
ICSEA 2018

The Thirteenth International Conference on Software Engineering Advances

ISBN: 978-1-61208-668-2

October 14 - 18, 2018

Nice, France

ICSEA 2018 Editors

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Radek Koci, Brno University of Technology, Czech Republic

 1 / 160

ICSEA 2018

Forward

The Thirteenth International Conference on Software Engineering Advances (ICSEA 2018), held
on October 14 - 18, 2018- Nice, France, continued a series of events covering a broad spectrum of
software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and
maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of
methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference
topics covered classical and advanced methodologies, open source, agile software, as well as software
deployment and software economics and education.

The conference had the following tracks:

 Advances in fundamentals for software development

 Advanced mechanisms for software development

 Advanced design tools for developing software

 Software engineering for service computing (SOA and Cloud)

 Advanced facilities for accessing software

 Software performance

 Software security, privacy, safeness

 Advances in software testing

 Specialized software advanced applications

 Web Accessibility

 Open source software

 Agile and Lean approaches in software engineering

 Software deployment and maintenance

 Software engineering techniques, metrics, and formalisms

 Software economics, adoption, and education

 Business technology

 Improving productivity in research on software engineering

 Trends and achievements

Similar to the previous edition, this event continued to be very competitive in its selection process
and very well perceived by the international software engineering community. As such, it is attracting
excellent contributions and active participation from all over the world. We were very pleased to receive
a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2018 technical program
committee as well as the numerous reviewers. The creation of such a broad and high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and efforts to contribute to the ICSEA 2018. We truly believe that
thanks to all these efforts, the final conference program consists of top quality contributions.

 2 / 160

This event could also not have been a reality without the support of many individuals, organizations
and sponsors. We also gratefully thank the members of the ICSEA 2018 organizing committee for their
help in handling the logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2018 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in software engineering research. We
also hope Nice provided a pleasant environment during the conference and everyone saved some time
for exploring this beautiful city.

ICSEA 2018 Steering Committee

Herwig Mannaert, University of Antwerp, Belgium
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Abo Akademi University, Finland
Radek Koci, Brno University of Technology, Czech Republic
Stephen W. Clyde, Utah State University, USA
Sébastien Salva, University Clermont Auvergne (UCA), Limos, France
Christian Kop, Universitaet Klagenfurt, Austria
Luis Fernandez-Sanz, Universidad de Alcala, Spain
Bidyut Gupta, Southern Illinois University, USA

ICSEA 2018 Industry/Research Advisory Committee

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
J. Paul Gibson, Telecom Sud Paris, France
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Muthu Ramachandran, Leeds Beckett University, UK
Michael Gebhart, iteratec GmbH, Germany

 3 / 160

ICSEA 2018

Committee

ICSEA Steering Committee
Herwig Mannaert, University of Antwerp, Belgium
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Abo Akademi University, Finland
Radek Koci, Brno University of Technology, Czech Republic
Stephen W. Clyde, Utah State University, USA
Sébastien Salva, University Clermont Auvergne (UCA), Limos, France
Christian Kop, Universitaet Klagenfurt, Austria
Luis Fernandez-Sanz, Universidad de Alcala, Spain
Bidyut Gupta, Southern Illinois University, USA

ICSEA Industry/Research Advisory Committee
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
J. Paul Gibson, Telecom Sud Paris, France
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Muthu Ramachandran, Leeds Beckett University, UK
Michael Gebhart, iteratec GmbH, Germany

ICSEA 2018 Technical Program Committee

Shahliza Abd Halim, Universiti of Technologi Malaysia (UTM), Malaysia
Erika Abraham, RWTH Aachen University, Germany
Muhammad Ovais Ahmad, University of Oulu, Finland
Jacky Akoka, CNAM & IMT, France
Saadia Binte Alam, Advanced Medical Engineering Center (AMEC) | University of Hyogo, Japan
Mohammad Alshayeb, King Fahd University of Petroleum and Minerals, Saudi Arabia
Zakarya Alzamil, King Saud University, Saudi Arabia
Daniel Andresen, Kansas State University, USA
Gilbert Babin, HEC Montréal, Canada
Doo-Hwan Bae, School of Computing - KAIST, Korea
Aleksander Bai, Norsk Regnesentral, Norway
Jorge Barreiros, ISEC (Instituto Superior de Engenharia de Coimbra) / NOVA-LINCS, Portugal
Bernhard Bauer, University of Augsburg, Germany
Ateet Bhalla, Independent Consultant, India
Kenneth Boness, University of Reading, UK
Mina Boström Nakicenovic, NetEnt, Stockholm, Sweden
Nadia Bouassida, Higher Institute of Multimedia and Informatics, Sfax, Tunisia
Hongyu Pei Breivold, ABB Corporate Research, Sweden
Fernando Brito e Abreu, Instituto Universitário de Lisboa (ISCTE-IUL), Portugal

 4 / 160

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Luigi Buglione, Engineering Ingegneria Informatica SpA, Italy
Carlos Henrique Cabral Duarte, Brazilian Development Bank (BNDES), Brazil
Haipeng Cai, Washington State University, Pullman, USA
Gabriel Campeanu, Mälardalen University, Sweden
Ricardo Campos, Polytechnic Institute of Tomar | LIAAD / INESC TEC - INESC Technology and Science,
Porto, Portugal
José Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal
Everton Cavalcante, Federal University of Rio Grande do Norte, Brazil
Antonin Chazalet, Orange, France
Fuxiang Chen, Hong Kong University of Science and Technology, Hong Kong
Federico Ciccozzi, Mälardalen University, Sweden
Marta Cimitile, University Unitelma Sapienza of Rome, Italy
Siobhán Clarke, Trinity College Dublin | University of Dublin, Ireland
Stephen W. Clyde, Utah State University, USA
Methanias Colaço Júnior, Federal University of Sergipe, Brazil
Rebeca Cortazar, University of Deusto, Spain
Monica Costa, Politechnic Institute of Castelo Branco, Portugal
Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland
Darren Dalcher, Hertfordshire Business School, UK
Yuetang Deng, Tencent, China
Vincenzo Deufemia, University of Salerno, Italy
Themistoklis Diamantopoulos, Aristotle University of Thessaloniki, Greece
Ivan do Carmo Machado, Federal University of Bahia (UFBA), Brazil
Tadashi Dohi, Hiroshima University, Japan
Lydie du Bousquet, Université Grenoble-Alpes (UGA), France
Jorge Edison Lascano, Universidad de las Fuerzas Armadas - ESPE, Ecuador
Holger Eichelberger, University of Hildesheim, Software Systems Engineering, Germany
Younes El Amrani, University Mohammed-V Rabat, Morocco
Gledson Elias, Federal University of Paraíba (UFPB), Brazil
Romina Eramo, University of L'Aquila, Italy
Farima FarimahiniFarahani, University of California - Irvine, USA
Kleinner Farias, University of Vale do Rio dos Sinos, Brazil
Adel Ferdjoukh, University of Nantes, France
Luis Fernandez-Sanz, Universidad de Alcala, Spain
M. Firdaus Harun, RWTH Aachen University, Germany
Mohammed Foughali, INSA Toulouse, France
Jicheng Fu, University of Central Oklahoma, USA
Felipe Furtado, CESAR - Recife Center for Advanced Studies an Systems, Brazil
Luiz Eduardo Galvão Martins, Federal University of São Paulo, Brazil
Jose Garcia-Alonso, University of Extremadura, Spain
Michael Gebhart, iteratec GmbH, Germany
Wided Ghardallou, Faculty of Sciences of Tunis, Tunisia
J. Paul Gibson, Telecom Sud Paris, France
Pascal Giessler, Karlsruhe Institute of Technology, Germany
Gregor Grambow, AristaFlow GmbH, Germany
Jiaping Gui, University of Southern California, USA
Joe Zhensheng Guo, Siemens AG - Muenchen, Germany

 5 / 160

Bidyut Gupta, Southern Illinois University, USA
Konstantin Gusarov, Riga Technical University, Latvia
Nahla Haddar Ouali, Higher Institute of Business Administration of Gafsa, Tunisia
Rachel Harrison, Oxford Brookes University, UK
Shinpei Hayashi, Tokyo Institute of Technology, Japan
Qiang He, Swinburne University of Technology, Australia
Philipp Helle, Airbus, Germany
José R. Hilera, University of Alcalá, Spain
Siv Hilde Houmb, Secure-NOK AS, Norway
Helena Holmström Olsson, Malmö University, Sweden
LiGuo Huang, Southern Methodist University, USA
Jun Iio, Chuo University, Japan
Gustavo Illescas, Universidad Nacional del Centro-Tandil-Bs.As., Argentina
Emilio Insfran, Universitat Politecnica de Valencia, Spain
Shareeful Islam, University of East London, UK
Judit Jász, University of Szeged, Hungary
Kashif Javed, Åbo Akademi University, Finland
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Herwig Mannaert, University of Antwerp, Belgium
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Ahmed Kamel, Offutt School of Business | Concordia College, USA
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Chia Hung Kao, National Taitung University, Taiwan
Carlos Kavka, ESTECO SpA, Italy
Siffat Ullah Khan, University of Malakand, Pakistan
Reinhard Klemm, Avaya, USA
Mourad Kmimech, ISIMM | University of Monastir, Tunisia
Takashi Kobayashi, Tokyo Institute of Technology, Japan
Radek Koci, Brno University of Technology, Czech Republic
Mieczyslaw Kokar, Northeastern University, Boston, USA
Christian Kop, Universitaet Klagenfurt, Austria
Georges Edouard Kouamou, National Advanced School of Engineering - Yaoundé, Cameroon
Emil Krsak, University of Žilina, Slovak Republic
Rob Kusters, Eindhoven University of Technology & Open University, The Netherlands
Alla Lake, LInfo Systems, LLC - Greenbelt, USA
Dieter Landes, University of Applied Sciences Coburg, Germany
Jannik Laval, University of Lyon, France
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Valentina Lenarduzzi, Tampere University of Technology, Finland
Maurizio Leotta, University of Genova, Italy
Panos Linos, Butler University, USA
Peizun Liu, Northeastern University, USA
André Magno Costa de Araújo, Federal University of Pernambuco, Brazil
Sajjad Mahmood, King Fahd University of Petroleum and Minerals, Saudi Arabia
Nicos Malevris, Athens University of Economics and Business, Greece
Neel Mani, ADAPT Center for Digital Content Technology | Dublin City University, Ireland
Alexandre Marcos Lins de Vasconcelos, Federal University of Pernambuco, Brazil
Alessandro Margara, Politecnico di Milano, Italy

 6 / 160

Daniela Marghitu, Auburn University, USA
Beatriz Marín, Universidad Diego Portales, Chile
Célia Martinie, IRIT, University Toulouse 3 Paul Sabatier, France
Vanessa Matias Leite, Universidade Estadual de Londrina, Brazil
Fuensanta Medina-Dominguez, Carlos III University of Madrid, Spain
Mariem Mefteh, University of Sfax, Tunisia
Jose Merseguer, Universidad de Zaragoza, Spain
Vojtech Merunka, Czech University of Life Sciences in Prague / Czech Technical University in Prague,
Czech Republic
Sanjay Misra, Covenant University, Nigeria
Md Rakib Hossain Misu, University of Dhaka, Bangladesh
Óscar Mortágua Pereira, Telecommunications Institute | University of Aveiro, Portugal
Mohammad Reza Nami, TUDelft University of Technology, The Netherlands
Marcellin Nkenlifack, University of Dschang, Cameroon
Marc Novakouski, Software Engineering Institute, USA
Roy Oberhauser, Aalen University, Germany
Pablo Oliveira Antonino, Fraunhofer IESE, Germany
Flavio Oquendo, IRISA (UMR CNRS) - University of South Brittany, France
Muhammed Maruf Öztürk, Suleyman Demirel University, Turkey
Marcos Palacios, University of Oviedo, Spain
Fabio Palomba, TU Delft, The Netherlands
Mike Papadakis, University of Luxembourg, Luxembourg
Beatriz Pérez Valle, University of La Rioja, Spain
Pasqualina Potena, RISE SICS Västerås, Sweden
Rafael Queiroz Gonçalves, Federal University of Santa Catarina, Brazil
Abdallah Qusef, Princess Sumaya University for Technology, Jordan
Claudia Raibulet, Universita' degli Studi di Milano-Bicocca, Italy
Muthu Ramachandran, Leeds Beckett University, UK
Raman Ramsin, Sharif University of Technology, Iran
Gianna Reggio, DIBRIS - Università di Genova, Italy
Fernando Reinaldo Ribeiro, Polytechnic Institute of Castelo Branco, Portugal
Michele Risi, University of Salerno, Italy
Gabriela Robiolo, Universidad Austral, Argentina
Rodrigo G. C. Rocha, Federal Rural University of Pernambuco - UFRPE, Brazil
Daniel Rodriguez, University of Alcalá, Spain
Colette Rolland, University of Paris 1 Pantheon-Sorbonne, France
Sandro Ronaldo Bezerra Oliveira, UFPA - Federal University of Pará, Brazil
Álvaro Rubio-Largo, Universidade NOVA de Lisboa, Portugal
Mehrdad Saadatmand, RISE SICS Västerås, Sweden
Gunter Saake, Otto-von-Guericke-Universitaet, Magdeburg, Germany
Francesca Saglietti, University of Erlangen-Nuremberg, Germany
Djamel Eddine Saidouni, University Constantine 2 - Abdelhamid Mehri, Algeria
Sébastien Salva, University Clermont Auvergne (UCA), Limos, France
María-Isabel Sanchez-Segura, Carlos III University of Madrid, Spain
Hiroyuki Sato, University of Tokyo, Japan
Sagar Sen, Simula Research Laboratory, Norway
Vesna Sesum-Cavic, Vienna University of Technology, Austria
Istvan Siket, University of Szeged, Hungary

 7 / 160

Felipe Silva Ferraz, CESAR School, Brazil
Maria Spichkova, RMIT University, Australia
Fausto Spoto, University of Verona / JuliaSoft Srl, Italy
Sidra Sultana, National University of Sciences and Technology, Pakistan
Mahbubur Rahman Syed, Minnesota State University, Mankato, USA
Sahar Tahvili, RISE SICS Västerås AB, Sweden
Shigeaki Tanimoto, Chiba Institute of Technology, Japan
Sobhan Yassipour Tehrani, King's College London & Jaguar Land Rover, UK
Dhafer Thabet, University of Mannouba, Tunisia
Pierre F. Tiako, Tiako University, USA
Elena Troubitsyna, Abo Akademi University, Finland
Mariusz Trzaska, Polish-Japanese Academy of Information Technology, Poland
Masateru Tsunoda, Kindai University, Japan
Sylvain Vauttier, LGI2P - Ecole des Mines d'Alès, France
Colin Venters, University of Huddersfield, UK
Laszlo Vidacs, Hungarian Academy of Sciences / University of Szeged, Hungary
Vinay Vkulkarni, Tata Consultancy Services, India
Stefan Voget, Continental Automotive GmbH, Germany
Song Wang, University of Waterloo, Canada
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Bingyang Wei, Texas Christian University, USA
Xusheng Xiao, Case Western Reserve University, USA
Rihito Yaegashi, Kagawa University, Japan
Rohith Yanambaka Venkata, University of North Texas, USA
Guowei Yang, Texas State University, USA
Stoyan Yordanov Garbatov, OutSystems, Portugal
Haibo Yu, Shanghai Jiao Tong University, China
Saad Zafar, Riphah International University, Islamabad, Pakistan
Michal Žemlička, AŽD Praha / Charles University, Czech Republic
Qiang Zhu, The University of Michigan, Dearborn, USA
Martin Zinner, Technische Universität Dresden, Germany

 8 / 160

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 9 / 160

Table of Contents

LSTM Recurrent Neural Networks for Cybersecurity Named Entity Recognition
Houssem Gasmi, Jannik Laval, and Abdelaziz Bouras

1

A Practical Way of Testing Security Patterns
Loukmen Regainia and Sebastien Salva

7

An Ontology-Driven Framework for Security and Resiliency in Cyber Physical Systems
Rohith Yanambaka Venkata, Patrick Kamongi, and Krishna Kavi

13

An Experimental Evaluation of ITL, TDD and BDD
Luis A. Cisneros, Marisa Maximiano, Catarina I. Reis, and Jose A. Quina

20

Reinforcement Learning for Reliability Optimisation
Prasuna Saka and Ansuman Banerjee

25

Concurrency Analysis of Build Systems
Vasil Tenev, Bo Zhang, and Martin Becker

33

Measuring Success in Agile Software Development Projects: a GQM Approach
Abdullah Aldahmash and Andy Gravell

38

A Method to Optimize Technical Debt Management in Timed-boxed Processes
Luigi Lavazza, Sandro Morasca, and Davide Tosi

45

Continuous Improvement and Validation with Customer Touchpoint Model in Software Development
Tanja Sauvola, Markus Kelanti, Jarkko Hyysalo, Pasi Kuvaja, and Kari Liukkunen

52

Measuring and Improving the Quality of Services Provided by Data Centers: a Case Study
Martin Zinner, Kim Feldhoff, Michael Kluge, Matthias Jurenz, Ulf Markwardt, Daniel Sprenger, Holger Mickler,
Rui Song, Andreas Tschipang, Bjorn Gehlsen, and Wolfgang E. Nagel

61

The Various Challenges Faced by the Software Startup Industry in Saudi Arabia
Abdullah Alqahtani

72

Software Engineering Education: Sharing an Approach, Experiences, Survey and Lessons Learned
Jose Carlos Metrolho and Fernando Reinaldo Ribeiro

79

Multi-Clustering in Fast Collaborative Filtering Recommender Systems
Urszula Kuzelewska

85

 1 / 2 10 / 160

So You Want to Build a Farm: An Approach to Resource and Time Consuming Testing of Mobile Applications
Evgeny Pyshkin and Maxim Mozgovoy

91

Considerations for Adapting Real-World Open Source Software Projects Within the Classroom
Hyunju Kim

95

Sentiment-aware Analysis of Mobile Apps User Reviews Regarding Particular Updates
Xiaozhou Li, Zheying Zhang, and Kostas Stefanidis

99

Database Model Visualization in Virtual Reality: A WebVR and Benediktine Space Approach
Roy Oberhauser

108

Redefining KPIs with Information Flow Visualisation – Practitioners’ View
Jarkko Hyysalo, Markus Kelanti, and Jouni Markkula

114

Tracing and Reversing the Run of Software Systems Implemented by Petri Nets
Radek Koci and Vladimir Janousek

122

ADA Language for Software Engineering
Diana ElRabih

128

Supercomputer Calculation of Gas Flow in Metal Microchannel Using Multiscale QGD-MD Approach
Viktoriia Podryga and Sergey Polyakov

132

An Enumerative Variability Modelling Tool for Constructing Whole Software Product Families
Chen Qian and Kung-Kiu Lau

138

Feature-Oriented Component-Based Development of Software Product Families: A Case Study
Chen Qian and Kung-Kiu Lau

144

Powered by TCPDF (www.tcpdf.org)

 2 / 2 11 / 160

LSTM Recurrent Neural Networks

 for Cybersecurity Named Entity Recognition

Houssem Gasmi1,2, Abdelaziz Bouras1

1Computer Science Department, College of
Engineering, Qatar University

Doha, Qatar
2Université Lumière Lyon 2, Lyon, France

email:houssem.gasmi@qu.edu.qa
email:abdelaziz.bouras@qu.edu.qa

Jannik Laval
DISP Laboratory

Université Lumière Lyon 2
Lyon, France

email:jannik.laval@univ-lyon2.fr

Abstract— The automated and timely conversion of
cybersecurity information from unstructured online sources,
such as blogs and articles to more formal representations has
become a necessity for many applications in the domain
nowadays. Named Entity Recognition (NER) is one of the early
phases towards this goal. It involves the detection of the relevant
domain entities, such as product, version, attack name, etc. in
technical documents. Although generally considered a simple
task in the information extraction field, it is quite challenging in
some domains like cybersecurity because of the complex
structure of its entities. The state of the art methods require
time-consuming and labor intensive feature engineering that
describes the properties of the entities, their context, domain
knowledge, and linguistic characteristics. The model
demonstrated in this paper is domain independent and does not
rely on any features specific to the entities in the cybersecurity
domain, hence does not require expert knowledge to perform
feature engineering. The method used relies on a type of
recurrent neural networks called Long Short-Term Memory
(LSTM) and the Conditional Random Fields (CRFs) method.
The results we obtained showed that this method outperforms
the state of the art methods given an annotated corpus of a
decent size.

Keywords- Information Extraction; Named Entity
Recognition; Cybersecurity; LSTM; CRF.

I. INTRODUCTION

Timely extraction of cybersecurity information from
diverse online web sources, such as news, vendor bulletins,
blogs, forums, and online databases is vital for many types of
applications. One important application is the conversion of
unstructured cybersecurity information to a more structured
form like ontologies. Knowledge modeling of cyber-attacks
for instance simplifies the work of auditors and analysts [1].
At the heart of the information extraction tasks is the
recognition of named entities of the domain, such as vendors,
products, versions, or programming languages. The current
NER tools that give the best performance in the field are
based on feature engineering. These tools rely on the specific
characterizing features of the entities in the field, for
example, a decimal number that follows a product is very
likely to be the version of that product and not quantities of

it. A sequence of words starting with capital letters is likely
to be a product name rather than a company name and so on.

Feature engineering has many issues and limitations.
Firstly, it relies heavily on the experience of the person and
the lengthy trial and error process that accompanies that.
Secondly, feature engineering relies on look-ups or
dictionaries to identify known entities [2]. These dictionaries
are hard to build and harder to maintain especially with
highly dynamic fields, such as cybersecurity. These activities
constitute the majority of the time needed to construct these
NER tools. The results could be satisfactory despite requiring
considerable maintenance efforts to keep them up to date as
more products are released and written about online.
However, these tools are domain specific and do not achieve
good accuracy when applied to other domains. For instance,
a tool that is designed to recognize entities in the
biochemistry field will perform very poorly in the domain of
cybersecurity [3].

CRFs emerged in recent years as the most successful and
de facto standard method for entity extraction. In this paper,
we show that a domain agnostic method that is based on the
recent advances in the deep learning field and word
embeddings outperforms traditional methods, such as the
CRFs. The first advancement, which is the word2vec word
embedding method was introduced by Mikolov et al. [4] . It
represents each word in the corpora by a low dimensional
vector. Besides the gain in space, one of the main advantages
of this representation compared to the traditional one-hot
vectors [5] is the ability of these vectors to reflect the
semantic relationship between the words. For instance, the
difference between the vectors representing the words ‘king’
and ‘queen’ is similar to the difference between the vectors
representing the words ‘man’ and ‘woman’. These
relationships result in the clustering of semantically similar
words in the vector space. For instance, the words ‘IBM’ and
‘Microsoft’ will be in the same cluster, while words of
products like ‘Ubuntu’ and ‘Web Sphere Server’ appear
together in a different cluster.
 The second advancement is the recent breakthroughs in
the deep learning field. It became feasible and practical
because of the increase in the hardware processing power

1Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 12 / 160

especially GPUs and the surge in the data available for
training. Deep neural networks can automatically learn non-
linear combinations of features with enough training data.
Hence, they alleviate the user from the time-consuming
feature engineering [6]. Besides requiring feature
engineering, traditional methods such as CRFs can only learn
linear combinations of the defined features. The specific deep
learning method we used is LSTM, which is a type of
Recurrent Neural Networks (RNNs) that are particularly
suitable for processing sequences of data, such as time series
and natural language text [7].

We applied the LSTM-CRF architecture suggested by
Lampal et al. [8] to the domain of cybersecurity NER. This
architecture combines LSTM, word2vec models, and CRFs.
The main characteristic of this method is that it is domain and
entity type agnostic and can be applied to any domain. All it
needs as input is an annotated corpus in the same format as
the CoNLL-2000 dataset [9]. We compared the performance
of LSTM-CRF with one of the fastest and most accurate CRF
implementations, which is CRFSuite [10]. Unlike domains
such as the biomedical domain, annotated corpora in the field
of cybersecurity are not widely available. The corpora used
to train the model were generated as part of the work of
Bridges et al [1]. LSTM-CRF achieved 2% better overall item
accuracy than the CRF tool.

The paper is organized as follows: Section II reviews the
related work in the field. Section III provides an overview of
the LSTM-CRF model. The next Section describes our
evaluation method and the data pre-processing steps. Section
V outlines and discusses the results. Finally, Section VI
concludes the paper.

II. RELATED WORK

Approaches to NER are mainly either rule-based or
machine learning/statistical-based [11], although quite often
the two techniques are mixed [12]. Rule-based methods
typically are a combination of Gazette-based lookups and
pattern matching rules that are hand-coded by a domain
expert. These rules use the contextual information of the
entity to determine whether candidate entities from the
Gazette are valid or not. Statistical based NER approaches
use a variety of models, such as Maximum Entropy Models
[13], Hidden Markov Models (HMMs) [14],Support Vector
Machines (SVMs) [15], Perceptrons [16], Conditional
Random Fields (CRFs) [17], or neural networks [18]. The
most successful NER approaches include those based on
CRFs. CRFs address the NER problem using a sequence-
labeling model. In this model, the label of an entity is
modeled as dependent on the labels of the preceding and
following entities in a specified window. Examples of
frameworks that are available for CRF-based NER are
Stanford NER and CRFSuite.

More recently, deep neural networks have been considered
as a potential alternative to the traditional statistical methods
as they address many of their shortcomings [19]. One of the
main obstacles that prevent the adoption of the methods

mentioned above is feature engineering. Neural networks
essentially allow the features to be learned automatically. In
practice, this can significantly decrease the amount of human
effort required in various applications. More importantly,
empirical results across a broad set of domains have shown
that the learned features in neural networks can give very
significant improvements in accuracy over hand-engineered
features. RNNs, a class of neural networks have been studied
and proved that they can process input with variable lengths
as they have a long time memory. This property resulted in
notable successes with several NLP tasks like speech
recognition and machine translation [20]. LSTM further
improved the performance of RNNs and allowed the learning
between arbitrary long-distance dependencies [21].

Various methods have been applied to extract entities and
their relations in the cybersecurity domain. Jones et al. [22]
implemented a bootstrapping algorithm that requires little
input data to extract security entities and the relationship
between them from the text. An SVM classifier has been
used by Mulwad et al. [23] to separate cybersecurity
vulnerability descriptions from non-relevant ones. The
classifier uses Wikitology and a computer security taxonomy
to identify and classify domain entities. The two previously
mentioned works relied on standard NER tools to recognize
the domain concepts. While these NER tools obtained
satisfactory results in general texts, such as news, they
performed poorly when applied to more technical domains,
such as cybersecurity because these tools are not trained on
domain-specific concept identification. For instance, the
Stanford NER tool is trained using a training corpus
consisting mainly of news documents that are largely
annotated with general entity types, such as names of people,
locations, organizations, etc.

To overcome the limitations of NER tools in technical
domains and identify mentions of domain-specific entities,
Goldberg [5] adopted an approach that trains the CRF
classifier of the Stanford NER framework on a hand-labeled
training data. He achieved acceptable results that are much
better than the two previous efforts. Although they produced
good results, the effort involved in painstakingly annotating
even a small corpus prohibits the practical implementation of
this approach. To address this problem, Joshi et al. [3]
developed a method to automate the labeling of training data
when there is no domain-specific training data available. The
labeling process leverages several data sources by combining
several related domain-specific structured data to infer
entities in the text. Next, a Maximum Entropy Markov
Model has been trained on a corpus of nearly 750,000 words
and achieved precisions above 90%. This type of training
relies on external sources for corpus annotation. These
resources need to be regularly maintained and updated to
maintain the quality and precision of the text labeling.

Given the benefits of neural networks, this paper aims to
apply the LSTM method on the problem of NER in the
cybersecurity domain using the corpora made available by

2Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 13 / 160

Joshi et al. [3]. We analyzed the results achieved and
compared them with the CRF method.

III. LSTM-CRF MODEL

In this Section, we will provide an overview of the LSTM-
CRF architecture as presented by Lample et al. [8].

A. LSTM-CRF Model

 RNNs are neural networks that have the capability to
detect and learn patterns in data sequences. These sequences
could be natural language text, spoken words, genomes, stock
market time series, etc. Recurrent networks combine the
current input (e.g., current word) with the previous perceived
input (earlier words in the text). However, RNNs are not good
at handling long-term dependencies. When the previous input
becomes large, RNNs suffer from the vanishing or exploding
gradient problems. They can also be challenging to training
and very unlikely to converge when the number of parameters
becomes large.
 LSTMs were first introduced by Hochreiter et al. [7] They
are an improvement on RNNs and can learn arbitrary long-
term dependencies, hence can be used for a variety of
applications such as natural language processing and stock
market analysis. LSTMs have a similar chain structure as
RNNs, but the structure of the repeating nodes is different.
LSTMs have multiple layers that communicate with each
other in a particular way. A typical LSTM consists of an input
gate, an output gate, a memory cell, and a forget gate. Briefly,
these gates control which input to pass to the memory cell to
remember it in the future and which earlier state to forget.
The implementation used is as follows [8]:

 The sigma sign σ is the elementwise sigmoid function and

⊙ is the elementwise product.
 Assuming we have a sequence of n words X = (x1, x2,…,
xn) and each word is represented by a vector of dimension d.
LSTM computes the left context lht which represents all the
words that precede the word t. A right context rht is also
computed using another LSTM that reads the same text
sequence in reverse order by starting from the end and go
backward. This technique proved very useful and the
resulting architecture, which consists of a forward LSTM and
a backward LSTM, is called a Bidirectional LSTM. The
resulting representation of a word is obtained by
concatenating the left and right contexts to get the

representation ht = [lht;rht]. This representation is useful for
various tagging applications, such as the NER problem at
hand in this paper.
 Figure 1 shows the architecture of the Bidirectional
LSTM-CRF model. It consists of three layers.

Figure 1. Bidirectional LSTM Architecture

From the bottom, the first layer is the embedding layer.

This layer takes as input the sequence S of words w1, w2, …, wt.

and emits a dense vector representation (embedding) xt for
each of the words in the sequence. The sequence of
embeddings x1, x2,… , xt is then passed to the bi-directional
LSTM layer which refines the input and feeds it to the final
CRF layer. In the last layer, the Viterbi algorithm is applied
to generate the output of the neural network, which represents
the most probable tag for the word.

IV. EVALUATION

 In this section, we will introduce the benchmark tool, the
preprocessing performed on the gold standard corpora, and
the metrics we used for evaluation.

A. Competitor System

 We compare the performance of the LSTM-CRF
architecture against a CRF tool that uses a generic feature set
for NER with word embeddings. These features were
designed for domain-independent NER and defined by the
tool writer. Using word embeddings in both systems will help
us compare only the CRF method with the suggested LSTM-
CRF architecture and negate the effect of word embeddings.
We used the CRFSuite to train a CRF model using the default
settings of the tool.

B. Gold standard corpora

 We performed our evaluation on around 40 entity types
defined in three corpora and also analyzed the performance
of the model on a subset of the seven most significant entities
of the domain. Each word in these corpora is auto-annotated
with an entity type. The corpus is an auto-labeled cyber
security domain text that was generated for use in the Stucco
project. It includes all descriptions from CVE/NVD entries
starting in 2010, in addition to entries from MS Bulletins and
Metasploit. As stated in [1]: “While labelling these
descriptions may be useful in itself, the intended purpose of
this corpus is to serve as training data for a supervised
learning algorithm that accurately labels other text

3Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 14 / 160

documents in this domain, such as blogs, news articles, and
tweets.”.

C. Text Preprocessing

 In its original form as provided by Bridges et al [1], all
the corpora were stored in a single JSON file with each
corpus represented by a high-level JSON element. To
facilitate further processing, we converted the file to the
CoNLL2000 format as the input for the LSTM-CRF model.
In the newly single annotated corpus, we removed the
separation between each of the three corpora and annotated
every word in a separate line. Each line contains the word
mentioned in the text and its entity type as show in the
following example:
…
Apple B-vendor
QuickTime B-application
before B-version
7.7 I-version
allows B-relevant_term
remote B-relevant_term
attackers I-relevant_term
to O
…
 As for the CRF model, the CRFSuite requires the training
data to be in the CoNLL2003 format that includes the Part of
Speech (POS) and chunking information with the NER tag
appearing first as shown below:
…
B-vendor Apple NNP O
B-application QuickTime NNP O
B-version before IN O
I-version 7.7 CD O
B-relevant_term allows NNS O
B-relevant_term remote VBP O
I-relevant_term attackers NNS O
O to TO O
…
 As the original corpus did not contain the POS and
chunking information, the training corpus had to be
reprocessed. We started by converting it to its original form
(i.e., a set of paragraphs). Then, we used the python NLTK
library to extract the necessary information for each word in
the corpus. Finally, we converted the text back to the
expected format shown above.

D. Evaluation Metrics

 We divided the annotated corpus into 3 disjoint subsets.
70% was allocated for the training of the model, 10% for the
holdout cross-validation set (or development), and 20% for
the evaluation of the model. We compared the two models
(LSTM-CRF and CRF) in terms of accuracy, precision,
recall, and F1-score for the full set of tags and for a subset of
the most relevant tags of the domain. In our experiments, the
hyperparameters of the LSTM-CRF model were set to the
default values used by Lample et al. [8].

V. RESULTS AND DISCUSSION

 We evaluated the performance of the NER method that is
based on the LSTM-CRF architecture against a traditional
state of the art CRF tool that uses standard NER features. The
evaluation was performed on three different sets covering
over 40 entity types from the cybersecurity domain. For
evaluation purposes, we will analyze the average
performance of models across all the entity types, then we
will consider the most popular entities that appear frequently
in the cybersecurity vulnerability descriptions and evaluate
the performance on these entities only. The entities
considered are vendor, application, version, file, operating
system (os), hardware, and edition. The reason for this is that
we are usually not interested in extracting all entity types but
only a subset of them that are most relevant to the application
at hand.

A. Performance of LSTM-CRF and CRF

 Starting with the global item accuracy of both models,
Figure 2 shows the accuracy values measured on the test set
at each iteration of the training stage for 100 iterations.
LSTM-CRF achieved an accuracy of 95.8% after the first
iteration and increased gradually to reach values between
98.2% and 98.3% starting from iteration 23 until the end of
the training. On the other hand, the CRF method started
slowly at accuracies of 65% and increased rapidly to reach
accuracies of 96% where it leveled off to reach eventually
96.35% at the end of the training.

Figure 2. Item Accuracy for LSTM-CRF and CFR

 The average performance of the two models across all the
entity types in the training set is shown in the table below:

TABLE I. AVERAGE PERFORMANCE METRICS FOR ALL ENTITY TYPES

 Precision (%) Recall (%) F1-score (%)

LSTM-CRF 85.16 80.70 83.37
CRF 80.26 73.55 75.97

 As we can see, the performance metrics in terms of
precision, recall, and F1-score show that the results for
LSTM-CRF are better that their CRF counterparts.

4Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 15 / 160

 We then compared the performance of LSTM-CRF and
CRF on the most popular seven entity types in the domain.
The results for each method for the different entities in terms
of F1-score, precision, and recall are shown in Tables II, III,
and IV. LSTM-CRF achieved the best performance for all the
entities types with the exception of the hardware, and edition
tags, which affected the average considerably. On average
(macro average), F1-scores are 82.8% for the generic LSTM-
CRF method and 84.4% for the generic CRF method. In
terms of precision, the results are close at 87.2% and 89%
respectively. As for the recall, it is 80.1% and 81.8%
respectively.

 TABLE II. F1-SCORES OF CRF AND LSTM-CRF

FOR SEVEN ENTITY TAGS

Entity type LSTM-CRF (%) CRF (%)
Development Test

Vendor 94 93 92
Application 90 89 87

Version 98 98 95
Edition 80 60 80

OS 95 95 93
Hardware 60 46 63

File 99 99 84
Average 88 82.8 84.4

TABLE III. PRECISION OF CRF AND LSTM-CRF

FOR SEVEN ENTITY TAGS.

Entity type LSTM-CRF (%) CRF (%)
Development Test

Vendor 95 94 94
Application 90 89 88

Version 98 98 95
Edition 80 76 87

OS 98 97 95
Hardware 69 57 79

File 99 1 85
Average 89.8 87.2 89

 TABLE IV. RECALL OF CRF AND LSTM-CRF FOR SEVEN ENTITY TAGS

Entity type LSTM-CRF (%) CRF (%)

Development Test

Vendor 93 92 90
Application 89 90 86

Version 98 98 95
Edition 79 50 75

OS 95 93 91
Hardware 54 39 52

File 100 99 84
Average 86.8 80.1 81.8

 We can see that the overall item accuracy of the resulting
LSTM-CRF model is higher by 2% than the CRF model.
Likewise, the average precision, recall, and F1-score across
all entity types are better by an average of 6.5%. As for the
performance metrics per entity type, the LSTM-CRF model
performed better on five entity types and poorly on the
hardware and edition tags. The reason for this poor
performance is related to the size of the training data. Deep
learning algorithms such as LSTM, needs lots of data for

better predictions. The more data we have, the better the
prediction model can get. Upon analyzing the data set, it
turned out that very few entities are tagged with these two
tags compared to the other entities. There are 549 entities
tagged as hardware and 565 tagged as edition. These
numbers are relatively low compared to other tags, such as
application (19093 tags) and vendor (10518 tags). Therefore,
the first five tags overwhelmed the other poorly performing
two tags. Increasing the size of the training data that contains
more examples of these tags will improve the prediction of
the model.

VI. CONCLUSION AND FUTURE WORK

 As this paper showed, the results demonstrate that
LSTM-CRF improved the accuracy of NER extraction over
the state-of-art traditional pure statistical CRF method. What
is impressive about the LSTM-CRF method is that it does not
require any feature engineering and is entirely entity type
agnostic. Even the format of the training corpus is much
simpler, thus requiring less text pre-processing. This
alleviates the need to develop domain-specific tools and
dictionaries for NER. In the future, our research will
concentrate on applying the LSTM-CRF method on entity
Relations Extraction (RE). RE is concerned with attempting
to find occurrences of relations among domain entities in text.
This would provide a better understanding of product
vulnerability descriptions. For example, RE could extract
information from a vulnerability description that would help
us distinguish between the product or tool that is the mean of
an attack and the product being attacked. With information
extraction becoming more accurate, more automated, and
easier to achieve using recent neural networks advancements,
there is a pressing need to turn this advancement into
applications in the domain of cybersecurity. One such
application is the conversion of the textual descriptions of
cybersecurity vulnerabilities that are available in the web into
a more formal representation like ontologies. This gives
cybersecurity professionals the necessary tools that grant
them rapid access to the information needed for decision-
making.

ACKNOWLEDGEMENTS

 This publication was made possible by NPRP grant #
NPRP 7-1883-5-289 from the Qatar National Research Fund
(a member of Qatar Foundation). The statements made herein
are solely the responsibility of the authors.

REFERENCES

[1] R. A. Bridges, C. L. Jones, M. D. Iannacone, K. M. Testa, and
J. R. Goodall, "Automatic labeling for entity extraction in
cyber security," arXiv preprint arXiv:1308.4941, 2013.

[2] T. H. Nguyen and R. Grishman, "Event detection and domain
adaptation with convolutional neural networks," in
Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint

5Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 16 / 160

Conference on Natural Language Processing (Volume 2:
Short Papers), pp. 365–371, 2015.

[3] A. Joshi, R. Lal, T. Finin, and A. Joshi, "Extracting
cybersecurity related linked data from text," in Semantic
Computing (ICSC), 2013 IEEE Seventh International
Conference on, pp. 252-259, 2013.

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
"Distributed representations of words and phrases and their
compositionality," in Advances in neural information
processing systems, pp. 3111-3119, 2013.

[5] Y. Goldberg, "A primer on neural network models for natural
language processing," Journal of Artificial Intelligence
Research, vol. 57, pp. 345-420, 2016.

[6] J. Schmidhuber, "Deep learning in neural networks: An
overview," Neural networks, vol. 61, pp. 85-117, 2015.

[7] S. Hochreiter and J. Schmidhuber, "Long short-term
memory," Neural computation, vol. 9, pp. 1735-1780, 1997.

[8] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami,
and C. Dyer, "Neural architectures for named entity
recognition," arXiv preprint arXiv:1603.01360, 2016.

[9] E. F. Tjong Kim Sang and S. Buchholz, "Introduction to the
CoNLL-2000 shared task: Chunking," in Proceedings of the
2nd workshop on Learning language in logic and the 4th
conference on Computational natural language learning-
Volume 7, pp. 127-132, 2000.

[10] N. Okazaki, CRFsuite: a fast implementation of Conditional
Random Fields (CRFs), 2007.

[11] P. Cimiano, S. Handschuh, and S. Staab, "Towards the self-
annotating web," in Proceedings of the 13th international
conference on World Wide Web, pp. 462-471, 2004.

[12] P. Pantel and M. Pennacchiotti, "Automatically Harvesting
and Ontologizing Semantic Relations," in Proceedings of the
2008 Conference on Ontology Learning and Population:
Bridging the Gap Between Text and Knowledge, Amsterdam,
The Netherlands, The Netherlands, pp. 171-195, 2008.

[13] H. L. Chieu and H. T. Ng, "Named entity recognition: a
maximum entropy approach using global information," in
Proceedings of the 19th international conference on
Computational linguistics-Volume 1, pp. 190-196, 2002.

[14] A. McCallum, D. Freitag, and F. C. N. Pereira, "Maximum
Entropy Markov Models for Information Extraction and
Segmentation.," in Icml, pp. 591-598, 2000.

[15] H. Isozaki and H. Kazawa, "Efficient support vector
classifiers for named entity recognition," in Proceedings of
the 19th international conference on Computational
linguistics-Volume 1, pp. 1-7, 2002.

[16] X. Carreras, L. Màrquez, and L. Padró, "Learning a
perceptron-based named entity chunker via online recognition
feedback" in Proceedings of the seventh conference on
Natural language learning at HLT-NAACL 2003-Volume 4,
pp. 156-159, 2003.

[17] A. McCallum and W. Li, "Early results for named entity
recognition with conditional random fields, feature induction
and web-enhanced lexicons," in Proceedings of the seventh
conference on Natural language learning at HLT-NAACL
2003-Volume 4, pp. 188-191, 2003.

[18] R. Collobert, J. Weston, L. Bottou, M. Karlen, K.
Kavukcuoglu, and P. Kuksa, "Natural language processing
(almost) from scratch," Journal of Machine Learning
Research, vol. 12, pp. 2493-2537, 2011.

[19] Y. Goldberg, "A Primer on Neural Network Models for
Natural Language Processing.," J. Artif. Intell. Res.(JAIR),
vol. 57, pp. 345-420, 2016.

[20] A. Graves, A. Mohamed, and G. Hinton, "Speech recognition
with deep recurrent neural networks," in Acoustics, speech
and signal processing (icassp), ieee international conference
on, pp. 6645-6649, 2013.

[21] F. A. Gers, J. A. Schmidhuber and F. A. Cummins, "Learning
to Forget: Continual Prediction with LSTM,", Neural
Compution, vol. 12, pp. 2451-2471, 10 2000.

[22] L. Jones, R. A. Bridges, K. M. T. Huffer and J. R. Goodall,
“Towards a relation extraction framework for cyber-security
concepts,” in Proceedings of the 10th Annual Cyber and
Information Security Research Conference, pp. 11, 2015

[23] V. Mulwad, W. Li, A. Joshi, T. Finin and K. Viswanathan,
“Extracting information about security vulnerabilities from
web text,” in Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2011 IEEE/WIC/ACM International
Conference on, 2011.

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 17 / 160

A Practical Way of Testing Security Patterns

Loukmen Regainia and Sébastien Salva
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
email: loukmen.regainia@uca.fr, sebastien.salva@uca.fr

Abstract—We propose an approach for helping developers
devise more secure applications from the threat modelling stage
up to the testing one. This approach relies on a Knowledge
base integrating varied security data to perform these tasks. It
firstly assists developers in the design of Attack Defence Trees
(ADTrees) expressing the attacker possibilities to compromise
an application and the defences that may be implemented.
These defences are expressed by means of security patterns,
which are generic and re-usable solutions to design secure
applications. ADTrees are then used to guide developers in
the generation of test cases and Linear Temporal Logic (LTL)
specifications. The latter encoding properties about security
pattern behaviours. Test verdicts show whether an application
is vulnerable to the attack scenarios and if the security pattern
properties hold in the application traces.

Keywords-Security pattern ; Security Testing ; Attack Defence
Tree ; Test Case Generation.

I. INTRODUCTION

Preventing attackers from exploiting software defects,
in order to compromise the security of applications or to
disclose and delete user data, may be considered as the
main motivations for software security. It is well admitted
that the choice of security solutions and the audit of these
solutions are two tasks of the software life cycle requiring
time, expertise and experience. Unfortunately, developers
lack resources and guidance on how to design or implement
secure applications and test them. Furthermore, different
kinds of expertise are required, e.g., to represent threats, to
choose the most appropriate security solutions w.r.t. an ap-
plication context, or to ensure that the latter are implemented
as expected.

Several digitalised security bases, documents and papers
have been proposed to guide developers in these activi-
ties. For instance, the Common Attack Pattern Enumeration
and Classification (CAPEC) base makes publicly avail-
able around 1000 attack descriptions, including their goals,
steps, techniques, the targeted vulnerabilities, etc. In another
context, security pattern catalogues, e.g., [1], list 176 re-
usable solutions for helping developers design more secure
applications. The security pattern, which is a topic of this
paper, intuitively relates countermeasures to threats and
attacks in a given context [2]. This profusion of documents
makes developers drown in a sea of recommendations taking
security with different viewpoints (attackers, defenders, etc.),
abstraction levels (security principles, attack steps, exploits,

etc.) or contexts (system, network, etc.). In this paper,
we focus on this issue and propose an approach to assist
developers devise more secure applications from the threat
modelling stage up to the testing one. The originality of this
approach resides in the facts that it relies on a Knowledge
base to automate some steps and it does not require that
developers have skills in (formal) modelling.

Brief review of related work, and contributions: Nu-
merous papers proposed methods for generating test cases
from models to check the security of systems, protocols
or applications. Among them, several papers, e.g., [3],
[4], focused on models not to describe the implementation
behaviour but rather to express attacker goals or vulnerability
causes of a system. These works take Threat models as
inputs, which are manually written. If these lack of details
(parameters, attack steps, etc.), the final test cases will be
too abstract as well. Furthermore, these methods do not give
any recommendation on how to write tests and on how to
structure them. Hence, developers lack guidance to write
tests and to reuse them.

We proposed in [5] a preliminary approach for helping
developers devise more secure applications with a guided
test case generation approach. It is based on a first Knowl-
edge base integrating security data. The approach firstly
queries the Knowledge base to help developers write an
Attack Defense Tree (ADTree) encoding the attack scenarios
that may be performed by an adversary and the defences,
materialised with security patterns, which have to be inte-
grated and implemented into the application. Thereafter, the
approach helps generate security test cases to check whether
the application is vulnerable to these attacks. However, it
does not assist developers to ensure that security patterns
have been correctly implemented in the application. This
work supplements our early study by covering this part.

Few works dealt with the testing of security patterns,
which is the main topic of this paper. Yoshizawa et al.
introduced a method for testing whether behavioural and
structural properties of patterns may be observed in applica-
tion traces [6]. Given a security pattern, two test templates
(Object Constrant Languauge (OCL) expressions) are manu-
ally written, one to specify the pattern structure and another
to encode its behaviour. Then, developers have to make
templates concrete by manually writing tests for experiment-
ing the application. The latter returns traces on which the

7Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 18 / 160

OCL expressions are verified. Our approach requires neither
complete models nor formal properties. It generates ADtrees
to help developers choose security patterns. Furthermore,
with our approach, developers do not need to have a good
knowledge and skills on the writing of formal properties.
Instead, we propose a practical way to generate them.
Intuitively, after the choice of security patterns, our approach
provides UML sequence diagrams, which can be modified
by the developer. From these diagrams, we generate LTL
properties, which capture the cause-effects relations among
pairs of method calls. After the test case execution, we check
if these properties hold in application traces. The developer
is hence not aware of the LTL formula processing.

Paper Organisation: Section II introduces the Knowledge
base used by our approach. Section III gives the first three
steps of the approach, which aim at generating threat models,
proposing security patterns and providing UML sequence
diagrams. Section IV addresses the generation of test cases
and LTL properties, which are used to return test verdicts.
We finally conclude in Section V.

II. KNOWLEDGE BASE OVERVIEW

Figure 1. Knowledge Base meta-model part 1

Figure 2. Knowledge Base meta-model part 2

Our approach relies on a Knowledge base to automate
some of its steps. Its meta-model is depicted in Figures
1 and 2. We summarise its architecture in the following
but we refer to [5] for a complete description and for
the data integration. The meta-model associates attacks,
techniques, security principles, security patterns, test cases
and UML sequence diagrams. To increase the precision

of the relations, we chose to decompose attacks into sub-
attacks, and into attack steps. These steps are associated
to countermeasures, allowing to prevent attack steps. We
also decompose security patterns into strong points, which
are sub-properties expressing pattern key design features.
Relying on a hierarchical organisation of security principles,
the method maps countermeasure clusters to principles and
strong points to principles. As countermeasures usually are
detailed properties, we gather them into clusters (groups)
to reach about the same abstraction levels as those of the
security principles.

In Figure 2, an attack step is also associated to one
Application context and one Test architecture. The context
refers to an application family, e.g., Web sites. The Test
architecture entity refers to textual paragraphs explaining the
points of observation and control, testers or tools required
to execute the attack step on an application, which belongs
to an Application context. Next, we map attack steps onto
Given When Then (GWT) test case sections. For readability
and re-usability purposes, we chose to consider the “Given
When Then” pattern to break up test cases into several parts:
• the Given section aims at putting an application under

test in a known state;
• the When section triggers some actions;
• the Then section is used to check whether the condi-

tions of success of the test case are met (assertions).
We suppose that a Then section returns the message
“Passst” if an attack step st has been successfully
executed, “Inconclusivest” if some test case proce-
dures have not been executed due to various problems
(e.g., incomplete test architecture, network issues, etc.)
or “Failst” otherwise.

A test case section is linked to one procedure stored in
the Procedure table, which implements the section. These
procedures may be completed with comments or with blocks
of code to ease the test case development. But, they must
remain generic, i.e., re-usable with any application in a
precise context.

For this paper, we have updated the Knowledge base in
such a way that a security pattern is also associated to
UML sequence diagrams, themselves adapted to application
contexts. Indeed, security pattern catalogues often provide
UML sequence diagrams expressing the security pattern be-
haviours. These diagrams show how to implement a security
pattern with regard to an Application context.

As a proof of concept, we generated a Knowledge base
specialised to Web applications (The paper [5] details some
data acquisition and integration steps). It includes informa-
tion about 215 attacks (209 attack steps, 448 techniques),
26 security patterns, 66 security principles. We also gener-
ated 627 GWT test case sections (Given, When and Then
sections) and 209 procedures. The latter are composed
of comments explaining: which techniques can be used
to execute an attack step and which observations reveal

8Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 19 / 160

that the application is vulnerable. We manually completed
32 procedures, which cover 43 attack steps. We used the
testing framework Selenium and the penetration testing tool
ZAProxy [7], which covers varied Web vulnerabilities. This
Knowledge base is available here [8].

III. SECURITY AND SECURITY PATTERN TESTING

Figure 3 depicts an overview of the six steps of our
approach, beginning by the construction of a threat model
and ending with the generation of test verdicts expressing
whether an Application Under Test (AUT) is vulnerable to
the attack scenarios encoded in the threat model and whether
security pattern behaviours hold in the AUT traces. Before
describing these steps, we briefly recall some notions about
the ADTree model.

A. Attack Defense Trees (ADTrees)

ADTrees are graphical representations of possible mea-
sures an attacker might take in order to attack a system
and the defenses that a defender can employ to protect the
system [9]. ADTrees have two kinds of nodes: attack nodes
(red circles) and defense nodes (green squares). A node can
be refined with child nodes and can have one child of the op-
posite type (linked with a dashed line). Node refinements can
be disjunctive (as in Figure 4) or conjunctive. The latter is
graphically distinguishable by connecting the edges between
a root node and its children with an arc. We extend these
two refinements with the sequential conjunctive refinement
of attack nodes. This operator expresses the execution order
of child attack nodes. Graphically, a sequential conjunctive
refinement is illustrated by connecting the edges, going from
a node to its children, with an arrow.

Alternatively, an ADTree T can be formulated with an
algebraic expression called ADTerm and denoted ι(T). In
short, the ADTerm syntax is composed of operators having
types given as exponents in {o, p} with o modelling an oppo-
nent and p a proponent. ∨s,∧s,−→∧ s, with s ∈ {o, p} respec-
tively stand for the disjunctive refinement, the conjunctive
refinement and the sequential conjunctive refinement of a
node. A last operator c expresses counteractions (dashed
lines in the graphical tree).

B. Model Generation, Security Pattern Choice (Step 1 to 3)

Step 1: Initial ADTree Design
The developer establishes an initial ADTree T whose root

node represents the attacker’s goal. This node may be refined
with several layers of children to refine this goal. We suppose
that T at least has leaves labelled by attacks available in the
Knowledge base. Otherwise, a semantic alignment may be
required to replace some attack labels.

An example is given in Figure 4: the goal, given in the root
node of the ADTree, refers to the injection of malicious code
into an application. This goal is disjunctively refined by two
children expressing two more concrete attacks, described in

Figure 3. Overview of the 6 steps of the approach

Figure 4. Initial ADTree example

the CAPEC base: CAPEC-66: SQL Injection and CAPEC-
244: Cross-Site Scripting via Encoded URI Schemes.
Step 2: Detailed ADTree Generation

The Knowledge base is now queried to automatically
complete T with more details about the attack proceeding
and with defense nodes labelled by security patterns. We
summarise this step in the following:

For every node labelled with an attack Att, the Knowledge
base is called to automatically generate an ADTree denoted
T (Att). This ADTree has a specific form satisfying the
meta-model of the Knowledge base. More precisely, the
root of T (Att) is labelled by Att. This node may have
children expressing more concrete attacks and so forth. The
most concrete attacks have step sequences (edges connected
with an arrow). These steps are connected to techniques
with a disjunctive refinement. The lowest attack steps in the
ADTree are also linked to defense nodes, which may be the
roots of sub-trees expressing security pattern combinations
whose purposes are to counteract the attack steps. The
developer can now edit the ADTrees T (Att) to edit some
attack steps w.r.t. the application context. He or she also has
to choose the security patterns that have to be contextualised
and implemented in the application. After this step, we
assume that a defense node either is labelled by a security
pattern (it does not have children) or has a conjunctive
refinement of nodes labelled by security patterns. These
generated ADTrees have a specific form, which are encoded
by these ADTerms:

Proposition 1 An ADTree T (Att) achieved by the previous
steps has an ADTerm ι(T (Att)) having one of these forms:

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 20 / 160

1) ∨p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm also
having one of these forms:

2) −→∧ p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm having
the form given in 2) or 3);

3) cp(st, sp), with st an ADTerm expressing an attack
step and sp an ADTerm modelling a security pattern
combination.

The first ADTerm expresses children nodes labelled by more
concrete attacks. The second one represents sequences of
attack steps. The last ADTerm is composed of an attack step
st refined with techniques, which can be counteracted by a
security pattern combination sp = ∧o(sp1, . . . , spm). We
call this ADTerm a Basic Attack Defence Step cp(st, sp),
shortened BADStep. BADStep(Tf) denotes the set of
BADSteps of Tf (final ADTree).

Figure 5 depicts a part of the ADTree of the attack
CAPEC-66. Each lowest attack step has a defense node
expressing pattern combinations. Step 2.1, which identifies
the possibilities to inject malicious code through the appli-
cation inputs, requires more patterns than the other steps
to filter these inputs. Some of them have relations: for
instance the pattern “Application Firewall” can be replaced
by “Intercepting Validator” or “Output Guard”.

Figure 5. Part of the ADTree of the Attack CAPEC-66

In the initial ADTree T , each attack node labelled by Att
is now automatically replaced with the ADTree T (Att). This
can be done by substituting every term Att in the ADTerm
ι(T) by ι(T (Att)). We denote Tf the resulting ADTree, and
SP (Tf) the security pattern set found in ι(Tf).

In this step, we finally extract from the Knowledge base a
description of the test architecture required to run the attacks
on the application under test and to observe its reactions.

Step 3: UML Sequence Diagram Extraction
For every security pattern found in Tf , we extract a

list of UML sequence diagrams from the Knowledge base,
each being related to the application context. These show
the behavioural activities of the patterns. We now suppose
that the developer implements every security pattern in
the application. At the same time, he/she can choose to
modify the generic class and method names labelled in
the UML sequence diagrams. In this case, we assume that
the sequence diagrams are annotated to point out these
modifications.

As example, Figure 6 illustrates the UML sequence dia-
gram of the security pattern “Intercepting Validator”, whose
purpose is to control the compliance of user requests with
regard to a specification. The validation must be performed
in the server side. For instance, while the pattern imple-
mentation, if the name of the method “process” has to be
modified by “send”, the new label must be of the form
“process/send” to express the substitution.

Figure 6. Intercepting Validator sequence diagram

IV. ATTACK AND SECURITY PATTERN TESTING

At this stage, an ADTree encodes the notion of attack
scenarios over BADSteps, a scenario being is a minimal
combination of events leading to the root attack.

Definition 2 (Attack scenarios) Let Tf be an ADTree and
ι(Tf) be its ADTerm. The set of Attack scenarios of Tf ,
denoted SC(Tf) is the set of clauses of the disjunctive
normal form of ι(Tf) over BADStep(Tf).

An attack scenario s is still an ADTerm over BADSteps.
BADStep(s) denotes the set of BADSteps of s.
Step 4: Test suite generation

Let us consider a security scenario s ∈ SC(Tf). Given a
BADStep b = cp(st, sp) ∈ BADStep(s), we generate the
GWT test case TC(b), which aims at checking whether the
application under test AUT is vulnerable to the attack step
st. TC(b) is constructed by extracting from the Knowledge
base, for the attack step st, one Given section, one When
section and one Then section, each related to one procedure.
The Then section aims to assert whether the application is

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 21 / 160

vulnerable to the attack step st; these sections are assembled
to make up the GWT test case stub TC(b).

After having iteratively applied this test case construction
on the scenarios of SC(Tf), we obtain the test suite TS with
TS = {TC(b) | b = cp(st, sp) ∈ BADStep(s) and s ∈
SC(Tf)}.
Step 5: Security Pattern LTL Property Generation

Our approach aims at checking whether security pattern
behavioural properties hold in the AUT. Instead of asking the
developer to write these properties, we automatically gener-
ate them from UML sequence diagrams. This step analyses
sequence diagrams, recognises behavioural characteristics
and translates them into LTL properties.

Given a security pattern sp and its UML sequence dia-
gram, the latter is firstly transformed into a UML activity
diagram. We propose 5 transformation rules whose three are
depicted in Table I. Intuitively, these rules transform each
method call in the sequence diagram by an action state in the
activity diagram. We took inspiration from the transforma-
tions of UML sequence diagrams to state machines proposed
in [10]. This transformation allows us to use the mapping
of UML activity diagrams to LTL properties proposed by
Muram et al. [11]. The transformation rules are based upon
the Response Property Pattern [12], which describes the
cause-effect relations among method calls. Three examples
of transformations are given in Table I. At the end of this
transformation sequence, we have a set of LTL properties
P (sp) for every security pattern sp ∈ SP (Tf). Although
the LTL properties of P (sp) do not necessarily cover all
the possible behavioural properties of a security pattern sp,
this process offers the advantages to not require generic
LTL properties modelling pattern behaviours, and to not
ask developers to instantiate these generic LTL properties
to match the application model or code.

TABLE I
TRANSFORMATION RULES

Sequence Activity LTL properties

�(B.1 −→
♦C.2)

�(B.1 −→
(♦B.2)xor(♦C.3))

�(B.1 −→
(♦B.2)and(♦C.3))

From the example of UML sequence diagram given in
Figure 6, four LTL properties are generated. Table II lists
them. These capture the cause-effect relations of every pair
of methods found in the UML sequence diagram.

TABLE II
LTL PROPERTIES OF THE PATTERN INTERCEPTING VALIDATOR

p1 �(Controller.SecureBaseAction.process −→
♦InterceptingV alidator.V alidator.create)

p2 �(InterceptingV alidator.V alidator.create −→
♦interceptingV alidator.InterceptingV alidator.validate)

p3 �(InterceptingV alidator.InterceptingV alidator.validate
−→ ♦InterceptingV alidator.V alidator.validate)

p4 �(InterceptingV alidator.V alidator.validate −→
(♦model.Account.getAccount)xor(♦Controller.Secure
BaseAction.error))

Step 6: Test Verdict generation
Once the GWT test case stubs are completed by the

developer, these are executed on AUT . The test architec-
ture allowing the experimentation of AUT is described in
the report provided by Step 2. The execution of a test
case TC(b) on AUT , leads to a local verdict denoted
Verdict(TC(b)||AUT), which takes as value a test case
assertion message. Furthermore, we consider that the AUT
is instrumented with a debugger or similar tool to collect
the methods called in the application while the execution
of the test cases of TS. After the test case execution,
we hence have a set of method call traces of AUT de-
noted Traces(AUT). With a model-checking tool, e.g.,
Declare2LTL [13], our approach can now detect the non-
satisfiability of LTL properties of a security pattern sp
on Traces(AUT). The predicate Unsatb(sp) defines this
detection:

Definition 3 (Local Test Verdicts) Let AUT be an appli-
cation under test, b = cp(st, sp) ∈ BADStep(Tf), sp1 a
security pattern in sp, TC(b) ∈ TS be a test case.

1) Verdict(TC(b)||AUT) =
-Failst (resp. Passst) means AUT is (resp. does not
appear to be) vulnerable to the attack step st;
-Inconclusivest means that various problems oc-
curred while the test case execution.

2) Unsatb(sp1) =def true if ∃p ∈ P (sp1),∃t ∈
Traces(AUT), t 2 p; otherwise, Unsatb(sp1) =def

false;

Subsequently, we define the final test verdicts with
regard to the ADTree Tf . These verdicts are given
with the predicates Vulnerable(Tf), Unsatb(SP (Tf)) and
Inconclusive(Tf) returning boolean values. The predicate
Vulnerable(b) is also defined on a BADStep b to later
apply a substitution σ : BADStep(s) → {true, false}
on an attack-defense scenario s. A scenario s holds if the
evaluation of the substitution σ to s (i.e., replacing every
BADStep term b with the evaluation of Vulnerable(b))
returns true. When a scenario of Tf holds, then the threat

11Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 22 / 160

TABLE III
TEST VERDICT SUMMARY AND SOLUTIONS

Vulnera-
ble(Tf)

Unsatb(
SP (Tf))

Incon
(Tf)

Corrective actions

False False False No issue detected
True False False At least one scenario is successfully applied on AUT.

Fix the pattern implementation. Or the chosen patterns
are inconvenient.

False True False Some pattern behavioural properties do not hold. Check
the pattern implementations with the UML seq. diag. Or
another pattern conceals the behaviour of the former.

True True False The chosen security patterns are useless or incorrectly
implemented. Review the ADTree, fix AUT.

T/F T/F True The test case execution crashed or returned unexpected
exceptions. Check the Test architecture and the test case
codes.

modelled by Tf can be achieved on AUT . This is defined
with the predicate Vulnerable(Tf). Unsatb(SP (Tf)) is true
as soon as a security pattern property does not hold on
Traces(AUT). Table III informally summarises the mean-
ing of some test verdicts and some corrections that may be
followed in case of failure.

Definition 4 (Final Test Verdicts) Let AUT be an appli-
cation under test, Tf be an ADTree, s ∈ SC(Tf) and
b = cp(st, sp) ∈ BADStep(Tf).

1) Vulnerable(b) =def true if Verdict(TC(b)||AUT) =
Failst; otherwise, Vulnerable(b) =def false;

2) σ : BADStep(s) → {true, false} is a substitution
{b1 → Vulnerable(b1), . . . , bn → Vulnerable(bn)};

3) Vulnerable(Tf) =def true if ∃s ∈ SC(Tf) :
eval(sσ) returns true; otherwise, Vulnerable(
Tf) =def false;

4) Inconclusive(Tf) =def true if ∃s ∈ SC(Tf),
∃b ∈ BADStep(s): Verdict(TC(b)|| AUT) =
Inconclusivest; otherwise, Inconclusive(Tf) =def

false.
5) Unsatb(SP (Tf)) =def true if ∃sp ∈

SP (Tf),Unsat
b(sp) = true; otherwise, Unsatc(

SP (Tf)) =def false;

V. CONCLUSION

This paper proposes an approach taking advantage of a
Knowledge base to assist developers in the implementation
of secure applications through six steps covering threat mod-
elling, the choice of security patterns, security testing and
the verification of security pattern behavioural properties.
It guides developers in the generation of ADTrees and test
cases. In addition, it automatically generates LTL properties,
encoding security pattern behaviours. As a consequence,
the approach does not require developers to have skills in
(formal) modelling or in formal methods. We have imple-
mented this approach in a tool prototype [8]. We briefly
summarise its features in this paper: it generates ADTrees
stored into XML files, which can be edited with ADTool
[9]. Our tool also builds GWT test case compatible with the
Cucumber framework [14], which supports a large number

of languages. These test cases can be imported with the IDE
Eclipse. The verification of LTL properties is performed with
the Declare2LTL model checker. We started to perform some
experiments on Web applications to assess the user benefits.
An evaluation will be presented in a future work.

REFERENCES

[1] R. Slavin and J. Niu. (retrieved: 07, 2018) Security
patterns repository. [Online]. Available: http://sefm.cs.utsa.
edu/repository/

[2] M. Schumacher, Security Engineering with Patterns: Origins,
Theoretical Models, and New Applications. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2003.

[3] A. Morais, E. Martins, A. Cavalli, and W. Jimenez, “Se-
curity protocol testing using attack trees,” in 2009 Interna-
tional Conference on Computational Science and Engineer-
ing, vol. 2, Aug 2009, pp. 690–697.

[4] N. Shahmehri et al., “An advanced approach for modeling
and detecting software vulnerabilities,” Inf. Softw. Technol.,
vol. 54, no. 9, pp. 997–1013, Sep. 2012.

[5] S. Salva and L. Regainia, “Using data integration for security
testing,” in Proceedings 29th International Conference, ICTSS
2017, 10 2017, pp. 178–194.

[6] Y. Masatoshi et al., “Verifying implementation of security
design patterns using a test template,” in 2014 Ninth Inter-
national Conference on Availability, Reliability and Security,
Sept 2014, pp. 178–183.

[7] OWASP. (retrieved: 07, 2018) Zap proxy project. [Online].
Available: https://www.owasp.org/index.php/OWASP Zed
Attack Proxy Project

[8] R. Loukmen and S. Sbastien. (retrieved: 07, 2018) Zap proxy
project. [Online]. Available: http://regainia.com/research/
companion.html

[9] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer,
“Attack–defense trees,” Journal of Logic and Computation,
p. exs029, 2012.

[10] R. Grønmo and B. Møller-Pedersen, “From sequence dia-
grams to state machines by graph transformation,” in The-
ory and Practice of Model Transformations, L. Tratt and
M. Gogolla, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 93–107.

[11] F. U. Muram, H. Tran, and U. Zdun, “Automated mapping
of UML activity diagrams to formal specifications for sup-
porting containment checking,” in Proceedings FESCA 2014,
Grenoble, France, 12th April 2014., 2014, pp. 93–107.

[12] L. Patterns. (retrieved: 07, 2018) response ltl pattern. [Online].
Available: http://patterns.projects.cs.ksu.edu/documentation/
patterns/response.shtml

[13] M. M. Fabrizio et al. (retrieved: 07, 2018) Declare toolkit.
[Online]. Available: http://www.win.tue.nl/declare/

[14] Cucumber. (retrieved: 07, 2018) Cucumber website. [Online].
Available: https://cucumber.io/

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 23 / 160

An Ontology-Driven Framework for Security and Resiliency
in Cyber Physical Systems

Rohith Yanambaka Venkata, Patrick Kamongi and Krishna Kavi

University of North Texas
Denton, Texas-76203

Email: [ry0080, pk0158, krishna.kavi]@unt.edu

Abstract—Cyber-Physical Systems (CPS) can be described as an
integration of computation and physical processes, where embed-
ded systems monitor and control physical processes. Advances in
technologies, such as networking and processors have enabled the
adoption of CPS in safety-critical systems like smart grids and
autonomous vehicles. Cyber-attacks, as the name suggests, target
components in the cyber space with the intention of disrupting
the functionality of the physical components. In this paper,
we present an Ontology-driven framework that captures the
relationship between cyber and physical systems to semantically
reason about the impact of cyber-attacks on the physical systems.
We demonstrate the idea using a reference Red-Light Violation
Warning (RLVW) Vehicle to Infrastructure (V2I) network. Our
proposed Ontology provides the ability to identify vulnerabilities
in cyber systems that may impact a given physical system,
enumerate potential mitigation steps and help design resilient
physical systems that can meet their design specifications despite
the occurrence of a cyber-attack.

Keywords–Cyber Physical Systems; CPS; Security; Resiliency;
Ontology.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are systems that involve
coordination between two components: cyber (or computa-
tional) and physical systems. Ashibani et al. [1] describe
CPS as a combination of tightly integrated physical processes
(such as actuation), networking and computation. The physical
processes are monitored and controlled by cyber subsystems
through network interconnects.

The proliferation of CPS has gained increased traction with
the advances in networking and embedded system technologies
like system-on-chip (SoC) and wireless transmitters. With the
increased capability and complexity in CPS, they have found
application in domains such as smart cities, transportation, and
power grids. However, this growth has come at the cost of
potential cyber-attacks [2]. Often, security and resiliency are
either not paid the attention they deserve or are disregarded
altogether. As a result, cyber-attacks on CPS are becoming in-
creasingly prevalent, as evidenced by recent attacks targetting
critical infrastructure:

• A cyber-attack in 2016 crippled a power grid in
Ukraine, affecting at least 100,000 people. The at-
tackers used software-based attacks to shut down the
Remote Terminal Units (RTUs) that control circuit
breakers, causing a power outage for about an hour
[3].

• A German steel mill was the target of a cyber-physical
attack in 2014, when malicious actors took control

of the mill’s production software and caused material
damage to the mill [4].

• On 21 October 2016, an attack on DNS service
provider Dyn caused issues for a list of well-known
services such as Twitter, GitHub, Reddit, Spotify,
Netflix, and PayPal. A Mirai botnet compromised tens
of millions of IP addresses. All in all, about 100,000
devices were involved. This was the then largest attack
ever recorded with network traffic volume reaching
1.2Tbps.

• Perhaps the most recognizable of all the attacks was
the STUXNET worm that infected Iranian nuclear
power plants [5]. The worm caused the centrifuges
to spin too quickly and for too long, damaging or
destroying the delicate equipment in the process. This
is an excellent example of how cyber-attacks affect
physical systems.

It is evident from these examples that an attack targetting the
cyber domain (cyber-attacks) can adversely impact the normal
operation of the physical systems that they control. The impact
is especially acute in safety-critical systems.

One way to understand the impact of cyber-attacks on phys-
ical systems is by modeling CPS systems using Ontologies.
An Ontology is a formal description of knowledge as a set
of concepts within a domain and the relationships that hold
between them [6]. To enable such a description, we need to
formally specify components such as individuals (instances of
objects), classes, attributes, and relations as well as restrictions,
rules, and axioms. Ontologies not only introduce a shareable
and reusable knowledge representation but, can also add new
knowledge about a domain [6]. Ontologies provide numerous
advantages.

• Ontologies enable automated reasoning about data [6].
• They provide the ability to represent data formats,

including unstructured, semi-structured or structured
data, enabling smooth data integration, easy concept
and text mining, and data-driven analytics [6].

• Adding additional relationships, integrating multiple
Ontologies and cross domain concept matching are
also possible.

CPS enable technological advances in diverse critical domains
such as healthcare, traffic flow management, and smart manu-
facturing. Design needs vary across the domains of operation.
So, Ontologies may be able to capture complex dependencies
and relationships between the cyber and physical components

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 24 / 160

Figure 1. The Red Light Violation Warning system [8].

and potentially identify common design principles across
multiple domains. Cyber-attacks may or may not affect the
physical system of a CPS. To understand the impact of attacks
on the functioning of physical components, the relationships
captured by the Ontology can be used to semantically reason
about security and resiliency of the physical components.

In this paper, we present our Ontology-driven framework
that captures some of the physical and cyber components
of a Vehicle-to-Infrastructure (V2I) reference architecture [7],
including design goals and requirements specification from
their design artifacts. This includes information such as func-
tional, security and resiliency requirements. The objective is
to understand the relationship between the cyber and physical
components of the V2I CPS system to be able to reason
about security and resiliency of the physical system. The
Ontology will help understand the impact of cyber-attacks on
the physical components. This information can then be used to
identify mitigation techniques (in physical or cyber domains)
and design changes that can help improve the security and
resiliency of the physical system.

The paper is split into 6 sections. In section II, we briefly
describe the reference architecture that is used to validate
the Ontology. Section III outlines some of our previously-
developed tools that perform vulnerability management. The
CPS Ontology and the reasoning process are briefly described
in section IV. A case study using the Red-Light Violation
Warning (RLVW) and the CPS Ontology is presented in
section V, followed by the conclusion in section VI.

II. REFERENCE ARCHITECTURE - RED LIGHT VIOLATION
WARNING (RLVW)

The RLVW safety application involves providing a coop-
erative vehicle and infrastructure system that assists drivers in

avoiding crashes at signalized intersections by first advising
the driver of a signalized intersection, followed by a warning
to the vehicle’s driver if, based on their speeds and distance to
the intersection, they may violate an upcoming red light. As
a vehicle equipped with a Driver Vehicle Interface (DVI), a
screen on the dash that displays alerts from the infrastructure
as the vehicle approaches an intersection equipped with a
Road Side Equipment (RSE)-controlled traffic light. It receives
messages about the signal phase and timing (SPaT), intersec-
tion geometry, and position correction information [7]. SPaT,
a traffic signal control information that conveys the current
movement state of each active phase in the system can aid in
safety, mobility and monitoring the environment [9]. The driver
is alerted or warned if the RLVW application determines that
given current operating conditions, the driver is predicted to
violate the red light.

The RLVW system is one of six safety applications de-
veloped by the United States Department of Transportation
[7]. The goal of the RLVW application is to improve road-
way safety by reducing red-light running and collisions at
signalized intersections [7]. The infrastructure and vehicle
components include both cyber and physical components.
Figure 1 shows various components of the RLVW application.
We will evaluate our Ontology with this architecture as a
baseline. This application contains:

1) Infrastructure component: The infrastructure component
is responsible for warning drivers of an approaching inter-
section well in advance. In addition, drivers also need to be
warned if their approach is likely to result in a red light
violation.

2) Vehicle component: The vehicle component is responsi-
ble for sensing the world, conveying intent (to other vehicles
and the infrastructure) and situational awareness. All of this
information needs to be sent to the infrastructure.

• Sensing the world includes measuring speed, getting
current Global Positioning System (GPS) coordinates
and determining the lane currently being driven on.

• Conveying intent is vital in a connected vehicle envi-
ronment (especially Vehicle to Vehicle network). The
information exchanged may influence the behavior of
other entities in the network.

• Situational awareness involves attributing context to
the data collected by a physical component. For ex-
ample, if a sensor measures the speed of the vehicle
to be 60 miles per hour, the relevant cyber component
needs to determine if this is a safe speed given the
current context. This speed may be acceptable on a
highway but, not within city limits.

3) Design goals: In this section, we look at some of
the design goals and specifications of the RLVW application
before we present a preliminary outline of our Ontology design
in the subsequent sections.

Figure 2 outlines some of the important design goals
of the communication model being considered. The three
primary objectives of V2I is to prevent/minimize fatalities,
injuries and property damage. One of the ways this can be
achieved is by using the RLVW application, which attempts
to satisfy the design goals by reducing red light running and
traffic collisions. The various design specifications and their
relationships are reflected in Figure 2.

14Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 25 / 160

Figure 2. Design goals for RLVW.

The National Institute of Standards and Technology (NIST)
has published a framework that provides guidance in design-
ing, building, verifying, and analyzing complex CPS systems
[10]. The CPS Framework captures the generic functionalities
that CPS provide, and the activities and artifacts needed to
support conceptualization, realization, and assurance of CPS
[10]. The framework describes the following series of steps
within a reference architecture.

• The domain of the CPS needs to be identified.
• Facets or views on CPS encompassing identified re-

sponsibilities in the system engineering process [10]
need to be identified. These include conceptualization,
realization, and assurance. They contain well-defined
activities and artifacts (outputs) for addressing design
goals (or concerns) [10].

• Aspects need to be consolidated. Aspects are high-
level groupings of cross-cutting concerns. Concerns
are interests in a system relevant to one or more
stakeholders. These may include Functional, Business,
Timing, Data, Trustworthiness, etc [10].

Our objective is to reason about security and resiliency
so, we focus only on the trustworthy concerns. Trustworthi-
ness is the demonstrable likelihood that the system performs
according to designed behavior under any set of conditions
as evidenced by characteristics including, but not limited to,
safety, security, privacy, reliability and resilience [10]. In the
next section, we briefly describe vulnerability assessment for
cyber systems using some of our previous work.

III. VULNERABILITY-BASED THREATS ASSESSMENT

Given a deployed Cyber-Physical System that leverages
one or more IT (or cyber) components for normal operations,
security evaluation of the IT system is a priority.

In our previous work, we have designed solutions (VUL-
CAN [11], and NEMESIS [12]) to automate essential security

management tasks to assist in identifying, assessing and mit-
igating the threats that may affect any given IT system (this
apply to the Cyber components that power a Cyber-Physical
System).

Let us consider an example of an IT component (that is
part of a Cyber-Physical System) such as the “Qualcomm SD
820 Firmware”. Our VULCAN Framework [11], enable us to
model and represent such an IT component using a Common
Platform Enumeration (CPE) standard [13].

An Ontology Knowledge Base (OKB), which is a pop-
ulated Ontology, plays a central role within the VULCAN
framework by capturing various critical public data feeds of IT
products (e.g., Application/Software, Operating System, and
Hardware) vulnerability, attack, and mitigation information
using an evolving and semantically rich Ontology model.

The vulnerability index generated by VULCAN captures
information about publicly known vulnerabilities (including
their insightful information) that affect our assessed IT com-
ponent. Figure 3 shows a simplified view of the generated
vulnerability index to highlight a few vulnerabilities (including
their vulnerability description, severity score and Common
Weakness Enumeration (CWE) [14] identifier) that affects our
assessed IT product (viz., Qualcomm SD 820 Firmware). This
System-on-Chip (SoC) is commonly used in level 3 and level
4 autonomous vehicles.

With the amount of semantically rich information captured
within the generated vulnerability index of the assessed IT
component, we can reason and infer various insights in regards
to the current vulnerability status of the ”Qualcomm SD
820 Firmware” and how many of its vulnerabilities have a
damaging impact (if exploited by a malicious actor) to the
core of the Cyber-Physical System in operation.

Using this vulnerability index, our NEMESIS architecture
can assist in performing various threat modeling, and risk
assessment tasks of the for the IT product. This information

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 26 / 160

may be useful towards designing and CPS that are inherently
resilient to the modeled threats.

Table I illustrates a sample view of how NEMESIS clas-
sifies vulnerabilities (that affect the assessed IT component
“Qualcomm SD 820 Firmware”) into possible threat types
(using STRIDE threat model [15]) that could arise from their
exploitation. For instance, “CVE-2018-3594” [16] vulnerabil-
ity was identified by VULCAN that it affects our assessed IT
component, then NEMESIS determines that this vulnerability
could lead to “Tampering, Information Disclosure, Repudi-
ation, and Elevation of Privilege” STRIDE threat types (as
shown in Table I).

TABLE I. QUALCOMM SD 820 FIRMWARE: THREAT
CLASSIFICATION SAMPLE

Vulnerability S T R I D E
CVE-2018-3594 0 1 1 1 0 1

CVE-2017-18140 0 0 1 0 0 0
CVE-2016-10414 0 1 0 0 0 0
CVE-2016-10446 0 1 0 1 0 1
CVE-2016-10434 1 1 1 0 1 1

In Table II we illustrate how NEMESIS ranks all the
classified threat types by the average severity of all the found
vulnerabilities that can lead to each of the STRIDE threat
types. For instance, “Information Disclosure” threat type is the
most severe threat that the assessed IT component “Qualcomm
SD 820 Firmware” is exposed to.

