
ICSEA 2023

The Eighteenth International Conference on Software Engineering Advances

ISBN: 978-1-68558-098-8

November 13th – 17th, 2023

Valencia, Spain

ICSEA 2023 Editors

Herwig Mannaert, University of Antwerp, Belgium

Radek Koci, Brno University of Technology, Czech Republic

 1 / 141

ICSEA 2023

Forward

The Eighteenth International Conference on Software Engineering Advances (ICSEA 2023), held
on November 13 - 17, 2023 in Valencia, Spain, continued a series of events covering a broad spectrum of
software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and
maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of
methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference
topics covered classical and advanced methodologies, open source, agile software, as well as software
deployment and software economics and education.

The conference had the following tracks:

 Advances in fundamentals for software development

 Advanced mechanisms for software development

 Advanced design tools for developing software

 Software engineering for service computing (SOA and Cloud)

 Advanced facilities for accessing software

 Software performance

 Software security, privacy, safeness

 Advances in software testing

 Specialized software advanced applications

 Web Accessibility

 Open source software

 Agile and Lean approaches in software engineering

 Software deployment and maintenance

 Software engineering techniques, metrics, and formalisms

 Software economics, adoption, and education

 Business technology

 Improving productivity in research on software engineering

 Trends and achievements

Similar to the previous edition, this event continued to be very competitive in its selection process
and very well perceived by the international software engineering community. As such, it is attracting
excellent contributions and active participation from all over the world. We were very pleased to receive
a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2023 technical program
committee as well as the numerous reviewers. The creation of such a broad and high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and efforts to contribute to the ICSEA 2023. We truly believe that
thanks to all these efforts, the final conference program consists of top quality contributions.

 2 / 141

This event could also not have been a reality without the support of many individuals, organizations
and sponsors. We also gratefully thank the members of the ICSEA 2023 organizing committee for their
help in handling the logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2023 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in software engineering research. We
also hope that Valencia provided a pleasant environment during the conference and everyone saved
some time for exploring this beautiful city

ICSEA 2023 Steering Committee

Herwig Manaert, University of Antwerp, Belgium
Radek Koci, Brno University of Technology, Czech Republic
Sébastien Salva, University of Clermont Auvergne | LIMOS Laboratory | CNRS, France
José Carlos Metrôlho, Polytechnic Institute of Castelo Branco, Portugal
Luigi Lavazza, Università dell'Insubria – Varese, Italy
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Roy Oberhauser, Aalen University, Germany

ICSEA 2023 Publicity Chair

Lorena Parra Boronat, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain
Jose Miguel Jimenez, Universitat Politecnica de Valencia, Spain

 3 / 141

ICSEA 2023

Committee

ICSEA 2023 Steering Committee

Herwig Manaert, University of Antwerp, Belgium
Radek Koci, Brno University of Technology, Czech Republic
Sébastien Salva, University of Clermont Auvergne | LIMOS Laboratory | CNRS, France
José Carlos Metrôlho, Polytechnic Institute of Castelo Branco, Portugal
Luigi Lavazza, Università dell'Insubria – Varese, Italy
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Roy Oberhauser, Aalen University, Germany

ICSEA 2023 Publicity Chair

Lorena Parra Boronat, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain
Jose Miguel Jimenez, Universitat Politecnica de Valencia, Spain

ICSEA 2023 Technical Program Committee

Tamer Abdou, Ryerson University, Canada
Morayo Adedjouma, CEA Saclay Nano-INNOV - Institut CARNOT CEA LIST, France
Ammar Kareem Obayes Alazzawi, Universiti Teknologi PETRONAS, Malaysia
Washington H. C. Almeida, CESAR School, Brazil
Eman Abdullah AlOmar, Rochester Institute of Technology, USA
Sousuke Amasaki, Okayama Prefectural University, Japan
Talat Ambreen, International Islamic University, Islamabad, Pakistan
Amal Ahmed Anda, University of Ottawa, Canada
Daniel Andresen, Kansas State University, USA
Giusy Annunziata, University of Salerno, Italy
Jean-Paul Arcangeli, UPS - IRIT, France
Francesca Arcelli Fontana, University of Milano Bicocca, Italy
Héber H. Arcolezi, Inria & École Polytechnique (IPP), Palaiseau, France
Benjamin Aziz, University of Portsmouth, UK
Takuya Azumi, Saitama University, Japan
Jorge Barreiros, ISEC - Polytechnic of Coimbra / NOVA LINCS, Portugal
Marciele Bergier, Universidade do Minho | Research Center of the Justice and Governance, Portugal
Silvia Bonfanti, University of Bergamo, Italy
Mina Boström Nakicenovic, Paradox Interactive, Sweden
Khadija Bousselmi Arfaoui, University of Savoie Mont Blanc, France
José Carlos Bregieiro Ribeiro, Polytechnic Institute of Leiria, Portugal
Uwe Breitenbücher, University of Stuttgart, Germany

 4 / 141

Antonio Brogi, University of Pisa, Italy
Carlos Henrique Cabral Duarte, Brazilian Development Bank (BNDES), Brazil
Carlos A. Casanova Pietroboni, National Technological University - Concepción del Uruguay Regional
Faculty (UTN-FRCU), Argentina
Francesco Casillo, University of Salerno, Italy
Olena Chebanyuk, National Aviation University, Ukraine
Fuxiang Chen, University of Leicester, UK
Jithin Cheriyan, University of Otago, New Zealand
Dickson Chiu, The University of Hong Kong, Hong Kong
Rebeca Cortazar, University of Deusto, Spain
André Magno Costa de Araújo, Federal University of Alagoas, Brazil
Mónica Costa, Polytechnic Institute of Castelo Branco, Portugal
Yania Crespo, University of Valladolid, Spain
Luís Cruz, Delft University of Technology, Netherlands
Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland
Giovanni Daián Róttoli, Universidad Tecnológica Nacional (UTN-FRCU), Argentina
Darren Dalcher, Lancaster University, UK
Andrea D'Ambrogio, University of Rome Tor Vergata, Italy
Guglielmo De Angelis, CNR - IASI, Italy
Thiago C. de Sousa, State University of Piauí, Brazil
Gabriele De Vito, University of Salerno, Italy
Maria del Carmen de Castro Cabrera, Universidad de Cádiz, Spain
Lin Deng, Towson University, USA
Fatma Dhaou, University of Tunis el Manar, Tunisia
Dario Di Dario, University of Salerno, Italy
Jaime Díaz, Universidad de La Frontera, Chile
Dragos Laurentiu Dobrean, Babes-Bolyai University, Cluj Napoca, Romania
Diogo Domingues Regateiro, Instituto de Telecomunicações | Universidade de Aveiro, Portugal
Dimitris Dranidis, CITY College, University of York Europe Campus, Greece
Imke Helene Drave, RWTH Aachen University, Germany
Arpita Dutta, National University of Singapore, Singapore
Holger Eichelberger, University of Hildesheim | Software Systems Engineering, Germany
Ridha Ejbali, National Engineering School of Gabes (ENIS) / University of Gabes, Tunisia
Gledson Elias, Federal University of Paraíba (UFPB), Brazil
Fernando Escobar, University of Brasilia (UNB), Brazil
Mahdi Fahmideh, University of Southern Queensland (UniSQ), Australia
Kleinner Farias, University of Vale do Rio dos Sinos, Brazil
Thomas Fehlmann, Euro Project Office AG, Zurich, Switzerland
Alba Fernandez Izquierdo, Universidad Politécnica de Madrid, Spain
David Fernandez-Amoros, Universidad Nacional de Educación a Distancia (UNED), Spain
Estrela Ferreira Cruz, Instituto Politécnico de Viana do Castelo | ALGORIMTI research centre -
Universidade do Minho, Portugal
Harald Foidl, University of Innsbruck, Austria
Jonas Fritzsch, University of Stuttgart | Institute of Software Engineering, Germany
Jicheng Fu, University of Central Oklahoma, USA
Stoyan Garbatov, OutSystems SA, Portugal
Jose Garcia-Alonso, University of Extremadura, Spain
Wided Ghardallou, ENISO, Tunisia / Hail University, KSA

 5 / 141

Gregor Grambow, Aalen University, Germany
Chunhui Guo, California State University, Los Angeles, USA
Zhensheng Guo, Siemens AG, Germany
Bidyut Gupta, Southern Illinois University, Carbondale, USA
Huong Ha, University of Newcastle, Singapore
Shahliza Abd Halim, UniversityTeknologi Malaysia, Malaysia
Atsuo Hazeyama, Tokyo Gakugei University, Japan
Qiang He, Swinburne University of Technology, Australia
Jairo Hernán Aponte, Universidad Nacional de Colombia, Columbia
LiGuo Huang, Southern Methodist University, USA
Rui Humberto Pereira, ISCAP/IPP, Portugal
Waqar Hussain, Monash University, Australia
Gustavo Illescas, Universidad Nacional del Centro-Tandil-Bs.As., Argentina
Irum Inayat, National University of Computer and Emerging Sciences, Islamabad, Pakistan
Florije Ismaili, South East European University, Republic of Macedonia
Angshuman Jana, IIIT Guwahati, India
Marko Jäntti, University of Eastern Finland, Finland
Judit Jász, University of Szeged, Hungary
Laid Kahloul, Biskra University, Algeria
Hermann Kaindl, Vienna University of Technology, Austria
Yasushi Kambayashi, NIT - Nippon Institute of Technology, Japan
Ahmed Kamel, Concordia College, Moorhead, USA
Chia Hung Kao, National Taitung University, Taiwan
Dimitris Karagiannis, University of Vienna, Austria
Dimitra Karatza, iov42, UK
Vikrant Kaulgud, Accenture, India
Siffat Ullah Khan, University of Malakand, Pakistan
Reinhard Klemm, Avaya Labs, USA
Radek Koci, Brno University of Technology, Czech Republic
Christian Kop, University of Klagenfurt, Austria
Blagovesta Kostova, EPFL, Switzerland
Eberhard Kranich, Euro Project Office, Duisburg, Germany
Akrivi Krouska, University of Piraeus, Greece
Bolatzhan Kumalakov, Al-Farabi Kazakh National University, Kazakhstan
Tsutomu Kumazawa, Software Research Associates Inc., Japan
Rob Kusters, Open University, The Netherlands
Alla Lake, LInfo Systems, LLC - Greenbelt, USA
Stefano Lambiase, University of Salerno, Italy
Jannik Laval, University Lumière Lyon 2 | DISP lab EA4570, Bron, France
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Maurizio Leotta, University of Genova, Italy
Abderrahmane Leshob, University of Quebec at Montreal (UQAM), Canada
Zheng Li, Queen's University Belfast, UK
Peng Liang, Wuhan University, China
Panos Linos, Butler University, USA
Alexandre Marcos Lins de Vasconcelos, Universidade Federal de Pernambuco, Recife, Brazil
David H. Lorenz, Open University of Israel, Israel
Stephane Maag, Télécom SudParis, France

 6 / 141

Silvana Togneri Mac Mahon, Dublin City University, Ireland
Frédéric Mallet, Université Cote d'Azur | Inria Sophia Antipolis Méditerranée, France
Herwig Mannaert, University of Antwerp, Belgium
Krikor Maroukian, Microsoft, Greece
Johnny Marques, Aeronautics Institute of Technology (ITA), Brazil
Célia Martinie, Université Paul Sabatier Toulouse III, France
Rohit Mehra, Accenture Labs, India
Kristof Meixner, Christian Doppler Lab CDL-SQI | Institute for Information Systems Engineering |
Technische Universität Wien, Vienna, Austria
Vojtech Merunka, Czech University of Life Sciences in Prague / Czech Technical University in Prague,
Czech Republic
José Carlos M. M. Metrolho, Polytechnic Institute of Castelo Branco, Portugal
Sanjay Misra, Covenant University, Nigeria
Mohammadsadegh Mohagheghi, Vali-e-Asr University of Rafsanjan, Iran
Miguel P. Monteiro, Universidade NOVA de Lisboa, Portugal
Fernando Moreira, Universidade Portucalense, Portugal
Óscar Mortágua Pereira, University of Aveiro, Portugal
Ines Mouakher, University of Tunis El Manar, Tunisia
Kmimech Mourad, Higher Institute for Computer Science and Mathematics of Monastir, Tunisia
Lucilene F. Mouzinho da Silva, Federal Institute of Maranhão, Brazil
Sana Ben Hamida Mrabet, Paris Nanterre University / LAMSADE - Paris Dauphine University, France
Kazi Muheymin-Us-Sakib, Institute of Information Technology (IIT) | University of Dhaka, Bangladesh
Marcellin Nkenlifack, University of Dschang, Cameroon
Marc Novakouski, Carnegie Mellon Software Engineering Institute, USA
Roy Oberhauser, Aalen University, Germany
Shinpei Ogata, Shinshu University, Japan
Flavio Oquendo, IRISA (UMR CNRS) - University of South Brittany, France
Marcos Palacios, University of Oviedo, Spain
Beatriz Pérez Valle, University of La Rioja, Spain
Quentin Perez, IMT Mines Alès, France
Michalis Pingos, Cyprus University of Technology, Cyprus
Monica Pinto, University of Málaga, Spain
Blaž Podgorelec, Graz University of Technology / Secure Information Technology Center Austria (A-SIT),
Austria
Aneta Poniszewska-Maranda, Institute of Information Technology | Lodz University of Technology,
Poland
Pasqualina Potena, RISE Research Institutes of Sweden AB, Sweden
Evgeny Pyshkin, University of Aizu, Japan
Claudia Raibulet, University of Milano-Bicocca, Italy
Aurora Ramírez, University of Córdoba, Spain
Raman Ramsin, Sharif University of Technology, Iran
Gilberto Recupito, University of Salerno, Italy
Stephan Reiff-Marganiec, University of Derby, UK
Fernando Reinaldo Ribeiro, Polytechnic Institute of Castelo Branco, Portugal
Catarina I. Reis, ciTechCare - Center for Innovative Care and Health Technology | Polytechnic of Leiria,
Portugal
Wolfgang Reisig, Humboldt University, Berlin, Germany
Michele Risi, University of Salerno, Italy

 7 / 141

Simona Mirela Riurean, University of Petrosani, Romania
Nelson Rocha, University of Aveiro, Portugal
José Raúl Romero, Universidad de Córdoba, Spain
António Miguel Rosado da Cruz, Polytechnic Institute of Viana do Castelo, Portugal
Adrian Rutle, Western Norway University of Applied Sciences, Norway
Ines Bayoudh Saadi, ENSIT - Tunis University, Tunisia
Gunter Saake, Otto von Guericke University of Magdeburg, Germany
Nyyti Saarimäki, Tampere University, Finland
Mohamed Aymen Saied, Laval University, Canada
Khayyam Salehi, Shahrekord University, Iran
Bilal Abu Salih, The University of Jordan, Jordan
Sébastien Salva, University of Clermont Auvergne | LIMOS Laboratory | CNRS, France
Hiroyuki Sato, University of Tokyo, Japan
Wieland Schwinger, Johannes Kepler University Linz (JKU) | Inst. f. Telekooperation (TK), Austria
Vesna Šešum-Čavić, TU Wien, Austria
István Siket, University of Szeged, Hungary
Karolj Skala, Hungarian Academy of Sciences, Hungary / Ruđer Bošković Institute Zagreb, Croatia
Juan Jesús Soria Quijaite, Universidad Peruana Unión, Lima, Peru
Nissrine Souissi, MINES-RABAT School (ENSMR), Morocco
Maria Spichkova, RMIT University, Australia
Alin Stefanescu, University of Bucharest, Romania
Sidra Sultana, National University of Sciences and Technology, Pakistan
Yingcheng Sun, Columbia University in New York City, USA
Jose Manuel Torres, Universidade Fernando Pessoa, Porto, Portugal
Christos Troussas, University of West Attica, Greece
Mariusz Trzaska, Polish-Japanese Academy of Information Technology, Poland
Masateru Tsunoda, Kindai University, Japan
Simona Vasilache, University of Tsukuba, Japan
Sylvain Vauttier, LGI2P - Ecole des Mines d'Alès, France
Rohith Yanambaka Venkata, Nokia Bell Labs, USA
Colin Venters, University of Huddersfield, UK
Laszlo Vidacs, Hungarian Academy of Sciences / University of Szeged, Hungary
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Bingyang Wei, Texas Christian University, USA
Mohamed Wiem Mkaouer, Rochester Institute of Technology, USA
Dietmar Winkler, Institute for Information Systems Engineering | TU Wien, Austria
Krzysztof Wnuk, Blekinge Institute of Technology, Sweden
Heitor Augustus Xavier Costa, Federal University of Lavras, Brazil
Simon Xu, Algoma University, Canada
Rihito Yaegashi, Kagawa University, Japan
Guowei Yang, The University of Queensland, Australia
Yilong Yang, University of Macau, Macau
Haibo Yu, Kyushu Sangyo University, Japan
Zifan Yu, Arizona State University, USA
Mário Zenha-Rela, University of Coimbra, Portugal
Qiang Zhu, University of Michigan - Dearborn, USA

 8 / 141

Martin Zinner, Technische Universität Dresden, Germany
Kamil Żyła, Lublin University of Technology, Poland

 9 / 141

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 10 / 141

Table of Contents

Resolution to Educational Group Formation Problem Based on Improved Particle Swarm Optimization Using
Fuzzy Knowledge
Bikhtiyar Hasan and Amine Boufaied

1

What Do Critical Success Factors of Collaboration Really Mean in the Context of DevOps?
Michiel van Belzen, Jos Trienekens, and Rob Kusters

7

Exploring the Creation and Added Value of Manufacturing Control Systems for Software Factories
Herwig Mannaert, Koen De Cock, and Jeroen Faes

14

Three-step Decision Framework for Planning Software Releases
Jose del Sagrado, Isabel M. del Aguila, and Alfonso Bosch

20

Design Elements for a Space Information Network Operating System
Anders Fongen

26

Software Pipeline for 3D Heritage Digitization – The Case of Faro Focus Scans
Kamil Zyla and Jacek Kesik

30

Source Code Analysis of GitHub Projects from E-Commerce and Game Domains
Doga Babacan and Tugkan Tuglular

35

OOPS ! and Competency Questions for Evaluating the Intelligent Business Process Management Ontology
Sarra Mejri and Sonia Ayachi Ghannouchi

41

OSS-Fuzzgen: Automated Fuzzing of Open Source Java Projects
Sheung Chi Chan, Adam Korczynski, and David Korczynski

51

INTERACT: a Tool for Unit Test Based Integration of Component-based Software Systems
Nils Wild and Horst Lichter

58

Bridging the Gap: Introducing a Universal Data Monetization Method from Information and Game Theories
Domingos Monteiro, Felipe Ferraz, Silvio Meira, and Domingos Salazar

64

Combining Retrieval and Classification: Balancing Efficiency and Accuracy in Duplicate Bug Report Detection
Qianru Meng, Xiao Zhang, Guus Ramackers, and Visser Joost

75

“Elderly, with location data, while shopping?” Spotting Privacy Threats Beyond Software: A Quasi-Experimental
Study
Tuisku Sarrala and Tommi Mikkonen

85

 1 / 2 11 / 141

An Empirical Investigation of Usability Measurement in Canvas Educational Applications
Shabbab Algamdi and Stephanie Ludi

95

Ecosystem in Business
Luiz Henrique das Neves Gondim Moreira, Silvio R. L. Meira, Andre Neves, and Felipe Silva Ferraz

101

Prerequisites for Simulation-Based Software Design and Deployment
Radek Koci and Vladimir Janousek

105

Engineering IoT-based Software Systems for Forestry: A Case Study
Marko Jantti and Markus Aho

110

Towards Improving Accurate Breast Cancer Diagnosis: Leveraging Pre-trained Convolutional Neural Network for
Mammogram Analysis
Marwa Ben Ammar, Dorra Zaibi, Faten Labbene Ayachi, Riadh Ksantini, and Halima Mahjoubi

116

Design Pattern Detection in Code: A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with
Graph Embeddings, and Micropattern Rules
Roy Oberhauser and Sandro Moser

122

Powered by TCPDF (www.tcpdf.org)

 2 / 2 12 / 141

Resolution to Educational Group Formation Problem Based on Improved Particle

Swarm Optimization Using Fuzzy Knowledge

Hasan Bikhtiyar

Higher Institute of Computer Science and Communication

Technologies

 University of Sousse

 Sousse, Tunisia

bikhtiyar.hasan85@gmail.com

Amine Boufaied

Higher Institute of Computer Science and Communication

Technologies

University of Sousse

Sousse, Tunisia

Boufaied.amine@gmail.com

Abstract— In the educational context, instructors usually

partition students into collaborative learning teams to perform

collaborative learning tasks. Indeed, one of the grouping

criteria most utilized by instructors is based on the students’

roles and on forming similar teams according to the roles of

their members, which is costly and complex. This paper

addresses the optimization problem of forming automatic

learning teams by minimizing the knowledge-difference cost

among formed teams. The knowledge index of each group

depends on the Belbin roles of their students’ members in the

form of a sum of students’ fuzzy rating indexes. The proposed

algorithm is called improved particle swarm optimization with

multi-parent order crossover (IPSOMPOX). The multi-parent

order crossover is used in IPSOMPOX in order to investigate

new solutions in the search space and to accelerate the

convergence of the proposed algorithm to the best global

solution. To evaluate the performance of the proposed

algorithm, we apply it to several different experiments with

different numbers of teams and students. The results

demonstrate the superiority of our proposed performance over

the standard PSO.

Keywords— Particle Swarm Optimization; Learning group

formation problem; Belbin roles; Multi-Parent Order Crossover;

Fuzzy Classification.

I. INTRODUCTION

Nowadays, there is an increasing interest in developing

teamwork skills [1] [2]. This growing interest is motivated

by its effectiveness and the fact that, in labor contexts,

enterprises organize their employees in teams to carry out

complex projects [3]. In fact, problems relating to team

formation are common across many industrial sectors,

including education, sport and general business. It is beyond

manual implementation to build near-optimal teams as pools

of candidates grow [4]. The team is comparable to the

human body, like various organs collaborate to make things

happen, and the various individuals collaborate daily to

bring success to the project [5].

Recently, an appreciable number of researchers have

attempted to solve the problem of team formation without

leaders. In 1995, Kennedy and Eberhart designed the

particle swarm optimization (PSO) in observations

modeling the “social behavior” of schools of birds or fish

searching for their nest or food. Kennedy and Eberhart

expressed interest in Frank Heppner’s model (among the

various available models). In [6], a modified PSO algorithm

is proposed for solving a team formation optimization

problem by minimizing the communication cost among

experts. The proposed algorithm is called Improved Particle

Swarm Optimization with New Swap Operator (IPSONSO).

In IPSONSO, a new swap operator is applied within particle

swarm optimization to ensure the consistency of the

capabilities and the skills to perform the required project.

In the educational context, one of the grouping criteria

most utilized by instructors is based on taking into account

the students’ roles and forming teams according to the roles

of their members [7]. A role is how a person tends to

behave, contribute and interrelate with others throughout a

collaborative task. Several team role models proposed in the

literature recommend this grouping criterion [8]. Students

belonging to Belbin teams acknowledge that they attend

classes more regularly, need less time to study outside the

classes and show a higher interest in the subject at the end

of the course. This team forming method allows students to

identify their own strengths and weaknesses and understand

the roles (behaviors) of their teammates and their strengths

and weaknesses [9].
In this paper, we propose a new method addressing the

optimization problem of forming automatically working
teams and making the teams as similar as possible to each
other across the knowledge indexes to get a homogenous
working rate. These knowledge indexes depend on the skills
of their members in the form of a sum of fuzzy rating
indexes. The proposed algorithm is named Improved
Particle Swarm Optimization with Multi-Parent Order
Crossover (IPSOMPOX). The multi-parent order crossover
is used in IPSOMPOX in order to investigate new solutions
in the search space and to accelerate the convergence of the
proposed algorithm to the best global solution.

