection questionnaire, based on
the TAM model. The questionnaire had closed and opened
questions. The closed questions were based on a 6 value
scale – 0% (Totally Disagree), 1%-30% (Strongly
Disagree), 31%-50% (Partially disagree), 51%-69%
(Partially Agree), 70%-99% (Strongly Agree) and 100%
(Totally Agree); note that it did not have a neutral option,
forcing the subjects to stand a position on whether they
agree or disagree. Figure 5 shows the average subject
ratings, together with standard deviations. The ease of use

655Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 677 / 679

Figure 5. Results of the post-inspection questionnaire.

 perception comprises factors such as learnability,
customization of use, ability gain and understanding of the
technique; while usefulness perception covers factors such
as usefulness, performance improvement, productivity, and
efficiency when using the technique. We also add questions
addressing the language of the techniques, to identify any
possible improvements suggestions. The questionnaire
contained discursive questions as well. According to Figure
5, the WE-QT technique was perceived slightly more easy
to use and useful then the WDP-RT technique. The both
techniques were ranked similarly to the language aspects.
The participants‘ subjective answers could be affected by
the tool to support the techniques automations, which we
will evaluate in further studies. The subjective data were
important to improve the WE-QT technique.

IV. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the WE-QT technique, a
question-based usability evaluation technique for web
applications, specifically tailored for software developers
with little knowledge HCI principles and concepts, more
specifically on inspections and usability. We used a formal
statistic experiment to compare the efficiency and
effectiveness of both techniques: WE-QT and WDP-RT. The
results showed that our technique in significantly more
efficient than and as effective as the WDP-RT technique. We
also evaluate the techniques concerning the perceived ease of
use, usefulness and language of the techniques. Subjective
results showed that our technique was perceived slightly
more easy to use and useful then the WDP-RT technique.

These results are very promising. However, we will continue
to research our technique. Limitations of this research
include: focusing on novice inspectors, additional research is
required to specific address this topic; the small sample of
participants; comparing WE-QT only to one technique.
Future work includes: (1) improvement of the technique
based on a detailed analysis of the detected usability
problems, false-positives and time spend; (2) investigation of
a new arrangements for each usability questions, for
instance, if efficiency, effectiveness and user satisfaction
can be improved if the questions regarding the web
application as a whole came first then the questions
regarding each individual page; (3) further studies comparing
the WE-QT technique with other usability inspection
techniques specific for evaluate web applications, with a
greater number of subjects; and (4) the replication of the
experiment in an industrial environment. With this research
we also aim to encourage professionals involved on the
development process of interactive systems, such as
developers, analysts, testers and stakeholders, to use HCI
principles and methods in the development cycle.

ACKNOWLEDGMENT

The authors thank the support granted by CAPES process
00.889.834/0001-08; the researchers Luis Rivero and
Natasha Valentim for participating on the discrimination
meeting; Martha Fernandes and also all participants of the
conducted study.

656Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 678 / 679

REFERENCES

[1] M. Zaki and P. Forbrig, ―A Methodology for Generating an
Assistive System for Smart Environments Based on
Contextual Activity Patterns‖ The Fifth ACM SIGCHI
Symposium on Engineering Interactive Computing Systems
(EICS 2013) ACM, Jun. 2013, pp. 75-80, ISBN: 978-1-4503-
2138-9, doi: 10.1145/2494603.2480327.

[2] J. Nielsen, Heuristic evaluation. Jakob Nielsen, Mack, R. L.
(eds), ―Usability inspection methods‖, Heurisitic Evaluation,
John Wiley & Sons, Inc, 1994.

[3] P. Lew, L. Zhang, and S. Wang, ―Model and measurement for
web application usability from an end user perspective‖.
Quality Assessment in Web, Jun. 2009, pp. 1613-0073.

[4] E. Mendes, N. Mosley, and S. Counsell, ―The need for web
engineering: an introduction‖. Mendes E., Mosley N. (eds.):
‗Web engineering‘ Springer, pp. 1-26, 2006.