TABLE II. QUALCOMM SD 820 FIRMWARE: THREAT TYPES
RANKING

Threat Type Severity [0-10]
Tampering 8.19

Denial of Service 5.0
Spoofing 7.5

Information Disclosure 9.0
Repudiation 8.57

Elevation of Privilege 8.78

Security practitioners can use the information for assessing
IT products (or cyber component of CPS) to strategize cyber
mitigations and resiliency measures to counter any of the
perceived threat types that could impact the critical missions
of the operational Cyber-Physical System.

Figure 3. Qualcomm SD 820 Firmware – Vulnerability Index Sample

IV. CPS ONTOLOGY DESIGN AND REASONING PROCESS

Cyber systems usually include processors, memory mod-
ules, network interfaces and software products. We briefly
discussed vulnerability assessment and management for cyber
systems by introducing some of our previous work in Section
III. We also previously demonstrated the ability to enforce
differentiated levels of security for Internet of Things (IoT)
devices in [17]. Now, our goal is to understand how these
cyber (or IT) vulnerabilities affect physical systems. The
challenge is to capture the relationship between cyber and
physical components to semantically reason about security and
resiliency. The Ontology will be able to provide an insight into
potential mitigation techniques, which may involve changes in
the design or patching and updating software packages in the
cyber domain. The various stages in the reasoning process are
listed below.

• Design goals and components of a CPS domain need
to be identified in consultation with domain experts.

• The relationships between various components in the
domain need to be identified within the context of the
design goals identified in the previous step.

• Given all components and their relationships, threat
modeling needs to be performed so that only threats
relevant to the given CPS are considered.

• The CPS needs to be redesigned if required.
• The redesigned system needs to be validated to ensure

it still complies with the design specifications.

We have constructed an Ontology for the trustworthiness
concern based on NIST’s CPS framework. Figure 4 depicts
a preliminary design for the CPS Ontology that is capable of
reasoning against a limited set of vulnerabilities that we will
discuss in Section V. The Ontology was implemented using
OWL web semantic language [18] on Protege Ontology editor
[19].

The Ontology identifies components and subcomponents of
RLVW system under consideration at conceptual level, assign
roles and responsibilities to them and capture dependencies
among the components (following NIST CPS Framework
[10]). In the realization phase, our framework relates how the
conceptual level components will be implemented using cyber
systems (processors, memory, network). Since each of these
components will be identified using a unique CPE (Common
Platform Enumeration), VULCAN system can capture security
information about the components from NVD repositories.
This information, including vulnerabilities, severity scores,
attack vectors, patches are indexed and analyzed, generating
comprehensive reports about individual components as well as
for the entire cyber system.

NEMESIS [12] uses the VULCAN [11] to collect informa-
tion in providing a risk score for the cyber components. It uses
a Bayesian model that combines vulnerabilities, dependencies
among components, severity scores, and threat types exposed
by vulnerabilities to compute risks scores and prioritize threat
types faced by the system.

The design specifications from Figure 2 were translated
into an Ontology. The RLVW concept contains five different
knowledge points: physical components and cyber components
which are self-explanatory, Abstract, Vehicle and Infrastruc-
ture. The infrastructure and vehicle components are mapped

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 27 / 160

Figure 4. An example of the CPS ontology.

to the cyber and physical concepts. A knowledge point called
Abstract captures all the design goals of a CPS domain
(The RLVW safety application in this scenario). The two
components of interest in this Ontology are the traffic light
and RSE. The traffic light interacts with the RSE to display
traffic lights and transition between them.

Design goals may be security requirements (from Security
Service Level Agreements or SSLAs), Resiliency goals and
Functional requirements. Lee et al., [20] describe an Ontology
to capture SSLAs, which can be used to understand security
agreements of a service provider or to audit compliance to
design specifications [20].

V. CASE STUDY

Let us evaluate this Ontology using a few simple examples.
We use the STRIDE threat modeling discussed in Section III
and the design specifications from Section 2. The configuration
of system components is as follows:

• Qualcomm 820a SoC powers a vehicle.
• The DVI is controlled by Android Auto operating

system [21].
• RSE is a facility server running Ubuntu 16.04 LTS.
• No identification scheme exists to authenticate entities

in the network.
• The data exchanged is not validated (neither by RSE

nor the vehicle).
• The traffic light is not designed with any fail-safe

modes.
• No personally-identifiable information is

collected/stored.

A. An attack on the RSE
Let us consider the RLVW application discussed before.

We were able to determine using the CPE identifier for
Snapdragon 820a that five significant vulnerabilities could
affect the SoC as discussed in section III. One of the most
important steps in threat modelling for CPS is to assign a
context to a threat/vulnerability i.e, try to understand how a
vulnerability affects a physical system. In the first example, let
us consider a scenario where an adversary attacks the RSE (as
depicted in Figure 5). RSE is no longer trustworthy. Potential
attacks are:

• Spoofing : The adversary may masquerade as the
RSE, sending false data to vehicles or the traffic light.
The lights may flash randomly or be turned off. The
vehicle may not receive a warning from the RSE
even if a potential red light violation is detected. For
example, CVE-2018-1111 [22] may be used to create
malicious DHCP packets to compromise the server.

• Tampering : Data is maliciously modified before
being sent to vehicles or the traffic light. The potential
impact is similar to that of the Spoofing attack. For
example, an adversary may use CVE-2017-1000366
[23] to create a specially crafted environment variable
to perform a buffer overflow attack.

• Repudiation : Non-repudiation is a state of affairs
where a source of specific information denies ever
creating/issuing it. In this case, the RSE can deny ever
having issued an alert to a vehicle or the traffic light.
In this case, the Ontology will help us understand that
this attack is not relevant to us because it is easy to

17Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 28 / 160

Figure 5. An attack on the RSE.

validate the RSE by using data from the vehicle. This
may not be as critical as spoofing or tampering in our
system.

• Information Disclosure : Since no personally iden-
tifiable information is collected, this attack does not
substantially impact the physical system. However, if
the RSE captures images of the vehicle that violated
the red-light, information disclosure may violate pri-
vacy goals. If information about the cyber domain is
leaked, VULCAN can help mitigate it.

• Denial of Service : The adversary may use any of
the CVEs previously discussed to render the RSE
unresponsive. This means that the vehicles may not
receive alerts and the traffic lights are not controlled.
The impact may be similar to that of the Spoofing
attack.

• Elevation of Prvilege : Elevation of privilege or
privilege escalation attacks involve gaining escalated
access to a resource that is normally protected from a
user. This is a cyber-attack so, VULCAN or NEMESIS
may be able to suggest mitigation techniques.

B. Mitigation techniques
The Ontology will be able to reason about potential mitiga-

tion techniques for a given cyber-vulnerability logically. This
also includes changes to the design specification. Let us look
at some of them:

• For most of the cyber-attacks like elevation of priv-
ilege, updating software packages, applying patches
should suffice.

• Cyber system can be designed to protect against spoof-
ing attacks by authenticating network entities using a
digital certificate-based identification scheme.

• Physical systems can be designed to protect against
spoofing attacks by using a physical unclonable func-
tion (PUF) based identification scheme.

• The traffic light can be built to flash yellow lights if no
response is received from the RSE for a preset amount
of time.

• SPaT data can be transmitted by the RSE so that the
vehicles can validate the alerts that were sent.

• Similarly, speed and location information can be sent
by the vehicles approaching the intersection. The RSE
can validate the data collected by the sensors on the
vehicle with the data collected by the RSE. Cross-
validation may prove to be a useful design feature.

The Ontology can suggest mitigation techniques. Cost Vs
Risk estimates may be used to pick the appropriate mitigation
scheme. The insight provided by the Ontology can be used to
design resilient physical systems.

C. An attack on the cyber component of a vehicle
We briefly discussed how specific threats that target the

cyber component of the RSE might impact the CPS. Similarly,
the cyber component of a vehicle (such as the Qualcomm 820a
SoC) may be targetted by spoofing, tampering, repudiation,
information disclosure, denial of service and elevation of
privilege attacks, which may violate the trustworthy concern
of the V2I system. However, due to the limitation in space,
we are unable to elaborate on this further.

VI. CONCLUSION

In this paper, we have presented an argument for modeling
CPS using Ontologies. As systems grow more complex, under-
standing the relationship between various components becomes
harder but, more critical.

We have introduced an Ontology-driven framework that
is capable of capturing the relationship between cyber and
physical domains. We use the example of a V2I communi-
cation model to demonstrate the capability of the Ontology.
This Ontology, designed in consultation with domain experts
helps identify potential vulnerabilities in the cyber domain that
may impact a physical system. Also, it helps in identifying
possible mitigation steps (in the cyber or physical domain)
that can be used to protect against the threats modeled and
also help design resilient physical systems that may provide
reduced functionality to meet design specifications (resilient)
despite the occurrence of a cyber-attack.

In the future, we intend to develop a more detailed Ontol-
ogy framework that captures complex relationships between
various components. This will also include tools that will be
able to translate design specifications from the NIST frame-
work into our Ontology to reason about the trustworthiness of
a CPS design.

REFERENCES

[1] Y. Ashibani and Q. H. Mahmoud, “Cyber physical systems
security: Analysis, challenges and solutions,” Computers and
Security, vol. 68, 2017, pp. 81 – 97. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404817300809

[2] Z. DeSmit, A. E. Elhabashy, L. J. Wells, and J. A. Camelio,
“An approach to cyber-physical vulnerability assessment for
intelligent manufacturing systems,” Journal of Manufacturing Systems,
vol. 43, 2017, pp. 339 – 351, high Performance Computing
and Data Analytics for Cyber Manufacturing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S027861251730033X

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 29 / 160

[3] “Why the Ukraine power grid attacks should raise alarm,” Mar.
2017, URL:https://www.csoonline.com/article/3177209/security/why-
the-ukraine-power-grid-attacks-should-raise-alarm.html/ [accessed:
2018-06-16].

[4] K. Zetter, “A cyber-attack has caused confirmed physical damage for the
second time ever,” URL:https://www.wired.com/2015/01/german-steel-
mill-hack-destruction/ [accessed: 2018-06-13].

[5] K. Zetter, “An unprecedented look at STUXNET, the world’s first digi-
tal weapon,” URL:https://www.wired.com/2014/11/countdown-to-zero-
day-stuxnet/ [accessed: 2018-06-16].

[6] “What are Ontologies?” URL:https://ontotext.com/knowledgehub/
fundamentals/what-are-ontologies/ [accessed: 2018-06-13].

[7] B. Christie, “Vehicle-to-infrastructure (V2I) safety applications per-
formance requirements, vol. 3, red light violation warning (RLVW),”
United States. Dept. of Transportation. ITS Joint Program Office; United
States. Federal Highway Administration, techreport, 2015.

[8] B. Christie, “Vehicle-to-Infrastructure (V2I) Safety Applications: Per-
formance Requirements, Vol. 1, Introduction and Common Require-
ments,” United States. Dept. of Transportation. ITS Joint Program
Office; United States. Federal Highway Administration, Tech. Rep.,
2015.

[9] United States Dept. of Transportation,
URL:https://www.its.dot.gov/presentations/pdf/SPaT.pdf [accessed:
2018-06-10].

[10] Cyber-Physical Systems Public Working Group, “Framework for Cyber-
Physical SystemsRelease 1.0,” National Institute of Standards and
Technology, Tech. Rep., 2016.

[11] P. Kamongi, S. Kotikela, K. Kavi, M. Gomathisankaran, and A. Singhal,
“Vulcan: Vulnerability assessment framework for cloud computing,”
in Proceedings of The Seventh International Conference on Software
Security and Reliability. SERE (SSIRI) 2013. IEEE, June 2013, pp.
218–226.

[12] P. Kamongi, M. Gomathisankaran, and K. Kavi, “Nemesis: Automated
architecture for threat modeling and risk assessment for cloud comput-
ing,” in The Sixth ASE International Conference on Privacy, Security,
Risk and Trust (PASSAT). ASE, December 2014.

[13] National Institute of Standards and Technology, “Common platform
enumeration (cpe),” https://nvd.nist.gov/cpe.cfm, June 2018.

[14] MITRE, “Common weakness enumeration (cwe),” http://cwe.mitre.org,
June 2018.

[15] “The STRIDE Threat Model,” http://msdn.microsoft.com/en-
US/library/ee823878(v=cs.20).aspx, June 2018.

[16] National Institute of Standards and Technology,
https://nvd.nist.gov/vuln/detail/CVE-2018-3594, June 2018.

[17] R. Y. Venkata and K. Kavi, “CLIPS: Customized Levels of IoT Privacy
and Security,” in Proceedings of the 12th The Twelfth International
Conference on Software Engineering Advances Oct 12–14, 2017,
Athens, Greece, pp. 41–47.

[18] “OWL web semantic language,” URL:https://www.w3.org/OWL/ [ac-
cessed: 2018-06-10].

[19] M. A. Musen and the Protégé team, “The protégé project:
A look back and a look forward,” AI Matters, vol. 1,
no. 4, Jun 2015, pp. 4–12, 27239556[pmid]. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883684/

[20] C.-Y. Lee, K. Kavi, R. Paul, and M. Gomathisankaran, “Ontology
of secure service level agreement,” 2015 IEEE 16th International
Symposium on High Assurance Systems Engineering, 2015, pp. 166–
172.

[21] Google, “The Android Auto Operating System,”
URL:https://www.android.com/auto/ [accessed: 2018-06-08].

[22] National Institute of Standards and Technology, “CVE-2018-1111,”
URL:https://nvd.nist.gov/vuln/detail/CVE-2018-1111 [accessed: 2018-
05-18].

[23] National Institute of Standards and Technology, “CVE-2017-1000366,”
URL:https://nvd.nist.gov/vuln/detail/CVE-2017-1000366 [accessed:
2018-05-18].

19Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 30 / 160

An Experimental Evaluation of ITL, TDD and BDD

Luis A. Cisneros, Marisa Maximiano, Catarina I. Reis
Computer Science and Communication Research Centre

 Polytechnic of Leiria
Leiria, Portugal

email: 2160085@my.ipleiria.pt, {marisa.maximiano,
catarina.reis}@ipleiria.pt

José Antonio Quiña Mera
Carrera de Ingeniería de Sistemas Computacionales

Universidad Técnica del Norte
Ibarra, Ecuador

email: aquina@utn.edu.ec

Abstract— Agile development embodies a distancing
from traditional approaches, allowing an iterative
development that easily adapts and proposes solutions to
changing requirements of the clients. For this reason, the
industry has recently adopted the use of its practices and
techniques, e.g., Test-Driven Development (TDD), Behavior-
Driven Development (BDD), amongst others. These
techniques promise to improve the software quality and the
productivity of the programmers; therefore, several
experiments, especially regarding TDD, have been carried
out within academia and in industry. These show variant
results (some of them with positive effects and others not so
much). The main goal of this work is to verify the impact
made by the TDD and BDD techniques in software
development by analyzing their main promises regarding
quality and productivity. We aim to conduct the experience
in academia, with a group of students from the Systems
Engineering Degree of the Universidad Técnica del Norte,
Ecuador. The students will receive training and appropriate
education to improve knowledge about it, and we aspire to
achieve interesting results concerning both quality and
productivity. The challenge that it is also desirable, is to
reproduce the experiment in industry or other adequate
contexts.

Keywords—Empirical research; ITL; TDD; BDD;
Software Engineering; productivity; code quality; Incremental
Test-Last; Test-Driven Development; Behavior-Driven
Development.

I. INTRODUCTION

In software development, quality is probably the most
important aspect [1]. The industry in this area is well
aware of this because users prefer products that provide a
satisfying and productive experience. However, these kind
of products are difficult to build. To do this, teams make
use of software development methodologies such as:
traditional or agile that allow planning and controlling the
process of creating a software [2]. Agile methods have
been very popular in industry in contrast to traditional
methods [1]. They use an iterative approach that responds
quickly to the changing needs of the client [2][3]. They
improve the quality and also increase the productivity of
programmers [4]. A question arises: Do agile practices
such as Test-Driven Development (TDD) or Behavior-
Driven Development (BDD) help increase product quality
and developer productivity? In this context, we intend to
run a workshop and a controlled experiment that will
answer that question.

The document is structured as follows: Section II
introduces software testing and the techniques used in the
experiment, Section III provides a summary of the related
work, Section IV defines the goals, Section V contains the
design of the study. Finally, the expected results and the

conclusion and future work are presented in Section VI
and VII, respectively.

II. BACKGROUND

Testing is one of the cornerstones of software
development because it ensures the quality of the product
[3]. In the traditional software development approach,
Test-Last Development (TLD) is usually used. Tests are
written at the final phase of the development cycle [4].
This means that the quality of the products is only
determined in the final phase and, at that moment, making
any change can present severe difficulties. On the contrary,
in an agile approach that promotes the early development
of tests; changes are welcomed and advancing with
functional components and correcting defects is made
earlier in the process [5].

A. Incremental Test-Last

Incremental software development is modeled around a
gradual increase of feature additions to a system. This
allows the programmer to take advantage of what was
being learned during the development of the earlier ones
and provide more user-visible functionality with each
addition [6][7].

Incremental Test-Last (ITL) is a natural evolution of
the TLD approach and became available upon the
introduction of the Revised Waterfall model that enabled
the Royce's iterative feedback [8]. Thus, it consists of the
development of small portions of the production code,
followed immediately by the performance tests of the
corresponding unit [9]. The ITL flow is present in Figure
1.

Figure 1. Incremental Test-Last flow.

B. Test-Driven Development

TDD, created by Kent Beck (inventor of Extreme
Programming [10] and JUnit [11]) refers to a style of
programming where three activities are closely
intertwined: Coding, Testing (in the form of unit tests) and
Design (in the form of refactoring) [12]. Its main idea is to

20Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 31 / 160

perform initial unit tests for the code that must be
implemented [13], and then implement the actual feature.

The TDD process [4][5] is presented in Figure 2, and
consists of the following steps: (1) select a user story, (2)
write a test that fulfills a small task of the user story and
that produces a failed test, (3) write the production code
necessary to implement the feature, (4) execute the pre-
existing tests again. Where if any test fails, the code is
corrected and the test set is re-executed and finally (5) the
production code and the tests are re-factored. This method
produces some benefits that focus on the promise of
increasing the quality of the software product and the
productivity of programmers [13][14].

Figure 2. Test-Driven Development flow (based on [4]).

Figure 3. Behavior-Driven Development flow.

C. Behavior-Driven Development

BDD, initially proposed by Dan North [15], is a
synthesis and refinement of software engineering practices
that help teams generate and deliver higher quality
software quickly [16][17]. It has core values that are
guided by some agile practices and techniques, including,
in particular: Test-Driven Development (TDD) and
Domain Driven Design (DDD). Most importantly, BDD
provides a common language based on simple structured
sentences expressed in something extremely similar to
spoken English (Gherkin) [18]. This aspect facilitates

communication between project team members and
business stakeholders [16]. Gherkin is used to write the
acceptance tests as examples and descriptions of scenarios
that anyone on the team can read [18].

The BDD process is similar to TDD (see Figure 3) and
follows these steps: (1) write a scenario, (2) run the
scenario that fails, (3) write the test that corresponds to the
specifications of the scenario, (4) write the simplest code
to pass the test and the scenario, and lastly, (5) refactor to
eliminate duplication.

III. RELATED WORK

Test-Driven Development has been exposed to several
scientific experiments developed by researchers in order to
validate the advantages offered by its use in software
development. O. Dieste et al. [4] studied the produced
effect by the technique on the developer's experience
through analysis of external quality and productivity. By
imparting theoretical and practical knowledge of ITL and
TDD to a group of master's students and evaluating the
application of techniques in the execution of programming
exercises, the study showed that the effectiveness of TDD
is lower than ITL. Although the differences are not
significant, both productivity and quality improved in half
of the cases. They deduced that the technique does not
produce immediate benefits and that an intensive training
for the subjects is of the utmost importance.

The research directed by Munir et al. [1] was
developed in the industry with professional Java
developers with previous knowledge of software testing. It
aimed to visualize the impact produced by TDD on the
quality of internal code, the quality of external code, and
productivity, when compared to TLD (Test-Last
Development). For this purpose, a programming exercise
consisting of 7 user stories was executed. This allowed the
participants to put into practice the aforementioned
techniques. The results of the analysis by the number of
approved test cases: McCabe's Cyclomatic complexity,
branch coverage, the number of lines of code per person
per hour, and the number of user stories implemented per
person per hour. The tests showed slightly significant
improvements in favor of TDD, especially in reducing the
number of defects. In terms of productivity, the tests
suggest that subjects who used TDD achieved an average
productivity slightly lower than TLD. This indicates that
the adoption of TDD requires compliance with the
guidelines of all aspects of software development and
adequate training to improve the skill set of the tests.

There is also a recent study designed by Fucci et al.
[19], where TDD was compared to ITL through a
controlled experiment with professionals within software
companies (two in Europe and one in Asia). To achieve a
more exact qualification of the effect produced by the
techniques within quality and productivity four
characteristics were formulated: sequencing, granularity,
uniformity, and refactoring effort. The resolution of
programming exercises of different levels of difficulty
revealed that the improvements found in TDD were
associated with granularity and uniformity. The remaining
characteristics did not have a relevant influence on the
experiment. Thus, the benefits of TDD are due to
encouraging stable and precise steps that improve the

21Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 32 / 160

focus and flow of software development which in turn
promise to improve quality and productivity.

Regarding Behavior-Driven Development (BDD), no
experiments have been found that evaluate the benefits
proposed by the technique, but being based on a set of
practices including Test-Driven Development, we hope
that it improves or, at least, maintains benefits granted by
TDD. In addition, some investigations were found
[20][21][22] in which BDD is put into practice in the
development of computer solutions while obtaining good
results.

IV. STUDY DESIGN

The goal of this empirical experiment is to analyze the
impact on software quality and developer productivity
produced by applying test-based techniques in software
development. The project goal will be achieved through
four related steps:

 Step 1: Teach a group of computer systems
engineering students about Software Testing,
JUnit, Incremental Test-Last, Test-Driven
Development, and Behavior-Driven Development.

 Step 2: Provide a workshop about software
development and testing techniques with the
execution of code katas (programming exercise).

 Step 3: Provide a challenge to the students so that
they can apply the techniques in an autonomous
way.

 Step 4: Analyze and evaluate the results obtained
by the challenge in order to show the incidence in
the quality of the developed software and the
productivity with the mentioned techniques.

A. Research questions

The experiment is focused on the following research
questions with regard to three outcomes: external software
quality (fulfillment of stakeholder requirements), internal
software quality (the way that the system has been
constructed) and developer productivity. External quality
is based on functional correctness, and specifically,
average percentage correctness [4][19]. Internal code
quality deals with the code quality in-terms of code
complexity, branch coverage, coupling and cohesion
between objects [1]. Developer productivity is based on
speed of production, or amount of functionality delivered
per effort unit [4][19].

 RQ1: Does TDD and BDD improve external code
quality compared to ITL?

 RQ2: Does TDD and BDD improve internal code
quality compared to ITL?

 RQ3: Does TDD and BDD improve productivity
compared to ITL?

 RQ4: Does BDD improve external code quality
compared to TDD?

 RQ5: Does BDD improve internal code quality
compared to TDD?

 RQ6: Does BDD improve productivity compared
to TDD?

B. Experimental description

The experiment will be done with students
(approximately 20) from the Systems Engineering Degree

of the Universidad Técnica del Norte (Ibarra - Ecuador). It
will have an approximate duration of 30 hours and will
consist of three phases: knowledge, training, and
experimentation.

In the initial phase (knowledge phase), information
will be given such as: Introduction to agile development,
Testing, JUnit, Incremental Test-Last, Test-Driven
Development, Behavior-Driven Development, and
Cucumber [18]. In addition, at the end of the explanation
of each of the techniques, a simple calculator will be
created that allows the calculations of adding and dividing.
The application will not have graphical interface so that
the students can focus on the understanding of the
execution of the technique.

In the training phase, jointly done with the students,
two code katas will be developed: Rock Paper Scissors
(RPS) and Roman Numerals (RM). They will be
developed using the techniques chosen for the experiment.
RPS is a traditional game involving two players making
pre-defined hand gestures while playing against each
other, with the winner being decided based on the rules
[23]. RM is about the conversion of Arabic numbers into
their Roman numeral equivalents, and vice versa [24].

In the third phase (experimental phase), students will
develop two code katas through the techniques learned:
FizzBuzz variant (FB) and String Calculator (SC). FB is a
counting and number replacement game, where: any
number that is divisible by 3 is replaced with the word
'fizz', any number divisible by 5 is replaced with the word
'buzz', any prime number is replaced with the word 'whiz',
any number simultaneously divisible by 3 and 5 is replaced
with 'fizz buzz', any prime number divisible by 3 is
replaced with 'fizz whiz', and any prime number divisible
by 5 is replaced with 'buzz whiz' [21]. SC is about
building a string calculator with a simple add method [26].
It receives a string with some numbers separated by one or
multiple delimiters and returns the sum of all the numbers.
An estimation of four hours duration was made to ensure
the total resolution of each exercise.

It is important to emphasize that each code kata was
evaluated with the function point metric that provides a
measure to the difficulty of the exercise. The purpose is to
solve exercises of similar difficulty both in the training
phase as well as in the practice phase. This metric allows
the evaluation of the functionality of a software at any
stage of its life cycle [27][28].

C. Design and threats

The order of the interventions used in an experiment
can affect the behavior of the subjects or elicit a false
response due to fatigue, carry-over, resolution order, or
outside factors [4][29]. To counteract this, a
counterbalanced design could be applied (see Figure 4),
which reduces the impact of the order of interventions or
other factors adversely influencing the results [29][30].
This process is called “Latin Square”.

Our experiment will have three interventions (ITL - A,
TDD - B and BDD – C). We will divide the subjects into 6
groups and choose the interventions’ order according to
the following: ABC, ACB, BAC, BCA, CAB and CBA.

22Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 33 / 160

Figure 4. Counterbalanced design for three conditions.

The experimental sessions will be applied contiguously
in time, so the main obstacle is fatigue. To counteract this
threat, we will provide an adequate time period for the
execution of each exercise and grant breaks within the
resolution of each technique.

D. Factors and metrics

The experiment will be based upon two factors. The
development approach level [4]: ITL, TDD, or BDD, will
be used as the main factor. The tasks [4] corresponding to
the development of code katas (FB and SC) will be used as
the secondary factor. The effectiveness of the development
approach will be studied under the perspective of the
experiments [1][4][19].

The external quality metric (QLTY) represents the
degree of agreement of the system with the functional
requirements [4][19]. The formula for calculating QLTY is
defined as:

���� =
∑ �����

#���
��

#���
 � 100 (1)

where QLTYi is the quality of the user history ith
implemented by the subject. QLTYi is defined as:

����� =
#�������(����)

#�������(���)
(2)

In turn, the number of user stories addressed (#TUS) is
defined, such as:

#��� = ∑ �
1
0

�
���

#�������(����) > 0
��ℎ������

 (3)

where n is the number of user stories that make up the
task. In both cases, it represents the number of passing
JUnit assert statements in the set of tests associated with
the ith user history. Consequently, a user history is
considered addressed if it passes at least one of its JUnit
assert statements. For example, supposing that a person
assesses two user stories (#TUS = 2), this means that there
are two user stories for which at least one assert statement
passes in the test suite. Let us assume that the acceptance
tests of the first analyzed user story contains twelve
assertions, out of which six are passing. The acceptance
tests of the second user story contain nine assertions, of
which three are passing. The quality value of the first
assessed user story (QLTY1) is 0.50, while the second user
story has a quality value of 0.33 (QLTY2). Therefore, the
QLTY measure for the subject is 41.5 percent, i.e., (QLTY
= (0.50 + 0.33) / 2 * 100).

The productivity metric (PROD) represents the work
done by the subjects with the required quality and within
the specified time [19]. Its formula is defined as:

���� =
 ������

����
(4)

OUTPUT symbolizes the percentage of passing JUnit
assert statements found in the set of tests for a task.

������ =
#������(����)

#������(���)
 � 100 (5)

TIME (minutes) is an estimate of the amount of work
used in the resolution of a task and is based on the time
records (milliseconds) collected by the IDE.

���� =
 ������������

����
(6)

For example, a person implements a task with a total of
50 assert statements in a test suite. After running the
acceptance test suite against the person’s solution, 40
assert statements are passing. Then OUTPUT = (40 / 50) x
100 = 80%. Suppose that the solution was delivered in one
and a half hours (i.e., TIME = 90 minutes). The person’s
PROD is therefore 0.89 (80/90), denoting an assertion
passing rate of 0.89 percent per minute.

Regarding the internal quality analysis, the metric used
in the experiment by Munir et al. [1], McCabe's cyclomatic
complexity metric, provides a quantitative measurement of
the logical complexity of a software; that is, it indicates
how a program can be difficult to test and maintain
[1][31]. Furthermore, the Source Code Analyzer PMD will
be applied to find common programming flaws like:
unused variables, empty catch blocks, unnecessary object
creation, and so forth [32].

E. Development Environment Operationalization

The development environment that the participants will
use includes: Java 8 using the IDE: IntelliJ IDEA with the
4 additional plugins of Cucumber, Activity Tracker,
Metrics Reloaded, and QAPlug. The Cucumber plugin will
allow the implementation of the BDD technique in the
resolution of the exercises. The Activity Tracker plugin is
intended to track and record the activity of the IDE user,
such as the time spent on tasks. McCabe's cyclomatic
complexity metric will be applied with the use of Metrics
Reloaded plugin. In addition, QAPlug plugin implements
PMD module to manage code quality.

V. EXPECTED RESULTS

We expect that the descriptive statistics analysis of the
information compiled from the code katas implementation
by ITL, TDD and BDD responds positively to questions
RQ1, RQ2, RQ4 and RQ5. Meaning that the exercises
developed through TDD and BDD should present
improvement of internal and external quality. A slight
decrease of the productivity is expected due to the fact that
both TDD and BDD present more steps in its process
(RQ3 and RQ6).

VI. CONCLUSION

The experiments that analyze TDD against other
techniques mention that the benefits are not very evident
and emphasize training as one of the relevant facts for
obtaining such results. Therefore, this work focuses on
increasing training and performing exercises at the same
level of difficulty with the intention of maximizing
understanding of the implementation of the techniques
used and obtaining better results. This work is now
complete after the initial application of the study, held
between May and June 2018. We are currently gathering
all the information and conducting the statistical analysis

23Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 34 / 160

that will be of great benefit if the research applied in other
environments such as in industry and other countries.

ACKNOWLEDGMENTS

This work is financed by national funds through the FCT -
Foundation for Science and Technology, I.P., under project UID /
CEC / 04524/2016.

REFERENCES

[1] H. Munir, K. Wnuk, K. Petersen, and M. Moayyed, “An
experimental evaluation of test driven development vs. test-
last development with industry professionals,” Proc. 18th
Int. Conf. Eval. Assess. Softw. Eng. - EASE ’14, pp. 1–10,
2014.

[2] J. Shore and S. Warden, The Art of Agile Development.
O’Reilly Media, Inc, 2008.

[3] T. D. Hellmann, A. Sharma, J. Ferreira, and F. Maurer,
“Agile testing: Past, present, and future - Charting a
systematic map of testing in agile software development,”
Proc. - 2012 Agil. Conf. Agil. 2012, pp. 55–63, 2012.

[4] O. Dieste, E. R. Fonseca, G. Raura, and P. Rodríguez,
“Efectividad del Test-Driven Development: Un Experimento
Replicado,” Rev. Latinoam. Ing. Softw., vol. 3, no. 3, p. 141,
2015.

[5] D. Janzen and H. Saiedian, “Test-driven development:
Concepts, taxonomy, and future direction,” Computer (Long.
Beach. Calif)., vol. 38, no. 9, pp. 43–50, 2005.

[6] C. Larman and V. R. Basili, “Iterative and incremental
developments. a brief history,” Computer (Long. Beach.
Calif)., vol. 36, no. 6, pp. 47–56, 2003.

[7] I. Sommerville, Software Engineering. Pearson, 2016.
[8] R. Martin, “Iterative and incremental development (iid),”

C++ Rep., vol. 11, no. 2, pp. 26–29, 1999.
[9] D. S. Janzen, “On the Influence of Test-Driven Development

on Software Design,” pp. 0–7, 2006.
[10] K. Beck and M. Fowler, Planning Extreme Programming.

Addison-Wesley, 2000.
[11] K. Beck, JUnit pocket guide. O’Reilly Media, 2004.
[12] Agile Alliance, “What is Test Driven Development (TDD)?”

[Online]. Available:
https://www.agilealliance.org/glossary/tdd/. [Accessed: 11-
Nov-2017].

[13] R. Martinez, “TDD, una metodología para gobernarlos a
todos,” 2017. [Online]. Available:
https://www.paradigmadigital.com/techbiz/tdd-una-
metodologia-gobernarlos-todos/. [Accessed: 11-Nov-2017].

[14] K. Beck, Test-driven development: by example. Addison-
Wesley, 2003.

[15] D. North, “Introducing BDD | Dan North & Associates,”
2006. [Online]. Available: https://dannorth.net/introducing-
bdd/. [Accessed: 07-Dec-2017].

[16] J. F. Smart, BDD In Action: Behavior Driven Development
for the Whole Software Lifecycle. Manning, 2014.

[17] Agile Alliance, “BDD: Learn about Behavior Driven
Development.” [Online]. Available:
https://www.agilealliance.org/glossary/bdd/. [Accessed: 16-
Nov-2017].

[18] M. Wynne and A. Hellesoy, The Cucumber Book:
Behaviour-Driven Development for Testers and Developers,
Pragmatic. 2012.

[19] D. Fucci, H. Erdogmus, B. Turhan, M. Oivo, and N. Juristo,
“A Dissection of the Test-Driven Development Process:
Does It Really Matter to Test-First or to Test-Last?,” IEEE
Trans. Softw. Eng., vol. 43, no. 7, pp. 597–614, 2017.

[20] M. Rahman and J. Gao, “A reusable automated acceptance
testing architecture for microservices in behavior-driven
development,” Proc. - 9th IEEE Int. Symp. Serv. Syst. Eng.
IEEE SOSE 2015, vol. 30, pp. 321–325, 2015.

[21] R. A. De Carvalho, F. Luiz, D. Carvalho, R. S. Manhães,
and G. L. De Oliveira, “Implementing Behavior Driven
Development in an Open Source ERP,” pp. 242–249, 2013.

[22] P. L. De Souza, A. F. Do Prado, W. L. De Souza, S. M. Dos
Santos Forghieri Pereira, and L. F. Pires, “Combining
behaviour-driven development with scrum for software
development in the education domain,” ICEIS 2017 - Proc.
19th Int. Conf. Enterp. Inf. Syst., vol. 2, no. Iceis, pp. 449–
458, 2017.

[23] Agile Katas, “Rock Paper Scissors Kata.” [Online].
Available: http://agilekatas.co.uk/katas/RockPaperScissors-
Kata. [Accessed: 16-Feb-2018].

[24] Agile Katas, “Roman Numerals Kata.” [Online]. Available:
http://agilekatas.co.uk/katas/RomanNumerals-Kata.
[Accessed: 16-Feb-2018].

[25] M. Whelan, “FizzBuzzWhiz Kata.” [Online]. Available:
https://github.com/mwhelan/Katas/tree/master/Katas.FizzBu
zzWhiz. [Accessed: 16-Feb-2018].

[26] R. Osherove, “TDD Kata 1 - String Calculator.” [Online].
Available: http://osherove.com/tdd-kata-1/. [Accessed: 16-
Feb-2018].

[27] Ifpug, “Function Point Counting Practices Manual,” Group,
vol. on06/23/. 2010.

[28] F. Sánchez, “Medida del tamaño funcional de aplicaciones
software,” Univ. Castilla-La Mancha, 1999.

[29] N. J. Salkind, Encyclopedia of Research Design. SAGE
Publications, 2010.

[30] D. J. Saville and G. R. Wood, Statistical Methods: The
Geometric Approach. Springer New York, 1991.

[31] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw.
Eng., vol. SE-2, no. 4, pp. 308–320, 1976.

[32] PMD Open Source Project, “PMD Source Code Analyzer.”
[Online]. Available: https://pmd.github.io/. [Accessed: 19-
Feb-2018].

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 35 / 160

Reinforcement Learning for Reliability Optimisation

Prasuna Saka

Advanced Systems Laboratory
DRDO, India

Email: prasunas@asl.drdo.in

Ansuman Banerjee

Indian Statistical Insitute
Kolkata, India

Email: ansuman@isical.ac.in

Abstract—Software Reliability Optimization problem is aimed at
bridging the reliability gap in an optimal way. In an industrial
setting, focussed testing at the component level is the most favored
solution exercised to fill the reliability gap. However, with the
increased complexity in the software systems coupled with limited
testing timing constraints finding an optimal set of test suite
to bridge the reliability gap has become an area of intense
research. Furthermore, the stochastic nature of the reliability
improvement estimates associated with each test suite manifolds
the complexity. Here, we propose Reinforcement Learning (RL),
as a mechanism to find an optimal solution. We have shown how
an interactive learning is used to estimate the true outcome of
the selection and the action selection policy so as to maximise the
long term reward. The estimation methodology and the selection
policy is inspired by Multi-armed bandit solution strategies.
Firstly, we employ a sample average estimation technique for
deriving the true outcomes. Secondly, a variant of simple greedy
algorithm coined as epsilon-greedy algorithm is considered for
action selection policy. These two steps are iteratively exercised
until the selection criteria converges. The efficacy of the proposed
approach is illustrated on a real time case study.

Keywords–Reliability Optimisation; Reinforcement Learning;
Multi-armed bandit.

I. INTRODUCTION
To beat the modern systems software complexity, software
designs are built hierarchically - from the conceptual ar-
chitectural model gradually progressing towards leaf-node
components/blocks. In parallel, architectural based software
reliability analysis [1][2] has gained prominence in recent
years to asses the reliability of the overall system. Intuitively, in
an hierarchical system, overall reliability of a system improves
by improving the reliability of the underlying components.
Often it is found that the existing reliability of the system is
less than the intended reliability - we call this difference as the
reliability gap. Ensuring that the reliability gap is closed is of
a major concern for mission critical software and therefore
has been the forefront of active research over decades. In
general, the reliability of the components can be improved in
the following ways:

• By using more focussed test suites so that more testing
will increase its functional reliability.

• By introducing redundancy for weak functional parts.

We may select any (or a combination) of the above men-
tioned approach. However, improving reliability by focussed
testing is the preferred option over providing software redun-
dancy for two notable reasons i) Redundant software adds
more to the existing complexity ii) Increased foot print size by

incorporating software redundancy leads to undesirable loads
on the memory needs of the system.

Focussed testing looks for testing a sub-set of the software
components so that the reliability is enhanced to the intended
level. As each component testing has different contribution to
the reliability improvement figure, their exists multiple non-
dominating solutions to raise the reliability of the overall
software to the desired level. Each of these solutions acts as a
representative to the problem. Now, the reliability optimization
problem tries to minimize the efforts of testing so that the op-
timized solution maps to any of the non-dominating solutions.

The remainder of the paper is organised as follows. Section
2 emphasises the problem area using a motivating example.
Section 3 presents a brief description of the methodology
adopted in seeking the solution. Section 4 describes a real case
study, and formulates the numericals of the problem. Section
5 presents experimental results considering several indicative
scenarios. Section 6 discusses the related work and Section 7
offers concluding remarks.

II. MOTIVATING EXAMPLE AND PROBLEM
FORMULATION

We introduce a small instructive example to disclose the
intricacies involved with the problem. For illustration purpose,
let us consider a software having 6 basic components swc1,
swc2,.... swc6 and each component is provided with a test suite
tc1, tc2,.... tc6. As each component has its own contribution to
the overall software reliability, reliability improvement figures
Rii’s which can be obtained by testing the component with its
associated test suite would be different. Column 2 of Table
I represents Rii’s, and column 3 corresponds to test suite
execution times. Assume the current reliability Rcurr as 0.6
and target reliability Rd be 0.95. Now, our objective is to find
an optimal set of test suites such that the reliability gap of
0.35 is closed. In general, one can figure out the solution sets
informally by treating it as a combinatorial problem and make
different combinations of test suites until the reliability gap is
filled or one can attempt on a formal note using heuristic search
based algorithms. For this simple case, one can informally
derive the solution sets using pen and paper. Multiple solution
forms to fill the reliability gap are presented in Table II.
Among the various solutions sets, the set represented by S2 is
the optimal. Note that these solution sets are not complete and
hence there is a possibility of having a better selection set than
S2. It is worthy to note that, both pen and paper and heuristic
search based methods become intractable with the increase in
the test suite collection.

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 36 / 160

TABLE I. AN EXAMPLE SHOWING THE RELIABILITY
IMPROVEMENT FIGURES Rii’s and EXECUTION TIMES OF

EACH TEST SUITE.

Test suite Rii ti(man hours)
tc1 0.05 7
tc2 0.1 5
tc3 0.15 5.5
tc4 0.125 6
tc5 0.195 9
tc6 0.23 8

TABLE II. SOLUTION SETS.

Id Solution set ti(man hours)
S1 {tc6 , tc5} 17
S2 {tc2 , tc3 , tc4} 16.5
S3 {tc6 , tc2 , tc3} 18.5
S4 {tc1 , tc2 , tc3 , tc4} 23.5

Now, we introduce another element which manifolds the
problem scenario - the scenario when the Rii’s represented
are just estimates not actual values. In this consequence, it
is a natural choice to associate a confidence figure for each
estimate. These figures represent the certainty (indirectly, the
uncertainty factor) element involved with the estimates made.
It is to note that, the estimates made would be certain if
and only if the testing data is adequate enough to construct
a Software Reliability Growth Model (SRGM). However, in
case, where test history is not available or limited, estimates are
made using subjective guess method. For these estimates to be
more effective, one can associate a confidence/certainty factor
with each estimate. Now, we try to look for an optimal solution
for the same problem illustrated in the previous paragraph with
the certainty factors in picture. Table III represents this case,
here the numbers in column 3 (Pi) denotes the confidence
values. Though, tc6 has the highest improvement value, as
the probability figure associated with it is comparatively much
lesser than the confidence figure of tc5 and also its reliability
figure is not much lesser than tc6 we should favour tc5 over
tc6. Evidently, with the increase in the number of components,
neither pen and paper methods nor heuristics based methods
can address this scenario. Also, to the best of our knowledge
none of the existing works are fit to handle the software relia-
bility optimisation problem with uncertainty elements in play.
The literature review presented in the Section VI strengthens
our statement. Now, we proceed ahead with a formal definition
of the problem and the solution methodology adopted.

TABLE III. AN EXAMPLE WITH CONFIDENCE VALUES.

Test suite Rii Pi ti
tc1 0.05 0.7 7
tc2 0.1 0.63 5
tc3 0.15 0.5 5.5
tc4 0.125 0.95 6
tc5 0.195 0.9 8
tc6 0.23 0.75 8

• Problem Formulation
Given:
◦ A set of software components, swc1, swc2

swcn.

◦ A set of test suites, one test suite for each
component, tc1, tc2,.... tcn along with their
execution times t1, t2,.... tn.

◦ Reliability improvement estimates for each test
suite, Ri1, Ri2,.... Rin.

◦ Probability/Confidence figure for each esti-
mate, P1, P2, Pn.

◦ The desired reliability of the system as Rd, and
current reliability as Rcurr.

Assumptions:
◦ Test suite is either tested fully or not executed

at all (0-1).
◦ Time tn indicates the total time taken to sim-

ulate/execute the test suite tcn and
◦ Testing will improve the reliability of compo-

nents.
Output:
Selection of a optimal set of test suites such that
the reliability of the system meets the target/desired
reliability Rd, having a minimum test execution time.

III. METHODOLOGY OVERVIEW
This section talks in detail about the solution methodology
proposed to find an optimal set of test components to be
targeted in attaining the desired reliability.

The problem ahead of us can be treated as a class of
optimal testing-resource allocation problem concerned with
allocating resources among several alternative (competing)
options. The options are to be favored keeping the objective
function in mind. Here, the objective function involves the cost
factor together with reliability, which means that we have mul-
tiple objectives in terms of both maximizing system reliability
and minimizing testing cost. If there is no uncertainty element
involved in the problem domain, we can consider this problem
as a multi-objective optimization problem whose solution is
trivial: we would always select the test-suites having the
maximum outcome, i.e., more reliability improvement in less
time. The important point to note here is that, the environment
before us now is not a deterministsic environment rather it
is a probabilistic environment. It is a well known fact from
the history of statistics that, the probabilistic environments are
efficiently handled by learning and exploration is a necessary
prerequisite of probability learning. The uncertainty about
parameters drives learning and it is by exploration and by
interactive interaction one can learn the behaviour of the
system. Here, we summarise that some learning mechanism
is indeed required to address the scenario.

Looking forward for the kind of learning theories that
can be considered for, we see that learning under uncertainty
can be well handled by Reinforcement Learning [3]. RL is
a goal directed learning which gathers knowledge about the
environment through interaction. Every interaction produces a
wealth of information about the consequences of actions, and
about what to do in order to achieve goals. The information
gain over a number of interactions thus can be used to weed
out the uncertainty element involved in and one can come up
with a definite average consequence of chosing a particular
option.

This is to say until we explore the selections a number
of times, it is not trivial to know the true outcomes of each

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 37 / 160

selection. True outcomes of selecting an option can be made by
observing the outcome in each trail and refining the expected
outcome. It is worthy to note that exploration gives us a
opportunity to learn more about the system, but, it may not
result in high current rewards. Also, exploring all the time
is not a good idea as it cannot give us a quick solution. In
order to have a quick solution, it is always better to exploit
the current knowledge on the estimates made. Exploitation is
the right thing to do to maximize the expected reward on one
step, but exploration may produce greater total reward in the
long run. Whether we select an action either by exploration or
by exploitation, the estimates of the selection are to be refined
for every run so that they guide us our future action section
policy. In any specific case, whether it is better to explore or
exploit depends in a complex way on the precise values of the
estimates, uncertainties, and the number of remaining steps.
Such problems are paradigms of a fundamental conflict be-
tween making decisions that yield high current rewards, versus
making decisions that sacrifice current gains with the prospect
of better future rewards. However, exploration and exploitation
approach will definitely result in a optimal solution.

We now discuss about how exploration and exploitation
can be taken up after we introduce some related terminology.

1) Action list, A - The set of available choices represent
the action list. Here, set of test suites tc1, tc2,.... tcn
represent the set of actions available.

2) Reward, R - The outcome of selecting a particular
action. As our aim is to have more reliability gain in
minimum time, we define the reward of selecting an
action a as

R(a) =
ReliabilityImprovement(Ria)

TestExecutiontime(ta)

3) Estimated Reward, Qn(a) - The estimate of the
reward of an action a after n trials.

4) True Reward, q∗(a) - The true value of selecting an
action a.

On a broader view, there are two basic steps needed:

• Estimation (the outcome of each action): Whether
we explore or exploit, after the selection of every
action, we need to refine the outcome of the action.
In a simplistic way, action values are estimated/refined
using sample-average method. Here, each estimate is
an average of the sample of relevant rewards. By the
law of large numbers, as the number of iterations
increases, estimates converges to real values, i.e.,
Qt(a) converges to q*(a).

• Action selection policy: Once the estimates are made,
now comes the question of policy to be adopted to
choose an action. One natural solution is to select the
action having the highest estimated value, expressed
as

At := argmaxQt(a)

If we maintain estimates of the action values, then
at any time step there is at least one action whose
estimated value is greatest. We call these the greedy
actions. When we select one of these greedy actions,
we say that we are exploiting our current knowledge
of the values of the actions. If instead, we select

one of the non-greedy actions, then we say we are
exploring, because this enables us to improve our
estimate of the non-greedy action’s value. Greedy
action selection always exploits current knowledge
to maximize immediate reward; it spends no time at
all in sampling apparently inferior actions to see if
they might really be better. A simple alternative is
to behave greedily most of the time, but every once
in a while, say with small probability epsilon (ε),
instead select randomly from among all the actions
with equal probability, independently of the action-
value estimates. These methods are coined as ε-greedy
methods. An advantage of these methods is that, in the
limit as the number of steps increases, every action
will be sampled an infinite number of times, thus
ensuring that all the Qt(a) converge to q*(a).

A. Implementation and Performance Aspects

As discussed earlier, rewards are estimated using sample
average method. Let Ri denote the reward received after the
ith selection of an action a, and let Qn denote the estimate
of its action value after it has been selected n - 1 times, which
we can write simply as

Qn :=
R1 +R2 ++Rn−1

n− 1
(1)

The above equation can be devised as an incremental
formula so that the averages can be updated with minimum
computational costs. In other terms, the above equation can be
expressed as

Qn+1 := Qn +
[Rn −Qn]

n
(2)

Pseudocode for a complete algorithm using incrementally
computed sample averages and ε-greedy action selection policy
is shown in Algorithm 1. In the Algorithm 1, the function ban-
dit(A) is assumed to take an action and return a corresponding
reward.

Algorithm 1 epsilonGreedy

1: Initialise:
2: for a =1 to k do
3: Q(a)← 0
4: N(a)← 10
5: end for
6: while (1) do
7: A = argmaxQ(a) with probability 1- ε

or
8: A = a random action, with probability ε
9: R← bandit(A)

10: N(A)← N(A) + 1
11: Q(A) = Q(A) + 1

N(A) (R−Q(A))
12: end while

The algorithm presented has been inspired by the multi-
armed bandit solution strategies which is a simplistic form of
reinforcement learning. To the best of our knowledge, we say
this is the first effort to apply machine learning approach for
software reliability optimisation.

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 38 / 160

IV. DEMONSTRATION USING REAL CASE STUDY

In this section, we present a real case scenario which forms
the basis for our motivation to pursue this investigation. As an
illustrative example, a relatively simple redundant system is
considered, the configuration of which is depicted in Figure
1. The system is a heterogeneous dual redundant system
comprising of a main system and a standby system. Each
system houses two packages and each package in turn holds
3 sensors. Both Main and Standby systems acquires real
time data from these sensors. The dynamics of main system
and standby system are heterogeneous in nature. The main
system is highly accurate, with less acceptable operational
time, whereas the standby system is less accurate with longer
operational time.

For the missions, whose working duration is of the order
of the performance of main system, it is naturally good to
consider the data of the main system so long it is healthy.
As the data provided by this system is crucial from mission
perspective, the redundancy management is employed at the
component (sensor) level. If multiple component failure occurs
then system level reconfiguration is considered. Component
level redundancy management adds more to the complexity
of the software logics coded. Thus, the functional correctness
of redundancy management software logics play a significant
role in determining the overall reliability of the system. The
software architecture of such logics should be failure resilent
and robust enough. From the verification perspective, it is of
paramount interest to ensure the reliability of these logics. The
section below details the software architecture considered for
realising the component level redundancy.

Ms1

Ms4

Ms5

Ms6

Ss1

Ms2

Ms3

Ss2

Ss3

Ss4

Ss5

Ss6

Main Standby

Figure 1. System Configuration.

A. Software Architecture

Redundancy management software core has 3 basic mod-
ules viz., i) Fault detection module ii) Fault Diagnosis module
iii) Reconfiguration module. Fault detection logic recognizes
that something unexpected has occurred in the system. To
do so, it monitors the behavioral parameters of a compo-
nent/system to asses the health of it. Once a fault is detected,
the next step is to identify the faulty component (failure
location), and also the nature of the fault (whether the fault
is transient nature or permanent). Finally, a remedial action
to be performed based on the decision logics of the system.
This phase leads to reconfiguration of the system either at the
component level or system level. Successful reconfiguration
requires robust and flexible software architecture and the
associated reconfiguration schemes.

Software realization for the system is depicted in Figure 2.
In total, there are 12 modules labelled as swci. Each module
is associated with a test suite (tci) and its execution time (ti).

Figure 2. Software Architecture.

As stated earlier, each software component has its own
contribution to the overall software reliability. The reliability
improvement figure Ri upon testing different components is
different. For the illustrated system, the Ri for each compo-
nent is assigned based on the complexity and the functional
criticality of the logic associated with it. In the Table IV,
the 2nd row shows the Ri that can be obtained by testing a
software component swci with its test suite tci. We see there is
a variation in the Ri’s. For example, software logics identified
by swc2 corresponds to package validity checks of the second
package. For the system which is described above, the design
elements for package2 are more in number when compared to
package1, hence the logics are complex, as a result, the Ri is
more for swc2 when compared to swc1. Similarly, swc10 deals
with identifying permanent faults. As permanent faults lead
to reconfiguration of the system, the decisions are made after
observation of the fault for a persistent amount of time. Hence,
this logic is obviously the most complex of all the components,
hence the Ri awarded to it is the highest. 3rd row of the table
refers the test suite execution times ti. As our aim is to find an
optimal test suite with minimum execution time, the reward R
for each test component is

Rn =
Rin
tn

which are placed in 4th row. 5th row corresponds to the uncer-
tainties associated with this reward estimates. The uncertainties
are assigned using subjective guess method. When there are
more elements of uncertainty in the logics, the probabilities are
assigned less. For example, the software logics for package
validity checks, which are meant to asses the health of the
sensor, depend on operational environmental conditions. The
physical quantities like temperature of the chamber, number
of operational hours, misalignment factors, calibration state
of the package play a role in the sensor behaviour. As per
the system design, package2 is highly sensitive and more
dependent on the external factors. Hence, it is very difficult to
ascertain Ri with great confidence, so the probability associated
to it is on the lower side. On the other hand, there is no

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 39 / 160

TABLE IV. SOFTWARE COMPONENT NUMERICALS.

Parameter tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8 tc9 tc10 tc11 tc12
Reliability Improvement (Rii) 9 11.5 6 6 6 8 8 8 7.5 13 10 7

Execution Time (ti) 7 8 5 5 5 5 5 5 6 10 9 7
Reward (R) 1.285 1.4375 1.2 1.2 1.2 1.6 1.6 1.6 1.25 1.3 1.11 1.0

Probability (Pi) 0.75 0.65 0.65 0.65 0.6 0.6 0.6 0.6 0.9 0.85 0.9 0.9

involvement of external factors on the reconfiguration logics
of the system. Only the design criteria as per system needs are
to be coded, hence, the uncertainty factor associated to it is
less. All components are assigned values following the same
analogy.

V. EXPERIMENTAL RESULTS
This section demonstrates the evaluation results of the pro-
posed algorithm to the case study illustrated in the previous
section. In essence, two aspects are considered during eval-
uation. Firstly, the applicability of the bandit algorithm in
arriving at an optimal solution is studied. To demonstrate this,
4 case studies each depicting an indicative practical scenario is
taken up. Secondly, the aspect of exploration and exploitation
tradeoff for the given task at hand is studied. Here, various
exploration fractions are considered to arrive at a suitable
exploration probability for the illustrated example. Also, on
an explorative note, a simple variant of ε greedy algorithm
termed as ε decaying strategy is applied. Here, rather than
using a fixed value for ε, it is started with a high value initially,
and decreased gradually over time. This way, we can favor
exploration initially, and then favor exploitation later on. The
following subsections elucidates the experimental results on a
detailed note.

A. Application of Bandit Algorithm
To illustrate the application of bandit algorithm for finding

an optimal test suite, four different scenarios/cases considering
the different possibilities of having rewards and probability
structures are taken. Each scenario results are illustrated using
two graphs. The first graph depicts the preferred action choices
and the second graph elucidates the reward history. The details
of which are stated below:

• Case1: This case corresponds to the state where the
rewards and probability figures of the case study are
kept unchanged. The rewards and confidence figures
depicted in Table IV are considered as it is. By
intuition we can make some guess on the optimal test
suite selection, but it may not be the possible best
solution. By running the algorithm designed, we see
the order of preference of test suite is as tc9, tc10,
tc11, tc1, tc6, tc12, tc7, tc2, tc8, tc3/tc4/tc5. The Ri’s of
tc6, tc7, tc8 are the highest(1.6), but the probabilities
associated with them are less. Though the Ri of tc9
is lesser than tc6, since the associated probability of it
is much more than tc6, tc9 is given preference. Also,
we see the reward of tc10 is higher than the reward
of tc9 , but in long run tc9 is given preference as the
certainity factor of it is higher than tc10. Similarly, all
other test suites are preferred. The results shown in
Figure 3 after running the epsilon greedy algorithm
depict the optimal test suite selection for this case.

• Case2: This considers the scenario where the esti-
mates made are certain, means there is no element
of uncertainty. Thus, all the estimates are assigned a
probability of 1 (equal probability distribution). In this
case, the test suite having the highest initial estimate
should be given preference. For our case, tc6, tc7, tc8
are to be favored first. The graphs illustrated in Figure
4 confirm the expected notion.

• Case3: Here, we consider the case where the rewards
obtained by selecting each action is equal, but each
reward is having its own uncertainty factor. Naturally,
the one having the highest probability of occurence
should be given preference over the other. For illus-
tration purpose, the initial rewards of all the test suites
is set to a value of 1. Here, the test suites tc9, tc11,
tc12 with the highest probability are to be favored. The
graphs depicted in Figure 5 stand to this opinion.

• Case4: This case pertains to the scenario where there
is no uncertainty in the estimates made and all com-
ponents have equal reward. Ideally, in this case all
actions are to be chosen with equal importance. The
graphs presented in Figure 6 confirm the analogy.

Figure 3. Case 1 Results.

Figure 4. Case 2 Results.

The true reward of selecting a particular test suite besides
the uncertainty factor in place can be concluded by considering
the long term rewards. Table V summarizes the long term
rewards Rl of every test suite obtained after running the
proposed algorithm for the 4 different scenarios explained in
the previous paragraph. For every case, row 1 corresponds to
confidence figures, row 2 represents initial reward estimates
and row 3 represents the true rewards of each test suite. We

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 40 / 160

Figure 5. Case 3 Results.

Figure 6. Case 4 Results.

see the long term rewards Rl’s for each test suite entirely
depends on the initial estimates on the probability of occurence
of that estimate. The results depicted in Table V are found to be
intuitive. Once the true rewards are known for each test suite,
choosing an optimal set of test suites to fill the reliability gap
is trivial.

B. Exploration-Exploitation Tradeoff
Now we look into the aspect of Exploration and Exploita-

tion trade off by running the algoritm over various exploitation
factors. Figure 7 compares a greedy method with three ε-
greedy methods (ε = 0.01, ε = 0.1, ε = 0.5). All the methods
formed their action-value estimates using the sample average
technique. The greedy method improved slightly faster than
the other methods at the very beginning, but then leveled
of at a lower level. It achieved a reward-per-step of only
about 1.21, compared with the best possible of about 1.26 on
this testbed. The greedy method performed significantly worse
in the long run because it often got stuck performing sub-
optimal actions.The ε-greedy methods eventually performed
better because they continued to explore and to improve their
chances of recognizing the optimal action. The ε = 0.1 method
explored more, and usually found the optimal action earlier,
but it never selected that action more than 91% of the time.
The ε = 0.01 method improved more slowly, but eventually
would perform better than the ε = 0.1 method. As seen from
the figures, exploring more often (ε = 0.5) is also not good.
We say that this exploration-exploitation trade-off varies from
problem to problem. For the given case study exploration rate
of 0.01 is relatively effective in long run, but this needs more
number of iteration to achieve sub-optimal rewards. Hence a
choice can be made between exploration rate of 0.1 or 0.01.

One issue with the epsilon-greedy strategy is how to set the
value of ε, and how we continue exploring suboptimal choices
at that rate even after the algorithm identifies the optimal
choice. Rather than using a fixed value for ε , we can start with
a high value that decreases over time. This way, we can favor
exploration initially, and then favor exploitation later on. This
strategy is known as ε decaying strategy. Figure 8 and Figure

9 illustrates this strategy. The initial ε is set to 0.1. Figure 8
illustrates the case where the exploration factor is decreased
to 0.01 after half the trials are over. We see that there is no
performance degradation upon decreasing exploration rate as
by half of the trials all the actions rewards might have reached
very close to their optimal values, hence little exploration is
enough. Figure 9 decreases the exploration factor by a large
factor (to 0.001) which is not an advisable scenario for our case
study. The initial choice of exploration rate and the decaying
factor varies from problem to problem.

ε = 0.1
ε = 0.01
ε = 1
ε = 0.5

Figure 7. Exploration-Exploitation tradeoff.

Non-decaying
Decaying

Figure 8. Epsilon Decreasing Strategy-1.

Decaying

Non-decaying

Figure 9. Epsilon Decreasing Strategy-2.

VI. RELATED WORK
A lot of work in the past considered the optimal allocation of
the reliabilities to minimize a cost function, related to the de-
sign or the verification phase costs. Much initial research dealt
with hardware systems (e.g., the series-parallel redundancy-
allocation problem has been widely studied [4]-[5]); software
systems received attention more recently. For a software ap-
plication, the objective of the optimization will depend on
the phase of the software life cycle. During the design phase
[6], structural optimisation of the software architecture is paid
attention with two leading objectives i) reliability constrained

30Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 41 / 160

TABLE V. OVERALL RESULTS.

Case No. Parameter tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8 tc9 tc10 tc11 tc12

1
Pi 0.75 0.65 0.65 0.65 0.6 0.6 0.6 0.6 0.9 0.85 0.9 0.9
Rii 1.285 1.437 1.2 1.2 1.2 1.6 1.6 1.6 1.25 1.3 1.11 1.0
Rli 0.96 0.93 0.78 0.78 0.78 0.95 0.95 0.95 1.11 1.09 0.99 0.90

2
Pi 1 1 1 1 1 1 1 1 1 1 1 1
Rii 1.285 1.437 1.2 1.2 1.2 1.6 1.6 1.6 1.25 1.3 1.11 1.0
Rli 1.28 1.43 1.2 1.2 1.2 1.59 1.59 1.59 1.25 1.3 1.11 1.0

3
Pi 0.75 0.65 0.65 0.65 0.6 0.6 0.6 0.6 0.9 0.85 0.9 0.9
Rii 1 1 1 1 1 1 1 1 1 1 1 1
Rli 0.75 0.65 0.65 0.65 0.65 0.6 0.58 0.58 0.88 0.84 0.88 0.88

4
Pi 1 1 1 1 1 1 1 1 1 1 1 1
Rii 1 1 1 1 1 1 1 1 1 1 1 1
Rli 1.0 1.0 1.0 1.0 1.0 0.99 1 1 1 1 0.99 1

cost minimization ii) cost constrained reliability maximization.
During the testing phase, the objective of the optimization is
to determine the allocation of testing effort so that the desired
reliability objective is achieved [7][8]. During the operational
phase, optimization is used to explore alternative configura-
tions and to determine an optimal allocation of components to
various nodes in a distributed network to achieve the desired
performance and reliability.

At the software front, we see much of the research work
in the community is biased on design phase optimisation side
[9][10]. This work, however, does not consider testing-time of
software components and the growth of their reliability. Not
many papers considered the problem in the software verifica-
tion phase, where the issue is either to allocate reliabilities that
components need to achieve during their testing or to determine
the allocation of testing effort so that the desired reliability
objective is reached. Looking at the work in this direction,
chronologically, the very initial work by Okumoto and Goel
[11] investigated the optimal software release problem by using
a software reliability growth model based on NonHomoge-
neous Poisson Process (NHPP) by considering the cost and
software reliability as two different independent criterion. This
work was carry forwarded by Shigeru Yamada et al. [12] who
consider both cost and reliability criteria.

Also, authors in [7][13] proposed an optimization model
with the cost function based on well known reliability growth
models. They also include the use of a coverage factor for
each component, to take into account the possibility that a
failure in a component could be tolerated (but fault tolerance
mechanisms are not explicitly taken into account, and the
coverage factor is assumed to be known). The authors in [14]
also try to allocate optimal testing times to the components
in a software system (here, the reliability growth model is
limited to the Hypergeometric (S-shaped) Model). Some of the
cited papers [7][14][15] also consider the solution for multiple
applications, i.e., they aim to satisfy reliability requirements for
a set of applications.

In recent times, traditional reliability growth modelling
techniques are replaced by machine learning techniques to
improve the prediction accuracy of the constructed SRGM.
A number of machine learning strategies such as artificial
neural networks (ANN), support vector machine (SVM) and
genetic programming (GP), are in practice in recent times for
reliability modeling. Gene Expression Programming (GEP),
a new evolutionary algorithm based on Genetic algorithm
(GA) and GP, has been acknowledged as a powerful ML for

reliability modelling[16]. We infer from the literature survey
that the application of AI in software engineering domain [17]
is also concentrated on software relaibility modelling.

Though, SRGM is probably one of the most successful
techniques in the literature for software reliability modelling,
with more than 100 models existing in one form or another,
through hundreds of publications, in practice, however, they
encounter major challenges. First of all, software testers sel-
dom follow the operational profile to test the software, so
what is observed during software testing may not be directly
extensible for operational use. Secondly, when the number
of failures collected in a project is limited, it is hard to
make statistically meaningful reliability predictions. Thirdly,
some of the assumptions of SRGM are not realistic, e.g., the
assumptions that the faults are independent of each other, that
each fault has the same chance to be detected in one class, and
that correction of a fault never introduces new faults. These
limitations impediments the use of SRGM based methods. In
such cases, subjective knowledge of the system can be taken
as an aid in making the reliability estimates. Estimates can
be made subject to some criteria like - complexity, functional
criticality etc. Since these are just estimates, one can assign
confidence factor for the estimates made and can address the
optimal selection issue.To the best of our knowledge, no work
addresses this scenario and hence motivated us to consider a
learning strategy and frame a solution methodology.

VII. CONCLUSIONS
In this paper, we have proposed a learning based paradigm
for addressing the software reliability optimisation problem.
We have shown how an interactive learning can address the
problem of finding an optimal test suite whose rewards are
stochastic in nature. In the proposed solution, every interaction
is used to learn about the system and in a way the rewards are
refined. As a result, over a period of time, the stochastic reward
values are converted into true rewards. Once the true rewards
are computed, the problem at hand becomes as simple as a
multi-objectuive optimisation problem. The learning strategy
employed here is inspired by a well known multi-armed bandit
solution strategies. The application of the proposed solution
strategy to the real case study demonstrates the potential of
Reinforcement Learning in addressing the problem stated.

In future, we intend to enhance our existing algorithm by
considering various practical scenarios. The random action
selection policy considered during exploration phase in ε-
greedy solution can be improved using Upper-Confidence-
Bound strategy. The ε greedy action selection forces the

31Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 42 / 160

non-greedy actions to be tried, but indiscriminately, with no
preference for those that are nearly greedy or particularly
uncertain. It would be better to select among the non-greedy
actions according to their potential for actually being optimal,
taking into account both how close their estimates are to being
maximal and the uncertainties in those estimates. We find
there is a proper mathematical basis to work out this idea.
Using this refined startegy, we guess that global optimum
can be obtained in a fewer iterations. Furthermore, based on
some numerical preference Gradient Bandit Algorithms can be
considered to improve further. Furthermore, contextual bandits
can be explored for associative search policies. In summary, we
see a good potential in the application of RL for optimisation
domain.

REFERENCES

[1] M. R. Lyu, “Software reliability engineering: A roadmap,” in 2007
Future of Software Engineering, ser. FOSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 153–170. [Online]. Available:
http://dx.doi.org/10.1109/FOSE.2007.24

[2] S. S. Gokhale, “Architecture-based software reliability analysis:
Overview and limitations,” IEEE Transactions on Dependable and
Secure Computing, vol. 4, no. 1, Jan 2007, pp. 32–40.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 2017.

[4] Y. Nakagawa and S. Miyazaki, “Surrogate constraints algorithm for reli-
ability optimization problems with two constraints,” IEEE Transactions
on Reliability, vol. R-30, no. 2, June 1981, pp. 175–180.

[5] F. A. Tillman, C. L. Hwang, and W. Kuo, “Determining component
reliability and redundancy for optimum system reliability,” IEEE Trans-
actions on Reliability, vol. R-26, no. 3, Aug 1977, pp. 162–165.

[6] M. E. Helander, M. Zhao, and N. Ohlsson, “Planning models for soft-
ware reliability and cost,” IEEE Transactions on Software Engineering,
vol. 24, no. 6, Jun 1998, pp. 420–434.

[7] M. R. Lyu, S. Member, S. Rangarajan, and A. P. A. V. Moorsel,
“Optimal allocation of test resources for software reliability growth
modeling in software development,” IEEE Transactions on Reliability,
2001.

[8] J. Rajgopal and M. Mazumdar, “Modular operational test plans for
inferences on software reliability based on a markov model,” IEEE
Transactions on Software Engineering, vol. 28, no. 4, Apr 2002, pp.
358–363.

[9] F. Zahedi and N. Ashrafi, “Software reliability allocation based
on structure, utility, price, and cost,” IEEE Trans. Softw. Eng.,
vol. 17, no. 4, Apr. 1991, pp. 345–356. [Online]. Available:
http://dx.doi.org/10.1109/32.90434

[10] O. Berman and N. Ashrafi, “Optimization models for reliability of mod-
ular software systems,” IEEE Transactions on Software Engineering,
vol. 19, no. 11, Nov 1993, pp. 1119–1123.

[11] K. Okumoto and A. L. Goel, “Optimum release time for software
systems,” in Computer Software and Applications Conference, 1979.
Proceedings. COMPSAC 79. The IEEE Computer Society’s Third
International, 1979, pp. 500–503.

[12] S. Yamada and S. Osaki, “Cost-reliability optimal release policies for
software systems,” IEEE Transactions on Reliability, vol. R-34, no. 5,
Dec 1985, pp. 422–424.

[13] M. R. Lyu, S. Rangarajan, and A. P. A. van Moorsel, “Optimization of
reliability allocation and testing schedule for software systems,” in Pro-
ceedings The Eighth International Symposium on Software Reliability
Engineering, Nov 1997, pp. 336–347.

[14] R.-H. Hou, S.-Y. Kuo, and Y.-P. Chang, “Efficient allocation of testing
resources for software module testing based on the hyper-geometric
distribution software reliability growth model,” in Software Reliability
Engineering, 1996. Proceedings., Seventh International Symposium on,
Oct 1996, pp. 289–298.

[15] N. Wattanapongsakorn and S. P. Levitan, “Reliability optimization
models for embedded systems with multiple applications,” IEEE Trans-
actions on Reliability, vol. 53, no. 3, Sept 2004, pp. 406–416.

[16] B. Kotaiah and R. A. Khan, “A survey on software reliability assessment
by using different machine learning techniques,” 2012.

[17] M. Harman, “The role of artificial intelligence in software engineering,”
in 2012 First International Workshop on Realizing AI Synergies in
Software Engineering (RAISE), June 2012, pp. 1–6.

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 43 / 160

Concurrency Analysis of Build Systems
Vasil Tenev, Bo Zhang, Martin Becker

Fraunhofer Institute for Experimental Software Engineering (IESE)
Kaiserslautern, Germany

Email: {vasil.tenev, bo.zhang, martin.becker}@iese.fraunhofer.de

Abstract—In order to derive executable software artefacts, a
build system needs to be maintained properly along with the
evolution of source code. However, in large software projects
the build process often becomes effort-consuming, which is often
caused by suboptimal concurrency either in the design of the
build system or in the execution of the build process. To cope
with these challenges, we present our concurrency analysis with
practical experiences in this paper. In particular, we propose
a new metric called Degree of Freedom for evaluating the
concurrency potential of a build system based on dependencies
among build jobs and artefacts. In fact, this metric is not limited
to build analysis. It can be used for analyzing the concurrency
potential of any executable process in general.

Index Terms—concurrency, build system, control flow

I. INTRODUCTION

While normal source code (also as known as production
source code) implement the behavior of a software, its build
system (including build tools and build code such as makefiles)
derives the executable software from its production source
code. In large industrial software systems, the complexity of
the build system is often high (in terms of build jobs and build
dependencies), and the build process is time-consuming (over
one hour in large systems) even in a distributed environment
using high-performance and multi-core computers. This is not
acceptable in real continuous integration settings with frequent
code revisions and builds per day.

In order to understand the build process and related issues,
in our previous work [18] we have depicted the build process
via the notion of Build Dependency Structure. Theoretically,
the build dependency structure contains two dimensions as
illustrated in Figure 1 on page 1. On the one hand, the root
build command triggers a flow of build actions that can further
run atomic build jobs (e. g., compiling and linking). These
build actions and jobs are invoked and executed in a tree
structure (vertical in Figure 1 on page 1). On the other hand,
the build jobs with different build tools indicate dependencies
between input build artefacts and output build artefacts, which
further constitute a dependency graph (horizontal in Figure 1
on page 1).

In the build dependency structure, some build jobs need
to be executed sequentially due to the dependencies among
build jobs and artefacts. However, independent build jobs
could be executed in parallel, which helps improving the build
efficiency. Therefore, in practice it is important to analyze
the build system and make sure that build jobs are executed
with optimal concurrency. Although there was some endeavor
in build dependency extraction and optimization [6], [12] a

Figure 1: Notion of the Build Dependency Structure

comprehensive analysis focusing on build concurrency is still
lacking.

In order to optimize the build concurrency and improve
build efficiency, we would like to conduct automated anal-
yses both on the build execution process and also on the
build system architecture. At build execution time, we use
existing commercial tools for monitoring the build process
and analyzing the execution of build jobs in different threads
and on different machines. This shows whether build jobs
are actually executed in parallel. Moreover, we also conduct
static analysis on build dependencies of the build system and
measure concurrency potential of the build architecture. This
helps identify root causes of concurrency problems in the build
process.

In this paper, we provide the following contributions:

• Practices of dynamic and static concurrency analysis in
an industrial study.

• An innovative metric called Degree of Freedom for static
concurrency analysis.

• Lessons learned during the concurrency analysis and
optimization.

This paper is presented in the following structure. Section II
presents our practice of dynamic concurrency analysis. Sec-
tion III introduces our static concurrency analysis approach.
While Section Section IV discusses related work, Section V
presents conclusions, summarizes lessons learned during our
concurrency analysis study, and discusses future work at the
end.

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 44 / 160

Figure 2: Dynamic Concurrency Analysis by ElectricInsight

II. DYNAMIC CONCURRENCY ANALYSIS

The dynamic concurrency analysis shows the actual exe-
cution of different build jobs in a distributed environment.
There exists commercial tools like ElectricInsight [2] for such
purpose. Typically, these tools monitor the build process by
instrumenting the GNU (GNU is a recursive acronym for
"GNU’s Not Unix!") make tool or even replacing it with
their own make tool. As a result, a build execution graph
is generated to visualize concurrent scheduling and execution
of build jobs. For instance, in an industrial case study we
used ElectricInsight and generated the build execution graph
as shown in Figure 2 on page 2. While some build jobs
are executed in parallel in different threads (by build agents)
and CPU (Central processing unit) cores, other build jobs are
executed sequentially in the same thread.

Besides monitoring build execution, ElectricInsight also
claims to optimize the scheduling of concurrent build execu-
tion (to reduce the overall build duration). However, from our
experience the build concurrency is often not optimal. As seen
in Figure 2 on page 2, while a few build threads keep executing
build jobs sequentially, many other threads finish early and
remain idle until the end of the build process. It seems that
some build jobs have to be executed sequentially due to build
dependencies defined in the build system (e. g., makefiles).
In order to investigate the root causes of this suboptimal
build concurrency, it is necessary to further analyze build
dependencies and identify the actual concurrency potential.

III. STATIC CONCURRENCY ANALYSIS

While dynamic concurrency analysis shows the actual be-
havior of build job execution during the build process, static
concurrency analysis focuses on the concurrency potential of

(a) Artefact View (b) Process View

(c) Execution View

Figure 3: Different Views of Build Dependencies.

build jobs and artefacts based on their dependencies. In this
section, we assume an arbitrary but fixed environment for the
execution of the build process, i. e., number of CPU cores,
parallel threads, RAM (Random-access memory) size, etc.
Moreover, we assume that the build process has only one
connected graph component.

A. Build Dependencies

Various dependencies exist between build jobs and artefacts.
We consider three views to analyze the different aspects of the
build dependencies structure:

The Artefact View contains source code artefacts, interme-
diate and final artefacts of a build process. In Figure 3a on
page 2 an artefact “A.o” depends on artefact “A.c”.

On the other hand, the Process View shows build jobs and
the process dependencies in-between, that represent finish-
to-finish relationships. For an example of a clean build see
Figure 3b on page 2, where the job “link” can finish, only if
job “compile” has finished. The job “link” may however start
before, in parallel, or after the job “compile”. In any case,
“link” can’t finish before “compile” is finished.

The Execution View describes three kind of dependencies
(see Figure 3c on page 2):

• Execution Dependency: Job “compile_A2” executes job
“clean”;

• Input Dependency: Job “compile_A2” depends on input
artefact “A2.c”; and

• Output Dependency: Artefact “A2.o” is result of job
“compile_A2”.

These views depict all build dependencies in the vertical and
horizontal dimensions of the Build Dependencies Structure
in [18]. Accounting the different views and the number of
possibilities for scheduling build jobs make the basis of the
static concurrency analysis.

In any of the views on a well-defined build dependency
structure, we deal with an acyclic directed graph. Such struc-
ture is equivalent to a partial order over the set of artefacts and
build jobs, respectively. This partially ordered set is considered
by a build tool (like GNU Make [3], Ninja [5], etc.) to
compute a schedule over all build jobs and execute them in
the right order. The richer the scheduling possibilities with

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 45 / 160

Figure 4: Process view of a best-case example for maximal
parallelization

respect to the build dependencies structure, the bigger the
optimization space, the greater the degree of freedom for
concurrent execution.

B. Degree of Freedom

Here, we propose a new metric called Degree of Freedom
that quantifies the parallelization property of a build process,
i. e.,the degree to which extent a build process can be paral-
lelized. This stands intuitively in direct correlation with the
number of possible scheduling plans.

Examples: (a) Consider a build process where the depen-
dency graph in the process view is a chain (e. g., Figure 3b on
page 2). For such a process, there is only one possible plan
for scheduling its execution and it is not parallelizable. (b) In
comparison, for a star-shaped build process, like in Figure 4
on page 3, there are 8! = 40320 possible scheduling plans to
execute it in one processing thread and 8 of the 9 jobs can be
parallelized.

We assume that a build process always has exactly one
starting point (i. e., the main build job) and only one final
resulting artefact (i. e., the product that is build). Thus, the
dependency graph always has exactly one root in every view
and therefore a star-shaped build process is the best possible
case for maximal parallelization. Using this and the correlation
from above, we define a metric that compares a given build
process with a same-size, star-shaped build process by the
number of possible scheduling plans.

However, the number of scheduling possibilities depends
not only on the partial order, but also on the environment,
i. e., mostly the number of parallel threads available for the
execution. To get an environment independent metric, that is to
multiply out the factor depending on the number of threads for
parallel computing, we use the number of possible execution
sequences for a single thread computation. Therefore, we
define the Degree of Freedom by

Freedom (P) = logS(P∗) S (P)

where S (P) is the number of possible execution sequences
for build process P and S (P ∗) is the number of possible
execution sequences for a star-shaped build process with the
same number of build jobs/artefacts as in P . Thus, S (P ∗)
equals(|P | − 1)!. Formally, S (P) is the number of linear
extensions over the partially ordered set (poset) P (see [11]).

Example: Let P be a build process with process view of 9
build jobs, such that P is a sequence. Then the corresponding
star-shaped build process P ∗ is equivalent to this on Figure
4 on page 3. Therefore Freedom (P) = logS(P∗) S (P) =
log8! 1 = 0 and Freedom (P ∗) = logS(P∗) S (P ∗) =
log8! 8! = 1.

C. Implementation

At its heart, our metric is based on the number of possible
execution sequences for a build process, which is a partial
ordered set as discussed in III-A. The number of all sequences
with respect to a poset is the number of all linear extensions of
the poset [11]. In general, computing S (P) is a #P-complete
problem for arbitrary posets [8].

Although there are several algorithms that can find one
linear extension in linear time [10], it is not clear if there exists
even a polynomial time algorithm for computing the number
of all linear extensions [16]. However, there are polynomial
approximation schemes [9], which can be used to compute
the number of all linear extensions by counting. In contrast
to these works, we deal with special case of partial ordered
sets. From the fact that they correspond to the dependency
graph of a build process, we can expect that the posets are
‘almost’ trees. This means, that they contain a small number of
edges that are in contradiction with the tree properties. Thus,
we based our approach on the algorithm for computing the
number of linear extensions in a tree-shaped poset proposed
by Atkinson [7]. He proposes an O

(
n2

)
algorithm for trees

with n being the number of elements. Since we deal with
‘almost’ trees, we develop two algorithms for computing a
upper and lower bounds for S (P).

1) Upper Bound: We apply Atkinson’s algorithm in com-
bination with Prim’s minimum spanning tree algorithm [15] to
approximate a minimum tree-shaped poset that is a superset
of P . Firstly, it will take all edges that are conform to the
properties of a tree. All remaining edges are evaluated with
respect to the minimal number of linear extensions resulting
from taking one edge and recursively applying the same
procedure until we end up with a tree on which we apply
Atkinson’s algorithm. This minimal number defines the edge
weight. Afterwards, a minimal spanning tree is constructed.
The number of linear extensions of that tree gives a upper
bound for the number of linear extensions of P , since the
set of dependencies (edges) of the tree is a subset of the
dependencies of P . This algorithm runs in O

(
k2n2

)
, where

k is the number of edges that contradict to the tree properties
from graph theory.