The rest of this paper is structured as follows. Section II
presents the problem statement. Section III provides
important details about the optimization algorithm. Our
proposed algorithm (IPSOMPOX) is described in Section
IV. Section V evaluates the proposal and compares it with
traditional PSO. Section VI concludes this paper.

II. PROBLEM STATEMENT

Let set S comprise n collaborators, S = {s1, s2, …, sn}. We

have to partition the n collaborators into a set GPk of g

1Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 13 / 141

teams, GPk = {G1, G2, …, Gg}, k is a positive integer. Each

team Gi, i=1…g, is made up of a zi number of member

collaborators, and each collaborator can only belong to one

team.

Regarding team size, collaborators must be divided so that

the g teams have a similar number of collaborators each.

Specifically, the difference between a team’s size and the

other teams’ size must not exceed one. The values of the

terms n and g are known.

Each team Gi has to accomplish a given task (i.e., a

project or a part of the same global project), and a set of m

skills R = {r1, r2, ..., rm} represents the abilities of the

collaborators to a given task.

The pair (F, R) is called a Fuzzy Soft Set over S, where F:

R → P(S) and where P(S) is the set of all fuzzy subsets of a

universal set S relative to a ri R [5] [10].

Every skill in this problem is not in crisp nature. Skills are

all in a fuzzy nature and are called linguistic variables. The

linguistic variables do not receive any numerical values but

some words or sentences of information. The linguistic

variables of the fuzzy system for project team selection can

be classified into four categories: VG (very good), GD

(good), FR (fair), and PR (poor) [11].

Here, we consider that each collaborator has an evaluation

for each skill. In this sense, we define four evaluations: VG

(very good), GD (good), FR (fair), and PR (poor). The

evaluation determines the degree to which a collaborator

possesses a particular skill naturally. Therefore, the

membership value (MV) of a collaborator to a skill can be

calculated as follows.

MV = [LB + (UB - LB) * (AV /100)] (1)

where LB: Lower Bound, UB: Upper Bound and AV: Actual

Value.

Let us define x1, x2...xj as the membership values of each

evaluation. Additionally, let w1, w2 ..., wj are the weights of

the required skills for a given project respectively, =

1, then the fuzzy rating indexes (FRI) are:

 (FRI)si=Σ[xi*wi], i=1 to j (2)

 (DFRI)si=(FRI)si*100 (3)

Where (DFRI)si is the defuzzified or crisp value of (FRI)si

of the collaborator si. The output can be interpreted based on
a fuzzy rating index or its defuzzified value (crisp value).

For each group GiGPk, i=1...g, we calculate the

Knowledge Index (KI), which is the sum of the fuzzy rating

index of its collaborators.

 KI(Gi) = (4)

From equation (4), we calculate the average AV of the

different KIs.

AV(GPk) = (5)

Then, we calculate the squared difference between each KI

and the average. For instance, for the first KI:

(KI(G1) – AV)2 (6)

The squared deviations of each value are then added:

 (7)

This sum is then divided by the number of KIs to get the

variance, i.e.,

 (8)

The standard deviation ST of a team’s partition GPk is given

with:

ST(GPk) = (9)

ST(GPk) is zero if all the Knowledge Indexes (KI) of teams

in the partition GPk are the same (because each value is equal

to the average).

A set of weighted skills forms a given project P. Each

collaborator siS is associated with a fuzzy rating index

FRIsi relatively to the given project. A set of possible

collaborators’ partitions achieving P is denoted GP, GP =

GP1, GP2, …, GPm, where m is a positive integer. The goal is

to find a partition with the least knowledge difference cost

among teams of collaborators ST(GPk), k{1..m} realizing

the same given project according to (9).

The team formation problem can be considered as an

optimization problem by forming a feasible partition GP*

among a set of possible collaborators’ partitions with

minimum knowledge difference cost among formed teams,

and GP* can be obtained by the following:

Min(GPkGP) ST(GPk) = (10)

 subject to

 sj S, (11)

Where Pij is a binary variable, Pij = 1 if collaborator sj

belongs to the team and 0 otherwise. A collaborator

belongs to one team among a partition GPk.

The notations of the team formation problem are

summarized in Table 1.

2Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 14 / 141

TABLE I. NOTATIONS OF TEAM FORMATION PROBLEM

Notation Definition

S A set of collaborators

GPk A partition of collaborators into g teams

P A project with weighted skills

R A set of skills

Gi collaborators’ team

(FRI)si The fuzzy rating index of a collaborator si

KI(Gi) Knowledge index of a team Gi

III. OPTIMIZATION ALGORITHM

Each solution in the optimization algorithm population

represents a set GPk of g teams (g is the number of teams),

which may be built when the n collaborators in the class are

partitioned. Each solution is represented as a list with a

length equal to n (i.e., a list with as many positions as

students in the class). Specifically, each position p (p = 1…,

n) on this list contains a different collaborator (i.e., repeated

collaborators are not admitted) (n is the number of

collaborators). Besides, each collaborator sj (j = 1…, n) may

be in any position on the list. In short, the list is a

permutation of the n collaborators [8].

In this process, the g teams are built, considering the two

restrictions as part of the problem. The first restriction is

that each student may belong to only one team. While the

second restriction holds that the difference between the size

of a team and the size of the rest of the teams must not

exceed one. The size of the teams is considered to depend

on the relationship between the values n and g.
When n>2, there are so many possible permutations to

realize from a functional point of view. Therefore, designing
an intelligent mechanism to realize a minimum number of
permutations is necessary to finally get a collaborator’s
partition with minimum difference knowledge between its
teams. We propose to use a new, improved Particle Swarm
Optimization (PSO) method to solve such an optimization
problem.

In fact, to solve the stated working group formation

problem, we used the Multi-Parent Order Crossover

(MPOX). We developed a new, Improved Particle Swarm

Optimization with Multi-Parent Order Crossover

(IPSOMPOX).

IV. THE IMPROVED PARTICLE SWARM OPTIMIZATION WITH

MULTI-PARENT ORDER CROSSOVER (IPSOMPOX)

IPSOMPOX starts with an initial population containing a
specific number of feasible particles. Each particle consists
of a permutation of the n collaborators and is a list. A
random method has been designed to generate each of the
particles of this population. This kind of method guarantees a
good level of diversity in the initial population and,
therefore, helps prevent the premature convergence of the
algorithm. Then, itmax iterations are executed to define the
content of the positions of the particles. All the swarm
particles are updated in each iteration m (m =1…, itmax).
The position of a particle is updated using the multi-parent
order crossover (MPOX) [12]. In our resolution method, we
used three parents: the actual position, the best local position
and the best global position.

The following algorithm 1 presents the pseudocode of the

3-POX. Notice that moving through the actual position, the
best local position, the best global position, or the new
position can be circular) (see Figure 1).

Algorithm 1 (3-parent order crossover (3-POX)):
1. Parents selection: select the actual position, the best local and

global positions.
// Three segments selection

2. Crossover points generation: randomly generate the first
crossover points p and calculate p1 and p2 to divide the actual
position into almost equal three segments’ widths. The three
segments’ widths are equal if the actual position width is divisible
by 3.
// Segment copy

3. For i = p to p1
Copy the elements from actual_position[i] into the new
position[i].

Figure. 1. An example of the implementation of the 3-POX.

3Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 15 / 141

// Elements’ selection
4. Pick up the elements from the best local position, starting at p1,

which do not exist in the new position, and copy them into the
new position starting at p1 until reaching p2.

5. Pick up the elements from the best global position, starting at p2,
which does not exist in the new position, and copy them into the
new position starting at p2 until reaching p.

V. SIMULATIONS AND PERFORMANCE EVALUATION

In this section, we study the performance of the
IPSOMPOX algorithm using a numerical simulation of
several student’s permutations in order to verify the
effectiveness of our team formation approach. In fact, we
conducted a series of experiments to evaluate the
performance of our proposed algorithm.

A. Preliminaries

We started by creating a collaborator’s vector noted
collaborators whose size is the number of collaborators
noted nCollaborators. The value of nCollaborators is
initialized at the start of the simulation execution. Each
component of the collaborator’s vector is a student defined
by rank and fuzzy rating index (FRI).

Knowing the number of groups g, we calculate the

number of collaborators per group and create a group vector
noted groups. The groups vector, whose size is the number
of collaborators, contains the instances of groups.

The MPSO (3-POX) is applied when the number of

collaborators exceeds 2. It is noted that the variable

containing the maximum number of iterations of MaxIt. We

also chose the population number of the swarm equal to

nPop. Thus, a random population of nPop particles is

created (These are particles collaborator’s permutations).

Each particle has a position whose size is nCollaborators,

where a particle is a possible solution for our optimization

problem. The cost of its position is the best position. The

cost function returns the standard deviation of the

knowledge indexes of all teams, Equation (12).

Cost(particlei.position) = ST(KI(GPk), k=1..g, in particlei)

 i = 1.. nPop (12)

When IPSOMPSO is launched, the positions of the
different particles are updated, and their costs are calculated,
as shown previously. Also, the best personal solution and the
best global solution are updated. The particles are moving
and approaching the optimal solution from iteration to
iteration. Once the stop condition is verified, execution stops,
and we get a student’s partition into g groups with the
minimum standard deviation between the group’s knowledge
indexes.

B. Evaluation

We conducted a series of experiments to evaluate the
performance of our proposed algorithm.

In the first simulation, we considered 50 students to
partition into nine learning groups. We got the nine weights

wi of the Belbin roles relatively to the project P to
accomplish from the instructor (i.e., P = {w1*PL, w2*RI,
w3*CO, w4*SH, w5*ME, w6*TW, w7*IM, w8*FI, w9*SP}),

= 1. With the results of the Belbin Team Role Self-

Perception Inventory (BTRSPI), we obtain Table II, showing
the FRI of each student.

TABLE II. THE FRI OF EACH STUDENT

Student FRI Student FRI Student FRI

1 0.0966 18 0.4769 35 0.8325
2 0.2654 19 0.1296 36 0.1751
3 0.7919 20 0.2281 37 0.8798
4 0.9369 21 0.1811 38 0.2796
5 0.5683 22 0.6720 39 0.8495
6 0.9380 23 0.3258 40 0.8067
7 0.5972 24 0.7906 41 0.1891
8 0.9880 25 0.5460 42 0.9786
9 0.7623 26 0.2306 43 0.2537

10 0.1856 27 0.6868 44 0.7785
11 0.5168 28 0.0491 45 0.8108
12 0.6402 29 0.5726 46 0.4980
13 0.8690 30 0.9938 47 0.9157
14 0.6001 31 0.3630 48 0.1010
15 0.9997 32 0.5587 49 0.1358
16 0.1292 33 0.9273 50 0.8583
17 0.2934 34 0.2599

Table III shows le number of students in each group.

TABLE III. NUMBER OF STUDENTS IN EACH GROUP

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

6 6 6 6 6 5 5 5 5

Once the execution of the IPSOMPOX is finished, it is

possible to calculate the partition of the students (as listed in

Table IV). Partition of students into groups.

TABLE IV. PARTITION OF STUDENTS IN EACH GROUP

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

36 4 42 46 9 50 47 6 5
29 48 28 26 41 8 44 25 15
2 22 37 17 33 12 11 21 49

40 16 19 10 1 18 43 3 20
32 35 24 30 13 38 27 14 45

7 34 23 39 31

Accordingly, as listed in Table V, we calculate the KI of

each group Gk.

TABLE V. KNOWLEDGE INDEX OF EACH GROUP

KI(G1) KI(G2) KI(G3) KI(G4) KI(G5) KI(G6) KI(G7) KI(G8) KI(G9)

2.9758 2.9314 3.1534 3.0507 3.2073 3.2429 3.1515 3.0572 2.7427

The minimal standard deviation we got is equal to 0,1478,

Figure 2.

4Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 16 / 141

Figure 2. The Best Costs of the example of Table II.

In a second simulation, three experiments are performed

on the random dataset with different teams and student

numbers to evaluate the performance of the proposed

algorithm that focuses on iteratively minimizing the

knowledge difference cost among teams. The average

results are taken over 50 runs. The parameters are reported

in Table VI. The proposed algorithm is compared with the

standard PSO to verify its efficiency.

TABLE VI. PARAMETER SETTING

Exp.
No.

No. of
iterations

No. of the
initial

population

No. of
teams

No. of
students

1 5 5 3 10
2 5 10 5 20
3 10 20 7 30

In Table VII, the average (), the standard deviation (s)

and the mean () of the results sample are reported over 50

random runs. The mean µ is also reported with a confidence

level of 95%.

The performance (%) between the compared algorithms

can be computed in Eq. (13).

Performance(%) = * 100 (13)

where µ(PSO) and µ(IPSOMPOX) are the mean results obtained

from SPSO and IPSOMPOX algorithms, respectively.

Table VII presents the costing intervals of the knowledge

difference costs for three experiments on randomly

generated data. The results of IPSOMPOX decrease

iteratively to the number of iterations than PSO, achieving

better performance ranging from 31% in the fourth iteration

to 14% in the last iteration for experiment 1. In comparison,

the percentage of the improved results ranged from 2.4% in

the second iteration to 16.7% in the fourth iteration when

compared with PSO in experiment 2. Also, the results of

IPSOMPOX are better and more efficient than PSO, with

knowledge difference cost going down from 8.3% better

performance in the tenth iteration to 56.4% in the third

iteration of experiment 3. In Figure 3, the costing intervals

of the proposed algorithm are presented against the standard

PSO for different team numbers by plotting the number of

iterations against the costing intervals on knowledge

difference costs. The results in Figure 3 show that the

proposed algorithm is better than the standard PSO.

TABLE VII. COMPARISON BETWEEN PSO AND IPSOMPOX ON

RANDOM DATA

Exp.
No.

Iteration
no.

 PSO IPSOMPOX

1 1
s

µ 2,5*

0,1488
0,0125

0,14660,032

0,1488
0,0125

0,14660,032
 2

s

µ 2,5*

0,1488
0,0125

0,14660,032

0,1488
0,0125

0,14660,032
 3

s

µ 2,5*

0,1321
0,0114

0,13010,027

0,0815
0,0109

0,08930,0269
 4

s

µ 2,5*

0,1190
0,0108

0,10430,0275

0,0815
0,0109

0,08930,0269
 5

s

µ 2,5*

0,0935
0,0099

0,09730,0251

0,0815
0,0109

0,08930,0269

2 1 µ 2,5* 0,13070,027 0,13070,027
 2 µ 2,5* 0,13010,032 0,12700,036
 3 µ 2,5* 0,12510,021 0,10480,033
 4 µ 2,5* 0,10480,025 0,08730,021
 5 µ 2,5* 0,08790,029 0,07510,026

Figure.3. Comparison between PSO and IPSOMPOX on random data.

5Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 17 / 141

3 1 µ 2,5* 0,49230,042 0,32350,029
 2 µ 2,5* 0,36930,036 0,24530,045
 3 µ 2,5* 0,36930,021 0,16100,033
 4 µ 2,5* 0,25570,039 0,16100,026
 5 µ 2,5* 0,25570,02 0,12390,017
 6 µ 2,5* 0,16190,042 0,12390,041
 7 µ 2,5* 0,16190,017 0,09450,018
 8 µ 2,5* 0,12240,029 0,09450,030
 9 µ 2,5* 0,10670,041 0,09450,021
 10 µ 2,5* 0,10310,025 0,09450,023

Finally, based on [13], the average processing times (in

seconds) reported in Figure 4 over 50 runs for each

experiment. We consider the 90 students and vary the

number of working groups (10 experiments): 3, 5, 7, 9, 11,

15, 19, 21, 25, 30.

0

5

10

15

20

25

30

35

Exp. # 1 Exp. # 2 Exp. # 3 Exp. # 4 Exp. # 5 Exp. # 6 Exp. # 7 Exp. # 8

A
ve

ra
ge

 p
ro

ce
ss

in
g

Ti
m

e

Experiment no.

Figure 4. The average processing times (in seconds) of the PSO and

IPSOMPOX

As shown in Figure 4, the time for forming a working

group using the proposed algorithm IPSOMPOX varies

slightly from one experiment to another and is around a

mean of 29,4s. Also, the average processing time of PSO

has a mean of 28,9s. Thus, the average processing time of

PSO is better than that of IPSOMOX with 1,8%. This is due

to additional processing time using the multi parent order

crossover (MPOX).

VI. CONCLUSION AND FUTUR WORKS

This study investigates a new particle swarm optimization

algorithm to solve the team formation problem. The

proposed algorithm is called Improved Particle Swarm

Optimization with Multi-Parent Order Crossover

(IPSOMPOX). In the IPSOMPOX algorithm, exploiting the

multi-parent order crossover in the proposed algorithm has

accelerated its convergence to the global best solution. The

performance of the proposed algorithm is investigated in

five experiments with different numbers of teams and

students. The results of the proposed algorithm show that it

can obtain a promising result in a reasonable time compared

to the standard PSO.

As a future work, we propose to compare our method’s

performance when using the adjacency-based crossover

(ABC) or the multi-parent partially mapped crossover

(MPPMX) instead of the 3-POX. Also, it is worthwhile to

test our proposed algorithm over various benchmark

problems of nonlinear mixed integer programming

problems.

REFERENCES

[1] D. Mburasek, and M. Odon, «Development of a tool for team
formation in engineering education,» International Journal Of

Engineering And Management Research, vol. 11, n°16, pp. 62-69,

2021.

[2] O. Zvereva, and E. Milovidova, «Engineering Effective Teams: An

Example From Educational Domain,» Chez International Conference

on Applied Mathematics & Computational Science (ICAMCS. NET),
2018.

[3] J. Alberola, E. Del Val, V. Sanchez-Anguix, A. Palomares and M.

Dolores Teruel «An artificial intelligence tool for heterogeneous team
formation in the classroom,» Knowledge-Based Systems, vol. 101, pp.

1-14, 2016.

[4] J. Flores-Parra, M. Castañón-Puga, R. Evans, R. Rosales-Cisneros and
C. Gaxiola-Pacheco «Towards team formation using Belbin role types

and a social networks analysis approach,» chez IEEE Technology and

Engineering Management Conference (TEMSCON), 2018.

[5] S. Kalayathankal, J. Kureethara and S. Narayanamoorthy, «A

modified fuzzy approach to project team selection,» Soft Computing

Letters 3, vol. 3, p. 100012, 2021.

[6] W. El-Ashmawi, A. Ali and M. Tawhid, «An improved particle

swarm optimization with a new swap operator for team formation

problem,» J Ind Eng Int, vol. 15, p. 53–71, 2019.

[7] M. Winter, Developing a group model for student software, Master’s

thesis, University of Saskatchewan, 2004.

[8] V. Yannibelli and A. Amandi, «Forming well-balanced collaborative

learning teams according to the roles of their members: An

evolutionary approach,» Chez 12th International Symposium on

Computational Intelligence and Informatics (CINTI), 2011.

[9] A. Aranzabal, E. Epelde and M. Artetxe, «Team formation on the

basis of Belbin’s roles to enhance students’ performance in project

based learning,» Education for Chemical Engineers, vol. 38, pp. 22-
37, 2022.

[10] Z. Chen, S. Kosari, S. Kaarmukilan, C. Yuvapriya. «A video
processing algorithm using temporal intuitionistic fuzzy sets,» Journal

of Intelligent & Fuzzy Systems, vol. 43, pp. 8057-8072, 2022.

[11] L. Zhou, Y. Wang and Y. Jiang, «Investment Project Assessment by a
MAGDM Method Based on the Ranking of Interval Type-2 Fuzzy

Sets,» Journal of Intelligent & Fuzzy Systems, vol. 35, n° 12, p. 1875

– 1888, 2018.

[12] A. Arram and M. Ayob, «A novel multi-parent order crossover in

genetic algorithm for combinatorial optimization problems,»

Computers & Industrial Engineering, vol. 133, pp. 267-274, 2019.

[13] A. Boufaied, «A Diagnostic Approach for Advanced Tracking of

Commercial Vehicles With Time Window Constraints,» IEEE

Transactions on Intelligent Transportation Systems, vol. 14, n° 13, pp.
1470-1479, 2013.

6Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 18 / 141

What Do Critical Success Factors of Collaboration Really Mean in the Context of
DevOps?

Michiel van Belzen, Jos Trienekens, Rob Kusters
Faculty of Science
Open University

Heerlen, The Netherlands
email: michiel.vanbelzen@ou.nl, jos.trienekens@ou.nl, rob.kusters@ou.nl

Abstract—Collaboration is an important aspect of DevOps.
However, researchers continue to report problems with
collaboration between development and operations. Critical
Success Factors (CSFs) may contribute to solve these
problems. Prior research found CSFs of collaboration. Yet we
did not find any comprehensive list of CSFs of collaboration
grounded in DevOps practice by real-life examples making
them meaningful in that context. Therefore, we aim to show
that CSFs of collaboration found in other contexts are also
recognized in a DevOps context and what previously validated
generally applicable CSFs of collaboration really mean in a
DevOps context. The research method comprises of a
systematic literature review to find a comprehensive list of
generally applicable CSFs of collaboration, a multiple case
study to find on the one hand which of these CSFs were
recognized in a DevOps context and on the other hand to find
real-life examples, which substantiated the CSFs recognized.
Finally, the aim is to develop a classification of the CSFs. Our
main contribution to theory is a well-founded and structured
list of CSFs meaningful for the DevOps profession. The list of
CSFs can aid practitioners to have a necessarily impact on the
success of collaboration.

Keywords – adoption; classification; collaboration; critical
success factors; DevOps.

I. INTRODUCTION
DevOps is a compound of development and operations

[1]. Adopting DevOps improves cycle times, software
processes and quality [2].

Collaboration is seen as an important aspect of DevOps.
DevOps is considered as an interaction between development
and operations [3] and a set of practices and mechanisms
supporting their integration [4][5][6][7]. However, literature
reports problems with collaboration between both. For
example, Iden, Tessem, and Paivarinta [8] and Lwakatare,
Kuvaja, and Oivo [9] found poor communication, Wettinger,
Breitenbücher, Falkenthal, and Leymann [10] found cultural
gaps, and Colomo-Palacios, Fernandes, Soto-Acosta, and
Larrucea [2] and Nielsen, Winkler, and Norbjerg [11] found
knowledge boundaries.

Critical Success Factors (CSFs) may contribute to solve
problems with collaboration between development and
operations. However, to the best of our knowledge we did
not find any comprehensive list of CSFs of collaboration in a
DevOps context. Yet earlier research found CSFs of

collaboration validated in other contexts. However, these
CSFs can be improved in terms of specializing by context,
comprehensiveness and timeliness. For example, Mattessich
and Monsey [12] found nineteen factors influencing the
success of collaboration and Kolfschoten, De Vreede,
Briggs, and Sol [13] derived three factors in an attempt to
define the concept of collaboration. As these CSFs are valid
in different contexts, they may also be applicable in a
DevOps context. For example, Lwakatare, Kuvaja, and Oivo
[9] mentioned information sharing and skill sets and Erich,
Amrit, and Daneva [3] reports culture and automation.
Therefore, our research goal is to show that CSFs of
collaboration found in other contexts are also recognized in a
DevOps context. And we will also clarify what previously
validated generally applicable CSFs of collaboration really
mean in a DevOps context. Clarification of these CSFs by
formulating them in terms of the DevOps profession is
important as it makes CSFs meaningful in that context.
Meaningful CSFs of collaboration can be addressed more
easily leading to performance improvements in
collaboration. Prior research present CSFs often in an
abstract way and expressed in general terms. That makes
these CSFs difficult to interpret, apply and measure in the
context of DevOps.

This research goal brings us to our research question:
Which generally applicable CSFs of collaboration are
recognized in the context of DevOps and how to make them
meaningful in the context of DevOps? To answer the main
research question, we divide it into the following three sub
questions (SQs): (SQ1) What are generally applicable CSFs
of collaboration? (SQ2) Which generally applicable CSFs of
collaboration are recognized in the context of DevOps? SQ3:
How to make the recognized generally applicable CSFs of
collaboration meaningful in the context of DevOps?