[5] ISO (1997), ISO 9241-11: Ergonomic requirements for office
work with visual display terminals (VDTs). Part 11 —
Guidelines for specifying and measuring usability. Gènève:
International Organisation for Standardisation.

[6] M. Matera, F. Rizzo, and G. Carughi, ―Web Usability:
Principles and Evaluation Methods‖. E. Mendes, N. Mosley,
(eds), Web Engineering, Spinger Verlag, 2006.

[7] B. Bonifácio, D. Santos, C. Araújo, S. Vieira, and T. Conte,
―Applying Usability Inspection Techniques for Evaluating
Web Mobile Applications‖ 9th Brazilian Symposium of
Human Factors on Computer Systems (IHC 2010), Oct. 2010,
pp. 189-192,. (In Portuguese).

[8] J. Bak, K. Nguyen, P. Risgaard, and J. Stage, ―Obstacles to
Usability Evaluation in Practice: A Survey of Software
Development Organizations‖ Nordic conference on Human-
computer interaction (NordiCHI 2008), Oct. 2008, pp. 23 –
32.

[9] B. Bonifácio, P. Fernandes, H. Oliveira, and T. Conte,
―UBICUA: A Customizable Usability Inspection Approach
for Web Mobile Applications‖ IADIS International
Conference WWW/Internet, vol. 1, Nov. 2011, pp. 45-52.

[10] T. Conte, J. Massolar, E. Mendes, and G. Travassos, ―Web
Usability Inspection Technique Based on Design
Perspectives‖ IET Software Journal, vol. 3, n. 2, Apr. 2009,
pp. 106-123,.

[11] P. Fernandes, L. Rivero, B. Bonifácio, D. Santos, and T.
Conte, ―Evaluating a New Usability Inspection Approach: a
Quantitative and Qualitative Analysis‖ 8th Experimental
Software Engineering Latin American Workshop (ESELAW
2011) vol. 1, Apr. 2011, pp. 67-76. (In Portuguese).

[12] P. Fernandes, B. Bonifácio, and T. Conte, ―Improving a Web
Usability Inspection Technique through an Observational
Study‖ 24th International Conference on Software
Engeneering and Knowledge Engineering, vol.1, Jul. 2012,
pp. 588-593.

[13] F. Shull, J. Carver, and G. Travassos, ―An empirical
methodology for introducing software processes‖ ACM
SIGSOFT Software Engineering Notes, vol. 26, n. 5, Sep.
2001, pp. 288-296, doi: 10.1145/503209.503248.

[14] P. Fernandes, B. Bonifacio, and T. Conte, ―WE-QT: A Web
Usability Inspection Technique to Support Novice Inspectors‖
21th Brazilian Symposium on Software Engineering (SBES
2012), Sep. 2012, pp. 11-20, ISBN: 978-1-4673-4472-2, doi:
10.1109/SBES.2012.30.

[15] S. Krug, Don't Make Me Think: A Common Sense Approach
to the Web (2nd Edition), 2005.

[16] J. Offutt, ―Quality Attributes of Web Software Applications‖
IEEE Software, vol. 19, n. 2, Mar.-Apr. 2002, pp. 25-32.

[17] E. Luna, J. Panach, J. Grigera, G. Rossi, and O. Pastor,
―Incorporating usability requirements in a test/model-driven
web engineering approach‖ Journal of Web Engineering, vol.
9, n. 2, Mar. 2010, pp. 132-156.

[18] H. Rocha and M. Baranauskas, ―Design and Evaluation of
Human-Computer Interface‖ M.C.C., 1. ed. Campinas: Emopi
Publisher and Graphic, vol. 1, p. 244, 2003. (in Portuguese).