2) Lower Bound: For the approximation of the lower
bound, we use a simple scheduling strategy that is more restric-
tive than an optimal strategy for the given poset. We traverse

35Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 46 / 160

the poset graph bottom-up starting with leaf nodes — elements
with no outgoing dependencies — and moving towards a root
node — element without ingoing dependencies. Hereby, we
detect independent sequences of nodes between branching
locations in the graph. This gives us a sequence of layers in
the graph. Each layer consists of independent subsequences.
The scheduling strategy is to run all subsequences in parallel
and synchronizing the build process where a branching takes
place. We compute the number of linear extensions lj for layer
j using the multinomial coefficient. More precisely, for every
layer j of m independent subsequences, we have

lj =

(
k1 + k2 + · · ·+ km

k1, k2, . . . , km

)
with ki being the number of nodes in i-th subsequence for
all 1 ≤ i ≤ m. In total, we need the product of all lj .
Computing the lower bound requires only one traversal of the
graph without repetitions, as described above, which implies
linear time.

Example: In the following, let P be the build dependency
graph from Figure 3c on page 2 to illustrate a computa-
tion for both lower and upper bounds. We compute the
upper bound, as described earlier, based on Prim’s minimum
spanning tree algorithm. In this example, only two edges
contradict to the tree properties from graph theory — these are
“clean”←”compile_A1” and “clean”←”compile_A2”. Choos-
ing either edge results in equivalent trees with respect to the
number of linear extensions due to symmetry. By applying
Atkinson’s algorithm we get S (P) < 70 linear extensions
and we get Freedom (P) < 0.4, since|P | = 9.

On the other hand, the lower bound is computed very easily.
Following the introduced algorithm, we end with three layers
(l1, l2, l3). From left to right:

• l1 consists of 3 independent subsequences each of a single
node. These are “A1.c”, “clean”, and “A2.c” and imply
l1 =

(
1+1+1
1,1,1

)
= 6.

• l2 consists of 2 independent subsequences each of length
2: ”compile_A1”←“A1.o” and ”compile_A2”←”A2.o”.
Here we get l2 =

(
2+2
2,2

)
= 6.

• Finally, l3 consists of one subsequences of 2 nodes
“link_A”←“A”, that means l3 =

(
2
2

)
= 1.

Since S(P) > l1 · l2 · l3 = 36, Freedom (P) > 0.337 holds
and in total Freedom (P) = 0.3685± 0.0315.

D. Optimization and Visualization

The Degree of Freedom is a metric for the static concur-
rency analysis, that measures the parallelization potential of a
build process as a whole. While it is an objective measurement,
it does not provide direct recommendations for optimization.
However, in cases where the build process can be separated in
several independent sub-processes (see Figure 5 on page 4), a
domain expert would be able to detect high-potential regions
by applying our metric.

Here we recommend our »GAME-changing« method with:
• The Goal to increase concurrency
• by taking Actions to restructure dependencies.

Figure 5: Visualization of Static Concurrency Analysis

• This is achieved by identifying the high potential using
Measurements to detect large sub-process size with low
Degree of Freedom and

• Executing the following steps:
1) relationship analysis in high potential subgraphs by

domain experts;
2) alignment of process and artefact dependency

graphs;
3) reconnection of wrongly routed dependencies; and
4) removal of unnecessary dependencies.

Additional visualization of the build process can also provide
insights and support for further analysis. In Figure 5 on page 4,
we provide an example visualization using Cytoscape [1]. Here
we see the execution view of a (disconnected) build process,
where each edge color represents different execution context,
i. e., different execution scripts, different execution variable
set, etc. Figure 5 on page 4.

IV. RELATED WORK

There have been approaches and tools for both dynamic and
static build analysis. In our previous work [18], we focused
on the build process of Android and extracted the build
jobs and dependencies by instrumenting the shell of GNU
make. Gligoric et al. [12] intercepted file reads and writes
in Windows by instrumenting Win32 functions using Detours
[13]. In Linux there is the strace tool [14] for capturing
such information like file read and write, process invocations,
time measurement, etc. Moreover, there are tools for static
makefile analysis, such as MAKAO [6], SYMake [17], and
Makefile::Parser [4]. However, these tools are for general build
extraction and analysis, and they do not support analyzing the
concurrency of build execution.

V. CONCLUSION

This paper presents our approach for concurrency potential
analysis we developed to support the maintenance of build
system for constantly evolving software in big projects where
the build process consumes an important amount of effort. We
address these challenges providing our experience on dynamic
and static analysis that we gained in our industry case. While
conducting the concurrency analysis and optimization in this
study, we have the following lessons learned:

1) Conduct dynamic concurrency analysis to monitor the
concurrency performance of the actual build process.

2) Conduct static concurrency analysis to evaluate concur-
rency of the designed build process.

36Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 47 / 160

3) In order to optimize concurrency, deficits in the build
system (e. g., obsolete/redundant build jobs) should be
first fixed.

4) To prioritize concurrency optimization, consider to first
focus on larger build subprocesses that have lower
Degree of Freedom.

Moreover, we propose a new metric for measuring the con-
currency potential of a build process. In fact, this metric is
not limited to build analysis. It can be used for analyzing the
concurrency potential of any executable process in general.
Our implementation also provides a polynomial algorithm for
computing lower and upper bounds for the number of linear
exertions of a partial order set.

ACKNOWLEDGMENT

Thanks to our colleges from Fraunhofer IESE: Markus
Damm for pointing to the right terminology by the problem
formulation; and Sören Schneickert for many fruitful discus-
sions and his constructive criticism.

REFERENCES

[1] Cytoscape. http://www.cytoscape.org, August 2018.
[2] ElectricInsight. http://electric-cloud.com/, August 2018.
[3] GNU Make. https://www.gnu.org/software/make, August 2018.
[4] Makefile::Parser. https://github.com/agentzh/makefile-parser-pm, August

2018.
[5] Ninja. https://ninja-build.org, August 2018.

[6] B. Adams, H. Tromp, K. de Schutter, and W. de Meuter. Design recovery
and maintenance of build systems. In Proc. IEEE Int. Conf. Software
Maintenance, pages 114–123, October 2007.

[7] M. D. Atkinson. On computing the number of linear extensions of a
tree. Order, 7(1):23–25, Mar 1990.

[8] Graham Brightwell and Peter Winkler. Counting linear extensions.
Order, 8(3):225–242, 1991.

[9] Russ Bubley and Martin Dyer. Faster random generation of linear
extensions. Discrete Mathematics, 201(1-3):81–88, apr 1999.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Second Edition, chapter 22.4
Topological sort, pages 549–552. The MIT Press, 2001.

[11] Chaabane Djeraba Dan A. Simovici. Mathematical Tools for Data
Mining. Springer London, 2008.

[12] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van Velzen,
Iman Narasamdya, and Benjamin Livshits. Automated migration of build
scripts using dynamic analysis and search-based refactoring. SIGPLAN
Not., 49(10):599–616, October 2014.

[13] Galen Hunt and Doug Brubacher. Detours: Binary Interception of Win32
Functions. In Proceedings of the 3rd USENIX Windows NT Symposium,
pages 135–144, Seattle, Washington, July 1999.

[14] D. V. Levin, R. McGrath, and W. Akkerman. strace. linux syscall tracer.
http://sourceforge.net/projects/strace, August 2018.

[15] R. C. Prim. Shortest Connection Networks And Some Generalizations.
Bell System Technical Journal, 36(6):1389–1401, nov 1957.

[16] Ivan Rival, editor. Graphs and Order. Springer Netherlands, 1985.
[17] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen. Symake:

a build code analysis and refactoring tool for makefiles. In Proc. 27th
IEEE/ACM Int. Conf. Automated Software Engineering 2012, pages 366–
369, September 2012.

[18] Bo Zhang, V. Tenev, and M. Becker. Android build dependency analysis.
In Proc. IEEE 24th Int. Conf. Program Comprehension (ICPC), pages
1–4, May 2016.

37Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 48 / 160

Measuring Success in Agile Software Development Projects: a GQM Approach

Abdullah Aldahmash
Electronics and Computer Science

University of Southampton
Southampton, UK

e-mail: a.aldahmash@soton.ac.uk

Andy Gravell
Electronics and Computer Science

University of Southampton
Southampton, UK

e-mail: amg@ecs.soton.ac.uk

Abstract— Agile software development has become one of the
most commonly used methodologies for developing software. It
promises to deliver many benefits, but nevertheless, the
implementation of agile practices and techniques require many
changes that might be a challenge for organizations attempting to
succeed with agile software development projects. Claiming the
success of agile software projects is difficult, and there is a need
for more measurements with which agile success could be
evaluated. This paper develops an instrument with which the
success of an agile software development project could be
measured. The criteria of the success are driven from the Critical
Success Factors (CSFs) of agile development which have been
identified prior developing this instrument. The proposed
instrument will evaluate the success of agile software
development projects in achieving these identified success factors.
The instrument was developed following the Goal Question
Metric (GQM) approach. This study conducted semi-structured
interviews with 13 experts in the field of agile development. The
aim of these interviews was to review and confirm the proposed
instrument for measuring the success of agile projects. Following
comments from the interviews, the instrument was revised. The
developed instrument proposes measuring the agile success using
6 goals, 30 questions, and 7 metrics.

Keywords—Agile; Agile success; GQM; Software metrics; Agile
project

I. INTRODUCTION
Agile practices and techniques have been adopted by many

organizations. These organizations face many challenges
during the agile transformation. These challenges are related
to a variety of aspects, such as people, culture, and
technology. During a previous study [1] we identified the
critical success factors of agile software development. Having
identified the success factors of agile software development,
now we will focus on studying how the success could be
measured; claiming the success of agile software development
is problematic. Therefore, there should be more metrics and
systematic measurements that could evaluate the success of
agile software development projects. There is also a need for
more measurements with which the adoption of agile practices
and techniques could be assessed.

The nature of agile software development requires new
metrics that address the agility. One study [2] concluded that
not all the software traditional lifecycle metrics are suitable for
agile software development. It was suggested that future work
should focus on how the use of the traditional software
measurement could be adapted to work with agile
development or to develop new metrics for agile development.

Recent research [3] reviewed a total of 22 software metrics
and resulted with only 10 metrics that could be used in agile
software development. Therefore, there is a need for more
software metrics that could be used to measure the status of
agile software development.

This study selected the GQM approach to develop an
instrument for measuring the success of agile software
development. This selection was based on a suggestion from
[4] findings, which revealed that the GQM approach is more
relevant to the nature of agile software projects with short-
cyclic iterations. GQM will provide measurements with clear
purposes and goals and will result in saving the time of
developing the measurement which is one of the agile
development objectives. In this paper, an instrument is
developed using the GQM approach. This instrument aimed to
measure the success of agile software development projects.

This paper is organized as follows: Section I is an
introduction. Following which, Section II is a background
where the literature review is discussed. In Section III, the
related work is presented. Section IV discusses the research
methodology used in this study is presented. Section V is
pertaining to the development of the proposed instrument.
Following that, Section VI discusses the review of the
instrument. Lastly, Section VII concludes the paper and puts
forth the future work.

II. BACKGROUND
In this section, the relevant literature was reviewed. Section

A reviews the literature of the agile software development.
Section B discusses the introduction of the GQM approach
and how it could be employed.

A. Agile Software Development
In 2001, a group of software engineers established the

agile manifesto [5] during which, they introduced four values
and twelve principles of agile software development. Since
then, agile practices and techniques have evolved. According
to Agile Alliance network, agile software development
defined as “an umbrella term for a set of methods and
practices based on the values and principles expressed in the
Agile Manifesto. Solutions evolve through collaboration
between self-organizing, cross-functional teams utilizing the
appropriate practices for their context” [6].

The main characteristics that the agile development
include: communication and collaboration, support
innovation/creativity, embrace changes, and the development
should be iterative and indivisible [7]. Agile development
advocates frequent delivery of working software. This ensures

38Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 49 / 160

that feedback will be received early and so will be the changes
in requirements. Agile development also embraces changes
and conflicts during the development rather than rejecting
them [8].

The latest State of Agile Survey 2018 [9] revealed that the
top three reasons which drive the organizations to adopt agile
were to accelerate product delivery, to manage changing
requirements, and to increase productivity. According to a
survey from Microsoft research, the top three paybacks from
agile development are: improve the communication, enhance
the delivery, and better respond to the changes. Conversely,
the three top difficulties with agile development are: large-
scale projects, number of required meetings, and rigorous
management culture [10].

B. Goal-Question-Metric Approach
The instrument will be developed by using the GQM

approach. GQM was proposed by Basili and Weiss [11] with
the aim of introducing a systematic way of defining goals that
could easily be refined into questions and linked to metrics.
The GQM approach has three levels: conceptual level (Goal),
operational level (Question), and quantitative level (Metric).

The goals are usually defined for specific purposes from a
certain perspective and for a given object. Therefore, the usage
of GQM will help in ensuring that the defined measurements
will be defined with the aim of achieving specific goals [12].
The questions are used to describe the approach to achieving
the goals and how it is going to be achieved. The metrics are
set of data linked to each question aiming to answer it and it
could be objective or subjective. Defining goals is beneficial
to focus on the important aspects. Writing questions will make
the goals more specific and will suggest the relevant metrics
[13]. An example of the structure of GQM is illustrated in
Figure 1.

Figure 1. An Example of GQM Structure.

Using GQM approach to develop software measurements
is associated with many benefits. Some of these benefits are
improving the software product quality, enhancing software
processes, and increasing the team cooperation [14]. The
GQM-based measurement approach will help in avoiding

irrelevant measurements through the regular feedback and by
involving the project team to define measurements that are
linked to the agreed upon goals [15]. GQM is a systematic
approach of representing and combining a set of high-level
goals into measurements. The result of implementing GQM is
the specification of a set of metrics addressing a particular set
of goals and rules for interpreting these results [16]. It is
hoped that by implementing the GQM approach it will be
possible to define a list of metrics which could measure the
success of an agile software development project in an
organization.

III. RELATED WORK
A great deal of studies has investigated the status of

measurements in agile software development. According to
Javdani et. al [17], measurements in agile software
development are unlike the measurements in traditional
software development. It was suggested that there is a need for
more agile measurements especially in the following areas:
productivity and velocity, and the changing requirements in
agile. Furthermore, Ayed et. al [18] introduced a
measurement-based framework for measuring the adoption
and customization of agile methods. A set of metrics have
been introduced and categorised into three categories:
organisation level metrics, product level metrics, and process
level metrics. However, the introduced metrics were not
introduced in a practical way which the organizations are
looking for. Agile measurements need to be confirmed and
validated through empirical methodologies in order to gain an
acceptance from the agile practitioners. This paper is planning
to validate the proposed instrument by conducting experts’
interviews. Heidenberg et. al [19] introduced a metrics model
following GQM to measure the impact of agile transformation
in software development organizations. Their model focused
on measuring the business value, lead-time, and efficiency of
the agile software development transformation. It was
indicated that more measurements are necessary to assess the
agile software development status in organizations attempting
for agile transformation.

A recent study [20] has also attempted to provide a
quantitative measurement of the impact of agile
transformation in software development organizations. They
proposed a model with quantitative metrics following the
GQM approach. The proposed model consists of one goal,
four questions, and eight metrics following the structure of the
GQM approach. While they introduced quantitative metrics,
they indicated that qualitative metrics are needed as well. It
was suggested that future work might concentrate on
providing qualitative metrics with which the status of agile
software development could be evaluated and measured.

Fontana et. al [21] conducted a systematic review on the
agile development maturity models and they compared these
models aiming to develop a model which could evaluate the
adoption of agile practices and techniques in an organisation.
They found and reviewed fourteen models which assess the
agile maturity, of which six models were introduced in the last
four years. Most of these available models are built on a
combination between agile principles and Capability Maturity
Model Integration (CMMI). Fontana et. al [21] recommended
that future works should focus on empirical validation of these

Goal 1

Goal 2

Question Question Question Question

Metric Metric Metric

39Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 50 / 160

measurements which this research already achieved. While
our instrument focused on measuring the success of
implementing each success factor, these models were designed
to measure the maturity of each agile practice independently.
Both ways could be used to indicate the success in
implementing agile software development projects.

Chita [22] suggested that the activity theory, which is
usually used in social science, could be used to assess the
factors for successful agile software development
implementation, since the agile success is built on
organisational, cultural, and social factors. They developed a
model following the activity theory for successful agile
adoption and they indicated that their on-going research will
validate this model by conducting a case study.

Laanti [23] introduced a framework which could assess the
agile transformation in large software development
organisations. The framework classified the status of the
organisations into five categories from beginner organisations
to world-class organisations. While the framework assesses
the agile adoption in the organisations, it lacks details on how
organisations could evaluate their own adoption and how they
could improve their agile transformation.

The findings obtained as a result of this paper and of the
abovementioned emerging related work focused on
understanding how the organizations could succeed in
implementing agile practices. Furthermore, how the success in
implementing agile practices could be measured and assessed.
This shows the needs for more research that could work to
validate these measurements and to introduce them to be used
by agile software development practitioners.

In this paper, the proposed instrument used a mix of
qualitative metrics and quantitative metrics to measure the
success of agile software development projects. The proposed
instrument will be reviewed by agile experts and it will be
validated through conducting practical case studies.

IV. RESEARCH METHODOLOGY
The proposed instrument was developed using the GQM

approach. This study followed a qualitative method which is
semi-structured interviews with agile experts. These
interviews were necessary to validate the proposed instrument.
An invitation of participation was sent to a total of 28 experts.
The criterion of selecting the experts which was used is that
the expert should have at least 5 years of experience with agile
software development. Out of the 28-reached experts, 13
experts were willing to participate in this research. These
participants came from various countries, including the USA,
Saudi Arabia, the UK, and France. The industries which the
interview participants represent include, but are not limited to:
Education sector, Finance and Banking sector, and
Information Technology & Software sector. The interviewed
experts represent different types of organizations which ranges
from small organizations with only 15-30 employees to big
multi-nation organizations. The participants were shown the
instrument, following which they had the chance to ask for
clarifications if needed. Then, they were asked about each
item and to propose new items to the instrument. The
interviews last, on average, approximately from 35 to 60
minutes.

V. INSTRUMENT DEVELOPMENT
As identified in the literature, more measurements are

needed for agile projects. The proposed instrument was
developed for the purpose of measuring the success of agile
software development projects. The GQM approach was
selected to build the instrument considering its effeteness in
detecting a systematic way of linking the metrics to the
organizational goals and needs.

The first step of following the GQM approach is to identify
the goal or the set of goals. The goal of this study was to
measure the success of agile projects. Along with 6 sub goals
selected as a result of a review of the success factors of agile
software development [1], which identified the following
factors as critical success factors of agile projects:
Communication, Customer Involvement, Team Capability and
Training, Top management Support, Organizational Culture,
Delivery Strategy, Agile Software Development Practices and
Techniques, and Project Management (PM) Process [1].

As suggested by GQM, the eight identified CSFs will be
rewritten to be a set of goals. The two success factors of agile
practices and techniques, and project management approach
merged into one goal. This is because these two factors are
about a selection process of available agile techniques and PM
approaches; also, this was done to avoid the replication of
having two goals about a selection process. Thus, the goal will
be to have an appropriate selection of these available agile
practices and techniques and PM approaches.

The organization culture is a soft factor which is hard to be
measured and it contains many aspects which overlap with
other success factors such as communication and top
management support factors as per [24]. Thus, in the developed
instrument, the organizational culture factor will not be an
independent goal. Alternatively, organizational culture success
factor will be included in the first, second, third, and fourth
goal. The goals of the proposed instrument are listed as
follows:

1. Improve the communication throughout the
agile project.

2. Increase the customer involvement during
the agile project.

3. Improve the training of the agile project team
members.

4. Increase the support from top management in
the agile project.

5. Enhance the delivery strategy.
6. Appropriate selection of agile techniques,

practices, and PM approach.

A. Experts Interviews Design
This research applied semi-structured interviews

encompassing open-ended questions and closed-ended
questions to review the proposed instrument. The purposes of
these interviews were: firstly, to review and confirm the
proposed instrument’s goals, questions, and metrics, and
secondly to suggest any other questions and metrics that need
to be considered when measuring the success of an agile
software development project. The experts’ interview process
comprised many steps, which were as follows:

40Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 51 / 160

•Emails were sent to experts briefing them on the research and
the objectives of the instrument. In the email, the experts were
also asked to identify their preferred date and time for the
interview.
•Depending on where the experts lived, some interviews were
conducted online via Skype and Zoom, which are video
calling applications. In contrast, other interviews were
conducted on a face-to-face basis.
•Prior to the start of the interviews, all participants were
requested to read the participant information sheet, following
which they were asked to sign the consent form and return it
by email.
•The participants were shown the instrument, and then had the
opportunity to ask for further explanation if needed. This
lasted approximately 5-10 minutes.
•Following this, the experts were asked about each goal in the
instrument, starting with the first goal and ending with the last
one. The experts were also asked about each item in the
instrument and whether they felt that any additional item(s)
needed to be added to the instrument.
•In the last part of the interview, the participants were asked to
answer open-ended questions concerning how the instrument
could be improved. This allowed the researcher to ensure that,
according to the opinions of the interviewed experts, different
aspects of agility were addressed in the proposed instrument.
This also made it possible to confirm whether or not,
according to the experts’ interviewee responses, additional
items were needed.
•The interviews were recorded and lasted, on average,
approximately 35-60 minutes.
•The interviews were voice-recorded and summarised by the
researcher using a pen and notebook. However, one
participant refused to have his voice recorded, and that
interview was hence not recorded.

VI. INSTRUMENT REVIEW
This study applied semi-structured interviews

encompassing open-ended questions and closed-ended
questions to review the proposed instrument. The aims of
these interviews were: firstly, to review and confirm the
proposed instrument’s goals, questions, and metrics. Secondly,
to suggest any other questions and metrics that need to be
considered when measuring the success of an agile software
development project. Therefore, interviews were conducted
with 13 agile experts where the instrument was shown to them
in order to review the proposed instrument.

The experts’ interviews resulted with many modifications
to the proposed instrument. Following the received feedback,
the instrument was revised accordingly. These modifications
ranged from some language and editing notes to additional
questions and metrics to be added. There were number of
amendments which were applied to the proposed instrument to
address the received feedbacks. It is difficult to list all the
discussions with the agile experts about the instrument in this
paper. Alternatively, the final version of the instrument is
provided. The focus will be shifted now on how the proposed
instrument could be validated. The researchers intended to use
the instrument in three case studies. The evaluation obtained as

a result of these case studies will make it possible to validate
the practical usage of the instrument.

The final version of the proposed instrument after the
review from the interviewed experts is shown in Tables I, II,
and III. The separation of the instrument into three tables is
only for presentational purposes.

TABLE I. THE PROPOSED INSTRUMENT (PART 1 OF 3)

Measuring the Success of Agile Software Development Projects

1st Goal: Improve the communication throughout the agile project

Q1. Rate your use of the ready
communication platforms across the
team (e.g. Slack, etc.) or your own
developed platform?
Q2. Rate the team practice of daily
meetings (physical or virtual) where
the team sit together to discuss the
project progress?
Q3. Rate your use of centralized
repositories to enable documents
and knowledge sharing throughout
the project?

Q4. How often the project team is
sharing and communicating
development’s aspects?
Q5. How often the team have access
to task boards (or smart boards) to
communicate with co-located
members and video conferences
capabilities to communicate with
different-located members?
Q6. How often do you communicate
informally (face to face
communication) during the project
when it is possible?

• Very Good
• Good

• Acceptable
• Poor

• Very Poor

• Always
• Often

• Sometimes
• Seldom
• Never

2nd Goal: Increase the customer involvement during the agile project

Q1. Rate the customers’
participation in planning meetings,
demos, retrospectives and how they
contribute to the success of these
events?
Q2. Rate the response time (e.g. how
fast they are) from the customers to
development queries?
Q3. Rate the commitment and the
support of the customers in the
project toward resolving
development issues and difficulties?

Q4. How often do the customers
attend the meetings (planning
meetings, demos, and retrospectives)
when they are requested to do so by
the project team?
Q5. How often do the customers
express their needs to the project
team, or suggest improvement for
enhancing the project to the team?

• Very Good
• Good

• Acceptable
• Poor

• Very Poor

• Always
• Often

• Sometimes
• Seldom
• Never

41Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 52 / 160

TABLE II. THE PROPOSED INSTRUMENT (PART 2 OF 3)

Measuring the Success of Agile Software Development Projects

3rd Goal: Improve the training of the agile project team members

Q1. Rate the available training
resources in covering all aspects
needed by the project team
members?
Q2. Rate the appropriateness of the
contents of the training received by
the project team?
Q3. Rate the participation (e.g.
attending, supporting, and
facilitating) of the project team
members in the available training
programs?

Q4. How often did the project team
members practice self-training (e.g.
watching learning videos, attending
webinar, etc.)?

• Very Good
• Good

• Acceptable
• Poor

• Very Poor

• Always
• Often

• Sometimes
• Seldom
• Never

4th Goal: Increase the support from top management in the agile project

Q1. Rate the role of top management
support toward the success of the
attended planning meetings, demos,
and retrospectives during the project?
Q2. Rate the role of top management
support in facilitating development
issues?
Q3. Rate the role of top management
support in expediting development
issues?
Q4. Rate the overall support (budget,
time, resources, etc.) from top
management in the project?

Q5. How often are the top
management involved in planning
meetings, demos, and retrospectives
when they are requested to be there?
Q6. How often do the top
management initiate or propose
events (meetings, emails, requests,
etc.) whenever it is necessarily to do
so?

• Very Good
• Good

• Acceptable
• Poor

• Very Poor

• Always
• Often

• Sometimes
• Seldom
• Never

In Tables I, II, and III each question is associated with the
corresponding used metric. The developed instrument has
been reviewed by 13 agile experts. These experts’ interviews
allowed the researcher to refine and improve the instrument. It
is intended that the proposed instrument will be validated by
conducting case studies to use the instrument. Three
organizations agreed to use the instrument to measure the
success of their agile software development projects. The
instrument will be validated by these case studies and the
participants’ evaluations will make it possible for further
improvement of the instrument. By conducting case studies,
the researcher will be able to validate the proposed instrument.
It is hoped that the evaluation from these case studies will

generate further understanding about the concept of success in
adopting agile software development practices.

TABLE III. THE PROPOSED INSTRUMENT (PART 3 OF 3)

Measuring the Success of Agile Software Development Projects

5th Goal: Enhance the delivery strategy

Q1. How long it takes to deliver a
story point?

Q2. How much of the sprint’s (or
iteration) planned story points
actually delivered by the end of the
current sprint?

Q3. What is the percentage of
planned to delivered story points in
the current release?

Q4. What is your schedule efficiency
(how fast you are progressing against
the rate of progress planned)?

Story point cycle time

Sprint Burndown

Release Burndown

Schedule
Performance Index

(SPI)
6th Goal: Appropriate selection of agile techniques, practices, and

project management PM approach
Q1. Do the team use an existing agile
method “off the shelf” without
adjusting it to suit their needs?

Q2. How often are the current
knowledge and capabilities of the
team are considered when selecting
agile techniques, practices and PM
approach?
Q3. How often are the needs of the
customers and top management
considered when selecting agile
techniques, practices and PM
approach?
Q4. How often do the team conduct
retrospectives (sprint reviews) to
discuss the improvement of the
selection of agile techniques,
practices and PM approach?
Q5. How often do these
retrospectives (sprint reviews) lead to
a change in agile techniques,
practices and PM approach?

Yes/No.

• Always
• Often

• Sometimes
• Seldom
• Never

The proposed instrument followed a scoring scale with

which the success of agile software development projects
could be measurement. The scoring is set to be used as an
indication of how the participants of the instrument are doing
and how they could achieve the defined goals of the proposed
instrument, and ultimately achieve success with agile software
development projects. With regard to the scoring of the
instrument, the final score will range from 0 to 6, whereby 6 is
the highest score. The final score is a result of totalling the
scores of the six goals, each goal’s score ranges from 0 to 1,
whereby 1 is the highest score for each goal. The score of each
goal is a result of summing of the scores for each question (0

42Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 53 / 160

to 1) dividing by the number of questions in that specific goal.
This means that each question has the same weight when
calculating the goal’s score. Eventually, every goal of the six
goals has the same weight when calculating the final score of
the instrument. The scoring of the instrument will make it easy
for the organizations to know their weaknesses and strengths.
For instance, if the scoring of the instrument resulted in 0.90
for communication goal and 0.50 for the delivery strategy
goal, it will be obvious that the work should be shifted to
improve the delivery strategy.

VII. CONCLUSION AND FUTURE WORK
In this paper, an instrument to measure the success of agile

software development was proposed. The development of the
instrument followed the GQM approach. Semi-structured
interviews were conducted with agile software development
experts. These experts came from different industries and from
different countries. The criterion with which the experts were
chosen is that each expert must have at least five years of
experience with agile development. The instrument was
shown to 13 agile experts. Following this, the instrument was
revised and amended based on the feedback received from the
experts. The final version of the instrument comprised of 6
goals, 30 questions, and 7 metrics.

With regard to the future work, it is intended that this
instrument will be applied in three organizations. These
organizations will be used as case studies to apply the
instrument. In each case study, the data regarding the agile
software development will be gathered and the instrument will
be filled. The instrument’s score of the agile success will be
provided to the organizations. During the case studies, there
will be an evaluation of the use of the instrument and how the
instrument could be improved. The three organization have
been identified and contacted regarding this manner and they
approved to host the case studies. By conducting these case
studies, the instrument will be validated and further
improvement might be added to the instrument.

ACKNOWLEDGMENT
We would like to thank all the 13 experts whom we

interviewed during this study for their participation,
experience, feedback, and knowledge without which this work
could not be completed.

REFERENCES

[1] A. Aldahmash, A. Gravell, and Y. Howard, "A review on the

critical success factors of agile software development,"
In European Conference on Software Process Improvement
EUROSPI2017, pp. 504-512. Springer, Cham, 2017.

[2] M. Kunz, R. Dumke, and N. Zenker. "Software metrics for agile
software development," In Software Engineering, 2008. ASWEC
2008. 19th Australian Conference on, pp. 673-678. IEEE, 2008.

[3] K. J. Padmini, H. D. Bandara, and I. Perera, "Use of software
metrics in agile software development process," In IEEE
Moratuwa Engineering Research Conference (MERCon), pp.
312-317, 2015.

[4] R. Solingen, "Agile GQM: Why Goal/Question/Metric is more
Relevant than Ever and Why It Helps Solving the Agility
Challenges of Today's Organizations." In Software Measurement
and the International Conference on Software Process and
Product Measurement (IWSM-MENSURA), 2014 Joint

Conference of the International Workshop on, pp. 271-271.
IEEE, 2014.

[5] Beck, Kent, et al. (2001). Manifesto for agile software
development.

[6] Agile 101, Agile Alliance, retrieved: August, 2018,
https://www.agilealliance.org/agile101/.

[7] T. Dyba, and T. Dingsoyr. "What do we know about agile
software development?," IEEE software vol. 26, no. 5, pp. 6-9,
2009.

[8] J. Highsmith and A. Cockburn, "Agile software development: The
business of innovation," Computer 34, no. 9, pp. 120-127, 2001.

[9] Agile State Report. (2018). 12th Annual State of Agile Report,
State of Agile Report 2018, retrieved: August, 2018,
https://explore.versionone.com/state-of-agile/versionone-12th-
annual-state-of-agile-report-2.

[10] A. Begel and N. Nagappan, "Usage and perceptions of agile
software development in an industrial context: An exploratory
study," In Empirical Software Engineering and Measurement
ESEM 2007, pp. 255-264, 2007.

[11] V. Basili, and V. Weiss, "A methodology for collecting valid
software engineering data," IEEE Transactions on software
engineering, vol. 6. pp. 728-738, 1984.

[12] A. Gray, and S. MacDonell, "GQM++ A Full Life Cycle
Framework for the Development and Implementation of
Software Metric Programs." In Proceedings of ACOSM’97
Fourth Austrailian Conference on Software Metrics, pp. 22-35.
1997.

[13] V. Basili, G. Caldiera, and D. Rombach, "Goal question metric
paradigm," Encyclopedia of software engineering vol. 1, pp.
528-532, 1994.

[14] A. Birk, R. Solingen, and J. Jarvinen, "Business impact, benefit,
and cost of applying GQM in industry: an in-depth, long-term
investigation at Schlumberger RPS," In Software Metrics
Symposium 1998, pp. 93-96, IEEE, 1998.

[15] F. Latum, et al., "Adopting GQM based measurement in an
industrial environment," IEEE software vol. 15, no. 1, pp. 78-86,
1998.

[16] R. Solingen, and E. Berghout, "Integrating goal-oriented
measurement in industrial software engineering: industrial
experiences with and additions to the Goal/Question/Metric
method (GQM)," In Software Metrics Symposium 2001, pp. 246-
258. IEEE, 2001.

[17] T. Javdani, H. Zulzalil, A. AbdGhani, A. Sultan, and R.Parizi,
"On the current measurement practices in agile software
development," arXiv preprint arXiv, pp. 1301-5964, 2013.

[18] H. Ayed, N. Habra, and B. Vanderose. "Am-quick: a
measurement-based framework for agile methods
customisation," In Software Measurement and the 2013 Eighth
International Conference on Software Process and Product
Measurement (IWSM-MENSURA), pp. 71-80, IEEE, 2013.

[19] J. Heidenberg, M. Weijola, K. Mikkonen, and I. Porres. "A
metrics model to measure the impact of an agile transformation
in large software development organizations," In International
Conference on Agile Software Development, pp. 165-179.
Springer, 2013.

[20] M. Olszewska, J. Heidenberg, M. Weijola, K. Mikkonen, and I.
Porres, "Quantitatively measuring a large-scale agile
transformation," Journal of Systems and Software vol. 117, pp.
258-273, 2016.

[21] R.M Fontana, R. Albuquerque, R. Luz, A.C Moises, A.
Malucelli, and S. Reinehr, “Maturity Models for Agile Software
Development: What Are They?,” In European Conference on
Software Process Improvement EUROSPI 2018.
Communications in Computer and Information Science, vol.
896. Springer, Cham, pp. 3-14, 2018.

[22] P. Chita, “Agile Software Development – Adoption and
Maturity: An Activity Theory Perspective,” In Agile Processes
in Software Engineering and Extreme Programming. XP 2018.

43Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 54 / 160

Lecture Notes in Business Information Processing, vol. 314.
Springer, Cham, pp. 160-176, 2018.

[23] M. Laanti, “Agile transformation model for large software
development organizations,” In Proceedings of the XP2017
Scientific Workshops, ACM, pp.19, 2017.

[24] D. Stankovic, V. Nikolic, M. Djordjevic, and D. Cao, "A survey
study of critical success factors in agile software projects in
former Yugoslavia IT companies," Journal of Systems and
Software vol. 86, no.6, pp.1663-1678, 2013.

44Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 55 / 160

A Method to Optimize Technical Debt Management in Timed-boxed Processes

Luigi Lavazza, Sandro Morasca and Davide Tosi

Dipartimento di Scienze Teoriche e Applicate
Università degli Studi dell’Insubria

21100 Varese, Italy
Email: luigi.lavazza@uninsubria.it

sandro.morasca@uninsubria.it
davide.tosi@uninsubria.it

Abstract—Technical debt is currently receiving great attention
from researchers, because it is believed to affect software de-
velopment to a great extent. However, it is not yet clear how
technical debt should be managed. This is specifically true
in time-boxed development processes (e.g., in agile processes
organized into development sprints of fixed duration), where it
is possible to remove technical debt as soon as it is discovered,
or wait until the debt reaches a given threshold, or wait until
a whole sprint can be dedicated to technical debt removal, etc.
We aim at investigating the consequences of different technical
debt management options, especially as far as debt removal
and program enhancements are concerned. We are interested
in the consequences on both the amount of functionality and
the quality of the delivered software. We propose a System
Dynamics model that supports the simulation of various scenarios
in time-boxed software development and maintenance processes.
The proposed model is conceived to highlight the consequences
of management decisions. Since this is our focus, our model
abstracts from a few confounding factors that may be present
in software projects, which would basically introduce some noise
and blur the effect we want to study. Nonetheless, the model can
be easily extended and adapted to represent these other factors
adequately. The proposed model shows how productivity and
product quality depend on the way technical debt is managed.
Our model yields quantitative indications that can support the
estimation of the economic consequences of different management
strategies. Our study shows that different strategies for managing
technical debt in a time-boxed development and maintenance
process may yield different results—in terms of both productivity
and delivered software quality—depending on a few conditions.
Software project managers can use customized System Dynamics
models to optimize the development and maintenance processes,
by making the proper decisions on when to carry out maintenance
dedicated to decreasing the technical debt, and how much effort
should be devoted to such activities.

Keywords–Technical debt; System Dynamics; Technical debt
management.

I. INTRODUCTION

Both practitioners and researchers are dedicating a growing
amount of attention to Technical Debt (TD). In general, TD
is connected with a lack of quality in the code. The idea is
that, if maintaining a piece of software of “ideal” quality has a
given cost, maintaining a piece of software of “less than ideal”
quality implies an extra cost.

It is also common knowledge that if no action is performed
to improve code quality, a sequence of maintenance interven-
tions will decrease quality, that is, TD increases and the cost of

maintenance increases as well. Not managing TD at all could
lead to code that is not maintainable.

These considerations pose the problem of managing TD:
project managers need to identify the best TD management
strategies and methods, and evaluate their effectiveness before
putting them in practice.

For this purpose, we propose a System Dynamics model
that represents the development of software via a sequence
of time-boxed development phases (e.g., Scrum sprints). Like
any System Dynamics model, the proposed model can be sim-
ulated, thus providing quantitative indications concerning the
effectiveness of development in terms of amount and quality
of code delivered. The proposed model is used in this paper to
illustrate a few development scenarios and the consequences
of TD and the adopted TD management practices.

The paper is organized as follows. In Section II, we
provide background concerning Technical Debt and System
Dynamics. In Section III, we introduce our model of software
development and maintenance, characterized by time-boxed
incremental phases. In Section IV, the model is used to
simulate the behavior of the process when different strategies
for allocating effort to repay the technical debt are used. In
Section V, we discuss the outcomes of simulations, especially
as far as productivity and delivered quality are concerned.
Section VI accounts for related work. Finally, in Section VII
we draw some conclusions and outline future work.

II. BACKGROUND

In the last few years, TD has received great attention from
researchers. For example, a recent Systematic Mapping Study
on TD and TD management (TDM) covering publications
from 1992 and 2013 detected 94 primary studies to obtain
a comprehensive understanding on the TD concepts and an
overview on the current state of research on TDM [1].

An updated Systematic Mapping Study identified elements
that are considered by researchers to have an impact on TD
in the industrial environment [2]. The authors classified these
twelve elements in three main categories: (1) Basic deci-
sion making factors, (2) Cost estimation techniques, and (3)
Practices and techniques for decision-making. They mapped
these elements to the stakeholders’ point of view, specifically,
for business organizational management, engineering manage-
ment, and software engineering areas.

Several authors proposed definitions for TD and its inter-
ests. Nugroho et al. [3] define TD as “the cost of repairing

45Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 56 / 160

quality issues in software systems to achieve an ideal quality
level” and the interests of the debt as “the extra maintenance
cost spent for not achieving the ideal quality level.” Other
works try to empirically correlate TD with software size,
software quality, customer satisfaction, and other software
properties, in the context of enterprise software systems [4].

In a recent Dagstuhl Seminar [5], the following definition
of TD was proposed: “In software-intensive systems, technical
debt is a collection of design or implementation constructs
that are expedient in the short term, but set up a technical
context that can make future changes more costly or impossi-
ble. Technical debt presents an actual or contingent liability
whose impact is limited to internal system qualities, primarily
maintainability and evolvability.”

The Software Quality Assessment based on Lifecycle Ex-
pectations (SQALE) method [6] addresses a set of external
qualities (like Reliability, Efficiency, Maintainability, etc.).
Each of these qualities is associated with a set of requirements
concerning internal qualities, each provided with a “remedia-
tion function,” which represents the cost of changing the code
so that the requirement is satisfied. Based on these functions,
the cost of TD is computed for each external quality and for
all qualities.

The Object Management Group has published a beta ver-
sion of the specification of a measure of TD principal, defined
as “The cost of remediating must-fix problems in production
code” [7]. The measure can be computed automatically as a
weighted sum of the “violations of good architectural and
coding practices,” detected according to the occurrence of
specific code patterns. The weight is computed according to the
expected remediation effort required for each violation type.

System Dynamics was developed by Jay Forrester [8] as
a modeling methodology that uses feedback control systems
principles to represent the dynamic behavior of systems. The
elements of System Dynamics models are levels, constants,
auxiliary variables and rates. The dynamics of systems is
determined by how levels work: given a level L, its value
in time is always determined by an equation L(t + ∆t) =
L(t) + (in(t) − out(t))∆t, where in(t) and out(t) are rates.
Levels and rates can concern anything (e.g., people, rabbits,
bricks, lines of code, etc.), depending on the application scope
and goal of the model. The value of a rate at time t is defined
based on the values of auxiliary variables, other rates and
levels at time t. Likewise for auxiliary variables, which are
not necessary, but are useful to write readable models.

The elements of a System Dynamics model are intercon-
nected just like in the real world, to form a network, where
causes and effects are properly represented. Models can be
executed, so that the behavior of the modeled system can be
simulated. Via System Dynamics models it is quite easy to
perform what-if analyses: you obtain different behaviors by
changing the initial state of the system (given by the values of
levels), how rates and variable are computed, how they depend
on each other, etc.

III. THE PROPOSED MODEL

As already mentioned, the proposed model describes in an
operational way the time-boxed development process, espe-
cially in terms of maintenance activities concerning the reduc-
tion of Technical Debt. The proposed model aims at evaluating

the productivity of development and maintenance activities,
and the quality of the released product. Here productivity is
defined as the ratio of the amount of product—measured in
Function Points (FP) [9][10]—developed in a time period to
the amount of effort/resources used.

To focus on the main objectives, we abstract from all those
aspects of the model that deal with activities and software
products that are not directly connected with TD management.
For instance, in a real process, the productivity of individuals
tends to increase because of learning effects, the number of
developers allocated may change during a project, etc.: we
exclude all of these variables because they would introduce
noise in our investigation, which focuses on the effects of TD
management decisions.

A. Assumptions
The main reason why practitioners and researchers are

interested in TD is that maintaining code burdened with a big
TD (i.e., low-quality code) costs much more than maintaining
code with little TD (i.e., high-quality code). This is because
more work is needed to carry out any code-related activity
when code is of low quality (e.g., difficult to understand, poorly
structured, full of hidden dependencies, etc.).

To account for the relation that links TD to maintenance
cost, we need a measure of TD. To this end, we measure
TD via a “TD index,” an indicator that takes into account the
internal qualities of code that concur to determine the amount
of TD embedded in the code. Here, we are not interested in
defining precisely the TD index, based on the measures of
individual internal qualities, because this is not relevant for
our purposes. Clearly, accurately modeling individual internal
qualities of code would make the model more apt at reproduc-
ing the behavior of real development environments. But this
is not our purpose: we aim at building a model that shows—
at a fairly high level—the effects of decisions concerning TD
management in a generic realistic development environment.

We assume that the TD index ranges between 0 (highest
quality) and 1 (worst quality). The extreme values represent
limiting cases, which may not occur in practice. When the TD
index is 1, maintenance is so difficult that one is better off by
simply throwing away the code and building a new version
from scratch, and productivity is null, i.e., prod = 0. When
the TD index is 0, maintenance activities attain their optimal
productivity prodopt. When 1>TD index>0, prod steadily
increases from 0 to prodopt when the TD index decreases.

Figure 1. Effect of technical debt on productivity.

46Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 57 / 160

The value of productivity for a given value of the TD
index prod(TDindex) can be expressed as prodMult(TDindex)
×prodopt. Figure 1 shows a possible behavior of prod-
Mult(TDindex). We use the function illustrated in Figure 1 to
build models to exemplify our proposal. Other monotonically
decreasing functions that go through points (0, 1) and (1, 0)
could be used as well, but that would not change the way we
build models in our proposal.

Here, we assume that development is carried out in a
time-boxed way. This is coherent with the organization of
development in most agile processes. We assume that the
development is composed of a sequence of “sprints,” each of
which has a fixed duration and involves a constant number
of developers, hence a sprint “consumes” a fixed number of
Person Days (PD). For instance, if sprints last 20 work days
and involve 5 developers, then each sprint “costs” 100 PD. If
at the end of 5 sprints 416 FP are released, we have achieved a
productivity of 416/(5·100)=0.832 FP/PD; if at the end of these
sprints 378 FP are released, we have achieved a productivity
of 378/500=0.756 FP/PD. Quite clearly, in the former case the
management of technical debt was more effective, a higher
productivity was achieved, more functionality was released,
and bigger returns can be expected.

A consequence of our assumptions is that the amount of
effort spent is strictly proportional to development duration,
which can be expressed in number of sprints. Given this
proportionality between effort and the number of sprints, we
can express productivity as the amount of code released after
N sprints. Thus, we measure the productivity values above as
416/5=83.2 FP/Sprint (instead of 416/500=0.832 FP/PD) and
378/5=75.6 FP/Sprint (instead of 378/500=0.756 FP/PD).

During each sprint, the developers can carry out two types
of activities: 1) increase the functionality of the system, by
adding new code, and 2) decrease TD, by refactoring code
structure, removing defects and improving the qualities that
make development and maintenance easier. Since in each
sprint the amount of work is fixed, managers have to decide
what fraction of work has to be dedicated to new code
development—the remaining fraction being dedicated to TD
management. Several different criteria can be used in setting
such fraction, as illustrated in Section IV.

We assume that during each sprint a constant fraction of the
new code affected by quality problems (hence, increasing the
technical debt) is released. This fraction depends on several
factors, like the experience and ability of developers, the
availability of sophisticated tools, problem complexity, etc.
We assume that these factors are constant throughout all the
sprints: in this way, we do not generate noise and we can
highlight the effects of TDM decisions.

B. The Model
The proposed System Dynamics model involves two level

variables: CodeSize (measured in FP) and TDIndex.
The constants in the model are:

nominal_maintenance_productivity, the productivity in
FP/Sprint in ideal conditions, i.e., when the TD index is zero.
We assume that the nominal productivity is 80 FP/Sprint, cor-
responding to 0.1 FP/PersonHour, a fairly typical value [11].
nominal_TDimprovement_productivity, the amount of
code that can be optimized—i.e., whose TD is completely

repaid—in a sprint, when the effort is completely devoted to
TD improvement. We assume that this value is 40 FP/Sprint.
In real developments, this amount is not necessarily constant:
a sprint could be sufficient to “clean” 40 FP or relatively good
code, but not to “clean” 40 FP of very bad quality code.
bad_fraction_of_new_code, the fraction of the new code
(released at the end of each sprint) that contributes to increas-
ing TD. We here assume that the value of this constant is 0.2.
available_effort: the effort available at each sprint. As
already mentioned, we assume it to be a constant. The actual
value is not relevant, however, we can take 100 PD as a
reference value.

The rate and auxiliary variables of the model are:
fraction_of_effort_for_quality_maintenance:
the fraction of available_effort dedicated to
repaying TD. This variable is computed via function
fracEffortForQuality, which has the TD index as an
argument.
quality_maintenance_effort: the effort available for
improving the quality of code in a sprint.
maintenance_effort: the effort available for developing
new code in a sprint.
maintenance_productivity: the productivity
of developing new code in a sprint. It depends
on the nominal_maintenance_productivity,
the maintenance_effort and the decrease of
productivity due to the TD (computed via function
productivity_considering_TD).
TD_dec_rate: the TD decrease rate.
TD_inc_rate: the TD increase rate.

The values of the aforementioned variables are determined
by the following equations:

available_effort=1
fraction_of_effort_for_quality_maintenance=
fracEffortForQuality(TDindex)

quality_maintenance_effort=available_effort*
fraction_of_effort_for_quality_maintenance

maintenance_effort=
available_effort-quality_maintenance_effort

maintenance_productivity=
nominal_maintenance_productivity*
maintenance_productivity_considering_TD(TDindex)

TDimprovement_productivity=
nominal_TDimprovement_productivity*
quality_maintenance_effort

TD_inc_rate=bad_fraction_of_new_code*
maintenance_productivity/CodeSize

TD_dec_rate=TDimprovement_productivity/CodeSize

where the following functions are used:
maintenance_productivity_considering_TD(TDindex):
the loss of productivity due to TD, as described in Figure 1.
fracEffortForQuality(TDindex): this function describes
the strategy used for tackling TD. In Section IV, we use a few
different strategies, hence, a few different function definitions.

The levels are computed as follows (where all auxiliary
and rate variables are computed at time t):
CodeSize(t+∆t)=CodeSize(t)+

∆t*maintenance_productivity
TDindex(t+∆t)=TDindex(t)+

∆t*(TD_inc_rate-TD_dec_rate))

47Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 58 / 160

IV. SIMULATING THE MODEL

We simulate the model with a few different TD man-
agement strategies. The considered case is characterized as
follows. Initially, the software system to be maintained has
size 80 FP and its TD index is 0.2 (representing the quality
gap between the “ideal” quality and the actual initial quality
accepted to speed up development and release the product
early). The nominal productivity (i.e., new code development
productivity in ideal conditions, when no extra effort is due
because of TD) is 80 FP/Sprint. The nominal TD repayment
productivity (i.e., the amount of functionality for which the
TD is completely repaid in a sprint) is 40 FP/Sprint. At the
end of every sprint, 20% of the added code is “bad” code.

Our software organization goes through a sequence of 30
maintenance sprints. We assume that there are always enough
new requirements to implement to use up the development
capacity of sprints. This is a situation that occurs quite often
in practice. We also assume that the same amount of effort
is allocated to all sprints. In actual developments, this does
not always happen. Anyway, simulations that do not depend
on variations in the available effort provide better indications
of the effects of TD management strategies, since they do not
depend on accidental phenomena, like the amount of available
workforce.

A. Constant Effort for TD Management
In the first simulation, we assume that the considered

software development organization allocates a constant fraction
of the effort available in each sprint, to tackle the technical
debt. It is reasonable to expect that the achieved results depend
on how big the fraction of effort dedicated to TD management
is. Hence, we run the simulation a few times, with different
fractions of the available effort dedicated to TD management,
ranging from zero (i.e., nothing is done to decrease the TD)
to 40%. The main results of the simulation are given in
Figure 2, which shows, from left to right: the functional size
of the software product version released after each sprint;
the functional size increment due to each sprint (i.e., the
enhancement productivity of each sprint); the evolution of the
TD through sprints (i.e., the quality of the software product
versions released after each sprint).

We can examine the achieved results starting with the solid
black lines, which represent the case in which no effort at all is
dedicated to repaying the TD. It is easy to see that the results
obtained by this TD management strategy (a no-management
strategy, actually) are quite bad. In fact, after 30 sprints we get
only 1248 FP: about 500 FP less than the most efficient TD
management strategy. Not only: the final product has TD index
= 0.84, that is, a very low quality, probably hardly acceptable
in practice. The effects of TD on maintenance productivity are
apparent: the continuously growing TD makes maintenance
less efficient over sprints and, at the end, more than 60% of
the initial productivity is lost, due to TD. So, just ignoring
the TD is not a good practice. Definitely, we have to allocate
some effort to decrease the TD, but how much effort should
we dedicate to repaying TD?

By looking at Figure 2, it is easy to see that dedicating 10%
of the available effort to repaying TD improves the situation
with respect to not managing the TD at all: the final size (1580
FP) is bigger, and the final TD index (0.64) is better, though
not really good. When we dedicate 20% of the available effort

to repaying TD the results improve further: the final size (1743
FP) is bigger, and the final TD index (0.41) is better, though
still not very good.

In summary, by increasing the fraction of effort dedicated
to repaying TD from 0 to 20% we improve both the amount of
functionality that we are able to release, and the quality of the
software product. Hence, it would be natural to hypothesize
that, by further increasing the fraction of effort dedicated to
repaying TD, we obtain improvements in both the amount and
quality of delivered software. Actually, this is not the case:
when 30% of the available effort is dedicated to repaying
TD, we obtain a fairly good product (the final TD index is
0.13, better than it was initially) but the amount of released
functionality is slightly less (1723 FP). When an even bigger
fraction (40%) of effort is dedicated to repying TD, we achieve
practically ideal quality (the final TD index is 0.007), but
substantially less functionality (the final size being 1517 FP).

The explanation of these results is that it is clear that
increasing the fraction of effort dedicated to TD improvement
improves maintenance productivity by decreasing TD, but at
the same time subtracts effort from enhancement maintenance
activities. Hence, one should look for a trade-off, to achieve
both a reasonably high productivity level and an acceptable
quality level (i.e., a sufficiently small TD).

Via a series of simulations, it is possible to find the
fraction of effort dedicated to repaying TD that maximizes the
released functionality, hence maintenance productivity. In the
considered case, allocating 24% of the available effort to TD
improvement eventually results in yielding 1758 FP. However,
the final TD index is 0.31: not a small debt, and a bigger debt
than initially. So, one could easily prefer to go for a bit less
functionality but a much better code.

Finally, it should be noticed that in the short term—i.e., in
the first 10 sprints or less—not managing TD does not seem
to cause relevant negative consequences. For instance, in the
considered case, if the goal is to achieve a 500 FP software
product, not managing the TD may be a viable choice: you
get the product faster than by managing TD. Of course, one
should be sure that no further maintenance will be needed,
otherwise maintenance cost would be quite high, that is, one
has just postponed paying the debt.

B. Variable Effort for TD Management
In the previous section, the fraction of effort dedicated to

quality improvement was fixed, i.e., it was constant over the
sprints. This is not a good managerial choice, for at least the
following two reasons. First, the initial TD could be greater
than in the case described in Section IV-A. Hence, it would
be a good practice to devote a substantial amount of effort
to improve quality at the beginning of development, with
the objective of decreasing the TD, and then proceed with
easier and more productive maintenance. This corresponds to
repaying (all or a substantial part of) the TD in the first sprints:
the following sprints will have to pay low or null interests.

Second, the effort dedicated to TD management could be
excessive. Consider the evolution of the TD index through
sprints illustrated in Figure 2: when the fraction of effort
dedicated to quality improvement is 40%, the TD is practically
nil after 10 sprints. In the following sprints, the fraction of
effort for TD management is partly used to balance the increase

48Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 59 / 160

Figure 2. Size of delivered code, Sprint productivity and TD index, depending on a constant fraction of effort allocated to improving the TD.

of debt caused by new code, and part is wasted. This effect is
easy to see when you compare the effects of dedicating 30%
and 40% of the available effort to TD management. After a
few sprints, in both cases the TD index is practically constant
(about 0.18 in the former case, about 0.01 in the latter case).
Maintenance productivity is also constant in the two cases,
but higher in the former case. How is it possible that when
30% of effort is dedicated to TD management, we are using
some effort to manage a higher TD, and still we get a higher
productivity? Because the effort needed to keep TD close to
zero is much less than the allocated 40%: the exceeding part
is wasted.

A better strategy for TD management would be to allocate
to TD improvement a fraction of effort that is larger when the
TD is large and smaller when the TD is little. Of course, there
are various ways to decide the fraction of effort to be dedicated
to decrease TD. We adopt the function shown in Figure 3,
which defines the fraction of effort for TD improvement as
1 − (1 − TDindex)k. By changing the value of k we decide
how aggressive the approach to debt repayment is: with k =
1 the fraction of the effort dedicated to debt repayment is
proportional to the debt, with k > 1 as soon as TD index raises
above zero, a substantial fraction of the effort (the greater k
the bigger the fraction) is dedicated to decrease TD.

In this section, the fraction of effort dedicated to TD
management is decided at every sprint, as 1−(1−TDindex)3:
a moderately aggressive policy. When debt increases, we try
to decrease it fairly soon, to avoid paying large interests.
Figure 4 shows the results of the simulation. The adopted
policy provides good results: at the end of the sprints we get
1764 FP, more than in any of the simulations performed in
Section IV-A. The final TD index is 0.11: a good result.

It is interesting to note that after a few sprints, the TD index
remains constant, and, as a consequence, productivity remains
constant as well. The reason is that, at the beginning of each
sprint, the effort dedicated to TD management is adequate for
repaying the existing TD, but, during the sprint, new TD will
be created. This situation is perpetuated over the sprints. To
completely repay TD, a policy should allocate enough effort
to both repay the existing TD, and to anticipate the new TD,
by performing maintenance in a way that preserves optimal

code structure and quality.
In conclusion, dedicating a large fraction of effort to

decrease the TD in the first sprints guarantees optimal results,
in terms of both the amount of functionality delivered and the
delivered quality.

Figure 3. Percentage of effort dedicated to TD improvement, as a function
1-(1-TDindex)k of TD.

C. Managing TD over a Threshold
In time-boxed development, it is often the case that a

sprint is either completely dedicated to enhancement or to
decreasing TD (especially via refactoring). So, the policy for
allocating effort to TD management is simple: if the TD index
is sufficiently high, the next sprint will be completely dedicated
to TD repayment; otherwise, the next sprint will be dedicated
completely to maintenance. In our case, if a sprint is dedicated
completely to TD management, developers will be able to
optimize a portion of code 40 FP large. Hence, we can allocate
a sprint to TD management when a portion of code of at least
40 FP is affected by TD.

We simulated development with this criterion for allocating
effort to TD management and we obtained the results illus-
trated in Figure 5. It is easy to see that the first sprints are

49Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 60 / 160

Figure 4. Size of delivered code, Sprint productivity and TD index through sprints, when the fraction of effort for TD improvement is 1-(1-TDindex)3.

Figure 5. Size of delivered code, Sprint productivity and TD index through sprints, when sprints are dedicated to either TD management or maintenance.

dedicated to TD improvement and enhancement maintenance
alternatively. Then, when TD has improved enough, we have
a TD improvement sprint every two enhancement sprints.
TD progressively decreases until it becomes practically nil
(oscillating between 0.01 and 0.03). At the end of sprints,
1674 FP are released, that is, a bit less than with the policy
described in Section IV-B. However, the achieved TD index is
much better, compared to the 0.11 achieved in Section IV-B.

V. DISCUSSION

The results obtained with the different criteria for allocating
effort to TD improvement are summarized in Table I. Note
that in Table I, we have added the results—not given in
Section IV-B—obtained when the fraction of effort dedicated
to TD improvement is 1-(1-TDindex)1/3. In such case, the
fraction of effort dedicated to TD improvement decided at the
beginning of each sprint, is based on the current TD index, but
the approach is not aggressive, on the contrary, a substantial
fraction of effort is dedicated to TD improvement only when
the TD index is relatively large.

The results given in Table I, along with the more detailed
results reported in Section IV, suggest a few observations.

TABLE I. RESULTS WITH VARIOUS CRITERIA

Criterion Delivered size Final TD index
Constant (0%) 1248 FP 0.84
Constant (10%) 1580 FP 0.64
Constant (20%) 1743 FP 0.41
Constant (30%) 1723 FP 0.13
Constant (40%) 1517 FP 0.007
1-(1-TDindex)3 1764 FP 0.11
1-(1-TDindex)1/3 1601 FP 0.51
Threshold 1674 FP 0.01–0.03

First, allocating a constant amount of effort to TD im-
provement does not seem a good idea. In fact, if the chosen
fraction of effort allocated to TD improvement is too high or
loo low, the productivity of enhancement maintenance will be
lower than possible. Also, the final quality of the product (as
indicated by the TD index) could be quite low. In practice,
allocating a constant amount of effort to TD improvement
works well only if the right fraction of effort is allocated, but
choosing such fraction may not be easy.

On the contrary, computing the amount of effort for TD
improvement at the beginning of each sprint, based on the
current TD index seems very effective, especially as far as

50Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 61 / 160

optimizing the productivity of enhancement maintenance is
concerned.

One could observe that in some situations it may be hard to
separate clearly the effort devoted to enhancements from the
effort devoted to TD improvement. This is particularly true
when developers perform refactoring activities while they are
enhancing the existing code. For this reason, an organization
may want to have sprints entirely dedicated to refactoring
and other TD improving activities, and sprints entirely ded-
icated to enhancements. In this case, the evaluations given
in Section IV-C show that allocating an entire sprint to TD
improvement whenever there is enough TD to absorb one
spring effort provides quite good results, in terms of both
productivity and quality.

In any case, we have to stress that all the presented
strategies for TD management are based on the quantitative
evaluation of TD, which results in the TD index. So, devising
a way to measure TD appears fundamental to managing TD
effectively and efficiently.

VI. RELATED WORK

System Dynamics was first applied in Software Engineer-
ing by Abdel-Hamid and Madnick [12], who proposed a model
that accounted for human resource management, software
development, and planning and control. System Dynamics was
then extensively used to model software development and its
management. A survey of System Dynamics applied to project
management was published by Lyneis and Ford [13], while
in [14] De Franca and Travassos propose a set of reporting
guidelines for simulation-based studies with dynamic models
in the context of SE to highlight the information a study of
this type should report.

Cao et al. [15] proposed a System Dynamics simulation
model that considers the complex interdependencies among the
variety of practices used in Agile development. The model can
be used to evaluate—among others—the effect of refactoring
on the cost of implementing changes.

Glaiel et al. [16] used System Dynamics to build the Agile
Project Dynamics model, which captures each of the Agile
main characteristics as a separate component of the model
and allows experimentation with combinations of practices and
management policies.

Although less comprehensive than the mentioned models,
our proposal allows for better undrstanding the consequences
of technical debt and the effectiveness of its management
strategies.

VII. CONCLUSIONS

The term “Technical Debt” indicates several concepts and
issues related to software development and maintenance. The
latter are complex and multifaceted activities: accordingly, it
is not surprising that managing TD is quite difficult [5].

In this paper, we have provided a formal, executable model
of time-boxed software development, where the effects of TD
are explicitly and quantitatively represented and accounted for.
The model is usable to show—via simulation—the effects that
TD have on relevant issues such as productivity and quality,
depending on how TD is managed, with special reference on
how much effort is dedicated to TD repaiment and when—in
a sequence of sprints—such effort is allocated.

The model can be used to prove or disprove concepts
and hypotheses, to perform what-if analyses, etc. However,
our model is not intended to be used in practical software
project management as-is, becase, the model illustrated above
is too abstract and contains hypotheses that could not match
the target development environment. Whoever wants to use
the presented model for practical project management should
first enhance it; examples of models representing all the main
aspects of software development can be found in the papers
by Cao et al. [15] and Glaiel et al. [16].

We plan to extend the presented model in several direc-
tions: to account for different effects of TD on productivity
(i.e., with functions different from the one in Figure 1), to
explicitly model defects, to test different debt management
policies, etc.

ACKNOWLEDGMENT

This work was partly supported by the “Fondo di ricerca
d’Ateneo” funded by the Università degli Studi dell’Insubria.

REFERENCES
[1] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on

technical debt and its management,” Journal of Systems and Software,
vol. 101, 2015, pp. 193–220.

[2] C. Fernández-Sánchez, J. Garbajosa, A. Yagüe, and J. Perez, “Iden-
tification and analysis of the elements required to manage technical
debt by means of a systematic mapping study,” Journal of Systems and
Software, vol. 124, 2017, pp. 22 – 38.

[3] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical
debt and interest,” in Proceedings of the 2nd Workshop on Managing
Technical Debt. ACM, 2011, pp. 1–8.

[4] N. Ramasubbu and C. F. Kemerer, “Managing technical debt in enter-
prise software packages,” IEEE Transactions on Software Engineering,
vol. 40, no. 8, Aug. 2014, pp. 758–772.

[5] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering (dagstuhl seminar 16162),” in
Dagstuhl Reports, vol. 6, no. 4. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016, pp. 110–138.

[6] J. Letouzey, “The SQALE method for evaluating technical debt,” in Pro-
ceedings of the Third International Workshop on Managing Technical
Debt, MTD 2012, Zurich, June 5, 2012, 2012, pp. 31–36.

[7] “Automated technical debt measure – beta,” Object Management Group,
specification ptc/2017-09-08, September 2017.

[8] J. Forrester, Industrial Dynamics. Cambridge: MIT Press, 1961.
[9] A. J. Albrecht, “Function points as a measure of productivity,” in Act

as do 53 rd meeting of GUIDE International Corp., Guidance for users
of integrated data processing equipment conference, Dallas, 1981.

[10] IFPUG, “Function point counting practices manual, release 4.2,” IF-
PUG, Tech. Rep., 2004.

[11] L. Lavazza, S. Morasca, and D. Tosi, “An empirical study on the factors
affecting software development productivity,” e-Informatica Software
Engineering Journal, vol. 12, no. 1, 2018, pp. 27–49.

[12] T. Abdel-Hamid and S. E. Madnick, Software project dynamics: an
integrated approach. Prentice-Hall, Inc., 1991.

[13] J. M. Lyneis and D. N. Ford, “System dynamics applied to project
management: a survey, assessment, and directions for future research,”
System Dynamics Review, vol. 23, no. 2-3, 2007, pp. 157–189.

[14] B. B. França and G. H. Travassos, “Experimentation with dynamic
simulation models in software engineering: Planning and reporting
guidelines,” Empirical Software Engineering, vol. 21, no. 3, June 2016,
pp. 1302–1345.

[15] L. Cao, B. Ramesh, and T. Abdel-Hamid, “Modeling dynamics in agile
software development,” ACM Transactions on Management Information
Systems (TMIS), vol. 1, no. 1, 2010, pp. 5:1–5:27.

[16] F. S. Glaiel, A. Moulton, and S. E. Madnick, “Agile project dynamics: A
system dynamics investigation of agile software development methods,”
2014.

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 62 / 160

Continuous Improvement and Validation

with Customer Touchpoint Model in Software Development

Tanja Sauvola, Markus Kelanti, Jarkko Hyysalo, Pasi Kuvaja and Kari Liukkunen

M3S Research Unit, Faculty of Information Technology and Electrical Engineering,

University of Oulu

PO BOX 4500, FI-90014 University of Oulu, Finland

e-mail: {tanja.sauvola, markus.kelanti, jarkko.hyysalo, pasi.kuvaja, kari.liukkunen}@oulu.fi

Abstract—Experimental-driven software development

approach has gained momentum as a way to incrementally

build and validate customer value. In-depth understanding of

customer needs and reasons behind constantly changing

requirements are essential for building successful software

products. However, identifying, validating and reacting to

these changes is often difficult and requires short iteration

cycles and feedback from customers. This paper reports a 12-

month case study conducted in an agile software team

following a practical customer touchpoint (CTP) model for

continuous improvement and validation. The objective of the

study was to implement CTP into software team practices in

order to determine what kind of effect it has on the

development of a web application. The contribution of this

paper is twofold. First, an in-depth case study is presented that

identifies the practices a CTP model should adopt when

implemented in the software development process. The CTP

model is then extended based on the identified

recommendations. Second, the benefits and challenges of the

extended CTP in software development are presented. The

main benefits relate to learning, decision-making, innovation,

co-creation and communication. The model had a positive

impact on the software development process, but some

challenges, such as stakeholder availability and customer value

measurement, were identified.

Keywords—lean UX; service design; customer involvement;

software development; continuous improvement.

I. INTRODUCTION

Customer value determines the success of a product or a
service in the marketplace, and software has become
essential to value creation and delivery [1]. Software
development teams face high pressure to develop innovative
products and services at increasing speeds in a dynamic and
continuously changing business environment. To this aim,
development teams seek to become more data-driven, which
requires using customer feedback and product data to
support learning and decision-making during the
development process and throughout a product’s lifecycle.
This presents the challenge in software development to adopt
iterative and agile practices for the continuous deployment of
new features and enhancements to provide customers with
added value [1]-[3]. Customer value and the ability to

experiment with business ideas have been considered in
Agile methods [4] and the Lean Startup [5] philosophy, both
very popular in the software industry. Recently, concepts like
continuous experimentation—where software development
teams constantly experiment with product value—have been
introduced in the literature as well [3][6][7]. The continuous
experiment approach involves customers and end-users of
the service in the decision-making process, providing
feedback to developers by interacting with experimental
materials like early prototypes of the features under
development.

User experience (UX) has also become an increasingly
important determinant of the success or failure of software
systems. Approaches such as Design Sprint, introduced by
Google Ventures [8], and Lean UX [9] using Lean Startup
principles, now appear. These experiment-driven approaches
interrelate with business strategy decisions and tend to focus
on customer centricity. Forward-thinking companies see the
benefits and importance of UX design in their product and
service development activities. Even with these
methodologies, software teams still encounter challenges
when involving customers and integrating customer
feedback into short development cycles [2][6].

In this paper, the customer touchpoint (CTP) model
introduced by Sauvola et al. [2] is examined as a way for
software development teams to become more customer
centric and data driven. The study focuses on finding
answers to the following research questions:

RQ1: What practices should the CTP model adopt when
implemented in the software development process?

RQ2: What are the benefits and challenges of CTP in
software development?

To address the research questions, a case study in the
software development context has been performed. The CTP
model is validated and extended by proposing practices for
the continuous validation of customer value in short
development cycles to increase customer understanding. The
benefits and challenges of the extended CTP model are then
identified.

The paper is organized as follows. Section 2 studies the
related work. Section 3 presents research approach and
describes the case project. Section 4 presents the results and

52Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 63 / 160

analyses. Section 5 discusses the results. Section 6 concludes
the work with a summary and topics for further research.

II. RELATED WORK

A. Value creation through continuous experimentation

In software development, short product development and
deployment cycles and shorter feedback loops are enabled by
practices such as agile and lean development [4][5],
continuous deployment [10] and DevOps [11]. An
organisation’s ability to deploy new functional and non-
functional features continuously enables faster responses to
customer needs [10][12]. However, these practices provide
only a little guidance on how to constantly validate product
assumptions while experiment-driven approaches focus more
on value delivery with validated learning.

The literature presents several methods for establishing
continuous experimentation with customers. Bosch et al.
[13], for example, suggests exposing products to customers
in two- to four-week experimentation iterations to solicit
feedback. Studies of software engineering also propose ideas
for continuous experimentation. Fagerholm et al. [3] suggest
their RIGHT model for continuous experimentation, in
which the key element is the start-up company’s ability to
release prototypes with suitable instrumentation. In this
model, business strategies form the basis of experiments, and
results guide future development activities. Holmström
Olsson et al. [6] present the concept of an innovation
experiment system (IES) in which software development
teams constantly develop hypotheses and test them with
customers. The IES approach also recommends that software
teams continuously deploy individual features rather than
plan larger product releases. This enables short feedback
loops and facilitates data-driven decisions, reducing the risk
of failing to build customer value by continuously
identifying, prioritising and validating product assumptions
in all software development phases. Holmström Olsson et al.
also coined the hypothesis experiment data-driven
development (HYPEX) model, which introduces a set of
practices to integrate feature experimentation into the
software development process by combining feature
experiments and customer feedback. The model aims to
improve the correlation between customer needs and
research and development efforts [14]. More recently,
Holmström Olsson et al. also presented a
quantitative/qualitative customer-driven development (QCD)
model. This model presents available customer feedback
techniques and aims to help companies become more data-
driven by combining qualitative feedback with quantitative
customer data [15]. Such methods are supported by Kohavi
et al. [16], who report that companies use experiments to
guide product development and accelerate innovation.
Companies adapting the experimentation approach are
typically developing internet related product and services,
such as Amazon, eBay, Facebook, Google, LinkedIn,
Microsoft and Netflix [16]. While experimentations are
recognized as beneficial approach to software development,
barriers to related resources, organisational culture and data
knowledge persist [17].

B. Service design in software development

Service design (SD) is a methodological approach that
can be utilized during software development to involve
customers and collect feedback. It is a holistic,
multidisciplinary approach that aids innovation and improves
existing products to make them more useful and desirable to
customers [18]. SD provides an outside-in-development
approach, where products and services are developed
holistically from customers’ and end-users’ points of view,
and applies design thinking and methodologies in product
and service development. Recently, some process models
and working practices, such as Lean UX [9] and Design
Sprint [8], have been introduced under SD and UX design
titles with the aim of synthesising design thinking, agile
software development and lean start-up philosophies. Lean
principles and Lean Startup apply to Lean UX in three ways:
1) removing waste by only creating the design artifact that
enables the software development team to move their
learning forward; 2) embracing cross-functional
collaboration and bringing all relevant stakeholders into the
design process; and 3) adopting the experimentation mindset.
Lean UX is the evolution of product design, aiming at
breaking down the barriers between software development
teams, designers and users [9]. Similarly, Google Ventures
introduced Design Sprint to integrate product discovery,
product validation and delivery activities in a five-day
process [8].

Experiments with customers require the ability to elicit
customer feedback. For example, visualisation techniques
nurture the co-design process and elicit feedback without
relying on existing technical infrastructure or up-front
development efforts. Different visualisation techniques are
used, e.g., in agile development to design a product or a
service, support the development process, enhance
communication and track the process [19]. The SD approach
emphasises the co-design process, whereby stakeholders are
involved in concrete, productive design tasks such as
workshop sessions. These sessions typically include
collaborative prototyping and other means of expressing the
information needed in the design and development process
[20].

III. RESEARCH APPROACH

The software development process and related activities
are presented in this paper through a case study that follows
the guidelines set by Runeson and Höst [21]. A qualitative
case study method was chosen to gain a practical view on the
topic. In principle, the study is an in-depth, single-case
study, where the involved participants represent different
public and private organisations with fundamentally different
roles, such as user, data provider, company representative
and ecosystem leader. According to Yin [22], the single-case
design is appropriate for testing a specific theory, which in
this case is the CTP model. The study is also confirmatory in
nature, as it aims to evaluate the robustness of a theory.

53Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 64 / 160

A. Case description

Our case study was conducted in the Fenix project
(www.fenix.vip), where the software team develops a cloud-
based service for real-time business case management for the
Allied ICT Finland (AIF) (www.alliedict.fi) In the AIF
program, a need was identified as currently information
about companies, research institutes, business opportunities
and product offerings are scattered into various databases
and services. Thus, there is a need to aggregate this
information under one digital service-point. Fenix was
therefore designed to provide one place for finding and
meeting new business opportunities, solution providers,
experts, start-ups, business incubators and research institutes.
The aim is that the tool would allow users to browse
information about potential business partners and
opportunities across multiple third-party systems from a
single point. For example, the utilization of Business Finland
(www.businessfinland.fi) database to follow cases and offers
from municipalities and governments as starting cases.

The specific challenge of the Fenix system was to gain
the commitment of user stakeholders, namely companies,
universities and other organisations, which AIF and Business
Finland aimed to support. The idea was that Fenix would
promote Finnish industry by increasing overall trade and
exports through the improved exposition of business
opportunities, expertise and new company and research
ecosystem growth. The challenge was that there were no
clear requirements to fulfil due to the changing group of
stakeholders and the need to develop an efficient mechanism
to expose and promote business cases and ecosystem
formation. Further more, development funding depended on
the success of committing enough stakeholders to create
ecosystems in Fenix.

The development team consisted of nine people: a
designer/product owner, seven developers and a scrum
master in total. During development, one researcher acted as
product owner and UX designer and another adopted the role
of software architect. Experience levels ranged from novice
to expert with several years of industrial experience. The
software team followed scrum methodology with iterative
two-week development cycles. Customer collaboration was
guided by the CTP approach during the design and
implementation of the system (see [2] for details).

B. Data collection and analysis

Empirical data was collected between January and
December 2017 from observations and field notes, 13
interview recordings and 20 workshops. Semi-structured
interviews with open-ended questions [23] were used to
collect data from six customer interviews and seven
development team interviews. Customer participants were
selected to best represent the companies, research institutions
and local public actors.

The interviewed customers represented the AIF, Business
Finland, trade associations and local companies. The themes
discussed in the interviews were customer collaboration
practices, agile ways of working and the benefits and
challenges involved in the current way of working. The
interviews were conducted face-to-face and lasted

approximately 60 minutes. All interviews were recorded and
transcribed for analysis in QSR NVivo tool
(www.qsrinternational.com). The obtained material was
analysed in continuous collaboration by three researchers,
following the recommendations for thematic analysis in
software engineering by Cruzes and Dybå [24]. The
interview data was first coded based on the interview topics
and then analysed and coded according to emerging themes.
The themes were first examined independently, then cross-
analysed.

The workshops, besides being an integral part of the
development cycles, occurred bi-weekly after every sprint.
Workshops lasted approximately one hour and included
software product demonstrations and collaborative
prototyping sessions. Customers and other stakeholders were
invited to see the latest version of the prototype software and
to try, test and give feedback. Workshop participant groups
consisted of the whole development team and between two
and 15 customers. Before these workshops, a new version of
the software in question was deployed. During the bi-weekly
workshops, the product owner presented the changes and
new features introduced in that particular software version
and collected feedback and new development ideas. New
features ideas were experimented with using UI mock-ups
and interactive prototypes during the workshop sessions. The
developers summarised the key points of each workshop, and
the researchers observed and made notes about stakeholder
reactions and documented relevant comments. Following the
workshops, the development team analysed the feedback,
prioritised next tasks and planned the next iteration.

C. Validity and reliability of the study

The design of the present study was carefully planned to
consider validity concerns. We discuss four threats to
validity: internal and external validity, construct validity, and
reliability [22].

Internal validity regarding cause–effect relations was
addressed via multiple sources of evidence, and with
iterative research gradually building the final outcome.
Evaluation of utility, quality and efficacy was done
extensively with the help of industrial experts and real users.
Immediate feedback was gathered, and the use of prototypes
was observed. Based on the rich feedback and analysis,
further development and corrective actions were carried out.

External validity concerning the generalisability of
results was addressed by involving several industrial experts
to provide their views. In addition, the involvement of
several organisations of different types and domains
increased the external validity and generalisability of the
results. However, further study will be needed to generalise
the results fully.

Construct validity was mitigated by several activities.
First, an interview guide was developed and piloted. A pilot
interview was used to refine and clarify the interview
questions. Second, interview candidates were vetted for
suitability to the study, and interview themes were
introduced with background information.

The reliability of the data and derived results was ensured
by applying a peer-reviewed research protocol. Threats to

54Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 65 / 160

reliability were mitigated, particularly in the analysis phase,
by involving all three researchers. The data itself was
recorded using Jira (atlassian.com/software/jira) and
Confluence tools (atlassian.com/software/confluence), which
allowed other researchers and experts to review and correct
the data.

Some danger of positive bias exists in the study’s results
and activities due the way the case study was implemented.
The constant communication among researchers, the
development team and customer representatives, as well as
the inclusion of researchers on the development team,
increased the likelihood of producing only positive results.
This danger was mitigated by having one researcher to
evaluate the plan, results and actions without participating in
the development team activities. Further, clear roles and
rigorous research methods helped the researchers to maintain
an objective perspective throughout the study.

IV. RESULTS AND ANALYSIS

This section presents the extended CTP model (Figure 1.)
with identified practices for continuous improvement and
customer validation adapted from SD and Lean UX
approaches. The practices are defined based on the empirical
findings of the data collection and analysis as well as the
authors’ previous experiences when working with software
development teams. The benefits and challenges of applying
the extended CTP model in agile software development are
then discussed.

A. Recommended practices for the CTP model

Continuous improvement of the service unfolds true

qualitative and quantitative data collected from customers

and products in the field. Various experimentation

techniques and combinations can be applied throughout the

development process. The role of the CTP model in the

present study was to guide the development team to

experiment and collaborate with several internal and

external stakeholders during the development process and

collect feedback.

The purpose of extending the CTP model was to allow

the continuous identification, prioritisation and validation of

product assumptions in short development cycles with the

help of customers, using identified practices presented in

touchpoints T1-T4 in the model. These practices should be

applied as continuous activities to improve service and

validate product hypotheses. The findings of this study

indicate that to fully utilise the practices, the development

team must have an agile and lean mindset, be self-

organising and share responsibility. Also, the team must be

cross-functional, with one designer onboard. In-depth

analysis of the quantitative data requires data analytics and

data knowledge expertise, as analysing and utilising data is

much more complicated than collecting it.

Discovery: The first customer touchpoint T1, is used to

discover and compile customer needs and translate them

into product requirements and product hypotheses, which

can be used in experiments. Typically, new ideas and

requirements are collected from various sources, including

market and competitor intelligence, feedback from

customers and product usage data (after the first release of

the product has been made).

Figure 1. Lean UX practices in extended CTP model. R refers to the main

activities: R1 Collection; R2 Prioritization; R3 R&D Verification and R4
Deployment. T indicate where companies and customers exchange

information: T1 Release learnings or new customer requirements, T2
Release trade-offs and cost/benefit analysis, T3 Release features and

delivery commitments and T4 Release configurations and real usage vs.

planned usage of the product/feature. R1–R4 are also sources for
requirements for new product ideas, including market and competitor

intelligence, product usage data, customer feedback data collected, etc.