We will contribute to the existing literature by adding
another research context, namely the context of DevOps.
This is important, because literature has given little notice to
different contexts of collaboration [14], such as the DevOps
context. Second, CSFs vary in terms of abstraction and
explanation as we will explain in Section 2.

The outline of this article is as follows. In Section 2, we
present previous research on CSFs of collaboration.
Subsequently, in Section 3, we describe the research method.
In Section 4, we present the results of the case study. In
Section 5, we discuss the implications and limitations, and

7Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 19 / 141

present suggestions for future research. Finally, we reflect on
our research question and research goal in Section 6.

II. THEORETICAL BACKGROUND
Considering the research question, we explored related

work to find a comprehensive list of CSFs of collaboration
which can be used in a case study to verify whether generally
applicable CSFs are recognized in a DevOps context. To
support this, we used the definition of collaboration defined
by [15] as “An evolving process whereby two or more social
entities actively and reciprocally engage in joint activities
aimed at achieving at least one shared goal”. In addition, we
defined a CSF as a factor leading to successful outcome,
which is in line with [12][16].

Although prior research views collaboration from
different perspectives, reflection on CSFs found earlier is
limited. In the early stages of research on collaboration in
general, [12] reviews and summarizes existing research
literature on CSFs which influence the success of
collaboration. The researchers found nineteen CSFs of
collaboration validated in health science and social science,
and also in education and public affairs domains. In 2001
these nineteen CSFs were confirmed and an additional CSF
was added: “an appropriate pace of development” [17].
Reference [18] studied a partnership between two
organizations and found the factors of successful
collaboration to be: partnership attributes of commitment,
coordination, trust, communication quality, participation, and
the conflict resolution technique of a joint problem.
Collaboration between team members was studied by [19].
They mentioned human-related factors, such as social ties
and knowledge sharing as important for collaborative work.
The authors report in particular the importance of rapport
and transactive memory, and organizational mechanisms
creating and maintaining social ties between distributed team
members. Reference [13] conceived collaboration as a
process and a system. According to [13], collaborative
success depends on willingness of its participants, which
makes it a complex activity. The authors explained that
collaboration involves individuals working together to
achieve a group goal. Reference [15] focused on a
multidisciplinary conceptualization of collaboration.
According to [15] effective collaboration needs coordination.
This was confirmed by [20][21] who consider coordination
and cooperation as the most important problems that must be
solved when individuals from diverse backgrounds and
different organizations have to collaborate. Reference [22]
studied collaboration among supply chain partners and
identified the CSFs trust, commitment, mutuality and
reciprocity.

Prior research not just identified CSFs but attempted to
classify CSFs found as well. However, they classify CSFs
differently based on various perspectives. For example,
Mattessich and Monsey [12] classified the CSFs found into
six groups: environment, membership, process/structure,
communications, purpose and resources. Reference [15]
applied an abstract classification and distinguished different
characteristics. Reference [23] deduced the classification
from their description of collaborative work. According to

[23] aspects of collaborative work can be classified into
seven main factor groups: context, support, tasks, interaction
processes, teams, individuals and overarching factors.
Finally, differences in grouping CSFs were also noticed by
[14] who elaborated “Many studies have attempted to assess
the CSFs for collaboration. In these studies, CSFs can be
classified into CSFs influencing the likelihood of
collaboration, CSFs influencing the performance of
collaboration, and those influencing the collaboration type”.
However, [14] does not explain how CSFs can be classified.

Research on collaboration in a DevOps context has
limitations as well. Prior research presents CSFs which are
broad and not only focused on collaboration, and are limited
in terms of comprehensiveness [24]. For example,
Lwakatare, Kuvaja, and Oivo [9] mentioned information
sharing and broadening of skill sets and relates them to the
intended outcome, which is taking full responsibility for
developing and operating an entire service. Reference [3]
reports core parts of DevOps adoption, such as culture and a
high degree of automation. According to the authors,
organizations attempt to remove the cultural barrier between
development and operations personnel and create a culture of
empowerment. For example, by assigning more
responsibilities to the DevOps team and giving team
members the freedom to share what is on their mind.
Reference [25] noticed in a study on DevOps maturity that
the organization itself should be ready to execute work. They
explain that DevOps team members should communicate,
share knowledge, have trust and respect for each other, and
align between internal and external dependencies to timely
deploy software.

Grounding CSFs in DevOps practice makes CSFs better
useful in the context of DevOps. The CSFs found were
grounded in practice containing terminology common in the
professional field. For example, Lwakatare, Kuvaja, and
Oivo [9] mentioned monitoring information to illustrate
knowledge sharing and Erich, Amrit, and Daneva [3], who
noted automating the software release process, which can be
considered as a form of clear rules and procedures.
Therefore, a comprehensive list of CSFs grounded in a
DevOps practice is needed.

In summary, research on CSFs of collaboration and
research on collaboration in a DevOps context has
limitations. In the first place, the lists found are limited build
upon evolving literature of collaboration. Second, CSFs
should be more generic in order to be useful in different
contexts. Third, prior research has not resulted in a
comprehensive list of CSFs grounded in DevOps practice.
Therefore, a systematic literature review is needed first to
find a more comprehensive and general list of CSFs, which
can be made meaningful in the DevOps context.

III. RESEARCH METHODOLOGY
To obtain a comprehensive list of CSFs manageable and

meaningful in a DevOps context, we followed three phases.
The systematic literature review was the first phase in which
we obtained a more comprehensive list of generally
applicable CSFs. In the second phase a multiple case study
was conducted to verify recognition of the CSFs found and

8Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 20 / 141

to find corresponding real-life examples. The third phase
concentrated on the classification of CSFs to develop a
structured list of CSFs manageable and meaningful in a
DevOps context. Classification was not possible until this
phase because we need the real-life examples obtained in the
second phase to infer what the CSFs recognized really mean
in a DevOps context.

A. Systematic literature review
In order to pursue comprehensiveness, we conducted the

systematic literature review in two steps applying two
methods. In the first step, we conducted a literature review as
described by [26] followed by snowballing in the second
step. Access to digital library records was limited to the
subscription of our institution. In the first step, we chose to
search in the Web of Science digital library using two search
strings. The first search string contained ‘collaboration’ in
title and ‘success AND factor’ in all fields. As the second
search string we used ‘collaboration AND factor’ in title. We
started the search from 1992, the publication of [12]. The
first search provided 205 papers and the second provided 210
papers. We removed duplicates and undertook an initial
screening, which resulted in 58 papers found. Next, we
assessed the remaining papers to identify papers that could
be rejected based on the full text on the basis that they did
not include CSFs or barriers of collaboration or on the basis
of quality issues. For example, irrelevant papers or papers
that contain drivers that may trigger collaboration. We found
44 papers, which included 374 CSFs.

After that, we continued in the second step our search for
CSFs by applying backward snowballing and forward
snowballing on the 44 papers in which we found CSFs [27].
During snowballing, 4314 papers were found. We removed
duplicates and papers based on title, abstract and full text on
the basis that they did not include CSFs or barriers of
collaboration. This resulted in 21 papers found, which
contained 198 CSFs. As we found a lot of duplicate CSFs,
we did not expect to find additional CSFs by conducting
more iterations of snowballing. Therefore, we stopped after
one iteration. Thus, we found 572 CSFs so far.

In addition, we found 23 CSFs in the following six
papers of which we were aware: [9][13][15][19][22][25].
This resulted in 595 CSFs found in total.

Because we did not yet know which CSFs would be
recognized and what the CSFs found would mean in a
DevOps context, we were not able to classify them.
However, to be able to discuss the 595 CSFs found in the
consecutive case study we grouped them according to the 20
factors found by the often-cited papers of [12][17], the ten
additional factors found by [23] and the two additional
factors (CSF 4 and CSF 11) found by [14][22][28]. We
adopted the names of the CSFs from literature, and
condensed the key findings and used them as clarifications.
Thus, the results of the systematic literature review consist of
a list of 32 generally applicable CSFs of collaboration.

We published the list of 32 CSFs in [24]. An example
from this list is the CSF “Concrete attainable goals and
objectives” described by the following clarification “Setting
of clear goals (at the planning stage) [23], supplementary

purposes [14] and feasible [12], based on key community
issues, agreed upon [13][28][29]”.

 This list answers sub question SQ 1 and extended the
CSFs found previously by Mattessich, Murray-Close, and
Monsey [17]. However, prior research has limitations. For
example, brief contextual information, limitations on
definitions of CSFs and limitations on generalizability.
Furthermore, we did not know whether these CSFs will be
recognized in a DevOps context and whether there are more
applicable CSFs. Therefore, we conducted a multiple case
study.

B. Multiple case study
We consider a case study as a relevant method, because it

addresses our research questions on collaboration which
require to explain and describe this social phenomenon [30].
According to [23] collaboration can best be understood in
terms of the context in which people are working and their
interactions. Therefore, we decided to conduct a multiple
case study and based the methodology on five steps proposed
by [30]: (1) designing the case study, (2) preparing to collect
evidence, (3) collecting evidence, (4) analyzing evidence,
and (5) reporting results.

In the first step, we designed the case study to assure the
data to be collected relates to our research question [30]. To
validate our list of CSFs in a DevOps context we used an
inductive approach. We carry out cross-sectional semi-
structured interviews, which allowed us exploration of the
CSFs and improvisation [31].

In the second step, we prepared the collection of
evidence. We choose to collect data in organizations which
experienced DevOps for several years, because we needed
real-life examples to substantiate the CSFs found. Thus, we
contacted gatekeepers of organizations that appear to comply
to our requirement regarding DevOps experience and explain
our study. We found two governmental ISPs which wanted
to participate in this study, which met our criterion and
experienced DevOps for several years. Both organizations
studied were professional and large organizations which
exist for a long time. The gatekeepers had a central role with
a good overview of DevOps developments in the
organization for a number of years.

We asked the gatekeepers for permission to interview
employees who met our criteria of at least two years of
practical and broad experience with DevOps to be able to
mention and elaborate on examples.

Together with the gatekeepers we selected interviewees
who had a coordinating role or advisory role or developer
role. Each organization provided five interviewees
originating from different teams. We contacted the potential
interviewees, explained our study and verified whether they
were available and willing to participate.

We were able to select interviewees who had at least two
years of practical experience as an advisor, developer, scrum
master or manager with the application of aspects (in a broad
sense) of DevOps.

In order to assure reliability, we prepared an interview
protocol, which contained information on the research
project, procedures for data collection and analysis, and three

9Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 21 / 141

main interview questions. We asked: (1) whether and to what
extent the interviewees recognized the definition of
collaboration according to [15]; (2) whether they recognized
each CSF and if they knew any additional CSFs; (3) per CSF
for real-life examples and facts based on their own
experiences. The first question was intended to introduce the
concept of collaboration and to verify whether the
interviewee had the same interpretation of this concept in the
context of DevOps. We stored the protocol as well as the
results into a database. We started the interviews with a pilot
interview. According to the interview protocol, we sent the
interviewee the interview questions and the appendices.
Afterwards, we applied the interview questions during the
pilot interview. By applying the interview protocol and
interview questions in a real-life setting we learned that no
improvements to our interview protocol or interview
questions were necessary. Thus, we proceeded to the third
step.

In the third step, we collected the evidence by conducting
the other interviews. Each interview took place face-to-face.
The researcher conducting the interview also took notes
during the interviews, recorded each interview and
transcribed each interview afterwards. Subsequently, we sent
a transcription to the corresponding interviewee, which
enabled the interviewee to amend the transcription.

In the fourth step, we analyzed the content. Therefore, we
familiarized ourself with the content, divided the text up into
meaning units and condensed these units if appropriate and
formulated codes [32]. We coded our data using ATLAS.ti
by reading the transcripts and adding codes to meaning units,
such as feedback on the definition of collaboration,
recognized CSFs, mentioned additional CSFs and real-life
examples. In that way we were able to export tables of the
results. Next, we condensed the meaning units if appropriate
to support the classification of the results, which was
particularly appropriate in the case of the real-life examples
to make them more concise.

The real-life examples illustrate the recognition of
experts regarding all 32 CSFs found. For example, the
development of a unique product as an example of a goal, or
reviewing new code before merging as an example of a rule.
They also contain specific, concrete and ‘richer’ experience-
based information on what the CSFs really mean in a
DevOps context. This enabled us to refine the initial names
and clarifications of the CSFs to reflect the DevOps context.
Therefore, we replaced the more general concepts by
concepts and descriptions based on the supporting evidence.
Some parts of initial clarifications were neglected due to
irrelevance or lack of evidence.

In the fifth and last step, we put the recognized CSFs, the
corresponding refined clarifications and the condensed real-
life examples in one table.

C. Classification of the 32 CSFs recognized
In the third phase we developed categories of CSFs by

classification of the 32 CSFs recognized. Until this phase
classification was not possible because we need the real-life
examples obtained in the previous phase to infer what the
CSFs recognized really mean in a DevOps context.

 We based the classification on the metaplan-method
[33]. The identification and classification of similar CSFs
make the list of CSFs more manageable and provides the
basis for making the CSFs measurable. As part of the
classification, we could infer clarifications meaningful in the
DevOps context.

During the metaplan session we stated and discussed the
rationale for sorting each card, determined the name of each
emerged CSF and derived the clarifications of the fourteen
new emerged CSFs from the grouped CSFs. For example,
we grouped CSF “Roles and responsibilities” with CSF
“Rules and procedures” into CSF “Procedures and
responsibilities” based on examples mentioned, such as
“Members determine their own way of work” and “The
whole team is responsible for everything they deliver”. In the
following three cases, we adopted clarifications from
literature: Knowledge Management, Communication and
Leadership. With the resulting fourteen CSFs, corresponding
clarifications and condensed real-life examples we were able
to answer the sub research questions in Section 4.

IV. RESULTS OF THE MULTIPLE CASE STUDY
In Section 3, we have found that all generally applicable

CSFs found in literature were recognized, which answers sub
question 2. Furthermore, we did not find additional CSFs.
We also showed how recognized generally applicable CSFs
of collaboration could be made meaningful in the context of
DevOps, which answers sub question 3. Thus, we are now
able to prove that we obtained the research goal by showing
what previously validated generally applicable CSFs of
collaboration really mean in a DevOps context. Therefore,
we present the fourteen CSFs of collaboration in a DevOps
context in Table I together with clarifications which makes
the CSFs meaningful for the DevOps profession.

TABLE I. CSFS OF COLLABORATION IN A DEVOPS CONTEXT

CSF Clarification to make the CSF meaningful in a
DevOps context

Goals and
vision

Concrete, attainable and unique goals derived from a
shared vision, which are mutual understood and

agreed by the whole team and supported by
stakeholders.

Procedures and
responsibilities

Clear procedures, rules and responsibilities to
structure collaboration.

Performance
measurement

The performance of collaboration is measured by
quantitative and qualitative measurement methods.

History The length of time for which team members have
known each other.

Workload Feasible balance between available resources, time
and required output.

Knowledge
Management

Distinct but interdependent processes of knowledge
creation, knowledge storage and retrieval, knowledge

transfer, and knowledge application [34].
Communication A synthesis of a selection of information, the

utterance of this information and a selective
understanding or misunderstanding of this utterance

and its information [35].
Leadership The ability to build and maintain a group that

performs well relative to its competition [36].
Tools Technological support for collaboration and

communication.

10Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 22 / 141

CSF Clarification to make the CSF meaningful in a
DevOps context

Task
characteristics

Recognizing relevant task characteristics.

Perceived
benefits of

collaboration

Collaboration is seen as valuable for the individual,
team and the organization.

Team
recognition

The team is perceived as a leader, at least related to
the goals and activities it intends to accomplish.

Resilience The ability to deal with changing conditions.
Team

composition
Make-up of team membership.

Based on the results, we are able to discuss the
implications in Section 5.

V. DISCUSSION
Our findings have several theoretical implications. First,

our findings confirm that generally applicable CSFs of
collaboration found in literature can be recognized in a
DevOps context. These implications extent theory on CSFs
of collaboration at large. It supports the statement of [17]
that the CSFs they found are applicable to many different
collaborative situations. It is also in line with the findings of
[9][25] who studied the DevOps phenomenon. Second, we
developed and validated an approach that generally
applicable CSFs can be made meaningful in a DevOps
context. This approach enables the operationalization of the
CSFs in a DevOps context and may be useful to other
contexts as well. Third, the real-life examples illustrate how
the CSFs are anchored in the way team members work
together. This shows that collaboration is indeed an
important aspect of the adoption of DevOps. Researchers
could build on these insights for future research into the
DevOps phenomenon. Fourth, the findings discover
additional evidence to confirm the importance of each factor
previously found by [17].

The findings of our study also have implications for
practitioners. First, the CSFs could aid practitioners to better
understand the concept of collaboration in a DevOps context
in order to have a necessarily impact on the success of
collaboration. Second, the implications from this study of
CSFs challenge the general view on DevOps as just an
interaction between development and operations personnel
[3][5][7]. As shown in the results, organizations should take
into account many CSFs of collaboration. The number of
CSFs requires adequate attention to let the collaboration be
successful. In line with the suggestion of [17], organizations
can use the list of CSFs to assess the readiness of team
members to collaborate in a DevOps context or to find
aspects to improve the collaboration within an existing team.

Even though our initial list of CSFs based on literature
and used in our multiple case study would appear to be a
strong basis, we have to mention some remarks. The CSFs
found were based on earlier research conducted in different
contexts and studied from different perspectives. For
example, Marek, Brock, and Savla [29] studied individual
coalitions and initiatives across state, regional and
nationwide. Reference [13] studied collaboration from social
and technical perspectives. Other examples are Yoon, Lee,
Yoon, and Toulan [14], Mattessich, Murray-Close, and

Monsey [17], Mohr and Spekman [18], Tsanos, Zografos,
and Harrison [22], and Patel, Pettitt, and Wilson [23], who
concentrate on interorganizational collaboration, which could
be in the form of collaboration between team members. In
short, the CSFs used in our multiple case study differ in
terms of operationalization, abstraction level, validation
context and research area. This could have influenced the
results of this study.

Although it took some time before we could publish the
results of our study, we could not find publications which
present a similar list of CSFs of collaboration in a DevOps
context in the meantime.

Our findings appear to be more widely useable due to the
fact that the findings are based on two case organizations.
However, the list of CSFs should be adapted to the local
context.

According to the chosen definition, a CSF must have an
impact on the success of collaboration. A study into
measuring the impact may be an interesting topic. Careful
and explicit research is needed to verify that the resulting
model of CSFs is actually adequate. Research could validate
whether a certain CSF aided in the improvement of
collaboration.

When we discussed CSFs during the interviews,
interviewees made some remarks on relations between CSFs
confirmed. Although we did not research this aspect, we
think it may contain interesting topics for future research as
they may aid in understanding collaboration in a DevOps
context.

Classification of CSFs into CSFs of collaboration in a
DevOps context influencing the likelihood of collaboration
and CSFs influencing the performance of collaboration may
be a topic for further research. Knowing which CSFs play a
role during the beginning of a collaboration could ease
decision-making by management [37].

Although we conducted two case studies, we recommend
more case studies conducted in a DevOps context, which
will enrich the list further. Future research could focus on the
validation of certain CSFs with more concrete real-life
examples.

Finally, future research could apply the developed
approach to make generally applicable CSFs meaningful in
specific context.

VI. CONCLUSIONS
Research into the effectiveness of integrated corporate

functions is relevant, such as research on DevOps.
Collaboration is an important aspect of DevOps, which
should contribute to the effectiveness of DevOps. Therefore,
reported problems with collaboration should be solved. CSFs
of collaboration may contribute to solve problems with
collaboration. This study found generally applicable CSFs of
collaboration and provides insight into the way two case
organizations addressed these CSFs in a DevOps context.
We used this insight and made the generally applicable CSFs
meaningful in a DevOps context.

This knowledge adds to existing theory on collaboration
by providing a comprehensive list of CSFs meaningful in a
DevOps context. Furthermore, our study validated an

11Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 23 / 141

approach by which generally applicable CSFs of
collaboration could be made meaningful in a certain context.
The CSFs confirmed could aid practitioners to better
understand the concept of collaboration in a DevOps context
in order to have a necessarily impact on the success of
collaboration. Organizations could use the CSFs to assess the
readiness of team members to collaborate or to find aspects
to improve the collaboration within existing DevOps teams.

All data emerged during the research process are
available on request.

REFERENCES
[1] I. M. Sebastian et al., "How Big Old Companies Navigate

Digital Transformation," MIS Quarterly Executive, vol. 16,
pp. 197–213, 2017.

[2] R. Colomo-Palacios, E. Fernandes, P. Soto-Acosta, and X.
Larrucea, "A case analysis of enabling continuous software
deployment through knowledge management," International
Journal of Information Management, vol. 40, pp. 186–189,
2018.

[3] F. M. A. Erich, C. Amrit, and M. Daneva, "A qualitative
study of DevOps usage in practice," Journal of Software:
Evolution and Process, vol. 29, 2017.

[4] G. G. Claps, R. B. Svensson, and A. Aurum, "On the journey
to continuous deployment: Technical and social challenges
along the way," Information and Software Technology, vol.
57, pp. 21–31, 2015.

[5] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano,
"DevOps," IEEE Software, vol. 33, pp. 94–100, 2016.

[6] M. Hüttermann, DevOps for developers. Apress, 2012.
[7] A. Wiedemann, "IT Governance Mechanisms for DevOps

Teams - How Incumbent Companies Achieve Competitive
Advantages" The 51st Hawaii International Conference on
System Sciences, 2018, pp. 4931-4940, ISBN: 978-0-
9981331-1-9

[8] J. Iden, B. Tessem, and T. Paivarinta, "IS development/IT
operations alignment in system development projects: a multi-
method research," International Journal of Business
Information Systems, vol. 11, no. 3, pp. 343–359, 2012.

[9] L. E. Lwakatare, P. Kuvaja, and M. Oivo "Dimensions of
devops" The 16th International Conference on Agile
Processes in Software Engineering and Extreme Programming
Springer International Publishing, May 2015, pp. 25-29

[10] J. Wettinger, U. Breitenbücher, M. Falkenthal, and F.
Leymann, "Collaborative gathering and continuous delivery
of DevOps solutions through repositories," Computer Science
- Research and Development, vol. 32, pp. 281–290, 2017.

[11] P. A. Nielsen, T. J. Winkler, and J. Norbjerg, "Closing the IT
Development-Operations gap: The DevOps knowledge
sharing framework" The 16th International Conference on
Perspectives in Business Informatics Research (CEUR), 2017

[12] P. W. Mattessich and B. R. Monsey, Collaboration--what
makes it work: a review of research literature on factors
influencing successful collaboration. St. Paul, Minn: Amherst
H. Wilder Foundation, 1992.

[13] G. L. Kolfschoten, G. J. de Vreede, R. O. Briggs, and H. G.
Sol "Collaboration ‘Engineerability’," Group Decision and
Negotiation, vol. 19, pp. 301–321, 2010.

[14] C. Yoon, K. Lee, B. Yoon, and O. Toulan, "Typology and
Success Factors of Collaboration for Sustainable Growth in
the IT Service Industry," Sustainability, vol. 9, 2017.

[15] W. L. Bedwell et al., "Collaboration at work: An integrative
multilevel conceptualization," Human Resource Management
Review, vol. 22, pp. 128–145, 2012.

[16] J. Ram, D. Corkindale, and M. L. Wu, "Implementation
critical success factors (CSFs) for ERP: Do they contribute to
implementation success and post-implementation
performance?," International Journal of Production
Economics, vol. 144, pp. 157–174, 2013.

[17] P. W. Mattessich, M. Murray-Close, and B. R. Monsey,
Collaboration What Makes It Work. Saint Paul, MN:
Fieldstone Alliance, 2001.

[18] J. Mohr and R. Spekman, "Characteristics of partnership
success: Partnership attributes, communication behavior, and
conflict resolution techniques," Strategic Management
Journal, vol. 15, pp. 135–152, 1994.