[19] A. Fernandez, S. Abrah, and E. Insfran, ―Towards to the
validation of a usability evaluation method for model-driven
web development‖ 4th International Symposium on Empirical
Software Engineering and Measurement, Sep. 2010, pp. 54,
ISBN: 978-1-4503-0039-1 doi: 10.1145/1852786.1852855.

[20] MPS.Br: Program for software process improvement in Brazil
(in Portuguese) http://www.softex.br/mpsbr/ [retrieved:
January, 2013].

[21] M. Costabile and M. Matera, ―Guidelines for Hypermedia
Usability Inspection‖ IEEE Computer Society Press, vol. 8, n.
1, pp. 66-69, 2001.

[22] A. Strauss and J. Corbin, ―Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded
Theory‖, 2ed., SAGE Publications, 2010, pp. 1-3, ISSN:
0318-9090.

[23] L. Triacca, A. Inversini, and D. Bolchini, ―Evaluating Web
usability with MiLE+‖ 7th IEEE International Symposium on
Web Site Evolution, Sep. 2005, pp. 22-29, ISBN:0-7695-
2470-2, doi: 10.1109/WSE.2005.6.

[24] M. Blackmon, P. Polson, and M. Kitajima, ―Cognitive
walkthrough for the web‖ Conference on Human Factors in
Computing Systems (CHI 2002) ACM, Apr. 2002, pp. 463–
470, ISBN:1-58113-453-3 doi:10.1145/503376.503459.

[25] L. Filgueiras, S. Martins, C. Tambascia, and R. Duarte,
―Recoverability Walkthrough: An Alternative to Evaluate
Digital Inclusion Interfaces‖ Latin American Web Congress,
Nov. 2009, pp. 71-76, ISBN: 978-0-7695-3856-3, doi:
10.1109/LA-WEB.2009.32

[26] M. Allen, L. Currie, S. Bakken, V. Patel, and J. Cimino,
―Heuristic evaluation of paper-based Web pages: A simplified
inspection usability methodology‖ Journal of Biomedical
Informatics, vol. 39, n. 4, Aug. 2006, pp. 412 – 423, doi:
http://dx.doi.org/10.1016/j.jbi.2005.10.004.

[27] M. Gomes et al., ―WDP-RT: A usability inspection reading
technique for web applications‖ 6th Experimental Software
Engineering Latin American Workshop (ESELAW 2009),
vol. 1, Nov. 2009, pp. 124 – 133. (In Portuguese).

[28] M. Gomes, F. Santos, D. Santos, G. Travassos, and T. Conte,
―Evolving a Usability Evaluation Technique through In Vitro
and In Vivo Studies‖ 9th Brazilian Symposium on Software
Quality (SBQS 2010), vol. 1, Jun. 2010, pp. 229 – 244. (In
Portuguese)

[29] CMMI - Capability Maturity Model Integration.
http://www.sei.cmu.edu/cmmi/. [retrieved: July, 2014].

[30] M. Montoni, A. Rocha, and K. Weber, ―MPS.BR: a
successful program for software process improvement in
Brazil‖. Software Process Improvement and Practice, vol. 14,
Sep. – Oct. 2009, pp. 289-300, doi: 10.1002/spip.428.

[31] F. Davis, ―Perceived usefulness, perceived ease of use, and
user acceptance of information technology‖, MIS Quarterly,
vol. 13, n. 3, Sep. 1989, pp. 319-340.

[32] A. Fernandez, E. Insfran, and S. Abrahão, ―Usability
evaluation methods for the web: A systematic mapping study‖
Journal Information and Software Technology, vol. 53, n. 8,
Mar. 2011, pp. 789-817, doi: 10.1016/j.infsof.2011.02.007.

[33] M. Gomes and T. Conte, ―WDP-RT v2: A reading technique
for usability inspection of Web applications (In Portuguese)‖.
Technical Report RT-DCC-ES002/2009, DCC/UFAM, 2009.

657Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Powered by TCPDF (www.tcpdf.org)

 679 / 679

http://www.tcpdf.org