Techniques for collecting qualitative data can vary, from

surveys and interviews to observations. Product

assumptions are then turned into hypotheses for validation.

The practices identified and utilised by the development

team in this study included customer journey and

stakeholder mapping, user analysis and creation of user

stories. Journey mapping [9] provides a structured

visualisation of a specific element, be it a single feature or

an overview of the entire customer experience. Stakeholder

mapping [18] on the other hand governs the overall complex

situation and the expectations from various stakeholder

groups. Benchmarking through online research and market

data collection can also be used as an input to these

practices.

Key learning: Balance discovery activities with

development efforts by testing only high-risk hypotheses

and conducting smaller amounts of research more often.

Journey: The second customer touchpoint T2, is used to

visualise an organisation’s service vision and the customer

journey. Such visualisation, considered as MVPs in this

study, lends insight to improve the understanding of

information. In the early phases of product development,

55Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 66 / 160

many uncertainties related to customer expectations arise.

Concept work is required when envisioning the idea for a

service, or even at the feature level when designing

prototypes and mock-ups. Visualisation techniques like

wireframes, UI mock-ups, interactive prototypes and

evolutionary prototypes guide development teams to

prioritise development tasks continuously through

experimentation with product concepts and design artefacts.

In terms of prototyping, interactive prototypes are

simulations that typically illustrate few predefined

scenarios. They look and function like end product but do

not handle real data input, processing or output. This

technique proposes a quick and cost-effective way to

concretise and test new ideas before any development work

is done and help software teams to avoid developing

unnecessary features. Evolutionary prototypes, build based

on lessons learned from the interactive prototypes, however

handle real data and form the basis for the actual software

evolving after every iteration. Results of the present study

indicate that design tasks should be treated as equal to

development tasks and executed in the same or parallel

cycles during software development. Digital product

prototyping tools, such as Invision (invisionapp.com),

UXPin (uxpin.com), and Sketch (sketchapp.com) were

determined to be useful in this phase because they allowed

for more effective collaboration and experimentation with

product assumptions.

Key learning: Visualisation techniques create a common

understanding by which to resolve communication-related

issues. However, adapting these techniques require the role

of UX designer in the development team.

Validation: Most of the validation in touchpoint T3

occurs through testing activities. Testing activities are an

opportunity to validate mismatches between customer needs

and product offerings. As experienced in our previous

research [2], this opportunity is often overlooked. Adopting

the journey validation practice, trough different visualisation

techniques, helps a development team to identify their

needed steps, possible pain points and gaps. Internal

validation then covers practices like daily scrum meetings,

wikis and other communication channels to provide quick

and frequent feedback from executives and team members.

During daily scrum meetings in the present study, it was

observed that the work that had been visualised on Kanban

boards was often the work that got done. This demonstrates

the importance of making product discovery and UX design

tasks visible in a backlog. In this case, the UX tasks were

visualised, executed and tracked in two-week sprint cycles

alongside development tasks. External validation was done

by exposing experiment materials to customers in two-week

cycles to elicit and collect feedback. The experiment

materials included interactive prototypes, mock-ups and

evolutionary prototypes. Feedback was collected from

customer workshops after every cycle, and utilizing

usability testing with direct feedback mechanism in the

working software integrated into the product development

practices. It was concluded that it is important to involve the

entire development team in external validation activities like

workshops, as doing so helps the team avoid

misunderstandings and the incorrect implementation of

features.

Key learning: Customer needs and requirements change

constantly. Backlog prioritisation should be done with high

flexibility in short cycles against validated learnings.

Value: The ability to combine qualitative and

quantitative customer feedback data is important, as often

they complement each other. For example, by monitoring

feature usage, quantitative data can be used to validate

qualitative data. Analytic tools and collected product

operation and performance data allows development teams

to make data-driven decisions to improve the service in

customer touchpoint Value T4 continuously. In the present

case, project log files and product usage data such as clicks,

page views and number of visits were recorded and

analysed. Especially in the field of web development,

collecting and analysing product usage data has been eased

by general tools such as Google Analytics. Target areas for

quantitative data collection can range from system

performance and UX improvements to business-level

decision-making. In the present study, corrective actions

based on quantitative data were done for example by

improving the system level performance as well as

placement and visibility of UI elements and workflows.

Techniques such as A/B testing can also serve as a

potential approach to collect product usage data. In the

present case study, A/B testing was not conducted because

developing different variations of the same feature required

vast resources and a large user base. In addition, a more

detailed analysis of the log data would require specific skills

and resources, such as adding a data scientist to the team.

Key learning: Quantitative data reveals tacit and

complex knowledge of product usage. Detailed analyses of

data and systematic, controlled experiments require the

active presence of a data scientist.

B. Benefits of the extended CTP model in software

development

The use of the extended CTP model with the identified

practices as part of the two-week software development

cycle was determined to be beneficial from the customer

and development team points of view, but some challenges

were identified. The benefits (Table I) and challenges (Table

II) based on the research data are discussed next.

The most significant observed benefit of using the

extended CTP model in software development was that it

assisted both business and technical decision-making by

promoting a better understanding of information (i.e., tacit

knowledge is transformed into tangible knowledge). For the

development team, direct interaction with customers

enabled them to understand the reasons behind customer

requirements and validate which features brought real value.

Shared understanding also facilitated faster decision-

56Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 67 / 160

making, which enabled the team to prioritise tasks ‘on the

fly’ and estimate the validity of tasks in the product backlog.

The findings from this case study demonstrate that at

their best, these practices increased customer involvement

and nurtured innovation. Involving users in the early phases

of development made customers more active and

experienced with the product. This increased the motivation

of development team and especially users, as they

experienced the impact of their involvement during the

process.

In terms of decision-making, the present results indicate

that visualisation is one of the most important ways to

concretise and test new ideas, as information is made visible

to both customers and the development team through design

artefacts.

TABLE I. IDENTIFIED BENEFITS

Benefit Description

Learning and

decision-making

Accelerate the decision-making process and

concretise functions before actual development

work.
Innovation and

value co-creation

Accelerate co-creation and innovation between

development team and users. Receive the first

user feedback in the product/service idea phase.
Motivation Interaction and co-creation between development

team and users motivated both the development

team and the users.
Communication

improvement

Visualisation and prototyping methods improved

communication and helped avoid

misunderstandings between different stakeholders
(e.g., management, development team, customers

and end-users).

Transparency Increase transparency between customers, users
and the development team. Reveals grassroots

knowledge exploitable in development.

Direct feedback Presents an opportunity to receive instant and
direct feedback from end-users in short cycles.

Integrated UX

work

Design activities take place in the same cycle

with development activities.
Service vision in

communicable

form

Developers have a clear, precise schematic by

which to see the intended service from the

customer perspective and can choose precise
specifications.

Prioritisation

Prioritisation ‘on the fly’ allows the development

team to capture changing priorities in short cycles
and react flexibly and accurately.

Holistic approach Holistic approach to software development from
customers' and end-users' point of view.

The interviews stressed the need to produce proper

visualisations, such as interactive prototypes and UI mock-

ups, to concretise the service vision and improve

communication to avoid misunderstandings. According to

the interviewees, UX work was often perceived as a

separate function, one asynchronous with research and

development activities. It was also stated in the development

team interviews that sometimes UX work was overlooked,

as things like code quality, software scalability and security

issues were deemed more important. “Usability and user

interface design… perhaps we cannot appreciate these or

we consider more important that the software itself works or

the code is good quality, the software is scalable and safe

and so one, which is of course important… but from my

perspective, I see that it is old-fashioned engineering

thinking. …today, in my mind it (usability) is the biggest

competitive advantage of software, (senior software

developer).”

Visualisation techniques used in the workshop sessions

also bridged the communication gap between those with

business mindsets and those more technically oriented. It

was important that the whole development team participated

in the workshop sessions to get direct and instant feedback

from customers. This helped the development team to

understand the reasons behind customer needs, the kind of

behaviours expected from the service and what created

value for customer. During the sessions, the development

team was able to identify design improvement ideas for the

future and problem areas in the existing design. This had a

clear impact on project work such as planning, scheduling

and prioritising tasks, as the team was able to capture and

react to changing priorities in short cycles. The practices

presented in the extended CTP model facilitated better

alignment and transparency of different functions, from UX

design, business development and product management to

short cycles with research and development activities.

By adopting visualisation techniques as suggested in the

extended CTP model, the development team was able to

obtain their first user feedback after very short iterations (a

few days to a few weeks). The model also guided the entire

development team to holistic thinking by following a

customer centric design and development process

throughout the project lifecycle.

C. Challenges of the extended CTP model in software

development

Stakeholder availability and commitment represented

some challenges for example, if few or no visible functions

were delivered in a short iteration cycle, customer and

stakeholder commitment to participate in the workshops

could suffer. In addition, customers may feel disrupted from

their own work by being involved in development activities

too often. The development team reported the two-week

cycle as optimal, but based on the interviews it could be

shortened to one week. For customers, the two-week

development cycle with a workshop at the end of each sprint

was sometimes seen too often.

New requirements appear all the times and they may

disrupt the old ones, often this is related to different user

groups and customer roles with conflicting needs. This may

also add complexity to defining feature maturity and

identifying metrics for measuring customer value.

For a software team to adapt practices presented in the

extended CTP model, certain key roles must be filled, which

may cause some challenges. The current case study required

expertise of back-end and front-end development, database

development, server and tool management, a product owner

to represent the customer and a UX/UI designer to conduct

and facilitate design tasks. While the development team and

57Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 68 / 160

effort were kept as minimal as possible, it was evident that

UX design and different visualisation techniques required

significant effort; the person in charge of the design had to

discuss and make decisions on the design with different

stakeholders who often held conflicting demands and

priorities. In order to mitigate this problem, a stakeholder

analysis method [25] was used to gain further insight on the

conflicting issues and resolve them. The UX work alone

was often full-time work for a single person, even in a

lightweight web application project. Furthermore, detailed

analysis of the log data would require specific skills and

resources, such as adding a data scientist to the team and a

large user base. In this study, analytic support was

integrated to working software and some corrective actions

were continuously taken based on quantitative data.

However, small user base and lack of resources hindered

more detailed analyses. It should be noted that in some

industries, laws and regulations or other limitations could

prevent quantitative feedback collection.

TABLE II. IDENTIFIED CHALLENGES

Challenge Description

Stakeholder
availability and

commitment

Finding suitable time for all stakeholders to
participate workshops. Balancing workshop

frequency and getting customer commitment to

participate and give feedback.
Customer role Different user groups might have different needs,

and those can change according to context.

Measurement of
customer value

Identify metrics for how to measure customer
value is challenging.

Resources Successful implementation required having a

cross-functional team with an active UX/UI
designer and data scientist in the team.

Direct

communication

Developers may not always be confident or

comfortable with increased and direct customer
interaction.

Visualised

features might be
understood as

‘easy to do’

Workload estimation can be challenging from the

customer perspective. E.g., features in an
interactive prototype and real effort for actual

implementation might come as a surprise.

Maturity and
definition of done

(DOD)

Changing priorities and stakeholders make it hard
to analyse the maturity and DOD of features.

Quantitative
metrics / analytics

Quantitative metrics and analyses become
possible after implementing analytics support,

once the software is in use and there is a

sufficient stakeholder pool using it. Before that,
obtaining quantitative data is nearly impossible.

Physical distances Technical issues and lack of tools for sharing

local demonstrations.

Development team interviews of the present study

revealed that some developers were more confident when

allowed to focus simply on building the software, preferring

to keep their interactions with customers at a minimum or

restricted to key individuals.

While a working prototype proved an efficient way to

involve stakeholders in the development process, the

downside was that customer expectations rose when they

saw how ‘easy’ it was to produce something visible that

matched their needs. This led to situations where customers

expected that the feature’s implementation would be easy as

well. The challenge therefore is the increased risk of

customers developing unrealistic expectations related to

work estimations for the complete functional feature.

During the study, this was addressed by maintaining a

careful balance between keeping stakeholders satisfied even

the workload would be bigger and prioritizing these features

over those that are not visible but can be important for

system stability, security and other issues that do not show

in day-to-day work.

Physical distances reduced the development teams

ability to interact with their customers face to face, as well

as posed a challenge during the workshops and meetings

due to technical issues, such as connection quality and

faulty communication equipment. While these technologies

enable participation regardless of physical location,

communication tools do fail at times, or stakeholders are not

used to hold online meetings. Mistakes like using a low

volume of voice, moving away from the microphone or

demonstrating locally something not visible to those

participating remotely can slow down the meeting, make

communication difficult and increase the risk of

misunderstanding.

V. DISCUSSION

Software development is not an easy or straightforward

task. It is even more challenging when requirements are

constantly changing and there are many involved customer

organisations with different demands. Previous research [2]

shows that, delivering value and meeting customer needs in

constantly changing markets are key success factors for any

business. Multitude of existing methods and approaches for

identification, prioritization and validation of customer

needs are presented in literature, with more recent being

continuous experimentation. From a process perspective,

Schermann et al. [26] reports a lack of clear guidelines for

conducting experiments. Our extended CTP model fills the

gap and presents an approach for continuous improvement

and customer validation.

Typically, existing methods and approaches for

continuous experimentation (presented in Section II of the

paper) are influenced by the ‘build-measure-learn’ loop and

include the phases of planning, collecting customer

feedback and analysing of data for learning and decision-

making purposes. While some of the approaches focus on

the technical implementation and instrumentation for

collecting customer feedback data, the extended CTP model

offers a more holistic outside-in approach and integrates UX

work in the same development cycle. The model can be seen

as a framework that guides development team to experiment

and collaborate with internal and external stakeholders

during the development process. Experimentation does not

always require working software as experiments can be

conducted with other kinds of experimental artefacts, such

as visualizations or mock-ups. Multiple variations of the

58Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 69 / 160

extended CTP model can be derived based on context and

available resources.

The study found two main contributions from the

extended CTP model. First, the extended CTP model

enhances software development process with practices to

improve feedback elicitation, continuous improvement and

customer validation through its suggested practises in 1)

Discovery, 2) Journey, Validation and 4) Value customer

touchpoints. Second, the extended CTP model integrates

collaborative product discovery with product delivery tasks

in short cycles while recognizing the role and importance of

UX work. Conducting smaller amounts of research but more

often, involving the entire development team and testing the

high-risk hypothesis with visualisation techniques are

encouraged. In this way, the model offers a new holistic

approach to continuous improvement and customer

validation.

The research results highlight that teams adopting

recommended practices need to have a cross-functional

competences, innovative and experimental mindset in which

experimentation is seen as a learning opportunity. This is in

line with previous continuous experimentation research

where organisational culture act as barrier to the

incorporation of the practices [17]. In general, adopting

these practices benefited both the development team and

users and enabled the team to become more customer-driven

while focusing on the tasks most relevant to the users. The

main benefits relate to learning and decision-making,

innovation, value co-creation and communication. We also

identified number of challenges that may hinder customer

involvement and adapting identified practises, such as

stakeholder availability, commitment and measuring

customer value. We acknowledge that adapting visualisation

practices and quick prototyping requires a cross-functional

team with UX design activities and tasks aligned together

with the research and development tasks. In addition,

experimentation with quantitative data requires a data

scientist to be present in the team. Unlike large companies,

such as Microsoft [27], this may not always be feasible due

to limited resources. We also argue that analysis of

quantitative data is not a sole responsibility of a data

scientist, as it requires deep customer insight from

qualitative data. It this sense, data analysis could fall under

product management tasks as the shared responsibility of a

product owner, UX designer and data scientist were also

business aspects are taken into consideration. This

reinforces the fact that there is not one right approach for

software teams to become more customer centric. Rather,

practices should be tailored to meet specific domain and

contexts, distinct business goals and different organisational

cultures.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a case study aiming to help

software teams to continuously validate customer value in

short development cycles to increase customer

understanding trough practises presented in the extended

CTP model. The current findings are based on empirical

data gathered from a software development team developing

a modern software-as-a-service platform called Fenix. The

Fenix system was designed to help companies grow their

revenue through digital partnering and ecosystem creation

strategies.

This study shows that several methods and practices can

be utilised during software development to capture and

validate customer needs thus helping development teams to

reduce the gap between user expectations and actual

implementation. The extended CTP model presents the

identified practises through customer touchpoints. By

recognising the synergies between continuous customer

collaboration, integration of design tasks and involving all

the relevant stakeholders, along with the ability to combine

qualitative and quantitative feedback, software teams can

speed up their delivery process and become more data-

driven in their learning and decision-making processes.

Future work on this topic should examine how the

extended CTP model works when the web application in

question is developed further and the user base is substantial

enough to use controlled experiments. This would allow for

interesting evaluations of the different practices used in the

extended CTP model when used to develop already

established software rather than restricting investigations

into new software development.

ACKNOWLEDGMENTS

This work was supported by the Six City Strategy

(6Aika) and the European Regional Development Fund

(ERDF), Business Finland, Allied ICT Finland and its

ecosystems.

REFERENCES

[1] A. Nguyen-Duc, X. Wang, and P. Abrahamsson, “What
influences the speed of prototyping? An empirical
investigation of twenty software startups”. In: Software
Engineering and Extreme Programming, XP 2017. Lecture
Notes in Business Information Processing, vol. 283, pp. 20–
36. Springer, Cham, 2017.

[2] T. Sauvola et al., ”Towards customer-Centric software
development, A multiple-Case study”. In: 41st Euromicro
Conference on Software Engineering and Advanced
Applications (SEAA), 2015, pp. 9–17. IEEE, Funchal,
Portugal, 2015.

[3] F. Fagerholm, A. S Guinea, H. Mäenpää, and J. Münch, “The
RIGHT model for continuous experimentation”. J Syst
Software vol. 123, pp. 292–305, 2017.

[4] K. Beck, J. Grenning, and R. C. Martin, Agile Manifesto.
http://www.agilemanifesto.org/ [retrieved: August, 2018]

[5] E. Ries, The Lean Startup: How Constant Innovation Creates
Radically Successful Businesses. Penguin Group, London,
2011.

[6] H. Holmström Olsson, J. Bosch, and H. Alahyari, “Towards
R&D as innovation experiment systems: A framework for
moving beyond agile software development”. Proceedings of
the IASTED, pp. 798–805, 2013.

[7] S. G. Yaman et al., “Transitioning towards continuous
experimentation in a large software product and service

59Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 70 / 160

development organization: A case study”. In: P.
Abrahamsson, A. Jedlitschka, A. Nguyen Duc, M. Felderer, S.
Amasaki, and T. Mikkonen (eds). Product-focused Software
Process Improvement, PROFES 2016. Lecture Notes in
Computer Science, vol. 10027, pp. 344–359. Springer, Cham,
2016.

[8] J. Knapp, J. Zeratsky, and B. Kowitz, Sprint: How to Solve
Big Problems and Test New Ideas in Just Five Days. Simon
and Schuster, New York, 2016.

[9] J. Gothelf and J. Seiden, Lean UX: Designing Great Products
with Agile Teams. O’Reilly Media Inc., Sebastopol, 2016.

[10] J. Bosch, “Building products as innovation experiment
systems”. In: M. A. Cusumano, B. Iyer, N. Venkatraman
(eds). Software Business, ICSOB 2012. Lecture Notes in
Business Information Processing, vol 114, pp. 27–39.
Springer, Berlin, Heidelberg, 2012.

[11] F. Elberzhager, T. Arif, M. Naab, I. Süß, and S. Koban,
“From agile development to devops: Going towards faster
releases at high quality: Experiences from an industrial
context”. International Conference on Software Quality, 2017,
pp. 33–44. Springer, 2017.

[12] E. Anderson, S. Y. Lim, and N. Joglekar, “Are more frequent
releases always better? Dynamics of pivoting, scaling, and the
minimum viable product”. Proceedings of the 50th Hawaii
International Conference on System Sciences, 2017, pp.
5849–5858, 2017.

[13] J. Bosch, H. Holmström Olsson, J. Björk, and J. Ljungblad,
“The early stage software startup development model: A
framework for operationalizing lean principles in software
startups”. In: B. Fitzgerald, K. Conboy, K. Power, R. Valerdi,
L. Morgan, K.-J Stol, (eds). LESS 2013. LNBIP, vol. 167, pp.
1–15, Springer, Heidelberg, 2013.

[14] H. Holmström Olsson and J. Bosch, “The HYPEX model:
From opinions to data-driven software development”. In:
Bosch J. (ed). Continuous Software Engineering. Springer,
Cham, 2014.

[15] H. Holmström Olsson and J. Bosch. “Towards continuous
customer validation: A conceptual model for combining
qualitative customer feedback with quantitative customer
observation”. In: J. Fernandes, R. Machado, K. Wnuk (eds).
Software Business, ICSOB 2015. Lecture Notes in Business
Information Processing, vol. 210, pp 154-166, Springer,
Cham, 2015.

[16] R. Kohavi, A. Deng, and B. Frasca. “Online controlled
experiments at a large scale”. Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2013, pp. 1168–1176, 2013.

[17] E. Lindgren and J. Münch, “Raising the odds of success: The
current state of experimentation in product development”.
Inform Software Tech, vol. 77, pp. 80–91, 2016.

[18] M. Stickdorn and J. Schneider, This is Service Design
Thinking (1st ed). 2012.

[19] J. Parades, C. Anslow, and F. Maurer, “Information
visualization for agile software development teams”. In:
Second IEEE Working Conference on Software Visualization
(VISSOFT), 2014, pp. 157–166, 2014.

[20] Y. Lee, “Design participation tactics: The challenges and new
roles for designers in the co-design process”. J Co-design, vol.
4(1), pp. 31–50, 2008.

[21] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering”.
Empirical Software Engineering, vol. 14(2), pp. 131–164,
2009.

[22] R. K. Yin, Case Study Research: Design and Methods (5th
edn). Sage Publications, 2013.

[23] M. D. Myers and M. Newman, “The qualitative interview in
IS research: Examining the craft”. Inf Organ, vol. 17(1), pp.
2–26, 2007.

[24] D. S. Cruzes and T. Dyba, “Recommended steps for thematic
synthesis in software engineering”. In: International
Symposium on Empirical Software Engineering and
Measurement (ESEM), 2011, pp. 275–284, 2011.

[25] M. Kelanti, J. Hyysalo, J. Lehto, S. Saukkonen, P. Kuvaja and
M. Oivo “Soft Systems Stakeholder Analysis Methodology”.
Proceedings of the 10th International Conference on Software
Engineering Advances (ICSEA 2015), pp.122–130,
Barcelona, Spain, 2015.

[26] G. Schermann, J. Cito, P. Leitner, U.Zdun, and H.C. Gall,
“We’re doing it right live: A multi-method empirical study on
continuous experimentation”. Information and Software
Technology, 99, pp.41-57, 2018

[27] M. Kim, T. Zimmermann, R.DeLine, and A. Begel. “Data
Scientists in Software Teams: State of the Art and Challenges.
IEEE Transactions on Software Engineering”, 2017, pp. 1–17,
http://dx.doi.org/10.1109/TSE.2017.2754374

60Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 71 / 160

Measuring and Improving the Quality of Services
Provided by Data Centers: a Case Study

Martin Zinner∗, Kim Feldhoff∗, Michael Kluge∗, Matthias Jurenz∗, Ulf Markwardt∗, Daniel Sprenger∗,
Holger Mickler∗, Rui Song†, Andreas Tschipang∗, Björn Gehlsen∗, Wolfgang E. Nagel∗

∗ Center for Information Services and High Performance Computing (ZIH)
Technische Universität Dresden

Dresden, Germany
E-mail: {martin.zinner1, kim.feldhoff, michael.kluge, matthias.jurenz}@tu-dresden.de,
{ulf.markwardt, daniel.sprenger, holger.mickler, andreas.tschipang}@tu-dresden.de,

{bjoern.gehlsen, wolfgang.nagel}@tu-dresden.de
† Technical Information Systems
Technische Universität Dresden

Dresden, Germany
E-mail: rui.song@tu-dresden.de

Abstract—As data centers become increasingly complex and
deliver services of high importance, it is very important that
the quality of the delivered services can be objectively evaluated
and can fulfill the expectations of the customers. In this paper, we
present a novel, general, and formal methodology to determine
and improve the Quality of Services(QoS) delivered by a data
center. We use a formal mathematical model and methodology in
order to calculate the overall indicator of the service quality and
discuss methods of improving the QoS. Since the considerations
were conceived and results have been proved in a formal model,
the considerations and results also hold in a more general case.

Keywords–Quality of Services; QoS; Performance data center;
Little’s Law; Kingman’s equation; Flow factor; Operating curve
management; Customer satisfaction; Key performance indicators.

I. INTRODUCTION

A. Motivation and Short Overview

Nowadays, the services of a data center are indispensable
for the good functioning of a company or a research institute.
However, due to the advanced digitalization, data centers are
becoming more and more complex and difficult to manage.
According to a survey of Symantec [1], the main reasons are the
raise of the Cloud Computing and the Virtualization. Basically,
such complex infrastructures are more error-prone and require
more maintenance efforts than simple ones. Thus, it is of
crucial importance to measure the Quality of Services (QoS)
provided by a data center, in order to detect which components /
services are low performers and should be improved. This way,
measuring the QoS also avoids service degradations. Services
which underperform can be detected and measures can be
taken (like relocation of resources) such that these services
will perform better again. An optimized usage of the available
resources does not only improve the QoS and thus, the image
of the service provider, but also helps to save costs.

Furthermore, Butnaru [2] states that “quality has become a
strategic element in companies dealing with services because
it determines competitiveness at its highest level”. Thus, by
measuring and improving the QoS provided by companies
/ research institutes, the service providers can improve their
ranking when compared to the competition.

Estimating the QoS of a data center is a complex endeavor.
On the one hand, there are objectively measurable indicators like
the duration and number of unplanned down times. On the other
hand, the customer satisfaction has very important subjective
components, which should not be neglected. Thus, if a customer
has full confidence in the technical skills, seriousness, and
professionalism of the operating staff, then his attitude is
permissive and indulgent regarding possible malfunctions. For
example, let us consider the scenario that a service has an
unplanned downtime. If the operating staff can predict the time
when the resumption of the service will occur with satisfying
accuracy, the impression of the customer regarding the service
provider will be very good. Otherwise, the customer will assume
that the service provider does not have his processes under
control and a failure of the system will sooner or later occur.

In this paper, we will focus on the perspective from the
data center side. We will define and make use of different
metrics in order to be able to establish objective criteria which
characterize the Quality of Services and the performance of a
data center.

B. Main Challenges and Objectives

If a customer is asked about the quality of the services of
a data center he or she usually will answer: Yes, quality is
good, but it could be better. This answer only describes the
subjective perception of the customer. Our aim is to go further.
Thus, searching for a positive response to the questions “Is the
QoS measurable and if this is the case, how?” is one of the
main challenges, we had to accept and take up.

Establishing and choosing meaningful performance indica-
tors form the basis for improving the QoS.

The challenges described above lead us to the following
main objectives:

1) Receive responses to the question whether the QoS
is quantifiable / metrisable or not, i.e., whether the
QoS can be expressed numerically in a reasonable non
trivial way, such that this number is independent of the
subjective perception of humans.

61Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 72 / 160

2) Establish a general approach on the modalities to
quantify the QoS such that a single indicator (or only
very few) expresses the service quality of the service
provider.

3) Find possibilities to improve the QoS and implicitly
the performance of the service provider.

C. Outline

The remainder of the paper is structured as follows:
Section II gives a short overview of the state of the art and detail
some difference of our approach. Section III introduces the
proposed strategy for measuring the QoS, first in an informal
way, afterwards formalized by introducing a mathematical
model. Different metrics are defined and used in order to
be able to establish objective criteria which characterize the
quality of the services and the performance of a data center.
Section IV introduces the formal queuing model, makes the
connection to the models used in practice, and discusses
modalities to improve the performance of a data center by
using the operation curve. In order to be able to balance
the performance of the services of different departments of
a data center, a formula to calculate the flow factor of the
data center out of the flow factor of each department, is
established. Section V gives some details of a use case and
finally, Section VI concludes this paper and sketches the future
work.

II. RELATED WORK

An important part of the existing approaches for quality
improvement focus merely on the QoS from the user perspective
– established through questionnaires (e.g., SERVQUAL and/or
SERVPERF [3]) – and on the discrepancies between the user
perception and the user expectation of the QoS.

Most approaches concerning the measurement of QoS have
tended to avoid the use of pre-defined objective performance
indicators and focus instead on the relationship between
what consumers expect from a particular service and what
they actually get [4]. The conclusion [3] is that customer
satisfaction with services or perception of QoS can be viewed
as confirmation or disconfirmation of customer expectations
of a service offer. The role of emotions in customer-perceived
service quality is analyzed [5] by widening the scope of
service quality, i.e., by focusing on dimensions beyond cognitive
assessment.

We concentrate our study primarily on the service provider
perspective by using metrics to characterize the QoS and
subsequently establish strategies on how those metrics can
be combined together to generate a unique indicator, which
characterizes the overall performance of the service provider.

Measuring and ranking service quality has been an issue
for study for decades [4], whereby the difficulties lied in the
development of the most suitable method of measurement.
Approaches to the measurement of QoS are based on the
analysis of the relationship between customer expectation of
a service and their perceptions of it’s the quality. Indices
to provide measures of expectation, perceptions, and overall
satisfaction from the customer side are set up and compared [4].

In [6], the authors report the insights obtained in an
extensive exploratory investigation of quality in four business

(retail banking, credit card, security brokerage, and product
repair and maintenance) by developing a model of service
quality. The most important insight obtained from analyzing the
executive responses is the following: “A set of key discrepancies
or gaps exists regarding executive perception of service quality
and the tasks associated with service delivery to consumers.
These gaps can be major hurdles in attempting to deliver a
service which consumers would perceive as being of high
quality”.

Metrics in order to establish the QoS have been used for
example by the Systemwalker [7], which supports “Information
Technology Infrastructure Library” (ITIL) based IT service
management. The focus in [7] is on the service delivery area,
such as capacity, availability, and service level management. The
composition of metrics is outside the scope of the Systemwalker.

In [8], a framework for the evaluation of QoS for Web
Services within the OPTIMACS project is presented, such that
Service Level Agreements (SLAs) are established in order
to calculate / guarantee the QoS, then the properties are
normalized by using statistical functions. The goal is to obtain
a final Quality grade, that allows to rank the services. Finally,
aggregation is performed using weighted sum of the different
quality items.

As a final note, the studies regarding the normalization and
composition of metrics considered for QoS for Web Services
are straightforward and are based on statistics (min, max, mean
value, standard deviation, Z-score) [8], the committed SLA time
provides the QoS level. The metrics used to measure the QoS
of a data center are so diverse that a case-by-case approach
is necessary to determine the normalization and composition
strategy. Moreover, statistical values as above are generally not
a priori known for unconverted metrics such as “cycle time”,
etc.

III. MEASURING THE QOS

We describe the general strategy how to measure the QoS in
an informal way in Subsection III-A and formalize this strategy
in Subsection III-B.

A. Description of the Strategy

According to ITIL [9] (and similar), the (incomplete) list
of processes comprises the following managements:

• “incident management”,

• “problem management”,

• “information security management”,

• “service level management”,

• “change management”,

• “project management”, and

• “release and deployment management”.

A list of metrics is specified for each process according to
ITIL [9] and / or to the “Key Performance Indicator (KPI)
Library"(KPI Library) [10], see [11] regarding developing,
implementing and using KPIs. Some of the most important

62Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 73 / 160

metrics for the ITIL process “incident management” are given
in the following:

• “Total number of incidents”,

• “Number of repeated incidents, with known resolution
methods”,

• “Number of incidents escalated which were not resolved
in the intended resolution time”,

• “Average cycle time associated to the subsequent re-
sponses”, i.e., including the average cycle time to resolve
the incident,

• “Average waiting time from user side associated to the
subsequent responses”,

• “Average work effort for resolving the incident associ-
ated to the subsequent responses”,

• “Average time between the occurrence of an incident
and its resolution”,

• “Total number of incidents resolved within service level
agreement (SLA) time divided by the total number of
incidents”.

In order to establish objective criteria for measuring the QoS, it
is not sufficient to consider simply one metric. Indeed, different
metrics have to be combined. The following example illustrates
this issue.

The metric “Total number of incidents” is a revealing metric
regarding the performance of a service provider. Of course, this
metric is important for reporting per se, as a non anticipated
sharply increasing trend can be the cause for major concerns.
Another important metric is "the average cycle time to solve an
incident". If the metric “Total number of incidents” is increasing,
but in the mean time the “Average cycle time to solve an
incident” is decreasing, the balance is restored and the service
provider will not face a total collapse of the service.

Hence, composition rules for metrics are needed, such
that indicators that characterize the health of the services,
can be established. Since we cannot directly compare the
different metrics, we transform / normalize the metrics using
relative values. By dividing the “Total number of incidents”
by an artificially generated “Maximum number of incidents
supported”, we receive a relative value between 0 and 1.
Unfortunately, the value 1 is the worst value you can ever
get. In order to circumvent this impediment, we subtract 1 and
change the sign. Using the same considerations (by defining
the “Minimum average cycle time”) analogue relative value
for the cycle time can be established. In this case, this new
indicator is directed in the sense, that the best cycle time is
achieved when this value is equal to 1. This example is just to
illustrate the technique. One may argue that an increase of the
indicator value “Average waiting time of the incidents during
processing” also indicates a congestion.

Thus, in order to combine different metrics, we will
normalize them to the range [0; 1] in such a way that the lowest
value correspond to the poorest quality, the highest value to
the best quality. Once, all the relevant metrics of a process are
normalized, we can proceed with the composition such that for
each process a single, composed metric is established.

The composed metric should also take values between 0 and
1, such that a greater value implies a better QoS. An example
of a straightforward composing strategy is to establish weights
for each metric, such that the sum of all weights is equal to 1
and important metrics have bigger weights. Hence, the decisive
metrics are much better considered. Of course for practical
purposes, we can define groups of incidents having the same
importance and accordingly appropriate distribution functions
(linear, exponential, etc.). The calculation of the associated
weights is then immediate.

Normally, explicitly defining importance grouping and
distribution functions is not always necessary. We can set up
priority strategies regarding the QoS. As an example, under
some circumstances, a fast but not necessarily very detailed
answer is more helpful for IT professionals, who can elaborate
the details themselves. In other cases, detailed and very accurate
answers are necessary, especially for customers with little or
no experience. Then, customers could return the ticket of the
incident (if the answer is not accurate enough, e.g.) and ask
for more information and assistance.

Hence, the development of an appropriate strategy for the
quality improvement is essential, in some cases this strategy
can be even customer dependent. For example, we can improve
the quality:

• by improving only the accuracy of the responses, or

• by reducing only the response times, or

• by minimizing a metric which takes both accuracy and
the response time into account.

In accordance with the improvement strategy, the grouping of
metrics regarding their performance is more or less straightfor-
ward and easy to follow.

In effect, we can establish for each process a unique
(abstract) indicator, which characterizes the quality of the
process such that a greater value means better quality of the
process according to the improvement strategy as above. The
absolute value of this indicator has no particular interpretation,
only the increment or decrement of this value in time is
significant.

Same considerations using the indicators established for the
processes lead to a unique indicator of the QoS for the whole
service provider, i.e., the data center. By evaluating the time
behavior of this indicator and / or the component indicators
we can have a good overview which process and / or metrics
performed better or worse.

This unique indicator can be deployed for example on daily
bases, such that the performance of the service provider can
be easily followed and appropriate measures can be taken
if performance degradation occurs. Moreover, even if the
overall unique indicator has improved in value, there can
be some components, whose performance has degraded. By
setting up appropriate Graphical User Interfaces (GUIs), and
appropriate colors (for example red for degradation and green
for improvement) the deviation with respect to the previous
day can be visualized.

The only process through which the customers interact
with the data center as the service provider is through the

63Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 74 / 160

“incident management”, the performance of the other processes
is practically hidden for the regular customer. In order to
improve the “incident management” we will analyze the impact
of some important processes on the “incident management”.

An important direct impact on the “incident management”
has the “problem management” in the sense that by a very
efficient “problem management” the number of repetitive
incidents or the time to solve the repetitive incidents can
be dramatically reduced. For this, each incident should be
correctly assigned to the appropriate issue, have a correct and
exhaustive root analysis, such that the causes of the incident are
unambiguously elucidated. It seems a bit of common sense that
all the detailed information regarding the incident including
good ways of searching, finding, and retrieving the information
should be stored in an appropriate knowledge database. Next,
the probability of recurring should be estimated and if necessary,
appropriate measures should be taken in order to avoid the next
occurrence of the same incident.

Proactive methods are very efficient to avoid the occurrence
of incidents, e.g., improving “change management”, “release
and deployment management”, etc. By significantly reducing
the impact of new releases on the services, the peaks on the
QoS can be significantly reduced.

B. Formalization of the Strategy

We will formalize the strategy proposed in Subsection III-A
by introducing a mathematical model in order to use the
advantages of the rigor of a formal approach over the inaccuracy
and the incompleteness of natural languages.

Let A be an arbitrary set. We notate by 2A the power set
of A, i.e., the set of all subsets of A, including the empty set
and A itself, and the cardinality of A by card(A).

We use a calligraphic font to denote index sets. We denote
by S := {Si | i ∈ S and Si is a service} the finite set
of the services. Analogously, we denote by P := {Pi |
i ∈ P and Pi is a process} the finite set of processes and by
T := {[t1; t2] | t1 and t2 are points in time, such that t1 ≤
t2} time intervals.

A metric M is a measurement that monitors progress
towards achieving the targeted objectives. We denote by
M := {Mi | i ∈ M and Mi is a metric} the finite set of
metrics. Generally speaking, a metric M is defined for an
environment containing subsets of S and P .

For example, let us define the ratio between the "total
number of incidents with known resolution method" and
the "total number of incidents". Depending on the strategic
orientation of the company, different goals can be pursued.
On the one hand, having for most of the incidents corrective
measures in place can be a targeted objective, one the other
hand, avoiding repetitive incidents is crucial for the economic
success of companies like fabs running 24x7 continuous
manufacturing operations. A mixed strategy (for example 10%
known errors) can be also targeted. Hence, the scope of a
metric is most of the time business oriented.

In order to be able to compare and compose different metrics
in a reasonable way, we introduce the value of a metric such
that it is greater or equal 0 and lower or equal 1. A greater

value of the metric means a closer value to the targeted business
objectives. Formally, the range of values of the possible business
values, including the targeted ones is 2R. Hence, the progress
towards achieving the targeted Business Objectives (BO) can
be represented as a function.

BO :M×P × S → BusinessObjectives,

(M,P, S) 7→ BO(M,P, S).

Analogously, the value (V) of a metric is represented as:

V :M×P × S × T → [0; 1],

(M,P, S, [t1; t2]) 7→ V (M,P, S, [t1; t2]).

A greater value for V (M,P, S, [t1; t2]) means a closer value to
the targeted business objectives for (M,P, S). The definition
above highlights the fact that the same metric can have different
business objectives and definition (values) depending on the
environment (services and/or processes) it is used.

We illustrate the above considerations based on a simple
example and consider the "average cycle time" of the incidents.
The business demands short cycle times for all departments.
In order to be able to compare the cycle times of different
departments, we determine the minimal cycle time (i.e., the
theoretical cycle time needed if there are no unplanned down
times, etc.) and assign the ratio of minimal cycle time to the
cycle time as the value of the metric. Hence, the performance
of the different departments regarding the same metric (i.e.,
cycle time) can be easily compared, on the assumption that the
respective minimal cycle time has been evaluated correctly.

Our aim is to establish a single indicator for the service
performance (i.e., the QoS) of the service provider. In order to
evaluate the performance of the different metrics of the same
process (for example ITIL process), we set up a methodology
to compose the different metrics in a reasonable way, such
that the new metric (indicator) outlines the performance of the
investigated process.

In order to simplify the notation, we will notate in the
following the value of a metric M by V (M), meaning that the
metrics involved are defined on the same environment and the
same time interval.

Definition III.1 (Composition of metrics) Let
M := {Mi| i ∈ {i1, i2, . . . , ik} ⊆ M } a subset of M.
We define

COMP : 2M →M,

M 7→ COMP(M),

such that there is an aggregation function AGG

AGG : 2M → [0; 1],

V (COMP(M)) 7→ AGG(V (Mi1), V (Mi2), . . . , V (Mik))

and

v1i1 ≤ v
2
i1 , v

1
i1 ≤ v

2
i1 , . . . , v

1
ik
≤ v2ik

⇒ AGG(v1i1 , v
1
i2 , . . . , v

1
ik

) ≤ AGG(v2i1 , v
2
i2 , . . . , v

2
ik

)

Except for the case of trivial aggregations, the composition
generates a new metric out of known ones.

64Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 75 / 160

In order to keep our notation simple and straightforward,
we will not make any distinction in the formal representation of
the initial metrics and those obtained by consolidation. Hence,
M contains the initial metrics as well as the consolidated ones.
Therefore, a consolidated metric can be finally set up for the
entire service. We note:

Lemma III.2 (Composition properties) Let M := {Mi| i ∈
{i1, i2, . . . , ik} ⊆ M } a subset of M arbitrarily chosen. Then,
COMP(M) is a metric, i.e., fulfills the following properties:

a) 0 ≤ V (COMP(M)) ≤ 1,

b) A greater value for V (COMP(M)) means a closer
value to the targeted business objectives for this metric.

Hint These properties are a direct consequence of Defini-
tion III.1.

Next, we give a small example to illustrate the aggregation
strategies. Let M := {Mi1 ,Mi2 , . . . ,Mik} be a subset of M.
We suppose, that the value of the new characteristic COMP(M)
is a linear combination of the values of the components, i.e.,

V (COMP(M)) :=

ik∑
i=i1

αi · V (Mi)

with weights αi > 0 ∀i ∈ {i1, i2, . . . , ik} and
∑ik

i=i1
αi = 1. If

the value of αi is high, then the metric Mi within COMP(M)
is important. In practice, it suffices to build weight groups
{Gi| i ∈ {i1, i2, . . . , il}} out of M such that each M ∈ M
belongs to a group Gi and all Mj ∈ Gi are equally weighted.
Furthermore, a weighting function W can be set up, such that
all αi can be explicitly determined, for example set

ki :=
αi

αi+1
for all i ∈ {i1, i2, . . . , il−1}.

The values ki can be regarded as the “ratio of relevancy” of
the corresponding metrics.

IV. IMPROVING THE QOS

In the last section, we proposed a strategy how to measure
the QoS of a data center. In this section, we will establish
metrics controlling the performance of a data center. Thus,
we can determine in which cases the service of a data center
collapses or the QoS substantially degrades.

A. Queuing Model and Basic Metrics

We model the processing line of a data center by introducing
a queuing model and give some basic definitions related to it.
In order to keep the presentation accessible and avoid technical
complications, we will maintain our model as simple as possible.
It is the task of the practitioners to map the real world onto
this model according to their needs. We will analyze the entire
processing line as well as subsystems of it.

A queuing system consists of discrete objects, termed units
or items that arrive at some rate to the system. Within the
system, the units may form one or more queues and eventually
be processed. After being processed, the units leave the queue.

The finest granularity in our model is unit, step, time stamp,
section and classification. For example, in practice, the unit

can be a ticket, the section can be an employee of the service
center, a group of employees having the same profile or a
specific section of the service center, etc. The classification
is the finest attribute which characterizes the unit (like bug,
disturbance, project, etc.) and it can be distinguished in the
processing phase.

In our model the unit enters the system (service center), is
processed according to the specifications and leaves the system.
The step is the finest abstraction level of processing which
is tracked by the reporting system. When the material unit
u enters the system, it is assigned to a classification c. This
assignment remains valid till the unit u leaves the system. We
will analyze the entire processing line as well as subsystems
of it.

We denote by S the set of all steps of the processing line,
by U the set of the units that entered the system, and by T the
(ordered and discrete) points in time when events may occur in
the system. Since we are merely interested in daily calculations,
we will set D as the set of all points in time belonging to a
specific day D, i.e., D := {t ∈ T | t belongs to day D}.

Let s ∈ S and u ∈ U . We denote by TrInT s(u) the track
in time of u, i.e., the point in time when the processing of unit
u is started at step s. Analogously, TrOutT s(u) is the track
out time of u, i.e., the point in time when the processing of
unit u has been finished at the step s.

We assume that for a step s, the function succs(u), which
identifies the succeeding step of s for the unit u is well defined.
Analogously, we assume that the history of the production
process is tracked, so the predecessor function preds(u) of each
step s is well defined. For formal reasons we set succs(u) := s
for the last step on the route and preds(u) := s for the first
step on the route.

By cycle time (CT), we generally denote the time interval
a unit or a group of material units spent in the system /
subsystem [12]. We do not make any restrictions on the time
unit we use, but are merely interested on daily calculations.
For formal reasons, – in order to be able to calculate average
values – we denote by 24h the cardinality of an arbitrary day
D. For t ∈ T we denote by t± 24h the point in time t shifted
forward or backwards by 24 hours.

We assume that events in the system are repeated on a daily
basis, i.e.,

∀u ∈ U and ∀s ∈ S : TrInT s(u) = t

=⇒ ∃v ∈ U : TrInT s(v) = t+ 24h and
TrOutT s(v) = TrOutT s(u) + 24h

and

∀u ∈ U and ∀s ∈ S : TrInT s(u) = t

=⇒ ∃w ∈ U : TrInT s(w) = t− 24h and
TrOutT s(w) = TrOutT s(u)− 24h.

Under a stable system we mean a system according to the
conditions above.

In practice, systems pass through a ramp up phase such that
the above conditions are eventually reached, i.e., ∃tb ∈ T such
that the above conditions are satisfied for all t > tb. For our

65Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 76 / 160

investigations, it is sufficient that the systems reach the stable
state after some time (eventually stable systems). For reasons
of a simple notation, we will use the term stable system or
system in a stable state. However, the statements of this work
are also valid for eventually stable systems.

The raw process time / service time of unit u ∈ U related
to step s inS is the minimum processing time to complete
the step s without considering waiting times or down times.
We denote the raw process time of unit u related to step s by
RPT s(u).

Let u ∈ U , let {s1, s2, . . . , sn} ⊂ S be the complete list
of steps according to the processing history to process unit u.
Let RPT si(u) be the raw process times of unit u related to
step si for all i = 1, 2, . . . , n. Then the raw process time of
unit u can be represented as follows:

RPT (u) =

n∑
i=1

RPT si(u).

The work in progress is defined as the inventory at time
t ∈ T and will be denoted by WIP(t). If the work in process
is used in connection with Little’s Theorem then it denotes the
average inventory for a given period of time. We use the notation
avgWIP instead of WIP to denote the average inventory.

We denote by Th the throughput of the material units by.
Usually, we consider the daily throughput and refer to it as
ThD for a specific day D.

The cycle time of a unit u ∈ U spent at a step s ∈ S in
the system can be represented as:

CT s(u) := TrOutT s(u)− TrOutT preds(u)
(u).

Let {u1, u2, . . . , un} be the set of units that were processed
at step s on a specific day D ⊂ T i.e., ∀i ∈ {1, 2, . . . , n} ∃ti ∈
D such that TrOutT s(ui) = ti. Then, the average cycle time
avgCTD

s the units ui spent in the system at step s on a specific
day D can be represented as:

avgCTD
s =

1

n
·

n∑
i=1

CT s(ui).

For t ∈ T , u ∈ U we define the indicator function 1s at a
process step s ∈ S as follows:

1s : U × T → {0, 1},

(u, t) 7→ 1s(u, t) :=

1 if t ≥ TrOutT pred(s)(u) and

t < TrOutT s(u),

0 otherwise.

Throughout this work we assume that T is discrete, i.e.,
units arrive and depart only at specific points in time, since
the time is usually measured in seconds or milliseconds.

Lemma IV.1 (Representation of average inventory) The
average inventory avgWIPD

s for a process step s ∈ S on a
specific day D can be represented as follows:

avgWIPD
s =

1

card(D)
·
∑
t∈D

∑
u∈U

1s(u, t) (1)

= avgCTD
s · Th

D
s . (2)

By interchanging the order of summation, we receive an
expression for WIPD

s , which is much easier to calculate in
practice.

Hint Let Un,D := {u1, u2, . . . , un} be the set of units that
left the step s on a specific day D ⊂ T , i.e., ∀i ∈
{1, 2, . . . , n} ∃ti ∈ D such that TrOutT s(ui) = ti. Then,
in stable systems the following relation holds:

avgWIPD
s =

1

card(D)
·
∑
t∈D

∑
u∈U

1s(u, t)

=
1

card(D)
·
∑
t∈T

∑
u∈Un,D

1s(u, t).

By interchanging the order of summation and considering that
for i ∈ {1, 2, . . . , n} the average cycle time (measured in days)
of the material unit ui at step s is given by:

avgCT s(ui)

:=
1

card(D)
·
(
TrOutT s(ui)− TrOutT pred(s)(ui)

)
=

1

card(D)
·
∑
t∈T

1s(ui, t).

Thus, we get:

avgWIPD
s = avgCTD

s · Th
D
s .

Since in stable systems the variables above do not depend on
the day chosen for their calculation, Little’s Theorem follows.
The consideration above do not hold in steady state systems
used by Stidham and Sigman (see [13] or [14]). �

Remark IV.3 (Case: Set of points in time is continuous)
Actually, in theoretical models it is not necessary to consider
a discrete set T in order to be able to calculate avgWIPD

s .
Let ΣU be the discrete σ-algebra on U (i.e., the power
set 2U of U). Let µ be the counting measure on ΣU , i.e.,
µ(U) := |U| for U ∈ ΣU . Then, (U,ΣU , µ) is a measure
space. For T ⊂ R+ let ΣT be the σ-algebra of all Lebesgue
measurable sets on T and let λ the usual Lebesgue measure
on T . Analogously (T,ΣT , λ) is also a measurable space.
Since both spaces are σ-finite, the product measure µ ⊗ λ
is well defined and for U ⊂ U and T ⊂ T the equality
µ ⊗ λ(U × T) = µ(U) · λ(T) holds. Since 1s is a simple
function (i.e., a finite linear combination of indicator functions
of measurable sets) it is ΣU × ΣT measurable. Then, as
expected card(D) =

∫
D

dλ(t) = 24h and the theorem of

Fubini-Tonelli gives:

avgWIPD
s =

1

card(D)
·
∫
D

∫
U

1s(u, t)dµ(u)dλ(t)

=
1

card(D)
·
∫

U×D

1s(u, t)d(µ⊗ λ)(u, t)

=
1

card(D)
·
∫
U

∫
D

1s(u, t)dλ(t)dµ(u).

The last integral is much easier to evaluate.

In stable systems the value avgWIPD
s does not depend on the

specific day D that was considered for the calculation.

66Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 77 / 160

B. Expected Inventory

Next, we define one of the relevant metric for bottleneck
control and present formulas to calculate them.

WIP24 s,c(t) denotes the inventory which is expected in
the next 24 hours at a specific step s ∈ S, classification c and
t ∈ T . Usually, WIP24 s,c(t) at midnight is considered. In this
case, we will omit the time constraint and use the notation
WIP24 s,c.

Let us suppose {s1, s2, . . . , sn} is the planned (ordered) list
of steps as provided by the route for the classification c. There
are of course different strategies to estimate WIP24 sl,c

(t) for
a specific l ∈ {1, 2, . . . , n}. One alternative supposes that
the units moves across the line as planned by the route. Let
refCT si,c be the target cycle time to process the unit at the
step si ∈ S, let WIPsi,c(t) be the inventory at the step si
for the classification c and time t ∈ T . For l determine j :=
min(k : k ≤ l) such that

∑
k≤i≤l

refCT si,c ≤ 24h. Then the

expected inventory can be written as follows:

WIP24 sl,c
(t) =

∑
j≤i≤l

WIPsi,c(t).

Most of the time, the unit is not processed according to
the specifications (route), reworks or alternative processing
strategies are necessary. In this case, the formula as above does
not hold, and other more complex approaches are necessary.

C. Little’s Theorem

In the following, we will introduce Little’s Theorem [15]
[16]. Little’s Theorem which is mostly called Little’s Law is a
mathematical theorem giving a rather simple relation between
the average cycle time, the throughput, and the average work
in process in the system. It will be used later on for calculating
the flow factor and thus, controlling the performance of the
data center. The relation of Little’s Theorem is valid if some
convergence criteria are fulfilled and if the underlying system
is in steady state and non-preemptive. The latter means that
the properties of the system are unchanging in time, there are
no interrupts and later resumes. In many systems, steady state
is not achieved until some time has elapsed after the system is
started or initiated. In stochastic systems, the probabilities that
some events occur in the system are constant. The result is
entirely independent of the probability distribution involved and
hence it requires no assumption whether the units are processed
in the order they arrive or the time distribution they enter or
leave the system.

We give now a formal definition for Little’s formula. Our
explanation is based on [14] slightly modified to use our
notations. We consider the queuing system above where –
unlimited but countable – units arrive, spend some time in
the system, and then leave. Material units enter at most once
the system, i.e., units that left do not enter the system again.
Let T := {ti| i ∈ N} be the countable set of points in time
when those events occur. At any point in time t ∈ T at most a
finite number of units enter or leave the system. Let un denote
the unit which enters the system at the time ten. Upon entering
the system, un spends CTn time units in the system (the cycle
time of un) and then leaves the system at time tdn = tn +CTn.
The departure times are not necessary ordered in the same

way as the enter times. This means that we do not require that
the units leave the system in the same order as they arrived.
Let 1eui

(t) := 1 if ti ≤ t and 0 else. We denote by Ne(t) the
number of units which entered the system until time t, i.e.,

Ne(t) =

∞∑
i=1

1eui
(t).

Analogously, we denote by N l(t) the number of units which
have left until time t. Let L(t) be the total number of the units
in the system by time t. A unit un is in the system at time t if
and only if tn ≤ t < tn +CTn. Hence L(t) = Ne(t)−N l(t).
Let be (if the limit exists)

Th := lim
t→∞

Ne(t)

t

the arrival rate into the system,

avgCT := lim
n→∞

(1

n
·

n∑
j=1

CT j

)
the average cycle time the unit spends in the system,

avgWIP := lim
t→∞

(1

t
·

t∫
0

L(s)ds
)

the average number of units in the system.

Theorem IV.4 (Little’s theorem) If both the arrival rate Th
and the average cycle time avgCT exist and are finite, then the
above limit in the definition of the average inventory avgWIP
exists and it holds:

avgWIP = avgCT · Th. (3)

Corollary IV.5 If both Th and avgCT exist and are finite,
then the departure rate exists and equals the arrival rate:

lim
t→∞

N l(t)

t
= Th.

Little used a stochastic framework to define and prove of what
is known as Little’s Law, the approach we are presenting makes
no stochastic assumptions, i.e., the quantities and processes are
deterministic. There are other versions of Little’s Theorem that
allow batch arrivals, see section 6.2 of [14].

D. Calculation of the Flow Factor

Next, we establish a formula for the calculation of the
flow factor for the processing line. For this, we restrict to
the following queuing model: The adapted queuing model is
based on the one given in Subsection IV-A with the following
modifications:

• Units can enter and leave the system only through a
finite number of gates.

• Each gate on the entering side has its correspondence
on the exit side.

• The entering and the corresponding exit gate are
connected by a lane.

• Once, the person entered the system, he can move
forward only on the lane set up by the entering gate.

67Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 78 / 160

He cannot switch the lane or leave the system except
the exit gates.

• Each lane contains a number of clerks, not defined in
detail, such that before each clerk an internal queue is
formed and the clerk does not necessarily process the
requests instantly.

• The sum of the time the clerks process the requests of
a person during his voyage through a given lane (i.e.,
the raw process time) does not depend on the particular
person involved. Hence, the system has a predefined
raw process time (RPT l) for each lane, i.e., the sum
of the time the clerks process the requests of a person
during his voyage through the lane.

Table I illustrates the queuing model.

Table I. ILLUSTRATION OF A QUEUING SYSTEM WITH 5 LANES
l1, l2, . . . , l5 AND 8 PROCESSING STEPS.

l1 ⇒ ⇒
l2 ⇒ ⇒
l3 ⇒ ⇒
l4 ⇒ ⇒
l5 ⇒ ⇒

We will denote by L the set of the lanes and by Th l the
throughput at lane l ∈ L.

Definition IV.6 (Flow factor) Let {u1, u2, u3, . . .} be the or-
dered list of units which enter the system, such that ui enters
the system at time ti and i < j ⇒ ti ≤ tj . The cycle time
CT i a unit ui ∈ U spent in the system can be split into the
waiting time (WT i) and raw process time RPT i such that
CT i = WT i + RPT i. If the limit exists, then the (average)
flow factor avgFF is defined as:

avgFF := lim
n→∞

n∑
i=1

CT i

n∑
i=1

RPT i

. (4)

Remark IV.7 If CT := limn→∞
(
1
n ·

n∑
i=1

CT i

)
and RPT :=

limn→∞
(
1
n ·

n∑
i=1

RPT i

)
exists (and are finite), then the above

limit exists and it holds:

avgFF =
CT

RPT
.

Corollary IV.8 (Representation of raw process time) Let
Ne

l (t) be the number of units which entered the lane l ∈ L
until time t ∈ T . Let n := Ne(tn) :=

∑
l∈L

Ne
l (tn). Then, the

average raw process time RPT of the whole processing line
can be represented as follows:

RPT := lim
n→∞

(1

n
·

n∑
i=1

RPT i

)
=
∑
l∈L

Th l

Th
· RPT l. (5)

Hint We obtain:

1

n
·

n∑
i=1

RPT i =
1

n
·
∑
l∈L

n∑
il=1

RPT l
i =

∑
l∈L

Ne
l (tn)

Ne(tn)
· RPT l.

Since

lim
n→∞

Ne
l (tn)

tn
· tn
Ne(tn)

=
Th l

Th
∀l ∈ L

it follows that

RPT := lim
n→∞

(1

n
·

n∑
i=1

RPT i

)
=
∑
l∈L

Th l

Th
· RPT l.

Corollary IV.10 (Representation of flow factor) Assumed
that the conditions of Little’s Theorem are satisfied. Then, the
flow factor can be represented as follows:

1

avgFF
=
∑
l∈L

WIP l

WIP
· 1

FF l
. (6)

Hint Easy calculations using Little’s Theorem for each lane
l ∈ L yields to the relationship between the flow factor for the
whole system and the flow factors of its components / lanes as
given in (6).

We can calculate the average number of units in the system
first by considering the whole system and secondly considering
the reduced system with one lane. Little’s formula is valid in
both cases. Since units cannot switch to another lane, it follows
that

WIP =
∑
l∈L

WIP l.

Using Little’s formula and the definition of the average cycle
time it follows that:

lim
n→∞

(1

n
·

n∑
i=1

CT i

)
= CT =

∑
l∈L

Th l

Th
· CT l.

Hence, as expected:

avgFF =

∑
l∈L

Thl

Th · CT
l

∑
l∈L

Thl

Th · RPT
l

=
CT

RPT
.

Let us suppose that the service center has different departments,
such as for “incidents”, “problems”, “projects”, “releases”, etc.,
which operate independently. By abstracting those departments
as lanes and calculating for each department the flow factor, the
flow factor of the service center can be established as in (6).

Moreover, Equation (6) determines the correlation between
the flow factors of each department and the flow factor of the
data center. Thus, the flow factor of the data center can be
improved within an existing budget, for example by resource
reallocation, if the flow factor of some departments will be
improved and the flow factor of some other departments will
be degraded, see also the discussion regarding the operating
curve.

A formula of the type given in (6) was proposed by
Hilsenbeck in [17, p. 36]:

avgFF =
∑
l∈L

Th l

Th
· FF l. (7)

68Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 79 / 160

Figure 1. Graph of function g given in (10) (Operating curve). Throughput
Th versus cycle time CT for four different values of α.

It seems that the formula (7) is empirical. In particular, no
proof of the formula was given.

The flow factor plays an important role in the operating
curve management. The operation curve follows from King-
man’s equation [18]. One of the representation of the operating
curve is based on the following formula (see [19, pp. 55, 58],
[17, pp. 41, 44], [20] [21]).

avgFF = f(U) := α · U

1− U
+ 1. (8)

U is the utilization, i.e., the percentage of the capacity Capa of
a tool or production segment (see [22] for a definition and [19,
p. 57] for calculation). Introducing avgFF and U in (8), the
value for the coefficient α (variability) follows.

The operating curve as a function avgFF (U) can be drawn.
However, this relation is rather abstract. Since it holds

U =
Th

Capa
, (9)

the flow factor in terms of a function avgFF = f(U) can be
easily transformed into a function of the type CT = g(Th)
(see [19, p. 40]):

CT = g(Th) := α · Th

Capa − Th
· RPT + RPT . (10)

This relation is more practical as it shows how the throughput
directly influences the cycle time. The self-generated graph
of the function g is depicted in Figure 1. It is assumed that
the average minimal cycle time RPT is 1 hour and that the
maximal capacity is Capa = 1000. If Th is close to Capa ,
then the graph of g grows asymptotically. Hence, a point at
the graph (named operating point) has to be chosen, such that
a minimal increase of the number of items does not lead to
dramatically increased cycle time. The operating curve has
been used by Qimonda to improve overall fab performance.

V. USE CASE: AN EXCERPT

We illustrate the principles of improving the QoS of a data
center by means of a simplified example. Let us consider the

department which provides the e-mail service of a data center.
Firstly, we establish the conditions such that the providing
the service is at all possible. Secondly, we set up metrics and
compose them in order to be able to track the evolution of
QoS.

One of the most sensible indicators whose value has to be
estimated is the raw process time RPT which is the (average)
minimal cycle time to process an incident. It contains only
the effective time to process the incident, for example not
including coffee breaks, private telephone calls, etc. Let us
suppose that RPT is equal to 1 hour. In real systems (see [19,
pp. 46, 48]) the cycle time CT corresponding to a specific
throughput, denoted by Th is measured. Let us suppose that
by considering the raw process time the maximum capacity
Capa is 1000 incidents per month.

Introducing CT and Th in (10), the value 0.4 for the
coefficient α (variability) follows. As shown in Figure 1 we
can easily follow that a slightly increase of the throughput (after
leaving the linear part of the graph) considerably increase the
cycle time. In order to avoid the flooding of the departments
with tickets, the natural reaction of the employees is to reduce
the raw process time and consequently reduce the QoS of the
department. Hence, in our example, if the throughput exceeds
800 incidents per month appropriate measures should be taken
in order to avoid the collapse of the service. On the contrary, if
the throughput is equal to 400 tickets per month (being on the
linear part of the graph), a part of the staff can be relocated
to assist other services. The relation (6) shows the correlation
between the flow factor of the individual departments and
the data center and can be used to balance the individual
departments.

In order to establish normalized / composite metrics, we
consider those presented in Subsection III-A.

We describe below some of the metrics used in incident
management, normalized and directed as described in Sub-
section III-B, i.e., each metric takes values in the closed
interval [0; 1] and a greater value for the metric implies a
better accomplishment of the business requirements.

m01 :=
1

“Total No. of incidents”

m02 := 1− “No. of repeated incidents”
“Total No. of incidents”

m03 := 1− “No. of repeated incidents with known solution”
“No. of repeated incidents”

Unfortunately, the “Maximum No. of incidents” is not a priori
known. Hence, generally speaking, it cannot be used in the
formula. Furthermore, the business requires that corresponding
measures are taken, such that repeated incidents are avoided.
Therefore, “No. of repeated incidents” should be kept low.
Further metrics, which are considered (SLA refers to Service
Level Agreement):

m04 :=
“No. of escalated incidents”

Total No. of incidents”

m05 :=
1

“Average cycle time to resolve the incident”

69Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 80 / 160

m06 :=
1

“Average waiting time from user side”

m07 :=
1

“Average working time on the incident”

m08 :=
“Total No. of incidents resolved within SLA time”

“Total No. of SLA relevant incidents”

m09 :=
1

“First reaction time to repair the incident”

m10 :=
1

“No. of responses from service center side”
Unfortunately, defining metrics fulfilling the conditions as
above, is not always straightforward. Let us consider Incidout

as the total number of incidents closed and Incid in as the total
number of incidents opened in the time frame considered. In
order to avoid the flooding of the data center with incidents the
metric k := Incidout/Incid in could be tracked. Unfortunately,
this metric does not fulfill our requirements, since it can take
values outside the interval [0; 1]. In order to avoid this impedi-
ment, we define kin := Incid in/“Total No. of incidents” and
kout := Incidout/“Total No. of incidents” and set

m11 :=
1 + kout − kin

2
.

Then, m11 is normalized and satisfies the above conditions
imposed for metrics. Generally speaking, the effective minimal
and maximal value of a metric is not known, nor is the
distribution a priori known. Thus, for example, a metric m1

takes values in the interval [0.5; 0.6] and another metric m2 in
the interval [0.2; 0.7] with nearly uniform distribution. Hence,
the metric m2 varies more widely than m1 and this should be
considered – for example using the standard deviation – when
setting up the groupings for the composition of the metrics,
such that metrics having a low standard deviation should be
assigned to more important groups.

Now, let us consider in our use case five composition groups,
G0, G1, . . . , G4, such that G1 is the most relevant group. Let
us associate the weight wi to group Gi and let us consider the
weighting according to an exponential function, such that k0 :=
1 and ki := wi−1/wi for i > 0. This yields to the relation:
wi = w0/

∏l=i
l=0 kl. In our example k1 := e1, k2 := e0.75,

k3 := e0.5, etc. The values for ki are illustrated in Figure 2.
Let us assign the above metrics to the composition groups,
such that index set of the metrics assigned to the group Gl

is equal to Il and let nl the number of metrics in the group

Gl. Then, according to the composition rules:
4∑

i=0

ni · wi = 1.

Hence, the weight values follow. The value of the composition
metric M is:

V (M) :=

4∑
i=0

wi ·
∑
l∈Ii

V (ml).

Examples of services at the ZIH of the Technische Univer-
sität Dresden (TU Dresden) are: “E-Mail Service”, “Backup and
Archive Service”, “Data Exchange Service”, “Access to High
Performance Computing Resources”, etc. [23] We conclude this
section by presenting the assistance system for a data center
in Figure 4 and by summarizing the composition strategy via
the flow diagram given in Figure 3.

Figure 2. Graphical construction of values ki such that metrics are weighted
according to an exponential function, depicted for f(x) = ex.

Start

Establish all metrics
for each department, for each process, for each service, etc.

Normalize the metrics,
such that a greater value fulfills better the business requirements.

Establish grouping of indicators.

Establish the grouping strategy
and set up a unique indicator for the data center.

End

Figure 3. Simplified flow diagram regarding the composition strategy.

VI. CONCLUSION AND FUTURE WORK

We set up a formal, mathematical model and analyzed the
QoS and the modalities to enhance it within this model. In that
way, the QoS provided by the TU Dresden can be improved,
which implicitly leads to a good ranking of the TU Dresden
between the universities in Germany and world wide.

The main result of our research is that from a service
provider perspective QoS can be characterized in mathematical
terms pretty accurately, such that the improvement / degradation
of the overall service or part of it can be tracked in IT systems
and can be visualized through GUIs. According to Definition of
ITU-T Rec. E.800 [24]: QoS is the “Collective effect of service
performances which determine the degree of satisfaction of a
user of a service”. The long term experience of the first author,
working in the semiconductor industry is very similar to the
definition above, such that it does not suffice to consider only
the service provider perspective, but the user’s perception of the
QoS should also be considered. Further research is necessary to
establish the correlation (or lack of it) between the objectively

70Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 81 / 160

Figure 4. Hierarchical assistance system for a data center consisting of different
departments, services, and metrics as levels. Changes will be depicted in green,
white or red depending on the indicator’s values of today and yesterday.

improved service and the subjective perception of the customer.

The composition strategy of various metrics to form an
overall indicator can be a very complex endeavor. If all the
metrics improve or degrade, then the overall indicator will
improve or degrade accordingly. The question is in which
direction will the overall QoS indicator swing if some metrics
improve, some other degrade in time. We are not aware of
any research in this direction. Similarly, how can the overall
QoS be enhanced within the limited budget by improving some
components and degrading others by resource reallocation.

The study has been accomplished for the data center of the
ZIH, TU Dresden, but it can be used to improve the QoS by
any service provider in the event that the real world can be
mapped to the formal model used in this approach.

The similitude between a data center and a semiconductor
fab regarding performance improvement cannot be denied. It
would be then advantageous to identify the major differences,
such that the theory developed to improve the performance of
a semiconductor fab could be adapted for data centers. This
work is a little step in this direction.

ACKNOWLEDGMENT

Part of this paper (including the study regarding Little’s
Theorem) completes an unfinished study of the first author
regarding the performance of semiconductor fabs within the
scope of the Cool Silicon Project (2012 - 2014). Part of this
work was also supported by the German Federal Ministry
for Economic Affairs and Energy (BMWi) by funding the
research project “EMuDig 4.0”. Furthermore, we acknowledge
the assistance and helpful comments of the anonymous referees.

REFERENCES

[1] Symantec Corporation, “State of the data center survey – global
results,” September 2012, retrieved: September 2018. [Online].
Available: http://www.symantec.com/content/en/us/about/media/pdfs/b-
state-of-data-center-survey-global-results-09_2012.en-us.pdf

[2] G. I. Butnaru, “The quality of services in tourism and in the romanian
accommodation system,” Analele Stiintifice ale Universitatii “Alexandru
Ioan Cuza” din Iasi - Stiinte Economice, vol. 56, 2009, pp. 252–269.
[Online]. Available: https://EconPapers.repec.org/RePEc:aic:journl:y:
2009:v:56:p:252-269

[3] S. Jain and G. Gupta, “Measuring Service Quality: Servqual vs. Servperf
Scales,” vol. 29, 04 2004, pp. 25–38.

[4] C. Ennew, G. V. Reed, and M. Binks, Importance-Performance Analysis
and the Measurement of Service Quality, 03 1993, vol. 27, pp. 59–70.

[5] B. Edvardsson, “Service Quality: Beyond Cognitive Assessment,” vol. 15,
04 2005, pp. 127–131.

[6] A. P. Parasuraman, V. Zeithaml, and L. Berry, A Conceptual Model of
Service Quality and its Implication for Future Research (SERVQUAL),
01 1985, vol. 49.

[7] K. Ishibashi, Maintaining Quality of Service Based on ITIL-Based IT
Service Management, 08 2007, vol. 43, pp. 334–344.

[8] E. L. Hernandez, “Evaluation Framework for Quality of Service in Web
Services: implementation in a pervasive environment,” Master’s thesis,
INSA Lyon, France, 2010.

[9] itSMF UK, ITIL Foundation Handbook, 3rd ed. Norwich: The Stationery
Office, 2012.

[10] ServiceNow, “Key Performance Indicators (KPI) Examples, Dashboard
& Reporting,” 2018, retrieved: September 2018. [Online]. Available:
http://kpilibrary.com/

[11] D. Parmenter, Key Performance Indicators: Developing, Implementing,
and Using Winning KPIs, ser. BusinessPro collection. Wiley, 2015.

[12] L. Turpin, “A note on understanding cycle time,” International Journal of
Production Economics, vol. 205, 2018, pp. 113 – 117. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925527318303748

[13] K. Sigman, “Notes on Little’s Law,” 2009, retrieved: September
2018. [Online]. Available: http://www.columbia.edu/~ks20/stochastic-
I/stochastic-I-LL.pdf

[14] M. El-Taha and S. Stidham Jr, Sample-Path Analysis of Queueing
Systems. Kluwer Academic Publishers, 01 1999, vol. 11.

[15] J. D. C. Little, “A Proof for the Queuing Formula L = λW ,” Oper.
Res., vol. 9, no. 3, Jun. 1961, pp. 383–387. [Online]. Available:
http://dx.doi.org/10.1287/opre.9.3.383

[16] J. Shortle et al., Fundamentals of Queueing Theory, 5th ed., ser. Wiley
Series in Probability and Statistics. Wiley, 2018.

[17] K. Hilsenbeck, “Optimierungsmodelle in der Halbleiterproduktions-
technik,” Ph.D. dissertation, Technische Universität München, 2005,
retrieved: September 2018. [Online]. Available: http://nbn-resolving.de/
urn/resolver.pl?urn:nbn:de:bvb:91-diss20050808-1721087898

[18] M. Holweg, J. Davies, and A. D. Meyer, Process Theory: The Principles
of Operations Management, ser. BusinessPro collection. Oxford Univ.
Press, 2018.

[19] W. Hansch and T. Kubot, “Factory Dynamics Chapter 7,” retrieved:
September 2018. [Online]. Available: http://fac.ksu.edu.sa/sites/default/
files/Factory%20Dynamics.pdf

[20] S. S. Aurand and P. J. Miller, “The operating curve: a method to measure
and benchmark manufacturing line productivity,” in 1997 IEEE/SEMI
Advanced Semiconductor Manufacturing Conference and Workshop
ASMC 97 Proceedings, Sep 1997, pp. 391–397.

[21] W. J. Hopp and M. L. Spearman, Factory Physics: Foundations of
Manufacturing Management, Burr Ridge, IL, 2nd ed. Irwin/McGraw-
Hill, 2001.

[22] D. Baur, W. Nagel, and O. Berger, “Systematics and Key Performance
Indicators to Control a GaAs Volume Production,” 2012, retrieved:
September 2018. [Online]. Available: http://www.csmantech.org/Digests/
2001/PDF/12_3_Berger.pdf

[23] TU Dresden, ZIH, “TU Dresden, ZIH, IT services,” September
2018, retrieved: September 2018. [Online]. Available: https://tu-
dresden.de/zih/dienste

[24] International Telecommunication Union/ITU Telecommunication Sector,
“Standard ITU-T E.440: Terms and Definitions Related to Quality
of Service and Network Performance Including Dependability –
Telephone Network and ISDN Quality of Service, Network Management
and Traffic,” 1996, retrieved: September 2018. [Online]. Available:
https://standards.globalspec.com/std/704295/itu-t-e-440/

71Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 82 / 160

The Various Challenges Faced by the Software Startup Industry in Saudi Arabia

Abdullah Saad H., Alqahtani

Imam Abdulrahman Bin Faisal University

Dammam, Saudi Arabia

Email: asalqahtani@iau.edu.sa

Abstract—With the increasing use of the Internet, Web and

mobile technologies at present, software startups, which are

newly created software companies with no history, have

become an important phenomenon in the software industry.

They have a wide impact on the technology market and a

significant impact on the global economy. However, even with

the increase in the importance of software startups for the

economy and communities, little research has investigated the

challenges of this phenomenon, especially with new software

markets, such as the Saudi Arabia market. This study aimed to

investigate the challenges faced by the software startup

industry in Saudi Arabia. It presents a mixed-methodology

study based on semi-structured interviews and questionnaires.

The findings of this study revealed a list of challenges that need

to be considered in order to improve the industry for software

startups. The lack of transparency and funding can be

considered the biggest concern for software startups in Saudi

Arabia.

Keywords-Software startups; startup challenges; small

software development; software industry; information startups

I. INTRODUCTION

Software startups are newly created companies with little
or no history that aim to grow rapidly in the software
industry [16]. Software startups aim at innovation and
building software products within a limited time and with
few resources [32]. Blank [9] described startups as
temporary human organizations with no prior operating
history that aim to create new, high-tech products or
services. Software startups are considered to be an important
phenomenon in the modern economy and society. This
phenomenon creates approximately three million new jobs
each year in the USA. Information technology companies,
such as Facebook, LinkedIn, Instagram and Dropbox, are
good examples of how startups can transform into successful
businesses, provide tremendous support to their national
economies and have a significant impact on the global
economy [18]. However, about 60% of startups do not
survive the first five years [16]. Early stage software startups
face key challenges to success in this industry such as lack of
resources and experiences [18]. The competition in the
industry drives most of the startups to exit the market within
two years form creation [25]. Due to the high failure rates of
software startups, communities, organizations and even
countries are beginning to investigate this phenomenon.
There is a current need for research to support startups with
their software engineering practices [25]. This study is
aiming to provide deep investigation of the challenges faced

by the software startup industry in Saudi Arabia in order to
address the current gap of knowledge.

The remainder of this paper is structured as follows:
background and previous studies is reported in Section 2.
Section 3 addresses the research methodology. Results are
reported in Section 4. Then the discussion is presented within
Section 5. Finally, the study concludes in Section 6.

II. STATE OF THE ART

Software startups are considered to face several
challenges; they may encounter obstacles when attempting to
sell their first products, acquire paying customers and
establish entrepreneurial teams [32]. Giardino et al. [18]
highlighted several challenges for software startups,
including lack of resources, lack of experience, dependence
on one product, the uncertainty of their conditions, time
pressure and lack of sustainability. The nature of software
startups, as newly created organizations working in uncertain
markets and using cutting-edge technology, make them
challenging endeavors [32]. Klonowski et al. [19]
investigated software startups in Central and Eastern Europe
and placed the challenges into four categories, namely
problems with funding, problems with management, the
change in corporate culture and acceptance of the business
model and financial underperformance. Giardino et al. [16]
also reported that the main challenges for many startups are
thriving despite technological uncertainty and finding the
first paying customers. Giardino et al. [17] reported similar
challenges, as well as others such as obtaining initial
funding, creating entrepreneurial teams, providing value to
customers, starting to make a profit and configuration
management. Little relevant research pertaining to software
startups exists; Pateronster studied software startups via a
systematic map study and reported a few studies in the area
of software startups [25]. Unterkalmsteiner et al. [32] stated
that research on software startups has increased over the last
year, but there is still a need for more investigation in this
area.

Alnafjan [2] investigated the applied software practices
in Saudi Arabia and reported clear weaknesses in adopting
software engineering practices, particularly for small
organizations. Alnuem [3], who also investigated the
software industry in Saudi Arabia, reported serious issues in
the industry, such as culture, communications and
understanding the requirements clearly.

The software industry in Saudi Arabia is considered to be
in the early stages. A few companies could survive in this
industry. The Saudi government has established a new vision

72Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 83 / 160

called “Vision 2030.” One of its goals is to help software
startups to develop a successful market in order to support
the national economy. The government also aims to support
e-government transformation. On the other hand, there is a
gap in the current knowledge regarding challenges faced by
software startups in Saudi Arabia. There is a lack of
empirical updated studies that provide deep investigation of
the Saudi software industry. This paper aims to investigate
this area in order to provide a better understanding of the
challenges software startups face and to help the community
to build a better software industry.

III. RESEARCH METHODOLOGY

This paper presents a mixed-methodology study that
includes both quantitative and qualitative data. Semi-
structured interviews and questionnaires will be used as tools
to collect data. The combination of quantitative and
qualitative data aims to add more reliability and validity to
the study’s results. Bryman [12] referred to mixed-methods
research as follows: “This term is widely used nowadays to
refer to research that combines methods associated with
both quantitative and qualitative research”. Employing the
mixed approach matches the study aims and objectives and
should allow for a better understanding of the specific
challenges of software startups in more detail. The
quantitative form will provide the critical numbers and
statistics needed to study the challenges, while the qualitative
data will be applied as a secondary methodology to provide
richer information and an explanation of the study findings.
The findings from both approaches will be integrated to form
a better understanding of software startup challenges.

A. Research question

This study aims to investigate the software industry in
Saudi Arabia in order to provide a better understanding of
the current barriers that software startups encounter by
addressing the following research question:

RQ: What are the main challenges encountered by
software startups in the Kingdom of Saudi Arabia (KSA)
from the perspective of software development?

B. Data collection

1) The quantitative data
The quantitative data were collected via a self-completed

online survey. About 10 people were invited to pilot the
questionnaire, including project managers, software
developers and testers, most of whom were experts in
software development. The questionnaire was distributed
during two main startup events in the KSA (the SAP Startup
Focus Forum Saudi Arabia in Riyadh, 2016, and the Small
and Medium Enterprise Forum in Jeddah, 2017). It was also
distributed online to approximately 120 software companies
in the Kingdom. By the end of the data collection phase, 74
completed and eligible responses were received. The
questionnaire investigated 19 phrases, which will be treated
as possible hypotheses for the challenges faced by software
startups in Saudi Arabia.

TABLE I. THE RESEARCH HYPOTHESES: THE EXPECTED OBSTACLES

TO SOFTWARE DEVELOPMENT BASED ON PREVIOUS STUDIES

There is a lack of communication and collaboration during
all the development stages. [4][21]

PH1

The development team has estimation difficulties with the
development cost, scope, and development schedule. [4]
[21]

PH2

There is a lack of communication between the developers
and the product owners.[4][21]

PH3

There is lack of team management skills.[16] [19] PH4
During the development, we face issue with sharing
knowledge and information. [13] [18]

PH5

There is a security risk during the development.[2] [3] PH6
Some development teams have issues with poor
infrastructures.[21][25]

PH7

The visibility level of the development progress is low.
[13][18][29]

PH8

Customers sometimes do not have a clear idea for their
requirement. [1][3]

PH9

There is lack of talent in the software industry in KSA.
[13][17][25]

PH10

Provide high quality software is a challenge regarding the
development ream's capabilities.[2][13][16]

PH11

There is lack of providing initial funding.[16] [19] [25][29] PH12
There are barriers to access the market.[16] [17][29] PH13
Some customers like to work with big software companies.
[17][21]

PH14

Government regulations could challenge software
companies. [1][3]

PH15

Software projects have issues with building a sufficient
business model. [19] [25][29]

PH16

Providing products with competitive prices is a challenge.
[13][19]

PH17

There is lack of information and transparency about the
software market in Saudi Arabia.[13][17]

PH18

Customers are not aware of how software could add value
to their business. [13][17][19][29]

PH19

These phrases represent the expected obstacles to

software development based on previous studies. A five-

point Likert scale was used to explore the questionnaire

respondents’ degrees of agreement with these challenges.