[19] J. Kotlarsky and I. Oshri, "Social ties, knowledge sharing and
successful collaboration in globally distributed system
development projects," European Journal of Information
Systems, vol. 14, pp. 37–48, 2005.

[20] J. Söderlund, Theoretical Foundations of Project
Management. Oxford University Press, 2011.

[21] J. Iden and B. Bygstad, "The social interaction of developers
and IT operations staff in software development projects,"
International Journal of Project Management, vol. 36, pp.
485–497, 2018.

[22] C. S. Tsanos, K. G. Zografos, and A. Harrison, "Developing a
conceptual model for examining the supply chain
relationships between behavioural antecedents of
collaboration, integration and performance," The International
Journal of Logistics Management, vol. 25, pp. 418–462, 2014.

[23] H. Patel, M. Pettitt, and J. R. Wilson, "Factors of
collaborative working: A framework for a collaboration
model," Applied Ergonomics, vol. 43, pp. 1–26, 2012.

[24] M. van Belzen, D. de Kruijff, and J. Trienekens, "Success
Factors of Collaboration in the Context of DevOps, " The
12th International Conference Information Systems IADIS,
2019, pp. 26–34, ISBN: 978-989-8533-87-6

[25] R. de Feijter, S. Overbeek, T. van Vliet, E. Jagroep, and S.
Brinkkemper, "DevOps Competences and Maturity for
Software Producing Organizations," Enterprise, Business-
Process and Information Systems Modeling, vol. 318, pp.
244-259, 2018.

[26] B. Kitchenham et al., "Systematic literature reviews in
software engineering – A tertiary study," Information and
Software Technology, vol. 52, pp. 792–805, 2010.

[27] S. Jalali and C. Wohlin, "Systematic literature studies:
database searches vs. backward snowballing" The ACM-IEEE
international symposium on Empirical software engineering
and measurement (ESEM) ACM-IEEE, Sep. 2012, pp. 29-38,
ISBN: 978-1-4503-1056-7

[28] C. A. Olson, J. T. Balmer, and G. C. Mejicano, "Factors
Contributing to Successful Interorganizational Collaboration:
The Case of CS2day," Journal of Continuing Education in the
Health Professions, vol. 31, pp. 3–12, 2011.

[29] L. I. Marek, D. J. P. Brock, and J. Savla, "Evaluating
Collaboration for Effectiveness: Conceptualization and
Measurement," American Journal of Evaluation, vol. 36, pp.
67–85, 2015.

[30] R. K. Yin, Case study research and applications: design and
methods. Los Angeles, CA: SAGE, 2018.

[31] P. Runeson and M. Höst, "Guidelines for conducting and
reporting case study research in software engineering,"
Empirical Software Engineering, vol. 14, pp. 131-164, 2009.

[32] C. Erlingsson and P. Brysiewicz, "A hands-on guide to doing
content analysis," African Journal of Emergency Medicine,
vol. 7, pp. 93–99, 2017.

[33] E. Schnelle, The Metaplan-Method communication tools for
planning and learning groups. Quickborn, Metaplan, 1979.

[34] M. Alavi and D. E. Leidner, "Review: Knowledge
Management and Knowledge Management Systems:

12Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 24 / 141

Conceptual Foundations and Research Issues," MIS
Quarterly, vol. 25, no. 1, pp. 107-136, 2001.

[35] N. Luhmann, "What is Communication?," Communication
Theory, vol. 2, pp. 251–259, 1992.

[36] R. Hogan and R. B. Kaiser, "What we know about
Leadership," Review of General Psychology, vol. 9, pp. 169–
180, 2005.

[37] C. Bai and J. Sarkis, "A grey-based DEMATEL model for
evaluating business process management critical success
factors," International Journal of Production Economics, vol.
146, pp. 281–292, 2013.

13Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 25 / 141

Exploring the Creation and Added Value of

Manufacturing Control Systems for Software Factories

Herwig Mannaert

Normalized Systems Institute
University of Antwerp, Belgium

Email: herwig.mannaert@uantwerp.be

Koen De Cock and Jeroen Faes

Research and Development
NSX bv, Belgium

Email: koen.de.cock@nsx.normalizedsystems.org

Abstract—Software engineers have been attempting for many
decades to produce or assemble software in a more industrial way.
Such an approach is currently often associated with concepts like
Software Product Lines and Software Factories. The monitoring,
management, and control of such factories is mainly based on
a methodology called DevOps. Though current DevOps environ-
ments are quite advanced and highly automated, they are based
on many different technologies and tools. In this contribution, it
is argued that more integrated software manufacturing control
systems are needed, similar to control systems in traditional
manufacturing. This paper presents a scope, overall architecture
and prototype implementation of such an integrated software
manufacturing control system. Moreover, several detailed sce-
narios are elaborated that can leverage such integrated control
systems to optimize the operations, and improve both the quality
and output of modern software factories.

Index Terms—Software Factories; Software Product Lines; Dev-
Ops; Control Systems; Evolvability.

I. INTRODUCTION

The expression “Software is eating the world” was formu-
lated in 2011 by Marc Andreessen [1] to convey the trend
that many industries were being disrupted and transformed by
software. And indeed, more and more major businesses and
industries are being run on software systems and delivered
as online services. These software systems include Enterprise
Resource Planning (ERP) systems to design and manage the
business processes, Supervisory Control and Data Acquisition
(SCADA) systems to manage and control production processes
in real-time, and Manufacturing Execution Systems (MES) to
track and document the transformation of raw materials to
finished goods, enabling decision-makers to optimize condi-
tions and improve production output. As software systems
become more pervasive to manage and control the end-to-end
production processes in factories, it seems logical to have or
create such control systems for the software systems them-
selves, i.e., systems to manage and control the building and
assembly of software systems in so-called software factories.
In this contribution, we explore the creation of such systems
to manage and control software manufacturing and assembly.

The remainder of this paper is structured as follows. In
Section II, we briefly discuss software factories, the DevOps
methodology, and situate our approach. In Section III, we

describe the scope, overall architecture, and the implemen-
tation characteristics of the proposed manufacturing control
system for software factories. We present various use cases and
types of added value for such an integrated control system in
Section IV. Finally, we present some conclusions in Section V.

II. SOFTWARE FACTORIES AND DEVOPS

A. On Software Factories and Reusability

The idea to produce and/or assemble software in a more in-
dustrial way, similar to automated assembly lines in manufac-
turing, has been pursued for many decades. Such an approach
is currently often associated with concepts like Software
Product Lines (SPLs) and Software Factories, but can easily
be traced back as far as 1968 to the paper on mass produced
software components from Doug McIlroy [2]. The concept
of Software Product Lines has been extensively described by
the Carnegie Mellon Software Engineering Institute (SEI) [3],
and refers in general to software engineering methods, tools
and techniques for creating a collection of similar software
systems from a shared set of software assets using a common
means of production. The characteristic that distinguishes
software product lines from previous efforts is predictive
versus opportunistic software reuse, as it stresses that software
artifacts should only be created when reuse is predicted in
one or more products in a well-defined product line [4]. The
term Software Factory emphasizes the techniques and benefits
of traditional manufacturing, and is for instance defined by
Greenfield et al. as a software product line that configures
extensive tools, processes, and content using a template based
on a schema to automate the development and maintenance of
variants of an archetypical product by adapting, assembling,
and configuring framework-based components [5].

The reuse of software artifacts seems crucial in contempo-
rary efforts to realize the benefits of traditional manufacturing
through software factories. Nevertheless, the systematic reuse
of software artifacts is not a trivial task. Saeed recently
argued that software re-usability is not just facing legal issues,
but methodological issues as well. Even when only reusing
software to save time, and leverage off the specialization
of other authors, the end-user must also have the technical

14Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 26 / 141

expertise to search, adapt and merge these reusable assets into
the larger software infrastructure [6]. We have argued in our
previous work that software reuse is even more challenging,
and impeded by some fundamental issues related to software
evolvability [7] [8]. The sustained technological evolution
leads to a continuous sequence of new versions and variants
of the software artifacts that need to be reused. These new
artifact versions often require changes in their usage that
ripple through the entire software structure, causing an impact
that is dependent on the size of the system, and limiting the
evolvability of software systems [9] [7].

B. From DevOps to Integrated Control Systems

The aim of this contribution is to explore the creation of
systems to manage and control the building and assembly of
software systems in software factories, similar to SCADA or
MES systems in traditional manufacturing. The main approach
today in the software development and IT industry to control
the building and assembly of software is a methodology
called DevOps. Used as a set of practices and tools, DevOps
integrates and automates the work of software development
(Dev) and IT operations (Ops) as a means for improving
and shortening the systems development life cycle [10]. It
also supports consistency, reliability, and efficiency within
the organization, and is usually enabled by a shared code
repository or version control. As DevOps researcher Ravi
Teja Yarlagadda hypothesizes, Through DevOps, there is an
assumption that all functions can be carried out, controlled,
and managed in a central place using a simple code [11].

Figure 1 presents a traditional overview diagram of a typi-
cal DevOps infrastructure environment. While the continuous
integration of of the software development and IT operations
is represented by the infinity symbol, the representation also
contains a typical set of tools and technologies being used
in such an infrastructure. We distinguish for example tools
for tracking features and user stories (Jira), source control
management (Git and Bitbucket), software quality control
(SonarQube), automation of build pipelines (Jenkins), auto-
mated testing (Cucumber, JUnit), deployment infrastructure
(Kubernetes), analytics visualization (Grafana), logging (Gray-
log), automated deployment (Docker, Ansible), and connecting
cloud providers (AWS, Digital Ocean). While the tools in such
a DevOps or Continuous Integration Continuous Deployment
(CICD) infrastructure are in general numerous and versatile,
there is a clear need for integrated control systems, similar
to SCADA or MES systems, encompassing these processes
and tools. However, software factories differ significantly from
traditional industrial factories, as software is less tangible and
the desired control systems need to interface with — often
complex — software tools instead of physical equipment.

C. Related Work and Methodology

While academic research is available on various aspects
of DevOps, like maturity assessment [12], and management
challenges and practices [13], the development of integrated

control systems does not seem to be one of them. DevOps
platforms are considered to be based on a mix of open
source and proprietary software, glued together and built into
the platform by a platform team. At the same time, trade
publications describe the necessity to breakdown the DevOps
phases and tools to increase security and reduce technical
debt [14], and acknowledge the need for solutions to scale
up DevOps, as nearly a third of DevOps teams’ time is spent
on manual approaches that are not scalable [15].

The methodology of this paper is based on Design Science
Research [16], where we design the integrated control system
for software factories as an artifact, use a case study to evaluate
it in depth in a business environment, and refine the artifact
gradually as part of the design search process.

III. A SOFTWARE MANUFACTURING CONTROL SYSTEM

In this section, we elaborate the purpose, scope, architecture,
and implementation features of the software manufacturing
control system, i.e., the artifact designed in this case study.

A. Purpose and Scope

To design and evaluate the integrated control system artifact,
we use the case of the NSX bv software factory. It encompasses
both the metaprogramming environment and tools to generate
applications based on Normalized Systems Theory (NST) [7]
[8], and actual Normalized Systems (NS) applications, i.e.,
multi-tier web information systems generated in that envi-
ronment. The various DevOps tools and technologies of the
factory correspond to a large extent to those in Figure 1.
Though a rather small company, the NSX DevOps environ-
ment supports the development and operations of a wide range
of heterogeneous and interlinked software artifacts.

• Run-time libraries providing basic software utilities to
various applications and tools.

• Expansion resources consisting of bundles of Normalized
Systems code generation modules [8].

• Web Information Systems, software applications based on
the Java Enterprise Edition (JEE) standard.

• Domain software components, JEE components that are
shared across multiple JEE applications.

• Integrated Development Tool, called µRadiant, to enable
the model-driven development of NS applications.

• Small tools and plugins providing additional features in
tools like the µRadiant or IntelliJ.

The various build pipelines, defined in the corresponding
software repositories, typically contain the following steps.

• Expanding applications or components based on the NST
metaprogramming environment.

• Building usable libraries, archives, or executables for
components, applications, and tools.

• Unit testing of various software coding artifacts within
the software repositories.

• Reporting on the repositories, such as test coverage or
software quality metrics.

15Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 27 / 141

Figure 1. A traditional representation of a typical DevOps infrastructure.

• Deploying live instances of applications or tools.
• Integration testing invoking live deployments.

Consistent with the overall goal of software factories and
product lines, many applications and tools in this DevOps
environment are expanded and built by reusing and assembling
various other software artifacts that are built in other reposito-
ries and pipelines. In order to have an idea of, for instance
test coverage and code quality, in a certain version of a
software application, we need an overview of these parameters
across the versions of all the libraries, expansion resources and
components that are being used in that application. Moreover,
we need to be able to track the various deployment parameters
of all the instances of that version of that application.

This type of functionality, i.e., to manage and control end-
to-end the building and assembly of software systems in
software factories, is indeed similar to MES systems, i.e.,
to track and document the transformation of raw materials
to finished goods, and SCADA systems, i.e., to manage and
control production processes in real-time, in manufacturing.
And though almost all the required information is avail-
able somewhere in one of the DevOps tools, the integrated
overviews and aggregations are not easily accessible.

B. Overall Architecture

The integrated software manufacturing system artifact or
prototype for the NSX software factory is implemented itself
as a Normalized Systems (NS) application, allowing us to take
advantage of the NST metaprogramming environment. More-
over, as NST was proposed to provide a theoretic foundation
to build information systems that provide higher levels of
evolvability [9] [7], this should enable us to cope better with
the rapidly changing DevOps tools and technologies. NS appli-
cations provide the main functionality of information systems
through the instantiation of five detailed design patterns or
so-called element structures [17] [7]:

• Data elements to represent a data or domain entities.
• Action elements to implement computing actions or tasks.

• Workflow elements to orchestrate flows or state machines.
• Connector elements to provide user or service interfaces.
• Trigger elements to to trigger or activate tasks or flows.

At the core of every NS information system is its data model
consisting of the various domain entities. A central part of the
data model of our software manufacturing control system is
represented in Figure 2. As in every software factory, software
artifacts are located in versioned Repositories. For every repos-
itory, automated Pipelines can be defined with different steps
or PipelineTargets, making use of various BuildTechnologies.
These pipelines produce various types of versioned Resources,
like libraries, archives, and executables. We distinguish Ap-
plicationRepositories corresponding to JEE Applications that
belong to a certain Domain, and ToolRepositories for various
types of LeverTools like plugins, command line tools, or the
NS development environment.

The action or task elements serve to import, collect, and or
compute various types of data for the software factory control
system. Indeed, the manual entering of data in such a system
would not only be extremely time consuming, it would also
lead to consistency problems. More specifically, types of data
that has to be collected or computed, include:

• Versions of applications and lever tools with the corre-
sponding versions of the dependencies or building blocks.

• Aggregated information measures on source repositories,
like the number of model entities, or the number and size
of source code artifacts.

• Overviews of automated tasks that have been performed
in build pipelines with their result status.

• Various quality measures that have been computed for the
various applications and tools.

• Aggregated values for the use of different technologies,
libraries and expander bundles.

C. Implementation Features

A system or artifact for the monitoring and control of
software manufacturing processes should be able to track the

16Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 28 / 141

Figure 2. A representation of the data model of the integrated software manufacturng control system.

various parameters and data sets over time. This means that we
need to track data over time for most data entities, like sizes
of models and custom code, success rates of build processes,
or software quality parameters. Therefore, so-called history or
log tables are a crucial part of the data model. In the NS
metaprogramming environment, expanders or code generators
exist to automatically add —and even populate— an history
element for every data element. These history tables can then
be represented in graphs and analyzed over time, looking for
possible improvements in productivity and/or output quality.

A large part of the relevant data for the software manufac-
turing control system is already present or computed in one
of the many tools or technologies represented in Figure 1.
This implies that the automated collection and or computation
of software factory data in automated tasks integrates with
these tools and technologies, such as Bitbucket repositories,
Maven dependency declarations, Jenkins build engines, and
SonarQube quality analyzers. In accordance with NST, there
is a decoupling between the functionality of the data collection
in the the task element, e.g., build engine results or quality
measurements, and the actual implementation (class) of the
task element, e.g., getting data from Jenkins or SonarQube.
In this way, the software manufacturing control system is able
to support additional versions or variants of these tools and
technologies with limited impact.

IV. TOWARD A CONTROL LAYER FOR SOFTWARE
FACTORY IMPROVEMENTS

As stated in Section I, by tracking and documenting the
transformation of raw materials to finished goods, MES enable

decision-makers to optimize conditions and improve produc-
tion output. In the same way, a software manufacturing control
system should provide an analysis platform and control layer
to improve and optimize various aspects and characteristics of
the software factory operations and output. In this section, we
discuss some use cases and their added value, as they are being
developed as part of the iterative case-based design process.

A. Monitoring Evolutions over Time

A first avenue to optimize and improve the output and
quality of the software factory, is to monitor the evolution
of certain parameters over time. As explained in [8], NS
information systems distinguish between software skeletons,
instantiations of element structures generated by modular code
generators or so-called expanders, and custom code being
additional software artifacts or classes, i.e., extensions, or
code snippets added to the generated artifacts or classes, i.e.,
insertions. From a quality and evolvability point of view, it
is important to monitor the amount, size, and location of
these extensions and insertions. As an example, some sample
graphs are shown in Figure 3. They represent, for a specific
information system, the evolution of the total amount of
insertion snippets, and the total size of those insertion snippets.
As done for the second graph, these values can be made
relative with respect to the evolving size of the model, i.e.,
the number of element structures.

This type of monitoring, based on automated data collection
from the Bitbucket repositories, has been performed for quite
some time in the NSX software factory. It has provided
valuable insights into the actual project phases when such
custom code typically grew fast, and the software layers

17Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 29 / 141

Figure 3. Sample graphs monitoring the amount of custom insertions and the normalized total size of insertions.

where such custom snippets where needed the most. This
last parameter provided an indication in which layer the
development of the code generators should be prioritized to
provide more out of the box functionality. Of course, other
types of software systems and factories, without the typical
NS distinction between element structures and custom code,
should monitor other structural measures to improve software
structure and productivity.

While this has been integrated in the software manufacturing
control system, the monitoring over time is not limited to the
source code repositories. History tables are also being created
for success rates of build pipelines, quality measures of the
custom source code, test overage percentages and numbers
of failed tests, numbers of live system deployments, etc. Of
course, this implies the integration with various DevOps tools
and technologies.

B. Aggregating over Manufacturing Chains

It is often considered to be a crucial characteristic of
software factories and software product lines that software
artifacts should only be created when their reuse is predicted
in one or more products [4]. And for instance in the NSX
software factory, a typical JEE application uses various other
software artifacts produced by the factory, such as:

• Several runtime libraries providing various utilities like
file handling or protocol adapters.

• Several reusable components supporting more generic
functionality like workflows or notifications, and/or pro-

viding more domain-specific building blocks such as
project planning or human resource benefits.

• Several expander bundles that are used during the expan-
sion of the application, such as the expanders to generate
the instances of the NST element structures, or extensions
such as the Relational State Transfer (REST) interfaces.

These artifacts are in general stored in other repositories and
built in other CICD pipelines. And while the dependency
on the code generation modules may be specific to NS
applications, the dependencies on various runtime libraries and
domain components is valid for nearly every software factory.

While parameters related to, for instance test coverage and
code quality, can be monitored for every individual software
artifact that is created in the factory, it seems quite relevant to
offer instant overviews and aggregations of these parameters
for all artifacts that are part of a specific aggregated artifact,
such as a JEE application. While obviously being relevant
to the customers using or licensing such an application, this
also enables the optimization and improvement of the overall
quality of the factory itself. Indeed, it allows to quickly
identify the weak links in such aggregated artifacts, and to
prioritize these software artifacts for improvements.

C. Tracking Technology Use Across Projects

Software applications are in general dependent on multiple
external artifacts and technologies, e.g., libraries and plugins,
that are build outside the software factory by commercial
software vendors or in open source projects. While these

18Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 30 / 141

dependencies are available in configuration files, it is important
to surface overviews and aggregations of these dependencies.
Such overviews and their added value include:

• immediate overviews of the impacted applications when
a vulnerability is detected in a library or technology.

• straightforward assessments of the impact when retiring
a certain (version of a) technology.

• regular evaluations of the usage and adoption rate of
libraries or expander bundles from the factory itself.

Obviously, such integrated information would also support
decisions concerning internal resource allocation, both for
supporting both internal and external technologies.

V. DISCUSSION AND CONCLUSION

For many years, software engineers have strived to produce
and/or assemble software in a more industrial way. In today’s
software factories, building and assembling software systems
is mainly controlled using a methodology called DevOps.
These DevOps environments are quite advanced and highly
automated, but are in general based on many different tech-
nologies and tools. As previously experienced in the automa-
tion of business processes and traditional manufacturing, this
often leads to a need for more integrated systems. In this
contribution, we have explored the creation of an integrated
software manufacturing control system, similar to SCADA or
MES systems in traditional manufacturing.

As part of a case-based design science approach, we have
presented a functional scope and overall architecture for such
a software manufacturing control system, and have described
the design and prototype implementation of the artifact for
the software factory case. This software manufacturing control
system prototype does not provide fundamentally new infor-
mation, but collects, aggregates and integrates information
over time, across various repositories and build pipelines,
and from different DevOps tools and technologies. Therefore,
this control system does not provide new possibilities per
se to optimize processes and improve output in software
factories, as this can be done today by analyzing in detail
the data produced by the various tools. However, aggregating
and providing this information in nearly real-time, offers the
opportunity to fundamentally reduce the lag times for such
optimizations and improvements. Though the design as a
search process is still ongoing, we have presented some use
cases where the added value was validated in the case study.

Exploring the creation of such a software manufacturing
control system is believed to make some contributions. First,
we have identified and validated a need for integrated control
in today’s state of the art automated DevOps environments.
Second, we have designed an architecture that enables the
rather straightforward creation of such integrated software
manufacturing control systems in most contemporary software
factories. Third, we have described and validated a number of
detailed scenarios that can leverage such an integrated control
system to improve the output of such software factories.

Next to these contributions, it is clear that this explorative
paper is also subject to a number of limitations. First, the
case-based approach means that the integrated system has been
created for a single software factory, though this factory does
include for instance code generators. Second, the major part
of the added value through optimizations and improvements,
enabled by the drastic reduction of the lag times in the control
processes, has yet to be confirmed empirically. However, its
design has been validated by actors in our case study, and we
are planning the empirical validation in the near future.

REFERENCES

[1] A. Marc, “Why Software Is Eating the World,” URL:
https://a16z.com/2011/08/20/why-software-is-eating-the-world/, 2011,
[accessed: 2023-07-27].

[2] M. D. McIlroy, “Mass produced software components,” in Proceedings
of NATO Software Engineering Conference, Garmisch, Germany, Octo-
ber 1968, pp. 138–155.

[3] S. E. Institute, “Software Product Lines Collection,” URL:
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819,
2023, [accessed: 2023-07-27].

[4] C. Krueger, “Introduction to the emerging practice software product line
development,” Methods and Tools, vol. 14, no. 3, 2006, pp. 3–15.

[5] J. Greenfield, K. Short, and S. Cook, Steve; Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools.
Wiley, 2004.

[6] T. Saeed, “Current issues in software re-usability: A critical review of
the methodological & legal issues,” Journal of Software Engineering and
Applications, vol. 13, no. 9, 2020, pp. 206–217.

[7] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[8] H. Mannaert, K. De Cock, P. Uhnak, and J. Verelst, “On the realization
of meta-circular code generation and two-sided collaborative metapro-
gramming,” International Journal on Advances in Software, no. 13, 2020,
pp. 149–159.

[9] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[10] M. Courtemanche, E. Mell, and A. S. Gills,
“What Is DevOps? The Ultimate Guide,” URL:
https://www.techtarget.com/searchitoperations/definition/DevOps,
2023, [accessed: 2023-07-27].

[11] R. T. Yarlagadda, “Devops and its practices,” International Journal of
Creative Research Thoughts (IJCRT), vol. 9, no. 3, 2021, pp. 111–119.

[12] A. Kumar, M. Nadeem, and S. M., “Assessing the maturity of devops
practices in software industry: An empirical study of helena2 dataset,”
in Proceedings of the 26th International Conference on Evaluation and
Assessment in Software Engineering (EASE 22), 2022, pp. 428—-432.

[13] S. M. Faaiz, S. U. R. Khan, S. Hussain, W. Wang, and N. Ibrahim,
“A study on management challenges and practices in devops,” in
Proceedings of the 27th International Conference on Evaluation and
Assessment in Software Engineering (EASE 23), 2023, pp. 430—-437.

[14] M. B. et al., “How to Select DevSecOps Tools for Secure Software
Delivery,” URL: https://www.gartner.com/en/documents/4131199, 2023,
[accessed: 2023-10-10].

[15] Dynatrace, “Observability and security convergence: En-
abling faster, more secure innovation in the cloud,” URL:
https://assets.dynatrace.com/en/docs/report/bae1393-rp-2023-global-
cio-report-observability-security-convergence.pdf, 2023, [accessed:
2023-10-10].

[16] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, 2004, pp.
75–105.

[17] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability,” Software: Practice
and Experience, vol. 42, no. 1, 2012, pp. 89–116.

19Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 31 / 141

Three-step Decision Framework for Planning Software Releases

José del Sagrado
University of Almerı́a

Almerı́a, Spain
email: jsagrado@ual.es

Isabel M. del Águila
University of Almerı́a

Almerı́a, Spain
email: imaguila@ual.es

Alfonso Bosch
University of Almerı́a

Almerı́a, Spain
email: abosch@ual.es

Abstract—We propose a framework that connects the pre-
viously solved problems, which are involved in the setting of
the next release goal. A complete workflow has been defined in
order to manage the need to properly set the release goal when
different, conflicting stakeholders define numerous requirements.
Since they cannot all be satisfied by the available resources it
necessary to reach an agreement that can be supported by our
framework.

Keywords—stakeholder identification; next release problem; re-
quirements negotiation.

I. INTRODUCTION

Today, systems are no longer isolated local applications;
they are large and complex systems with an increasing number
of connections to other similar applications. These large-scale
software systems are developed worldwide, involving teams
of software developers, designers, testers, project managers,
and other stakeholders working together to deliver a software
solution that meets specific requirements [1].

In this context, requirement engineering is not only about
capturing and managing requirements but also about fostering
collaboration, responding to evolving needs, and adapting to
changing project circumstances in order to deliver a success-
ful software solution [2]. It focuses on understanding and
defining the needs and expectations of the software system
being developed, taking into account multiple stakeholders
and a wide range of functionality, expressed and modelled as
requirements that may or may not be included in the product
being developed.

In addition, due to the limited resources available for
the next release of the current project, not all stakeholders’
requests can be included in the next product to be delivered,
and some will be left for later releases. At this point, software
development teams need to manage and review data from mul-
tiple sources and make decisions based on the risk associated
with each requirement, the cost of delivering it, the benefits
the candidate will provide, or some other issues. Timelines,
dependencies, resource constraints, and other factors affect this
management task [3].

All these factors are estimated or assessed, usually subjec-
tively, by a large group of stakeholders who affect or will
be affected by the software under construction. We consider
these stakeholders as a source of data to be managed in order
to obtain the best set of requirements according to the various
criteria defined for the project. However, the best solution is
not always the one chosen to maximize objectives, and some

kind of agreement, sometimes negotiation, is required [3].
Therefore, three questions should be considered:

• Who assesses the attributes of the requirements?
• What is the best set of requirements?
• Do we have an agreement to build the release?
In this paper, we propose a framework to answer these three

questions (see Figure 1). Each of the processes involved in
the workflow shown can be treated as a separate problem. The
identification of stakeholders, the selection of requirement sets
to be included in the next software release, and the process
of reaching agreement on the release goal. The three stages
are problems that have been previously studied and for which
separate solutions have been proposed. Our contribution is
the framework that connects all three earlier solved problems,
defining a complete workflow to manage the need to properly
define the release goal when different, conflicting stakeholders
define numerous requirements that cannot all be covered by
the available resources.

The remainder of the paper is structured as follows. Sec-
tion II presents the architecture of the proposal, including
the description of the three stages: stakeholder identification,
elicitation of candidate requirement sets, and the next release.
In Section III, these stages are applied to a case study. A
discussion of the limitations and scope of the framework,
including what we add to previous proposals, is included in
Section IV. Finally, Section V includes the conclusion and
future work,

II. SOFTWARE RELEASE PLANNING FRAMEWORK

To address the three issues raised, the framework is divided
into three phases or stages (see Figure 1). The first phase
(stakeholder identification) deals with the identification of the
relevant stakeholders in the software project who will be taken
into account when proposing the requirements that will be
used to define the next release goal. In the second phase
(elicitation of candidate requirement sets), the requirements
proposed by the relevant stakeholders are collected and, based
on their assessments, an optimization problem is defined, from
which different alternatives (i.e., candidate requirement sets)
for the next release are obtained. Finally, in the third phase
(next release agreement), the aim is to reach agreement on the
set of requirements that will make up the next version of the
software, selecting one of the candidate sets of requirements
found in the previous stage on the basis of productivity
indicators and the degree to which stakeholder suggestions
have been taken into account,

20Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 32 / 141

Figure. 1. Workflow defined for the framework.

A. Stakeholders Identification

Stakeholder identification ensures that all individuals,
groups, or organisations with a valid interest in the project
are considered, as they are the main source of requirements.
This is even more evident in large projects where there is a
huge community of stakeholders to consider. Their demands
are likely to be diverse and conflicting.

An alternative is to reduce the number of stakeholders to
manage, but maintain stakeholder coverage [4]. Identifying key
stakeholders would reduce the effort required to define the
release goal by focusing on the most influential stakeholder
representative.

Let Stk = {sk1, sk2, . . . , skq} be the set of stakeholders to
consider. They represent candidate stakeholders who may be
involved in the definition of new features for the next version
of a given product.

Each stakeholder is characterised by its salience based on
power, legitimacy and urgency as salience components [5].
These values are revealed, usually through interviews, by
people involved in the project, who may or may not be
stakeholders. Each interviewee could assign a value to the
three salience components, but this is not necessary for all
of them, and the sets of interviewees for the components
can be disjoint. There are h, k and q interviewees about
power, legitimacy and urgency respectively, where wpij , wlij
and wuij are the values that the interviewee i gives to the
stakeholder j in Stk. The power, legitimacy and urgency of
a stakeholder j could be defined by aggregating the values
obtained from the interviewees.

pj =
∑h

i=1 wpij ,

lj =
∑k

i=1 wlij ,
uj =

∑q
i=1 wuij .

(1)

We can define different strategies to select the most in-
fluential stakeholders, for example, by clustering them [4]
or giving them a weight according to the number of groups

identified [6]. As a result, we have a set of m stakeholders
who are allowed to propose the requirements that will define
the next release goal.

So we can answer the first question in the affirmative,
because this stage, stakeholders identification, certainly has
the ability to define who assesses the attributes of the require-
ments.

B. Elicitation of Candidate Requirement Sets
Let R = {r1, r2, . . . , rn} be the set of requirements to

be considered. These represent new functionalities of the
current system suggested by a set of m stakeholders, Stk =
{sk1, sk2, . . . , skm}. R represents the candidates for inclusion
in the next software release. The stakeholders are responsible
for setting the preference value of the requirements by defining
a value matrix, where each vij is the subjective value that
the stakeholder ski ∈ Stk assigns to the requirement rj . The
stakeholders to be considered are those that have been selected
in the process described in the previous section, and since they
do not all have the same importance to the project, it is also
defined and W = {w1, w2, . . . , wm} as the set of weights
representing the importance of stakeholders, these values may
or may not be calculated based on the salience components.
Thus, for a given requirement rj ∈ R, its satisfaction sj is:

sj =

m∑
i=1

wi ∗ vij . (2)

In addition, each rj has an associated cost ej , which
indicates the development effort required to develop it, as
estimated by the developers, resulting in the set E =
{e1, e2, . . . , en}. Each software release has a cost limit B,
which represents the amount of available resources that cannot
be exceeded.

We are able to formulate an optimization problem to be
solved in order to obtain the candidate requirement sets, U,
to be included in the next release using Pareto dominance as
[7]:

21Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 33 / 141

Figure. 2. 12 Stakeholders selected.

max
∑

j∈U sj ,
min

∑
j∈U ej ,

subject to
∑

j∈U ej ≤ B.
(3)

In addition to the effort-bound constraint (B), alternative
formulations may also include constraints associated with re-
quirement relationships or interactions. Specifically, structural
interactions impose a particular implementation order, thereby
downsizing the NRP feasible solution set [8]. Implication,
combination and exclusion dependencies are the functional
interactions most commonly studied in the NRP literature:

• Implication interaction, (ri implies rj), models that a re-
quirement ri must be implemented before the requirement
rj .

• Combination interaction, (ri combined with rj), indicates
that both requirements must be developed in the same
iteration.

• Exclusion interaction. The interaction (ri excludes rj)
reveals that both requirements are incompatible. That is,
they could not be developed in the same product.

Next, an optimization algorithm is used to obtain the set of
Pareto optimal solutions, which we call candidate requirement
sets because all the solutions on the Pareto front are feasible to
be considered as the next release goal. There are many solving
techniques that have been applied in order to find this set of re-
quirements, including algorithms based on genetic inspiration,
the use of nature-inspired optimization, linear programming,
clustering approaches or even exact methods for finding the
entire Pareto front. A detailed study of their quality is beyond
the scope of this paper [9]. Since it is possible to obtain
the candidate requirement sets, we can use them to identify
the best requirement set, which provides a positive answer to
the second research question. Finally, after an analysis of the
alternatives obtained, the one to be implemented is chosen by
reaching an agreement on the release objective.

C. Next Release Agreement

The task of software release planning does not end when
the Pareto front is obtained. To answer the last question, “Do
we have an agreement to build the release?”, the development
team must choose which of the alternative sets of requirements
(i.e., Pareto optimal solutions) will be implemented.

Due to the black-box nature of optimization algorithms [10],
Human experts in charge of decision making need to be
supported by additional analysis of optimization results. Al-
though there are well known quality indicators to measure
the performance of algorithms [9] and Pareto fronts (such
as Hypervolume or Spread), we propose the use of quality
indicators that, correctly displayed by some kind of tool,
guide decision makers when comparing solutions [11] at the
software level. Thus, in addition to the data resulting from the
optimization algorithms (such as the number of requirements
in a solution, the detailed list of requirements, and the values
achieved by the solutions in the objective functions), some
other useful indicators can be calculated.

The first is Productivity. Let U ⊆ R be the solutions under
analysis, then

prod(U) = sat(U)/eff(U), (4)

is the benefit obtained by the solution, expressed in terms of
how much satisfaction is obtained per unit of effort.

Another indicator is the measure of the amount covered
by a solution with respect to everything that is raised by
the stakeholder (i.e., stakeholder fairness), which is called
coverage [11]. Thus, given a stakeholder ski ∈ Stk, this
measure associated to a solution U ⊆ R with respect to all
the requirements valuated by her/him is

stcovi(U) =
∑
j∈U

vij/
∑
j∈R

vij , (5)

where vij is the value that the stakeholder ski assigns to
requirement rj .

22Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 34 / 141

Figure. 3. Pareto front.

III. CASE STUDY

In order to show how this framework can be used in
a real-world project, we have included a case study of its
application. The dataset used to investigate the validity of
the research questions is the Replacement Access, Library
and ID Card project (RALIC). This was a software project
to improve the existing access control system at University
College London (UCL). The project combined several UCL
access control mechanisms (such as access to the library and
fitness centre) into one, eliminating the need for a separate
library registration process for UCL ID card holders [12]. This
is a widely studied dataset within the domain of Requirements
Engineering, and has been used in several works with many
different approaches.

RALIC identifies stakeholders by creating a network of
recommendations. Each recommender selects a set of other
stakeholders, gives them a level of influence on the projec,
thus defining a network. The RALIC project involves 144
stakeholders in the network, some of whom only act as recom-
mendees. However, not all recommendees or recommenders
have proposed an enhancement or new functionality to be
included in the software to be built.

The project includes 138 requirements as increases to
the actual access, library, and ID card system, which are
arranged in three levels: objectives (10), requirements (48),
and specific requirements (104); they are represented by
R = {r1, r2, . . . , rn}. Their effort range varies from 4 to
7000 persons-hour. Only 75 RALIC stakeholders use the
100-point method (each stakeholder receives 100 points that
can be used to vote for the most important requirements)
to prioritise the requirements they are interested in; pointsij
represents the votes that the stakeholder i assigns to the
requirement rj that can be used to calculate the satisfaction
of the requirements. However, stakeholders do not vote at the
same level as the three defined ones. These facts translated
into the reorganisation of requirements (e.g., requirements

that nobody asks for are erased), obtaining for our study 83
requirements, R = {r1, r2, . . . , r83} and their corresponding
development efforts in E = {e1, e2, . . . , e83}, there are not
defined interactions between these requirements.

A. RALIC Stakeholders Identification

The identification of relevant stakeholders can be carried
out according to different strategies. In fact, it is defined as a
separate problem. In this case, we have applied a clustering
approach, using k-means with 4 clusters; a detailed description
is beyond the scope of this paper [4]. As a result, the set of
144 stakeholders initially considered is reduced to 12 relevant
stakeholders.

The result of this first stage is shown in Figure 2. It also
shows the value of the components that define the stakeholder
salience, so Stk = {stk1, stk2, . . . , stk12}.

B. RALIC Elicitation of Candidate Requirement Sets

From these three sets, Stk, R and E, together with the
definition of the requirement satisfaction values (Equation 2),
we can define the overall next release problem for RALIC as
the following optimisation problem:

max
∑

j∈U sj ,

min
∑

j∈U ej ,

subject to B1 ≤
∑

j∈U ej ≤ B2.
(6)

where U is a solution (that is, a set of requirements that
conforms to the next release). The resource / effort limits are
defined in the range [B1, B2] which, respectively, corresponds
to the 20 % effort required to develop all the requirements
for B1, while B2 is 25 %. These values have been chosen
taking into account the contingency value for effort, that is,
an allowance made for the risk that something will not be
undertaken with the planned estimated effort. We have decided
to define a resource limit interval because, on the one hand,
the original data set did not include an upper resource limit
and, on the other hand, developers usually discard solutions

23Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 35 / 141

Figure. 4. Quality indicators for the Pareto front solutions.

Figure. 5. Distribution of requirements in candidate solutions.

on the Pareto front with low effort value [11]. For RALIC, the
values for B1 and B2 are 12473.3 and 13304.8, respectively.

To find the Pareto front, we have resorted to a greedy
algorithm. This algorithm works as follows: for each effort
value in the range [B1, B2], we fill the solution with as many
requirements as we can. Then, in a fixed number of attempts,
we try to remove each requirement one by one in the solution,
replacing it with another that is valid for that level of effort.
After each change, the dominance is checked and the solution
is replaced if necessary.

Although this may not be the best algorithm for finding
Pareto fronts, it is at least simple and produces a Pareto front
that can be used to demonstrate the application of the proposed
framework. If a better algorithm were used, a more accurate
and larger number of candidate solution sets would be found.
Figure 3 shows the 14 sets of candidate requirements obtained
using this greedy strategy.

C. RALIC Next Release Agreement
The starting point for the final decision is the set of

candidate requirement sets, in our case 14 solutions. The
analysis includes, on the one hand, the inspection of the values
reached in the objective functions (satisfaction, effort) and, on
the other hand, the quality indicators defined by the decision
makers. For the RALIC case study, these are the number of
requirements, productivity, and coverage. It should be noted
that we have used the average for the coverage indicator
instead of examining the 12 values separately. The use of too

many indicators can hinder rather than help decision-making;
the general rule should be the simpler the better.

The indicators are shown in Figure 4. One might think that
the best candidate solutions are 13 or 14, which achieve the
best satisfaction and effort values with 85 and 43 requirements,
respectively, and perhaps 13 would be chosen because it covers
more requirements. However, when we look at productivity,
these alternatives have low values, i.e., using more effort does
not result in the same increase in satisfaction.

At this point, the tacit knowledge of developers and stake-
holders helps to reach an agreement between possible alterna-
tives. As this is a human process, it is common to use pairwise
comparisons of the solutions [11]. For example, let us compare
solutions 12 and 7. Both have acceptable satisfaction and
productivity values, with a good average stakeholder coverage.
The decision in this case could be based on other factors that
have not been considered in quantitative terms, such as risk; if
we are dealing with higher risk requirements, it is preferable
in this case to select solution 7 to have a cushion of effort in
case a risky situation needs to be solved.

In some situations, it might be necessary to go down to study
the problem at the level of each requirement, negotiating its
status in the solution, but this is more difficult to manage ad
hoc; just compare Figure 4 and Figure 5, which only show
the indicators or the inclusion status for each requirement.
It is always better to use quality indicators that are able to
summarise the information in a more useful way, just compare

24Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 36 / 141

the two figures.

IV. APPRAISAL OF THE FRAMEWORK

Previous strategies answer the three questions proposed in
this work separately; for example, the problem ”What is the
best set of requirements?” has been formulated as an opti-
mization problem, with customer satisfaction and development
cost as the basic optimization objectives, and has been the
subject of much research [13]. However, the literature re-
viewed in this work has neglected the initial identification and
prioritization of requirements sources. Similarly, stakeholder
identification methods have typically relied on practitioners to
manually identify stakeholders based on the use of intuition
and experience [14]. Other systematic identification methods
follow a set of steps or procedures to ensure consistency,
precision, and completeness in achieving the desired result
[15], [16]. However, these proposals were not followed by a
requirements selection task. Furthermore, the final selection
of a solution in the Pareto front could be solved using com-
plex techniques such as ranking of Pareto-optimal solutions
or using a mathematical preference model, but no one has
connected the three stages in a unique framework, which is
precisely our contribution.

V. CONCLUSION AND FUTURE WORK

This paper shows how three complex software engineering
problems, usually treated independently, are linked together
to give a global view of the problem of defining the next
release goal for a software product. This framework provides
practitioners with a pragmatic approach to solving this com-
plex process in a software engineering project. The three de-
fined stages, stakeholder identification, elicitation of candidate
requirement sets, and next release agreement, allow us to
manage and improve the tools and/or algorithms defined to
solve each stage separately, thus improving the whole process.
The validity of our proposal has been demonstrated through its
application in a real-world case study, the Replacement Access,
Library and ID Card project (RALIC) system.

Future work includes the application of the proposed frame-
work to other software projects where data on stakeholders
and requirements have been collected. Attention should also
be given to investigating the impact on the solutions that make
up the NRP solution.

ACKNOWLEDGMENT

This research has been funded by the Spanish Ministry of
Science, Innovation and Universities under project PID2019-
106758GB-C32 (EML-PA), being also partially supported
by the Data, Knowledge, and Software Engineering (DKSE)
research group (TIC-181) of the University of Almerı́a.

REFERENCES

[1] D. Šmite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical evidence in
global software engineering: a systematic review, ” Empirical software
engineering, vol. 15, pp. 91–118, 2010.

[2] V. Stray and N B. Moe, “Understanding coordination in global software
engineering: A mixed, -methods study on the use of meetings and Slack,”
Journal of Systems and Software, vol. 170, p. 110717, 2020.

[3] K. Brennan (ed.).“A Guide to the Business Analysis Body of Knowl-
edge”. IIBA, International Institute of Business Analysis, 2009.

[4] I.M. del Águila and J. del Sagrado, “Salience-based stakeholder selection
to maintain stakeholder coverage in solving the next release problem,”
Information and Software Technology, vol. 160, p. 107231, 2023.

[5] R. K. Mitchell and J. H. Lee, “Stakeholder identification and its
importance in the value creating system of stakeholder work,” in The
cambridge handbook of stakeholer theory, J. S. Harrison, J. B. Barney,
R. E. Freeman, and R. A. Phillips, Eds., Cambridge University Press
Cambridge, 2019, pp. 53–73.

[6] J. A. Sierra, I. M. del Águila, and J. del Sagrado. “Importance of
stakeholders in the next release problem.- Importancia de los interesados
en el problema de la siguiente versión,” in Actas de las XXV Jornadas
de Ingenierı́a del Software y Bases de Datos (JISBD 2021), Abrahão,
S. (Ed.), 2021.

[7] Y. Zhang, M. Harman, and S.A. Mansouri, “The multi-objective next
release problem,” in Proc. of the 9th annual conference companion on
Genetic and evolutionary computation, 2007, pp. 1129–1137

[8] J. del Sagrado, I.M. del Águila, and F. Orellana, “Requirements interac-
tion in the next release problem,” in Proc. of the 13th annual conference
companion on Genetic and evolutionary computation, 2016, pp. 241–
242.

[9] J.A. Nuh, T.W. Koh, S. Baharom, M.H. Osman, and S.N. Kew, “Perfor-
mance Evaluation Metrics for Multi-Objective .Evolutionary Algorithms
in Search-Based Software Engineering: Systematic Literature Review”,
Applied Sciences, vol. 11(7), p. 3117, 2021.

[10] G. Du and R. Guenther, “Two machine-learning techniques for mining
solutions of the ReleasePlannertm decision support system”, Informa-
tion Sciences, vol. 259, pp. 474–489, 2014.

[11] I.M. del Águila and J. del Sagrado, “Three steps multiobjective decision
process for software release planning, Complexity vol 21 (S1), pp 250–
262, 2016.

[12] S.L. Lim and A. Finkelstein, “Stakerare: using social networks and
collaborative filtering for large-scale requirements elicitation,” IEEE T
Software Eng, vol. 38, pp. 707–735, 2011.

[13] A.M. Pitangueira, R.S.P. Maciel and M. Barros, “Software requirements
selection and prioritization using SBSE approaches: A systematic review
and mapping of the literature,” J. Syst. Software, vol. 103, pp. 267–280,
2015.

[14] D. Häuber, K. Lauenroth, H. van Loenhoud, A. Schwarz, and P. Steiger:
Handbook ireb certified professional for requirements engineering ad-
vanced level elicitation - version 1.0.3. IREB International Requirements
Engineering Board, 2019.

[15] L.C. Ballejos and J.M. Montagna, “ Method for stakeholder identifi-
cation in interorganizational environments, Requirements engineering,”,
vol. 13, pp. 281–297, 2008.

[16] M.M. Rahman, M.M. Moonira and F.T. Zuhora, “ A systematic
methodology and guidelines for software project manager to identify
key stakeholders,” International Journal of Research in Computer and
Communication Technology, vol. 4, no 8, pp. 509-517, 2015.
.

25Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 37 / 141

Design Elements for a Space Information Network Operating System

Anders Fongen
Norwegian Defence University College (FHS)

Lillehammer, Norway
email: anders@fongen.no

Abstract—Space Information Networks (SIN) have quite differ-
ent characteristics from ordinary distributed systems and clouds.
Therefore, the middleware and operating systems governing the
service provision in SIN spacecrafts must manage the resources
involved, as well as the lifecycle of the components that depend on
these resources. This paper goes into detail in the distinguishing
characteristics and proposes a blueprint for software design.

Keywords—LEO satellites; space information networks; dis-
tributed OS; mobile computing.

I. INTRODUCTION

The term Space Information Network (SIN) describes a set
of satellites that cooperatively offer services for information
processing and sharing, as well as traditional communication
services. SIN is regarded as a natural evolution of satellite
services, from radio mirrors in geostationary orbit and Low
Earth Orbit (LEO) constellation for communication services
(e.g., Iridium) [1][2]. Among expected benefits from a SIN
is (1) very low end-to-end latency, as low as 3 ms, and (2)
global coverage. A SIN is likely to drive new applications
which require these properties.

In a series of previous publications, different aspects of SIN
operation (architecture [3], security [4], cache management
[5], routing [6], session state management [7]) and data
sharing [8] have been addressed. Building on these studies,
this position paper proposes a design blueprint of a middle-
ware/operating systems, which offers the necessary services
and defines Application Programming Interfaces (APIs) to
ground based clients, service components and service contain-
ers operating in each spacecraft. Within the presented article,
the term “Space Information Network Operating System” will
be abbreviated “SIN-OS”.