Table Ι presents the invested hypotheses and their references

from the previous studies.

2) The qualitative data
The qualitative data were collected via structured

interviews. The interviews were face-to-face and were
recorded using a voice recorder. In addition, notes of the
main ideas and answers were taken during the interviews.
The transcribed documents were then compared to the notes
from the interviews to ensure the reliability of the data.
Following this, a thematic analysis, which is an approach to
identify the themes and patterns from the collected
qualitative data, was conducted [11][14]. In addition, the
data-driven method was selected for the thematic analysis of
this study [5]. The interpretation of data has been reviewed
by a ccolleague to ensure its accuracy.

IV. RESULTS

This section reports the result of this study. First of all, it

states the results of the descriptive analysis. Then, it will

address the result of reliability test. Finally, the quantitative

results and qualitative results will be reported.

73Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 84 / 160

A. Descriptive analysis

This section describes the background information about
the study participants, including their experience, team size
and the location of their development teams.

1) Development experience
Table ΙΙ shows the participants’ number of years of

experience in software development. Most of the participants
had from four to seven years of software development
experience, while about 35% had from one to four years of
experience. This shows that the study’s participants had
substantial software development experience.

TABLE II. THE EXPERIENCE OF THE STUDY'S PARTICIPANTS

Answer Count Percent
Less

than 1
10 13%

1-4 25 35%
4-7 33 44%

More
than 7

6 8%

Total 74 100%

2) Team size
Table ΙΙΙ below indicates the size of the team that

developers usually have. Most of the participants (42%)
came from teams with five to 15 members; the second
highest figure was 15 to 25 team members (37% of the
sample), while less than 13% of the sample were from teams
that had more than 25 members, and only 8% of the
participants came from teams with fewer than five team
members. This information is expected due to the nature of
startup companies’ sizes.

TABLE III. THE TEAM SIZE

Answer Count Percent
Less than 5 7 8%

5- 15 30 42%
15-25 27 37%
25-45 3 3 %
45-60 5 7%

Greater than
60

2 3%

Total 74 100%

3) Outsourced development
Table ΙV shows that most of the study’s participants had

outsourced or offshore teams. About 87% of the sample
explained that some of their functions were developed
outside of the country. Only 10 participants did not have
outsourced teams. This result could relate to the difficulty of
the software industry in Saudi Arabia, which leads most
companies to outsource some of their development.

TABLE IV. OUTSOURCED DEVELOPMENT

Answer Count Percent
Yes 64 87%
No 10 13%

Total 74 100%

B. Reliability

According to Bryman and Cramer [12], “The reliability
of measure refers to its consistency.” Pallant [23] also stated,

“The reliability of a scale indicates how free it is from
random error”. With multiple-item scales, such as the Likert
scale, variables of internal reliability need to be tested. The
aim is to examine whether each scale is measuring a single
idea and how each item affects the internal consistency of the
scale [12]. Cronbach’s alpha coefficient has been applied to
test data reliability. This shows the correlation among all the
items in the scale. The ideal Cronbach’s alpha level is above
0.7 [23]. Table V shows the Cronbach’s alpha values for the
challenges under investigation. The alpha value was 0.776,
which means that the items were internally consistent.

TABLE V. RELIABILITY STATISTICS

Cronbach's Alpha

Cronbach's Alpha
Based on

Standardized Items

N of Items

0.776 0.784 19

C. Quantitative results

TABLE VI. TESTS OF NORMALITY

Phrase

Kolmogorov-

Smirnova

Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

PH1 .358 74 .000 .745 74 .000

PH2 .278 74 .000 .856 74 .000

PH3 .249 74 .000 .828 74 .000

PH4 .250 74 .000 .868 74 .000

PH5 .239 74 .000 .865 74 .000

PH6 .240 74 .000 .890 74 .000

PH7 .279 74 .000 .875 74 .000

PH8 .240 74 .000 .866 74 .000

PH9 .269 74 .000 .861 74 .000

PH10 .269 74 .000 .881 74 .000

PH11 .410 74 .000 .681 74 .000

PH12 .427 74 .000 .652 74 .000

PH13 .369 74 .000 .755 74 .000

PH14 .298 74 .000 .848 74 .000

PH15 .250 74 .000 .853 74 .000

PH16 .255 74 .000 .868 74 .000

PH17 .307 74 .000 .821 74 .000

PH18 .292 74 .000 .805 74 .000

PH19 .336 74 .000 .800 74 .000

Table VΙ shows the results of the normality test. The
results show that the data were not normally distributed, with
a significance of less than 0.05 for both the Shapiro-Wilk
and the Kolmogorov-Smirnov tests. This means that the data
pertaining to those scales will be treated as nonparametric
data [23]. The median and mode should be used to describe
nonparametric data [10][12]. Table VII shows the mean,
median and mode for each phrase. It also shows the results of
testing each phrase. The hypothesis will be accepted if the
median is above 2.5 and rejected if it is less than 2.5.

74Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 85 / 160

TABLE VII. HYPOTHESES RESULTS

Accepted or

Rejected

Mode Median Mean Phrase

Accepted 4 4.00 3.11 PH1

Rejected 2 2.00 2.35 PH2

Accepted 4 3.00 3.00 PH3

Rejected 2 2.00 2.46 PH4

Rejected 3 2.00 2.43 PH5

Rejected 2 2.00 2.41 PH6

Rejected 2 2.00 2.55 PH7

Accepted 4 3.00 3.01 PH8

Accepted 4 3.00 3.15 PH9

Accepted 4 4.00 3.51 PH10

Accepted 4 4.00 3.89 PH11

Accepted 4 4.00 3.82 PH12

Accepted 4 4.00 3.80 PH13

Accepted 4 4.00 3.73 PH14

Accepted 4 4.00 3.85 PH15

Accepted 4 4.00 3.72 PH16

Accepted 4 4.00 3.95 PH17

Accepted 4 4.00 4.07 PH18

Accepted 4 4.00 3.84 PH19

Table VΙΙ shows that five of the hypotheses “phrases”
have been rejected (PH2, PH4, PH5, PH6 and PH7). These
challenges were not considered significant based on the
median value. The other 14 hypotheses were accepted and
are summarized as shown in the table below; they will be
discussed in the discussion section. The challenges have
been ranked based on their importance according to the
degree of agreement on the part of the study’s participants
and each phrase’s mean value, as show in Table VIII.

TABLE VIII. HYPOTHESES RANK

Hypotheses Phrase

number

Challenge

number

There is lack of information and
transparency about the software market in

Saudi Arabia

PH18 CH1

Providing products with competitive prices
is a challenge.

PH17 CH2

Provide high quality software is a challenge

regarding the development ream's

capabilities.

PH11 CH3

Government regulations could challenge

software companies

PH15 CH4

Customers are not aware of how software

could add value to their business

PH19 CH5

There is lack of providing initial funding PH12 CH6

There are barriers to access the market PH13 CH7

Some customers like to work with big

software companies.

PH14 CH8

Software projects have issues with building a
sufficient business model.

PH16 CH9

There is lack of talent in the software

industry in KSA.

PH10 CH10

Customers sometimes do not have a clear
idea for their requirement.

PH9 CH11

There is a lack of communication and

collaboration during all the development
stages.

PH1 CH12

The visibility level of the development

progress is low.

PH8 CH13

There is a lack of communication between
the developers and the product owners.

PH3 CH14

D. Qualitative results

The results of the thematic analysis indicated eight main
challenges, as described below:

1) A1- Lack of funding and financial support:
Finding sufficient financial support was considered to be

one of the main issues for software startups in the KSA.
Company A stated, “Providing the needed funding was one
of our main concerns, you need to make sure you have
enough cash flow.” Company B reported that “one of our
main challenges was to have enough funds to start our
project. We made many meetings with investors and
investment companies but, unfortunately, we could not have
any financial collaboration with them. In addition, the
government’s financial support programmes were not
sufficient and not available in many cases.” Companies C
and D both agreed that the funding challenge was one of the
main challenges for their projects.

2) A2- Difficulty of gaining customers’ trust and access

to the market:
Company B, which was an online store, reported that

“gaining customers’ trust was one of the main challenges;
first, it is a challenge to have people sell their product using
our on-line store and secondly, it is also a challenge to have
people buy from our on-line store.” Company C stated, “It is
a big challenge to access the market; we had our biggest
challenge when we tried to sell our product.” Company D
also reported that signing the first contract was the biggest
challenge. Company E mentioned that it had experienced
tremendous competition with social media stores and that it
was difficult to compete with them in terms of cost.

3) A3- Making a product that suited the market:
Company A said that one difficulty was creating a

product that did not suit the current market. The company
cited the example of having had a product “website” that
worked on meta search technologies and failing to sell it to
the market because the market was not ready to use this
technology to compare hotel prices at the time. Thus, their
product was too far ahead of the current market. A few years
later, a different company developed and launched an almost
identical product and experienced a huge success.

4) A4- Lack of transparency and market information:
Company C reported that access to information and data

were also major obstacles, citing difficulty when developing
a business model due to the lack of transparency in the
software market.

5) A5- Government barriers:
Company E reported issues with the government’s

regulations because many steps and complicated processes
are required in order to open a software startup.

6) A6- Access to talent:
According to Company C, graduates with degrees in

software were not qualified to be professionals in the
software market, and there was a lack of Saudi talent in the
market. Company D’s CEO, who is also a professor at one of
the larger universities in the Kingdom within the software
field, reported a need to create partnerships between colleges
and software companies to improve the quality of colleges’
graduate student outcomes. Company E reported a lack of

75Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 86 / 160

expert graduates in the field of software development
management and that no courses covering the concepts of
“lean” or “agile” were offered in academic programs.

Company B used outsourced teams due to the lack of
software developers in Saudi Arabia, which created other
barriers in terms of language and cultural differences.

7) A7- Lack of clear ideas about customer

requirements:
According to Company C, people do not have sufficient

understanding regarding what software could do for their
businesses. In addition, customers sometimes did not have a
clear idea of their requirements. For example, many
customers asked the company to compare their competitors’
websites and make better websites for their companies
without providing a clear idea of their requirements.

V. DISCUSSION

This section will combine the results of the descriptive
analysis (quantitative results) and the results of the thematic
analysis (qualitative results). It will provide a general
discussion about the challenges in light of previous studies.
The challenges will be classified into two main groups. Table
IX shows the links between the study’s results. It also
organizes the challenges into two main groups. The first
group contains challenges related to finance and market
access, and the second is for software quality challenges.

TABLE IX. STUDY RESULTS

Group Challenge Related results
Funding

and
market
access

Lack of transparency CH1, A4
lack of funding and
financial support

CH6, A1

Government
regulations

CH4, A5

Obstacles of market
access

CH2, CH 7,CH8, A2,
A3

Software
quality and
awareness

 Lack of software
quality and talent

CH3, CH9, CH10, A6

Lacking of clear idea
about customer

requirement

CH1, CH5, A7

Lack of
communication and

visibility

CH12, CH13, CH14

A. Funding and transparency

1) Lack of transparency
The quantitative results revealed the lack of information

and transparency in the software market in Saudi Arabia
(CH1) as one of the main challenges within the market.
Startups need information and transparency in order to build
their business models and develop strategies. The qualitative
data supported this: (A4) “Lack of transparency and market
information.”

2) Lack of funding and financial support
The first challenge that software startups face is finding

funding resources. This barrier was revealed to be one of the
main issues according to the quantitative results (CH6), and

it was also revealed to be the main concern in the qualitative
results. An investigation about the startup industry in
Australia reported that around 67% of startups needed
financial support to survive until their second year of
business, and about 41% of the startups investigated had
difficulty with funding [29]. Gilardino et al. [16] reported the
challenge of not having initial funding for startups.

3) Government regulations
The government’s regulations were reported as a

challenge for software startups (CH4 and A5). When
establishing a new company, there are many regulations that
make the task difficult for startups. Gilardino et al. [16]
reported the same issue and agreed that government
regulations need to be addressed during software startups’
development phases.

4) Obstacles of market access
Accessing the market is the second phase for startups.

There are barriers to accessing the market (CH7). Startups
will experience challenges in gaining customers’ trust (A2).
They have no history and not enough experience. Customers
usually prefer to work with big software names rather than
with small, newly established software companies (CH8). In
addition, due to a lack of experience, the software startups
could have difficulty providing a product that suits the
market (A3). Finally, providing products at competitive
prices is a challenge (CH2). Gilardino et al. [16] referred to
acquiring the first paying client as one of the main obstacles
for software startups. Klonowski et al. [19] mentioned that
identifying the available opportunities in the software market
was not an easy task due to changes in the clients’
requirements and technological uncertainty. Furthermore, the
market should be accessed in a time-efficient way [19].

B. Software quality and awareness

1) Lack of quality software and talent
Providing high-quality software was a challenge due to

the development team’s capabilities (CH3). The startups had
limited resources, which decreased their development
capabilities. They usually had problems with building a
sufficient business model (CH9). Furthermore, access to
talent was a major challenge due to the lack of talent in the
software industry in Saudi Arabia (CH10 and A6). Gilardino
et al. [16] identified the general lack of resources as one of
the main features of startups. Software startups use external
solutions to address the limitations of their resources, such as
outsourcing and open-source software [18]. The use of new
concepts in software, such as agile methods, is poor, which
could reflect on the quality of the software developed [2].

2) Lack of clears idea about customer requirements
Software startups are challenged by the lack of software

awareness on the part of their customers (A7). Customers are
not aware of how software could add value to their
businesses (CH5). They are uncertain about paying for a
software service because they are not sure how this service
could improve their businesses. Furthermore, customers
often lack a clear idea of their requirements.

76Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 87 / 160

3) Lack of communication and visibility
The results from the quantitative data showed the lack of

communication and collaboration during all stages of
development (CH12). The visibility level of the development
progress was low (CH13). Moreover, there was a lack of
communication between the developers and the product
owners (CH14). The quantitative data revealed that about
88% of software projects had outsourced or offshore teams.
The distance among teams affects the visibility level of
development. The lack of communication could create
barriers for customers when attempting to follow the
progress of development and could make it difficult for
developers to communicate with customers. Therefore, this
could decrease the visibility of development [26]. Providing
a high-quality communication channel could be expensive
and add substantial costs to the project. Sometimes the
development teams, particularly those offshore, experienced
technical issues such as poor Internet connection or poor
infrastructure. As a result, the cost of communication could
be increased [35].

VI. CONCLUSION

The software startup industry in Saudi Arabia was
investigated in this study. This paper applied a mixed-
method approach to collect both quantitative and qualitative
data. The lack of transparency and funding can be considered
to be the biggest concern. There is a lack of available
information about the IT industry, including the size of the
market and the existing companies in the market. In addition,
the government’s regulations limited the startups and created
serious difficulties in terms of their business models and
plans. The second major difficulty experienced by software
startups was access to the market. For a company with no
history, gaining customers’ trust was considered a major
challenge. Customers also lack software awareness and are
not aware of how the software can help them to grow their
businesses. Furthermore, there is a lack of quality software
and talent. Accessing talented people in software
development in Saudi Arabia is one of the main issues for
the startups. This has an impact on the software’s quality and
leads many startups to outsource development or to develop
software offshore, which is a common practice in software
development. However, this could create a lack of
communication and decrease the visibility level of
development.

In summary, this study reported on the main challenges
experienced by software startups in Saudi Arabia, and
provided a general investigation into the software industry in
order to provide a better understanding of the phenomenon
of software startups. This information could be useful for the
Saudi government to improve their regulations to support
software development industry. The first recommendation of
this study is to establish funding channels, either by the
government or the private sector. The current regulations
need to be updated to attract more investments to the
industry. Moreover, it is important to update the current
software curricula in universities and computer colleges to
provide more qualified developers to the community.

Future work will investigate the relationship between the
challenges described and other factors affecting success in
the software industry (such as cost, quality and time) in order
to identify the factors for success in the Saudi software
industry.

REFERENCES

[1] Adebanjo, D., 2010, "Challenges and approaches to customer
development in co- located high tech start-ups", Proceedings
of the International Conference on Industrial Engineering and
Engineering Management (IEEM), pp. 163–167.

[2] Alnafjan, K., 2012, "An empirical investigation into the
adoption of Software Engineering Practice in Saudi
Arabia", International Journal of Computer Science Issues
(IJCSI), vol. 9, no. 3, pp. 328-332.

[3] Alnuem, M. A., Ahmad, A. and Khan, H., 2012,
"Requirements Understanding: A Challenge in Global
Software Development, Industrial Surveys in Kingdom of
Saudi Arabia", IEEE, ,pp. 297-305.

[4] Alqahtani, A.S., Moore, J.D., Harrison, D.K. and Wood,
B.M., 2013. The Challenges of Applying Distributed Agile
Software Development: A Systematic Review. International
Journal of Advances in Engineering & Technology, 5(2),
p.23-36.

[5] Asnawi, A., Gravell, A., and Wills, G., 2012, "Emergence of
Agile methods: Perceptions from software practitioners in
Malaysia" AGILE India, 2012, pp. 30-39.

[6] Bajwa, S. S., Wang, X., Duc, A.N., and Abrahamsson, P.,
2017, "Failures to be celebrated: an analysis of major pivots
of software startups", Empirical Software Engineering, vol.
22, no. 5, pp. 2373-2408.

[7] Barney, S., Petersen, K., Svahnberg, M., Aurum, A., and
Barney, H., 2012, "Software quality trade-offs: a systematic
map, Inf. Softw. Technol, pp. 651–662.

[8] Bertram, D., 2007, "Likert scales", Faculty of Mathematics,
University of Belgrade.

[9] Blank, S., 2005, "The Four Steps to the Epiphany: Successful
Strategies for Startups That Win". Cafepress.com.

[10] Boone, H.N., and Boone, D.A., 2012, "Analyzing Likert
Data", Journal of Extension, vol. 50, no. 2, pp. 1-5.

[11] Boyatzis, R., 1998," Transforming qualitative information:
Thematic analysis and code development", SAGE
publications incorporated.

[12] Bryman, A., and Cramer, D., 2012, "Quantitative data
analysis with IBM SPSS 17, 18 and 19: A guide for social
scientists", Routledge, Psycholofy Press.

[13] Cbinsight, 2018, The Top 20 Reasons Startups Fail, from:

https://www.cbinsights.com/research/startup-failure-reasons-
top/

[14] Dawson, C., 2009, "Introduction to research methods: A
practical guide for anyone undertaking a research project",
Oxford: How To Books Ltd.

[15] Gerald, H.B., Donch, J.C., Fesnak, R., and Stiles, A.R.,
2014, "Intellectual Property in Consumer Electronics",
Software and Technology Startups, Springer, New York, NY.

[16] Giardino, C., Bajwa, S.S., Wang, X., and Abrahamsson, P.,
2015, "Key challenges in early-stage software startups", in
Proceedings 16th International XP Conference (XP). Helsinki,
Finland: Springer, pp. 52-63.

[17] Giardino, C., Paternoster, N., Unterkalmsteiner, M.,
Gorschek, T., and Abrahamsson, P., 2016, "Software
Development in Startup Companies: The Greenfield Startup
Model", IEEE Transactions on Software Engineering, vol. 42,
no. 6, pp. 585-604.

77Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 88 / 160

[18] Giardino, C., Unterkalmsteiner, M., Paternoster, N.,
Gorschek, T., and Abrahamsson, P., 2014, "What Do We
Know about Software Development in Startups?", IEEE
Software, vol. 31, no. 5, pp. 28-32.

[19] Klonowski, D., and Golebiowska-Tataj, D., 2010,
"Challenges and opportunities in developing a high-tech
business in Central and Eastern Europe", International Journal
of Emerging Markets, vol. 5, no. 2, pp. 138-152.

[20] Lee, S., and Yong, H. S., 2010, "Distributed agile: Project
management in a global environment", Empirical software
engineering, Vol. 15, no. 2, pp. 204-217.

[21] Martinez, M., S., 2016. Good Practices of the Lean Startup
Methodology: Benefits, challenges and recommendations,
Aato University.

[22] May, B., 2012, "Applying lean startup: an experience report –
lean and lean ux by a ux veteran: Lessons learned in creating
and launching a complex consumer app", in: Agile
Conference (AGILE), pp. 141–147.

[23] Pallant, J., 2013, "The SPSS survival manual: A step by step
guide to data analysis using IBM SPSS", Open University
Press McGraw-Hill Education, England.

[24] Paspallis, N., et al, 2008, "A pluggable and reconfigurable
architecture for a context-aware enabling middleware
system", in: Proceedings of the OTM Confederated
International Conferences, pp. 553–570.

[25] Paternoster, N., Giardino, C., Unterkalmsteiner, M.,
Gorschek, T., and Abrahamsson, P., 2014, "Software
development in startup companies: A systematic mapping
study", Information and Software Technology, vol. 56, no. 10,
pp. 1200-1218.

[26] Phalnikar, R., Deshpande, V., and Joshi, S., 2009, "Applying
agile principles for distributed software
development", Advanced computer control,. ICACC'09.
International conference on IEEE, pp. 535-239.

[27] Salamzadeh, A. and Kawamorita Kesim, H., 2015. Startup
companies: life cycle and challenges.

[28] Smutny, P., 2012, "Mobile development tools and cross-
platform solutions", in: 13th International Carpathian Control
Conference (ICCC), pp. 653–656.

[29] Startup Muster, 2015, The most comprehensive data on
the Australian startup ecosystem, from:

https://www.startupmuster.com/reports

[30] Sutton, S. M., 2000, "The role of process in a software start-
up." IEEE Software 17.4, pp. 33-39.

[31] Terho, H., Suonsyrja, S., Karisalo, A., and Mikkonen, T.O.,
2015, "Ways to cross the rubicon: Pivoting in software
startups", pp. 555-568.

[32] Unterkalmsteiner, M., et al, 2016, "Software Startups: A
Research Agenda," E-Informatica Software Engineering
Journal, vol. 10, (1), pp. 89-124.

[33] Unterkalmsteiner, M., et al, 2012, "Evaluation and
measurement of software process improvement a systematic
literature review", Trans. Softw. Eng. pp. 398–424.

[34] Wulff, M., 2015,"Startup Muster", UTS, pp. 1-18.

[35] Yoo, C., Yang, D., Kim, H., and Heo, E., 2012, "Key value
drivers of startup companies in the new media industry – the
case of online games in Korea", J. Media Econ. 25, pp. 244–
260.

78Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 89 / 160

Software Engineering Education: Sharing an Approach, Experiences, Survey and

Lessons Learned

José Carlos Metrôlho
R&D Unit in Digital Services, Applications and Content

Polytechnic Institute of Castelo Branco
Castelo Branco, Portugal

metrolho@ipcb.pt

Fernando Reinaldo Ribeiro
R&D Unit in Digital Services, Applications and Content

Polytechnic Institute of Castelo Branco
Castelo Branco, Portugal

fribeiro@ipcb.pt

Abstract—To provide the best training in software engineering,
several approaches and strategies are carried out. Some of
them are more theoretical, learned through books and
manuals, while others have a practical focus and often done in
collaboration with companies. In this paper, we share an
approach based on a balanced mix to foster the assimilation of
knowledge, the approximation with what is done in software
companies and student motivation. A survey was also carried
out involving students who had successfully completed the
subject in past academic years; some had already graduated,
and others are still students. We analyse the results of the
survey and share some of the experiences and lessons learned.

Keywords- agile methodologies; education; software
engineering; teaching; teamwork.

I. INTRODUCTION
One of the biggest challenges in teaching software

engineering is empowering students with the knowledge and
skills they need to be well prepared to face the labour
market. This includes providing students with technical skills
but also providing them with the non-technical skills
associated to the software engineering process. It is also
known that the teaching of software engineering cannot be
limited to the presentation of concepts and methodologies as
a set of abstract concepts. Wherever possible, it should be
adequately complemented with the practice of software
engineering projects so that the students can assimilate and
understand them successfully [1]–[3] Additionally, it is
important to consider the growing importance of human
factors in the software development process [4] and
consequently the role that some of them play in the software
engineering process, namely: communication, coordination,
collaboration, trust, expert recommendation, program
comprehension, knowledge management and culture.

Several approaches and strategies have been proposed
and used to improve the teaching and learning of software
engineering. They all hold the importance of giving students
hands-on experience. However, the way they propose to do
so differs greatly.

This paper describes an experience in teaching Software
Engineering, of a Computer Engineering program, using a

project-based approach. This project-based approach is
enriched with the collaboration of two software houses
giving the students a real-word experience of software
engineering projects development. We also try to understand
how the main concepts of the course are assimilated by the
students and if they are applied in the professional life of our
past students. Finally, we present some lessons learned
through our experience and challenges faced.

The remainder of this paper will be as follows: Section 2
presents a brief review of related work; Section 3 we present
an overview of our project-based approach for software
engineering; Section 4 provides a brief description of the
survey that was conducted to achieve feedback from former
students; In Section 5 we present the survey results and
analysis; Section 6 presents some lessons learned and
challenges faced and finally, in Section 7, we present some
conclusions and we outline some of the future work.

II. RELATED WORK
To provide the best training in software engineering,

several approaches and strategies have been proposed. Some
of them are more theoretical, more focused on the study of
theory through books and manuals, while others have a more
practical focus and often done in collaboration with
companies. Nowadays, it seems to be a well-accepted fact
that the software engineering training should not be strictly
focused on the theoretical study of concepts and
methodologies. It is important to provide students with
hands-on experience in a software engineering project and
provide them with the non-technical skills in a software
project. It is important to promote hands-on ability training
and the rapprochement between teaching and practice.
Additionally, the recent diffusion of agile methodologies in
software development brings many difficulties and
challenges to software engineering teaching. In this context,
several authors refer that current approaches to teaching
software engineering are outdated and lack authenticity [5],
[6]. However, as referred in [5], it is not clear which should
be the best approach and there are different perspectives with
different proposed approaches. Some authors (e.g., Clear and
Damian [5][7]) suggest that the best approach is to emulate
the workplace through distributed software development

79Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 90 / 160

projects, through cross-university or cross-course courses,
others (e.g., [8]–[10] suggest involving students in a project
where they have the possibility to experience team working
and understanding in the practice of the theoretical concepts
dealt with in the course and others (e.g., [11]–[13]) argue for
using simulations and games to provide students with a
variety of experiences that would not be possible within the
constraints of an academic environment. Next, a brief
analysis of some works that have been proposed for each one
of the perspectives identified before is presented.

The emulation of the workplace through distributed
projects or cross-university courses was approached and
experienced by some authors. The DOSE [7], a Distributed
and Outsourced Software Engineering course, followed an
approach to teaching distributed software engineering
centred in a distributed software development project. They
experienced teaching software engineering using a
geographically distributed software project involving various
countries with different cultures, native languages and time
zones. This approach gives the students the opportunity of
facing the challenges of distributed software development
and helps them understand typical software engineering
issues, such as the importance of software requirements
specifications, or the relevance of adequate system design.
However, they also identify some time scheduling
inconveniences, and difficulties in keeping teams committed
to their peers. The Undergraduate Capstone Open Source
Projects (UCOSP) program [14] ran for ten terms over six
years providing for over 400 Canadian students from more
than 30 schools. After this period, the authors identified
some lessons they had learned: Students work on real
distributed open-source projects as full members of software
development teams; They use the same software
development processes as regular team members and are
provided with explicit mentorship from volunteer mentors
from each project; Students integrate and apply the skills
they have learned in their courses in a real development
setting; Students develop and improve their technical
communication skills in a real development setting.

A project-oriented course is followed in several software
engineering training programmes. Its purpose is to teach
students the theoretical and the practical aspects of
developing software systems in a team environment giving
students a chance to experience a work scenario that is closer
to a real-world experience. A Project-Based learning in
software engineering Lab, teaching through an e-Portfolio
approach is described in [9]. In this approach, the e-Portfolio
allows students to carry out a software project, addressing
each phase collaboratively with other students and obtaining
appropriate feedback from instructors. The e-Portfolio
includes a single problem statement for the development of a
complete software project comprising of a set of
deliverables. To support the implementation, they chose the
Moodle Platform. To assess the students’ e-portfolios,
various rubrics were implemented by scoring and weighting
the sections and categories for every deliverable to be
evaluated. Another project-based learning approach for
teaching software engineering concepts is described in [10].
Their goal is to teach software engineering concepts using

the Scrum framework in real life projects. Usually, projects
have a capacity of about 1000 person-hours. To make the
projects more relevant real customers were incorporated.
They bring in requirements from industry and present their
topics during a kick-off meeting. During the project, students
work together as self- organized teams (5-7 elements). They
chose an appropriate project management and team
coordination process and they are only asked to use some
core tools that are needed to monitor the projects.

A game-based learning methodology of teaching
software engineering is presented in [12]. They suggest a
methodology of two-fold use of learning games for teaching
software engineers. Students, experienced in programming,
develop learning games, and then they use the games that are
developed for teaching the next generation of students.
Students developing games learn the software development
life cycle phases including testing, deployment and
maintenance, they contact with customers (teachers of
corresponding subjects act as customers) and users (students,
learning these subjects). In their approach, they find both
advantages and disadvantages. As advantages, they identify
the increasing students’ motivation and revealing their
creativity. The main problems observed include difficulty of
organization of team work especially for students of early
years and lack of time for coordinating them. Schäfer [13]
describes some lessons learned after two teaching periods in
using scrum with gamification to learn and train the agile
principles. They found that their approach has both
advantages and disadvantages. Gamification is motivating
and helps to bring participants with different backgrounds
together in project teams. The game helps in focusing on the
project management part and learning the Scrum
methodology. As drawbacks, they refer to the importance of
having a real external stakeholder or customer defining a
project goal externally in a Scrum learning project.

There are different approaches and strategies that may be
followed to provide students with the best training in
software engineering. All of them agree that the theoretical
study of concepts and methodologies should be
complemented with hands-on experiences in a software
engineering project. This would allow to provide students
with a better understanding of the theoretical concepts and to
provide them with the non-technical skills in software
projects. However, the way different approaches propose to
provide the students with the practical experience is very
different. Some of them propose to emulate the workplace
through distributed projects, which may involve several
entities and thus provide interesting experiences in software
engineering. Others suggest a project-oriented course where
students can practice requirements analysis, project
management, development methodologies and teamwork.
Another recommendation is using simulations and games to
simulate distinct scenarios in software engineering teaching
and training. However, regardless of the approach or
strategy, it is necessary to understand whether students have
acquired the knowledge and skills they need for the
performance of their duties, and whether they apply them in
their professional activity in software engineering.

80Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 91 / 160

III. OVERVIEW OF OUR PROJECT-BASED APPROACH FOR
SOFTWARE ENGINEERING

In this case a project-based approach was adopted for
teaching Software Engineering. It is part of a second year of
a computer science course (undergraduate course). This is a
discipline that has 5 ECTS and whose semester load is 30
hours for theoretical classes and 45 hours for laboratory
classes. The focus of the adopted approach was to combine
theory and practice. One teacher is responsible for the
course management and theoretical lectures. In these
classes, the teacher presents the concepts and methodologies
and promotes discussion about them. Students are also
provided with an introduction to some software
development methodologies namely waterfall, Extreme
Programming, SCRUM, Spiral, etc. In the assessment, this
theoretical part has a weight of 40% for the final grade; the
remaining 60% is from the practical component. Another
teacher is responsible for the practical classes. In these
classes, students acquire some practice of software
engineering through the specification, design,
implementation and validation of a software application, as
a project for teams of 4-6 students. Scrum is the adopted
agile software development methodology. The teacher acts
as a product owner. Each team member has a specific
function (e.g., Scrum Master, Designer, etc.). Each team
develops a different project. However, all the projects are
focused on the development of a game from a software
engineering perspective. This is important to maintain the
students motivated and engaged with the project. The first
deliverable is revised to accommodate feedback from the
product owner. Trello is used for project management and to
track progress on tasks.

A. Additional Realism
One class of the course has been taught by professionals

from software house companies. In this class, software
development processes like Feature Driven Development
(FDD) and Behaviour Driven Development (BDD) were
approached and some of their practical aspects are
discussed.

Another important initiative to enable students to get in
touch with practice in software engineering is a one-day
visit to the premises of another software house company.
This company (Outsystems) is well-known for the software
development platform they hold and that is used by many
software companies worldwide. Their platform is a low-
code platform for rapid application development. It is
especially designed for developing applications in the
context of agile projects. During this journey, students were
able to have closer contact with some Scrum activities
(namely Daily Scrum, Sprint, Sprint Execution) and contact
with some SCRUM Roles (Scrum Master, Development
Team). Professionals explain to the students what they are
doing, and which technologies and tools are used to support
their activities. Students also had a brief session about
software cost estimation.

These events are very important since they provide
students with the contact and interaction with real software
engineering projects with real stakeholders. They help to
improve the understanding and the assimilation of the
concepts learned in the course.

B. Student evaluation
The student evaluation comprises both theoretical and

practical evaluation. The theoretical evaluation is a written
exam over the course material. The exam consists of 10
questions chosen from the list of 30 questions that were
made available to the students at the beginning of the
course. This is different from the usual practice on other
courses. Most questions are reflexive questions about
software engineering subjects. With this approach, the intent
is to avoid students wanting to memorise the matters learned
along the course period (15 weeks). Also, it is desirable that
students learn and acquire knowledge for a long-life period,
mainly to be used after graduation on their job integration
experience. In section V some gathering data that wants to
evaluate results about the achievement to this goal of our
approach will be presented.

For the practical evaluation, along the semester, during
the 15 working weeks, students´ working teams develop the
product on 6 sprints (sprints here are defined as having 2
weeks each). The teacher (i.e. product owner) meets with
each team at the end of the sprint to evaluate the work in
progress, the achievements and the goals for the next sprint.
The team works in class (3h/week) and out of class. Half
way through the semester, after sprint 4, and at the end of
the semester, after sprint 7, each team has an assessment
session were both teachers are present to evaluate different
parameters. Some of the parameters are: clear goals, state of
the art, requirements (functional and non-functional),
software development process (roles, artefacts, timings, hits
and misses), team member´s description (roles, skills) task
scheduling (monitoring using Trello tool), modelling (user
stories), implementation (code), budget (estimated based on
the lesson learned during the visit to the company referred
to on the previous section of this paper), conclusions (pros
and cons) and future work, used literature and citation on
the final report, and final presentation and discussion.

One of the achievements that sometimes students realize
is learning from mistakes. For instance, if they do not
communicate within the team the achieved results are poor,
when compared with other more cohesive teams. On the
other hand, in collaboration with the “Scrum Master” of the
team, a deeper evaluation to eventually gave different
grades within the members of the team.

IV. KNOWLEDGE ASSIMILATION AND PRACTICE
In order to gauge the post-retention cognitive load, a

survey of former students was conducted in order to obtain
feedback on the importance of the subject to the current
professional activity (of those who finished the course and
work in the area), and also to know if the knowledge

81Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 92 / 160

transmitted in the theoretical classes remains. For this last
component, the survey included questions that had been
already used in the theoretical evaluation of the course. The
answers were evaluated with the same evaluation criteria,
graded in a scale of 0-20. The questions were selected from
the same set of 30 questions referred to in Section III-B.
Respondents were informed that the results were for one
study and would not be disclosed to third parties. They were
asked to respond without recourse to extra help, because
what was at issue was whether the concepts and knowledge
remained present. The survey was also used to gather
insights about the usefulness of the course for the practical
life of each graduate. Thus, questions about aspects that may
be used in the day to day of their professional activities in
the companies where they currently work, were included in
the survey.

A. Survey Description
The survey was designed to be direct to our objectives

and be filled quickly and simply. Some questions were
answered in free text (case of questions of theoretical
knowledge) and others are multiple choice questions (e.g.,
used software methodologies). The survey was organized in
three parts: Questions about the current professional activity
of the respondents; theoretical questions about software
engineering; and space for feedback on the importance of
topics in their current professional life (for those who had
already finished the course).

As examples of questions, we asked if the graduated
students are working. If yes, we asked about that actual
tasks in their companies (planning, requirements, analysis,
design, Code, Quality Control, Tester, Project Management,
other), the used methodologies (waterfall, SCRUM, XP,
Prototyping, Spiral, FDD, Lean, RUP, other, none). About
the theoretical questions we asked about the fundamentals
of Software Engineering, Software Quality, Verifications vs
Validation, traditional vs Agile, team dimensions and roles,
among other questions and feedback.

V. SURVEY RESULTS AND ANALYSIS
This section presents the results gathered in the survey

and highlights some of the main findings.

A. Data Collection/Methodology
As a universe of respondents, surveys were sent to 97

students. Of these, 56 were undergraduate students
(although they had passed in this subject) and 41 graduated.

The survey was done online, using the LimeSurvey
webtool.

The response rate was of 24.4% of the graduated
students and of 21,4% of the undergraduate students.

It is important to note also that some respondents did not
answered to all questions.

B. Results and Analysis
Figure 1 shows the activities the respondents are

involved in in their work. 84% of the respondents are

involved in more than one activity. 50% of them are
involved in planning, analysis and testing but they are not
involved in implementation.

Figure 1. Activities carried out.

Students were also asked to identify the software
development methodologies they use in their activities. They
were able to identify the methodologies they use considering
a list of given methodologies. Results are presented in Figure
2.

Figure 2. Software development methodologies.

More than 70% of the respondents refer that they use the
Scrum methodology. This appears to be in line with the
results presented in the “12th annual State of Agile report”
[15] that refer that 52% of respondents stated that more than
half of the teams in their organizations are using agile
practices. And it is also in accordance with the results
presented in another survey of more than 2,000 active Scrum
and Agile practitioners [16]. This study refers that 94% of
agile users use the Scrum approach in their agile practice
(78% use Scrum with other approaches).

With respect to the importance of the subjects learned in
the course, 87.5 percent, of the 8 graduated students that
respond to this question, said that the content learned in the
course has been considerably useful for their actual
professional activity (see Figure 3).

The second part of the survey was related to theoretical
questions about software engineering. This part was
evaluated in a 0-20 scale and we compare these results with
the results achieved by the same individual during the

82Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 93 / 160

course. We consider the individual “maintained” if (grade
achieved in the course -1.5 £ grade achieved in the survey
£ (grade achieved in the course +1.5).

After evaluating the answers to the questions, we
conclude that there is a majority (58%) that has maintained
or increased the result (41% maintained, 17% increased) (see
Figure 4).

Figure 3. Course content vs profissional activity.

Figure 4. Grades evolution (not graduated respondents).

In the case of students already graduated, the results,
presented in Figure 5, are better (less cases (37,5%) of
lowering grades). Despite the long period of time after they
attend the course, this is probably a consequence of the
practical experience they get in the field of software
development.

Figure 5. Grades evolution (graduated respondents).

VI. LESSONS LEARNED AND CHALLENGES FACED
The contributions of this paper are in the form of the

lessons learnt, which may be seen as guidance for others
looking to approximate the know-how of students to the
methods and techniques used by software companies. In
summary, these are:

• Students should learn by doing and, wherever
possible, software engineering principles should be
assessed in the context of practical work, rather than
by regurgitating material taught or extracted from
text books.

• Students must have well defined and known goals.
The assessment of the theoretical subjects does not
need to be a surprise in the exam.

• Opening classes to external stakeholders (by
promoting talks or visiting companies) during the
last part of the semester helps students to reinforce
knowledge (some of which are not in books) and
motivate them to the subjects.

• It is very important to get feedback from past
students and evaluate if the transmitted concepts and
knowledge are still there, and if it was improved by
the work experience in the labour market.

• It is important to choose projects that are of interest
to the students and that can motivate them and
involve them in their development. Projects that are
related to games development can be very
interesting.

However, during our experience, we faced challenges
like:

• Difficulty to maintain all team members equally
motivated and engaged in the same way throughout
the entire project development period;

• Keeping all students involved in the project. Some
students may drop out, leaving the team during the
semester, and affecting the workflow and scheduling
of the remaining members of the team;

• Allowing students to experience various roles within
the team. It is necessary to find a way to rotate the
roles of each one within the team, to avoid each
student being too focused on just one role. It is
important that everyone experiences a diversity, as
broad as possible, of different roles;

• Allowing students to experience different
methodologies in real environments. More field trips
and contact with companies that use different
methodologies, must be promoted to foster more
diversity of experiences.

VII. CONCLUSIONS AND FUTURE WORK
Our survey was the starting point of a reflexion about the

impact of the approach followed in previous years in the
course of Software Engineering. Based on the results, we
think that allowing students to know the pool of questions in
advance, fosters the students on important knowledge in the
field and to understand these items, that we want students to
maintain over a long period of time.

83Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 94 / 160

In future, the pool of questions will be increased to
improve the effect of randomisation for the next exams. As
for the practical component, based on the results, Scrum is
still used as a case study since it is one of the most used
processes by companies where our graduated students work.
We will work to increase the number of respondents on the
survey. Also, in future we will also extend and analyse data
from a survey done to the employees of our graduated
students and reach more feedback to improve and actualize
the contents of this course.

REFERENCES
[1] R. Chatley and T. Field, “Lean Learning: Applying Lean

Techniques to Improve Software Engineering Education,” in
Proceedings of the 39th International Conference on
Software Engineering: Software Engineering and Education
Track, 2017, pp. 117–126.

[2] S. D. Zorzo, L. de Ponte, and D. Lucrédio, “Using scrum to
teach software engineering: A case study,” in 2013 IEEE
Frontiers in Education Conference (FIE), 2013, pp. 455–
461.

[3] M. Kuhrmann and J. Münch, “Enhancing Software
Engineering Education Through Experimentation: An
Experience Report.” 2018.

[4] C. Amrit, M. Daneva, and D. Damian, “Human factors in
software development: On its underlying theories and the
value of learning from related disciplines; A Guest Editorial
Introduction to the Special Issue,” Inf. Softw. Technol., vol.
56, no. 12, pp. 1537–1542, 2014.

[5] S. Beecham, T. Clear, D. Damian, J. Barr, J. Noll, and W.
Scacchi, “How Best to Teach Global Software Engineering?
Educators Are Divided,” IEEE Softw., vol. 34, no. 1, pp. 16–
19, 2017.

[6] F. Matthes, C. Neubert, C. Schulz, C. Lescher, J. Contreras,
R. Laurini, B. Rumpler, D. Sol, and K. Warendorf,
“Teaching Global Software Engineering and International
Project Management - Experiences and Lessons Learned
from Four Academic Projects,” 3rd Int. Conf. Comput.
Support. Educ. CSEDU 2011, p. 12, 2011.

[7] M. Nordio, C. Ghezzi, B. Meyer, E. Di Nitto, G.
Tamburrelli, J. Tschannen, N. Aguirre, and V. Kulkarni,

“Teaching Software Engineering Using Globally Distributed
Projects: The DOSE Course,” in Proceedings of the 2011
Community Building Workshop on Collaborative Teaching
of Globally Distributed Software Development, 2011, pp.
36–40.

[8] D. Dahiya, “Teaching Software Engineering: A Practical
Approach,” SIGSOFT Softw. Eng. Notes, vol. 35, no. 2, pp.
1–5, 2010.

[9] J. A. Macias, “Enhancing Project-Based Learning in
Software Engineering Lab Teaching Through an E-Portfolio
Approach,” IEEE Trans. Educ., vol. 55, no. 4, pp. 502–507,
2012.

[10] A. Heberle, R. Neumann, I. Stengel, and S. Regier,
“Teaching agile principles and software engineering
concepts through real-life projects,” in 2018 IEEE Global
Engineering Education Conference (EDUCON), 2018, pp.
1723–1728.

[11] M. Yampolsky and W. Scacchi, “Learning Game Design and
Software Engineering Through a Game Prototyping
Experience: A Case Study,” in Proceedings of the 5th
International Workshop on Games and Software
Engineering, 2016, pp. 15–21.

[12] O. Shabalina, N. Sadovnikova, and A. Kravets,
“Methodology of teaching software engineering: Game-
based learning cycle,” Proc. - 2013 IEEE 3rd East. Eur. Reg.
Conf. Eng. Comput. Based Syst. ECBS-EERC 2013, pp. 113–
119, 2013.

[13] U. Schäfer, “Training scrum with gamification: Lessons
learned after two teaching periods,” in 2017 IEEE Global
Engineering Education Conference (EDUCON), 2017, pp.
754–761.

[14] R. Holmes, M. Craig, K. Reid, and E. Stroulia, “Lessons
Learned Managing Distributed Software Engineering
Courses,” in Companion Proceedings of the 36th
International Conference on Software Engineering, 2014,
pp. 321–324.

[15] VersionOne Inc, “12th annual State of Agile report,” 2018.
[16] Scrum Alliance, “STATE OF SCRUM 2017-2018. Scaling

and agile transformation.,” 2017.

84Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 95 / 160

Multi-Clustering in Fast Collaborative Filtering Recommender Systems

Urszula Kużelewska

Bialystok University of Technology,
15-351 Bialystok, Wiejska 45a, Poland
Email: u.kuzelewska@pb.edu.pl

Abstract—Searching the huge amount of information available
on the Internet is undoubtedly a challenging task. A lot of new
Web sites are created every day, containing not only text, but
other types of resources: e.g., songs, movies or images. As a
consequence, a simple search result list from search engines
becomes insufficient. Recommender systems are the solution
supporting users in finding items, which are interesting for
them. These items may be information as well as products, in
general. The main distinctive feature of recommender systems
is taking into account the personal needs and tastes of users.
Collaborative filtering approach is based on users’ interactions
with the electronic system. Its main challenge is generating
on-line recommendations in reasonable time when coping with
a large data size. Appropriate tools to support recommender
systems in increasing time efficiency are clustering algorithms,
which find similarities in off-line mode. Commonly, this causes
a decrease in prediction accuracy of the final recommendations.
This article presents a high time efficiency approach based on
multi-clustered data, which avoids negative consequences. The
input data is represented by clusters of similar items or users,
where one item or user may belong to more than one cluster.
When recommendations are generated, the best cluster for the
user or item is selected. The best cluster means that the user or
item is the most similar to the center of the cluster. As a result,
the final accuracy is not decreased.

Index Terms—Recommender systems; Multi-clustering; Col-
laborative filtering.

I. INTRODUCTION

Recommender Systems (RS) are electronic applications
with the aim to generate for a user a limited list of items
from a large item set. The list is constructed basing on the
active user’s and other users’ past behaviour. People interact
with recommender systems by visiting web sites, listening to
music, rating items, doing shopping, reading items’ descrip-
tion, selecting links from search results. This behaviour is
registered as access log files from Web servers, or values in
databases: direct ratings for items, the numbers of song plays,
content of shopping basket, etc. After each action users can see
different, adapted to them, recommendation lists depending on
their tastes [1].

Recommender systems are used for many purposes in
various areas. They offer great opportunities for business,
government, education, e-commerce, leisure activities and
other domains, with successful developments in commercial
applications [2]. Recommender systems are often used in
e-shops proposing products, which are the most similar to

the content of customers’ shopping baskets. Some examples
include: a shopping assistant on website Qwikshop.com [3]
and a mobile personalized recommender system to suggest
new products to supermarket shoppers [4]. A practical example
is also What2Buy [5] which contains results of a recommender
system deployed in an e-store. Multimedia services, such as
Netflix [6] or Spotify [7], are places, where recommendations
are extremely helpful. A music recommender is described in
[8] and a method applied in MoveLens system in [9].

Scalability and performance are key metrics for deploying
a recommender system in a real environment [10]. Although
they are precise, CF techniques are not time effective, be-
cause they calculate items for suggestion by searching similar
users or items in the whole archived data. They deal with
large amount of dynamic data, however the time of results
generation should be reasonable to apply them in real-time
applications. A user reading news expects to see the next offer
for him/her in seconds, after analysis of millions of archived
news.

Clustering algorithms can be used to increase neighbour
searching efficiency and thus to decrease the time of recom-
mendations generation. A drawback is that the quality of pre-
dictions is usually slightly reduced in comparison to k-Nearest
Neighbours (kNN) neighbourhood identification strategy [11]
[12]. The reason is due to the way clustering algorithms work.
The typical approach is based on one partitioning scheme,
which is generated once and then not updated significantly.
The neighbourhood of data located on borders of clusters is
not modelled precisely (see Figure 1).

To improve the quality of the neighbourhood modelling
one can use multiple clustering schemes and select the most
appropriate one to the particular data object. As a result, multi-
clustering approach eliminates the inconvenience of decreased
quality of predictions while keeping a high time effectiveness.
Figure 2 presents two different clustering results for the same
dataset. For a particular data object, one can select the scheme
with this object located closer to the cluster center, thus having
more neighbours around.

This paper contains results of experiments on a collaborative
filtering recommender system, which is based on similarities
among items identified a priori as multi-clusters. The aim
of the experiments is to improve quality of recommendation
systems (which is typically measured by Root Mean Squared

85Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 96 / 160

Fig. 1. Inadequate neighbourhood modelling for data located on cluster
border in case of conventional k-means clustering

Fig. 2. Various neighbourhood modelling for particular data in case of
k-means multi-clustering

Error - RMSE - of estimated vs real ratings) as well as to
maintain a short time for recommendations generation (due to
a real application - recommender systems in WWW services).

The set of clustering schemes was generated by k-means
algorithm with the same values of their input parameters at
every time. While searching the most similar items, every
cluster is examined, and the one in which the appropriate items
are the most similar to the center is selected.

The rest of the paper is organised as follows: Section II
describes general aspects in recommendation systems, includ-
ing problems in this domain and the role of clustering and
multi-clustering algorithms. This section contains a description
of related work, as well. The following section, Section III
describes the proposed approach, whereas Section IV contains
the results of the performed experiments. The last section
concludes the paper.

II. DETERMINING NEIGHBOURHOOD IN A
COLLABORATIVE FILTERING DOMAIN - RELATED WORK

Collaborative Filtering (CF) techniques search similarities
among users or items based on archives of registered users’
behaviour. As an example, similar users have mostly the same

products in their baskets and similar items are bought by the
same customers. Collaborative filtering methods can be clas-
sified into model-based and memory-based. The first category
builds a model on the ratings, which is then used in the process
of generating recommendations. The other category calculates
recommendations by searching similar users or items in the
whole archived dataset.

Recommender systems face many challenges and problems.
The most important one, from the point of view of on-line
recommendations, is scalability. Despite dealing with large
amounts of dynamic data, recommender systems should gener-
ate results reasonably fast to be used in real-time applications.
Nowadays, internet users are used to immediate displaying
of each website. The most effective recommender systems
are hybrid approaches, which combine at least two different
methods that are complement to one another. Complementarity
means that if one of the methods has a drawback or weakness
in a certain area, then the other one has the considered features
strong [1]. Clustering algorithms are good tools to analyze
the neighborhood before a proper recommendation process,
positively influencing its scalability [11].

A. Clustering Methods

Clustering has been and continues to be an important
subject of research in the area of recommender systems [12].
The most often used method in memory-based collaborative
filtering to identify neighbours is the kNN algorithm, which
requires calculating distances between an active user and all
the registered ones. In contrast, clustering (in model-based
collaborative filtering) reduces computation time, due to the
introduction of clusters models.

There are two approaches, which apply clustering in the
recommender systems domain, namely: Cluster-based and
Cluster-only [13]. In both, the computation efficiency of
systems increases as the clustering phase is performed off-
line. The first approach is the most common one and focuses
only on time efficiency improvement; this is achieved by
the application of clustering to find the neighbourhood of
active users. Further generation of a recommendation list
for the particular active user is performed by memory-based
collaborative filtering methods. The process is executed on
part of input data and identifies the most similar cluster.
The final precision of recommendations can be lower in
comparison with memory-based collaborative filtering. The
second approach uses clustering as a main module of a
recommender system. The partitioning applied on input data
builds its model and further calculations are performed only
on this model. The final precision of recommendations can
be also lower in comparison with memory-based collaborative
filtering methods.

B. Multi-Clustering Model of Data

Multi-clustering or alternative clustering is variously defined
in literature. This term is usually used to describe the cluster-
ing, which is different than a typical partitioning based only

86Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 97 / 160

on a single scheme. It can be a technique which tries to find
different partitioning schemes on the same data, as well as
a method that combines the results from clustering items’
description with clustering users’ demographic data. Bailey
[14] provided a thorough survey on alternative clustering
methods.

An example of multi-clustering algorithm is COALA
(Constrained Orthogonal Average Link Algorithm) [15] that
searches for alternative clusterings of better quality and dissim-
ilarity with respect to the given clustering. It starts by treating
each object as a single cluster and then iteratively merges a pair
of the most similar clusters. The idea bases on cannot− link
constraints that guide the generation of a new, dissimilar clus-
tering. Another example is MSC (Multiple Stable Clusterings)
[16] that generates stable multiple clusterings. The advantage
of this method is that it does not require to specify the number
of clusters and provides users a feature subspace to understand
each clustering solution.

The advantages of multi-clustering methods can be benefi-
cial to the recommender systems domain. The better quality of
the neighbourhood modelling leads to high quality of predic-
tions keeping high time effectiveness provided by clustering
methods. Despite of this, there are few publications describing
application multi-clustering methods in recommendations.

The method described in [17] combines content-based and
collaborative filtering approaches to recommendations. The
system uses multi-clustering, however it is interpreted as a
single scheme clustering on the following input data: items’
description, users’ information and item-user ratings matrix.
It groups the items and the users based on their content, then
uses the result, which is represented by the fuzzy set, to create
an item group-rating matrix and a user group-rating matrix. As
a clustering algorithm, it uses k-means combined with a fuzzy
set theory to represent the level of membership (which is a
number from the interval [0,1]) an object has to the cluster.
Then, finally, the prediction rating matrix is calculated to
represent the whole dataset. In the last step of this process, k-
means is used again on the new rating matrix to find a group of
similar users. The groups represent the neighbourhood of users
in order to reduce a search space for collaborative filtering
method.

Another algorithm is presented in [18]. The authors ob-
served that users might have different interests over topics,
thus might share similar preferences with different groups
of users over different sets of items. The Co-Clustering For
Collaborative Filtering (CCCF) method first clusters users and
items into several subgroups, where each subgroup includes a
set of like-minded users and a set of items in which these
users share their interests. The groups are analysed by collab-
orative filtering methods and the resulting recommendations
are aggregated over all the subgroups.

III. THE ALGORITHM USED IN THE EXPERIMENTS

The recommendation algorithm proposed in this article is
composed of two steps. The first step (off-line) prepares the

set of neighbourhoods of the most similar users in the form
of a set of many clustering schemes. The method k-means is
run several times with the same value of the k parameter. The
results are stored as an input for the recommendation process.

In the second step, while calculating items for recommenda-
tion for a particular user, the most appropriate neighbourhood
is selected for searching for the candidates. The level of
adequacy is calculated as a value of similarity between the
particular user and a cluster centre. As a similarity value
(1) it can be used one of several common measures, e.g
based on Euclidean distance, cosine value, Pearson correlation,
LogLikehood based, Tanimoto, adopted from mathematical
applications [19].

µxi =

∑
q∈V (xi)

r(xiq)

|V (xi)|
(1)

An example similarity formula based on Pearson correlation
is as follows (2):

simP (xi, xj) =

∑
k∈Vij

rik · rjk√∑
k∈Vij

(rik)2 ·
√∑

k∈Vij
(rjk)2

(2)

where Vij = V (xi) ∩ V (xj) is a set of ratings present in
both user’s vectors: i and j, rik = r(xik) − µxi and rjk =
r(xjk)− µxj .

In the recommendation list generation process, a similarity
measure is estimated in the same way like it was described
above. Then, the candidate clusters are searched by the col-
laborative filtering item-based technique, but only within the
cluster.

The recommendation step of the algorithm is described in
Algorithm 1. The input set contains data of n users, who rated
a subset of items - A = {a1, . . . , ak}. The set of possible
ratings - V - contains values v1, . . . , vc. The input data are
clustered ncs times into nc clusters every time giving as a
result a set of clustering schemes CS. The algorithm generates
a list of recommendations Rxa

for the active user.

IV. EXPERIMENTS

This section contains the results of experiments with multi-
clustering recommender system with respect to quality of
recommendations and time effectiveness. Quality of recom-
mendations was calculated with the Root Mean Square Error
(RMSE) measure in the following way. For every user from
the input set, their ratings were divided into training (70%) and
testing parts. The values from the testing parts were removed
and estimated with the selected recommender system. The
difference between the original and the estimated number is
taken for calculations. The time effectiveness is measured as
the average time of generating recommendations list composed
of 5 elements for every of 100 users. The tests were performed
on a computer with Windows 7 OS, running on Intel Core i7
3.40 GHz with 8 GB of RAM.

87Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 98 / 160

Algorithm 1: A general algorithm of a recommender
system based on multi-clustering used in the experi-
ments

Data:
• U = (X,A, V) - matrix of clustered data, where
X = {x1, . . . , xn} is
a set of users, A = {a1, . . . , ak} is a set of items and
V = {v1, . . . , vc}
is a set of ratings values,

• δ : v ∈ V - a similarity function,
• nc ∈ [2, n] - a number of clusters,
• ncs ∈ [2,∞] - a number of clustering schemes,
• CS = {CS1, . . . , CSncs} - a set of clustering schemes,
• CSi = {C1, . . . , CSnc} - a set of clusters for a

particular clustering scheme,
• CSr = {cr,1, . . . , cr,nc·ncs} - the set of cluster centres,

Result:
• Rxa - a list of recommended items for an active user xa,

begin
δ1..δncs ←−
calculateSimilarity(xa, CSr, δ);
C ←− findTheBestCluster(δ1..δncs, CS);
Rxa
←− recommend(xa, C, δ);

The clustering algorithm as well as the recommendation
system were created using Apache Mahout library [20]. The
methods were tested with various similarity measures imple-
mented in Apache Mahout: Euclidean based (Eucl), cosine co-
efficient (Cos), Pearson correlation measure (Prs), CityBlock
(CBl), Tanimoto (Ta) and loglikehood (LL) similarity.

Recommendations were executed on benchmark LastFM
music data [21]. The whole set contains over 16 million
ratings: 345 652 users who rated 158 697 songs. The data
was split into several smaller sets presented in Table I.

TABLE I. DESCRIPTION OF DATA USED IN THE EXPERIMENTS

Name of Number of Number of Number of
dataset users items ratings
100k 2032 22 174 99 998
500k 10 236 49 602 499 992
1M 20 464 66 798 999 981
2M 40 914 86 348 1 999 960
3M 61 367 98 924 2 999 945

First, the data was used as input to the traditional collab-
orative filtering item-based system. Tables II and III contain
results of RMSE values and time (in s) of execution while
generating 5 recommendation elements.

The next experiment compared the previous results with
the results of the recommender system with modelling of
neighbourhood by k-means clusters from a single clustering
scheme. Tables IV and V contain results of RMSE values and
time (in s) of execution while generating 5 recommendation
elements. It can be noticed that in every case of the second
experiment RMSE is greater than in the first one, regardless

TABLE II. RMSE OF ITEM BASED COLLABORATIVE FILTERING
RECOMMENDATIONS

Number of
cases Similarity Measure
in data LL Cos Prs Eucl CBl Ta
100k 0.58 0.58 0.61 0.48 0.58 0.58
500k 0.58 0.58 0.57 0.51 0.58 0.58
1M 0.58 0.58 0.56 0.52 0.58 0.58
2M 0.58 0.58 0.56 0.52 0.58 0.58
3M 0.58 0.58 0.56 0.53 0.58 0.58

TABLE III. TIME [S] OF ITEM BASED COLLABORATIVE FILTERING
RECOMMENDATIONS

Number of Similarity Measure
in data LL Cos Prs Eucl CBl Ta
100k 0.090 0.125 0.127 0.121 0.071 0.077
500k 0.71 1.02 1.03 1.03 0.663 0.677
1M 1.774 2.718 2.791 2.800 1.761 1.789
2M 4.587 10.186 10.250 7.954 5.782 5.788
3M 6.516 16.021 16.820 8.020 6.210 6.272

of type of similarity measure. However, the time needed to
generate 5 recommendation elements is a few hundred times
lower than in the first experiment.

TABLE IV. RMSE OF ITEM BASED COLLABORATIVE FILTERING
RECOMMENDATIONS WITH NEIGHBOURHOOD DETERMINED BY K-MEANS

Number of Similarity Measure
clusters LL Cos Prs Eucl CBl Ta
20 0.65 0.65 0.64 0.64 0.65 0.66
50 0.67 0.67 0.67 0.66 0.67 0.68
100 0.68 0.67 0.67 0.66 0.68 0.67
400 0.65 0.65 0.64 0.63 0.63 0.65
1000 0.66 0.64 0.65 0.62 0.65 0.66

TABLE V. TIME [S] OF ITEM BASED COLLABORATIVE FILTERING
RECOMMENDATIONS WITH NEIGHBOURHOOD DETERMINED BY K-MEANS

Number of Similarity Measure
clusters LL Cos Prs Eucl CBl Ta
20 0.017 0.019 0.018 0.019 0.015 0.016
50 0.026 0.027 0.027 0.027 0.024 0.024
100 0.011 0.012 0.011 0.011 0.010 0.010
400 0.036 0.041 0.035 0.040 0.035 0.035
1000 0.010 0.02 0.020 0.020 0.010 0.010

The following experiment was based on 3 clustering
schemes generated for 20 and 200 clusters. The dataset used
for this experiment contained 100 000 ratings (100k). Tables
VI and VII contain RMSE and time of recommender system
executed separately for every scheme. It is visible that the
obtained values differ in all cases of schemes generated for the
same number of clusters. Different values of RMSE indicate
that, by selecting a suitable clustering scheme, particularly for
each active user, it is possible to decrease that value.

The last experiment concerns generating recommendation
based on a set of 3 clustering schemes (multi-clustering)
generated for 20 and 200 clusters. The dataset used for this
experiment is the same - 100k. Tables VIII and IX contain
RMSE and time of recommender system executed for multi-
clustering. The time is slightly greater than in the experiments
where the neighbourhood was modelled by a single clustering
scheme, however the value of RMSE is tremendously lower.

88Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 99 / 160

TABLE VI. RMSE OF ITEM BASED COLLABORATIVE FILTERING
RECOMMENDATIONS WITH NEIGHBOURHOOD DETERMINED BY K-MEANS

PERFORMED FOR SELECTED SCHEMES

Number of Similarity Measure
clusters LL Cos Prs Eucl CBl Ta
20 (1) 0.637 0,640 - 0.480 0.660 0.660
20 (2) 0.644 0.642 3.36 0.486 0.672 0.672
20 (3) 0.638 0.637 - 0.483 0.663 0.663
200 (1) 0.963 0.954 0.500 0.870 1.004 0.995
200 (2) 0.717 0.716 4.876 0.565 0.753 0.754
200 (3) 0.682 0.682 - 0.545 0.724 0.727

TABLE VII. TIME [S] OF ITEM BASED COLLABORATIVE FILTERING
RECOMMENDATIONS WITH NEIGHBOURHOOD DETERMINED BY K-MEANS

PERFORMED FOR SELECTED SCHEMES

Number of Similarity Measure
clusters LL Cos Prs Eucl CBl Ta
20 (1) 0.05 0.051 0.053 0.052 0.050 0.049
20 (2) 0.048 0.049 0.052 0.049 0.057 0.047
20 (3) 0.047 0.049 0.052 0.050 0.048 0.046
200 (1) 0.0002 0.0001 0.0002 0.0002 0.0001 0.0002
200 (2) 0.027 0.025 0.026 0.025 0.025 0.024
200 (3) 0.024 0.049 0.052 0.050 0.048 0.046

The experiments proved that the application multi-clustering in
recommender systems and dynamic selection the most suitable
clusters is very promising and worthy of further research.
Figures 3 and 4 depict the summary of values from our
experiments. The charts compare all of the examined methods
to determine a neighbourhood: k-Nearest Neighbours (IB),
k-means single clustering (IBSC), k-means multi-clustering
(IBMC). The multi-clustering approach, even though it takes
additional time for dynamic selection of the most suitable
clusters, is very valuable due to its extremely low value of
RMSE (green and yellow columns in 3 and 4). In case of
greater number of clusters (200) the error is bigger, but the
processing time is lower.

TABLE VIII. RMSE OF ITEM BASED COLLABORATIVE FILTERING
RECOMMENDATIONS WITH NEIGHBOURHOOD DETERMINED BY

MULTI-CLUSTERING K-MEANS

Number of Similarity Measure
clusters LL Cos Prs Eucl CBl Ta
20 0.15 0.15 - 0.11 0.15 0.15
200 0.18 0.18 - 0.16 0.19 0.19

TABLE IX. TIME [S] OF ITEM BASED COLLABORATIVE FILTERING
RECOMMENDATIONS WITH NEIGHBOURHOOD DETERMINED BY

MULTI-CLUSTERING K-MEANS

Number of Similarity Measure
clusters LL Cos Prs Eucl CBl Ta
20 0.0633 0.0707 0.0673 0.0668 0.0717 0.0693
200 0.0316 0.0600 0.0411 0.0323 0.0545 0.0404

V. CONCLUSION

Clustering algorithms support recommender systems in in-
creasing time efficiency and scalability. This benefit usually
involves decreased accuracy of prediction while generating
recommendations. It results from inaccurate modelling of
object neighbourhood in case of data located on borders of

Fig. 3. RMSE of item based collaborative filtering recommendations based
on different methods to determine neighbourhood

Fig. 4. Time [s] of item based collaborative filtering recommendations based
on different methods to determine neighbourhood

clusters. Multi-clustering approach eliminates the inconve-
nience of decreased quality of predictions while maintaining
a high time effectiveness.

This article presented an approach based on multi-clustered
data, which prevents the negative consequences, keeping high
time efficiency. The neighbourhood is modelled by multiple
clustering schemes and the most appropriate one to the partic-
ular data object is selected for recommendations. The results
confirmed a significant reduction of RMSE without an increase
in time.

Future work will concern deeper examination of the multi-
clustering technique, as well as testing it in various types of
recommender systems and on other benchmark datasets.

ACKNOWLEDGMENT

The present study was supported by a grant S/WI/1/2018
from Bialystok University of Technology and founded from
the resources for research by the Ministry of Science and
Higher Education of Poland.

REFERENCES

[1] D. Jannach, Recommender Systems: an Introduction. Cambridge
University Press, 2010.

[2] L. Jie, W. Dianshuang, M. Mingsong, W. Wei, and Z. Guangquan,
“Recommender system application developments: A survey,” Decision
Support Systems, vol. 74, pp. 12–32, 2015.

[3] R. Lawrence, G. Almasi, V. Kotlyar, M. Viveros, and S. Duri, “Person-
alization of supermarket product recommendations,” Data Mining and
Knowledge Discovery, vol. 5, pp. 11–32, 2001.

[4] K. McCarthy, J. Reilly, L. McGinty, and B. Smyth, “Thinking positively-
explanatory feedback for conversational recommender systems,” in
Proceedings of the European Conference on Case-Based Reasoning
(ECCBR-04), 2004, pp. 115–124.

89Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 100 / 160

[5] U. Kużelewska, Contextual Modelling Collaborative Recommender Sys-
tem—Real Environment Deployment Results. Springer, 2016, pp. 119–
126.

[6] “Netflix Website,” URL: (https://www.netflix.com/) [accessed: 2018-10-
02].

[7] “Spotify Website,” URL: (https://www.spotify.com/) [accessed: 2018-10-
02].

[8] A. Nanopoulos, D. Rafailidis, P. Symeonidis, and Y. Manolopoulos,
“Musicbox: personalized music recommendation based on cubic analysis
of social tags,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 18, pp. 407–412, 2010.

[9] J. Recio-Garcia, G. Jimenez-Diaz, A. Sanchez-Ruiz, and B. Diaz-Agudo,
“Personality aware recommendations to groups,” in Proceedings of the
Third ACM Conference on Recommender Systems, 2009, pp. 325–328.

[10] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, “Recommender
Systems Survey,” Knowledge-Based Systems, vol. 46, pp. 109–132,
2013.

[11] B. Sarwar, “Recommender Systems for Large-Scale E-Commerce: Scal-
able Neighborhood Formation Using Clustering,” in Proceedings of the
5th International Conference on Computer and Information Technology,
2002.

[12] U. Kużelewska, “Clustering algorithms in hybrid recommender system
on MovieLens data,” Studies in logic, grammar and rhetoric, vol. 37,
pp. 125–139, 2014.

[13] J. Rongfei, “A new clustering method for collaborative filtering,” in
Proceedings of the International IEEE Conference on Networking and
Information Technology, 2010, pp. 488–492.

[14] J. Bailey, Alternative clustering analysis: a review. Chapman and
Hall/CRC, 2014, pp. 533–548.

[15] E. Bae and J. Bailey, “COALA: a novel approach for the extraction
of an alternate clustering of high quality and high dissimilarity,” in
Proceedings of the IEEE international conference on data mining, 2006,
pp. 53–62.

[16] J. Hu, Q. Qian, J. Pei, R. Jin, and S. Zhu, “Finding multiple stable
clusterings,” Knowledge and Information Systems, vol. 51, pp. 991–
1021, 2017.

[17] S. Puntheeranurak and H. Tsuji, “A Multi-clustering Hybrid Recom-
mender System,” in Proceedings of the 7th IEEE International Confer-
ence on Computer and Information Technology, 2007, pp. 223–238.

[18] Y. Wu, X. Liu, M. Xie, M. Ester, and Q. Yang, “Cccf: Improving col-
laborative filtering via scalable user-item co-clustering,” in Proceedings
of the Ninth ACM International Conference on Web Search and Data
Mining. ACM, 2016, pp. 73–82.

[19] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems: Introduc-
tion and challenges,” in Recommender systems handbook. Springer,
2015, pp. 1–34.

[20] “Apache Mahout,” URL: (http://mahout.apache.org/) [accessed: 2017-
07-14].

[21] “A Million Song Dataset,”
URL: https://labrosa.ee.columbia.edu/millionsong/lastfm/ [accessed:
2017-11-02].

90Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 101 / 160

So You Want to Build a Farm: An Approach to Resource and Time Consuming Testing

of Mobile Applications

Evgeny Pyshkin and Maxim Mozgovoy
University of Aizu

Tsuruga, Ikki-Machi, Aizu-Wakamatsu, Fukushima, 965-8580, Japan
Email: {pyshe, mozgovoy}@u-aizu.ac.jp

Abstract—The focus of this research is on improving a process of
resource and time-consuming automated software testing. Parti-
cularly, we address the problem of testing mobile applications
with rich non-native or hand-drawn graphical user interface,
as well as resource-consuming dynamic applications, such as
mobile games. We introduce an approach to creating a mobile
testing farm, which is relatively easy to build with inexpensive
components and open source software. This approach can be
useful for supporting a product development cycle for a company
on lean budget. It is suitable for a wide range of mobile
applications with a high variety of human-computer interaction
mechanisms.

Keywords–Non-native GUI; mobile applications; testing frame-
work; human factors.

I. INTRODUCTION

Though there are many existing frameworks supporting
software development and testing automation, creating open
testing platforms and sharable pragmatic solutions remains one
of strategic parts of software quality assurance [1]. For the
specific case of mobile testing (including mobile user interface
(UI) testing automation), there is a gap between rapid evolution
of mobile software and availability of comprehensive auto-
mated solutions focusing peculiarities of mobile applications
development and testing [2]. One of such particular aspects of
mobile software testing is the problem of creating flexible tools
that would facilitate running automated tests of large-scale and
resource-intensive on mobile applications [3].

One of obvious requirements for automated UI tests is
that they should be able to access applications similarly as
users do. Particularly, testing graphical UI (GUI) provides a
nontrivial case of testing automation for both traditional and
mobile applications [4][5]. Existing tools for testing automa-
tion (such as Jemmy library [6], Microsoft UI Automation [7],
or Android UI Automator [8]) provide features for testing
GUI applications in regular cases. They allow accessing pro-
grammatically many GUI elements and performing different
operations such as pushing a button, scrolling a window,
hovering an area, and so on. However, there are specific
cases when testing process is time- and resource-consuming.
Unlike to traditional applications rewritten to be runnable on
mobile devices, applications developed primarily for mobile
devices have significant particularities such as connectivity de-
pendency, limitations in available computing resources, battery
discharging, specufic GUI based touch screen gestures, rapid
evolution and diversity of devices, as well as rapidly evolving
new operating systems [9]. Many of these factors are connected

and mutually dependent. For example, in mobile games, we
might have to run the relatively long-lasting process and collect
many screenshots necessary for reproducing the test cases and
for making further fine-grain analysis of possible application
failures. For arranging such time- and effort-consuming tests,
device emulators (being a widely used solution allowing to
decrease the testing costs) are often not enough. There are the
following reasons:

1) We have to be sure that a program works properly
on real devices (it is mentioned above that a wide
diversity of mobile devices is one of the significant
peculiarities of mobile applications).

2) An emulator could not help in testing applications
with intensive CPU and GPU load required for re-
vealing battery drain problems.

3) Test failures might be device-sensitive: a test might
successfully pass on one device, while (often unex-
pectedly) crashing on the another one.

4) Testing on emulators makes difficult to reveal low
performance problems.

5) It is hard to model connectivity-sensitive test cases.

In order to decrease testing complexity and save testing
time, the developers often use the restricted test suites known
as smoke tests, which are useful for some sanity checks: they
are aimed at checking whether the whole application works,
provides its basic functionality, and operates with user controls
properly. Smoke testing is an important element of software
deployment process, particularly in case of severe time and
cost pressure [10][11].

Simple test scripts can check whether a program works in
general, but also they can reveal many potential problems like
lack of interaction with a server backend, incorrect processing
of user requests, failures in user interactions with UI (probably
containing non-standard hand-drawn elements), etc.

In the domain of mobile development including (with
respect to the scope of our particular interests) virtualized en-
vironments, mobile games, learning environments, etc., arrang-
ing smoke tests is far from being a trivial problem. Complex
testing scenarios might require the use of specialized smoke
testing frameworks. As it has been mentioned above, mobile
applications often do not have a platform-native GUI, but a
set of hand-drawn elements built without using standard GUI
libraries. One relevant project is the recently launched Unity-
based mobile game “World of Tennis: Roaring ’20s” [12],
which is a good example illustrating the complexity of testing
gaming applications running primarily on mobile devices [13].

91Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 102 / 160

Apart from mobile games, there are more application types that
may be built with non-native UI components. For example,
map-based travel applications often use GUI elements, which
are not ordinary user controls supported by standard testing
frameworks, but specially designed components integrated
with an electronic map [14]. Hand-drawn GUI is also widely
used in educational mobile applications, for example, in lan-
guage learning applications with non-standard UI elements for
representing language grammar structures [15].

The remaining paper is organized as follows. In Section II
we describe the application context for our approach and
briefly examine recent works in the domain of mobile software
testing automation. In Section III we introduce our approach
and discuss its current implementation, as well as the lessons
learned from using this approach in a mobile development
project. In Conclusion we summarize our current contribution
and briefly describe the planned future steps.

II. RELATED WORK

The standard approach to mobile application testing is to
connect mobile devices to a “test server” running some special
software, in order to execute test scripts on a remote machine
(as shown in Figure 1).

Figure 1. Client-server interaction in a mobile testing environment.

For the server-side software, one can rely on existing
solutions, such as Appium [16] and Calabash [17]: a test script
is usually a set of instructions containing such activities as
waiting, tapping screen location, asserting that an expected UI
elements appears on the screen, pressing the button, tapping a
certain GUI element within some screen area, etc.

In such test scripts for native GUI applications, user
controls can be accessed programmatically: normally, this
capability is supported by an operating system. However, in
a case of applications that do not rely on the natively rendered
GUI components of an underlying operating system and do not
use standardized GUI libraries, this approach does not work.
Various sources [18][19], including our own works [5][20],
suggest to use pattern recognition methods to identify GUI
elements on the screen. In a sense, human intelligence (e. g.,
constructing smoke test scripts) meets the algorithms of ma-
chine intelligence (e. g., using image recognition to find GUI
elements on the screen).

This technique requires experimenting with the settings of
pattern matching and image transformation algorithms (pro-
vided, e. g., by OpenCV library), and in general, slows down
the testing process. It might be difficult to estimate “typical”
duration of a test, since simple smoke tests can reveal the
absence of crashes within seconds, while stress tests, designed
to check the stability of an application in a prolonged time
interval, can take hours. Furthermore, ideally every new build
should be tested on a variety of mobile devices.

A common way to run automated tests on a selection of
real mobile devices is to use cloud mobile farm providers (such
as Amazon Web Services, or Bitbar). Such cloud farms have
many advantages: they support many different mobile devices;
they can be easily set up; they do not require specific client
side equipment. However, there are significant drawbacks as
well: most providers still do not support an adequate variety
of devices or a selection of devices that can be particularly
interesting for the mobile software developers. The testing cost
can be quite high for a small team, freelance developer or
startup company.

III. OUR APPROACH AND CURRENT IMPLEMENTATION

A possible alternative to cloud mobile farms (which are
easy to deploy, but expensive and often insufficient) is to
build own farms that can be configured to fit exact developers’
requirements and specific purposes of the testing process.
The expected functionality of such farms includes support
for the follwing processes: 1) getting builds from a build
machine (such as TeamCity [21]); 2) running all tests on all
connected devices; 3) generating HTML reports containing the
application action logs and screenshots; 4) sending the reports
and related data to the subscribed users.

A. Prototype mobile farm

Figure 2 shows the organization of the current prototype
we use.

Figure 2. Mobile farm organization: major components.

In our implementation, Client testing server is a Windows-
based mini-PC, used to run Appium test scripts. There are
two servers supporting tests on connected devices: Server 1 is
a Windows-based mini-PC, running Appium server software
for Android devices mostly (but Windows devices can also be
connected to this server); Server 2 is a Mac mini computer,
running Appium server software for iOS devices mostly. The
second server is required, since it is not possible to run iOS
tests on the devices connected to non-macOS machines.

Testing devices (where the mobile software under testing is
running) are connected with the computers via Plugable USB
hubs that support simultaneous data transfer and charging with
charging rate up to 1.4A depending on the device. Figure 3
demonstrates a working mobile farm prototype with three
servers, a RAID array based storage and a variety of connected
mobile devices under tests.

Though the current implementation is a relatively simple
compact solution, it helped us to analyze many difficulties

92Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 103 / 160

Figure 3. A prototype mobile farm.

that a quality assurance engineer might face while building a
reliable and convenient infrastructure for automated testing of
mobile applications on real devices, including (but not limited
to) the following problems:

• How to support a representative variety of devices
with regards to their operating and eco-systems (e. g.,
solutions which are perfectly deployed for Android
devices might not be working for iOS-based devices).

• How to find appropriate hardware for connecting a
reasonable number of devices (with respect to battery
draining, difference in charging/connection interfaces,
charging rate and time, capabilities to charge and
transfer data at the same time, etc.).

B. Case Study: Using Appium and Image Recognition for
Testing Non-Native GUI of Mobile Applications

Appium is a test automation framework designed to as-
sist functional testing of compiled native (iOS, Android or
Windows) and hybrid applications [22]. By accessing an
application from Appium scripts, we can simulate different
user interactions. Appium is responsible for the following ac-
tivities: 1) receiving connections from a client; 2) listening for
commands; 3) passing received commands to the application
under testing (the application is run on the same machine as
Appium or on a USB-connected mobile device); 4) sending
responses from the application back to the client.

Thus, Appium just provides a client-server layer that has
testing script on the client side and application on the server
side. All the work of test scheduling, interaction with Team-
City, storing and retrieving test logs and other things has to be
done in our own code, so there is much work for test engineers.

According to the above described process, remote clients
connect to Appium servers and run test scripts that send
commands for execution. Native application GUI elements
can be accessed using a specialized API. However, in order
to access non-native or hand-drawn GUI elements, one needs
to recognize them on the screen first. From one’s first look,
identifying objects of interest on the screen (such as non-
native GUI controls or game characters) can be reduced to the
task of perfect matching of a requested bitmap image inside a
screenshot. However, there is a reasonable number of factors
making such a naı̈ve approach insufficient for reliable GUI
element recognition and thus requiring approximate matching:

• Onscreen objects may be rendered differently (because
of GPUs or rendering quality settings.

• Screens vary in dimensions, thus, game scenes might
have to be rescaled before rendering. Such a transfor-
mation might cause significant distortions.

• Game designers might slightly change the UI elements
(fonts, colors, background, etc.).

• Onscreen objects might interfere with complex back-
ground or with other objects.