The perspective of the presented analysis is that of Dis-
tributed Computing. Technical and physical properties of
satellites related to energy management, antenna design, mod-
ulation, coding, jamming resistance etc., are not taken into
consideration.

The remainder of the article is organized as follows: In
Section II, some of the characteristics of SIN operations are
identified as premises for the analysis, and Section III presents
the components and services of the proposed SIN-OS design.
The specific details of the proposed API are discussed in
Section IV. For future study, the software simulator to be used
is briefly presented in Section V, and the article draws its
conclusion in Section VI.

II. OVERARCHING DESIGN CONSIDERATIONS

Central to the efforts presented in this manuscript are
architectural properties, which heavily influences the software

design. A selection of these properties are listen in the follow-
ing paragraphs:

A. The N-layer Structure

The N-layer structure of service producers and service
consumers is a typical property of any distributed systems,
which also applies to a SIN. Any entity which offers services
to a client may be a client to a service at a “deeper” level, and
these relations form a tree structure rooted in the spacecraft,
which connects to the surface client.

Some rules are chosen to simplify the design slightly:
• A surface client can only access one single service

endpoint, and therefore connects to a single tree of service
providers.

• There is a distinction between servers and clients at
the surface. A space client can access a surface service,
but not the other way around. Surface clients will never
receive service requests.

B. Handover Operations

Surface based clients are stationary, while the orbiting
elements are not, which causes a series of handover operations
to take place for the sake of link maintenance. While the link
budget for inter-satellite links to some extent can be estimated,
the link from a surface client is dependent on nearby buildings
and terrain and cannot be easily calculated in advance. The
general problem of handover, whether between spacecrafts or
from a surface client, are approached with the following rules:

• A handover operation is always initiated from the client
side

• A handover operation is prepared and conducted by the
server side, subsequent to a client request.

The following steps indicate the necessary actions taken during
a handover operation: (1) The client notifies the server that a
handover is requested, (2) The server decides which server is
the best candidate to take over, and (3) transfer the session
state to this candidate, then (4) inform the client of the new
endpoint to use. Finally, (5) the client establishes a connection
to the new server as indicated in step (4) and resumes the
dialogue.

Handover is a solved problem in satellite constellations
that offer stateless communication services, e.g., Iridium.
This manuscript will therefore focus on problems related to
handover operations where stateful and collaborate services
are offered. In that case, handover also involves the migration
of all data that constitutes the session state.

26Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 38 / 141

A handover request are likely to create cascades of new
handover requests propagating through the tree of service
providers. Client-server relations between spacecrafts are as-
sumed to take place between units orbiting in the same
direction, which may cause handover operations in one link
to initiate handovers in the next link of the service chain, in
the worst case, through all the orbiting units involved in the
service provision.

C. Stateful Migration

A stateful service component in a spacecraft needs to
migrate its units of execution during a handover operation.
Stateless services are easily migrated if migration takes place
between service invocations, not during the invocation process-
ing. Given that the components are stateful, session objects,
familiar from web programming, should be the data unit
for migration [7]. Data elements are not migrateable if they
represent operating system resources like open files, sockets
or locks (cf. the serializable interface in Java).

Migration of service components requires the implementa-
tion of callback methods for life cycle management, since only
the component itself will know how to prepare its session state
into a representation fit for migration.

D. Resource Needs and Load Predictability

Since the grid of spacecrafts are orbiting the Earth in a
predictable manner, both the available communication links
and the expected offered load from surface clients can be
estimated in advance. The population density and technolog-
ical advancement of any area of the Earth is well known, so
the expected offered load can be estimated based on position
and time (night/day, etc.), or subject to a machine learning
algorithm.

The population density on Earth is highly concentrated
within small areas, and an orbiting spacecraft will spend
most of its time over uninhabited areas. Figure 1 shows the
population number within the footprint of a satellite during
three consecutive orbits. It has been an essential idea in the
SIN study that busy satellites should be able to share their
workload with idle satellites in the vicinity [5].

Due to these properties, there is less need for discovery
protocols related to link or peer availability. Service discovery
mechanisms are likely still to be necessary since the migration
and activation pattern of services are independent from orbital
elements and population density data.

E. Fail-over Arrangements

What is not predictable, however, are fail and crash of ser-
vices or entire spacecrafts. A simplistic fail-over arrangement
would be to redirect client requests to redundant servers, while
a more elaborate approach would also deal with the recovery
of atomic transactions through, e.g., checkpoints or idempotent
operations. For many applications, the simplistic approach
suffices. The fail detection mechanism must produce the same
result for all clients, for the sake of sharing and cooperation
between clients. The fail management should therefore be

 0

 2x10
8

 4x10
8

 6x10
8

 8x10
8

 1x10
9

 1.2x10
9

 1.4x10
9

 1.6x10
9

 1.8x10
9

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

P
o
p
u

la
ti
o

n
 n

u
m

b
e
r

w
it
h
in

 f
o
o
tp

ri
n
t

Seconds into orbit

Figure 1. The population number inside the footprint of a satellite during
three subsequent orbits.

conducted in the system/network management plane and the
necessary fail-over information distributed to all spacecrafts.

F. Security and Trust Management

The SIN exposes a high number of service access points,
and surface clients as well as customer code running in
services inside the spacecrafts are not to be trusted. The links
between spacecrafts running SIN-OS instances carry applica-
tion traffic, as well as communication related to management
and maintenance (cache replication, state migration, software
updates, etc.). Application and administrative communication
must be kept strictly separate through, e.g., Virtual Private
Network (VPN) technology. VPN also contributes to relaxed
IP address management for SIN customers.

With regard to trust management (a term that includes
credential management and validation), the analysis published
in 2021 [4] concluded that (1) the standard PKI model is
not well suited due to connectivity and capacity demands,
and (2) that both authentication and authorization control
should happen in the same invocation, using the same set of
credentials [9].

III. SIN-OS OVERVIEW

The different software components of a SIN-OS are shown
in Figure 2 with their relations indicated by arrows. The
executing component both on the server and the client side has
been placed in containers, as a middleware layer for useful
abstractions of the host API, as well as the control of the
component’s life cycle. On the client side, the management
of handover operations is likely to demand a cross-layer
connection to the radio hardware in order to detect when a
handover is necessary. Event notifications are found in the
Component API, for life cycle management purposes. No need
for event notifications from the host OS to the container was
identified at this stage of study.

The Connection Management and Communication Subsys-
tem, shown in the bottom part of Figure 2, are comprehensive
components which handle packet forwarding, route planning,
handover planning and execution, fail-over execution, etc. For
the services offered by the SIN-OS, shown on the right side
of Figure 2, the following comments apply:

27Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 39 / 141

Non-Volatile Storage
For storage of data across the duration of client
sessions. This service is more than a simple file
service, since it may scatter data on several storage
tiers based on their access frequency. The API for
the service may employ different access semantics:
Flat files, Relational Database Management System,
Tuplespace, etc.

Shared data segments
Clients should be able to collaborate through shared
data segments offered through a service interface,
which ensures the chosen semantic properties: trans-
actional context, update ordering, etc. The service
may choose to spread the data across several space-
crafts according to their access frequencies in order
to reduce the overhead of handover operations [8].

Cooperative caching
A caching service used by one or more clients for
lookup on immutable data elements. The service
employs a cluster of neighborhood satellites for load
balancing purposes, and replication of data between
cache clusters to improve cache hit-rate [5].

Session State objects
The application component may keep its session state
in a separate session object, which must be migrated
to new nodes subject to a handover operation. It
is the responsibility of this service to associate a
running session with a specific object to determine
the migration operation. Studies have shown that, in
the same manner as a shared object, the data elements
can be “left behind” during handover and migrated
on demand as they are being accessed from the new
space location [7].

Discovery Services
Application components may need to invoke services
elsewhere in the SIN. The interface of the dependent
service is known at compile time and necessary stubs
generated, etc., but the location of their endpoint
must be determined in run time. The discovery
service serves this purpose, and application services
notify the discovery service about their new endpoint
as they are migrated to new endpoints.

Certificate & Key store
Certificates should be kept in a safe storage after
they have been validated, and private keys should
not be exposed outside a trusted environment. This
particular service is shown not to reference the
communication subsystem, it is a local service which
offers a client to sign a hash value or a secret key
with the encapsulated private key. The implementa-
tion of this service has not been decided, but should
employ suitable hardware based solutions (e.g., the
Trusted Platform Module).

IV. API COLLECTION

The different software components involved in the SIN
service will need APIs related to the specific tasks that the
component is assigned to. Three distinct APIs will be briefly
presented, together with a suggested set of service calls. Please
observe that there is no call to establish an authenticated
session, so necessary credentials and validation parameters
for two-ways authentication and authorization control must be
given as parameters in the service call. The reason for this
design choice is to keep transactions atomic and idempotent.
If either of the two parties fail to provide necessary credentials
the actual service call will not be executed.

A. Client API

The client API is implemented as a container layer in the
surface based client computers, it serves requests from “end”
clients (clients that do not provide services to satellite based
processes). The same API is used by application owner, who is
allowed to start/stop/update the service, and application user,
who are allowed to connect/invoke the service. The proposed
service calls are:

uploadApplication
Deploy new and updated applications

startApp, stopApp
Reserved for the application owner

connectApp, invokeService
Used by application user

requestHandover
A handover is not initiated by user commands, but
by the communication stack

B. Container API

The container is responsible for the creation of a runtime
environment for the service application component, as well
as the interface to the host resource management and the
migration of components. The API offered to the container
by the SIN-OS will not include calls across the interface
between the container and the component. These calls will
be introduced with the component API. The suggested calls
are:

loadApp, startApp, suspendApp, destroyApp
Call to allocate resources and load code segments

executeHandover
Call to the host to find a new candidate service and
to move the state representation there. The container
must identify to the host the resources that must be
migrated.

The container architecture is inspired by the Docker Swarm
project [10], but its simplistic approach to load balancing,
where the requests are distributed without regards to the
networking costs/latency, must be replaced with a mechanism
which takes the workload on intermediate nodes into consid-
eration.

28Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 40 / 141

Figure 2. The components of a SIN-OS and their relations

C. Component API

The application components need access to services essen-
tial to their execution, including
open, read, write, append, close, delete

Access to non-volatile memory
open, close, read, write

Access to shared segments [8]
open, lookup, add, close, delete

Creation/access to cooperative caches [5]
findService, invokeService

Discovery/invocation of dependent services
socket, read, write, close

Access to communication sockets
init, destroy, suspend, resume

Life-cycle management callbacks
For service components, compile-time resources are also
needed for the access to dependent services: Naming conven-
tion, stub object generations, etc.

V. THE SOFTWARE MODEL

This position paper presents a design proposition for a SIN-
OS design, but the design should be subject to a closer study
through a realistic software model of the satellite constellation.
Previous efforts in this series of SIN studies have employed
a software model programmed in Java for this purpose. A
screenshot of this model is shown in Figure 3 for a constella-
tion of 150 satellites at 500 km altitude. The colored backdrop
in the figure indicates the population density inside the satellite
footprint at a given location, based on gridded population data
from NASA [11]. This data set has also been used to calculate
the graph in Figure 1. The author prepares this model with
additional logic for testing the API design as a further study.

VI. CONCLUSION

This article has proposed a design for a SIN-OS, based on a
series of studies into a range of operational problems related
to SIN-OS operation. Both a component/service map and a
list of APIs have been presented. The proposed design is a
part of an ongoing feasibility study on SIN development, and

Figure 3. Screenshot from the satellite constellation model.

there are still many details in need for a further study. This
will be the focus for further research effort in the field of SIN
operation.

REFERENCES

[1] S. Briatore, N. Garzaniti, and A. Golkar, “Towards the internet for space:
Bringing cloud computing to space systems,” in 36th International
Communications Satellite Systems Conference (ICSSC 2018), 2018, pp.
1–5.

[2] L. Bai, T. de Cola, Q. Yu, and W. Zhang, “Space information networks,”
IEEE Wireless Communications, vol. 26, no. 2, pp. 8–9, 2019.

[3] A. Fongen, “Application services in space information networks,” in
CYBER 2021. Barcelona, Spain: IARIA, Oct 2021, pp. 113–117.

[4] A. Fongen, “Trust management in space information networks,” in
SECURWARE 2021. Athens, Greece: IARIA, Nov 2021, pp. 14–18.

[5] A. Fongen, “Cooperative caching in space information networks,” in
INTERNET 2022. Vienna, Italy: IARIA, May 2022, pp. 1–5.

[6] A. Fongen, “Population-based routing in leo satellite networks,” in
MOBILITY 2022. Porto, Portugal: IARIA, June 2022, pp. 1–4.

[7] A. Fongen, “Transfer of session state between satellites in a space
information network,” in INTERNET 2023. Barcelona, Spain: IARIA,
March 2023, pp. 1–4.

[8] A. Fongen, “Data sharing services in a space information network,” in
EMERGING 2023, The Fifteenth International Conference on Emerging
Networks and Systems Intelligence. Porto, Portugal: IARIA, September
2023, pp. 1–4.

[9] A. Fongen, “Optimization of a public key infrastructure,” in IEEE
MILCOM, Baltimore, MD, USA, Nov 2011, pp. 1440–1447.

[10] A. Modak, S. D. Chaudhary, P. S. Paygude, and S. R. Ldate, “Techniques
to secure data on cloud: Docker swarm or kubernetes?” in 2018 Second
International Conference on Inventive Communication and Computa-
tional Technologies (ICICCT), 2018, pp. 7–12.

[11] “Gridded population of the world v.4.11,” [Online; retrieved 8-
Oct-2023]. [Online]. Available: https://sedac.ciesin.columbia.edu/data/
collection/gpw-v4/sets/browse

29Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 41 / 141

Software Pipeline for 3D Heritage Digitization - The Case of Faro Focus Scans

Kamil Żyła

Department of Computer Science

Lublin University of Technology

Nadbystrzycka 36B, 20-618 Lublin, Poland

e-mail: k.zyla@pollub.pl

Jacek Kęsik

Department of Computer Science

Lublin University of Technology

Nadbystrzycka 36B, 20-618 Lublin, Poland

e-mail: j.kesik@pollub.pl

Abstract: Heritage 3D digitization is a research topic

undertaken by a broad community of scientists and policy

makers. One of the technological solutions chosen is Faro

Focus laser scanners. 3D digitization is carried out according

to a unified procedure using device-dedicated software. The

sequential nature of this procedure and the features of the

dedicated software prevent the full potential of the supported

hardware from being used. Optimization is possible at the

stage of process allocation for many digitization tasks. We

propose a software pipeline and its simple optimization that

allows at least some of these challenges to be overcome.

Validation was performed on 3D scans of three Romanian

wooden churches. The proposed approach allowed the

production of high-quality 3D models. Optimization, despite

simplicity, showed a noteworthy effect in the case of processing

3D scans of a number of objects.

Keywords: software pipeline; 3D digitization; heritage; Faro

Focus; 3D laser scanner; wooden church.

I. INTRODUCTION

Heritage 3D digitization is an emerging topic of current
research [1]. We can observe efforts in terms of technology
and heritage protection protocols in a variety of domains,
including architecture [2], clothing [3][4], and small–
medium sized objects [5], as well as intangible heritage [6].
Archiving [7], reconstruction [8], and dissemination [9][10]
are considered as the typical goals of digitization.

Among technologies used, laser scanning emerged as the
default technology used in the case of architecture [7][11].
One of the frequently used solutions is Faro Focus 3D laser
scanner. As a result of the scanning, point clouds are
produced. Then, they are transformed to a base 3D model, of
reasonably high quality, that might undergo certain
simplifications for the purpose of its dissemination.

We, based on our long-term experience and literature
survey, see some important software challenges that occur
during the transformation from point clouds from Faro Focus
scanner to 3D models. The following can be mentioned
[2][7]:

 Equipment performance – the time of data
processing might be long (even days in the case of
very large 3D models). Sometimes some of the data
processing steps have to be repeated to obtain a
result of proper quality.

 Software interoperability – in order to obtain a 3D
model of a proper quality, many programs from

different vendors have to be used. This causes the
need for exporting/importing data in a compatible
format, which also takes significant time.

 Workflow parallelization – in order to speed up data
processing, some of the steps should be able to be
executed in parallel. Usually the disk drive,
processor and memory are not evenly and fully used
during the sequential execution of the steps.

 Missing common software pipeline – due to the
heavy and long computations, a proven and stable
set of software tools is desired.

 Software pipeline dependent on requirements for the
final 3D model – 3D models for the purpose of
documentation focus on quality and precision, while
dissemination 3D models focus on the presentation
issues and performance of target devices.

This work presents a software pipeline that fits the
specificity of a Faro Focus 3D scanner. Some basic
optimizations are also discussed and preliminarily verified.
The real-life case studies of wooden churches from Romania
were chosen. We believe that this work might be valuable for
readers in terms of identifying important challenges,
describing the software gap that needs amelioration and
automation, and providing a suggestion of what to do until
better software appears. Persons involved in the hot topic of
3D heritage digitization can learn of a proven set of tools that
could be applied during their activities.

In Section II, related works are investigated. In Section
III, the proposed approach is introduced. In Section IV,
materials and methods are described. In Section V, results
regarding real-life examples, being three wooden churches,
are discussed. Finally, in Section VI, conclusions are drawn.

II. RELATED WORK

Faro Laser scanners have a broad range of applications: they
are used to scan the interiors [11][12] and exteriors [13][14]
of buildings, as well as sculpture-size objects [15][16], or
even petroglyphs [17][18]. Authors of previous works
highlight the specificity of the laser light, which makes it
suitable for outdoor conditions as well as for dealing well
with large-sized objects (even above one hundred meters).

It was also revealed that there is no common pipeline
used. Authors employed a custom and differentiated set of
software tools. Sometimes sets of tools were the same,
although they were used to perform different data processing

30Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 42 / 141

steps. Among others, the following pipelines are worth
highlighting:

 Faro Scene for point clouds manipulation; then
Autodesk Recap Pro for registration, denoising and
decimation; finally MeshLab for 3D meshing [15].

 Faro Scene for point clouds manipulation; then
Autodesk Recap Pro for denoising and remaining
activities [11].

 Faro Scene for point clouds manipulation; then
Geomagic Studio for remaining activities [17].

 Faro Scene for all the computation steps [18].
Finally, 3D data processing steps were usually not

optimized. Execution was kept sequential. The topic of
parallelization was omitted. Some authors have mentioned
optimizations in terms of tuning-up 3D model
characteristics, either in terms of the hardware acceleration
of a single step, such as by utilizing graphical processing unit
computing capabilities or running data computation on
dedicated highly efficient machines. Works dealing with the
topic of processing 3D scans of heritage objects made using
Faro Focus 3D scanner in the same way as ours were not
identified.

III. PROPOSED APPROACH

In order to properly present our idea for the software pipeline
designed for Faro Focus scans, some introduction is needed
first. The purpose of using the pipeline is to obtain a textured
3D model of high quality (so called base model), that is
based on clouds of points from 3D scanning (so called
scans). To achieve this goal the following software tasks
(data processing steps) have to be performed: (1) opening
and colorization of individual scans, (2) registration of scans
in relation to each other, (3) scans cleaning, (4) generation of
a 3D mesh based on scans, (5) mesh texturing, (6) export of
the final model.

Software. We recommend using the following two
proven software tools within the pipeline: first Faro Scene
[19] and next Reality Capture [20]. Faro Scene is the
dedicated software provided together with a Faro Focus 3D
scanner. In our opinion, it is well suited for tasks one to
three, i.e., operation on clouds of points. Reality Capture is
third-party software well suited for tasks four to six, i.e., 3D
model generation and texturing.

Faro Scene has some significant disadvantages, being:
3D model size limits, making Faro Scene useless in the case
of large objects, like buildings; significant loss of 3D model
quality due to the necessity of simplifications; unsatisfactory
3D model generation capabilities. Thus, it is supplemented
with Reality Capture, which provides very rich functionality
and interface, as well as capabilities for computing extremely
large 3D models (even exceeding the largest ones that could
be displayed by contemporary computers).

Unfortunately, the presence of two software tools within
the pipeline, although necessary, introduces some overhead
related to passing scans in a proper format from one tool to
the other. Thus, two additional steps occur between steps
three and four, i.e., data export from Faro Scene to the so-
called “ordered format” and data import to Reality Capture.

Finally, software tools proposed by us might be
perceived as comparable in terms of functionality with some
tools identified during the literature review. Nevertheless, the
proposal’s superiority lies mainly in the use of tools offering
the highest level of functionality and usability
(independently of the 3D digitized objects’ size), and being a
very affordable choice at the same time. Reality Capture
licensing promotes in its way academic and non-profit usage.

Optimization. Usually, the software tasks within the
pipeline are executed sequentially, which causes computer
resources to be partially and unevenly utilized. For example,
some of the tasks heavily utilize a processor for a longer
time, while disk and memory is idling.

The above-mentioned mechanism creates room for
performing some specific types of tasks in parallel, e.g., data
export and data import or mesh model generation. Thus, we
propose to perform in parallel the types of tasks that do not
heavily utilize the same computer resources. This should
noticeably speed up the time of processing, which is usually
the scarcest resource. Three basic types of computer
resources might be distinguished: processor, graphics, and
storage.

Software tools within the pipelines (not only within the
one proposed by us) are basically not adjusted to the
parallelization of software tasks done for one object. It is
rather possible while executing many pipelines for many
objects. The real-life example will be discussed in Section V,
Results.

IV. MATERIALS AND METHODS

The proposed approach was tested by us among others
during the 3D digitization of wooden churches in Romania.
Such choice was made to promote our recent activities. The
scans of facades of the following churches were used for the
purpose of this work:

 (C1) The orthodox church of Creaca: 13 scans –
10,338 x 4,267 pt.

 (C2) The orthodox church of Târgușor: 10 scans –
10,342 x 4,267 pt.

 (C3) The orthodox church of Petrindu in the open-air
museum of Cluj-Napoca: 15 scans – 10,172 x 4,267
pt.

They all represent a similar class of heritage object, in
terms of size, building materials, and shape complexity. Due
to space constraints, their further description is omitted. To
see short notes describing the churches, as well as models
and panoramas, please refer to [21], which is a web page
reporting works on the digitization of the wooden heritage of
the Carpathians. This, along with the works themselves, is
run as an internal initiative by the Department of Computer
Science at the Faculty of Electrical Engineering and
Computer Science of the Lublin University of Technology.

All computations were performed on a laptop computer
equipped with: Intel i9 processor (8 cores), 64 GB RAM,
nVidia RTX 2080m graphics, SSD M2 data storage drive,
and Windows 11 operating system. We took care of equal
conditions for each measured computation unit.

31Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 43 / 141

The procedure was as follows: the eight software tasks
defined in Section III were executed sequentially for scans of
the three chosen wooden churches. During the execution the
following was measured: operator engagement; processor,
graphics and storage load; task execution times. Based on the
measured computer resources loads, optimization by
parallelization was planned. Then, the software tasks were
run again, but utilizing the planned optimization. The same
measurements were performed. All computations were
assisted by the same 3D digitization expert. The execution of
each task for each church was repeated three times and
measurements’ average values were counted.

The operator engagement can be defined as a percentage
of a total task time that involved manual actions of a human.
It was described in the following scale: L (low – only up to
30% of task time), M (medium – from 31% to 70% of task
time), H (high – more than 71% of task time). Computer
resources loads were described using a similar scale, where L
means an average load of up to 30%, M means an average
load of between 31% and 70%, and H means an average load
of above 71%. Task execution times were measured with a
precision of 6 minutes (0.1 h), which was sufficient due to
the many manual human activities involved, long overall
time of computations, and general character of the
evaluation.

V. RESULTS

Table I presents the validation results of our approach
according to the procedure described in Section IV. In Table
I, the column “Task name” contains the software tasks, in a
proper order, leading from clouds of points to a 3D model.
The column heading “Op. eng.” stands for operator
engagement. “Comp. type” stands for computation type,
while the “seq” row holds values for the sequential execution
of the task, and “par” holds values for the parallelized
(optimized) execution of the task. “CPU” stands for the
processor, “GPU” for the graphics, and “SDD” for the disk
drive (storage). “C1”, “C2”, and “C3” stand for the models
of churches 1, 2, and 3 respectively. Finally, “Exec. time”
means execution time.

Thus, for example, regarding software task 1: The task,
when executed sequentially (“seq” row), caused low (“L”)
operator engagement, medium (“M”) load of CPU, low (“L”)
load of GPU, and medium (“M”) load of disk drive.
Execution of the task 1, when sequential, took 1 h 30 min in
the case of church 1 (“C1”), 1 h 18 min – church 2 (“C2”),
and 2 h 0 min – church 3 (“C3”). The “par” row holds values
for the same single software task, but executed in the
parallelized setting. It means, the measured values also refer
to that single task. The times (similarly other values) might
be almost the same or slightly different, because
parallelization causes heavier usage of the computer
resources, which might slightly slow down the execution of
particular tasks, despite a shorter overall computation time
being needed to obtain all 3D models of the churches.

After analyzing the measurements taken during the
sequential execution of the tasks, the possible parallelized
setting was developed. It took into account the preservation
of the order of the tasks necessary when obtaining a 3D

model from scans for a single heritage object. The optimized
pipeline looked as follows: (1) Tasks 1–3 for the model of
“C1”. (2) In parallel, task 4 for the model of “C1” and tasks
1–3 for the models of “C2” and “C3”. (3) In parallel, task 4
for the model of “C2” and tasks 5–6 for the model of “C1”.
(4) In parallel, task 4 for the model of “C3” and tasks 5–6 for
the model of “C2”, followed by task 7 for the model of “C1”.
Subsequent tasks for the models were carried out
sequentially.

“*” denotes low operator engagement, because such
scans were chosen that could be registered automatically by
a software tool. “**” denotes a surprising property of Faro
Scene, that export takes a lot of time yet does not heavily
utilize the computer resources.

TABLE I. WORKLOAD WHILE PERFORMING 3D DATA PROCESSING

TASKS

No. Task name
Comp.

type

Op.

eng.

[%]

Load of

CPU/GPU

/SDD

[%]

Exec. time

for

C1/C2/C3

[h]

1

Opening and

colorization of
individual scans

seq L M/L/M 1.5/ 1.3/ 2.0

par L M/L/M 1.5/ 1.5 /2.0

2
Registration of
scans in relation

to each other

seq L * H/L/M 1.0/ 0.5/ 1.0

par L * H/L/M 1.0/ 1.0/ 1.0

3 Scans cleaning
seq H L/M/L 0.3/ 0.1/ 1.0

par H L/M/L 0.3/ 0.1/ 1.0

4

Data export

from Faro

Scene

seq L L/L/L** 8.0/ 5.5/ 9.0

par L L/L/L** 8.0/ 5.5/ 9.0

5
Data import to
Reality Capture

seq L H/L/H 0.5/ 0.3/ 0.5

par L H/L/H 0.8/ 0.5/ 0.5

6

Generation of a

3D mesh based
on scans

seq L H/L/M 3.3/ 3.0/ 3.5

par L H/L/M 4.0/ 3.5/ 3.5

7 Mesh texturing
seq L M/H/M 4.0/ 4.0/ 4.0

par L M/H/M 4.0/ 4.3/ 4.0

8
Export of the

final model

seq L H/L/H 0.3/ 0.3/ 0.3

par L H/L/H 0.3/ 0.3/ 0.3

It can be seen in Table 1 that when execution is

sequential, the computer is fully focused on one task only,
thus times are shorter. When another task is executed in
parallel, the computer resources are already occupied by the
first task, thus performance drop (longer times) cannot be
avoided. The key result is that, when tasks are running in
parallel, a longer time for the execution of a single task is in
many instances observed, although the total time needed to
process the data of all the 3D scanned objects is shorter.

Finally, the sequential execution of the tasks, in order to
get final 3D models of all three churches exported to OBJ
file format, took 54 h 45 min. After the parallelization,
achieving the same goal took 42 h 15 min. The resulting
models can be found at a dedicated web page [21].

32Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 44 / 141

VI. CONCLUSION AND FUTURE WORK

In order to overcome challenges of postprocessing Faro
Focus 3D scans, we proposed our own software pipeline
(utilizing Faro Scene and Reality Capture tools), together
with a simple optimization by parallelization of performed
tasks. It was then verified on the example of three Romanian
wooden churches. What is more, we have used it for a longer
time during our digitization works involving Faro Focus
scanners.

In our opinion, the pipeline proved itself useful. Among
the main advantages is its being affordable, while offering
functionality and quality at the highest level. Moreover, it
does not heavily engage the operator. The proposed
optimization allowed us to decrease noticeably the total time
of acquiring all 3D models of many objects from scans. In
the case of the scans here used, it was reduced by ~1/5,
despite a slightly longer execution time being seen for
particular tasks due to the heavier (better, fuller) usage of the
computer resources. It was also revealed that optimization
did not heavily affect the computer resources loads when
they were observed separately for each particular single task
done for a particular single model.

As a disadvantage, the use of two software tools might be
mentioned. It requires an operator to learn how to use two
different tools. Moreover, the list of tasks has to be extended
by the resource-consuming export and import of data.
Unfortunately, there is no other way, when it comes to
obtaining high-quality models of large objects, due to Faro
Scene’s limitations. Finally, it is possible in rare cases that
very heavy tasks may cause full usage of a particular
computer resource, making parallelization barely possible.

REFERENCES

[1] K. Żyła, J. Montusiewicz, S. Skulimowski, and R. Kayumov,

"VR technologies as an extension to the museum exhibition:
A case study of the Silk Road museums in Samarkand,"
Muzeológia a kultúrne dedičstvo, vol. 8(4), pp. 73-93, 2020,
nr 4, doi: 10.46284/mkd.2020.8.4.6

[2] M. Miłosz, J. Kęsik, and J. Montusiewicz, "3D scanning and
visualization of large monuments of Timurid architecture in
Central Asia - A methodical approach," Journal on
Computing and Cultural Heritage, vol. 14(1), pp. 1-31, 2021,
doi: 10.1145/3425796

[3] J. Montusiewicz, M. Miłosz, J. Kęsik, and K. Żyła,
"Structured-light 3D scanning of exhibited historical clothing
- A first-ever methodical trial and its results," Heritage
Science, vol. 9(1), pp. 1-20, 2021, doi: 10.1186/s40494-021-
00544-x

[4] K. Żyła, J. Kęsik, F. Santos, and G. House, "Scanning of
historical clothes using 3D scanners: Comparison of goals,
tools, and methods," Applied Sciences, vol. 11(12), pp. 1-18,
2021, doi: 10.3390/app11125588

[5] R. Comes, et al., "Digital reconstruction of fragmented
cultural heritage assets: The case study of the Dacian
embossed disk from Piatra Roșie," Applied Sciences, vol.
12(16), pp. 1-30, 2022, doi: 10.3390/app12168131

[6] M. Skublewska-Paszkowska, et al., "Methodology of 3D
scanning of intangible cultural heritage - The example of
Lazgi dance," Applied Sciences, vol. 11(23), pp. 1-17, 2021,
doi: 10.3390/app112311568

[7] J. Kęsik, M. Miłosz, J. Montusiewicz, and K. Samarov,
"Documenting the geometry of large architectural monuments
using 3D scanning - The case of the dome of the Golden
Mosque of the Tillya-Kori Madrasah in Samarkand," Digital
Applications in Archaeology and Cultural Heritage, vol. 22,
pp. 1-11, 2021, doi: 10.1016/j.daach.2021.e00199

[8] M. Miłosz, E. Miłosz, and J. Montusiewicz, "Determination
of ceramic tile colour surface areas on the medieval Sher-Dor
Madrasah mosaic in Samarkand – Problems and solutions,"
Digital Applications in Archaeology and Cultural Heritage,
vol. 16, pp. 1-6, 2020, doi: 10.1016/j.daach.2020.e00134

[9] R. Comes, et al., "Enhancing accessibility to cultural heritage
through digital content and virtual reality: A case study of the
Sarmizegetusa Regia UNESCO site," Journal of Ancient
History and Archaeology, vol. 7(3), pp. 124-139, 2020.

[10] A. M. Ciekanowska, A. K. Kiszczak-Gliński, and K.
Dziedzic, "Comparative analysis of Unity and Unreal Engine
efficiency in creating virtual exhibitions of 3D scanned
models," JCSI - Journal of Computer Sciences Institute, vol.
20, pp. 247-253, 2021, doi: 10.35784/jcsi.2698

[11] M. Campi, M. Falcone, and S. Sabbatini, "Towards
continuous monitoring of architecture. Terrestrial laser
scanning and mobile mapping system for the diagnostic
phases of the cultural heritage," Int. Arch. Photogramm.
Remote Sens. Spatial Inf. Sci., vol. XLVI-2/W1-2022, pp.
121–127, 2022, doi: 10.5194/isprs-archives-XLVI-2-W1-
2022-121-2022

[12] L. Wilson, A. Rawlinson, A. Frost, and J. Hepher, "3D digital
documentation for disaster management in historic buildings:
Applications following fire damage at the Mackintosh
building, The Glasgow School of Art," Journal of Cultural
Heritage, vol. 31, pp. 24-32, 2018, doi:
10.1016/j.culher.2017.11.012

[13] J. Kęsik, M. Miłosz, and J. Montusiewicz, "Problems of
acquisition and postprocessing of 3D scans of large
architectural objects," MATEC Web of Conferences, vol. 252,
pp. 1-6, 2019, doi: 10.1051/matecconf/201925203001

[14] D. P. Pocobelli, J. Boehm, P. Bryan, J. Still, and J. Grau-
Bové, "Building information models for monitoring and
simulation data in heritage buildings," Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., vol. XLII-2, pp.
909–916, 2018, doi: 10.5194/isprs-archives-XLII-2-909-2018

[15] E. Adamopoulos, F. Rinaudo, and L. Ardissono, "A critical
comparison of 3D digitization techniques for heritage
objects," ISPRS International Journal of Geo-Information,
vol. 10(1), pp. 1-21, 2021, doi: 10.3390/ijgi10010010

[16] G. Guidi, U. S. Malik, B. Frischer, C. Barandoni, and F.
Paolucci, "The Indiana University-Uffizi project:
Metrological challenges and workflow for massive 3D
digitization of sculptures" 23rd International Conference on
Virtual System & Multimedia (VSMM 2017), IEEE, 2017,
pp. 1-8, doi: 10.1109/VSMM.2017.8346268

[17] S. Peña-Villasenín, M. Gil-Docampo, and J. Ortiz-Sanz,
"Professional SfM and TLS vs a simple SfM photogrammetry
for 3D modelling of rock art and radiance scaling shading in
engraving detection," Journal of Cultural Heritage, vol. 37,
pp. 238-246, 2019, doi: 10.1016/j.culher.2018.10.009

[18] J. Kęsik, M. Miłosz, J. Montusiewicz, and N. Israilova,
"Documenting archaeological petroglyph sites with the use of
3D terrestrial laser scanners - A case study of petroglyphs in
Kyrgyzstan," Applied Sciences, vol. 12(20), pp. 1-17, 2022,
doi: 10.3390/app122010521

[19] "Faro Scene homepage,"
https://www.faro.com/en/Products/Software/SCENE-
Software, retrieved: August, 2023.

[20] "Reality Capture homepage,"
https://www.capturingreality.com, retrieved: August, 2023.

33Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 45 / 141

[21] "Wooden monuments of the Carpathians in 3D,"
https://carpatia3d.com/en/rezultaty-modele-3d-i-panoramy/,

retrieved: August, 2023.

34Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 46 / 141

Source Code Analysis of GitHub Projects from E-Commerce and Game Domains

Doga Babacan
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkiye

email: dogababacan96@gmail.com

Tugkan Tuglular
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkiye

email: tugkantuglular@iyte.edu.tr

Abstract— The nature of domains, such as e-commerce, affects
the software development process and the resulting software.
Various domains may have similarities and differences with
respect to each other under source code analysis. This research
project examines the similarities and differences between game
and e-commerce domains. With the technology now available
to everyone, finding and examining public repositories is more
straightforward. The domains chosen for this project are game
and e-commerce since they are two of the most popular topics.
In this research, inspections are made on 25 projects, 15 from
the e-commerce domain and ten from the game domain.
Developing a repository mining program that works with a
software analysis tool and returns the results of this analysis is
also validated within this research.

Keywords-static source code analysis; repository mining; e-
commerce software; game software.

I. INTRODUCTION
Static source code analysis is a way to analyze the code

without running it. Nowadays, many tools help software
developers to perform this process. In the literature, research
was not found that utilizes these tools to inspect multiple
repositories simultaneously and compares the results
depending on their similarities and differences. If automation
like inspection is possible for various repositories with these
kinds of tools, it may be used in many types of research for
many reasons. The SonarQube is utilized for this research. It
measures technical debt, number of bugs, classes, functions,
complexity, cognitive complexity, etc. These values may be
used in many ways and inspected for relations between them.
With these values in our hands, domains in software
development, like e-commerce and game, can be studied,
focusing on how they behave according to the results,
whether they act similarly or not.

The main objective of this research project is to find out
if automation applies to these kinds of tools during research
with software, which clones many projects and, analyzes
them, retrieves the results. Doing sample research utilizing
this software will be another task to do. Each value in the
results will be another attribute to compare and inspect. The
sample research looks at the behavior of game and e-
commerce domains, considering their results from the source
code analyses tool. Each domain will be examined
separately, and there will be a comparison. Public
repositories of GitHub will be used for this purpose since it

is one of the most popular code-storing and managing
platforms.

The proposed solution uses Python language to create
software that clones repositories from each domain, namely
game, and e-commerce, to local with the get requests and
python library for GitHub and upload them to SonarQube by
utilizing the Python package SonarQube Client to analyze
those repositories. After analyzing the repositories with
SonarQube, the proposed solution continues by getting each
project source code analysis result with the SonarQube
Client package, inspecting those results with correlation
matrices for each domain, and choosing specific attributes to
examine the relation between them depending on the
correlation matrix.

Java projects from GitHub in the e-commerce and game
domains are the focus of this research. Some of the projects
cannot be analyzed by SonarQube and they are excluded
from research. Projects with other programming languages
from the same domains will be considered in the future.

The paper is organized as follows: Section II presents the
related work. Section III explains the proposed approach.
Section IV presents the result and discussion, and the last
section concludes the paper.

II. RELATED WORK
Sokol et al. [1] researched software mining tools, how

they work, and the alternatives for this type of program.
Research mainly focuses on Metric Miner’s results and adds
some points on Sonar.

Spadini et al. [2] developed a mining software repository
program PyDriller, using Python language and put it against
Python Framework GitPython. With fewer lines of code and
less complexity, the results of both programs are compared.

Dabic et al. [3] developed another mining software for
GitHub projects named GitHub Search. This program works
in ten languages. It is a dataset that contains information
about more than 700.000 public repositories in GitHub.

Dueñas et al. [4] introduced GrimoireLab, an open-
source set of Python tools used in repository mining,
analyzing, and visualizing. Third parties can also use the
tool, designed as a modular toolset.

Koetter et al. [5] utilized SourceMeter to calculate chosen
student project metrics. For each project, a Python tool
developed by the article’s authors was used for the
benchmark calculation. With the gathered results, they made
comparisons.

35Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 47 / 141

Jarczyk et al. [6] worked on determining two metrics that
indicate the quality of GitHub projects. The initial statistic is
derived from the ratings assigned to a project by other
members of GitHub, while the second metric is derived
through the application of survival analysis techniques to
issues reported by users of the project. Following the
development of the metrics, they proceeded to collect data on
various attributes of many GitHub projects. Subsequently,
they conducted an analysis utilizing statistical regression
techniques to examine the impact of these attributes on the
overall quality of the projects.

Yalçın and Tuglular [7] worked on 21 projects from
GitHub with multiple versions of a tool the author created.
JSoup and Selenium are utilized in the mining process. For
each project, the author looked at whether the executable and
test codes are increasing in sync, whether updates affect the
co-evolution of test and executable data. In using GitHub
software projects from different angle, AlMarzouq et al. [8]
highlighted the challenges and opportunities of using GitHub
as a data source in both research and programming
education.

Gousios and Spinellis [9] found that the acquisition of
data from GitHub is not a straightforward task, the suitability
of the data for various research purposes may be limited, and
the misuse of this data can potentially result in biased
outcomes. Our findings match with their findings.

III. PROPOSED APPROACH
The proposed approach is composed of three steps:

1. Data Collection from GitHub
2. Source Code Analysis using SonarQube
3. Data preparation
4. Data analysis

The first three steps are explained in detail in this section.
The fourth step is presented in the following section with
results and discussion.

A. Data Collection from GitHub
The primary way of searching for software projects in

GitHub is performed with a get request, through Python,
such as “https://api.github.com/search/repositories?q=e-
commerceis:featured+language:java&sort=stars&order=desc
&per_page=100&page=1”. The “is: featured” part of the
string helps for searching topics in GitHub. If this part is not
used, the result will return as a general search instead of
topics. “language” filters for the asked language. ”sort” lets
the user choose which attribute to sort. In this research, the
number of project stars is focused on finding a more reliable
project on GitHub. “per_page” is the number of projects to
be returned on request.

We intend to inspect the code metrics such as code
smells, bugs, security hotspots, duplications, etc. We write a
code that clones each release of a GitHub project and lists
them as files in a folder if it did not have a release history to
download; the code looks into previous tags of the project in
GitHub, if it had tags, program clones each tag’s repository
and list as each of the version with its project name and its
tag next to it. Also, it creates each version’s SonarQube
project under SonarQube.

By utilizing the “OS” library already included in Python,
the directory for each repository can be created with a chosen
name with “os. mkdir(path)”. Here path is the whole path to
the location, including the directory name such as
“C:/Programming/RepositoryInspectionProject/3091E-c-o-
Mshopizer”.

When cloning from GitHub, the code ”git clone
{repo_url} {directory_name}” is written inside “os.
system()” because it needs to be written as a console
command. “repo_url“ refers to the cloning URL of the
repository, and “directory_name” is the name pattern that
was chosen before as “3091E-c-o-Mshopizer”. After cloning
each project, there is a second step for them to upload these
Maven projects to SonarQube for inspection. First, the
creation of the project on the SonarQube is needed. This is
performed through the utilization of the SonarQube Client
library on Python. The package can be used by entering the
username, password, and URL of the SonarQube installed on
the computer. To create projects, the line
“sonar.projects.create_project()“ project name is placed as an
argument where it is chosen as the directory name.

After creating the projects placed on SonarQube,
repositories can be uploaded. This is achieved by utilizing
the line, “mvn clean verify sonar : sonar -D maven.test.skip
= true -D sonar.projectKey = {projectKey} -D sonar.host.url
= http://localhost:9000 -D sonar. login =
************************************”, here we skip
tests by using “maven.test.skip = true” because tests could
not be followed when trying automation on this research
project.

B. Source Code Analysis using SonarQube
SonarQube is one of the best static source code analysis

tools [10]–[12]. SonarQube is a Sonar Source product, and
approximately seven million people utilize Sonar Source
products currently [13]. SonarQube works with more than
thirty languages, and one of them is Java.

The process for source code analysis starts when the
cloning and uploading process is completed. To retrieve the
results from SonarQube, SonarQube Client is utilized. Data
for the following metrics [14] are collected:

Complexity: Complexity (cyclomatic complexity) is a
metric where the number of paths in a code is calculated, and
the minimum value of the function is 1. When the control
flow of a piece of code diverges, the complexity increases.
This calculation may differ depending on the language being
used.

Cognitive Complexity: Cognitive complexity is a more
detailed way of inspecting the complexity of a code. It is not
a quantitative way of measuring as it is in cyclomatic
complexity; it also counts in the degree of
interconnectedness and abstraction or indirection in a piece
of code. Cognitive complexity shows how understandable
the code is and how much it is easy to maintain.

Issues: If any piece of code breaks the coding rule, it will
be counted as an issue. There are three types of issues,
which are bug, vulnerability, and code smell.

36Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 48 / 141

Violations: Any form of issue is also called a violation.
Prefixes change depending on the importance of the
violation; it can be blocker, critical, major, minor, and info.

Security Hotspots: A piece of code that is security
sensitive; however, it is not as crucial as vulnerability; these
hotspots may not impact the whole software, unlike the
vulnerability.

Lines: Number of physical lines.
Lines of Code: The number of physical lines that contain

at least one character. However, this character will not be
counted if it is whitespace, tabular space, or part of a
comment.

Functions: Number of functions.
Statements: Number of statements.
Comments: Number of comment lines in code.
Duplicated Lines: Number of duplicated lines in code.

C. Data Preparation
After source code analysis finished, then the data is

normalized. The values for the metrics are placed in a
dictionary and converted into a data frame to save as a CSV
file, which are given in Table 1 and Table 3. By doing this, it
becomes easier to work with the results on the Jupyter
Notebook. On the Jupyter Notebook, after opening the CSV
file, the data is converted to the data frame again to work on
the values. All of the data (except star count and lines of
code) is divided by a line of code because we want our
values to be independent of the line of code of the
repositories. Then, all the values are scaled to fit between 0
and 1. When the data preparation is finished, the correlation
matrix is created to see the relationships among all attributes
as shown in Table 2 and Table 4.

IV. RESULTS AND DISCUSSION
The correlation matrices for the e-commerce and game

domains are shown in Table 2 and Table 4. When we
compare these two matrices, we see some differences
between them. Positive and negative relations are different
for game and e-commerce domains. The results are expected
for the e-commerce domain; for instance, it is likely that with
the decreasing number of classes, we expect a higher number
of bugs which means there should be a negative relation
between those two values. However, this does not apply to
the game domain. This can be due to some outliers. The
diagram lets the user see which attributes have positive and
negative relations.

First, pair of attributes are selected. The first pair will be
the number of comment lines and the number of code smells.
It is a fact that code should explain itself without needing
much of an explanation. These explanations are done with
comment lines in the code. Code smells also tells us the
software developer does not have much experience in
writing code, most probably not following specific rules,
does not apply tests, etc. A positive relationship is expected
between them. The second pair is chosen as the number of
bugs and the number of classes. If the number of classes
increases, software may be thought to be cleaner and more
organized and may be considered leading to fewer bugs.

When starting with the first pair of attributes, comment
lines, and code smells, the correlation matrix in Table 2
shows a positive relation which was expected; the value of
0.61 is close to value 1, which means the relationship is
strong even though it is not the strongest in the matrix. When
a scatter graph is drawn, it shows each data point. There are
outlier-like values on the diagram. To be sure, box plots are
utilized. With the boxplots it is decided that two outliers
need to be removed. After removing the outliers, the linear
regression line is drawn in Figure 1 with (1). Also, the linear
regression line shows us the positive relation better since the
line has a visible positive slope.

y = 0.294 x + 0.1 (1)

Figure 1. Linear Regression Line of Number of Comment Lines vs.

Number of Code Smells of E-Commerce Domain.

The second pair of attributes, namely the number of bugs
and the number of classes, are drawn on another scatter
graph. Again, boxplots are utilized for each attribute to check
the outliers, and it is verified that there are no outliers in this
data set. The linear regression line is shown in Figure 2. The
line has good visibility and a negative slope, showing a
negative relation with (2).

y = -0.63 x + 0.772 (2)

Figure 2. Linear Regression Number of Bugs vs. Number of Classes of E-

Commerce Domain.

37Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 49 / 141

The first pair of attributes of the game domain are code
smells and comment lines. Since there seems to be outliers
on the scatter graph, so they are checked with the boxplots of
each attribute. The boxplot showed that the two values with
the number of comment lines value close to 1.0 are the
outliers. After removing the outliers, a linear regression line
is drawn in Figure 3 with (3).

y = 0.315 x - 0.025 (3)

The slope can be seen on the graph as positive and the

equation as positive. So, as expected, if the comment lines
increase, more code smells can be expected in the software.