• Many interactions are performed with non-GUI on-
screen game objects (such as game characters).

The idea of using OpenCV-supported approximate image
matching in Appium is discussed in several tutorials [23][24].
We rely on OpenCV function matchTemplate() called with the
parameter TM CCOEFF NORMED. This parameter defines
the pattern matching algorithm used by matchTemplate(). The
pattern matching function allows us to get image similarity co-
efficients and analyze testing results from the viewpoint of UI
elements recognition quality. Unfortunately, matchTemplate()
function is unable to match scaled patterns. Since a mobile
application may run on devices with different screen sizes, we
have to scale the screenshots to match the dimensions of the
original screen used to record graphical patterns.

Image processing functions (including operations with a
large number of screenshots) slows down the testing pro-
cedures significantly and makes the whole testing process
resource- and time-consuming.

C. Assessment and Lessons Learned

Our current experience to use the suggested approach is
based on two prototype farm implementations for testing the
large scale software project, which is the above mentioned
Unity-based mobile game “World of Tennis: Roaring ’20s”.
Our experiments taught us a number of interesting facts about
mobile farms.

Due to very intensive application usage in test runs, mobile
devices quickly discharge while testing. Unfortunately, it is not
enough to plug a device into a computer or a USB hub to keep
the level of battery at an acceptable level: typical USB charging
rates are inadequate. Our experiments demonstrated that even
powered USB hubs can be insufficient, hence, one might need a
hub supporting simultaneous charge and intensive data transfer.
However, we realized that even if one uses special powered
hubs, there are devices charging very slowly or refusing to
charge in such conditions.

Though Appium is a mature project with a significant user
base, there are still some unresolved issues that can lead to
unreliable test execution. However, we have to admit that there
is a visible progress in this project, since many problems (that
we faced in the past) have been already fixed.

A device may have its own oddities. While testing, unex-
pected behavior may be conditioned by a particular version of
the operating system or firmware, or even default onscreen key-
board. For example, we tested one device that was randomly
crashing until we installed CyanogenMod. Another device
reported the lack of available memory space after several

93Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 104 / 160

dozens of installation-uninstallation cycles of the application
under testing. The problem was resolved by installing an
alternative Android version.

IV. CONCLUSION

In this contribution, we demonstrated that building a mobile
testing farm is not a trivial task. We introduced an approach,
which includes a process, a working system, and a set of
sample applications using this testing infrastructure. Some
primary evaluation results of testing professional software
products proves the applicability of the suggested method to
the practical cases of mobile software testing.

Particularly, our contribution include a mobile testing in-
frastructure; a working prototype supporting testing of Win-
dows, Android, and iOS devices; Appium extensions (for
handling application distribution across a number of connected
devices, load balancing and supporting additional types of UI
interaction, which were not included to the Appium imple-
mentation we used; and pattern matching-based technique for
recognition of non-native GUI elements in test scripts. All
above mentioned elements of our solution can be considered
as parts of continuous integration process.

We do not argue that creating a farm is always better than
renting through the alternatives. However, it is important to
note that our approach is not only about implementing smoke
tests for a particular case: it should be considered as a stage
of a continuous integration pipeline, similar to automated unit
testing and automated builds.

We believe that the proposed approach provides a prac-
tical solution for real world problems of software analysis
and verification automation. Our primary experiments show
feasibility of the suggested process for testing automation with
the combined use of several technologies including traditional
automated unit tests, functional testing frameworks, and image
recognition algorithms.

As a future work, we expect to create an open source
framework for small-scale mobile farms that would allow users
to use facilities of users’ own computers and connected devices
as a part of the whole testing framework. We expect that
such an approach will make smoke testing easier to set up,
encourage mobile software developers to extend their testing
automation practices, and, therefore, improve mobile software
quality. As a result of our efforts, paraphrasing on the the
famous Glenn Gould’s conceptual composition “So you want
to write a fugue” [25], we believe to be able to say: “So you
want to build a farm – so go ahead and build a farm”.

REFERENCES

[1] D. Amalfitano, A. R. Fasolino, P. Tramontana, and B. Robbins, “Testing
android mobile applications: Challenges, strategies, and approaches,” in
Advances in Computers. Elsevier, 2013, vol. 89, pp. 1–52.

[2] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk, “Continuous,
evolutionary and large-scale: A new perspective for automated mobile
app testing,” in Software Maintenance and Evolution (ICSME), 2017
IEEE International Conference on. IEEE, 2017, pp. 399–410.

[3] T. Ki, A. Simeonov, C. M. Park, K. Dantu, S. Y. Ko, and L. Ziarek,
“Fully automated ui testing system for large-scale android apps using
multiple devices,” in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, 2017, p.
185.

[4] K. Moran, M. L. Vsquez, and D. Poshyvanyk, “Automated gui testing
of android apps: From research to practice,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C), May 2017, pp. 505–506.

[5] M. Mozgovoy and E. Pyshkin, “Unity application testing automation
with appium and image recognition,” in Tools and Methods of Program
Analysis, V. Itsykson, A. Scedrov, and V. Zakharov, Eds. Cham:
Springer International Publishing, 2018, pp. 139–150.

[6] “Jemmy library,” retrieved: Aug 1, 2018. [Online]. Available:
https://jemmy.java.net/

[7] “Ui automation,” retrieved: Aug 1, 2018. [Online].
Available: https://docs.microsoft.com/en-us/windows/desktop/WinAuto/
entry-uiauto-win32

[8] “Automate user interface tests,” retrieved: Aug 1, 2018.
[Online]. Available: https://developer.android.com/training/testing/
ui-testing/index.html

[9] H. Muccini, A. Di Francesco, and P. Esposito, “Software testing
of mobile applications: Challenges and future research directions,”
in Proceedings of the 7th International Workshop on Automation of
Software Test. IEEE Press, 2012, pp. 29–35.

[10] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation (Adobe
Reader). Pearson Education, 2010.

[11] G. Mustafa, A. A. Shah, K. H. Asif, and A. Ali, “A strategy for testing
of web based software,” Information Technology Journal, vol. 6, no. 1,
2007, pp. 74–81.

[12] “World of tennis: Roaring 20’s,” retrieved: Aug 1, 2018. [Online].
Available: http://worldoftennis.com/

[13] K. Haller, “Mobile testing,” ACM SIGSOFT Software Engineering
Notes, vol. 38, no. 6, 2013, pp. 1–8.

[14] E. Pyshkin and M. Pyshkin, “Towards better requirement definition for
multimedia travel guiding applications,” in Computational Intelligence
(SSCI), 2016 IEEE Symposium Series on. IEEE, 2016, pp. 1–7.

[15] M. Purgina, M. Mozgovoy, and V. Klyuev, “Developing a mo-
bile system for natural language grammar acquisition,” in Depend-
able, Autonomic and Secure Computing, 14th Intl Conf on Per-
vasive Intelligence and Computing, 2nd Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech), 2016 IEEE 14th Intl
C. IEEE, 2016, pp. 322–325.

[16] “Appium: Automation for apps,” retrieved: Aug 1, 2018. [Online].
Available: http://appium.io

[17] “Calabash: Automated acceptance testing for mobile apps,” retrieved:
Aug 1, 2018. [Online]. Available: http://calaba.sh

[18] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using gui screenshots
for search and automation,” in Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’09.
New York, NY, USA: ACM, 2009, pp. 183–192.

[19] T.-H. Chang, T. Yeh, and R. C. Miller, “Gui testing using computer
vision,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’10. New York, NY, USA: ACM,
2010, pp. 1535–1544.

[20] M. Mozgovoy and E. Pyshkin, “Using image recognition for testing
hand-drawn graphic user interfaces,” in 11th International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies
(UBICOMM 2017), IARIA. IARIA, Nov 2017, pp. 25–28.

[21] M. Mahalingam, Learning Continuous Integration with TeamCity.
Packt Publishing Ltd, 2014.

[22] M. Hans, Appium Essentials. PACKT, 2015, retrieved:
Aug 1, 2018. [Online]. Available: https://www.packtpub.com/
application-development/appium-essentials/

[23] S. Kazmierczak, “Appium with image recog-
nition,” February 2016, retrieved: Aug 1,
2018. [Online]. Available: https://medium.com/@SimonKaz/
appium-with-image-recognition-17a92abaa23d\#.oez2f6hnh

[24] V.-V. Helppi, “Using opencv and akaze for mobile app and game test-
ing,” January 2016, retrieved: Aug 1, 2018. [Online]. Available: http://
bitbar.com/using-opencv-and-akaze-for-mobile-app-and-game-testing

[25] G. Gould, So you want to write a fugue? G. Schirmer, 1964.

94Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 105 / 160

Considerations for Adapting Real-World Open Source Software Projects within the

Classroom

Hyunju Kim

Department of Mathematics and Computer Science

Wheaton College

Wheaton, IL, USA

e-mail: hyunju.kim@wheaton.edu

Abstract—As Open Source Software (OSS) has become one of

the main approaches for developing new software products,

efforts to incorporate real-world OSS projects into the

computer science classroom have increased. This paper

reviews such efforts and discusses the benefits and challenges

of adapting OSS projects in software development or

engineering courses. It also presents considerations for

selecting and using OSS projects for in-classroom software

development.

Keywords-open source software; OSS; software engineering

education.

I. INTRODUCTION

Open Source Software (OSS) has been widely used in
many areas and has become one of the main approaches for
developing new software products. As a result, efforts to
adapt OSS and its community structures in computer science
education have also increased. Findings from such efforts
show that using OSS to teach various aspects of software
engineering benefits students by providing opportunities for
real-world software development, software reengineering,
and team activities, such as project management and group
communications. These opportunities are rarely available
within the traditional classroom environment; thus, adapting
OSS in software engineering education can be an effective
supplemental teaching approach to prepare students for their
future careers.

Section II of this paper will review previous efforts to use
OSS projects in the computer science classroom, along with
benefits of using OSS components in software engineering
education. Section III will present two different approaches
to utilizing real-world OSS projects for software
development education, and the corresponding challenges
and considerations based on our classroom experience.
Section IV concludes our experience and discusses future
work that will be necessary for better utilizing real-world
OSS projects in the classroom setting.

II. PREVIOUS STUDIES

Several studies have already adapted real-world OSS
projects to the computer science classroom environment. A
study by Hislop et al. [3] identified the effects of adapting
Humanitarian Free and OSS projects in undergraduate
software engineering or OSS development courses at diverse
educational institutions. Findings from the study indicate that

students were motivated by participating in such OSS
projects and learned various aspects of collaborative
software development. Similarly, a study by Stroulia et al.
[8] reported on the Undergraduate Capstone Open-Source
Project, which offered a distributed software engineering
course to students from multiple universities. The course
asked students to work on existing, active OSS projects so
that they could learn and participate in real-world team
activities for developing software. This distributed
environment was helpful for students in learning
communication skills, as well as in learning from others and
through examples. Another study by Krogstie [4] reported
the roles and benefits of a broker between a student
development team and an OSS community in a senior project
course. While working as the gatekeeper, the broker
strengthened the programmer’s authority within the team and
increased the communication credibility of both parties. As a
result, the broker’s role became significant for the student
team in acquiring the necessary development knowledge
from the OSS community.

While most of the previous efforts have introduced OSS
projects to the senior level of computer science studies, a
couple of them have incorporated OSS projects into second
or third year studies [5][6]. Students were asked to contribute
to active OSS projects, so they might learn software
evolution processes, such as reverse engineering and
software maintenance. Students’ feedback from those
courses was positive and reflected their having learned
values of documentation, software development tools, and
communication with real-world developers.

It seems obvious that incorporating real-world OSS
projects into the classroom provides valuable opportunities
for students to learn technical and social aspects of software
development, such as:

 Communication skills

 Project management activities

 Distributed software development tools

 Problem analysis and solution development
according to given constraints

 Learning from others and by example

However, despite these benefits, one of the challenges is

to identify OSS projects that are appropriate for student
development. A study by Smith et al. [7] initially considered
programming language, code size, team development, and
buildability as the criteria when choosing appropriate OSS

95Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 106 / 160

projects to teach software engineering. Later, the study also
considered additional criteria, such as the project’s
application domain, modular design, recent activity, and
documentation quality. Results from this study showed that it
was not easy to find appropriate projects of proper size. In
addition, buildability problems existed among small, single
developer projects; levels of documentation varied; and a
project’s code organization could mislead its code
modularity.

This paper reports findings from adapting two different
types of OSS projects into software development courses.
We will also discuss the pros and cons of the two adaptation
forms so that they can serve as criteria for selecting future
OSS student development projects.

III. UTILIZING OSS PROJECTS WITHIN THE CLASSROOM

According to Black Duck’s 2015 Future of Open Source
Survey [1], over 65% of the companies surveyed took an
OSS-first approach in developing or using software for daily
business. The 2016 survey revealed that about 65% of the
companies contributed to OSS projects to influence OSS
markets, and 59% of respondents participated in OSS
projects to gain competency [2]. Computer Science
education must not only respond to these trends and needs,
but also integrate learning opportunities that will prepare
students for the contemporary corporate environment. OSS
projects provide such opportunities in the following areas:

 Community activities: OSS projects require
participants to take on diverse roles, such as end-
users, project managers, programmers, and testers.
Thus, all levels of computer science students can
participate in the community activities, which
provide a learning area for students according to
their interests and knowledge levels. As members of
the community, they can learn from others, including
real-world professionals. Students will also learn
how to effectively work and communicate with
others and how to follow community rules and
standards.

 Project management: OSS projects are continuously
evolving. Thus, students can witness and participate
in ongoing activities for forking and merging
projects, release planning, code repository
management, risk management, and quality
management.

 Software reengineering or reverse engineering:
Traditional software engineering courses usually
focus more on forward engineering. On the other
hand, OSS projects require students to understand
existing code, including algorithms, software
architectures, data structures, and documentation.
The code may include good and bad coding
practices, and thus students can learn through
examples. This will also be a practical teaching
resource for software reengineering.

 Communication and development tools: Although
traditional computer science labs provide hands-on
exercises with tools, they are usually limited in terms

of type and scope. Real-world OSS projects can
expose students to diverse and cutting-edge
documentation, builds, version controls, and testing
tools.

A. Adapting Two Types of OSS Projects

Wheaton College is a liberal arts college, and its
undergraduate enrollment is about 2,400. In 2017, the
computer science program at Wheaton offered a software
development course to sophomores and juniors and an OSS
development course to juniors and seniors. Both courses
were offered to computer science majors and minors. The
software development course was required for computer
science majors, and the OSS development course was
offered as an elective, project course. The sizes of the classes
were twelve and three respectively.

Students in each course worked on OSS projects of their
choice. Those in the software development course worked on
projects that were forked from an existing OSS project, and
each of the three students in the OSS development course
participated in a different, active OSS project. This paper
presents preliminary findings based on the student course
evaluations and the instructor’s observations. The course
evaluations included survey questions about their
experiences on OSS projects. Because of the small class
sizes, the instructor was also able to closely observe
students’ project activities and their interactions with the
existing projects.

As mentioned, there were two different types of student
OSS projects. Students either joined active OSS projects or
initiated their own OSS projects by forking existing ones.
The former type provides the various learning opportunities
outlined above, while benefits of the latter type were
identified as follows:

 Students have full control over the projects. They
can execute the projects according to their own pace
and set their own rules and standards for project
activities.

 Students can become involved in various
management activities. First-time OSS participants,
especially student participants, can hardly contribute
to management tasks in a large, active OSS project
due to their lack of reputation, knowledge, and
experience. However, this type of OSS project
allows students to practice the full set of
management tasks.

 Students can better exercise reengineering activities.
This type of OSS project is relatively small, and thus
students can understand the existing code better and
more quickly. Consequently, the quality of the
outputs from refactoring and documenting the code
can be improved.

Despite these benefits, initiating a new OSS project may

not provide the full benefits of joining preexisting OSS
projects because, in a new project, students’ interactions are
limited to themselves. Thus, it is necessary to consider the
pros and cons of both project adaptation types according to
students’ needs and constraints.

96Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 107 / 160

B. Considerations for Using OSS Projects

As previously discussed, one of the challenges in
utilizing OSS projects is identifying appropriate OSS
projects for students. Feedback from our two courses shows
that the following criteria should be considered when
selecting OSS projects:

 Personal interest: Students indicated that a
significant factor motivating them the most was their
personal interest. Students were interested in
particular applications, technologies, systems,
subjects, or programming languages. They preferred
choosing OSS projects freely rather than choosing
ones from a list of pre-selected OSS projects.
Maintaining their interest while working on the
projects was considered one of the keys to having
successful projects.

 Community-related aspects: Project popularity and
status (i.e., active or inactive) should be considered.
These aspects can be measured by considering the
number of developers, weekly downloads, and the
organization of project websites.

 Software product-related aspects: Depending on
course requirements and students’ interests,
programming language, lines of code, platform or
system, development tools, code modularity, and
documentation can be used to screen projects for
students.

We found that prompt and helpful responses from the

OSS project’s existing developers highly encouraged
students to become deeply involved in the project’s
activities. Those students in the OSS development course
started to collaborate with the real-world developers, and
their contributions to the projects were reviewed by the
developers and adapted by the projects. Such collaborative
activities encouraged the students to keep working on the
projects even after the semester ended. Thus, the criteria to
measure community activities should be thoroughly
considered. Among the product-related aspects, code
modularity and documentation are essential factors for
estimating software quality. Yet, it is difficult to
automatically measure modularity and documentation levels.
Students should be guided to carefully examine these two
aspects while investigating potential OSS projects.

Another challenge is the steep learning curve during the
early phase of an OSS project. Students need to handle
development and/or build tools and set up the specific
environment that the development requires. Those tools may
be completely new to students, and the project may not
provide full instructions for building and configuring the
system. Software tools that are frequently involved in the
early phase include IDE, version control systems, build tools,
automatic testing tools, and bug/issue trackers.

For instructors, assessing students’ contributions to the
OSS project is a challenging task as well. When real-world
projects are brought to the classroom, the traditional methods
for evaluating student performance may not work properly.
Instructors then need to utilize information and data from the

project’s version control system and communication tools to
evaluate the students’ performances. At the same time, the
types, scopes, and difficulties of tasks should be considered.
Therefore, developing and presenting a rubric for code
commits, documentation, and communication activities will
be helpful in establishing course expectations.

IV. CONCLUSION

This paper presents the considerations, benefits, and
challenges of adapting real-world OSS projects to software
development courses. The use of OSS projects within the
classroom can be a good supplement to traditional
approaches for teaching software development. Despite the
aforementioned challenges, OSS projects provide various
opportunities for computer science students to explore and
learn new technologies according to their own interests. OSS
projects also allow students to take their knowledge from the
classroom and apply it to real-world experiences.

Student feedback from our courses shows that
participants gained a significant amount of knowledge from
different projects and people. Working on an OSS project
helped them build a comprehensive understanding of
software development, and contributing to real-world
projects was highly rewarding for them.

However, to better utilize real-world OSS projects in the
classroom, the following future work should be done:

 Criteria must be carefully considered to select
appropriate OSS projects according to course
requirements and student interests.

 Instructors should formulate guidelines to help
students cope with technical difficulties involved in
real-world development activities.

 Student performance evaluation criteria and
procedures must be specifically developed for non-
traditional, real-world, interactive activities.

We will keep utilizing OSS projects as supplementary

teaching tools for the software development course as well as
other related courses. Student feedback and data form the
courses will be used for the future work.

As another approach to better exploit OSS projects
within computer science courses, OSS components can be
introduced during the early stages of computer science
studies. This will encourage students to continuously work
on OSS projects according to their interests and knowledge
levels, and contributions to the projects will become a great
portfolio of their software development activities.

REFERENCES

[1] Black Duck, 2015 Future of Open Source Survey Results
[Online]. Availave from
https://info.blackducksoftware.com/web-future-of-open-
source-LP.html, 2018.08.07

[2] Black Duck, Future of Open Source Survey 2016 Results
[Online]. Available from
https://www.brighttalk.com/webcast/13983/199027,
2018.08.07

[3] G. Hislop, et al., “A Multi-institutional Study of Learning via
Student Involvement in Humanitarian Free and Open Source
Software Projects”, Proc. ICER 2015, 2015, pp. 199-206.

97Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 108 / 160

[4] B. R. Krogstie, “Power through Brokering: Open Source
Community Participation in Software Engineering Student
Projects”, Proc. ICSE 2008, 2008, pp. 791-800.

[5] R. Marmorstein, “Open Source Contribution as an Effective
Software Engineering Class Project”, Proc. ITICSE 2011,
2011, pp. 268-272.

[6] R. McCartney, S. Gokhale, and T. Smith, “Evaluating an
Early Software Engineering Course with Projects and Tools

from Open Source Software”, Proc. ICER 2012, 2012, pp. 5-
10.

[7] T. Smith, R. McCartney, S. Gokhale, and L. Kaczmarczyk,
“Selecting Open Source Software Projects to Teach Software
Engineering”, Proc. SIGCSE 2014, 2014, pp. 397-402.

[8] E. Stroulia, K. Bauer, M. Craig, K. Reid, and G. Wilson,
“Teaching Distributed Software Engineering with UCOSP:
The Undergraduate Capstone Open-Source Project”, Proc.
CTGDSD 2011, 2011, pp. 20-25.

98Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 109 / 160

Sentiment-aware Analysis of Mobile Apps User Reviews Regarding Particular Updates

Xiaozhou Li, Zheying Zhang, Kostas Stefanidis

Faculty of Natural Sciences, University of Tampere
Tampere, Finland

Email: xiaozhou.li@uta.fi, zheying.zhang@uta.fi, kostas.stefanidis@uta.fi

Abstract—The contemporary online mobile application (app)
market enables users to review the apps they use. These reviews
are important assets reflecting the users needs and complaints
regarding the particular apps, covering multiple aspects of the
mobile apps quality. By investigating the content of such reviews,
the app developers can acquire useful information guiding the
future maintenance and evolution work. Furthermore, together
with the updates of an app, the users reviews deliver particular
complaints and praises regarding the particular updates. Despite
that previous studies on opinion mining in mobile app reviews
have provided various approaches in eliciting such critical in-
formation, limited studies focus on eliciting the user opinions
regarding a particular mobile app update, or the impact the
update imposes. Hence, this study proposes a systematic analysis
method to elicit user opinions regarding a particular mobile app
update by detecting the similar topics before and after this update,
and validates this method via an experiment on an existing mobile
app.

Keywords–Mobile app; review; sentiment analysis; topic model-
ing; topic similarity

I. INTRODUCTION

The increasing number of smart phone users has led to
a continuous increase in the number of mobile apps and
their overall usage. Users browse and download apps via
different digital distribution platforms (e.g., Apple app store,
and Google Play). These platforms also provide an important
channel enabling the users to provide feedback to the app. The
ratings and comments given by the users at a particular time
reflect their opinions regarding the overall app and the specific
version of that app. While the app developers, continuously
or sporadically, update their apps, the retrieved user reviews
reflect not only their overall opinion changes throughout the
evolution time but also their specific complaints and praises re-
garding the specific app version [1]. Such specific complaints,
regarding various aspects [2], shall enable the developers to be
aware of the issues and tackle them accordingly.

Existing studies have proposed different approaches to
identifying change requests from user reviews for mobile app
maintenance. With various opinion mining techniques, such
as Natural Language Processing (NLP), Sentiment Analysis
(SA) and supervised learning, many studies have been con-
ducted regarding the classification of reviews towards different
issue perspectives [3] [4]. Other perspectives, such as user
preferences, app evaluation, user satisfaction, relation between
download and rating, feature extraction, review prioritization
and so on, have also been widely studied [5]–[9]. However,
limited studies focus on the use of such methods in opinion
mining on particular updates of a mobile app and the impact
on the app’s updates in the following releases, despite the

importance of such information. It is unclear how users’
attitude towards a particular issue changes when new updates
are released and how the reviews have impacts on app’s
maintenance and evolution.

In this paper, we investigate the correlation between users’
positive and negative reviews before and after an app’s release.
We consider two dimensions: time and sentiment. Specifically,
we divide user reviews based on major updates, and distinguish
them between those precede and follow the particular updates.
Each group of reviews are further divided into positive and
negative ones using sentiment analysis. We devise an approach
to measuring the similarity of each group of reviews. The
measurement reveals the similarity and changes between dif-
ferent groups of reviews and helps to gain insight into how
to detect users’ opinion changes regarding a particular update.
Furthermore, detecting the users’ update-specific opinions shall
also help the developers be aware of the users opinion on a
particular release and guides them proactively to address the
most important issues early.

The remainder of this paper is organized as follows. Section
II introduces the method with details. Section III presents a
case study using this method. Section IV introduces the related
works when Section V concludes the paper.

II. METHOD DESCRIPTION

In this section, we introduce our method with the main goal
to detect the correlation between the content of app reviews
before and after the app updates done by the app company
through the app maintenance lifecycle. Such correlation shall
show the degree in which the users comments are reflected
in the sequence of updates and such updates are accepted
by the users. The factors that influence and reflect such
correlation include the main topics of the reviews between each
two updates, the sentiment of those reviews, and the topics
similarities before and after each update. Next, we illustrate
how to detect the correlation via investigating these factors.
Accordingly, Subsection A introduces the overall procedure
of the method and brings forth the hypotheses it aims to
verify. Subsection B and C introduce respectively how to
analyze the sentiment and topics of user reviews. Subsection D
introduces how to calculate the similarity between topics, when
Subsection E presents how to identify the matching similar
topics between review sets.

A. Preliminaries
Let R be a collection of user reviews for a particular mobile

app A, covering a particular time period. Therein, each review
ri ∈ R is associated with a particular time point, at which

99Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 110 / 160

the review ri is published. Let also U be the set of updates
released by the app developers within the time period with
each update ui is released at a particular time point as well.
Therefore, we consider each review ri, which is published after
the release time of update ui and before that of the next update
ui+1, as a review regarding the update ui. Hence, for the n
updates {ui|i ∈ N, k ≤ i < k + n} where k ≥ 1 and n > 0
for the app A within a time period, the review set R can be
divided into n + 1 subset where each Ri ⊆ R is the set of
reviews commenting on the according ui. R0 is the review set
correlated with the last update before u1 or the first version
of A if u1 is the first update of A. For each review rj ∈
Ri, a sentiment score shall be calculated and assigned to rj ,
whose the sentiment is either positive or negative. In this
way, by identifying the sentiment of each individual review
in Ri, we can divide Ri positive review set R+

i and negative
review set R+

i , where R+
i ∪R

−
i = Ri and R+

i ∩R
−
i = ∅ with

an acceptable accuracy.
We further investigate the main topics for each of the pos-

itive and negative review sentence sets. We assign T+
i and T−i

as the topic set for the positive and negative reviews. Therefore,
we investigate the merits and issues of a particular update ui

by comparing the similarities and changes between T+
i−1, T−i−1,

T+
i , and T−i . Specifically, the following hypotheses shall be

verified.

• H1. The topic similarities between T+
i−1 and T+

i reflect
the merits regarding the app A in general.
• H2. The topic similarities between T+

i−1 and T−i reflect
the uncomfortable changes in the update ui.
• H3. The topic similarities between T−i−1 and T+

i reflect
the improvement in the update ui.
• H4. The topic similarities between T−i−1 and T−i reflect

the remaining issues regarding the app A.

Figure 1. Relationship between hypotheses and updates.

Thus, the results obtained from these hypotheses for up-
dating ui provide the following information: 1) the merits and
issues for the app A in general, 2) the merit and issues specific
to the update ui, and 3) the improvements and drawbacks of ui

compared with ui−1. The merits and issues for app A and those
for each ui ∈ U shall be recorded as the evolution status of app
A throughout period T , which can be used as the reference to

guide planning the following updates. Figure 1 visually depicts
the focus of our hypotheses for updating ui.

B. Sentiment Classification
The aim of sentiment classification in this method is to

classify each review set Ri into two subsets, i.e., R+
i and R−i .

Herein, R+
i denotes the set of positive reviews from Ri, and

R−i denotes the set of negative reviews. Therefore, each rj in
Ri shall be determined whether it is positive or negative.

To do so, we assign a sentiment score to each review
by exploiting a robust tool for sentiment strength detection
on social web data [10]. As each rj can be seen as a list
of words Wj , we first select a lexicon that will determine
the sentiment score of each word wz in Wj . The lexicon for
sentiment analysis is a list of words used in English language,
each of which is assigned with a sentiment value in terms of its
sentiment valence (intensity) and polarity (positive/negative).
To determine the sentiment of words, we assign a rational value
within a range to a word. For example, if the word “okay” has
a positive valence value of 0.9, the word “good” must have
a higher positive value, e.g., 1.9, and the word “great” has
even higher value, e.g., 3.1. Furthermore, the lexicon set shall
include social media terms, such as Western-style emoticons
(e.g., :-)), sentiment-related acronyms and initialisms (e.g.,
LOL, WTF), and commonly used slang with sentiment value
(e.g., nah, meh).

Figure 2. Algorithm for Sentiment Classification

With the well-established lexicon, and a selected set of
proper grammatical and syntactical heuristics, we shall then
be able to determine the overall sentiment score of a review.
Namely, the sentiment score of a review rj is equal to Sj ,
where Sj ∈ (−1, 1). The grammatical and syntactical heuris-
tics are seen as the cues to change the sentiment of word sets.
Therein, punctuation, capitalization, degree modifier, and con-
trastive conjunctions are all taken into account. For example,
the sentiment of “The book is EXTREMELY AWESOME!!!”
is stronger than “The book is extremely awesome”, which is

100Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 111 / 160

stronger than “The book is very good.”. With both the lexicon
value for each word of the review, and the calculation based on
the grammatical and syntactical heuristics, we can then assign
unique sentiment values to each review. That is, each review
rj is classified into positive, neutral or negative, as following:

rj is

{ positive, if 0 < Sj < 1,
neutral, if Sj = 0,
negative, if − 1 < Sj < 0.

Overall, each review set Ri is divided into R+
i , R0

i , and
R−i , denoting the positive, neutral and negative review sets. To
further investigate the information in R0

i , after experimentally
observing that typically includes a big number of reviews,
we classify it into positive and negative using the Naive
Bayes Classifier with the training data from R+

i and R−i . This
way, R0

i is classified into R0+
i and R0−

i , which in turn, are
added to R+

i and R−i , respectively. The reason to perform
supervised classification after sentiment analysis instead of
directly applying classification is twofold. Firstly, manually
creating training data is time-consuming and less accurate than
using existing sentiment analysis methods. Secondly, training
the sentiment classified reviews will provide domain specific
and reliable results. The process is described in Figure 2.

C. Topic Analysis

After dividing the review sets Ri and Ri−1, i.e., the review
sets related to update ui, into R+

i , R−i , R+
i−1 and R−i−1 based

on the sentiment classification method, we elicit the main
topics from each of the classified review sets by exploiting
the Latent Dirichlet Allocation (LDA) method [11]. First, we
consider each review sentence rj in a particular set of reviews
as a list of words Wj , where the sequence of the words is
not recorded. The number of topics in this review set is set
as t. Presumably, there is a distribution for the probability of
a particular word appears in a particular topic, when there is
also one for that of a particular review in a topic. We build
the set of Review − Topic, where each word of each review
is assigned with a topic out of the t topics. As preparation, we
define Review−topic−numbers, Topic−words−numbers,
and Topic− numbers denoting the number of occurrence of
each topic in each review, the number of occurrence of each
word in each topic, and the number of words in each topic,
respectively. For example, Review− topic− numbers(rj , k)
denotes the number of occurrences of topic k in review rj .
Then, we randomly assign each word wz of each review rj
with a topic tk. Accordingly, the Review− topic−numbers,
Topic − words − numbers, and Topic − numbers will
be updated as the referencing weight of the distribution the
words for each topic. Then iteratively, for each word, we
assign a new topic based on such weight of distribution
and adjust the weight with the Review − topic − numbers,
Topic − words − numbers, and Topic − numbers for the
next iteration. After a given number of iteration, t topics will
be determined by the Topic − words − numbers, which is
the number of occurrences of the words in each topic. Each
tk is then denoted by the most common keywords used in this
topic. Then, the set of topics T are returned as result. For the
review sets R+

i , R−i , R+
i−1 and R−i−1, we will have the topics

sets T+
i , T−i , T+

i−1 and T−i−1 accordingly.

D. Calculating Topics Similarities
Based on the topic sets T+

i , T−i , T+
i−1 and T−i−1 elicited

from the review sets R+
i , R−i , R+

i−1 and R−i−1, we further
analyze the similarities between the individual topics between
each pair of the topic sets. As the result from the previous
topic analysis, each topic set T encompasses k topics, each of
which is represented by the list of the most possible appearing
keywords. Thus, each topic set T with k topics each of which
is represented by w keywords, can be denoted as:

T =

[
kw1,1 kw1,2 ... kw1,w

...
kwk,1 kwk,2 ... kwk,w

]
with each ti ∈ T can be denoted as [kwi,1, kwi,2, ...kwi,k]. To
compare the similarity between two topic sets, each consisting
of t topics, we compare all pairs of topics. Due to the fact that
each topic is represented as a set of keywords, the similarity
of two topics shall be denoted by the common keywords of
these topics. Hence, an easy way for calculating the similarity
between any two topics ti and tj is by using the Jaccard
similarity. This similarity function reflects the percentage of
the common keywords of the two sets in the whole keywords
set of the two: J(ti, tj) =

|ti∩tj |
|ti∪tj | .

However, by using the Jaccard Similarity, we consider two
given topics are similar only when they contain a particular
number of common keywords, regardless of the probability
of them. The meaning of each topic ti ∈ T , denoted as
[kwi,1, kwi,2, ...kwi,k], shall be more likely reflected by the
high-probability keywords of ti. Furthermore, the subset of
only low-probability keywords may reflect different meanings.
For example, a topic is denoted as {’update’: 0.143, ’problem’:
0.096, ’fix’: 0.064, ’install’: 0.03, ’uninstall’: 0.029, ’open’:
0.027, ’stop’: 0.025, ’plea’: 0.025, ’get’: 0.022, ’reinstall’:
0.019, ’bug’: 0.019, ’start’: 0.019, ’need’: 0.014, ’applica-
tion’: 0.014, ’issue’: 0.011, ’battery’: 0.011, ’help’: 0.01,
’face’: 0.009, ’frustrate’: 0.009, ’day’: 0.008}. From the high-
probability keywords of this topic, we can summarize that the
topic is regarding the problems of updating, which requires
being fixed. However, the low-probability keywords hardly
reflect the topic, e.g., a keyword subset, {’reinstall’, ’bug’,
’start’, ’need’, ’application’, ’issue’, ’battery’}, reflects a very
different issue regarding bugs and batteries.

Hence, when comparing the similarity of two given top-
ics, the probability of the common keywords shall be taken
into account. Considering that Jaccard coefficient is the nor-
malized inner product [12], we herein adopt the similarity
measure method incorporating also the inner product, the
Kumar-Hassebrook (KH) similarity [13]. Provided between
topic ti and tj , the c common keywords are denoted as
[kwij,1, kwij,2, ...kwij,c], with the according probability list
in ti and tj is [pi,1, pi,2, ...pi,c] and [pj,1, pj,2, ...pj,c]. The
similarity of the two given topics are calculated as follows.

KH(ti, tj) =

∑c
x=1 pi,x · pj,x∑k

x=1 p
2
i,x +

∑k
x=1 p

2
j,x −

∑c
x=1 pi,x · pj,x

The probability for each keyword of any topic belongs
to (0,1). Hence, for this formula, when ti and tj contain
more common keywords, the numerator increases monotoni-
cally, and the denominator decreases monotonically. Therefore,
KH(ti, tj) increases when ti and tj have more keywords in

101Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 112 / 160

common. In addition, when the probability of the common
keywords increases,

∑c
x=1 pi,x · pj,x increases. Because the

denominator is greater than the numerator, and both are greater
than 0, KH(ti, tj) increases when the probabilities of the
common keywords of ti and tj increase.

In this way, for two given topics ti and tj , when each
keyword of these two topics is assigned the average value of
the probability value set, then KH(ti, tj) = J(ti, tj). Consid-
ering the monotonical increasing of the KH Similarity formula,
it means that for ti and tj , when KH(ti, tj) <J(ti, tj),
the common keywords of these two topics hardly reflect the
meaning of them. For example, two topics, denoted as the
following set of keywords with the according probability of
each keywords, are listed in Table I.

TABLE I. EXAMPLE TOPICS WITH KEYWORDS AND PROBABILITY

Topic 1 {’problem’: 0.145, ’fix’: 0.081, ’download’: 0.051, ’please’:
0.032, ’use’: 0.025, ’reason’: 0.021, ’service’: 0.02, ’user’:
0.015, ’issue’: 0.015, ’data’: 0.014}

Topic 2 {’version’: 0.197, ’please’: 0.121, ’go’: 0.069, ’use’: 0.043,
’option’: 0.036, ’one’: 0.028, ’lot’: 0.027, ’revert’: 0.021,
’way’: 0.018, ’download’: 0.018}

The Jaccard Similarity of these two topic is 0.176 when
the KH Similarity is 0.064. We can observe that the common
keywords, {’download’, ’please’, ’use’}, are of low probability
in Topic 1 and keywords {’please’, ’use’} in Topic 2, while
neither topic is reflected by the common keywords. Topic 1
can be seen regarding the requests of fixing problems/bugs
when Topic 2 is more related to keyword ’version’ instead of
’download’. Thus, these two given topics cannot be considered
as similar despite the high Jaccard Similarity.

E. Identifying Matching Topics

After computing similarities between pairs of review topics
with KH similarity, we shall identify which are the matching
topics when cross-comparing the topics of the topics sets T+

i ,
T−i , T+

i−1 and T−i−1. Hence, to identify the matching topics
between two review topic sets Ta and Tb, the aim is to identify
all the topic pairs (tai, tbj), tai ∈ Ta and tbj ∈ Tb, that have
the high similarity. Starting from the pair of topics with highest
similarity values,

We firstly use the Jaccard Similarity value of two particular
topics as the threshold for their KH similarity. According to the
formula of KH similarity given previous, we set the probability
of each keyword in each topic equal to the average. Then

KH(tai, tbj) =

∑c
x=1 p

2∑k
x=1 p

2 +
∑k

x=1 p
2 −

∑c
x=1 p

2

=
c

k + k − c
= J(tai, tbj)

Therefore, we select the topic pairs, whose KH similarity
value greater than their Jaccard similarity value, as similar
topics. Furthermore, from the topic pairs with the highest
KH similarity value, we select the top n pairs of topics
to investigate the changes and similarities of users opinion
regarding the app.

Figure 3. Algorithm for Matching Topic Identification

The aim of the algorithm (shown in Figure 3) is to select
the similar topic pairs with the highest similarity value. When
a particular topic pair is selected, the other pairs, which either
of these two selected topics is also pairing with and have also
high similarity, will be considered as references to interpret
the users opinions. Each particular topic generated by the LDA
model contains a number of perspectives that can be interpreted
by the keywords. Thus, it is possible that one particular topic
have the similar similarity value to multiple topics, when they
are similar regarding different perspectives which represented
by their different common keywords.

TABLE II. EXAMPLE TOPICS WITH KEYWORDS AND PROBABILITY

Topic 1 {’time’: 0.12, ’friend’: 0.091, ’talk’: 0.081, ’way’: 0.069,
’see’: 0.048, ’people’: 0.045, ’communication’: 0.038,
’want’: 0.03, ’face’: 0.023, ’world’: 0.02 }

Topic 2 {’friend’: 0.111, ’bring’: 0.07, ’connect’: 0.068, ’talk’: 0.06,
’keep’: 0.059, ’family’: 0.054, ’application’: 0.037, ’way’:
0.021, ’touch’: 0.017, ’contact’: 0.016 }

Topic 3 {’see’: 0.077, ’use’: 0.056, ’people’: 0.046, ’want’: 0.044,
’contact’: 0.034, ’thing’: 0.031, ’year’: 0.027, ’find’: 0.023,
’know’: 0.023, ’number’: 0.019 }

For example, in Table II Topic 1 has the same Jaccard sim-
ilarity value to both Topic 2 and 3. The two pairs of common
keywords are {’friend’, ’talk’, ’way’} and {’people’, ’see’,
’want’}. Their KH similarity values are different but both high
(0.276 and 0.137). From Topic 1, we could summarize that it
is regarding using the app enabling people to communicate
with friends any time they want and can see their faces as
well. Despite it is considered similar to both Topic 2 and 3,
Topic 2 focuses on the perspective of enabling communication
between families and friends, when Topic 3 focus more on
the perspective of contacting people with phone numbers and
seeing them. Thus, by identifying both similar topic pairs, we
shall have more thorough understanding of the users’ opinions
regarding the app.

III. CASE STUDY

A. Preprocessing
Before starting the experiment with the proposed method,

preprocessing on the raw review data is required. The whole

102Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 113 / 160

preprocessing work can be divided into three individual steps
as follows.
Filtering non-English reviews. The raw review data may
contain a number of review items that are not written in
English, which needs to be filtered out. Also, similar to social
media text, user reviews usually contain many commonly
used slurs that are not regular English vocabularies. Our
goal is to not filter out these words, as they likely contain
sentiment related information, without which shall influence
our experiment results. Overall, we screen out the non-English
review sentences using Langdetect [14], a convenient language
detecting package for Python language. Compared with PyEn-
chant [15], another language detecting package, Langdetect
enables determining the language of text on sentence level. It
shall remain the review data containing such English slurs.
Focusing on sentence-level granularity. Due to the fact that
each user review can contain more than one sentence, a multi-
sentence review can contain multiple meanings, one for each
sentence. Thus, we divide each review from a review set Ri

into individual sentences. Hereafter, we use rj to denote a
review sentence in Ri. We use the sentence tokenizer feature
from the NLTK [16] python package, with a further checking
on the legitimacy of the sentences.
Filtering stop-words and lemmatization. In addition, the
collected English review sentences are also transformed into
lower cases, screened with stop-words, and lemmatized before
topic modeling. In order to obtain more meaningful topic
modeling results, we add the words that connect to only
general information but have significant appearing rate in the
reviews to the list of stop words. For example, the name
of the app and the word app are of neither help towards
topic modeling nor towards sentiment analysis. In addition,
considering the fact that the sentiment of each review item is
identified, we eliminate all adjectives from the obtained tokens
and select only nouns and verbs as tokens via the pos tag
function of NLTK.
Sentiment Classification with VADER. To perform sentiment
analysis on the collected app reviews, we select the Valence
Aware Dictionary for sEntiment Reasoning (VADER) approach
[10]. Compared with other sentiment analysis tools, VADER
has a number of advantages regarding this study. Firstly, the
classification accuracy of VADER on sentiment towards posi-
tive, negative and neutral classes is even higher than individual
human raters in social media domain. In addition, its overall
classification accuracies on product reviews from Amazon,
movie reviews, and editorials from NYTimes also outperform
other sentiment analysis approaches, such as SenticNet [17],
SentiWordNet [18], Affective Norms for English Words [19],
and Word-Sense Disambiguation [20], and run closely with
the accuracy of individual human. On the other hand, VADER
approach is integrated in the NLTK package, which can be
easily imported and performed using Python.

B. Dataset
Our study relies on real data. In particular, we focus on

reviews submitted for 1-year period of Skype on the Android
platform. We collected 153,128 user reviews submitted from
1.9.2016 to 31.8.2017. The reviews are tokenized into 234,064
individual sentences. After filtering the non-English review
sentences, the number is reduced to 174,559.

We investigate the merits and issues concerning the major
update of Skype released on Android platform on 1.6.2017

(ui = version-1.6.2017). Within this period from 1.9.2016 to
31.8.2017, 76 updates were released. On average, the app has
been updated nearly every five days. By observing the content
of each update from the given information of Google Play,
we find that some consecutive updates contain exact same
content based on their descriptions. Therefore, we consider
the first update of a set of updates which contain same
descriptions as a major update, when the rest of the update set
as minor update. Amongst the major updates of Skype during
this period, the update ui provide significant changes in UI
design and user experiences. By classifying all selected review
sentences into positive and negative using sentiment analysis
and supervised classification with Naive Bayes Classifier, the
number of review sentences in each segment is listed in Table
III. Accordingly, the review sets R+

i−1, R−i−1, R+
i , and R−i ,

for this study, consists of 65580, 29970, 36703, and 42306
reviews.

TABLE III. POSITIVE AND NEGATIVE REVIEWS AROUND A
PARTICULAR APP UPDATE

Positive reviews Negative reviews Total
Before 1.6.2017 65,580 29,970 95,550
After 1.6.2017 36,703 42,306 79,009

Total 102,283 72,276 174,559

Overall, the total number of positive reviews around the
particular update is bigger than the number of negative reviews.
Meanwhile, the monthly review number increased sharply after
this particular major update. Opposite to the situation before
the update, we observe that after the update more negative
reviews are given by the users than the positive ones, meaning
that many users are not satisfied with this particular update or
the app overall.

TABLE IV. NUMBER OF REVIEWS PER TOPIC

t+
(i−1)1

t+
(i−1)2

t+
(i−1)3

t+
(i−1)4

t+
(i−1)5

13627 3104 3168 6283 4725
t−
(i−1)1

t−
(i−1)2

t−
(i−1)3

t−
(i−1)4

t−
(i−1)5

8692 6016 4122 6105 9738

t+i1 t+i2 t+i3 t+i4 t+i5
3519 2892 4204 1895 3433
t−i1 t−i2 t−i3 t−i4 t−i5

2409 2700 2794 2408 3716

t+
(i−1)6

t+
(i−1)7

t+
(i−1)8

t+
(i−1)9

t+
(i−1)10

7768 2796 3134 3186 3391
t−
(i−1)6

t−
(i−1)7

t−
(i−1)8

t−
(i−1)9

t−
(i−1)10

4810 3399 3244 2798 2177

t+i6 t+i7 t+i8 t+i9 t+i10
4818 4132 4463 3237 4635
t−i6 t−i7 t−i8 t−i9 t−i10

3139 3893 3229 6252 4508

After sentiment analysis and classification, we perform the
LDA topic analysis to identify the topics of the review set
R+

i−1, R−i−1, R+
i , and R−i , in order to investigate the users

opinions concerning the update and further verify the previ-
ously proposed hypothesis. To train the LDA topic models, we
need to set the number of topics k. Based on an experimentally
study regarding the quality of the topics produced for different
k values, and select k = 10.

Overall, for the collected 174,559 review sentences on
Skype, we perform an LDA topic analysis on the review set
R+

i−1, R−i−1, R+
i , and R−i . For each of the 4 sets of review data,

103Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 114 / 160

we use the Gensim topic modeling toolbox to train the 10-topic
LDA models. For the 4 LDA models, each individual topic
is represented by 20 keywords. Then, we assign each review
sentence in the LDA models to the topic to which it has the
highest probability to belong. The numbers of reviews for each
topic of the 4 data sets appear in Table IV (t+in represents the
nth topic of R+

i). In general, reviews are divided into topics
smoothly and, in most cases, each topic consists of around
4000 review sentences.

C. Topics Similarity Analysis
With the 40 identified topics, each of which is represented

by 20 keywords, we compare the similarity between each topic
from the 20 topics before the update and each one from the
20 topics after the update, which provides 400 topics pairs.
The Jaccard similarity values for those 400 pairs range from 0
to 0.429 (i.e., 0 - 12 common keywords between two topics).
Meanwhile, the KH similarity values range from 0 to 0.676.
Therein, we identify the potential similar topics from the high-
est KH similarity value and eliminate the results where the KH
similarity value is lower than the according Jaccard similarity
value. In this way, we guarantee the common keywords of
each identified topic pairs contain the overall probability value
greater than average. We select the seven topic pairs with the
highest KH similarity values for each comparison set. For
each topic pair, we analyze the similarity of the two topics
by observing their common keywords. Furthermore, from the
unique keywords of each topic from one particular topic pair,
we could also see the topic changes. The seven topic pairs
with the highest KH similarity value are depicted in Table V.

TABLE V. PAIRS OF SIMILAR TOPICS

T+
i−1 - T+

i (t+
(i−1)8

, t+i5) (t+
(i−1)6

, t+i6) (t+
(i−1)7

, t+i9) (t+
(i−1)6

, t+i1)
(t+

(i−1)6
, t+i5) (t+

(i−1)1
, t+i7) (t+

(i−1)8
, t+i3)

T+
i−1 - T−

i (t+
(i−1)6

, t−i10) (t+
(i−1)6

, t−i5) (t+
(i−1)8

, t−i7) (t+
(i−1)5

,
t−i6) (t+

(i−1)7
, t−i8) (t+

(i−1)8
, t+i10) (t+

(i−1)2
, t+i3)

T−
i−1 - T+

i (t−
(i−1)3

, t+i6) (t−
(i−1)7

, t+i3) (t−
(i−1)5

, t+i1) (t−
(i−1)3

, t+i5)
(t−

(i−1)10
, t+i8) (t+

(i−1)1
, t+i4) (t+

(i−1)6
, t+i9)

T−
i−1 - T−

i (t−
(i−1)3

, t−i10) (t−
(i−1)10

, t−i3) (t−
(i−1)6

, t−i8) (t−
(i−1)7

,
t−i9) (t+

(i−1)7
, t+i6) (t+

(i−1)8
, t+i6) (t−

(i−1)8
, t−i9)

By further analyzing the common keywords in the obtained
similar topic pairs, we verify the hypothesis H1 - H4 as
follows.
H1. The topic similarities between T+

i−1 and T+
i reflect

the merits regarding the app A in general. The common
keywords of the seven topics pairs with the highest KH
similarity value appear in Table VI. For example, the common
keywords of topics (t+(i−1)8, t+i5) reflects the acknowledgement
from the users before and after the update. Because, the
common keywords ’work’ and ’call’ indicate that the core
function of the app works properly. The common keywords
of topics (t+(i−1)6, t+i6) reflect the users acknowledge also the
benefits brought by the app, e.g., enabling people to chat
in groups, with video or by calling, so that people can see
and hear from their friends. On the other hand, topic pair
(t+(i−1)7, t+i9) contains the common keywords that reflect the
users needs in adding features and fixing bugs. Considering
the overall positive sentiment of the review sets, it is also
possible the users reflect their satisfaction towards the work
done by the developers regarding such matters. Topic pair

(t+(i−1)6, t+i5) reflects the users satisfied with the video and
audio quality of the app. As topic t+i5 is also similar to t+(i−1)8,
both topic pairs reflect similar information. Topic pair (t+(i−1)1,
t+i7) reflects the contribution of the app to the society in a bigger
picture, regarding the communication between friends and
family and helping people keep in touch. Topic pair (t+(i−1)6,
t+i1) contain few common keywords; however, as t+(i−1)6 is also
similar to topic t+i6 and t+i5, all these topic pairs reflect similar
information.

TABLE VI. COMMON KEYOWRDS IN POSITIVE-POSITIVE REVIEWS

Topic Pairs Common Keywords
(t+

(i−1)8
, t+i5) [’call’, ’phone’, ’sound’, ’work’]

(t+
(i−1)6

, t+i6) [’call’, ’chat’, ’friend’, ’group’, ’hear’, ’make’, ’people’,
’person’, ’phone’, ’see’, ’video’]

(t+
(i−1)7

, t+i9) [’add’, ’bug’, ’everything’, ’fix’, ’hope’, ’issue’, ’make’,
’need’, ’please’]

(t+
(i−1)6

, t+i1) [’people’, ’use’, ’year’]

(t+
(i−1)6

, t+i5) [’call’, ’make’, ’phone’, ’quality’, ’video’, ’voice’]

(t+
(i−1)1

, t+i7) [’application’, ’communicate’, ’connect’, ’family’, ’friend’,
’get’, ’help’, ’touch’, ’way’]

(t+
(i−1)8

, t+i3) [’connection’, ’internet’, ’keep’, ’nothing’, ’work’]

H2. The topic similarities between T+
i−1 and T−i reflect

the uncomfortable changes in the update ui. The common
keywords of the selected similar topic pairs are shown in Table
VII. The common keywords of topics (t+(i−1)6, t−i10) reflects
negative user reviews regarding the apps core feature exist,
despite the positive feedback before this update. According to
t−i10, the aspects which users complain about include calling
in general, the user interface, video and sound quality, and
connections. Meanwhile, t−i10 is also considered similar to
t+(i−1)8. Topic t+(i−1)8 indicates that before the update many
users like the internet connection of this app with wifi on
computer and tablet. Topic pair (t+(i−1)5, t−i6) reflects that issues
concerning the user accounts, including logging in, signing up,
passwords emerge after the update, where the users complain
quite often. Furthermore, the topic pair (t+(i−1)7, t−i8) indicates
that many users complain about the developers fixing problems
negatively, despite many others reflect the issue with positive
sentiment (see topic pair (t+(i−1)7, t+i9)).

TABLE VII. COMMON KEYOWRDS IN POSITIVE-NEGATIVE
REVIEWS

Topic Pairs Common Keywords
(t+

(i−1)6
, t−i10) [’call’, ’connect’, ’hear’, ’make’, ’person’, ’phone’, ’qual-

ity’, ’video’, ’voice’]
(t+

(i−1)6
, t−i5) [’make’, ’use’, ’year’]

(t+
(i−1)8

, t−i7) [’need’, ’work’]

(t+
(i−1)5

, t−i6) [’account’, ’go’, ’keep’, ’let’, ’log’, ’password’, ’sign’, ’try’,
’win’]

(t+
(i−1)7

, t−i8) [’fix’, ’please’, ’problem’, ’thing’]

(t+
(i−1)8

, t−i10) [’call’, ’connection’, ’drop’, ’phone’, ’sound’, ’work’]

(t+
(i−1)2

, t−i3) [’conversation’, ’get’, ’take’, ’time’, ’type’]

H3. The topic similarities between T−i−1 and T+
i reflect the

improvement in the update ui. The common keywords of
the selected similar topic pairs are shown in Table VIII. The
common keywords of topics (t−(i−1)3, t+i6) reflect that before the
update, many users have complaint regarding using the app for
phone calls in general. After the update, a number of positive

104Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 115 / 160

reviews towards this matter appear. Considering the topic pair
(t−(i−1)3, t+i5), users also switch the attitude regarding the video
and sound quality to positive after the update. Topic pair
(t−(i−1)7, t+i3) reflects the general positive acknowledgement of
the update. Topic pair (t−(i−1)10, t+i8) reflects the users attitude
towards the message notification feature has changed into
positive. (t−(i−1)1, t+i4) reflects the general positive feedback
regarding the new version while (t−(i−1)6, t+i9) reflects the
positive feedback on having some bugs fixed in this version.

TABLE VIII. COMMON KEYOWRDS IN NEGATIVE-POSITIVE
REVIEWS

Topic Pairs Common Keywords
(t−

(i−1)3
, t+i6) [’call’, ’get’, ’hear’, ’make’, ’people’, ’person’, ’phone’,

’see’, ’talk’, ’time’, ’video’]
(t−

(i−1)7
, t+i3) [’get’, ’update’, ’win’, ’work’]

(t−
(i−1)5

, t+i1) [’get’, ’try’, ’use’, ’year’]

(t−
(i−1)3

, t+i5) [’call’, ’make’, ’phone’, ’quality’, ’sound’, ’time’, ’video’,
’voice’]

(t−
(i−1)10

, t+i8) [’message’, ’notification’, ’open’, ’see’, ’send’, ’show’,
’take’]

(t−
(i−1)1

, t+i4) [’version’]

(t−
(i−1)6

, t+i9) [’bug’, ’fix’, ’get’, ’lot’, ’please’]

H4. The topic similarities between T−i−1 and T−i reflect
the remaining issues regarding the app A. The common
keywords of the selected similar topic pairs are shown in Table
IX. For example, the common keywords of topics (t−(i−1)3,
t−i10) reflects the users complaint regarding the general quality
of the app remains after the update, specifically concerning
connections, calling, audio and video quality, etc. On the
other hand, topic pair (t−(i−1)10, t−i3) reflects the problem with
sending and receiving messages with notifications still exist.
Furthermore, crashing is also a persisting issue that many users
complained about based on topic pair (t−(i−1)6, t−i8). Topic
pair (t−(i−1)7, t−i9), despite having only one common keyword,
reflects the users general negativity towards the update. Topic
pair (t−(i−1)7, t−i6) and (t−(i−1)8, t−i6) reflect the issues regarding
logging in and signing up with Microsoft account. Topic pair
(t−(i−1)8, t−i9) reflects the issues regarding user contact list when
specially t−i9 reflects the users’ complaints regarding contact
list syncing and status.

TABLE IX. COMMON KEYOWRDS IN NEGATIVE-NEGATIVE
REVIEWS.

Topic Pairs Common Keywords
(t−

(i−1)3
, t−i10) [’call’, ’connect’, ’drop’, ’hear’, ’make’, ’person’, ’phone’,

’quality’, ’sound’, ’time’, ’video’, ’voice’]
(t−

(i−1)10
, t−i3) [’get’, ’message’, ’notification’, ’open’, ’see’, ’send’, ’show’,

’take’, ’time’]
(t−

(i−1)6
, t−i8) [’crash’, ’fix’, ’give’, ’keep’, ’please’, ’problem’, ’star’,

’think’, ’time’]
(t−

(i−1)7
, t−i9) [’update’]

(t−
(i−1)7

, t−i6) [’let’, ’login’, ’microsoft’, ’time’, ’try’, ’turn’, ’update’,
’win’]

(t−
(i−1)8

, t−i6) [’account’, ’keep’, ’make’, ’sign’]

(t−
(i−1)8

, t−i9) [’add’, ’contact’, ’list’, ’sync’]

Conclusively, we could summarize the users’ opinion
before and after the particular update (version 1.6.2017) as
follows:

The merits in general:

1) (t+(i−1)8, t+i5): calling feature works.
2) (t+(i−1)6, t+i6), (t+(i−1)1, t+i7): people can chat in group with

video and calls, connecting with family and friends.
3) (t+(i−1)7, t+i9): added features and bugs fixed.
4) (t+(i−1)6, t+i5): the video and sound quality.

The uncomfortable changes:
1) (t+(i−1)6, t−i10): user interface, connection, and calling

quality in general.
2) (t+(i−1)5, t−i6): the user accounts, including logging in,

signing up, passwords.
3) (t+(i−1)7, t−i8): bugs fixes.

The improvement:
1) (t−(i−1)7, t+i3): update in general.
2) (t−(i−1)10, t+i8): message notification.
3) (t−(i−1)3, t+i6), ((t−(i−1)3, t+i5): calling in general, video and

sound quality.

The remaining issues:
1) (t−(i−1)3, t−i10): update in general.
2) (t−(i−1)10, t−i3): sending and receiving messages with no-

tifications.
3) (t−(i−1)6, t−i8): crashing.
4) (t−(i−1)7, t−i9): the new version
5) (t−(i−1)7, t−i6), (t−(i−1)8, t−i6): login and signup with Mi-

crosoft accounts.
6) (t−(i−1)8, t−i9): contact list syncing and status update.

Interestingly, these points are verified by the short notes
of Skype developers regarding their updates [21]. Specifically,
the above topics can be associated with the following origi-
nal developers claims: (a) General performance and reliabil-
ity improvements (Version 2017.08.15, Version 2017.08.29:
phone calls, video calls and messaging quality), (b) Improved
sign in - sign back into your account more easily (Version
2017.08.15: ”log in” features, user account related functions),
(c) New controls added to help users manage vibration and
LED notification alerts. (Version 2017.07.05: notification), (d)
Improvements to PSTN call stability (Version 2017.07.05:
connection), (e) Messaging improvements Add content to
chats via the + button and enjoy more room for your messages.
(Version 2017.08.02: messaging), (f) The ability to add or
remove contacts from your profile (Version 2017.08.01), (g)
Activity indicators - see who’s currently active in your Chats
list (Version 2017.08.02: contacts and statuses). Hence, due
to the correlation between the previously mentioned issues
detected using our method and the content of the following
up updates, we can verify the existence of those issues.
However, whether the reason of the according update is the
user reviews is unknown. On the other hand, we can also
detect the disagreement amongst users’ opinions. For example,
a number of users think the calling quality deteriorated after
the update while many others think it was improved ((t+(i−1)6,
t−i10) and (t−(i−1)3, t+i6)). A number of users also think the
update improves the app when other users think it is just
as bad as the previous ((t−(i−1)7, t+i3) and (t−(i−1)3, t−i10)). We
can obtain more details regarding users’ different opinions by
further investigating the keywords-related review texts.

105Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 116 / 160

IV. RELATED WORK

The spontaneous feedback from the users, i.e., the user
reviews, helps effectively the evolution of the target system,
where a key to enable such feedback is to ease the users effort
in composing and uploading it [22]. For the contemporary
mobile apps, the app distribution platforms, e.g., Apple App-
Store, and Google Play, enable such spontaneous reviews of the
users and facilitate the developers in terms of maintaining and
evolving mobile apps [23]. Such feedback and reviews contain
helpful information for developers in terms of identifying
missing features and improving software quality [24]. From
those review information, user requirements can be elicited
continuously and, in a crowd-based fashion [25] [26].

The reviews of the mobile app users reflect a variety of
topics, which majorly cover the perspectives of bug reports,
feature requests, user experiences, solution proposal, informa-
tion seeking and giving, and general ratings [2]–[4].

For such purpose, NLP, SA, and supervised learning are
the common techniques used to classify user reviews [3] [4].
According to recent studies, the combination of NLP and SA
techniques has high accuracy in detecting useful sentences [4].
These techniques are also used in many other studies in terms
of review opinion mining [7] [9] [24].

Many studies have contributed to the user opinion mining
of mobile apps. Fu et al. [5] proposes WisCom, which can
detect why the users like or dislike a particular app based
on the users reviews throughout time and provide insights
regarding the users concerns and preferences in the app market.
Similar studies regarding mining information from app stores
data focus on different perspectives of the issues, e.g., the
correlations between ratings and download rank [6], ratings
and API use [27], review classification and useful sentences
detection [4]. On the other hand, Chen et al. [7] provides
the AR-miner framework, which facilitates the informative
reviews extraction, review grouping based on topics, review
prioritization and informative reviews presentation with visual-
ization. Guzman and Maalej [8] proposes an approach focusing
on feature extraction and sentiment analysis, which facilitates
the evaluation of individual app features. Similarly, Iacob and
Harrison [9] focuses also on the feature requests extraction but
via means of linguistic rules and LDA topic modeling. Many
studies also provide methods of using automatic classification
method to study mobile app user reviews [28] [29] [30]

Compared to the previous mentioned approaches in user
review opinion mining, our method aims towards the similar
topic detection and analysis concerning not only the app in
general but also the particular major updates. Furthermore, we
focus on the topic similarity of data segments, classified by
sentiment analysis and supervised learning, which is different
from the methods mentioned above. It enables the developers
to acquire information regarding each individual update and
will provide insights on the future updates.

V. CONCLUSION

In this study, we propose a method for analyzing the
correlation of mobile apps user reviews before and after a
particular app updates in order to detect how users’ opin-
ions change with the update released. After classifying the
reviews before and after a particular update by positive and
negative sentiment, we extract the topics of each segment.

By comparing the similarities of these extracted topics, we
identify both the positive and negative issues reflected by these
reviews regarding the particular update and the app in general.
Overall, this study is an exploratory investigation on using user
review opinion mining techniques in detecting update-specific
issues. The future studies shall extend the use of this method to
the whole maintenance lifecycle of mobile apps to investigate
the broader correlation between users feedback and the apps’
update trends. Releasing strategies improvement based on this
method will also be studied. Other factors, e.g., the different
app categories, different platforms, and different mining and
analysis techniques will also be taken into account.

REFERENCES

[1] X. Li, Z. Zhang, and J. Nummenmaa, “Models for mobile applica-
tion maintenance based on update history,” in Evaluation of Novel
Approaches to Software Engineering (ENASE), 2014 International
Conference on. IEEE, 2014, pp. 1–6.

[2] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
app users complain about?” IEEE Software, vol. 32, no. 3, 2015, pp.
70–77.

[3] W. Maalej and H. Nabil, “Bug report, feature request, or simply
praise? on automatically classifying app reviews,” in 2015 IEEE 23rd
international requirements engineering conference (RE). IEEE, 2015,
pp. 116–125.

[4] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user reviews
for software maintenance and evolution,” in Software maintenance and
evolution (ICSME), 2015 IEEE international conference on. IEEE,
2015, pp. 281–290.

[5] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,”
in Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2013, pp. 1276–1284.

[6] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: Msr
for app stores,” in Proceedings of the 9th IEEE Working Conference
on Mining Software Repositories. IEEE Press, 2012, pp. 108–111.

[7] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner: mining
informative reviews for developers from mobile app marketplace,” in
Proceedings of the 36th International Conference on Software Engi-
neering. ACM, 2014, pp. 767–778.

[8] E. Guzman and W. Maalej, “How do users like this feature? a fine
grained sentiment analysis of app reviews,” in Requirements Engineer-
ing Conference (RE), 2014 IEEE 22nd International. IEEE, 2014, pp.
153–162.

[9] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, 2013, pp.
41–44.

[10] C. H. E. Gilbert, “Vader: A parsimonious rule-based model for senti-
ment analysis of social media text,” in ICWSM, 2014.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, 2003, pp. 993–1022.

[12] T. T. Tanimoto, “Ibm internal report,” Nov, vol. 17, 1957, p. 1957.
[13] B. V. Kumar and L. Hassebrook, “Performance measures for correlation

filters,” Applied optics, vol. 29, no. 20, 1990, pp. 2997–3006.
[14] Langdetect, https://pypi.python.org/pypi/langdetect, last accessed on

06/20/18.
[15] Pyenchant, https://pypi.python.org/pypi/pyenchant, last accessed on

06/20/18.
[16] NLTK, http://www.nltk.org, last accessed on 06/20/18.
[17] E. Cambria, R. Speer, C. Havasi, and A. Hussain, “Senticnet: A

publicly available semantic resource for opinion mining.” in AAAI fall
symposium: commonsense knowledge, vol. 10, no. 0, 2010.

[18] S. Baccianella, A. Esuli, and F. Sebastiani, “Sentiwordnet 3.0: an
enhanced lexical resource for sentiment analysis and opinion mining.”
in Lrec, vol. 10, no. 2010, 2010, pp. 2200–2204.

106Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 117 / 160

[19] M. M. Bradley and P. J. Lang, “Affective norms for english words
(anew): Instruction manual and affective ratings,” Citeseer, Tech. Rep.,
1999.

[20] M. Stevenson and Y. Wilks, “Word sense disambiguation,” The Oxford
Handbook of Comp. Linguistics, 2003, pp. 249–265.

[21] “Skype on Google Play,” URL: https://play.google.com/store/apps/
details?id=com.skype.raider, last accessed on 06/20/18.

[22] K. Schneider, “Focusing spontaneous feedback to support system evo-
lution,” in RE, pp. 165–174.

[23] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in Requirements Engineering Conference (RE), 2013 21st IEEE
International. IEEE, 2013, pp. 125–134.

[24] L. V. Galvis Carreño and K. Winbladh, “Analysis of user comments:
an approach for software requirements evolution,” in Proceedings of the
2013 International Conference on Software Engineering. IEEE Press,
2013, pp. 582–591.

[25] N. Seyff, F. Graf, and N. Maiden, “Using mobile re tools to give end-
users their own voice,” in Requirements Engineering Conference (RE),
2010 18th IEEE International. IEEE, 2010, pp. 37–46.

[26] E. C. Groen, J. Doerr, and S. Adam, “Towards crowd-based re-
quirements engineering a research preview,” in International Working
Conference on Requirements Engineering: Foundation for Software
Quality. Springer, 2015, pp. 247–253.

[27] G. Bavota, M. Linares-Vasquez, C. E. Bernal-Cardenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “The impact of api change-and fault-
proneness on the user ratings of android apps,” IEEE Trans. on Soft.
Engin., vol. 41, no. 4, 2015, pp. 384–407.

[28] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan, “Analyzing and
automatically labelling the types of user issues that are raised in mobile
app reviews,” Empirical Software Engineering, vol. 21, no. 3, 2016, pp.
1067–1106.

[29] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, “On the automatic
classification of app reviews,” Requirements Engineering, vol. 21, no. 3,
2016, pp. 311–331.

[30] Z. Sun, Z. Ji, P. Zhang, C. Chen, X. Qian, X. Du, and Q. Wan,
“Automatic labeling of mobile apps by the type of psychological needs
they satisfy,” Telematics and Informatics, vol. 34, no. 5, 2017, pp. 767–
778.

107Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 118 / 160

Database Model Visualization in Virtual Reality:
A WebVR and Benediktine Space Approach

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

e-mail: roy.oberhauser@hs-aalen.de

Abstract - As the data era and the Internet of Everything
unfolds, databases are becoming ubiquitous and an integral part
of software while alternative database types such as NoSQL
grow in popularity. Thus, software engineers, not just database
specialists, are more likely to encounter and need to deal with
these databases. While Virtual Reality (VR) technology has
increased in popularity, its integration in software development
tooling has been limited. One application area for WebVR
technology includes database-model visualization, permitting
web-based cross-platform and remote VR access. This paper
describes Virtual Reality Immersion in Data Models (VRiDaM),
a generic database-model approach for visualizing, navigating,
and conveying database-model information interactively in a
web browser using WebVR technology utilizing Benediktine
space visualization for heterogeneous (relational and NoSQL)
database models. A prototype shows its viability and an
empirical study looked at usability, effectiveness, and efficiency.

Keywords - virtual reality; database visualization; database
tools; visual development environments; database modeling;
software engineering; WebVR; Benediktine space.

I. INTRODUCTION

Data has become the most coveted "raw material" of both
our time and the foreseeable future, in some respects
analogous to a gold rush. Cisco estimates there will be 27bn
networked devices by 2021 [1]. The ongoing digitalization
involving Industry 4.0 and the Internet of Everything will
imply a large increase in databases to be able to store and
retrieve this data, in particular embedded databases. IDC
estimates the current annual data creation rate at 16.1ZB
(Zettabytes), and by 2025 163ZB, with embedded data by then
constituting nearly 20% of all data created [2]. As data
explodes, software engineers are increasingly faced with the
daunting task of structuring and analyzing such databases
across various DataBase Management System (DBMS) types,
including relational and NoSQL types such as document
(semi-structured), key-value, wide column (extensible
record), in memory, and graph [3].

Thus, software engineers are increasingly faced with
developing and maintaining software that integrates some
form of data repository, data store, or database. While the
original developers may have a clear (and correct to a certain
degree) mental model of their actual data model, the
maintenance situation is exacerbated by proliferation of
relational (mostly SQL) and NoSQL database types and the
relatively high turnover rates common in the software

industry, resulting in developers unfamiliar with the data
models attempting to quickly comprehend the database
structures involved with these software applications.

Humans tend to be visually-oriented and can detect and
remember visual patterns well. Information visualization has
the potential to support human understanding and insight
while dealing with resource constraints on the human as well
as computer side. Common ways for visually conveying
database structures include 2D entity-relationship (E-R)
modeling and diagrams [4], but these are typically applied to
relational databases (RDB) and NoSQL databases may or may
not have a tool that includes visual support. As to DBMS
tools, often a database product has a preferred product-
specific tool offering web-based or standard 2D graphical user
interfaces (GUIs), while certain tools support multiple
database products of one specific type (e.g., MySQL
workbench for SQL databases).

Contemporaneously, VR has made inroads in its
accessibility as hardware prices have dropped and capabilities
have improved. The VR market is rapidly expanding, with VR
revenue reaching $2.7bn in 2016, a 10-fold increase to $25bn
by 2021 [5]. However, software engineers mostly do not have
access to integrated VR capabilities in their development
tools. Broad VR usage is relatively new and this market
segment small compared to the general VR market.

This application paper contributes Virtual Reality
Immersion in Data Models (VRiDaM, pronounced like
freedom), a generalized approach to heterogeneous (relational
and non-relational) database-model visualization in VR ,
using WebVR in a web browser and a Benediktine-space [6]-
[9] visualization paradigm. Thus, database models from
different data store types can be visualized and navigated
(locally or remotely) in VR via a cross-platform web browser
and a VR headset and controller. We describe its principles
and features for visualizing, navigating, and conveying
database information interactively to support exploratory,
analytical, and descriptive cognitive processes [10]. A
prototype implementation demonstrates its viability and its
usability is evaluated in an empirical study.

The paper is organized as follows: the following section
discusses related work; Section 3 presents our solution
approach. In Section 4, our implementation is described. An
evaluation is described in Section 5, followed by a conclusion.

108Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 119 / 160

II. RELATED WORK
We are unaware of directly related work regarding

database visualization using VR. VR Juggler [11] provides
VR support for developing VR applications, but not for
database modeling and visualization. As to VR approaches for
software structure visualization, ExplorViz [12] is a WebVR
application that supports VR exploration of 3D software cities
using Oculus Rift together with Microsoft Kinect for gesture
recognition. As to non-VR visualization, [13] provides an
overview and survey of 3D software visualization tools across
various software engineering areas. Software Galaxies [14]
gives a web-based visualization of dependencies among
popular package managers and supports flying, with each star
representing a package clustered by dependencies. CodeCity
[15] is a 3D software visualization approach based on a city
metaphor and implemented in SmallTalk on the Moose
reengineering framework. X3D-UML [16] provides 3D
support with UML grouping classes in planes. In contrast,
VRiDaM focuses on visualizing database structures and
leverages WebVR capabilities without requiring gestures.

Database management (DBM) tools are typically DB
type-specific and require some installation. Each professional
RDB product usually offers its own tool, but since most RDBs
support the Structured Query Language (SQL), certain RDB
tools can access other RDBs using RDB-specific drivers. For
example, MySQL Workbench works across multiple
databases and supports reverse-engineering of 2D E-R
diagrams. Schemaball [17] provides a 2D circular composite
schema diagram for SQL databases. As to 3D RDB tools,
DIVA (Database Immersive Visual Analysis) uses stacked
rings with rectangular tables attached to them (forming a
cylinder), with the tables with the most foreign keys sorted to
the top of the stack. Alternatively, stacked square layers of
tables can be displayed and 2D E-R diagrams shown. Actual
data values are not visualized. For NoSQL databases, each
database type differs and the associated DBM tools. One
example of a popular wide-column database (WDB) is
Apache Cassandra, for which DataStax Studio is a Java-based
DBM tool with a web GUI (Graphical User Interface). As to
document-oriented databases (DDBs), MongoDB is a popular
example and MongoDB Compass, Robomongo, and Studio
3T being example DBM tools. For graph databases (GDB),
Neo4j is popular and graph DBM tools include Neo4j admin,
Structr, Gephi, Graffeine, etc. In contrast, the VRiDaM
approach is more generalized to work across heterogeneous
DB types, thus permitting users to only ramp up on one tool,
it is cross-platform and provides an immersive web-based VR
experience. Furthermore, in contrast to the 3D DIVA or 2D
Schemaball, our approach avoids the visual connection
'yarnballs' as the number of connections and tables scale.

Work on big data visualization techniques in conjunction
with VR is discussed by Olshannikova et al. in [18]. Herman,
Melançon, and Marshall [19] survey work on graph
visualization and navigation for information visualization. In
contrast, our focus is displaying the database-model structure,
not on displaying and analyzing large amounts of data per se,
and we apply Benediktine spatial placement in conjunction
with a dynamic self-organizing force-directed graph [20].

III. SOLUTION
Visualization, especially VR with its wide viewing angles,

can leverage peripheral vision for information, whereby visual
data is both consciously and unconsciously seen and
processed. If leveraged well, visualization can be cognitively
easier in providing insights than an equivalent textual analysis
would require. Traditional text-centric tabular formats or
boxes in E-R diagrams do not explicitly take advantage of
such visual capabilities. Also, if the contents of each database
table were visualized as a rectangular 2D object, as it scales
both in number of tables and the size of various tables, lucidity
issues occur that nullify the advantage of VR visualization.

To provide some background context for our solution, we
describe several perspectives that were considered.
Information can be grouped and large amounts of information
provided in a relatively small amount of graphical space. Yet
humans are limited in their sensory perception and focus, and
thus visualization considerations include: determining the
proper balance for what to place into visual focus in which
context, what to place into the periphery, what to hide or show,
and to what extent and at what point should what be
visualized. To develop actionable insights from visualization,
the knowledge crystallization cognitive process involves
acquiring information, making sense of it, creating something
new, and acting on it [21]. Regarding visual perception, gestalt
psychology [22] is based on the four principles of emergence,
reification, multistable perception, and invariance.
Formulated gestalt grouping laws regarding visual perception
include proximity, similarity, closure, symmetry, common
fate, continuity, good gestalt, past experience, common
region, and element connectedness. For visual representation,
we considered Don Norman’s design principles, in particular
affordance, consistency, and mapping [23]. Other concepts
considered were [9] information space, cognitive space,
spatialization, ordination, and pre-attentive processing, which
refers to the accumulation of information from the
environment subconsciously [24]. Visualization techniques
explicitly analyzed with regard to their appropriateness for
displaying data models in VR included books, cone trees,
fisheye views, information cubes, perspective walls, spheres,
surface plots/cityscapes/3D bar graphs, viewpoints,
workspace/information space/3D rooms, worlds in worlds,
and Benediktine space [19][21].

A. Benediktine Space
Benediktine space transforms or maps an information

object’s attributes to extrinsic (e.g., Cartesian coordinates,
time) and intrinsic (e.g., size, shape, color) information spatial
dimensions. To keep objects from overlapping, mapping
principles include exclusion, maximal exclusion, scale, and
transit [6][7][8][9].

B. WebVR
WebVR is a Mozilla JavaScript API that enables web

browsers to access VR hardware. A-Frame is an open source
framework for displaying VR content within HTML. It is
based on an entity component system architecture in which
each object in a scene is an entity (a container) consisting of
components that provide desired functionality or behavior for

109Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 120 / 160

that entity. A-Frame uses the three.js library to provide 3D
graphics display in the browser and simplify WebGL
programming. Systems are data containers. In contrast to
game or PC station VR solutions, the use of VR within web
browsers is relatively new, thus in deciding on the
visualization techniques to use we considered the limitations
and available capabilities and performance offered with
WebVR for standard hardware (such as notebooks) that
developers might use. Visualization considerations included
selecting what and how many objects are displayed at any
given time. Furthermore, in contrast to games, there is no real
upper limit on the number of simultaneous entities a database
or database model may have, which may overtax the
computing and rendering capabilities and have negative
impacts on the frame rates in VR, making the experience
unsatisfactory and possibly resulting in VR sickness.

To characterize WebVR performance, we experimented
with the implementation, some measurements of which are
shown in Table 1. They are averaged across 10 measurements
for 10 tables with 50 columns each on a notebook with Intel
Core i5-3320M 2.6Ghz, 8GB RAM, Win7 x64, Intel HD
Graphics 4000, Chrome 60.0.3112.113 and A-Frame 0.6.1.

TABLE I. AVERAGE A-FRAME PERFORMANCE (FRAMES PER
SECOND)

Variants Loading
(fps)

Running
(fps)

spheres, no edges 25 61
spheres, with edges 21 53

labeled spheres, no edges 11 19
circles, no edges 25 57

spheres, no edges (10x nodes) 3 12

Based on our experience and measurements with the A-

Frame implementation, the following performance findings
were made and affected our solution: 1) the number of
rendered objects has a major impact on performance, 2) edges
have a negative effect on performance, 3) text labels have a
severe impact, 4) circles and spheres are equivalent.

For Finding 1, that implies that only the minimum number
of objects should be displayed. Thus, rows (data values) will
only be shown for selected column, not for all columns. Due
to Finding 2, objects will be displayed without edges and
connectors between objects will be avoided (force-graph).
Due to Finding 3, text will be limited and the data value only
shown when a circle (tuple) is selected.

C. VRiDaM Solution
Our VRiDaM solution architecture is based on the

information visualization reference model by Card et al. [25]
(see Figure 1) and involves transforming the raw data and its
metadata to internal structures (the first two being purely data
forms), and then mapping these to visual element structures,
and transforming these to the views seen be the user (the last
two being visual forms). To adjust the views, the user provides
interaction input affecting one of the aforementioned
transformation steps.

Figure 1. VRiDaM architecture.

The VRiDaM solution principles (P:) are as follows:
Support heterogeneous database-model types. Our VR

approach works across different databases products and
database types (SQL and NoSQL), thus familiarity with a
single VR app could be leveraged across the various database
types. Alternatively, currently developing unique VR app
tools for each database and/or database type would be
exorbitant relative to the number of software engineers that
have VR capabilities and have database-model interests, and
inefficient from a learning/training perspective.

Leverage spatial visualization in VR using a Benediktine
spatial object placement approach. Our approach leverages
the additional dimensional visualization and navigational
capabilities VR provides (within current limitations of
WebVR). Specifically, we utilize a Benediktine space
visualization technique [6] with visual object spatial
placement based on extrinsic spatial dimensions, whereas
other entity properties are represented by intrinsic dimensions
(form, size, color, etc.). The principle of exclusion ensures no
two objects occupy the same spatial location, and the principle
of maximal exclusion ensures that different data items are
separated as much as possible [7].

Leverage dynamic self-organizing force-directed graph
visualization to indicate the strength of relationship between
objects via proximity. For visualizing relations, dynamic self-
organizing force-directed graph placement [20] can be used in
place of connectors to indicate via proximity more strongly
related entities from those that are less- or unrelated. This is
combined with visual highlighting of related objects when
selecting an object. In this way we intend to avoid the "ball of
yarn" issue with visual connectors as database models scale.

Cross-platform web-centric VR access. Our approach
utilizes a browser-based implementation based on WebVR to
enable cross-platform access to VR content assuming the user
has a VR headset. Software engineers often work across
different operating systems (Windows, Linux, etc.), and this
permits them to utilize the app from any platform with
appropriate WebVR browser support.

IV. IMPLEMENTATION
The WebVR-based prototype uses A-Frame and D3.js,

which produces dynamic, interactive data visualizations in
web browsers. For a self-organizing force-directed graph, our
implementation uses the d3-force-3d physics engine from D3.
Firefox and Chrome were used as web browsers. For database
connectivity, the Spring Framework 4.3.1 was used and tested
with PostgreSQL, MSSQL, MongoDB, Cassandra, and
Neo4j. Content for the force-directed graph component was
transformed to JSON format. The Northwind Trading sample
database consisting of 13 tables and 6635 records was used,
primarily, . Figure 2 shows the class diagram regarding
database integration.

110Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 121 / 160

Figure 2. Class diagram of database integration.

The following visual object forms were selected:
Cubes are used to represent database tables (collections for

document stores, or labels for graphs), analogous to cube
furniture that can be used as a table (Figure 3).

Cylinders are used to represent database columns (set of
similarly typed data, known as keys for document stores or
graphs), analogous to columns in a building (Figure 4).

Planes are used for projecting the database data records
(rows, tuples, or entries - the actual data values) since these
can be very large in both columns and records and would thus
occupy a large amount of VR space Figure 5). A plane
supports maximum readability and permits VR navigation
around it.

Figure 3. VRiDaM showing Northwind tables in Benediktine space.

Figure 4. Columns visible orbiting selected table (identical color).

Figure 5. Table records projected onto a plane.

As to navigation and interaction, users can move objects
as desired using standard VR controllers (we used an HTC
Vive) or can use a mouse and keyboard. As seen in Figure 6,
besides using spatial proximity to indicate closer associations,
if a user selects an object, that object and all its directly
referenced objects are highlighted. A key image is provided as
an affordance and, if selected, a popup shows the primary and
foreign keys names. If desired, lines can optionally be used to
emphasize relations as shown in Figure 7.

Figure 6. Primary and foreign keys for table shown as popups.

Figure 7. Example optional relation visualization using lines.

The configuration menu is overlaid and can be used to
connect to a database and query (e.g., SQL, Cypher, etc.) by
typing on the keyboard and executed via enter. In order to
quickly find a table, they are listed on the menu for selection
and navigation to the visual object.

111Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 122 / 160

Figure 8. VRiDaM of MongoDB with dbkoda example data [26],

showing spatial orientation and not intended to be readable.

Figure 9. VRiDaM of Neo4j with Northwind example data.

Figure 8 shows the VRiDaM visualization for MongoDB
with dbkoda example data [26] (a Northwind port was no
longer available), while Figure 9 shows Neo4j with
Northwind example data.

V. EVALUATION
To evaluate VRiDaM, we compared its usage with a

typical 2D database tool, DbVisualizer 10.0.13 (Free), shown
in Figure 10 with the Northwind database loaded to provide
an impression of the model’s complexity, not meant to be
readable. A convenience sample of eleven computer science
students was selected. One experienced VR sickness
symptoms and thus only the remaining ten were included in
the results. All indicated they had some familiarity with SQL
and they lacked NoSQL experience, so we chose to compare
VRiDaM with an SQL tool. Three had not experienced VR
before. The subjects were randomly selected to start in either
VR mode (6) or the common tool (4). PostgreSQL Version 10
with the Northwind sample database (Figure 11Figure 10.)
was used. Java 8 update 151, Apache Tomcat v8.0, AFRAME
0.8.2, Firefox 61, and SteamVR Version 2018-05-24
(1527117754).

Figure 10. Northwind Traders data model in DbVisualizer.

These database tasks were given verbally and equivalent
but not the exact same five questions asked in the other mode:

1) Which tables have a relation to table X?
2) To which table(s) does the table X have a relation?
3) What columns does table X have?
4) What are the foreign or primary keys of table X?
5) What are the keys in table X?

TABLE II. VRIDAM VS. DBVISUALIZER TASKS (AVERAGED)

 VRiDaM DbVisualizer
Task duration (mm:ss) 4:48 1:46

Cumulative answers given
(total/incorrect/missing) 130/6/4 140/1/6

Task correctness 92% 95%

The tasks results are shown in Table II. VRiDaM task

duration was 2.7 times longer, and this can be expected since
VR requires navigation time through space that 2D tools do
not incur. The number of correct answers across the five tasks
were 13 in VR and 14 in DbVisualizer, with ten subjects
resulting in 130 or 140 cumulatively correct answers
respectively. These longer VR task durations may be
acceptable for certain user scenarios, and gives insight into
what liabilities can be expected. A correctness difference of
3% across ten subjects is not necessarily significant and shows
that the users were able to immerse themselves within minutes
into a Benediktine space paradigm and perform tasks
effectively. The task correctness differences could be
attributed to personality, human alertness, distraction, or other
factors beyond the paradigms or VR influence, as only 4
subjects in VR and only 3 subjects in non-VR were
responsible for all errors, the rest had no mistakes.

Subjective impressions are shown in Figure 11 for
VRiDaM intuitiveness and suitability of the controller
interface and visualization as well as overall enjoyment. We
note no significant difference between the interaction and the
visualization intuitiveness or suitability. Only one preferred
VRiDaM. This may indicate that more training and experience
would be needed for them to feel more comfortable with a VR
tool than with a 2D tool. Various debriefing comments
indicated that the Benediktine spatial arrangement was either
liked or not an issue for the subjects. When debriefed about
what they liked about VRiDaM, comments included that it
was a better database-model visualization, that tables were
real objects instead of text boxes, how tables where displayed
in space, and the highlighting effect.

Figure 11. Average responses for VRiDaM (scale of 1 to 5 with 5 best).

112Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 123 / 160

The evaluation shows some of the challenges in utilizing
VR for database-model visualization and interaction. VR
object interaction is not standardized nor do users have
familiarity and experience with it as they do with 2D mouse-
based user interfaces. While VR enables new immersive
paradigms and metaphors, these are not necessarily
immediately intuitive. VR movement (moving the camera
perspective) is more time consuming than scrolling or
zooming a 2D perspective. For simpler tasks, VR tends to
require more interaction time to accomplish the same task and
thus entails efficiency costs. A 3D space permits objects to
hide other objects, and for opaque objects requires movement
to determine that no other objects are hidden. Given that the
subjects were already familiar with E-R diagrams and SQL
tools, yet had no prior training with VRiDaM and Benediktine
space, we are satisfied with the ratings on suitability and
intuitiveness. Based on comments about what subjects liked
about VRiDaM we see it as a positive indicator and intend to
investigate this approach further.

VI. CONCLUSION
This paper contributes VRiDaM, an immersive WebVR

heterogeneous database visualization approach, applying
Benediktine space visualization and force-directed graphs to
(relational and non-relational) database models. It thus avoids
the connection "yarn-balls" other techniques have in
visualizing connections by leveraging spatial locality. A
prototype was used to verify its viability and an empirical
study evaluated its usability.

The empirical evaluation showed VRiDaM to be less
efficient for equivalent analysis tasks while correctness was
slightly worse. Intuitiveness, suitability, and enjoyment were
given a better than neutral rating on average. One case of VR
sickness occurred and we hope to address it in future work.

One ongoing challenge for a generic tool approach is the
plethora of non-standardized interfaces to NoSQL and other
databases. However, by providing driver plugins we believe
that the adaptation overhead is small in relation to the
advantages of a VR visualization that VRiDaM brings. Future
work includes a more comprehensive empirical study and will
investigate various optimizations to improve usability,
performance, and scalability.

ACKNOWLEDGMENT
The author thanks Christoph Bauer and Camil Pogolski for

assistance with the design, implementation, and evaluation.

REFERENCES
[1] Cisco. The Zettabyte Era: Trends and Analysis. (Jun 7, 2017).

Whitepaper. Available from https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-
vni/vni-hyperconnectivity-wp.html 2018.07.24

[2] D. Reinsel, J. Gantz, and J. Rydning, “Data Age 2025: The
Evolution of Data to Life-Critical,” IDC Whitepaper (April,
2017).

[3] R. Cattell, “Scalable SQL and NoSQL data stores,” Acm
Sigmod Record 39, no. 4, pp. 2-27, 2011.

[4] P. Chen, “Entity-Relationship Modeling: Historical Events,
Future Trends, and Lessons Learned,” In Software pioneers.
Springer-Verlag, pp. 296-310, 2002.

[5] T. Merel, “The reality of VR/AR growth,” Jan 11, 2017.
Available from http://techcrunch.com/2017/01/11/the-reality-
of-vrar-growth/ 2018.07.24

[6] M. Benedikt, “Cyberspace: some proposals,” In Cyberspace,
Michael Benedikt (Ed.). MIT Press, Cambridge, MA, pp. 119-
224, 1991.

[7] P. Young, “Three Dimensional Information Visualisation,”
Technical Report, University of Durham, 1991.

[8] U. Fayyad, A. Wierse, and G. Grinstein (Eds.), Information
Visualization in Data Mining and Knowledge Discovery.
Morgan Kaufmann, 2002. ISBN: 1558606890.

[9] S. Fabrikant and B. Buttenfield, "Formalizing Semantic Spaces
for Information Access," Annals of the Association of
American Geographers, 91(2), pp. 263-280, 2001.

[10] D. Butler, J. Almond, R. Bergeron, K. Brodlie, and R. Haber,
“Visualization reference models,” In Proc. Visualization '93
Conf., IEEE CS Press, pp. 337-342, 1993.

[11] A. Bierbaum et al, “VR Juggler: A virtual platform for virtual
reality application development,” In Proc. IEEE Virtual
Reality. IEEE, pp. 89-96, 2001.

[12] F. Fittkau, A. Krause, and W. Hasselbring. “Exploring software
cities in virtual reality,” In Proc. IEEE 3rd Working Conf. on
Software Visualization (VISSOFT). IEEE, pp. 130-134, 2015.

[13] A. Teyseyre and M. Campo, “An overview of 3D software
visualization,” In IEEE Trans. on Visualization and Computer
Graphics. IEEE, 15(1), pp. 87-105, 2009.

[14] A. Kashcha, “Software Galaxies,” Available from
http://github.com/anvaka/pm/ 2018.07.24

[15] J. Rilling and S. Mudur, “On the use of metaballs to visually
map source code structures and analysis results onto 3d space,”
In Proc. 9th Work. Conf. on Reverse Engineering. IEEE, pp.
299-308, 2002.

[16] P. McIntosh, “X3D-UML: user-centered design,
implementation and evaluation of 3D UML using X3D,” Ph.D.
dissertation, RMIT University, 2009.

[17] M. Krzywinski, “Schemaball: A New Spin on Database
Visualization,” In Dr. Dobb's: The World of Software
Development,, 2004.

[18] E. Olshannikova, A. Ometov, Y. Koucheryavy, and T. Olsson,
“Visualizing Big Data with augmented and virtual reality:
challenges and research agenda,” J. of Big Data, 2(22), 2015.

[19] I. Herman, G. Melancon, and M. Scott Marshall, “Graph
visualization and navigation in information visualization: A
survey,” In IEEE Transactions on visualization and computer
graphics, 6(1), pp. 24-43, 2000.

[20] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis, Graph
drawing: algorithms for the visualization of graphs. Prentice
Hall PTR, 1998.

[21] S. Card, “Information Visualization,” In: Human Computer
Interaction Handbook: Fundamentals, Evolving Technologies,
and Emerging Applications (Ed: Jacko, J.), Third Edition. CRC
Press, pp. 544-545, 2012.

[22] S. Palmer, Vision Science. MIT Press, Cambridge (USA) 1999,
ISBN 978-0262161831.

[23] D. Norman, The Design of Everyday Things: Revised and
Expanded Edition. Hachette UK, 2013.

[24] A. Van der Heijden, “Perception for selection, selection for
action, and action for perception,” Visual Cognition, 3(4), pp.
357-361, 1996.

[25] S. Card, J. Mackinlay, and B. Schneiderman (editors),
Readings in Information Visualization: Using Vision to Think.
Morgan Kaufman, 1999.

[26] [Online] Available from https://github.com/
SouthbankSoftware/dbkoda-data 2018.08.12

113Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 124 / 160

Redefining KPIs with Information Flow Visualisation – Practitioners’ View

Jarkko Hyysalo, Markus Kelanti and Jouni Markkula
M3S Research Unit, Faculty of Information Technology and Electrical Engineering,

University of Oulu
Oulu, Finland

e-mail: {jarkko.hyysalo, markus.kelanti, jouni.markkula}@oulu.fi

Abstract—We investigate Key Performance Indicators (KPIs)
in a large and multi-national telecommunication company and
discover needs and requirements for understanding, analysing
and using KPIs from practitioner’s perspective. Utilising an
action research approach, we identified the existing challenges
with KPIs in a large-scale software-intensive systems
development in a global setting. Our study revealed several
issues with organisations KPIs, e.g., measuring the wrong
things or not basing the measurements on reliable data. Based
on the identified issues, a visualisation and modelling approach
was introduced to reform the KPI representation and
formulation to improve understanding and communicating
KPIs, as well as their use in decision-making. We suggest that
KPI information flow visualisation with appropriate tool
support allows redefining usable, valid and reliable KPIs. The
problem is addressed with a simple solution that is easily
adopted and taken into use at all levels of an organisation.

Keywords—key performance indicators; KPIs; modelling;
visualisation.

I. INTRODUCTION
Managing the development of software systems requires

careful attention. Companies operate in turbulent
environment with fierce competition and tight time-to-
market requirements [1], where knowledge of the
performance of the development process, in addition to
understanding the system and its development is necessary
[2]. Companies use Key Performance Indicators (KPIs) to
provide this vital information. KPIs are used to measure, for
example, the quality of the product, the features developed,
the resources spent in the development and the value
delivered to customers. KPIs provide a way to evaluate and
improve the product and the process.

There is evident value in defining KPIs for the company.
However, it is challenging to formulate KPIs so that they
provide useful, valid and reliable information, and many
organisations struggle to measure their projects, products and
units [3]. Thus, our research question: “How to easily
formulate KPIs so that they effectively and reliably measure
the product development process performance?”

In this paper, we report an action research study,
conducted within a large telecommunications company. The
study revealed critical practical challenges in defining and
using KPIs in organisation. For solving the challenges, the
visualisation of the KPI information flow was found to be
essential to provide a better understanding of the process. An
approach and supporting tools were developed for the

modelling and visualisation of the KPI information flow.
Supporting the developers’ understanding about the KPI
formulation process resulted in KPIs that provide more real
value for the organisation, and thus improve the KPI process.
Visualisation and supporting tools provided means also to
understand and communicate KPIs.

The rest of the paper is organised as follows. Section 2
discusses the related works, Section 3 presents the research
approach, Section 4 presents the action research intervention
and its results, Section 5 discusses the findings of the
empirical work, and Section 6 concludes this work.

II. RELATED WORK
KPIs provide many kinds of information about the

development, thus, it is important to select KPIs according to
organisation’s strategy and objectives [4][5]. Deep
understanding of the software development process is
needed—providing the understanding of the “why”, “what”
and “how”, defining also the motivations and rationales for
activities and flows [6]. Different stakeholders have different
views of and needs for the process [6]: Process performers
often focus on the “hows”, process managers on the “whats”,
and process engineers on the “whys”. Thus, different views
are necessary, and KPIs address different needs. Our focus is
on how KPIs are used and defined, as well as understanding
KPIs and recognising stakeholders’ views.

A. Formulating KPIs
Production of good KPI values starts from the reliable

source data, but in practice it is hard to collect consistent and
comparable data. Further challenge is to decide upon the
importance of individual performance measures for decision-
makers and prioritisation is a challenge as well. There are
approaches that guide KPI work and measure organisational
performance; some of them are shortly introduced next.

del-Rey-Chamorro et al. [4] presents a framework for
creating KPIs for knowledge management solutions, with
eight steps to create KPIs from the strategic level business
plan all the way to operational level measurable KPIs
utilising templates for KPI formulation and how to bridge the
strategic level and operational level. The aim is to evaluate
the effectiveness of knowledge management solutions.

Analytical Hierarchy Process (AHP) constructs a
pairwise comparison between different KPIs and their
hierarchies to evaluate and prioritise them based on SMART
(Specific, Measurable, Attainable, Realistic, Time-sensitive)
goal setting [5]. The focus is the prioritisation of KPIs to find

114Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 125 / 160

the most relevant KPIs for the organisation [5]. However, it
does not consider how KPIs should be formulated.

Balanced Scorecard [7] measures the organisational
performance and aims at transforming the vision and strategy
into concrete objectives, aligning departments and units
towards common goals, etc. Yet, the following shortcomings
are identified: Inaccurate and subjective measures,
communication is not participative (only top-down), and
inappropriate benchmarks are used for evaluation [8].

ISO standards provide guidelines as well. ISO 9001:2015
specifies requirements for a quality management system. It
does not specifically mention “KPIs” but requires metrics to
measure the system to ensure: a) the ability to consistently
provide products and services that meet customer and
applicable statutory and regulatory requirements, and b) aims
to enhance customer satisfaction through the effective
application of the system, including processes for
improvement of the system and the assurance of conformity
to the customer and applicable statutory and regulatory
requirements [9]. ISO quality management principles
[10][11] aims for customer focus, leadership, the
involvement of people, process approach, system approach
to management, continual improvement, factual approach to
decision making, and mutually beneficial supplier
relationship.

However, several challenges are identified in current
ways for defining KPIs and ensuring that they are based on
valid data [12]-[15]: Selecting and defining KPIs is not easy.
KPIs are often defined in siloed terms instead of considering
the whole organisation, e.g., they only focus on financial
aspects and may lack the other aspects like manufacturing.
Accurate calculations are hard to create and they easily
measure something else than the intended objective. It is
difficult to have metrics reflecting strategic drivers and be in
line with the organisation’s visions and goals. KPIs must also
be aligned through the whole organisation and every level of
work, from visions and goals to actual implementation.
Local optimisation should be avoided, and short-term and
long-term goals should be balanced. There are nuances and
unforeseeable variables that affect the measures. Finally,
KPIs must be put in practice in order to see how they impact
the performance and behaviour, and they should be adjusted
accordingly. Hence, continuous refining is necessary.

To address the identified issues, improvements are
necessary. Properly selected and measured KPIs help
decision-making, but getting the measures right requires
considerable effort [16]-[18]: Even though the measures are
classified into different categories, they are often correlated
due to the inherent internal relations of different processes in
the supply chain. Complex dependencies, changing goals and
tight deadlines make organisations prone to making rushed
decisions. Thus, it is important to have a simple way to
identify and analyse the KPI data flows and relationships in
order to avoid flawed decisions. Due to the complicated
relationships, dependencies and conflicts, modelling the
relationships is proposed and quick feedback loops are
suggested. Furthermore, the goals and KPIs should be
adjusted when they are no longer realistic.

In a nutshell, KPIs should be based on data that is
available and measurable, and KPIs should provide relevant
information. Effective performance measurement system
“should provide timely, accurate feedback on the efficiency
and effectiveness of operations” [19]. Measurements are also
necessary for process improvement purposes—if it can’t be
measured it can’t be improved [20].

B. KPI Visualisation
It is important to understand how to present the

measurements and act accordingly. Visualisation helps
ensuring that the actions are taken and transparency is
achieved [21]. Benefits of KPI visualisation are many:
Visualisation is an important factor in thought and
communication [22]; Information visualisation and graphical
representation help in complex cognitive tasks [23];
Information visualisation supports comprehension and data
analysis [24], especially for non-technical users [12];
Visualisation enables smarter decisions and improved
productivity [12]; Groups supported by visualisation achieve
better productivity, the better quality of outcome and greater
knowledge gains than groups without such support [24].

Often KPIs and different measures are correlated and
create a complex network of interdependencies [18], thus,
understanding the results and the process of formulating
KPIs is challenging. Visualisation enables the analysis of
activities, the flows (i.e., inputs and outputs), dependencies,
and the contexts [25]. It can also be used to visualise the
components where KPIs are built from, decomposing the
higher level KPIs into lower-level components in order to
trace the sources of problems [26]. Visualising the process
can be done in several ways with different levels of
formalism and detail (cf. [27][28]). Finding the correct level
depends on the purpose.

There are examples to KPI visualisation, like del-Río-
Ortega et al. [29], who propose an XML-based way for a
graphical or a template-based textual notation for business
processes. To help selecting the visualisation approach,
Staron et al. [30] provide a model based on seven
dimensions: type of reporting, data acquisition method, type
of stakeholders, method of delivery, frequency of updates,
aim of the information, and length of data processing flow.
However, formal visualisation and modelling approaches can
be cumbersome and “too heavy”, e.g., for persons who are
not familiar with process modelling concepts [25]. Thus,
their benefits are lost. Instead, a simpler approach is
proposed. Presenting detailed processes as higher-level
entities makes the visualisations more comprehensible, and
multiple views or representations for managing the
complexity is suggested [25]. Rationale and justification for
processes and activities must also be presented as those
express why the work is needed. Rationale and reason tell
what is meant to be accomplished and why [31][32].

III. RESEARCH APPROACH
The case company was chosen as it could provide data

related to the research question. The case organisation is one
of the largest data networking and telecommunication
technology providers in the world in its field. The

115Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 126 / 160

organisation is distributed across the globe, operating in over
100 countries, with over 50000 employees globally. The case
organisation uses both traditional and agile development
methods, depending on the product and development teams.
The role of KPIs in the company is to evaluate the
performance and ability to meet the organisational goals of
every product line. A number of factors make KPI design
and calculation complex, like: a) vast number of product
lines operating under different organisational units, b)
different processes used by development teams, c) different
data formats for work items, d) knowledge and data are
distributed over several systems, e) several persons are
required to handle knowledge and data, and f) copying of
data from one format to another and one system to another.

To monitor their product development process, the case
company utilised metrics that measure the process on
different levels. Data was collected and analysed from
various stakeholders to synthesise KPIs and analyse those
with the aim to get an accurate picture on product
development. The data was provided and calculated by
multiple units, a part of the work was done manually and
partly assisted by tools. The company was interested to
minimise manual data collection and work and improve the
tools, as well as the accuracy of the KPI process. In order to
reach these goals, the company needed a method for
collecting and structuring information to describe the current
KPI process from multiple perspectives. It was seen that an
action research intervention is needed to analyse the problem
and provide improvements. A typical action research cycle is
shown in Figure 1. The research started with a pre-study to
familiarise the topic and understand the state of the practice.

Pre-study

Evaluating

Action
planning

Specifying
learning

Action
taking

Diagnosing

Figure 1. Research process [33].

Experts and managers from different levels of the
organisation were interviewed. Eight production lines were
involved with at least one production line manager from each
attended the modelling session. In each modelling session,
the product line manager was assisted with engineer working
in the production line who could provide technical details
when needed. The persons attending the modelling session
were senior engineers or managers, each at least ten years of
working in the company. Hence, the results represent the
experiences in the case organisation.

In each iteration, the results of the previous iteration were
presented first, i.e., the visualisation of the KPI process. In
the diagnosing phase, the learnings were diagnosed to
commence the action planning. This was done in co-
operation with the company. Based on the diagnosis, actions
were defined and then carried out. Actions were conducted
by implementing a construct and applying it in its intended
settings, thus, providing empirical evidence of its use. The
action taking phase lasted over two months to ensure the
agreed actions were implemented. Then, the results were

evaluated and discussed in a workshop. Based on the
evaluation and workshop, the learning was specified.

The action research cycle was repeated four times during
the study consisting of a total of 30 modelling sessions with
20 stakeholders and 5 analysis workshops. In the modelling
session, each participant’s viewpoint to the process was
modelled and visualised by the researchers, who asked the
developers and experts to present the process from their own
perspective. The participants were asked to think out loud so
that the researchers could understand what they were
thinking of. Questions were also asked to elaborate things
when necessary. These sessions were also recorded for later
use. Researchers made notes and observed the use of the
construct. After each evaluation phase, experiences were
discussed in a meeting. Gathered feedback, observed
challenges and identified issues in the construct were
documented. The researchers and the case company
representatives also held regular meetings to review the
results and decide on further actions. These actions provided
rich data for analysis and for specifying learning.

Soft Systems Methodology (SSM) was selected as a basis
for our modelling approach. SSM, a problem structuring
method popularised by Checkland [34], was applied in the
study for structuring KPIs and the KPI process. SSM was
chosen because it is an efficient way to understand and
address the complex situations, especially when there is no
clear problem definition, and it is also useful for information
visualisation, to show flows, bottlenecks, inconsistencies and
contradictions. It also supports information discovery and
decision-making, and it frees cognitive resources that can be
used for, e.g., solving development problems [22][35].
Figure 2 presents the basic elements of our approach.

Stakeholder 2

Stakeholder 1

Description
of an activity

Description
of an activity

Stakeholder 3

The KPI
value

Description of an
activity using the
previous values

Description of
resulting value from
the previous activity

Description of
resulting value from
the previous activity

Figure 2. Basic structure of a KPI.

In this approach, practitioners simply model the values
and activities from their perspective, regardless of whether
the activity or data matches the documented KPI
descriptions. It gives the building blocks utilising existing
UML notations. Enabling users to construct representations
from their perspective and viewpoint is important, as it helps
them to come up with solutions to problem issues, and
enables them to know what to do next [4].

IV. RESEARCH EXECUTION
The action research intervention consisted of pre-study

and four action research cycles. In the pre-study, existing
company documentation defining their KPI structure,
visualisation and implementation was analysed. The
provided information described the intent of each KPI and
how those should be formulated. In addition, the company
provided a list of persons and organisational units that were

116Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 127 / 160

involved in the KPI process, including also description how
they provided or processed KPI information in the process.
In addition, related research was also analysed.

A. First Action Research Cycle
DIAGNOSING: The pre-study revealed that the system

was more complex than the company documentation
indicated. The process included hundreds of stakeholders
and multiple variations of the data items. Based on the pre-
study, it became necessary to study the overall information
flow and stakeholder involvement to determine how the
actual system providing the KPIs was structured.

ACTION PLANNING AND TAKING: The plan was to
start the KPI system modelling with the pre-study
information to formulate a proper soft system model based
on SSM. UML flowchart approach and SSM [34] were used
to create a KPI soft system model.

EVALUATION AND LEARNING: At the end of the
first cycle, the resulting model was evaluated in a workshop
with the company representatives. The participants agreed
that the model allowed examining KPIs in more detail,
which showed that the company documentation did not
represent the real KPI behaviour or process. The lack of
information about how the data is obtained, undocumented
sources, how data is created and how data is used in the
decision-making demonstrated that KPIs did not present
accurate information or what KPIs were intended to present.
Moreover, a simple collapse/expand feature was requested
from the tool hiding the complexity or bringing out the
details when needed. Participants agreed that this kind of
feature would improve visualisation and understanding.
Finally, a decision was made to include the stakeholders of
KPI modelling in the next research cycle to provide the
information missing from the model.

B. Second Action Research Cycle
DIAGNOSING: At the previous cycle, the soft system

model of the KPI process showed that there was missing
information and dead ends not documented in the official
documentation. This indicated that there are information only
known by involved stakeholders and they should be
contacted to provide the missing information.

ACTION PLANNING AND TAKING: The plan was to
involve the stakeholders to add the missing information to
the model. The stakeholders who would know how data
items were created or what information was used to create
them were invited to a modelling session, where the
information provided by the stakeholder was added to the
soft system model created in the previous research cycle.
Each modelling session continued updating the same KPI
soft system model created in the first cycle. After the
sessions, a workshop was organised to evaluate, correct and
analyse the KPI soft system model.

EVALUATION AND LEARNING: The new version of
the soft system model was discussed with company
representatives in a workshop. Based on the analysis of the
soft system model, workshop participants thought that the
visualisation was complex. They suggested that using
stakeholder viewpoints allowed adjusting abstraction levels

to manage the complexity. With viewpoints, they were able
to examine selected parts of the process and keep the
visualisation comprehensible. The feedback for the soft
system model indicated that it allowed stakeholders to
understand how KPIs were constructed and the model
offered enough information to interpret KPIs correctly.
According to the participants and the analysis in the
workshop, both the UML visualisation and SSM principles
created a KPI model that was easy to interpret, translated
concepts from one domain to another in a meaningful way
and allowed the evaluation of KPIs. Finally, the participants
considered it necessary to adjust the way the model was
created to support simpler notation and logic to allow users
with varying experience to contribute. They thought that the
current approach was labour intensive and required deep
knowledge of modelling and SSM methodology, which was
seen as hindrance as it required an expert to help.

C. Third Action Research Cycle
DIAGNOSING: The ability to understand how KPIs

actually work was very important for the company personnel
as the KPIs did not work as intended and they did not
provide the correct information. The modelling of the KPI
process needed to continue to provide a better big picture.
However, the process needed to be simplified, allowing
anyone to understand it and input his or her own viewpoints
without the help of the researcher or an expert.

ACTION PLANNING AND TAKING: The existing KPI
soft system model was transformed to a digital format
utilising Microsoft’s Visio tool, allowing anyone to access
the model at any time. In addition, the participating
stakeholders, developers and managers were taught the
modelling method so that they could add their own
viewpoints. Teaching the approach also allowed the
researchers to develop it further and make it easier to
understand and learn. In addition, modelling sessions were
continued with those stakeholders who preferred to work
with the researchers instead of doing the modelling alone.

EVALUATION AND LEARNING: At the end of the
cycle, a workshop was held to discuss the results with all
company stakeholders involved in the cycle. Based on the
discussion and analysis of the new version of the KPI soft
system model, it was quickly noticed that the selected
visualisation approach was approved and the process
representation it provided was very informative and usable.
The KPI soft system model provided a shared understanding
about the process and work activities regardless of the
expertise or work position. It was easy to discuss the
specifics of the process with the representation as a reference
point, where each participant could pinpoint the activity or
information flow they were interested in.

Further, the findings from second research cycle were re-
examined, as more data was available from different teams
and product lines. The model started to show its efficiency,
as it confirmed that the data that the organisation bases its
KPI measurements is not sufficient and that lead to situation
where KPIs were not indicating the measurements that they
were intended to do. For example, two different
organisational units could get different figures based on their

117Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 128 / 160

source information or interpretation during the data handling.
Another concrete example was that the calculation of
delivered backlog items didn’t take into account the size of
the items or items finalised by collaborators, thus, resulting
in skewed efficiency measures. Finally, simplifying the
modelling process was seen as a way to speed up the
modelling process and to help others to understand the
modelling process and the modelling language [cf. 36]. This
also allowed persons with no prior knowledge on UML to
understand process and contribute.

D. Fourth Action Research Cycle
DIAGNOSING: Diagnosis of the previous action

research cycle called for an analysis of KPIs and presentation
on how they can be re-constructed as meaningful KPIs that
accurately reflect the development process. Furthermore,
additional focus was needed on KPI visualisation due the
growing amount of information in a single model. A proper
system visualisation was required from different stakeholder
perspectives in order to effectively communicate the KPIs to
different levels of management, developers and support staff.

ACTION PLANNING AND ACTION TAKING: Based
on the diagnosis, this action research cycle was focused on
analysing which KPIs the company would benefit on
utilising, and use that information to propose how the
previously modified KPIs should be constructed. In order to
do so, in addition to the existing model, a new KPI soft
system model was created to represent the meaningful and
accurate KPIs perceived by company management. In
addition, special attention was given to the viewpoints to
make the visualisation easier to read. The analysis and
modelling were done in separate sessions with management
stakeholders, similarly to previous research cycles. After a
selection of 8 KPIs was fully remodelled, they were
compared to the original KPI soft system model to show the

current implementation and how the KPIs should be changed
to match the desired situation.

EVALUATION AND LEARNING: After the action
planning and taking, a workshop was held with all
participants. Based on the workshop discussions, it was clear
that the stakeholders preferred this approach as it provided
the following benefits: 1) It allowed stakeholders to see the
current situation and what should be made to the existing
KPI system to have meaningful KPIs. 2) The model showed
the disparities between stakeholder viewpoints that weren’t
visible before and the visualisation enabled effective
communication on disparities. 3) The resulting model
allowed practitioners to re-evaluate their current process and
data in order to determine the best course of action. 4) The
model was easy to comprehend and it provided reliable
results that were accurately reflecting the state of the process.

The fourth action research cycle was the final iteration, as
the results were satisfying for both researchers and case
organisation. The resulting model worked as the description
of KPIs and allowed to construct, analyse and describe KPIs
with a single model. The participants also agreed that the
measures could now be relied upon, and the KPIs showed
effectively what they were supposed to show.

V. DISCUSSION
Our action research intervention revealed several issues

with the organisations KPIs and KPI formulation process.
The company’s process provided KPIs that did not fulfil
their intended purpose. There was a clear need to understand
the process better—to know more about the reasons KPIs
were used for and from what source data the analyses were
done from. This called for modelling the KPI information
flows from stakeholders’ perspectives that contribute to or
calculate any KPI data. The focus was to provide visualised
and accurate KPIs. Table 1 summarises our findings.

TABLE I. SUMMARY OF THE MAIN FINDINGS

Finding Implication
Describing KPI as an information flow allowed
stakeholders to comprehend the actual meaning
of KPI versus what was described in the official
documentation.

- Modelling, visualisation and constant analyses are necessary to find out the relevant KPIs and to keep
the KPI process up to date.
- Modelling and visualisation enables to see where the data originates and how it is manipulated.
- Modelling and visualisation enables simplification.
- Modelling and visualisation enables the evaluation of the validity of the data and whether KPIs perform
as intended.

Visualising the KPI information flow eased
communication between stakeholders with
different backgrounds.

- Visualising the workflow improves the coordination and understanding of others work.
- Modelling and visualisation enables more accurate analyses, reveals bottlenecks and problem areas, and
finally makes possible process improvement activities.
- Visualisation improves understanding and communication.

Showing different stakeholder viewpoints as a
part of the information flow allowed
comprehension of KPI, data items and
complexity of the implementation in different
parts of the organisation.

- Viewpoints can be used to adjust the abstraction levels and to manage the complexity.
- Hiding and expanding parts simplifies the presentation.
- Viewpoints allows for focusing on the matter at hand.
- Modelling tools should provide viewpoints functionality.

Allowing stakeholders to see their viewpoints and
modify them motivated stakeholders to
participate and extend the model further.

- Understanding the process for KPIs is paramount for motivation.
- Modelling KPIs reveals information on how the data is obtained and created, and how it is used in the
decision-making.
- Showing the viewpoints help understanding and agreeing upon the perspectives (e.g., quality vs.
efficiency).

With the proposed approach the KPI information
flow model became both the actual description
and formulation of a KPI.

- Stakeholders should be involved in the modelling.
- Accurate and reliable source data is required for meaningful KPIs.
- Measurements and comparisons over the product lines can be achieved.

118Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 129 / 160

Utilizing common UML-tools (e.g., Visio) and the
modelling method presented in [36] as our tools we could
provide the visualisations. With the help of the
visualisations, the case organisation personnel understood
better KPIs and how they were formulated, and they noticed
serious flaws. KPIs were neither reliable nor commensurable
between different units or product lines, e.g., there was
inconsistency with measurements, as management focused
on effectiveness and engineers focused on quality. In sum,
visualisation made the organisation rethink their KPIs and
how they are formulated.

Visualisation revealed that the source data was different
than originally understood by those who formulate KPIs,
providing different results than what originally was intended,
and hence decisions were made based on flawed KPIs.

Furthermore, KPIs were not immediately available,
instead data was gathered once a month and KPIs were then
calculated, KPI data was different between product
lines/units, and KPI process had unnecessary workload and
loops. One of the key findings was that the changes to the
existing process did only change the local processes and
work; it did not guarantee that KPIs were changed
elsewhere. It was realised that in order to properly formulate
KPIs, the whole KPI process and its information flows
should be analysed, not just the data sources. Based on our
study, we propose that KPI visualisation as a flow is
necessary for recognising who is contributing and what data
is used in that contribution. It also helps to see if KPIs
provided by different teams are commensurable.

The study showed that KPIs were found problematic, as
they are often taken for granted and the way that KPIs are
implemented is not visible for stakeholders. It is seldom
considered where KPIs come from and what they are
representing. It is necessary to think carefully what
calculations are useful and whether those calculations reveal
the issues they are meant to.

Figure 3 below presents a KPI example that shows the
average development hours of two different products. In this
example, two teams work for product A and input their

working hours directly to Jira for each feature. For product
B, the product owner estimates the working hours spent on
each feature based on team members compiled a list of
features. The example presents a visualised KPI that informs
what is the source data used to calculate the KPI and how it
is formed. With proper tool support, the data and activity
elements can be made to represent real data. Essentially, the
visualisation allows stakeholders to identify and ask the
questions that matter in regards to validity, representation
and usage of a KPI. With a systematic analysis, we found the
issues with KPIs and KPI formulation process. Modelling
and visualisation enabled the stakeholders to understand the
KPI process better and it made the stakeholders think about
the relevant data and information concerning KPIs.

With our approach, a soft system model could be built
systematically. The model showed where the data originated
and how it was manipulated throughout the process. Thus,
validating the usefulness of our approach to modelling of
KPI information flows. We believe that our approach would
be fit for other cases also, however that still requires further
validation. Due to improved understanding, modelling and
visualisation was found useful as a process improvement
tool: It allowed the identification of problems in the process,
and unnecessary activities could be identified and the process
could be streamlined accordingly. Coordination of activities
was also improved.

Our modelling and visualisation approach addresses
several needs and is generic enough to be used in various
situations and purposes. Our approach is suitable for
visualising and analysing the activities and information
flows, and showing the dependencies. Moreover, it was
easily adopted and personnel committed to use it. Presenting
the KPI process as a graphical model provided better
understanding for developers and experts, and it also
improved communication and helped to analyse the work. It
motivated the personnel and they came up with new ideas to
further improve their work, work practices and processes.
Visualisation was also found to be useful in pinpointing the
bottlenecks and problem areas.

Product owner adds
both averages together
and divide them by two
and creates a diagram

presentation

Diagram: Overall average
hours spent per feature on

product

Jira Database:
Feature data

Number: Average
hours spent per

feature on product
B

Excel sheet:
Previous

estimations

Software team B
members input feature

data into Jira

Product B’s owner
provides average hours

spent per feature

Excel sheet: Average
hours spent per

feature on product B

Software team
member creates a

completed feature list

Excel sheet: List of
completed features

Product B’s owner estimates
the average hours spent by his

team per feature based on
previous estimations

Number: Average
hours spent per

feature on product
A

Product A’s owner provides
average hours spent per

feature by team A based on
software teams’ data in Jira

Software team A leader inputs
feature data into Jira

Figure 3. Example KPI formulation for a system.

119Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 130 / 160

Being able to construct representations also improve the
readability of visualisations [37]. Our approach
complements, e.g., the dashboard selection model by Staron
et al. [30] and ways to elicit information by Staron et al. [38],
which is more based on a set of questions, and it can also be
used as a simple visualisation mechanism on top of other
established approaches, such as Balanced Scorecards by
Kaplan and Norton [7]. The findings are also in line with
Staron [3], stressing the importance of completeness,
reliability and early warning signs.

A. Validity of the Study
The reliability of the data and results was ensured via

rigorous research protocol with peer reviews by researchers
and company representatives. The action research cycles
were documented throughout the research. The modelling
sessions were recorded and transcribed by the researchers.

The way the action research was implemented introduces
a danger of positive bias within researchers and company
participants—due to the constant communication and
interventions; the company participants could be positively
biased, producing only positive results. However, having
many different viewpoints presented in the workshops and
modelling sessions addressed this issue. Also, agreement
over clear roles and rigorous research methods helped
participants remain neutral observers.

This study was conducted within a large ICT
organization that utilizes product line based development,
hence limiting the generalizability of the results. In order to
make wider conclusions more domains, smaller companies
and different production models should be studied.

VI. CONCLUSION AND FUTURE WORK
This paper presents an action research study with the aim

to understand organization’s KPI process and to formulate a
meaningful set of KPIs. Several issues in the case
organisation were identified during the study, with the most
significant being that the original KPIs didn’t measure what
they were intended to measure. KPIs were not giving the
right information; they were not well defined and were not
based on complete and reliable information. When the
information was not correct, it caused harm as the decision-
making was relying on false data.

Modelling and visualisation was used to understand,
analyse and to model the KPI process. Using simple
visualisation mechanisms to model and represent the KPI
process helped in understanding the purposes and needs of
measurements, as well as the source data and its handling
during the KPI process. Modelling and visualisation also
clearly revealed the different stakeholders that participated in
the KPI process, and further improved understanding and
communication between the stakeholders; especially non-
technical persons’ understanding was improved
considerably.

The improved KPI process and well-defined KPIs, in
turn, lead to more effective decision-making, as the
measurements were more accurate, reliable and descriptive.
Also, different units and product lines could be compared
when the measurements were commensurable.

Study showed that the KPI information flow should be
carefully analysed and KPIs should be based on real needs
and real measurable values. To address our research
question, KPIs should be formulated in a way that provides
real results. For this purpose, the proposed modelling and
visualisation approach is a very useful tool. It allows for
redefining usable, valid and reliable KPIs so that KPIs and
the whole KPI process, with all the interdependencies, can be
well understood and analysed. It is also important that the
whole product development process is analysed, not just the
data sources for KPIs. Analysing the process provides an
understanding how KPIs are build from the original data,
what the measurements really indicate and how they can be
used to understand and improve the development process.
Constant follow up and process refining is also an integral
part of the process, which helps to keep the KPI process
always up to date.

Our approach solves many issues related to KPIs and it is
useful especially when there are several teams working on
their tasks and the overall picture may be hard to see. Our
approach concretises abstract work and defines the
relationships of activities associated to it. It provides
graphical presentations that are accessible and easy to use for
understanding, analysing, communicating and improving
processes. The resulting model can be used for presenting the
actors, activities and information flows, and describing their
logical order and dependencies. Graphical models and
modelling helps in understanding the complex problems by
enabling breaking those down to understandable entities.

This work benefits both research and industry. Research
benefits from new knowledge and the experiences from the
industry to expand the knowledge base. Industry
practitioners can adopt a simple modelling and visualisation
approach to improve their KPI process. We propose simple
modelling and visualisation as a recommended practice in
formulating KPIs, especially in sociotechnical systems,
where persons are in interaction with technology. The
solution is simple on purpose. The problems are common in
industry and, e.g., in the case organisation the heavy weight
solutions have not been useful – they have not been well
embraced. However, simple and intuitive solutions are more
easily taken into use also at the lower levels of an
organisation.

Topics for further studies were also identified, including
confirming the results in other domains to improve the
generalizability. Furthermore, the question about how to help
organisations to act upon KPIs and implement the changes
still remains.

REFERENCES
[1] P. Helo, “Managing Agility and Productivity in the

Electronics Industry,” Industrial Management & Data
Systems 104(7), pp. 567–577, 2004.

[2] J. Froehlich and P. Dourish, “Unifying artifacts and activities
in a visual tool for distributed software development teams,”
Proceedings of the 26th International Conference on Software
Engineering, pp. 387–396. IEEE Computer Society Press, Los
Alamitos, CA, 2004.

[3] M. Staron, “Critical role of measures in decision processes:
Managerial and technical measures in the context of large

120Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 131 / 160

software development organizations,” Information and
Software Technology, 54(8), pp. 887–899, 2012.

[4] F. M. del-Rey-Chamorro, R. Roy, B. van Wegen, and A.
Steele, ”A framework to create key performance indicators
for knowledge management solutions,” Journal of Knowledge
management 7(2), pp. 46–62, 2003.

[5] A. Shahin and M. A. Mahbod, “Prioritization of key
performance indicators: An integration of analytical hierarchy
process and goal setting,” International Journal of
Productivity and Performance Management 56(3), pp. 226–
240, 2007.

[6] E. S. Yu and J. Mylopoulos, “Understanding “why” in
software process modelling, analysis, and design,”
Proceedings of the 16th International Conference on Software
Engineering, pp. 159–168. IEEE Computer Society Press, Los
Alamitos, CA, 1994.

[7] R. Kaplan and D. Norton, “The Balanced Scorecard-Measures
that Drive Performance,” Harvard Business Review, 70(1),
pp. 71–79, 1992.

[8] M. A. Malina and F. H. Selto, “Communicating and
controlling strategy: an empirical study of the effectiveness of
the balanced scorecard,” Journal of management accounting
research 13(1), pp. 47–90, 2001.

[9] ISO 9001:2015 Quality Management Systems–Requirements.
Available from: https://www.iso.org/standard/62085.html
2018.08.01

[10] ISO 9000:2015 Quality Management Systems–Fundamentals
and Vocabulary. Available from:
https://www.iso.org/standard/45481.html 2018.08.01

[11] ISO 9004:2018 Quality management–Quality of an
organization–Guidance to achieve sustained success.
Available from: https://www.iso.org/standard/70397.html
2018.08.01

[12] D. Stodder, “Data visualization and discovery for better
business decisions,” TDWI Best Practices Report. The Data
Warehouse Institute, Renton, WA, 2013.

[13] K. Bauer, “KPIs - The metrics that drive performance
management,” DM Review 14(9), 63, 2004.

[14] M. Resinas et al., “KPIshare: A Collaborative Space for BPM
Practitioners for Full Definitions and Discussions on Process
KPIs,” In BPM (Demos), pp. 61–65, 2014.

[15] W. W. Eckerson, “Creating Effective KPIs,” Information
Management 16(6), p. 15, 2006.

[16] A. del-Río-Ortega et al., “Enriching decision making with
data-based thresholds of process-related KPIs,” International
Conference on Advanced Information Systems Engineering,
pp. 193–209. Springer, Cham, 2017.

[17] J. Cai, X. Liu, Z. Xiao, and J. Liu, “Improving supply chain
performance management: A systematic approach to
analyzing iterative KPI accomplishment,” Decision Support
Systems 46(2), pp. 512–521, 2009.

[18] E. R. Randall, B. J. Condry, M. Trompet, and S. K. Campus,
“International bus system benchmarking: Performance
measurement development, challenges, and lessons learned,”
86th Annual Meeting of the Transportation Research Board,
Washington, D.C, pp. 1–12, 2007.

[19] R. S. Kaplan, “New systems for measurement and control,”
The Engineering Economist 36(3), pp. 201–218, 1991.

[20] H. J. Harrington, “Improving business processes,” The TQM
Magazine 3(1), pp. 39–44, 1991.

[21] W. W. Eckerson, “Performance dashboards: measuring,
monitoring, and managing your business,” John Wiley &
Sons, Hoboken, New Jersey 2010.

[22] J. B. Ellis, S. Wahid, C. Danis, and W. A. Kellogg, “Task and
social visualization in software development: evaluation of a

prototype,” Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pp. 577–586. ACM New
York, NY, 2007.

[23] S. K. Card, J. D. Mackinlay, and B. Shneiderman, “Readings
in information visualization: Using vision to think,” Morgan
Kaufman, San Francisco, CA, 1999.

[24] S. Brescianti and M. J. Eppler, “The Benefits of Synchronous
Collaborative Information Visualization: Evidence from an
Experimental Evaluation,” IEEE Transactions on
Visualization and Computer Graphics 15(6), pp. 1073–1080,
2009.

[25] L. Scott, L. Carvalho, R. Jeffery, and J. D’Ambra, “An
evaluation of the spearmint approach to software process
modelling,” European Workshop on Software Process
Technology, pp. 77–89. Springer, Berlin, 2001.

[26] W. W. Eckerson, “Performance management strategies,”
Business Intelligence Journal 14(1), pp. 24–27, 2009.

[27] R. S. Aguilar-Saven, “Business process modelling: Review
and framework,” International Journal of Production
Economics 90(2), pp. 129–149, 2004.

[28] K. Schneider, K. Stapel, and E. Knauss, “Beyond documents:
visualizing informal communication,” Proceedings of the
third International Workshop on Requirements Engineering
Visualization, pp. 31–40. IEEE, 2008.

[29] A. del-Río-Ortega, C. Cabanillas, M. Resinas, and A. Ruiz-
Cortés, “PPINOT tool suite: a performance management
solution for process-oriented organisations,” International
Conference on Service-Oriented Computing, pp. 675–678.
Springer, Berlin, Heidelberg, 2013.

[30] M .Staron, K. Niesel, and W. Meding, “Selecting the Right
Visualization of Indicators and Measures–Dashboard
Selection Model,” International Workshop on Software
Measurement, pp. 130–143. Springer International
Publishing, Switzerland, 2015.

[31] M. Kelanti, J. Hyysalo, P. Kuvaja, M. Oivo, and A. Välimäki,
“A Case Study of Requirements Management: Toward
Transparency in Requirements Management Tools,“
Proceedings of the Eighth International Conference on
Software Engineering Advances, pp. 597–604. Curran
Associates, Inc., Red Hook, NY, 2013.

[32] J. Hyysalo, M. Kelanti, J. Lehto, P Kuvaja, and M. Oivo,
“Software development as a decision-oriented process,”
Proceedings of the International Conference of Software
Business, pp. 132–147. Springer, Cham, 2014.

[33] G. Susman and R. Evered, “An Assessment of the Scientific
Merits of Action Research,” Administrative Science Quarterly
23(4), pp. 582–603, 1978.

[34] P. B. Checkland, “Systems Thinking, Systems Practice,” John
Wiley & Sons Ltd, Chichester, 1981.

[35] Y. Rogers, H. Brignull, and M. Scaife, “Designing Dynamic
Interactive Visualisations to Support Collaboration and
Cognition,“ Sixth International Conference on Information
Visualisation, pp. 39–48. IEEE, London, 2002.

[36] M. Kelanti et al., “Soft System Stakeholder Analysis
Methodology,” Proceedings of the Tenth International
Conference on Software Engineering Advances, pp. 122–130.
Associates, Inc., Red Hook, NY, 2015.

[37] A. Dix and G. Ellis, “Starting simple - adding value to static
visualisation through simple interaction,” Proceedings of the
working conference on Advanced visual interfaces, pp. 124–
134. ACM New York, NY, 1998.

[38] M. Staron, W. Meding, G. Karlsson, and C. Nilsson,
“Developing measurement systems: an industrial case study,”
Journal of Software Maintenance and Evolution: Research
and Practice, 23(2), pp. 89–107, 2011.

121Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 132 / 160

Tracing and Reversing the Run of Software Systems

Implemented by Petri Nets

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic

{koci,janousek}@fit.vutbr.cz

Abstract—Application run tracing and application interactive

debugging are integral part of the software systems development

process. In many cases, the possibility to execute reverse steps of

the system run would make debugging easier and quicker due to

examination of the system state before it got into the wrong or

disabled state. Currently, techniques of reversing the system run

are not widespread, but there are experimental implementations.

Nevertheless, these solutions increase overhead of the application

run due to the logging of the information needed to restore

previous states. Moreover, many of them increase overhead in a

significant way. This article focuses on the possibility of reversing

the run of systems whose behavior is described by Petri nets.

The work follows the methodology of designing and validating

system requirements using functional models that combine formal

notation with objects of production environment and can be used

as a full-fledged application. Due to the nature of Petri Nets

formalisms, it is possible to define reverse operations to reduce

the overhead of application run.

Keywords–Object Oriented Petri Nets; debugging; tracing; re-
verse debugging; requirements validation.

I. INTRODUCTION

This work builds on the concepts of formal approach to
design and develop system requirements and, consequently,
their implementation using Petri Nets [1]. It is part of the
Simulation Driven Development (SDD) approach [2] com-
bining basic models of the most used modeling language
Unified Modeling Language (UML) [3][4] and the formalism
of Object-Oriented Petri Nets (OOPN) [5]. This approach is
based on ideas of model-driven development dealing with gaps
between different development stages and focuses on the usage
of conceptual models during the development process of sim-
ulation models—these techniques are called model continuity
[6]. Model continuity concept works with simulation models
during design stages, while the approach based on Petri Nets
focuses on live models that can be used in the deployed system.

When testing models or implementations, developers often
use the interactive debugging technique, which allows to go
through the system run and investigate its state step by step.
The logging technique and subsequent analysis of the running
system is less often used. These techniques are linked to
the limits of their use, notably the inability to make reverse
steps. In this case, it is difficult to determine the system
states before stopping (e.g., at breakpoints). However, the
introduction of reverse interactive debugging leads to increased
overhead especially for running an application where it is

necessary to collect the information needed to reconstruct the
previous states. There are several approaches that differ in
their possibilities and overhead. A very important factor is,
in addition to higher demands on the runtime of application,
that there is a higher demand for memory that keeps the
collected information. Another issue is the overhead of reverse
debugging, which is not as important as the run overhead.

There are three basic approaches to solving this problem.
The first one records the system run and then performs all the
steps from the beginning to the desired point (record-replay
approach). The second approach records all the information
needed to return to the previous step (trace-based approach).
The third approach records only selected checkpoints so they
are reliably replicated (reconstruction-based approach). Re-
verse debugging is done by reconstructing the appropriate
checkpoint state and then making forward steps. The approach
presented in this paper is based on the trace-based reverse
debugging. Due to the nature of used OOPN formalism, which
has a formal base working with unambiguously defined events,
there is no problem to define and perform reverse operations
associated to each event.

The paper is organized as follows. Section II introduces
related work. Section III summarizes basic definitions of
OOPN formalism needed to define tracing concepts. Section
IV discuss the possibilities of OOPN models simulation tracing
and introduces the simple demonstrating model. Section V
focuses on recording states and event during the simulation
and Section VI describes reverse events and operation when
reverse debugging performed. The summary and future work
is described in Section VII.

II. RELATED WORK

The solution based on recording simulation run and re-
playing it from the beginning to the breakpoint may be time
consuming and, for a long run of the application, unsuitable
due to time lags when debugging. As examples we can mention
Instant Replay debugger [7] or Microsoft Visual Studio 2010
IntelliTrace [8].

The trace-based solution logs all steps, so it is possible to
determine the current state and the sequence of steps that led to
this state. In many cases, the simulators record everything and,
therefore, it is possible to go back to one of the previous steps.
The scope of that solution is limited by what and how can
be traced, especially using multi-processors is very difficult to

122Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 133 / 160

work. As examples we can mention Green Hills Time Machine
[9], Omniscient Debugger [10] fo Java Virtual Machine, or gnu
reverse debugger gdb 7.0 [11]. The last mentioned, gdb debug-
ger, is very slow, but is the only open-source solution. There
are tools based on Petri nets that allow reverse debugging,
e.g., the TIme petri Net Analyzer TINA [12]. Nevertheless,
these tools focus on a specific variant of Petri nets that are
not not usable for the application environment. Besides, there
are also tools suitable for these purposes, e.g., Renew [13],
that are similar to the SDD approach but do not allow reverse
debugging.

Some solutions allow to go back in the operation stack,
change the current state and proceed from this step. An
example may be the Smalltalk language [14]. Even in this case,
however, we do not have the state of the system associated with
the appropriate step, but only the current state whose image
we see in the context of methods that were called.

III. BASIC DEFINITION OF OOPN FORMALISM

In this section we will introduce the basic definition of
Object-oriented Petri Nets (OOPN) formalism necessary for
the presented purpose.

A. System of classes and objects

For the purposes of this work, we define the Object
Oriented Petri Nets (OOPN) as a system of classes and objects
that consists of the individual elements [15].

Definition 1: System OOPN is Π = (Σ,Γ, c0, o0), where
Σ is a system of classes, Γ is a system of objects, c0 is an initial
class and o0 is an identifier of the initial object instantiated
from the class c0.

Definition 2: System of classes Σ consists of sets
of elements constituting classes and is defined as
Σ = (CΣ,MSG,NO,NM, SP,NP,P,T,CONST,VAR),
where CΣ is a set of classes, MSG is a set of messages, NO

is a set of object nets, NM is a set of method nets, SP is a
set of synchronous ports, NP is a set of negative predicates,
P is a set of places, T is a set of transitions, CONST is a set
of constants and VAR is a set of variables. Messages MSG
correspond to method nets, synchronous ports, and negative
predicates.

Definition 3: System of objects Γ is a structure containing
sets of elements constituting the model runs (the model run
corresponds to the simulation, so that we will use the notation
of simulation). Γ = (OΓ,NΓ,MN,MT), where OΓ is a set
of object identifiers, NΓ is a set of method nets identifiers,
MN ⊂ (OΓ ∪ NΓ) × P × UM is place markings and MT ⊂
(OΓ ∪NΓ)× T× P(BIND) is transition markings.

Definition 4: The OOPN system universe U is defined
U = {(cnst, cls, oid) | cnst ∈ CONST ∧ cls ∈ CΣ ∧ oid ∈
OΓ}. The system universe represents a set of all possible values
that may be part of markings or variables.

We can use the following notation to simplify writing. For
constants, we write down their values directly, e.g., 10, ′a′. For
classes, we write down their names directly without quotes or
apostrophes. To identify an object, we will write its identifier
with a @ character.

Definition 5: The set of all variable bindings BIND used
in OOPN is defined BIND = {b | b : VAR −→ U}.

Definition 6: We define operators for instantiating classes
∐C and method nets ∐N that create the appropriate instances
and assign them identifiers from sets OΓ, resp. NΓ. When
creating a new instance of the class c ∈ CΣ, we will write
∐C(c) = o or ∐C(c, o), where o ∈ OΓ. Similarly, for the
method net instance m ∈ NM, we will write ∐N(o,m) = n
or ∐N(o,m, n), where o ∈ OΓ is an object where the method
net instance n ∈ NΓ is created.

Individual class elements are identified by their fully qual-
ified names consisting of sub-element names separated by a
dot. The class is identified by its name, e.g., C. The method is
identified by class and method names, e.g., C.M, the method
place C.M.P, and so on. In the case of object net, the elements
will be written directly without method identification, e.g.,
C.P. Similarly, we will introduce the identification of Γ object
system elements. Objects and nets instances are uniquely
identified by their identifiers, net elements (transitions and
places) by their names. For instance, the transition t ∈ T of the
method net mi ∈ NΓ can be identified by following notations:
mi.t or (mi, t). The object net describes the autonomous
activities of the object, its instance is always created with the
instantiation of the class, and is just one. For this reason, the
notation o ∈ OΓ can identify the class instance as well as its
object net. Method nets describe the object’s response to the
sent message. In case the message is received, the instance
n ∈ NΓ of the respective net NM is created and its simulation
starts.

B. Place

The place is represented by a named multi-set. The multi-
set AM is a generalization of the set A such that it can contain
multiple occurrences of elements. Thus, the multi-set can be
defined as a function AM : A → N, which assigns to each
element a ∈ A the number of occurrences in the multi-set. The
number of occurrences will be denoted by the term frequency.
We will denote |A| the cardinality of the set A, i.e., the number
of elements in the set A. We will denote |AM| the cardinality
of multi-set AM, i.e., the sum of frequencies of all elements
in the set A. For an individual element x of the place p ∈ P,
we will write x ∈ p a for its frequency m‘x.

Definition 7: The place marking corresponds to its content
and is defined as a multi-set MP = {(m, o) | m ∈ N

+ ∧ o ∈
U}, where m is frequency of the member o in the multi-set.
Members of multi-set will be written in the form m‘o, marking
of the place p ∈ P will be written in the form MP(p) =
{m1‘o1,m2‘o2, . . . }.

C. Arc Expression

Arc expression matches the usual approach used in Petri
nets. Each arc expression has a form of m‘o, where m ∈
N

+ ∪ VAR and o ∈ U ∪ VAR. The expression element
m represents the frequency of o in the multi-set and can be
denoted by a numeric value or a variable. If the variable is
used at the position m, the frequency of the member o in
multi-set is assigned to that variable. The element o represents
the object stored in multi-set and can be defined by the element
of the universe U or the variable. If a variable is used at

123Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 134 / 160

the position o, an object from multi-set, whose frequency
corresponds to specified m, is bound to that variable. If both
parts of an expression are defined by variables, any object and
its frequency are bound to these variables. If the content of
multi-set does not match the given expression, the bounding
process fails.

D. Set of Classes

The formalism of OOPN works, in addition to the OOPN
objects (OΓ and the corresponding set of classes CΣ), with
objects that are not a direct part of the formalism. Principle
of their usage is based on Smalltalk, which is also used as the
inscription language of the formalism of OOPN. These objects
are especially basic constant objects (sometimes also called
primitive objects) such as numbers, symbols, characters, and
strings. The corresponding classes will be denoted Number,
Symbol, Character and String and their set, in sum, CC .
Objects of these classes are part of the set of constants
CONST. In addition to these basic objects, OOPN formalism
can work with other objects and classes. In particular, it cov-
ers collections, graphical user interface objects, user-defined
classes, etc. We will call the set of these classes as domain
classes and denote with the symbol CD, CC ⊂ CD. A set of
object identifiers created from classes CD is denoted OD.

Definition 8: Let CΠ = CΣ∪CD be a set of all classes that
can be used by the formalism of OOPN. Let OΠ = OΓ∪OD be
a set of all object identifiers that can be instantiated (created)
from classes CΠ.

Definition 9: Extended Universe UΠ of OOPN is defined
UΠ = {(cnst, cls, oid) | cnst ∈ CONST ∧ cls ∈ CΠ ∧ oid ∈
OΠ}.

IV. SIMULATION TRACING

In this section, we briefly outline the sample model and
discuss the possibilities of tracing the run of software system
described by the formalism of OOPN. We will call that run
simulation.

A. Sample Model

The basic concept will be outlined using a simple example.
Figure 1 shows classes of that example. Figure 1a) depicts the
initial class A1 with its object net and Figure 1b) depicts the
class A2 having the only method calc: with one parameter x.

a := x + 10.
b := a * 2.

calc: x

return

t2

x

x

b

o := A2 new.
r := o calc: x.

p2

t1
x

r

p1
1) 1‘10

a) b)

2) 1‘10, 1‘20

Figure 1. The sample model consisting of two classes A1 and A2; a) class
A1 has only object net and b) class A2 has only method net calc:.

At the simulation start, an instance o0 from the initial
class A1 is created, ∐C(A1, o0). The object net o0 creates an
instance of the class A2, ∐C(A2, o1), and calls its method net
calc: from the transition o0.t1, ∐N(o1, calc:, n1). The method
net n1 executes the transition n1.t2. This example works
with two variants of initial marking of the object net A1; 1)
MP(p1) = {1‘10} and 2) MP(p1) = {1‘10, 1‘20}.

B. Tracing Tree

The simulation progress can be recorded as a tree, where
nodes represent the relevant unit of simulation run and edges
represent a sequence of units execution including the bindings.
The relevant unit is understand as the least set of events that
the tracer records. Tree root represents the input point of the
calculation. If a parallel calculation occurs during the execution
of the relevant unit, this unit has more successors in its tree
view. The current state of the calculation is then represented
by all tree leaves. In Figure 2, we can see such a tree for
the model from Figure 1 for the variant of initial marking
MP(p1) = {1‘10, 1‘20}. In this example, the relevant unit
is one executed command. Edges are recorded with a full-
line arrow. Nodes capture on which network and transition the
command has been performed.

o0

t1 {r := o calc: x.}

o0 t1 {o := A2 new.}

o0

t2 {a := x + 10.}
o1.m1

t2 {b := a * 2.}
o1.m1

t1 {r := o calc: x.}

o0 t1 {o := A2 new.}

o0

t2 {a := x + 10.}
o2.m1

t2 {b := a * 2.}
o2.m1

(x=10) (x=20)

(x=10,o=@o1) (x=20,o=@o2)

(x=10)

(x=10, a=20)

(x=20)

(x=20, a=30)

Figure 2. Scenario model of one simulation run.

The tree constructed by that way represents threads that
may appear while running the simulation. It does not, however,
capture the succession of steps that are important for making
backward steps. The sequence of steps can be different and
depends on the specific conditions of the simulation run. One
such variant is captured in Figure 2 with the dashed line
arrows.

C. Event

The simulation run is driven by events. Each executed
(fired) event changes the system state, and, therefore, repre-
sents one step of model simulation. The set of states S of the
system has a character of the net instances marking, which
includes marking of places and transitions. One step from the
state s ∈ S to the state s′ ∈ S is written in the form s [ev〉 s′,
where ev is an executed event .

Definition 10: Event is ev = (e, id, t, b), where e is a type
of event, id ∈ NΓ∪OΓ is the identifier of net instance the event

124Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 135 / 160

executes in, t ∈ T is the transition to be executed (fired), and
b ∈ P(BIND) is variables binding the event is to be executed
for.

Event types can be as follows: A represents an atomic
event, the entire transition is done in one step; F represents
sending a message, i.e., creating an instance of a new method
net and waiting for its completion; J represents completion of
the method net called at F event.

D. Event flow subgraph

The object net can describe multiple scenarios, either
interconnected or totally disjoint. The structure of each net
is defined by a graph of the Petri net, so we can define the
scenarios as subgraphs of such nets.

Definition 11: Let S(OΓ ∪ NΓ) be a set of all valid
subgraphs of object nets OΓ and method nets NΓ. Individual
scenarios will be denoted δc(n) = (ev0, ev1, . . .), where
n ∈ OΓ ∧ c ∈ N.

Now, we return to the step (i.e., event) sequence entry
shown in Figure 2 and write the presented scenario in the form
of net subgraph, δ = ([A, o0, t1, (x = 10)〉, [F, o0, t1, (x =
10, o = @o1)〉, [A, o0, t1, (x = 20)〉, [F, o0, t1, (x = 20, o =
@o2)〉, [A, o1.m1, t2, (x = 10)〉, [A, o1.m1, t2, (x = 10, a =
20)〉, [A, o2.m1, t2, (x = 20)〉, [A, o2.m1, t2, (x = 20, a =
30)〉).

E. Composite Command

If the transition contains a sequence of messages, either
step-by-step or composite ones, this transition can be under-
stood, from the OOPN theory point of view, as a sequence
of simple transitions, each of which contains just one simple
command. An example of such equivalence is shown in Figure
3.

p1

p2

≈

a)

b := o doit: (n+2).

(@o1, 10),
(@o2, 20)

(o, n)

t1

p1

p2

b)

tmp1 := (n+2).
b := o doit: tmp1.

(o, n)

t1

b
b

p1

t1_tmp1

c)

tmp1 := (n+2).

(o, n)

t1[1]

(o, n, tmp1)

p2

b := o doit: tmp1.

t1[2]

b

(o, n, tmp1)

≈

(@o1, 10),
(@o2, 20)

(@o1, 10),
(@o2, 20)

Figure 3. Composite command of the transition.

This model has four variants of execution. In the following
example, only one is listed, the others are a combination of
different interleaving of two concurrently running transitions
t1. The notation of a transition using index, e.g., t1[1], refers

to the corresponding command of the composite transition.

δ1(o0) = ([A, o0, t1[1], {o = @o1, n = 10}〉,

[F, o0, t1[2], {o = @o1, n = 10, tmp1 = 12}〉,

[J, o0, t1[2], {(o = @o1, n = 10, tmp1 = 12}〉,

[A, o0, t1[1], {(o = @o2, n = 20}〉,

[F, o0, t1[2], {o = @o2, n = 20, tmp1 = 22}〉,

[J, o0, t1[2], {o = @o2, n = 20, tmp1 = 22}〉)

V. RECORDING THE SIMULATION

This section focuses on recording states during simulation.
We will describe each of the monitored events and how the
state changes are recorded. To record the entire state would
be very time consuming and memory intensive, and from
the means offered by OOPN formalism point of view also
unnecessary. For the purpose of stepping, it is sufficient to save
partial state changes. This avoids storing the whole simulation
image after every step.

A. State Changes Processing

A partial state change may involve inserting or selecting
an element from a place, assigning the result to a variable,
creating or destroying an object, creating or completing a
method net instance (associated with calling and terminating
this method), and creating or completing a transition instance.

1) Changing Place State: Changing the place state is the
easiest operation corresponding to removing elements when
transition fires, or adding elements when transition is complete.
Within one step, more elements can be inserted or removed
into or out of more places. The change will be recorded in the
following notation. Operation add(p,m, o) for adding element
to the place and operation del(p,m, o) for removing element
from the place, where p ∈ P is the place and m ∈ N

+ is the
frequency of element o ∈ U.

2) Firing and Completing Composite Transition: Although
the composite command in the transition is always interpreted
by individual commands, it is necessary to maintain a re-
lationship to the original entire transition. Additionally, the
transition can be run multiple times for different bindings,
so it is necessary to uniquely identify the specific transition
instance. Therefore, we will introduce a special event type
B, which represents the transition firing for a given binding,
and at the same time assigns a unique identifier to the fired
transition. Similarly, we will introduce a special C event type
to completing the fired transition.

Definition 12: For the purpose of writing state changes, we
will extend the definition of the system of objects Γ to the set
of transition instance identifiers TΓ, i.e., transitions fired with
a specific binding, Γ = (OΓ,NΓ,TΓ,MN,MT).

3) Changing Variable State: Changing the state of the
variable when executing the transition is denoted by operation
swap(ti, v, onew, oold), where ti ∈ TΓ is a transition, v ∈ VAR
is the transition variable, onew ∈ U is a universe object
assigned to the variable v and oold ∈ U is the original object
assigned to the variable v before this event occurs.

125Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 136 / 160

4) Creating Object: Creating an object (a class instance)
corresponds to the creation of an object net and its initial-
ization. In terms of state recording, it is important to keep
information about identification of newly created object ∐C

and changes of the object net’s places, i.e., adding objects into
places during the net initialization process.

5) Creating Method Net Instances: Creating a method
net instance corresponds to a method invoking by sending a
message. As with the object, it is necessary to keep information
about identification of newly created instance ∐N and inserting
objects (values) into the net’s parameter places.

6) Completing Method Net Instances: After the method net
instance is completed, two possible options can be applied to
record changes. First, the current state of entire net is recorded,
i.e., marking of all places and all fired transitions (instances).
Second, no state is recorded. The first option is more demand-
ing for time and memory space during simulation, but it is not
necessary to reconstruct the net’s state so that it matches the
state before its completion. The second option is more efficient
during simulation, but it is more demanding to reconstruct the
net’s state during backward stepping. At this point we will
focus on the option without state recording. We will introduce
a special operation ∆N(mi), which indicates the completion
and cancellation of the net instance mi.

B. Example of Tracing Simulation

We demonstrate the concept of simulation tracking on the
model shown in Figure 1 for variant 1, i.e., with the initial
marking MP(p1) = {1‘10}. For the reasons given in Section
V-A2, we will modify the event definition as follows:

Definition 13: Event is ev = (e, id, t, ti, b), where e is
a kind of event, id ∈ NΓ ∪ OΓ is the identifier of the net
instance the event executes in, t ∈ T is the transition to be
executed (fired), and b ∈ P(BIND) is variables binding for
which this event is executed, and ti ∈ TΓ is the identifier of
fired transition.

The sequence of fired transitions does not necessarily
correspond to the tracing tree, which also takes into account the
simulation branching. Sequence of fired transitions captures a
specific sequence of events, which is always unambiguously
given. Figure 4 captures the sequence of events (scenario)
completed with state change operations. This is about tracing
a simulation with storing relevant information for backward
stepping. We can see individual state changes in the State
column. For the purpose of this text, we will simplify writing
events so that we do not specify the binding b.

VI. REVERSE DEBUGGING

In this section, we describe steps that are performed when
stepping backwards.

A. State Changes Reverse Processing

There is a sequence of reverse operations for each state
change that allows to return to the previous step. We explain
the operations associated with each recorded event. Some of
the operations will be demonstrated on discussed example, first
steps of reverse debugging are shown in Figure 5.

Event State

∐C(A1, o1)

add(o1.p1, 1, (10, ε, ε))

[B, o1, t1, t11〉 del(o1.p1, 1, (10, ε, ε))

swap(t11, x, (10, ε, ε), ε)

[A, o1, t1[1], t11〉 ∐C(A2, o2)

swap(t11, o, (ε, ε, o2), ε)

[F, o1, t1[2], t11〉 ∐N(o2,A2.calc:,m1)

add(o2.m1.x, 1, (10, ε, ε))

[B, o2.m1, t2, t21〉 del(o2.m1.x, 1, (10, ε, ε))

swap(t21, x, (10, ε, ε), ε)

[A, o2.m1, t2[1], t21〉 swap(t21, a, (20, ε, ε), ε)

[A, o2.m1, t2[2], t21〉 swap(t21, b, (40, ε, ε), ε)

[C, o2.m1, t2, t21〉 add(o2.m1.return, 1, (40, ε, ε))

[J, o1, t1[2], t11〉 ∆N(m1)

swap(t11, r, (40, ε, ε), ε)

[C, o1, t11〉 add(o1.p2, 1, (40, ε, ε))

Figure 4. Scenario record.

1) C-Event Type: The event C represents completing the
transition instance ti. In a step back, our goal is to reconstruct
this instance. It is necessary perform the reverse operations that
are associated with this event. Since these operations refer to
the insertion of elements into the output places, the reverse
operations are therefore the removal of these elements. The
next step is to reconstruct the state of transition instance ti.
We find the first entry regarding the instance ti, i.e., [B, t, ti〉,
create this instance and perform all the swap operations. In
our example, this would be a sequence of events [B, t1, t11〉,
[A, t1[1], t11〉, [F, t1[2], t11〉 and [J, t1[2], t11〉. Event B en-
sures creation of the appropriate instance with the t11 iden-
tifier. The associated sequence of swap operators is as fol-
lows: swap(t11, x, (10, ε, ε), ε), swap(t11, o, (ε, ε, o2), ε) and
swap(t11, r, (40, ε, ε), ε). This way we filled all the variables
with appropriate values, and we are in a state where the
transition instance t11 was completed. If the object, resp. its
identifier, that has been destroyed (e.g., because it was removed
by a garbage collector) is assigned to the variable, it is not
essential at this point. The object will be reconstructed at the
first access to it (state handling, work with method net, etc.).

2) J-Event Type: The event J represents completing the
call of method. The reverse swap operation is executed, i.e., the
value is removed from the variable and replaced with the origi-
nal (previous) value. The next step is to perform a reverse oper-
ation ∆̄N(mi) to destroying the method net ∆N(mi), i.e., creat-
ing net instance mi and reconstructing its last state. Using oper-
ation ∆̄N(mi), we get a sequence of operations over the net mi

starting with ∐N(oi, class.method name,mi) operation. From
this sequence, we will perform add and del operations on the
net instance mi. In our example, it would be a sequence of op-
erations add(o2.m1.x, 1, (10, ε, ε)), del(o2.m1.x, 1, (10, ε, ε))
and add(o2.m1, return, 1, (40, ε, ε)). As a result, we made
method net in the state, where the place return contains the
object representing number 40.

126Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 137 / 160

Step State

[C, o1, t11〉 del(o1.p2, 1, (40, ε, ε))

[J, o1, t1[2], t11〉 swap(t11, r, ε, (40, ε, ε))

∆̄N(m1) ⇒

∐N(o2,A2.calc:,m1)

add(o2.m1.x, 1, (10, ε, ε))

del(o2.m1.x, 1, (10, ε, ε))

add(o2.m1.return, 1, (40, ε, ε))

[C, o2.m1, t2, t21〉 del(o2.m1.return, 1, (40, ε, ε))

swap(t21, x, (10, ε, ε), ε)

swap(t21, a, (20, ε, ε), ε)

swap(t21, b, (40, ε, ε), ε)

[A, o2.m1, t2[2], t21〉 swap(t21, b, ε, (40, ε, ε))

Figure 5. Reverse scenario.

It may happen that there are still instances of transitions
that are not terminated at the method net completion. These
instances must also be reconstructed. From the sequence of
operations ∆̄N(mi), we find such sequences that correspond to
unfinished transitions starting with [B, t, ti〉 event, but having
no event [C, ti〉. For each such sequence we perform actions
similarly to the backward step of [C, ti〉 event.

3) F-Event Type: The event F represents the method invok-
ing on the object. In the reverse step, the appropriate instance
of method net specified in ∐N operator is destroyed.

4) A-Event Type: The event A represents the atomic execu-
tion of the operation. The reverse swap operation is executed,
i.e., the value is removed from the variable and replaced with
the original (previous) value. If the atomic operation is a
creation of a class instance ∐C, this instance is destroyed.

5) B-Event Type: The event B represents the start of
transition execution (creation of a transition instance). In the
reverse step, the transition instance ti is destroyed and the
add reverse operation is performed. There is no need to swap
variables, as the entire fired transition is canceled.

B. Object Reconstruction

At the time of access to the object, e.g., due to the
reconstruction of the method net, it may happen that the object
no longer exists. The reason may be the loss of all references
to this object and its removal by the garbage collector. At
this point, it is necessary to create the object and reconstruct
its last state. Because the object was destroyed, it means
that there were no existing method nets. It is necessary to
reconstruct the state of the object net, which is done in the
same way as the method net reconstruction. The sequence of
corresponding operations on the object net oi is obtained by
using ∆̄O(oi) operation, which is similar to ∆̄N(oi) operation,
but the obtained sequence starts with ∐C(class, oi) operation
and the class instance is created instead of method net instance.

VII. CONCLUSION

The paper dealt with the concept of tracing and reversing
run of software system modeled by Petri Nets, especially the

formalism of Object Oriented Petri nets. Presented concept is
fully functional, but has not yet taken into account all the pos-
sibilities of use. We were only concerned with pure Petri Nets
objects and passed the domain objects, e.g., collections, objects
of user classes etc. We have also abstracted the possibility of
having objects that have running method nets, even though they
were collected by garbage collector. The reason is an existence
od cyclic dependencies but unavailable from the initial object.
The last constraint is to omit the method from the external
(domain) object. At present, we have an experimental partial
implementation of the tool supporting reverse debugging. We
will complete the implementation in the future and focus on
the above-mentioned limitations.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project
FIT-S-17-4014 and The Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme
of Sustainability (NPU II); project IT4Innovations excellence
in science - LQ1602.

REFERENCES

[1] R. Kočı́ and V. Janoušek, “Specification of Requirements Using Unified
Modeling Language and Petri Nets,” International Journal on Advances
in Software, vol. 10, no. 12, 2017, pp. 121–131.

[2] R. Kočı́ and V. Janoušek, “Modeling and Simulation-Based Design
Using Object-Oriented Petri Nets: A Case Study,” in Proceeding of the
International Workshop on Petri Nets and Software Engineering 2012,
vol. 851. CEUR, 2012, pp. 253–266.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

[4] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model
Driven Architecture with Executable UML. Cambridge University
Press, 2004.

[5] M. Češka, V. Janoušek, and T. Vojnar, “Modelling, Prototyping, and Ver-
ifying Concurrent and Distributed Applications Using Object-Oriented
Petri Nets,” Kybernetes: The International Journal of Systems and
Cybernetics, vol. 2002, no. 9, 2002.

[6] D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuity in
discrete event simulation: A framework for model-driven development
of simulation models,” ACM Transactions on Modeling and Computer
Simulation, vol. 25, no. 3, 2015.

[7] T. LeBlanc and J. Mellor-Crummey, “Debugging Parallel Programs with
Instant Replay,” IEEE Transactions on Computers, vol. 36, no. 4, 1987,
pp. 471–482.

[8] I. Huff, “IntelliTrace in Visual Studion 2010 Ultimate,” MSDN
Blogs, http://blogs.msdn.com/b/ianhu/archive/2009/05/13/historical-
debugging-in-visual-studio-team-system-2010.aspx, 2009.

[9] M. Lindahl, “The Device Software Engineers Best Friend,” in IEEE
Computer, 2006.

[10] B. Lewis and M. Ducasse, “Using Events to Debug Java Programs
Backwards in Time,” in Proc. of the ACM SIGPLAN 2003 Conference
on Object-oriented programming, systems, languages, and applications
(OOPSLA), 2003, pp. 96–97.

[11] The GNU Project Debugger, “GDB and Reverse Debugging,” GNU
pages, https://www.gnu.org/software/gdb/news/reversible.html, 2009.

[12] F. V. B. Berthomieu, F. Peres, “Model-checking Bounded Prioriterized
Time Petri Nets,” in Proceedings of ATVA, 2007.

[13] O. Kummer, F. Wienberg, and et al., “Renew User Guide,”
http://www.informatik.uni-hamburg.de/TGI/renew/renew.pdf, January
2016.

[14] A. GoldBerk and D. Robson, Smalltalk 80: The Language. Addison-
Wesley, 1989.

[15] R. Kočı́ and V. Janoušek, “The Object Oriented Petri Net Component
Model,” in The Tenth International Conference on Software Engineering
Advances. Xpert Publishing Services, 2015, pp. 309–315.

127Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 138 / 160

ADA Language for Software Engineering

Diana ElRabih
 Research & Development Department

Monty Holding Company
Beirut, Lebanon

E-mail: diana.elrabih@montyholding.com

Abstract— Software engineering is significantly more complex
than just programming and as a result, then different tools are
needed since software reliability cannot be compromised. ADA
was designed as a coherent programming language for complex
software systems, unlike other languages which grew by gradual
addition of features. ADA is a modern programming language
designed for large, long-lived applications and embedded
systems in particular where reliability and efficiency are
essential. Also ADA can be used as a communication language
for some aspects of the needs and for some aspects of the design.
In this paper, we present the concepts of ADA, as well as the
strengths of ADA for software engineering.

Keywords-ADA, software engineering, embedded systems, real
time systems

I. INTRODUCTION
Software engineering is significantly more complex

than just programming, and it should not be surprising that
different tools are needed. The structure of the software
market for personal computers has caused reliability to be
consciously neglected. Software packages are compared by
lists of features as performance (46 seconds is better than 47
seconds), and occasionally price. Vendors feel pressured to
bring new versions to market, regardless of the reliability of
the product. They can always promise to fix the bug in the
next version. But word-processors, presentation graphics and
interactive games are not the only type of software being
developed. Computers are now controlling the most
complex systems in the world: airplanes, spacecraft,
communications networks, international banks, stock
markets, military systems and medical equipment. The
social and economic environment in which these systems
are developed is totally different from that of packaged
software. Each project pushes back the limits of engineering
experience, so delays and cost overruns are usually
inevitable. A company’s reputation for engineering
expertise and sound management is more important in
winning a contract than a list of features. Consistent, up-to-
date, technical competence is expected, not the one-time
genius of a startup. Above all, system reliability cannot be
compromised. The result of a bug is not just a demoted
reporter or the loss of a sales commission. A bug in a medical
system can mean loss of life. The crash of a communications
system can disrupt an entire economy. The failure of a
spacecraft can cost hundreds of millions of dollars. In fact,
all these have occurred because of software faults. Software
engineering is the term used to denote the set of techniques
for developing large software projects. It includes for
example, managerial techniques, such as cost estimation,

documentation standards, configuration management and
quality assurance procedures. It also includes notations and
methodologies for analysis, design and testing of the
software itself. There are many of us who believe that
programming languages play an essential role in software
engineering. In the end, a software system is successful if
the ‘code’ of the program executes reliably and performs
according to the system requirements.

The best managed project with a superb design is a
failure if the delivered ‘code’ is no good. Thus, managerial
techniques and design methodologies must be supplemented
by the use of a programming language that supports
reliable programming. The alternative to language support
for reliability is ‘bureaucracy’. The project manager must
write conventions for interfaces and specifications of data
representations, and each convention must be manually
checked in code inspections. The result is that all the
misunderstandings, to say nothing of cases where
conventions were ignored by clever programmers, are
discovered at best when the software components are
integrated, and at worst after the software is delivered. Why
cannot these conventions be formalized in the programming
language and checked by the compiler? It is strange that
software engineers, who make their living from automating
systems in other disciplines, are often resistant to
formalizing and automating the programming process itself.

ADA is a modern programming language designed for
large, long-lived applications and embedded systems in
particular where reliability and efficiency are essential. In
fact, ADA is a design language as much as a programming
language. It is designed to be read by ADA programmers and
programmers not knowing ADA. Then from the point of view
of the software engineers, in addition to being a programming
language, ADA can be used as a communication language for
some aspects of the needs and for some aspects of the design
with its embodiment of modern software engineering
principles. In this paper, we present the concepts of ADA, as
well as the strengths of ADA for software engineering. ADA
has rigid requirements for making entities such as
subprograms and variables visible globally. This leads to a
separation of ADA code into specifications or "specs" and
bodies.

In section 2 we describe what ADA is, section 3 presents
how ADA can be used for software engineering. In section 4
we talk about the development of ADA, while in section 5 we
show the concepts of ADA. In section 6 we present the
strengths of ADA. Section 7 concludes the paper.

128Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 139 / 160

II. WHAT IS ADA
The ADA language was designed to present a general

language, unifying, standardized and supporting the precepts
of software engineering. ADA is beginning to prove itself of
reliability, robustness but has youthful defects. From 1990 to
1995 the revision of the standard leads to ADA95 , which
corrects small defects, fills a big lack by making the language
completely object (ADA is the first object language
normalized). ADA95 adds its lot of novelties still
unpublished 10 years later. Today ADA does not seem to
have the place he deserves especially in first learnings of
computer science where we must mix the programming itself
with the good practice of programming. Since a long time
ADA can largely replace Pascal the excellent teaching
language. Paradoxically, ADA is more readily taught in high-
level training because, again, it makes it possible to teach
clearly, this time qualified and more arduous concepts. ADA
is well used (even unavoidable) in avionics and embedded
computing (rocket Ariane for example), as well as for traffic
control (air, rail) where reliability is crucial. It is also
appreciated when the code to develop is consequent (so very
difficult to maintain). But the fact remains that currently few
small or medium-sized companies admit to using ADA.
Modest, productivity gains with ADA are proven and very
significant.

Computer teachers eager to develop a quality code will be
able to use ADA which is the culmination of procedural
languages. A free, open and portable compiler (GNAT)
allows (especially for academics) to run it and to adopt the
language for a formation (or a culture) of computing.

Advantages of ADA by comparing to others: ADA
appears more cost-effective compared to other similar
languages [5]. ADA, unlike other languages which grew by
gradual addition of features, was designed as a coherent
programming language for complex software systems. In
many instances in other similar languages to ADA such as C
language, rules require a non-trivial amount of code
development and verification, while the ADA solution is
trivial [5]. For instance, achieving object initialization in
similar languages requires the use of carefully implemented
constructors, while specifying default initialization for ADA
records is relatively trivial [5]. Another example is multi-
threading with several rules for the use of locks, and
condition variables. For ADA, the built-in facilities for direct
task communication with protected objects for
communication through shared buffers, includes implicit
control of locks, and condition variables [5].

III. ADA FOR SOFTWARE ENGINEERING
The ADA language is complex because it is intended for
developing complex systems, and its advantages are only
apparent if engineers are designing and developing such a
system. Then, and only then, they will have to face numerous
dilemmas, and they will be grateful for the ADA constructs
that help them resolve them. Next, we ask questions on ADA

and we respond on these questions: How can I decompose the
system? I can decompose the system into packages that can
be flexibly structured using containment, hierarchical or
client-server architectures. How can I specify interfaces? I
can specify interfaces in a package specification that is
separate from its implementation. How can I describe data? I
can describe data with ADA’s rich type system. How can I
ensure independence of components of my system? I can
ensure independence of components of my system by using
private types to define abstract data types. How can data types
relate to one another? Data types can relate to one another
either by composition in records or by inheritance through
type extension. How can I reuse software components from
other projects? I can reuse software components by
instantiating generic packages. How can I synchronize
dozens of concurrent processes? I can synchronize dozens of
concurrent processes synchronously or asynchronously. How
can I get at the raw machine when I need to? I can get at the
raw machine by using representation specifications. How can
I make the most efficient use of my expensive testing facility?
I can make the most efficient use of my experience testing
facility by testing as much of the software as possible on a
host machine using a validated compiler that accepts exactly
the same standard language as the target machine.

Programming in ADA is not, of course, a substitute for
the classical elements of software engineering. ADA is
simply a better tool. The software engineers design their
software by drawing diagrams of the package structure, and
then each package becomes a unit of work. The effects caused
by incompetent engineers, or by personnel turnover, can be
localized. Many, if not most, careless mistakes are caught by
type checking during compilation, not after the system is
delivered. Code inspections can focus on the logical structure
of the program, because the consistency of the conventions
and interfaces is automatically checked by the compiler.
Software integration is effortless, leaving them more time to
concentrate on system integration. Though ADA was
originally intended for critical military systems, it is now the
language of choice for any critical system.

IV. DEVELOPMENT OF ADA
The ADA language was developed at the request of the US

Department of Defense which was concerned by the
proliferation of programming languages for mission-critical
systems. Military systems were programmed in languages not
commonly used in science, business and education, and
dialects of these languages proliferated. Each project had to
acquire and maintain a development environment and to train
software engineers to support these systems through decades
of deployment. Choosing a standard language would
significantly simplify and reduce the cost of these logistical
tasks. A survey of existing languages showed that none would
be suitable, so it was decided to develop a new language based
on an existing language, such as Pascal. There were several
unique aspects of the development of ADA: The ADA
language was developed to satisfy a formal set of
requirements. This ensured that from the very beginning the

129Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 140 / 160

ADA language included the necessary features for its intended
applications. The language proposal was published for
scientific review before it was fully implemented and used in
applications. Many mistakes in the design were corrected
before they became entrenched by widespread use. The
standard was finalized early in the history of the language, and
facilities were established to validate compilers against the
standard. Adherence to the standard is especially important for
training, software reuse and host/target development and
testing.

V. CONCEPTS OF ADA
This part is a quick overview of some of the strong points

of the ADA language that allow engineers to discipline the
development process and thus satisfy the precepts of software
engineering.

A. Typing
ADA proposes few predefined types (so-called standard

or primitive). Types: character, string, Boolean, integer
numeric and actual numeric (comma floating). Their
implementation is not specified by the standard and therefore
it is recommended to define one's own, even the most basic,
types in particular the numerals (integers, real floating and
even real fixed) pledge of a safer programming (especially
portability). ADA offers unparalleled power for the
declaration of new types (and not necessarily numerical).
This declaration inserts into the code a knowledge of the
domain that usually stays in the comments, or in documents,
or ... nowhere. This statement is portable and, in addition, the
overflows are checked in the code generated. ADA is
strongly typed which implicitly forbids mixtures.

B. Encapsulation

This property remains relevant with classes and objects.
It is a question of rendering specific statement, closely
intertwined the data of a software component and associated
operations. Today, we are talking about member data and
methods. In ADA, this software envelope is realized with the
packages (package). But unlike Java (which takes this
concept 20 years later). It is, in ADA, of a very concrete entity
since declared in a clean file. This property is the pledge of a
great federation of concepts where nothing is scattered. The
package remained with ADA95 the basic structure of the
language as it is a Robust and elegant code factorization
technique.

C. Specifications and realization

The ADA package (ideal structure of a software
component) houses these two entities well distinct (usually in
two files). Package declarations on the one hand and package
body on the other hand are the labels of these two entities
(respectively spec and production). The spec part (not quite
specifications but more surely a contract) only presents the
declarations (data and sub-programs). The body of the
package will realize, meanwhile, the contract proposed by the
spec. Brand new entity (subroutine or package) relying on an

already specified package announce this addiction with. The
compiler then only refers to the part spec to control the syntax
of the new entity. The coding of the realization can be
deferred. This separation encourages prototyping without
thinking about implementation and this development
technique is very important. In the teaching of computing this
process helps to force students to think before coding and it's
the language (and the compiler) that gives teachers valuable
help for this educational challenge. ADA provides novices
with solid foundations that these will be able to transgress or
use in other languages but with knowledge of be deferred.
This separation encourages prototyping without thinking
about implementation and this development technique is very
important. In the teaching of computing this process helps to
force students to think before coding and it's the language
(and the compiler) that gives teachers valuable help for this
educational challenge. ADA provides novices with solid
foundations that these will be able to transgress or use in other
languages but with knowledge of cause (and not out of
ignorance). For example in the definition of subroutines the
scope and direction of information exchanged is very clear.
The passage of arguments for the procedures is specified in
the prototyping. (Mentions In, Out, or In Out). Note that an
ADA function remains a function (it accepts parameters in
input and provides a single output result), for a novice, these
basic notions appear very clearly. The impacts on the
modification of the parameters during the use of an external
procedure or function are equally clear.

D. Genericity

In ADA, these parameters (called of genericity) are as
complex as desired. The parameters range from very
traditional (constant or variable) through the types,
subroutines and up to packages themselves generic! This
profound degree of abstraction is absolutely remarkable. In
ADA, the implementation of the genericity (declaration,
instantiation and use) is very simple and elegant (so easy to
teach). Packages generic ADA are compiled with authority
without waiting for them to be instantiated which is not the
case of C++ templates. This authoritative compilation
validates the generic contract and to ensure that any instance
respecting the contract will compile and will work as
expected. Genericity allows and facilitates reuse and is even
the safest technique to reuse reliably.

E. Exceptions

The exceptions are present in the language from ADA83.
This concept is obviously essential in programming and
allows to take into account the "anomalies" during the course
of an application. ADA implementation of exceptions
(declaration, initiation and treatment) seem to us of great ease
and therefore very nice to teach. ADA95 has significantly
improved this baggage and allows deeper treatments (a little
less simple however to apply). In the same way, we point out
a didactic property of importance namely the possibility of
put in place, in the code, assertions.

130Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 141 / 160

F. Modular approach
This concept belongs to Object Oriented Design (OOD)

techniques well illustrated with ADA83. A priori, when we
stay at this stage of conception (and it is very often enough in
many developments) it is not necessary to the "true" object.
That is, it is often unnecessary to provide structures that to be
extended by derivation (thus to make the design by analogy).
However, if this is the case, ADA95 has an answer to make
classes and objects.

G. Classes and objects

To make classes and therefore objects just take the
concept of encapsulation, seen with the packages, and declare
the first data structure (root) with the name tagged. Clearly
any type 'tagged (or rather labeled) "is likely to be derived by
extension and this inheritance characterizes the class
structure. We can intelligently mix this design technique with
the use of the hierarchies of packages seen above allowing,
thus, even more flexibility and elegance in developments.
Note, however, that the legacy multiple is not expected,
indeed the designers of the language did not find useful to
add a specific construct for multiple inheritance because too
complex for a reduced use. On the other hand, conjunction
"derivation and genericity" makes it possible to solve the
cases of "mixing inheritance 'much less rare.

VI. STRENGHTS OF ADA
We are already talking about the software crisis and

today, the problem is recurrent and even more worrying:
development cost exceeded or difficult to predict, deadlines
not respected, delivery not according to specifications,
programs too greedy, unreliable, often impossible changes,
etc. Let us review, briefly, some criteria or properties that
must satisfy a consistent application and quality. We present
in what follows the strengths of ADA language meeting the
stated objectives.

a) Reusability: it is the ability of a software to be taken
over, partly or even entirely, to develop new applications. We
then talk about components software like the components that
are reused in electronics.

b) Extensibility: it is the ease of adaptation of a software
to the changes of specifications. Evolution of the data
structure or adding features are desirable. This involves quick
and reliable changes allowing a safe adaptive maintenance.

c) Portability: it is the possibility for a software product
not to depend on a hardware environment, neither a system
nor a particular compiler is particularly important for digital
applications. Portability makes easier transfer of a hardware
configuration and / or software system to another.

d) Testability: it is the implementation of aggressive
processes whose purpose is to find errors in software. This
phase of software development is important but often
neglected or sloppy. This step is prepared before the
implementation because we build test plans before coding
(during the design stages).

e) Maintainability: it is the ability of a software to be
modified elegantly, quickly, without fundamentally
questioning the structure already specified or the existing
applications.

f) Readability: it is the property of a code accessibility
and understanding by more developers. The verbosity of a
language sometimes decried can become a quality. As
anecdote we could show the traditional "Hello World" to non-
specialists, in different languages, The ADA version is the
most readable (even compared to Pascal).

g) The ease of certification and validation: it is the
ability of software to be able to be associated with properties
proving that it meets its specifications, that it ends correctly
or that it does not lock up in situations of load saturation or
lack of resources. The existence of standardized language and
verification possibilities helps to meet this goal.

VII. CONCLUSION
ADA is a design language as much as a programming

language. ADA is designed to be read by ADA programmers
and programmers not knowing ADA. From the point of view
of the software engineers, in addition to being a programming
language, ADA can be used as a communication language for
some aspects of the needs and for some aspects of the design.
With its embodiment of modern software engineering
principles ADA is an excellent teaching language for both
introductory and advanced computer science courses, and it
has been the subject of significant university research
especially in the area of real-time technologies. In our future
work, we will plan to consider a case study in ADA showing
an empirical study about advantages of ADA for software
engineering.

REFERENCES
[1] M. Ben-Ari, ADA for Software Engineers, Weizmann Institute of

Science, 2005.
[2] G. Booch and D. Bryan, Software Engineering with ADA, 3rd Edition,

Addison-Wesley Professional, 1993.
[3] A. Wearing, Software Engineering, ADA and metrics, LNCS volume

603, 2005.
[4] D. Feneuille , “Teaching ADA-Choose a language: between the

tendant and the reasonable”, Version 3,2, 2005.
[5] S. F. Zeigler , “Comapring Development Costs of C and ADA”,

Rational Software Corporation, 1995.

131Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 142 / 160

Supercomputer Calculation of Gas Flow in Metal Microchannel Using Multiscale
QGD-MD Approach

Viktoriia Podryga1,2 and Sergey Polyakov1,3
1 Keldysh Institute of Applied Mathematics RAS, Moscow, Russia

2 Moscow Automobile and Road Construction State Technical University, Moscow, Russia
3 National Research Nuclear University MEPhI, Moscow, Russia

e-mail: pvictoria@list.ru, polyakov@imamod.ru

Abstract–An important factor in modern development are

promising nanotechnologies. One of the most popular areas of
research in this field is modeling the nonlinear gas-dynamic
processes in micro- and nanochannels. This problem is
relevant for many applications on introducing and using the
nanotechnology in various industries. A feature of
mathematical problems in this area is the simultaneous study
of processes at many scales, including micro- and nanoscales.
In this paper, technology of the supercomputer realization of
multiscale two-level approach to modeling the gas flow in
microchannel is presented. The approach is based on
combining the models of continuum mechanics and the
Newton's dynamics for single particles. Two scale levels are
considered: macroscopic and microscopic. The
quasigasdynamic equations system is used as a mathematical
model at the macrolevel. The molecular dynamics method is
used as a mathematical model at microlevel. Numerical
implementation of approach is based on the method of splitting
into physical processes. The quasigasdynamic equations are
solved by finite volume method on grids of different types. The
Newton's equations of motion are solved by Verlet integration
in each cell of grid independently or in groups of connected
cells. Within the framework of common methodology, the four
classes of algorithms and methods of their parallelization are
offered. Parallelization technology is based on the principles of
geometric parallelism and efficient partitioning the
computational domain. Special dynamic algorithm is used for
load balancing the computational units. The approach testing
was made by the example of the nitrogen flow in the nickel
microchannel. Obtained results confirmed the high efficiency
of the developed methodology.

Keywords-multiscale mathematical models; parallel
algorithms; multiscale computing; gas dynamics

I. INTRODUCTION

Modern computer technology allows modeling very large
technical systems and complex physical processes at the
level of detailing that was previously not available. In
computer models of past years, the lack of detail was often
compensated by introducing the correction coefficients in the
model that reflected the data obtained experimentally. This
approach is still being applied, but with the development of
massively parallel computing systems, it becomes possible to
get rid of many limitations inherent in simplified models and
perform direct predictive modeling of a large set of
interacting nonlinear and multiscale processes. The
foregoing is relevant to the study of complex gas-dynamic

processes in technical micro- and nanosystems, developed
with the aim of introducing the nanotechnology in industry.
A feature of mathematical problems in this area is the
simultaneous study of processes on many scales, including
micro- and nanoscale. One of the modern and actively
developing approaches to solving such problems is a
multiscale approach that combines the methods of continuum
mechanics and particle methods. This combination allows
you to replace an expensive and difficult realized physical
experiment with computer calculations.

In the paper, the problem of gas flow through a
microchannel is considered as an example. A multiscale
approach [1][2] is used for modeling the process, which has
two levels of detail related to the dimensions of the specific
geometry of the problem (tens of mean free paths of gas
molecules and more) and the distance between interacting
particles (on the order of 1 nm). The implementation of the
approach is based on splitting by physical processes. At the
macrolevel of detail, a description of the flow of gas media
occurs. At the microlevel, the interactions are calculated for:
1) gas molecules among themselves (forming the equation of
state, determining transport coefficients); 2) gas molecules
and atoms of solid surfaces (describing phenomena in
boundary layers). The system of QuasiGasDynamic (QGD)
[3] equations is used as the macrolevel model, the Molecular
Dynamics (MD) [4] method is used as the microlevel model.

Modeling of tasks with many scales should occur
according to certain rules. In the approach used, these rules
also apply. The MD calculations can be carried out in a
direct way, combining QGD and MD in one implementation,
and indirectly, by accumulating a corresponding database,
calculated in advance. It is also possible to use partially the
MD database and partial direct MD modeling in conjunction
with the QGD calculations. As a result, computational
technology contains four main classes of algorithms.

The main goal of the work is to describe the details of
algorithms in which the QGD and MD models are used
directly, alternating at each step, and the results of
calculations for these algorithms and analysis of the
calculated data obtained will also be presented.

This paper is organized as follows. Section II describes
the state of the art. Section III states the problem and the
mathematical model. Section IV describes what methods and
computing algorithms are used in the research. Section V
presents the results of the current research.

132Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 143 / 160

II. STATE OF ART

The computing complexity of modeling the gas flows in
microchannels is associated with the violation of continuity
hypothesis in some parts of the computational domain. The
physics for functioning of the similar systems is usually
described by whole hierarchy of mathematical models up to
the atomic level. The difference in the scales of the
computational domain and near-surface interaction of the gas
with the metal lead to the necessity to take into account the
relief and the properties of the microchannel at the molecular
level. As a result, the mathematical model of the research
flow can not be fully formulated within the framework of the
macroscopic approach.

The way to overcome the problem of boundary processes
is molecular modeling of flow-wall interactions [5][6]. In the
proposed approach, a joint solution of the gas-metal problem
taking into account the wall structure is carried out within the
framework of direct MD simulation. Previously, the structure
of the walls was not taken into account due to the complexity
of the calculations and the lack of computing power.

The way to overcome the problem of discontinuity is
using a multiscale approach [7]-[12]. Multiscale approaches
have become popular, but existing combinations have many
limitations on the type of problems, the size of systems, on
taking into account the real boundary conditions, and so on.
Most often within the framework of the multiscale approach,
the Navier-Stokes equations with a continuous model of the
boundary layer are used without taking into account the real
structure of the walls. In the proposed approach, there is a
combination of two models (QGD, MD) and various
methods of this combination (4 classes of algorithms) are
presented, and a database calculated by the first class of
algorithms is also created. Such an integrated approach did
not exist before.

Why and when it is necessary to choose the proposed
approach: when precision calculation is needed; when the
simulated process is not represented enough and a detailed
picture of what is happening is necessary; there is computing
power to apply the approach.

Advantages of the developed approach are the possibility
of calculations from the first principles; the ability to vary
the different parameters of the technique in order to obtain
acceptable accuracy results within a reasonable time.

The motivation for a particular study of this work is to
show that in reality a continuous boundary layer model can
not give an accurate picture of the flow, since all important
factors are not known, especially in the case of microflows.
In this situation, algorithms of class 4 or direct MD modeling
can give an adequate result to reality.

III. STATEMENT OF THE PROBLEM

The mathematical model includes two components
corresponding to the scale levels.

At the macroscopic level, the QGD equations are used. In
the case of a pure gas of one kind, the system of QGD
equations in the three-dimensional case in a form invariant
with respect to the coordinate system in dimensional
variables, together with the equations of state is written as:

div 0, div 0,

div 0, , , ,k

E

uk

E

t t
u

k x y z
t

W W

W

 21
, , .

2 VE с T p Z T u

Here mn is the mass density (m is the mass of

molecule of gas, n is the concentration), T is the
temperature and u is the macroscopic velocity. Other
parameters: p is the partial pressure of gas; E and are
the total energy density and internal energy. Variables

 ,Z Z T , V Vс с T and /Bk m are the

compressibility coefficient, specific heat capacity and
individual gas constant (Bk is the Boltzmann constant);

vectors W , kuW , EW coincide, up to sign, with the
fluxes of mass density, momentum density of the
corresponding components, and energy density.

The system of equations (1)-(2) is closed by the
corresponding initial and boundary conditions. The initial
conditions are taken in accordance with the equilibrium state
of the gas medium in the absence of interaction with external
factors. The boundary conditions for the QGD equations on
the microchannel walls can be specified by determining the
fluxes of mass density, momentum density and energy
density across the boundary using Newton's conditions, or by
the normal components of them near the walls by the MD
method. On the free surfaces of the computational domain,
the so-called "soft" boundary conditions [3] are given.

Near the walls, the particles (atoms or molecules) that
make up the material of the walls and are potentially capable
of detaching from the microchannel surface should be added
to the consideration. The evolution of the investigated
system of particles is described by Newton's equations [4].
The equations system describing the motion of particles of l
kind (gas or metal) has the following form:

 , ,
, ,, , 1,..., , , ,l i l i

l l i l i l

d d
m i N l a b

dt dt

v r
F v

where i is the particle number, l is the particle type (a –
molecules of gas, b – atoms of metal in the microchannel),

lN is the total number of particles of type l , lm is the mass

of particle, , , , , , , ,, ,l i x l i y l i z l ir r rr and , , , , , , ,, ,l i x l i y l i z l iv v vv

are the position vector and the velocity vector of the i -th

particle of type l , , , , , , , ,, ,l i x l i y l i z l iF F FF is the resultant

force acting on this particle.
The forces include the component of i -th particle

interaction with the surrounding particles and the component
responsible for external action:

, ,, , 1,..., , , .

l i l i

ext
l i lU i N l a b rF F

133Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 144 / 160

Here, ,
ext
l iF is the force of interaction with the environment,

U is the total potential energy and it depends on choosing
the interaction potential of molecules. The potential energy
of the system is represented as a function that depends on the
coordinates of considered particles and describes the
interaction between the particles of the system.

The initial conditions at the microlevel are determined by
the equilibrium or quasiequilibrium thermodynamic state of
the particle system at a given temperature, pressure, and
average momentum. The boundary conditions at the
molecular level depend on the simulated situation.

In the presented technique, there is a choice between the
accuracy of the result and arithmetic complexity in
combination with a large amount of computation. The
compromise is to get the solution with the required accuracy
in the minimum time. What parameters can we control: the
size of the grid cells at the macrolevel. If the size is large,
then QGD is considered fast, the MD is considered very
slow; if the size is small, then a statistics for MD calculations
is not very representative. In addition, there is a technique for
allocating a virtual volume within a cell (see [2]). Also, the
database, accumulated from the first principles, makes it
possible to reduce the amount of computation in those flow
zones where there are no strongly nonequilibrium processes.
In particular, most of the metal can be frozen.

A set of benchmarking tests was carried out. For
example, the calculations of kinetic coefficients were carried
out according to the algorithms of class 1 [13], calculations
of gas flows by algorithms 2-4 were carried out in [14][15].

IV. COMPUTING ALGORITHMS

The calculation of the macroparameters according to the
QGD equations (1) is carried out using an explicit on time
grid numerical algorithm, which is based on the finite
volume method on grids of arbitrary type [16][17]. For the
convenience of solving the problem in areas of complex
geometry, the hybrid block meshes consisting of cells of
various shapes and sizes can be used.

In the presented variant of computational technology, a
hybrid spatial grid is introduced in the computational domain
at the macrolevel. All parameters of gas components
(density, pressure, temperature, velocity vector components,
etc.) refer to the mass centers of the cells. Flux variables
refer to the faces centers of the cells. Spatial approximations
of the basic terms of the QGD equations are performed by
standard methods (see, for example, [18][19]). The
computing scheme on time is chosen explicit and two-stage
(predictor-corrector) and is integrated with the variable step.

The system of MD equations (3), (4) is used in additional
calculations independently, or as a subgrid algorithm applied
within each control volume. To integrate the equations of
motion (3), (4), the Verlet integration [20] is used.

To carry out a correct calculation of the QGD, the
model is supplemented by real gas equations of state,
transport coefficients and other accompanying parameters
(enthalpies, average mean free paths, etc.), as well as real
boundary conditions. Calculation of these dependencies,
coefficients, and conditions is made using MD methods.

Modeling of problems on the basis of the multiscale
approach under consideration with two levels of detail is
carried out with the help of special algorithms that in
general, depending on the degree of microlevel use, are
divided into four classes [15].

Algorithms of class 1 suggest the study of the properties
of gas medium and the properties of solid surfaces with
which the gas medium contacts in technical applications. As
a numerical implementation of the approach in this case, the
Velocity Verlet scheme acts. With the help of 1 class
algorithms, a DataBase of Molecular dynamic Calculations
(DBMC) is accumulated for the properties of gases and solid
materials, which can be used in the framework of other
algorithms.

Algorithms of class 2 assume the solution of problems
only at macrolevel based on QGD system of equations. In
this case, the properties of the gas (the equations of state by
pressure and energy, the kinetic coefficients such as viscosity
and thermal conductivity, the parameters of the boundary
conditions) are determined from the above-mentioned
DBMC accumulated in advance for the desired temperature
and pressure range.

Algorithms of class 3 imply the simultaneous use of
QGD equations in the calculations and equations of
Newtonian mechanics for molecules of a gaseous medium.
Algorithms of class 3 are realized within the framework of
the method of splitting into physical processes. It is assumed
here that in the gaseous medium and on its boundaries it is
possible to confine ourselves to a local consideration of the
processes of the gases and gases with a solid wall.

Algorithms of class 4 also imply the simultaneous use in
the calculation of QGD equations and equations of
Newtonian mechanics for molecules of the gaseous medium
and atoms of the surface layer of the wall. The difference of
this case from the previous one is that in some areas of the
medium (usually at the boundary and in the zones of a strong
drop of the gas parameters), molecular dynamics calculations
are carried out continuously without going to the macrolevel.
In the same areas, the principle of locality of molecular
interactions is not used, that is, in the general case, the
algorithms of class 4 are nonlocal at the molecular level.

Direct MD calculation in the framework of algorithms of
3 and 4 classes seems to be the most justified, since it allows
to coordinate the interaction processes at micro- and
macrolevels. Also, a direct MD calculation can be performed
for a specific set of physical conditions that are not present in
the DBMC and appear in it as a result of this calculation.

In this work, the algorithms of class 4 are used for
calculation the gas flow in microchannel. The resulting grid
equations in the framework of the algorithms of class 4 at the
predictor stage are solved not on the whole grid, but on its
subset.

In algorithms of class 4, some of the cells are
permanently assigned to molecular computations (produced
in parallel with the QGD computations at each time step
using (1)) and are not considered at the macroscopic level.
As a rule, these are grid boundary cells. In some cases,
internal cells are added to them, where highly
nonequilibrium processes occur, characterized by large

134Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 145 / 160

gradients of gas-dynamic parameters. Denote the set of all
such cells as B (QGD equations in these cells are not
used). The remaining cells of the grid will be denoted by

V (in these cells, both QGD and MD calculations are
realized). As a result, the grid is represented as a union of
two disjoint sets: V B U . The transition to the MD

calculations in the cells of the set B is carried out once at
the beginning of the general calculation. In cells from the set

V the transition to MD calculations is performed at each
step in time.

The corrector stage includes the use of MD calculations
and is associated with obtaining corrective values of the
main gas-dynamic parameters. In algorithms of class 4, this
correction is used only in cells of the set V .

Before the calculation begins, a grid is constructed that is
split into sets of cells V and B . Then in the cells of the

set V , the equilibrium state of the macrosystem is set; in

the cells of the set B , the equilibrium state of the
microsystem, corresponding to the equilibrium state of the
macrosystem, is given.

Then, at each step in time, a two-stage procedure is
carried out. A two-level calculation is carried out in the cells
of the set V , presupposing first the solution of the QGD
equations, and then the correction of the obtained gas
dynamic characteristics by means of MD calculations. In the
cells of the set B , a one-level two-stage calculation is
performed on the basis of the equations of molecular
dynamics.

At the first stage, gas-dynamic variables are calculated in
the cells of the set V according to the QGD equations.
Variables are transferred to the MD unit to recalculate the
parameters of the conditions at the boundaries of the sets

V and B . In the cells of the set B , the evolution of the
boundary microsystems is calculated, the data of which will
then form the parameters of the conditions on the boundaries
of the sets B and V .

At the second stage, in cell sets V and B the direct
calculations are made, which allow obtaining all gas-
dynamic variables at the macrolevel taking into account all
physical processes.

The calculation step is completed by testing the
breakdown criterion, which consists in determining the
relative time derivatives of the mass density and the energy
density of the gas.

Parallel implementation of algorithms of classes 1-4 is
considered in detail in [15] and earlier works. Here, however,
it should be noted that the parallel decomposition at the
macrolevel is based on the method of static decomposition of
the calculated grid into microdomains. Such a partitioning,
even with large configurations of computers, is deliberately
redundant. It allows to equalize the load of processors and/or
special calculators at various stages of calculations by
"transferring" a part of microdomains from one calculator to

another. In the implementation of MD calculations, in
addition to geometric decomposition, the particle partitioning
and dynamic load balancing are used.

The developed approach can be generalized and applied
to different types of flows, but additional calibration
calculations and the addition of a database for specific gases
and metals are needed. The algorithm itself will not change.

V. RESULTS AND DISSCUSSION

In this section, we will briefly present the results of
testing the developed modeling technology. For this, we
have chosen the problem of the nitrogen flow in a thin
microchannel with a nickel coating of the inner walls. The
scheme of the computational experiment consisted in
calculating, on the basis of the algorithm of class 4, the
interaction of a gas with a real crystal lattice of nickel. For
simplicity, we chose a channel of rectangular shape, in the
middle section of which the gas moves with supersonic
speed (Mach is 14), and on the periphery the gas is strongly
retarded by the wall. In this case, we took into account the
effect of nitrogen adsorption on the nickel surface and heat
exchange of the gas with the wall. The calculated region in
one of the transverse directions (y) was considered extended
and periodic boundary conditions were used along it. This
approximation made it possible to reduce the amount of
computation and take the following dimensions of the
computational domain: 3051xL nm , 101.7yL nm ,

636zL nm (See Figure 1). Within this region, two
boundary layers were identified, in which the interaction of
the metal atoms of the walls and gas molecules was
calculated by the MD method. The magnitude of these layers
along the z coordinate was 1 86zL nm . In the remaining

middle layer with thickness of 2 12z z zL L L the gas flow
was calculated on the basis of the QGD model. As a result, in
the boundary layers, the total number of metal and gas atoms
was approximately 488 million particles. In the middle part,
a Cartesian mesh measuring 305x10x46 was used. With this
size of the QGD grid, the computation takes up no more than
3% of the total computation. Therefore, the general time
characteristics of the developed algorithm were analyzed
below.

Figure 1. Computational domain. Section 0y .

135Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 146 / 160

Test calculations of the flow in the microchannel of the
indicated geometry were carried out on two computer
systems with central and vector processors (see Table 1). The
results of the acceleration and efficiency testing are
presented in Figures 2 and 3.

TABLE 1. PARAMETERS OF USED COMPUTER SYSTEMS

Name
Node
num-
ber

Inter-
connect

type

Proc.
type

Peak
perfor-
mance,
TFlops

Proc.
per

node

Cores
/Threa
ds per
proc.

Memo-
ry per
node,
Gb

K60 78
Infini
Band
FDR

Intel
Xeon
E5-

2690
v4

74,2 2 14/2 256

K48 16
Omni
Path

Intel
Xeon
Phi

7250

48,7 1 68/4 96

Figure 2. Speed up for the K60 and K48 systems.

Figure 3. Efficiency of parallelization for the K60 and K48 systems.

Let us briefly discuss the results obtained. On the whole,

it follows from the calculations carried out that the

developed numerical approach and its parallel
implementation make it possible to solve the chosen class of
problems. A large amount of calculations in the MD block
allows us to use rather large configurations of computer
systems. However, the effective use of these systems lies in
the ways of optimizing both the source algorithm and the
developed code. In the case of using the CPU, the
concurrency resource is not exhausted and the efficiency of
the generated code is quite high. When using VPU of the
specified type, there are 2 problems: 1) the cores of these
processors are 10-15 times weaker than the CPU cores; 2)
the fast VPU memory has a relatively small amount. As a
result, in order to get the maximum effect from the VPU,
you need to take order of magnitude larger configurations
(in this example, containing about 160 nodes or more).

We also give some data on the simulated process. In
accordance with the boundary value problem, the evolution
of the jet is associated with the dissipative processes of the
channel walls. They cause the jet to broaden with time, the
flow rate decreases, the energy of the stream is transferred
to the walls. This is illustrated by the distribution of the
Mach number (Figure 4).

Figure 4: Initial (top) and steady state (bottom) distributions
of Mach number averaged on y-coordinate.

136Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 147 / 160

VI. CONCLUSION AND FURTHER WORK

The presented approach, computational algorithms and
their program implementations work and allow specifying
the flow parameters in the required place with the required
accuracy.

The results are presented; they show the difference in
performance between different computing systems when
calculating the same problem. It should be noted that it is
not possible to perform the calculation of one problem on
one fixed computer system by other methods with the same
or higher accuracy. Knowing the results of calculations for
this approach, it is possible to form a QGD model or a
Navier-Stokes model with a boundary layer and obtain the
same result with the same accuracy in less time. However,
"blindly" this can not be done.

The prospects of this work lie in further optimizing the
code and adapting it to new generations of CPU, VPU and
GPU and carrying out of detailed numerical experiments.

Future work involves expanding the database and
analyzing the flows of various gases and liquids, as well as
multiphase flows.

ACKNOWLEDGMENT

This work was supported by the Program of the
Presidium of the Russian Academy of Sciences No. 26.

REFERENCES
[1] V. O. Podryga, “Multiscale approach to computation of three-

dimensional gas mixture flows in engineering microchannels,”
Doklady Mathematics, vol. 94, no. 1, 2016, pp. 458-460.

[2] V. O. Podryga and S. V. Polyakov, “Parallel realization of multiscale
approach for gas microflows calculating,” Numerical Methods and
Programming, vol. 17, no. 2, 2016, pp. 147-165 [in Russian].

[3] T. G. Elizarova, Quasi-Gas Dynamic Equations. Berlin, Heidelberg:
Springer, 2009.

[4] J. M. Haile, Molecular Dynamics Simulations. Elementary Methods.
New York: John Wiley & Sons, Inc., 1992.

[5] V. Ya. Rudyak, A. A. Belkin, V. V. Egorov, and D. A. Ivanov,
“Modeling of flows in nanocannels by the molecular dynamics
method,” Nanosystems: Physics, Chemistry, Mathematics, vol. 2, no.
4, 2011, pp. 100-112 [in Russian].

[6] V. L. Kovalev and A. N. Yakunchikov, “Accommodation coefficients
for molecular hydrogen on a graphite surface,” Fluid Dynamics, vol.
45, no. 6, 2010, pp. 975-981.

[7] V. A. Titarev, “Numerical method for computing two-dimensional
unsteady rarefied gas flows in arbitrarily shaped domains,” Comput.
Math. Math. Phys., vol. 49, no. 7, 2009, pp. 1197-1211.

[8] M. K. Borg, D. A. Lockerby, and J. M. Reese, “A hybrid molecular–
continuum method for unsteady compressible multiscale flows,” J.
Fluid Mech., vol. 768, 2015, pp. 388-414.

[9] K. Morinishi, “Numerical simulation for gas microflows using
Boltzmann equation,” Computers and Fluids, vol. 35, is. 8-9, 2006,
pp. 978-985.

[10] A. Patronis and D. A. Lockerby, “Multiscale simulation of non–
isothermal microchannel gas flows,” J. Comput. Phys., vol. 270,
2014, pp. 532-543.

[11] S. Y. Docherty, M. K. Borg, D. A. Lockerby, and J. M. Reese,
“Multiscale simulation of heat transfer in a rarefied gas,” Int. J. Heat
and Fluid Flow, vol. 50, 2014, pp. 114-125.

[12] A. Alexiadis, D. A. Lockerby, M. K. Borg, and J. M. Reese, “A
Laplacian-based algorithm for non-isothermal atomistic-continuum
hybrid simulation of micro and nano-flows,” Comput. Methods Appl.
Mech. Eng., vol. 264, 2013, pp. 81-94.

[13] V. O. Podryga, “Calculation of kinetic coefficients for real gases on
example of nitrogen,” Lecture Notes in Computer Science, vol.
10187, 2017, pp. 542-549.

[14] V. O. Podryga, Yu. N. Karamzin, T. A. Kudryashova, and S. V.
Polyakov, “Multiscale simulation of three–dimensional unsteady gas
flows in microchannels of technical systems,” Proc. of the VII
European Congress on Computational Methods in Applied Sciences
and Engineering (ECCOMAS Congress 2016), Crete Island, Greece,
5–10 June 2016, vol. 2, pp. 2331-2345.

[15] V. O. Podryga and S. V. Polyakov, Multiscale Modeling of Gas Jet
Outflow to Vacuum. Preprint No. 81. Moscow: Publishing of Keldysh
Institute of Applied Mathematics, 2016 [In Russian].

[16] R. Eymard, T. R. Gallouet, and R. Herbin, “The finite volume
method,” in Handbook of Numerical Analysis, vol. 7, P. G. Ciarlet
and J. L. Lions, Eds. Amsterdam: North Holland Publishing
Company, 2000, pp. 713-1020.

[17] R. Li, Zh. Chen, and W. Wu, Generalized Difference Methods for
Differential Equations. Numerical analysis of finite volume methods.
New York: Marcel Dekker Inc., 2000.

[18] I. V. Popov and I. V. Friazinov, Method of Adaptive Artificial
Viscosity of the Numerical Solution of the Gas Dynamics Equations.
Moscow: KRASAND, 2015 [In Russian].

[19] W. Gautschi, Numerical Analysis, 2nd ed. New York: Springer /
Birkhäuser, 2012.

[20] L. Verlet, “Computer «experiments» on classical fluids. I.
Thermodynamical properties of Lennard-Jones molecules,” Phys.
Rev., vol. 159, 1967, pp. 98-103.

137Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 148 / 160

An Enumerative Variability Modelling Tool for Constructing

Whole Software Product Families

Chen Qian and Kung-Kiu Lau

School of Computer Science
The University of Manchester

Kilburn Building, Oxford Road, Manchester, United Kingdom, M13 9PL
Email: chen.qian,kung-kiu.lau@manchester.ac.uk

Abstract—Constructing a product family requires the formulation
in problem space of a domain model (including a variability
model) and its implementation in solution space. Current Soft-
ware Product Line Engineering tools mostly aim to build an
‘assembly line’ for deriving one product at a time by assembling
domain artefacts according to the variability model. Therefore,
those tools support enumerative variability in problem space, but
parametric variability in solution space. In this paper, we present
a tool to model and implement enumerative variability in both
spaces, and hence construct a whole product family in one go.

Keywords–Enumerative Variability; Product Family Engineer-
ing; Web-based Tool.

I. INTRODUCTION

Current Software Product Line Engineering (SPLE) tools,
e.g., pure::variants [1], AHEAD [2] and Clafer [3], construct
a product family by using an ‘assembly line’ (product line).
In the domain engineering phase, SPLE tools (i) construct a
variability model in the problem space, and (ii) model and
implement domain artefacts in the solution space, that can
be used to assemble individual products. In the application
engineering phase, SPLE tools assemble one product at a time
from the domain artefacts in the solution space [4]. By contrast,
we have defined an approach that constructs a whole product
family in one go [5].

Existing SPLE tools usually define a feature model to
specify variability in the domain engineering phase, and use
a configuration model to specify a particular product variant
in the application engineering phase. A feature model defines
enumerative variability, as it includes all valid variants. A
configuration model defines parametric variability, as it is
parameterised on the presence/absence of features in a single
product.

By contrast, we use enumerative variability in both the
problem space and the solution space [5]. In Section II, we
briefly introduce our product family engineering approach with
the underlying component model. In Section III, we present a
web-based tool that supports every step in our approach. In
Section IV, we use an example to show how to construct
a product family and derive products from the family by
using our tool. Finally, in Section V, we finish our paper by
conclusion of our work and discussion of the future work.

II. OVERVIEW OF OUR APPROACH

Starting from a feature model, we model and implement the
enumerative variability defined by the feature model. Our ap-

proach is component-based, i.e., it follows a component model
[6], [7]. We define a whole product family as a composition
of variants of sets of components, as illustrated in Figure 1.

Family Filter

Family Connector

Variation Generator

Component

Family

OPT

oi

ALT

oi oi oi

OR

oioi

Figure 1. Component model: Levels of composition.

We proceed in three main stages, modelling and imple-
menting (i) features, (ii) variation points, and (iii) product
variants, respectively. Firstly, we construct components (atomic
or composite) as the implementations of leaf features in
the feature model. Notably, the abstract features aggregate
behaviour corresponding to leaf features. A component is
a software unit with a provided service (a lollipop in its
interface) but no required services. Such a component is called
an encapsulated component [7]. Then we apply variation
generators, which model variation points in the feature model,
viz. optional, alternative and or (respectively OPT, ALT and
OR in Figure 1), and therefore generate sets of components as
variations of the input set of components. So at the next level
of composition, we apply family composition connectors. Each
of them yields a set of product variants, i.e., a (sub)family of
products, in the form of Cartesian product of its input sets, and
composes components in each element of the Cartesian product
using the corresponding component composition connector.

In our component model, the composition operators are
algebraic, i.e., composite components are the same type as
their sub-components, and composition is therefore strictly
hierarchical. This important property enables us to model and
implement the elements of a feature model (features, variation
points, product variants) level by level.

Constraints in the feature model as well as feature interac-
tion are dealt with by filters in family composition connectors.
Invalid products are immediately removed from the Cartesian
product of component sets produced by a family composition
connector. We can also create new components for interacting
features, and use them to replace original ones if feature

138Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 149 / 160

Cardinality

Variation Points

(a) Feature model.

(b) All 576 valid variants.

Figure 2. Canvas for constructing feature model.

interactions occur in a product. The interaction rules are set
up in the family filters, which are bound with every family
composition connector, as shown in Figure 1.

III. THE TOOL

Our tool is a web-based graphical tool that implements our
component model [8]. The GUI is realised using HTML5[9]
and CSS3 [10], whereas the functionality is implemented using
JavaScript [11]. In particular, we adopt the latest edition of
ECMAScript as JavaScript specification since its significant
new syntax, including classes and modules, supports complex
applications. Additionally, we import jQuery [12], the most
widely deployed JavaScript library, to improve code quality

and enhance system extensibility. Our tool also offers a client-
side repository called IndexedDB [13], which is a NoSQL
database for massive amounts of structured data, as shown on
the right side of Figure 3 (and Figure 4). For the purpose of
user-friendliness, all building blocks, including constraints and
interaction, can be easily added through buttons and dialogue
boxes, as seen in Figures. 2-5.

The tool provides a workbench with functionalities that
support the stages of our approach. Here, we describe these
functionalities and illustrate them with the construction of a
whole product family with 576 valid variants. The example
is a family of External Car Lights (ECL) systems, which is
adapted from an industrial example provided by pure-systems

139Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 150 / 160

Atomic Component

Computation Unit

Unit Test

Execution Result

(a) Atomic component.

Composite Component

Instantiation

Retrieve

Input

Output

Data Channel

Composite Connector

Adapter

(b) Composite component.

Figure 3. Canvases for constructing components for leaf features.

GmbH. The requirement of ECL family is demonstrated in
Section IV. Figure 2(a) shows the feature model that contains
all 576 valid product variants enumerated in Figure 2(b).

A. Component Construction

Figure 3 shows the canvases provided by our tool for
constructing components for leaf features. After a component
is created, it should be deposited in a repository, and therefore
can be retrieved for further construction.

Figure 3(a) depicts the construction and deposition, of an
atomic component, FogLight, which is the implementation

of leaf feature FOG LIGHT. By simply clicking the ‘New
Component’ button, we can define the component name,
service name, input data and output data in a dialogue box,
which automatically generates an implementation template for
the computation unit. Additionally, we can immediately test
the component as soon as the computation unit has been
implemented, and examine the result through browser console.

Figure 3(b) illustrates the construction of a composite
component, StaticCornerFogLight. According to re-
quirements, it implements the feature interaction caused by
STATIC CORNERING LIGHT and FOG LIGHT. A composite com-

140Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 151 / 160

Product Family Family Filter

Input

Cardinality

Variation Generator

Output
Constraints

Family Composition Connector

Figure 4. Canvas for constructing a whole product family from a feature model.

ponent is defined by its name and service, and constructed
by composing components (retrieved from repository) via
predefined composition connectors and adaptors (on the left
of Figure 3(b)). Composition connectors include Sequencer
and Selector, which provide sequencing and branching respec-
tively. Adapters include Guard and Loop, which offer gating
and looping respectively. Components can also be aggregated
into a façade component, i.e., one that contains the aggregated
components, by an aggregator connector AGG. Aggregates are
essential for implementing the or variation point.

B. Variants and Family Construction
Figure 4 shows the canvas for constructing a whole

product family from the feature model. It is worth noting
that we omit the repository and data channels for clarifi-
cation. A product family is defined by its name and ser-
vice, and constructed by composing components (retrieved
from repository) via predefined variation generators and fam-
ily composition connectors (on the left of Figure 4). Con-
straints, derived from the constraints in the feature model
(Figure 2(a)), as well as feature interaction, are defined
as rules in a family composition connector filter. For ex-
ample, if interacting features StaticCornerLight and
FogLight are selected together, the former will be replaced
by StaticCornerFogLight immediately.

C. Product Explorer
Figure 5 presents a useful feature of our tool, namely

Product Explorer. It enumerates all valid products in the form
of variability resulting from each variation generator at any
level of nesting. For each product, by a simple click, the user
can examine its structure and built-in components, and hence

compare this product with the corresponding variant derived
from the feature model. In this case, there are a total of 576
products in solution space, matching exactly the 576 variants
enumerated in problem space in Figure 2(b). Figure 5 also
shows the model structure of product No. 165.

Furthermore, any product can be executed and tested
directly. A batch download link of all source code files is
available.

IV. DEMONSTRATION ROADMAP

In this section, we will present how to construct a software
product family step-by-step from scratch by our approach and
tool.

Step 1: Construct Feature Model
An ECL system can control headlights (including LOW

BEAM lights and HIGH BEAM lights), FOG LIGHTs and DAYTIME

RUNNING LIGHT (including REDUCED LOW BEAM lamp, LED
and STANDARD BULB). These lights can be switched on or off
according to the driver’s instructions. A beam is either Xenon
or Halogen.

On the other hand, in some cases, an ECL system enables
lights and signal devices by automatic detection. It provides
a functionality called DRIVER ASSISTANCE, which supports
AUTOMATIC LIGHT, AUTOMATIC HIGH/LOW BEAM and CORNER-
ING LIGHT (including STATIC CORNERING LIGHT and ADAPTIVE

FORWARD LIGHT).
Figure 2(a) shows the canvas for constructing the ECL

feature model along with features, variation points and con-
straints. It defines an enumerative variability with a total of

141Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 152 / 160

Figure 5. Product explorer and product No.165.

576 valid variants. Figure 2(b) shows all valid variants in terms
of feature combinations.

Step 2: Construct Bottom Level Components
There are 20 leaf features in Figure 2(a), but some of

them are reused. As a result, we construct 12 components
(atomic or component) for them. In addition, we construct an
optional component for feature interaction, as already stated
in Section III-A. Once implemented, they are deposited for
further construction. The repository in Figure 3 shows all the
components, each of them can be tested directly, as illustrated
in Figure 6.

Step 3: Apply Variation Generators
Now, we retrieve the pre-constructed components from

repository. After instantiation, we have prepared 22 component
instances for family construction, as shown in Figure 4. Then
we apply the variation generators according to the feature
model in Figure 2(a). For example, the OPT applied to Fog
yields the set {∅, {Fog}}; the ALT applied to LED and Bulb
and gives the set {{LED}, {Bulb}}; and the OR applied to
AFL1 and SCL1 generates the set {{AFL1}, {SCL1}, {AFL1,
SCL1}}.

Step 4: Apply Family Composition Connectors
This step is to compose the variations into sub-families

of the ECL family using family composition connectors. The
choice of family composition connectors is a design decision,
however it will not affect the total number of products in
the (sub)family. For instance, in Figure 4, a family sequencer
called F-SEQ1 composes a sub-family, which is the imple-
mentation of abstract feature AUTOMATIC HIGH/LOW BEAM.
The whole family is constructed when all sub-families have
been constructed and composed. However, in order to filter
out the invalid products, we need to add constraints between
component instances, which are mapped onto the constraints
we defined in Figure 2(a).

Step 4: Establish Interaction Rules
In Figure 4, we show a family filter for setting out

interaction rules. It has been exemplified in Section III. The
interaction will be displayed in the nearest family composition
connector that composes the components involved. We add
necessary data channels to define data flows. The final whole
product family is shown in Figure 4.

Step 5: Test Products
All the products in the family are fully formed and ex-

ecutable, so they can be directly tested. Figure 6 shows the
generated source code, testing code and result of product 165.
This concludes the demonstration.

V. CONCLUSION AND FUTURE WORK

Our tool is a complete re-implementation of an earlier
version presented in [14]. We have re-defined the underlying
component model, added new capabilities including feature
interaction, and used a different technology stack.

Compared to current SPLE tools, which use parametric
variability to configure one product at a time in solution space,
our tool offers a new possibility of constructing the whole
family in one go, by using enumerative variability in solution
space. Although, from a customer’s point of view, constructing
all products at once may seem like overkill, our approach/tool
can be adopted by current SPLE techniques in application
engineering, since our approach can provide all the necessary
domain artefacts. For example, for the ECL family, our tool can
generate an annotative code base using pure::variants notations.
This code base can be correctly used in pure::variants for
application engineering (Figure 7).

Finally, our tool will facilitate product line testing [15].
So far, our tool only provides a workbench for domain unit
testing, i.e., testing components and products. However, it does
not support domain integration testing and domain system
testing [16]. Therefore, the further development of our tool
includes (1) automatic comparison of variability specified in

142Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 153 / 160

Source Code Testing Code

Execution Result

Figure 6. Product/Component testing.

Figure 7. Generating annotative code base for pure::variants.

the problem space (Figure 2(b)) and implemented in the
solution space (Figure 5), (2) the validity of every data channel,
(3) generation of featured statecharts to examine behaviour at
family level [17], [18].

REFERENCES

[1] D. Beuche, “Modeling and building software product lines with
pure::variants,” in Proceedings of the 16th International Software Prod-
uct Line Conference-Volume 2. ACM, 2012, pp. 255–255.

[2] D. Batory, “A tutorial on feature oriented programming and the ahead
tool suite,” Generative and Transformational Techniques in Software
Engineering, 2006, pp. 3–35.

[3] M. Antkiewicz, K. Bąk, A. Murashkin, R. Olaechea, J. H. J. Liang,
and K. Czarnecki, “Clafer tools for product line engineering,” in
Proceedings of the 17th International Software Product Line Conference
co-located workshops. ACM, 2013, pp. 130–135.

[4] K. Berg, J. Bishop, and D. Muthig, “Tracing software product line
variability: From problem to solution space,” 2005, pp. 182–191.

[5] C. Qian and K.-K. Lau, “Enumerative variability in software product
families,” in Computational Science and Computational Intelligence
(CSCI), 2017 International Conference on. IEEE, 2017, pp. 957–962.

[6] K.-K. Lau and Z. Wang, “Software component models,” IEEE Trans-
actions on Software Engineering, vol. 33, no. 10, October 2007, pp.
709–724.

[7] K.-K. Lau and S. di Cola, An Introduction to Component-based
Software Development. World Scientific, 2017.

[8] C. Qian, “Enumerative Variability Modelling Tool,” http://www.cs.man.
ac.uk/~qianc?EVMT, 2018, [Online; accessed 1-July-2018].

[9] G. Anthes, “HTML5 leads a web revolution,” Communications of the
ACM, vol. 55, no. 7, 2012, pp. 16–17.

[10] T. Celik and F. Rivoal, “CSS basic user interface module level 3 (CSS3
UI),” 2012.

[11] D. Flanagan, JavaScript: the definitive guide. O’Reilly Media, Inc.,
2006.

[12] D. S. McFarland, JavaScript & jQuery: the missing manual. O’Reilly
Media, Inc., 2011.

[13] S. Kimak and J. Ellman, “The role of html5 indexeddb, the past, present
and future,” in Internet Technology and Secured Transactions (ICITST),
2015 10th International Conference for. IEEE, 2015, pp. 379–383.

[14] S. di Cola, K.-K. Lau, C. Tran, and C. Qian, “An MDE tool for defining
software product families with explicit variation points,” in Proceedings
of the 19th International Conference on Software Product Line. ACM,
2015, pp. 355–360.

[15] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “Analysis
strategies for software product lines: A classification and survey,”
Software Engineering and Management, 2015.

[16] L. Jin-Hua, L. Qiong, and L. Jing, “The w-model for testing software
product lines,” in Computer Science and Computational Technology,
2008. ISCSCT’08. International Symposium on, vol. 1. IEEE, 2008,
pp. 690–693.

[17] V. H. Fragal, A. Simao, and M. R. Mousavi, “Validated test models for
software product lines: Featured finite state machines,” in International
Workshop on Formal Aspects of Component Software. Springer, 2016,
pp. 210–227.

[18] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: efficient verification of temporal
properties in software product lines,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
1. ACM, 2010, pp. 335–344.

143Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 154 / 160

Feature-Oriented Component-Based Development of Software

Product Families: A Case Study

Chen Qian and Kung-Kiu Lau

School of Computer Science
The University of Manchester

Kilburn Building, Oxford Road, Manchester, United Kingdom, M13 9PL
Email: chen.qian,kung-kiu.lau@manchester.ac.uk

Abstract—Feature-Oriented Software Development (FOSD) is
widely used in Software Product Line Engineering (SPLE). FOSD
constructs product families by incremental feature implementa-
tions. In this paper, we introduce a feature-oriented component-
based approach, which implements features as an encapsulated
components for further family modelling. A case study of elevator
systems is also presented to describe the use of our approach.

Keywords–SPLE; FOSD; CBD; Enumerative variability.

I. INTRODUCTION

Software Product Line Engineering (SPLE) traditionally
proceeds in two phases: domain engineering and (ii) applica-
tion engineering [1]. In the domain engineering phase, existing
SPLE approaches (i) usually use a feature model to specify
variability, and (ii) from these, identifies and implements
domain artefacts, e.g., a code base [2]. In the application
engineering phase, SPLE (i) creates product configurations,
and (ii) assembles one product at a time from the domain
artefacts based on its configuration [3].

The key abstraction of Feature-Oriented Software Devel-
opment (FOSD) is a feature, which represents a logical unit
of behaviour specified by a set of functional requirements
[4]. FOSD aims at constructing software product families by
incremental feature implementations [5]. Thus, variability can
be traced from features directly to the domain artefacts, which
promises the manageability and maintainability of product
families.

In this paper, we present a feature-oriented approach to
construct product families in a component-based manner, i.e.,
following a component model [6]. In [7], we elaborated
the principles of our component model and discussed the
feasibility of using it in SPLE. Hence, this paper discusses
the concrete details. In Section II, we show the essential
background knowledge and related work. In Section III, we
present a case study to exemplify how to construct a software
product family step-by-step from scratch by our approach and
tool. Finally, in Section IV, we finish the paper by conclusion
of our work and discussion of the future work.

II. BACKGROUND AND RELATED WORK

The essence of FOSD is to model and implement variable
domain artefacts, and each of them must be mapped onto a
non-mandatory feature. In general, three main categories of
variability mechanisms are adopted in FOSD approaches and

tools [8]: (i) annotative, e.g., CIDE [2], FORM’s macro lan-
guage [9] (ii) compositional, e.g., AHEAD [10], FeatureC++
[11] and (iii) transformational, e.g., ∆-MontiArc [12], Delta-
Oriented Programming (DOP) [13].

Annotative approaches usually build a single, superimposed
model, namely 150% model, to represent all product variants.
The variable features are implemented as code fragments with
annotations, i.e., boolean feature expressions. Subsequently,
in order to generate a product, code fragments correspond-
ing to unselected features have to be removed according to
the product configuration. By comparison, compositional and
transformational approaches develop code fragments isolated
from the base programs. Compositional approaches add the
fragments correlating with the selected features to the base
program for product generation. In regard to transformational
approaches, fragments are not only added to the base model,
but also modified the existing code under some circumstances.

There are two kinds of variability in current FOSD ap-
proaches, as known as negative and positive variability [14].
The former is adopted by annotative approaches, whereas
the latter is used by compositional approaches. But both of
them are used in transformational approaches. However, no
matter negative or positive, we consider such a variability as
a parametric variability, due to it is parameterised on the
presence or absence of features in a single product. Thus, SPLE
approaches using parametric variability can only generate one
product at a time. On contrary, enumerative variability includes
all valid variants directly [7]. For example, in the problem
space, feature model defines enumerative variability, while
a configuration model defines parametric variability. In this
paper, our approach construct enumerative variability in the
solution space, which results in a whole product family and
therefore all products can be generated in one go.

Another area where our approach could bring advantages
is feature mapping. The early work on SPLE, such as FODA
[15], did not represent features explicitly, instead build n-to-m
mappings between features and domain artefacts, which causes
severe tangling and scattering in the code base eventually.
Hence, the construction of product families are infeasible.
FOSD have made a great progress by bringing a distinguishing
property that aims at 1-to-n feature mappings. However, it
becomes obvious that the ideal mapping is 1-to-1 [16], but
it is difficult to be achieved in current FOSD approaches,
mostly because of the cross-cutting concern of features. Our
approach is capable to build 1-to-1 mappings between features

144Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 155 / 160

and components. In this paper, we show how to deal with the
cross-cutting problem in the case study.

Regarding to the outstanding maintainability and reusabil-
ity, component-based development (CBD) is another paradigm
that seems suitable for SPLE. But earlier researches certified
that constructing product families only using CBD is barely
feasible, due to features often do not align well with the
decomposition imposed by component models [5]. Some re-
searches [17], [18] try to integrate CBD and FOSD in order
to obtain both their advantages in SPLE, but problems still
occurs. In this paper, our approach adopts a state-of-the-art
component model that partners FOSD very well.

III. A CASE STUDY

We have developed a web-based graphical tool that imple-
ments our component model and constructs product families
[19]. The graphical user interface (GUI) is realised using
HTML5 and CSS3, whereas the functionality is implemented
using JavaScript. In particular, we adopt the latest edition of
ECMAScript as JavaScript specification since its significant
new syntax, including classes and modules, supports com-
plex applications. Additionally, we import jQuery, the most
widely deployed JavaScript library, to improve code quality
and enhance system extensibility. For the purpose of user-
friendliness, all building blocks, including constraints and
interaction, can be easily added through buttons and dialogue
boxes.

In this section, we use an example of the elevator product
family, which originates from [20], developed by Feature-
Oriented Programming (FOP) in FeatureIDE [21]. The elevator
contains a control logic mode that can be either Sabbath or
FIFO, and an optional feature called Service. In Sabbath
mode, the elevator reaches all levels periodically without user
input, whereas in FIFO mode, the elevator moves to specific
floors in turns according to the requests. The Service is
special, it allows authorised persons to send the elevator to the
lowest floor. Notably, Service is a cross-cutting feature, as
its implementation scatters across other features’ (Sabbath
and FIFO) implementations. Consequently, the behaviour of
Service can be triggered at any time, and on any mode,
during elevator running period.

We will implement the elevator family in our tool, by
extending it with the 3 features one at a time. Notably, for
the clarification, we omit data channels in the figures in this
paper. The design and implementation process is identical to
the original example. Therefore, we can evaluate our approach
based on the scientific control.

A. Adding Feature “Sabbath” to the Elevator Product Line
We add Sabbath as an optional child feature of the root,

as shown in Figure 1. Then we need to implement a component
for it. It is worth noting the underlying component model is
already described in [6] and [7].

According to the requirement analysis of Sabbath, we
can identify 3 behaviours behind it. Figure 2 shows the
composite component composed by several atomic components
and composition connectors. For example, MovingUp controls
the elevator to move one floor up and returns the next direction,
while MovingDown makes the opposite move. Contrariwise,
Flooring leaves the elevator in the current floor. The selector

Figure 1. Adding Sabbath to the feature model.

SELs define branching depending on selection conditions,
whereas the sequencer SEQ defines sequencing sequentially.
As a result, the elevator changes direction when it reaches
bottom floor and top floor.

Figure 2. Component Sabbath.

After all, the elevator moves one floor up or down for
each execution of Sabbath. In order to keep the elevator
running, we only need to apply an adaptor, called loop, to
repeat the control to this component (not discussed in detail
here). Figure 3 shows the transition systems of the Sabbath
component within the elevator product, which gives us a clear
vision of the behaviour. So far no cross-cutting occurs, due to
only one product exists.

1

2

3

4

5

up_direction

top_floor/MovingDown

down_direction

!top_floor/MovingUp

bottom_floor/MovingUp

!bottom_floor/MovingDown

Flooring

1
Sabbath

2

Figure 3. Transition systems of Elevator and Sabbath.

B. Adding Feature “Service” to the Elevator Product Line
Now, we add Service feature to the elevator product

family. As this feature has no functional dependencies with
Sabbath, we put it under the root. In addition, Service
feature is not always required by every product, thus we set it
optional. Figure 4 shows the change of the feature model.

We can reuse two components implemented before: Mov-
ingDown and Flooring. But in order to construct Service
component, we need to implement another, namely StopSer-
vice, which allows the authorised persons to deactivate the

145Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 156 / 160

Figure 4. Adding Service to the feature model.

Service functionality after the elevator reaches the bottom
floor. Figure 5 shows the construction of Service component.

Figure 5. Component Service.

Next, we need to apply variation generators to the compo-
nents, which are mapped onto the variation points specified in
the feature model (Figure 4). A variation generator generates
multiple variants: it takes (a set of) sets of components as
input and produces (a set of) permuted sets of components,
i.e., variants. We have implemented variation generators for
the full range of standard variation points, viz. optional,
alternative and or (respectively OPT, ALT and OR. Notably, the
components are algebraic and hierarchical at this level, which
means the variation generator can be nested.

Figure 6. Elevator product family with Service.

At the next level of composition in our component model,
family composition takes place, by means of family compo-
sition operators, also defined as connectors. A family compo-
sition operator is applied to multiple input component sets to
yield a set of product variants, i.e., a (sub)family of products.
These operators are defined in terms of the component com-
position operators: a family composition connector forms the
Cartesian product of its input sets, and composes components
in each element of the Cartesian product using the corre-
sponding component composition connector. For example, in
Figure 6, the family composition connector F-SEL applies
the corresponding component composition connector SEL to
components in each element of the Cartesian product, as well

as the F-LOP indicates LOP (loop). The result of a family
composition is thus also a family, so this level of composition
is also algebraic.

The choice of family composition connectors is a design
decision that only depends on the functional requirements,
however it will not affect the total number of products in the
(sub)families. Figure 6 shows the elevator family with two
optional features. Derived from the family model in Figure 6,
Figure 7 shows a featured transition system (FTS) [22] of the
family, which depicts the cross-cutting feature Service takes
part in family behaviour, e.g., 1-2-3-1 workflow.

4

StopServicebottom_floor/Flooring

1
2 3

!bottom_floor/MovingDown

1 2 3
Sabbath Service

Service

Figure 7. FTS of Elevator and Service.

At present, the elevator family generates 3 products, as
shown in the product explorer in Figure 8. The product
explorer enumerates all valid products in the form of variability
resulting from each variation generator at any level of nesting.
For each product, the user can examine its structure and
built-in components, and hence compare this product with the
corresponding variant derived from the feature model.

Figure 8. Product explorer (3 products).

C. Adding Feature “FIFO” to the Elevator Product Line
FIFO (first in, first out) is another control logic of the

elevator. As the name suggests, if more than one floor requests
exist, the oldest request is handled first, i.e., the elevator
directly move to the required floor. By contrast with the feature
Service, FIFO is an alternative to the already existing
Sabbath mode. Therefore, we reform the feature model by
adding features and modifying variation points, as Figure 9
shows.

Figure 9. Adding FIFO to the feature model.

Likewise, we implement a component FIFO for feature
FIFO. Figure 10 shows the architecture of the component,

146Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 157 / 160

which is a composition of four sub-components. Two of them
are newly prepared: FloorQueue and RemoveRequest. The
former appends an incoming floor request to the end of the
request queue, while the latter removes the first floor request
from the queue.

Figure 10. Component FIFO.

Figure 11. Elevator product family with FIFO.

After all leaf features are realised, now we can construct the
new elevator product family. Since we have already presented
variation generators and family composition connectors in
Section III-B, the details of family construction are no longer
described here. Figure 11 shows the latest elevator product
family, which contains 4 valid products. The behaviour of
the family is illustrated in Figure 12, in which we can see
Service remains cross-cutting relationships with both FIFO
and Sabbath. Finally, the products are enumerated in the
product explorer in Figure 13.

1

2

3

4

ServiceFIFO

Sabbath Service

Service

Figure 12. FTS of Elevator family.

D. Testing Elevator Product Line
Software product family testing comprises two related

testing activities: domain testing and application testing. The
former refers to domain engineering, whereas the latter refers
to application engineering. Figure 14 depicts a V-model that
describes the stages of domain engineering [23]. It involves 3

Figure 13. Product explorer (4 products).

different testing types, each of which tests a product line at a
specific level.

Domain
Analysis

Domain
Design

Domain
Implementation

Domain Unit
Testing

Domain
Integration

Testing

Domain System
Testing

Figure 14. The V-Model for domain engineering.

Domain unit testing is easy to be operated for a feature-
oriented architecture constructed in a component-based man-
ner. In our approach, every component can be invoked via
a provided service, which is a piece of behaviour (an input-
output function) implemented by its methods. Therefore, the
components, no matter atomic or composite, can be tested
by the traditional techniques, e.g., structural testing. Our tool
provides a workbench that all components can be executed
directly. For example, we test component MovingUp within a
simulation that controls an elevator to move from fifth floor to
seventh floor. The result is demonstrated in Figure 15.

Figure 15. Unit testing result of MovingUp.

Domain integration testing focuses on the testing of
combinations of components. For most SPLE approaches,
variability handling is a huge challenge in the integration
testing phase, due to it heavily influences the components and
their interactions [24]. Briefly, a variation point in the feature
model may be modelled by multiple variation points scattered
across a number of components, which results in too many
component interactions for exhaustive testing. However, our
approach may copes with the problem.

Firstly, the variability in family model is embodied by
variation generators, which achieve a 1-to-1 mapping onto
variation points in feature model, as well as the 1-to-1 feature
mappings refers to the components. As we introduced earlier,
the variability is enumerative in the final product family archi-
tecture. Notably, the product family architecture is isomorphic
to the feature model. Thus, mismatched variability caused by
invalid component interactions can be easily spotted in product

147Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 158 / 160

explorer. For example, in Figure 11, if we misplace an OR
variation generator on the top of FIFO and Sabbath instead
of ALT variation generator, then we can observe 5 products
in the product explorer. That is obviously incorrect due to the
feature model only gives 4 product variants in total.

Secondly, the component model adopted in our approach
exposes a provided service, but no required service. Such
components are known as encapsulated components [6]. There
are no coupling between encapsulated components, i.e., they
do not call others. Instead, they are invoked by composition
connectors. Thereby, we do not need to worry about the faulty
component compounds, i.e., the incorrect bound interfaces.
Moreover, as we mentioned earlier, the level of family com-
position is algebraic, as it generates a set of encapsulated
components, which can be tested directly.

In conclusion, the distinguished property of our com-
ponent model makes domain integration testing convenient
and crystal, especially for the software product families of
non-trivial size. All we have to do is examining the 1-to-
1 mappings between (i) (leaf) features and components, (ii)
variation points and variation generators. The correctness of
behaviours between components will be tested at the next level.

Domain system testing evaluate all products’ compliance
with their requirements. It becomes obvious that verifying the
behaviour of each product individually is difficult due to an
exponential number of combinations of assets is unmanageable
[25]. Since by our approach, the control flows are clearly
coordinated by exogenous connectors and the components
are directly mapped onto features, every family model can
derive a family-based functional model that describes the
combined behaviour of an entire family, such as FTS [22] or
Featured Finite State Machine (FFSM) [26]. In this section, we
have generated FTS diagrams for different elevator families
in Figure 7 and Figure 12. The FTS describes the overall
behaviour of family, and hence the behaviours of every product
within the family. For example, if we misplace a F-SEQ
(family sequencer) instead of F-SEL (family selector) in the
family model in Figure 11, then the derived FTS would not
show the 1-4 workflow as in Figure 12. Therefore, we can
detect the problems in family composition, due to the FTS
does not describe the required behaviour.

Family-based functional model can help us to verify the be-
haviour of component interactions, but it is not straightforward
to validate the execution results. However, we cannot order test
executions for every single product. Thus, we should execute
a test case in the whole product family, i.e., all configurations
of the family, without actually generating a concrete product.
In that case, a product line testing method, called Variability-
Aware Testing [27], is perfect for our family model. The key
step of variability-aware testing is to extract an abstract syntax
tree (AST) with explicit variability. In our approach, the final
family model has a tree structure with enumerative variability,
so it provides a seamless migration to the testing model.
The testing model of the elevator example is demonstrated in
Figure 16 (not discussed in detail here because of the limited
space).

E. Product Generation
In Section II, we have presented that our approach construct

enumerative variability in the solution space. In other words,
all valid products are defined during composition. Unlike

FIFO Sabbath

Service

maxFloor=5

currentFloor=2

minFloor=1

direction=up

queue_in=[3,4]

nextFloor=3

queue_out=[4] nextDirection=up

minFloor=1

Figure 16. Variability-aware testing of Elevator.

conventional FOSD approaches, we can ‘pick up’ any number
of products from the product explorer in one go, instead of
one product at a time via configuration.

Here, to exemplify, we choose product No.3 from the
product explorer in Figure 13. Figure 17(a) shows the product
architecture, which is executable, and Figure 17(b) expresses
partial execution result.

(a) (b)

Figure 17. Product 3.

IV. CONCLUSION AND FUTURE WORK

By comparison with the original elevator family imple-
mentation in [20], our implementation has many merits. For
example, the original example is realised by FOP, in which
every feature is mapped onto multiple code fragments scat-
tering cross three classes. Each feature cannot be tested in
isolation. Simply put, our approach provides better maintain-
ability, manageability and testability because of the explicit
1-to-1 feature mappings. However, our family model only
realises behaviour in the family. Contrariwise, in [20], FOP
can define user interface for simulation, because as a low-level
programming language, FOP can overwrite any code directly.

To provide step-by-step instructions of how to use our
approach for family construction, we choose a small example
for the simplicity. But our approach can be used for product
families of non-trivial size. Besides the functions shown in

148Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

 159 / 160

Section III, our tool can deal with cross-tree constraints (e.g.,
‘require’, ‘exclude’) among features, and among components.
Our tool can also set cardinalities to narrow down massive
families. Moreover, our tool can handle feature interaction
problem, which becomes the most significant challenge in
SPLE [28], by importing extra off-the-shelf components during
composition. As a matter of fact, we have successfully con-
structed product families for industrial cases, i.e., consisting
of dozens of features and hundreds of products. In future, we
plan to present these results of our research.

According to [29], in the real world, many organisations
adopt product families using three techniques: proactive, re-
active and extractive. A proactive approach implies that a
product family is modelled from scratch. In contrast, a reactive
approach begins with a small, easy to handle product family,
which can be incrementally extended with new features and
artefacts. An extractive approach starts with a portfolio of
existing products and gradually refactors them to construct
a product family. At present, it is apparent that our work
is proactive. However, recent researches [30], [31] in reverse
engineering suggest that our work also has potential to support
reactive and extractive techniques.

REFERENCES

[1] K. Pohl, G. Böckle, and F. J. van Der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer Science
& Business Media, 2005.

[2] C. Kästner, S. Trujillo, and S. Apel, “Visualizing software product line
variabilities in source code.” in SPLC (2), 2008, pp. 303–312.

[3] K. Berg, J. Bishop, and D. Muthig, “Tracing software product line
variability: From problem to solution space,” 2005, pp. 182–191.

[4] J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach. Pearson Education, 2000.

[5] S. Apel and C. Kästner, “An overview of feature-oriented software
development.” Journal of Object Technology, vol. 8, no. 5, 2009, pp.
49–84.

[6] K.-K. Lau and S. di Cola, An Introduction to Component-based
Software Development. World Scientific, 2017.

[7] C. Qian and K.-K. Lau, “Enumerative variability in software product
families,” in Computational Science and Computational Intelligence
(CSCI), 2017 International Conference on. IEEE, 2017, pp. 957–962.

[8] A.-L. Lamprecht, S. Naujokat, and I. Schaefer, “Variability management
beyond feature models,” Computer, vol. 46, no. 11, 2013, pp. 48–54.

[9] K. C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented Product Line
Engineering,” IEEE software, vol. 19, no. 4, 2002, pp. 58–65.

[10] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling step-wise refine-
ment,” IEEE Trans. Software Eng., vol. 30, no. 6, 2004, pp. 355–371.

[11] S. Apel, T. Leich, M. Rosenmüller, and G. Saake, “FeatureC++: on
the symbiosis of feature-oriented and aspect-oriented programming,” in
Generative Programming and Component Engineering. Springer, 2005,
pp. 125–140.

[12] A. Haber, T. Kutz, H. Rendel, B. Rumpe, and I. Schaefer, “Delta-
oriented architectural variability using MontiCore,” in Proceedings of
the 5th European Conference on Software Architecture: Companion
Volume. ACM, 2011, p. 6.

[13] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella, “Delta-
oriented programming of software product lines,” in Software Product
Lines: Going Beyond. Springer, 2010, pp. 77–91.

[14] I. Schaefer, “Variability modelling for model-driven development of
software product lines.” VaMoS, vol. 10, 2010, pp. 85–92.

[15] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software Engineer-
ing Institute, Carnegie-Mellon University, Tech. Rep. CMU/SEI-90-TR-
021, 1990.

[16] C. Kästner and S. Apel, “Feature-oriented software development,” in
Generative and Transformational Techniques in Software Engineering
IV. Springer, 2013, pp. 346–382.

[17] W. Zhang, H. Mei, H. Zhao, and J. Yang, “Transformation from CIM to
PIM: A feature-oriented component-based approach,” in International
Conference on Model Driven Engineering Languages and Systems.
Springer, 2005, pp. 248–263.

[18] P. Trinidad, A. R. Cortés, J. Peña, and D. Benavides, “Mapping feature
models onto component models to build dynamic software product
lines.” in SPLC (2), 2007, pp. 51–56.

[19] C. Qian, “Enumerative Variability Modelling Tool,” http://www.cs.man.
ac.uk/∼qianc?EVMT, 2018, [Online; accessed 1-July-2018].

[20] J. Meinicke et al., “Developing an elevator with feature-oriented
programming,” in Mastering Software Variability with FeatureIDE.
Springer, 2017, pp. 155–171.

[21] C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and
S. Apel, “FeatureIDE: A tool framework for feature-oriented software
development,” in Proceedings of 31st ICSE. IEEE, 2009, pp. 611–614.

[22] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: efficient verification of temporal
properties in software product lines,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
1. ACM, 2010, pp. 335–344.

[23] J. Lee, S. Kang, and D. Lee, “A survey on software product line
testing,” in Proceedings of the 16th International Software Product Line
Conference-Volume 1. ACM, 2012, pp. 31–40.

[24] L. Jin-Hua, L. Qiong, and L. Jing, “The w-model for testing software
product lines,” in Computer Science and Computational Technology,
2008. ISCSCT’08. International Symposium on, vol. 1. IEEE, 2008,
pp. 690–693.

[25] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “Analysis
strategies for software product lines: A classification and survey,” Soft-
ware Engineering and Management 2015. Gesellschaft fr Informatik
e.V., 2015, pp. 57–58.

[26] V. H. Fragal, A. Simao, and M. R. Mousavi, “Validated test models for
software product lines: Featured finite state machines,” in International
Workshop on Formal Aspects of Component Software. Springer, 2016,
pp. 210–227.

[27] C. Kästner et al., “Toward variability-aware testing,” in Proceedings of
the 4th International Workshop on Feature-Oriented Software Develop-
ment. ACM, 2012, pp. 1–8.

[28] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Fea-
ture interaction: a critical review and considered forecast,” Computer
Networks, vol. 41, no. 1, 2003, pp. 115–141.

[29] C. Krueger, “Easing the transition to software mass customization,” in
Software Product-Family Engineering. Springer, 2002, pp. 282–293.

[30] R. Arshad and K.-K. Lau, “Extracting executable architecture from
legacy code using static reverse engineering,” in Proceedings of 12th
International Conference on Software Engineering Advances. IARIA,
2017, pp. 55–59.

[31] R. Arshad and K.-K. Lau, “Reverse engineering encapsulated com-
ponents from object-oriented legacy code,” in Proceedings of The
30th International Conference on Software Engineering and Knowledge
Engineering. KSI Research Inc., July 2018, pp. 572–577.

149Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Powered by TCPDF (www.tcpdf.org)

 160 / 160

http://www.tcpdf.org