Figure 3. Linear Regression Line of Number of Comment Lines vs.

Number of Code Smells of Game Domain.

The scatter graph shows how the data points are spread
on the last pair of attributes set of game domain, number of
classes, and number of bugs. When the outliers are checked
with boxplots of each attribute, on each attribute, there is a
different outlier; the number of outliers is decided as two.
After removing the outliers, the scatter graph in Figure 4 is
drawn with a linear regression line as in (4).

y = -2.586 x + 0.755 (4)

Figure 4. Linear Regression Number of Bugs vs. Number of Classes of

Game Domain.

The negative slope can be seen on the graph and the
equation, which means the relationship between the two
attributes is negative.

There are concerns related to the generalization of
results. First, all attributes should be interpreted relative to
the local context; there are no absolute always correct
interpretations. Second, although the projects are coded in
Java, they are not necessarily object-oriented. Therefore, the
results cannot be generalized to object-oriented projects. The
generalizability of the research findings is limited both
within the specific areas under investigation and to other
domains for the following reasons. The research employs a
limited sample size, and the findings lack sufficient
statistical significance to generalize to the broader
population. The study sample may lack representativeness in
relation to the entire population. The research employs a
non-random sampling technique, which has the potential to
induce bias. The present study used a proprietary instrument
devised by the researchers, which may potentially exhibit
certain flaws or limits.

V. CONCLUSION
In this research, a software is developed to clone

repositories and analyze them using SonarQube. Two
domains, namely e-commerce and game domains, are
analyzed. The correlation matrices showed that there is a
difference between the two domains. The difference in the
game domain can be due to structure and developers in
general. However, in e-commerce, the developers follow
specific rules and patterns while developing software which
is common in software development. Two pairs of attributes
from each domain are examined individually. The linear
regression line is drawn, and the equation of the linear
regression lines is shown. In conclusion, this project showed
that automation could apply to repository mining, analyzing
the source code, and retrieving the results of this analysis.

In this research, we first learned that the projects in
GitHub are not necessarily well structured. Fetching the
projects automatically was not simple and easy. Moreover,
only some of the Java projects were analyzable by
SonarQube. Therefore, we choose Java projects with Maven.
Still, we cannot analyze all projects in the selected domains.
Another source code analyzer may be used. A pluggable
pipeline would be nice to have. We expected both domain
projects we analyzed to be more fit to software engineering
principles and best practices, but it wasn’t the case.

For future work, we first plan to include more projects
from the same domains and then perform cluster analysis to
find the natural groups in the datasets, which can show
trends, structures, or groupings that aren't obvious at first
glance. This way, we plan to obtain useful insights for root
causes and predictions. We also plan to figure out the
dependencies between attributes.

The free version of SonarQube is employed in this
research and it is limited. We would like to use the paid
version for further analysis. We also plan to include other
source code analysis tools such as ChatGPT and GitHub
Copilot. Furthermore, some software engineering analysis
tools will be included into the future research. They might

38Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 50 / 141

give us some perspectives from software engineering point
of view, such as how many people did PRs on the same part
of the source code, whether there are any correlations
between the design patterns or technical debt and code
quality, and whether code quality is related to the
organizational structure of the project team.

Moreover, we plan to expand this research to include
projects from the same domains with different programming
languages as well as other domains, such as IoT, Healthcare,
Sports.

REFERENCES
[1] F. Z. Sokol, M. F. Aniche, and M. A. Gerosa, “MetricMiner:

Supporting researchers in mining software repositories,” in
2013 IEEE 13th International Working Conference on Source
Code Analysis and Manipulation (SCAM), Sep. 2013, pp.
142–146. doi: 10.1109/SCAM.2013.6648195.

[2] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python
framework for mining software repositories,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering, in ESEC/FSE 2018. New York, NY,
USA: Association for Computing Machinery, Oct. 2018, pp.
908–911. doi: 10.1145/3236024.3264598.

[3] O. Dabic, E. Aghajani, and G. Bavota, “Sampling Projects in
GitHub for MSR Studies,” in 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories
(MSR), May 2021, pp. 560–564. doi:
10.1109/MSR52588.2021.00074.

[4] “GrimoireLab: A toolset for software development analytics
[PeerJ],” Retrieved: July, 2023 [Online]. Available from:
https://peerj.com/articles/cs-601/.

[5] F. Koetter, et al., “Assessing Software Quality of Agile
Student Projects by Data-mining Software Repositories:,” in
Proceedings of the 11th International Conference on
Computer Supported Education, Heraklion, Crete, Greece:
SCITEPRESS - Science and Technology Publications, 2019,
pp. 244–251. doi: 10.5220/0007688602440251.

[6] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and A.
Wierzbicki, "Github projects. quality analysis of open-source
software," in Social Informatics: 6th International
Conference, SocInfo 2014, Barcelona, Spain, November 11-
13, pp. 80-94. Springer International Publishing, 2014.

[7] A. G. Yalçın and T. Tuglular, “Studying the Co-Evolution of
Source Code and Acceptance Tests,” Int. J. Softw. Eng.
Knowl. Eng., pp. 1–27, Apr. 2023, doi:
10.1142/S0218194023500237.

[8] M. AlMarzouq, A. AlZaidan, and J. AlDallal, "Mining
GitHub for research and education: challenges and
opportunities," International Journal of Web Information
Systems 2020, 16, no. 4, pp. 451-473.

[9] G. Gousios, and D. Spinellis, "Mining software engineering
data from GitHub," in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C),
pp. 501-502. IEEE, 2017.

[10] “TOP 40 Static Code Analysis Tools (Best Source Code
Analysis Tools),” Retrieved: July, 2023 [Online]. Available
from: https://www.softwaretestinghelp.com/tools/top-40-
static-code-analysis-tools/.

[11] “Best Static Code Analysis Tools in 2023 | Compare Reviews
on 90+ | G2,” Retrieved: July, 2023 [Online]. Available from:
https://www.g2.com/categories/static-code-analysis.

[12] L. Zelleke, “6 Best Static Code Analysis Tools for 2023 (Paid
& Free),” Comparitech, Sep. 05, 2021. Retrieved: July, 2023
[Online]. Available from: https://www.comparitech.com/net-
admin/best-static-code-analysis-tools/.

[13] “Clean Code Tools for Writing Clear, Readable &
Understandable Secure Quality Code,” Retrieved: July, 2023
[Online]. Available from: https://www.sonarsource.com/.

[14] “Metric definition,” Retrieved: July, 2023 [Online]. Available
from: https://docs.sonarsource.com/sonarqube/ latest/user-
guide/metric-definitions/.

TABLE I. MINED DATA FROM GITHUB FOR E-COMMERCE DOMAIN

TABLE II. CORRELATION TABLE OF E-COMMERCE DOMAIN ATTRIBUTES

39Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 51 / 141

TABLE III. MINED DATA FROM GITHUB FOR GAME DOMAIN

TABLE IV. CORRELATION TABLE OF GAME DOMAIN ATTRIBUTES

40Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 52 / 141

OOPS ! and Competency Questions for Evaluating the Intelligent Business Process

Management Ontology

Sarra MEJRI

Laboratory RIADI-GDL, ENSI, Manouba 2010, University

of Manouba, Tunisia

Higher Institute of Computer Science and Communication

Techniques of Hammam Sousse, University of Sousse,

Tunisia

 e-mail: sarra.mejri.fsm@gmail.com

Sonia AYACHI GHANNOUCHIN

Laboratory RIADI-GDL, ENSI, Manouba 2010, University

of Manouba, Tunisia

Higher Institute of Management of Sousse, University of

Sousse, Tunisia

e-mail: sonia.ayachi.ghannouchi@gmail.com

Abstract— The Intelligent Business Process Management

Ontology (IBPMO) models the most important concepts in

the context of both Business Process Management (BPM)

and Industry 4.0. It ensures the selection of the most suitable

technologies 4.0 for Business Processes (BPs). Ontologies

have great promise for improving BPM and realizing the

Industry 4.0 vision. Ontology Development 101 is the

method of ontology modeling. A framework would be

helpful to allow the involved actors benefiting from the built

ontology and using it for selecting appropriate technologies

4.0 to be integrated in BPs. In this paper, an evaluation

framework is proposed to evaluate our IBPM ontology for

which existing evaluation methods have been combined into

a single framework, dividing the methods used into two

phases: verification and validation. The verification of the

ontology is concerned with validating whether an ontology

was correctly built. It evaluates the structure, functionality

and representation of the ontology. It specifically focuses on

the validation activity using OntOlogy Pitfall Scanner!

(OOPS !) tools. Different metrics and common pitfalls are

used to detect errors. The OOPS! tool adopts specific metrics

for detecting most anomalies found in the ontology and

suggests improvements. Ontology validation is achieved by

using Competency Questions (CQs) and expert interviews.

This evaluation, which relied on a technology-based

approach, using OOPS! tool, and a prototype development,

proved the validity of our IBPMO ontology.

Keywords—ontology; Industry 4.0; Intelligent BPM;

ontology evaluation; Competency Questions; OOPS!.

I. INTRODUCTION

We have proposed IBPMO, in a previous work [1], an
ontology developed for intelligent BPM, divided into two
modules: BPM and Industry 4.0. The use of IBPMO
ensures the selection of the most suitable technologies 4.0
for BPs.

This paper aims to assess the quality and the content of
the IBPM Ontology (IBPMO) to ensure that it is well
built, structured and contains all important concepts and
relationships for sufficient reasoning.

Ontologies consist in a formal conceptualization of the
knowledge representation and provide the definitions of
the concepts and relations capturing the knowledge of a
domain in an interoperable way [2]. In recent years,
ontology tools have been widely used for representation

and reasoning in IBPM, which consists of adding smart
technologies and business intelligence to BPM[2] [3].

Semantic Web technologies, especially ontologies, can
be connected with logical inferences to enable a common
perception of a particular specific domain. Thus, they
could facilitate alignment and integration of information
entities for Industry 4.0 processes, connecting people,
organization of work, and application systems [4].
Ontologies are promising means to improve BPM and to
realize the Industry 4.0 vision [5]. Besides, the evaluation
of the modeling is an important step in the process of
ontology development. This step ensures the adequacy of
the ontology and reduces maintenance costs. In fact,
ontology evaluation is needed to decide on the quality and
content of the ontology by judging it against a reference
framework and identifying what the ontology defines
correctly, incorrectly or not at all. It is essential for the
adoption and improvement of the ontology.

Ontology evaluation is a key ontology engineering
activity that can be performed following a variety of
approaches and using various tools [6]. It consists of two
parts : ontology validation process and verification activity
[7]. Ontology validation process checks the correctness of
the built ontology and especially investigates the structure,
functionality and representation of the ontology with the
help of different metrics and quality criteria. Whereas,
ontology verification activity checks if the right ontology
is built given the suggested application of the ontology [8].

In ontology development 101 (OD 101) method [9],
evaluation involves four types of references, which are
CQs, application-based, modeling guidelines and expert
domain. The first, third and fourth types of references are
used during ontology modeling, while the second is used
with the application. The Ontology Development 101 (OD
101) is used to model and evaluate ontologies effortlessly
and with more flexibility. To the best of our knowledge,
the existing research works for example [10] and [11]
concentrate on the consideration of OD 101 for evaluating
their ontologies. Thereby, in this paper, we considered the
ontology evaluation during ontology modeling, which are
CQs, application-based evaluation, modeling guidelines.

CQs are used as reference for verification activity. CQs
play a crucial role in the ontology development lifecycle,
as they represent the ontology requirements [12].

41Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 53 / 141

OOPS ! is used as a tool for validation activity.
OOPS ! represents a tool for diagnosing (semi-)
automatically in OWL ontologies and targeted at
newcomers and domain experts unfamiliar with
description logics and ontology implementation languages.
This tool operates independently of any ontology
development platform and is available online [13].

The contribution of this work is to propose an
evaluation framework to evaluate the IBPMO; and thereby
refine the IBPMO. The IBPMO has been evaluated using
CQs. Then, IBPMO has been verified for its structure
using the OOPS ! tool, which was chosen due to its ability
to perform both ontology diagnosis and repair activity. The
ontology is refined based on the results of this tool. The
IBPMO has been validated semantically using various
CQs to determine its applicability. The IBPMO has then
been put to the said application and the task based
evaluation has been carried out. It is found that IBPMO is
able to serve its intended purpose after tuning it based on
the results of evaluation. After evaluating the IBPMO, we
could ensure that the procedure of selecting the most
suitable technologies for BPs within the IBPMO is
successfully carried out.

The goal in this paper is mainly to adopt an evaluation
process in order to improve the IBPMO. For this purpose,
it is worth noting that considering CQs, the OOPS ! tool
and the application-based evaluation can help us to
successfully evaluate our IBPMO.

The rest of this paper is structured as follows: Section
2 presents related work on ontologies evaluation.
Regarding the third section, it deals with our research
methodology. Section 4 briefly explains the
implementation of the evaluation process in IBPMO.
Section 5 concludes the findings.

II. RELATED WORK ON ONTOLOGIES EVALUATION

Many researchers have worked on ontology evaluation.
Jain et al. [14] proposed an evaluation framework to
evaluate the Emergency Situation Ontology (ESO), in
which existing evaluation methods have been combined
into a single framework, dividing the methods used into
two phases: verification and validation. Richard, et al. [15]
proposed the LOVMI(Ontologies Validated by Interactive
Method) method in order to validate ontologies and in
particular their developed ontology ONTOPSYCHIA,
which is an ontology for psychiatry in three modules:
social and environmental factors of mental disorders, and
treatments. LOVMI validation is performed in six steps:
validation (1) of consistency, (2) of other structural
aspects, (3) of labels, (4) of choices of label and (5) of
semantic with experts and (6) of semantic in an
application. On the other hand, Kalita, et al. [16] presented
an evaluation of the developed ontology on traditional
dances (OTD), which divides the evaluation methods into
two critical steps : First, the syntactic correctness and
internal consistency of the ontology were checked via the
HermiT reasoner and the OOPS! tool, and, in the second
step, the ontology has undergone a competency check via
the CQs scenarios. In their work, Chansanam, et al. [10]

presented an evaluation of The COviD-19 Ontology for
Cases and Patient information (CODO) focused explicitly
on the validation operation using OOPS! tools. Moreover,
Yusof, et al. [11] discussed the manual approach, i.e.,
modeling guidelines and automatic approach, i.e., OOPS!
for validating the Malaysian food composition ontology
(MyFCO). In addition, Bezerra, et al. [12] proposed a
mechanism to support evaluating whether the ontology
follows their correspondent CQs. Pizzuti, et al. [17]
validated and interrogated the MEat Supply Chain
Ontology (MESCO), that is an ontology developed for
supporting the management of meat traceability along the
whole supply chain, through the formulation of several
queries expressed in Description Logic (DL), executed
using the Pellet reasoner, to deal with different scenarios
and problems of traceability.

We can conclude that to the best of our knowledge rare
are the approaches that have used the different types of
references of the OD 101 during ontology evaluation. In
our research work, we focus on CQs, application-based
evaluation, modeling guidelines.

III. PRESENTATION OF OUR IBPMO ONTOLOGY

Semantic Web technologies, especially ontologies, are
promising means to improve BPM and to realize the
Industry 4.0 vision. In this scope, we presented the IBPM
ontology that we have created with Protégé 5.5.0. Every
IBPM ontology element is inserted as a class; the full
hierarchy is shown in Figure 1 (75 classes). The IBPM
ontology is an important part of our BPIGuide approach,
which ensures the selection of the most suitable
technologies 4.0 for BPs.

Regarding the first step, the scope of our ontology is to

develop an ontology for IBPM. Basically, a number of

methodologies have been used for developing ontologies,

such as the methodology defined in [18], [19], [20] and

[21], [22], [23]. In our research work, we have selected

the methodology Ontology Development 101 defined by

Noy and McGuinness’s in [21] because we have exploited

an existing ontology.
Concerning the second step, we have selected the

existing BPM ontology presented in (von Rosing, Laurier
and Polovina, 2015a), which is an empiric ontology,
meaning that its roots lie in practice, as it was developed
by practitioners documenting their practical knowledge of
the field rather than having originated from theory and
academics specialized in a restricted area of business. The
selected BPM Ontology offers a set of principles, views,
artefacts, and templates that have detailed metaobject
relations and rules that apply to them, such as how and
where can the process objects be related (and where not)
(von Rosing, Laurier and Polovina, 2015a).

In order to consider the Industry 4.0 main concepts, we
have been inspired from [24]. New classes were added to
present the industry 4.0 concepts such as Sensor, Location,
Machine, Workstation, Line, Technology4.0. The Machine
has been defined with the device that performs a task by
itself or by human intervention. The Workstation refers to

42Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 54 / 141

small integrated physical groupings of machines. The Cell
is a set of combined workstations for a particular complex
task; and the Line is a group of cells. Consequently, new
relations were added. A sensor is located in a location. A
process happens in a location. A workstation contains a
Machine. A machine can be an assembling machine, a
testing machine and a processing machine. A business
process adopts a technology 4.0.

3D printing, Augmented reality/simulation, Big data,
Biomedical/digital sensor, Blockchain, Cloud computing,
Collaborative robots, IoT, Machine/deep learning, Remote
control or monitoring and SOA are introduced as sub-
classes of Technology 4.0. A business process can be
linked to a business resource through the transforms
property. Besides, the hasSensor property is used to affirm
that sensors are attached to a business resource. In
addition, the happensIn property is used to stand for the
location where a business process takes place. Moreover,
the measuredBy property is used to associate a business
process to the process measurement. The business process
can be linked to the technology 4.0 through the adopts
property.

IV. RESEARCH METHODOLOGY

This section briefly explains the activities that were
carried out for ontology evaluation process. The evaluation
framework is proposed to evaluate our IBPM ontology for
which existing evaluation methods have been combined
into a single framework, dividing the methods used into
two phases: verification and validation [25].

The verification of the ontology is concerned with
building an ontology correctly. It evaluates the structure,
functionality and representation of the ontology. It
specifically focused on the validation activity using
OOPS ! tools. Different metrics and common pitfalls are
used to detect errors. The validation of the ontology
ensures that the right ontology for the given application is
built. This is achieved by CQs and expert interviews. In
particular, we focus (1) on verifying whether the
developed IBPMO is correct according to three evaluation
metrics [26], namely completeness, conciseness and
consistency, and (2) on checking how effective the
ontology is in the context of different applications. In this
regard, the IBPMO is evaluated by using three approaches:
CQs, technology-based, and application-based evaluations.
Figure 2 shows the evaluation process of the IBPMO.

Figure 2. The proposed Evaluation Process

Figure 1. Class hierarchy of the IBPMO

V. EVALUATION OF OUR IBPMO

In this section, we represent the evaluation of our
IBPMO, which focuses on the CQs, the technology-based
evaluation and the application-based evaluation.

A. Competency Questions evaluation

For the present evaluation, CQs as a qualitative
measure is the most effective and reliable way to check if
all important information are included in the ontology
[27]. The CQs pertain to various aspects, including class
hierarchy, individuals, disjoint classes, intersections and
unions of classes, equivalent classes, universal and
existential quantification, as well as restrictions related to
has-value and cardinality [12]. Thus, this evaluation
focuses on reformulating CQs as queries to retrieve data
from the ontology and to verify whether the CQs are
answered or not. In this sense, queries are written in
Description Logic (DL) and SPARQL language, which is

43Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 55 / 141

a semantic query language used for describing and even
worse checking the fulfillment of OWL CQs [12].

1) Consistency check via CQ-based DL: For syntactic

correctness and consistency check of our IBPMO, we rely

on “consistency checkers”. For this task, we have used the

Hermi reasoner, implemented in Protege as an external

plug-in. The goal is to verify the ability of the ontology

and check its consistency. The reasoner is known as a

classifier and used for consistency checking as well as to

compute the inferred class hierarchy (Natschläger, 2011).

HermiT 1.4.3 is an OWL 2 reasoner compatible with Java.

HermiT 1.4.3 provides functionalities to verify the

validation, check consistency of the ontology and answer a

subset of several queries expressed in DL. The evaluation

process has been executed considering the monitoring of

chronic disease BP, the food selection and guidance for

diabetic and hypertensive patients BP and the monitoring

of COVID 19 patients BP. We have considered these

different BPs to elaborate our validation, but only the

individuals of COVID BP will be detailed next. The

monitoring of chronic disease BP concerns the continuous

monitoring of patients with chronic disease to effectively

manage disease. The food selection and guidance for

diabetic and hypertensive patients BP concerns the

Classification of Food according to patients’ health. The

monitoring of COVID 19 patients BP concerns the

monitoring of COVID-19 patients or persons under

investigation in the COVID-19 crisis unit at CHU Farhat

Hached Sousse. The BP and the elaborated ontology were

elaborated using various surveys and investigation. It

consists of BPCOVID; Covid19CrisisCell; Physician;

HealingTime; Home; IoTTech; Oximeter; Patient;

QualityOfService; SensorOxygenSaturation;

SensorTemprature; Thermometer; beurer HealthManager;

MeasuringSpO2; RecoveringPatients;

RegainingAnAcceptableTemperature; Treatment_Cost;

WorkDoneByPhysician; CheckHealthStatus;

CovidTreatmentProcesses;

CrisisComityPerformanceIndicator;

InfectiousDiseaseDepartment which are defined to

represent different individuals. SensorTemperature and

SensorOxygenSaturation represents the individuals of the

same class Sensor. Thermometer and Oximeter are

individuals of the same class ProcessingMachine. Patient

and Physician are instances of the same class

BusinessRole. BPCOVID is an instance of the class

HumanOperation. HomeMonitoring is an individual of the

class Sit-Monitoring. Covid19CrisisCell is an instance of

the class ProcessOwner. We have also defined the

individuals for both the monitoring of chronic disease BP

and the food selection and guidance for diabetic and

hypertensive patients BP. The query formulated for the

identification of the BPs that have adopted the IoT

Technology is showed in Fig. 2. It was applied for all the

individuals of the three considered BPs.

Two examples of CQs, which cover the IBPMO, are
provided along with their corresponding DL queries and
results. The fact that the obtained results are conform to
the expected results contributes to proving the validity of
our ontology.

 CQ1 : What are the BPs that have adopted the IoT
Technology ? The results of this DL query, that
corresponds to this CQ1, show that it is possible to
easily access to most important information
related to the monitoring of chronic disease BP,
the food selection and guidance for diabetic and
hypertensive patients BP and the monitoring of
COVID 19 patients BP in a short time, as shown
in Figure 3.

Figure 3. Query for the identification of the BPs that have

adopted the IoT Technology

 CQ2: What are the BPs that have adopted the Big

data Technology ? The result of this DL query,

that corresponds to this CQ2, shows the instance

of the BusinessProcess concept that have adopted

the Big data Technology, as shown in Figure 4.

Figure 4. Query for the identification of the BPs that have

adopted the Big data Technology

The phase of the internal consistence check ensures
that our IBPMO does not contain any contradictory facts.
In fact, The internal consistency check in ontology is
performed by automated reasoners, which use formal
language representation and axiomatic definitions to detect
contradictions within the ontology [28].

Besides by this phase, we have checked that the model
is a correct rendering of the idea we wanted to express.

44Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 56 / 141

2) CQ-based SPARQL: In this paper, each question is

translated into SPARQL queries and implemented in

Protégé using the SPARQL QUERY plugin.
Four examples of CQs, which cover the IBPMO, are

provided along with their corresponding SPARQL queries
and results.

 CQ1: What are the Business Processes contained
in the ontology? The SPARQL query, that
corresponds to this CQ1 to retrieve all instances
of the BusinessProcess concept, is presented in
Fig. 4. The result of this query, as illustrated in
the Figure 5, contains the BPs modeled in the
IBPM Ontology.

Figure 5. SPARQL query results for CQ1

 CQ2: What are the concepts represented in the
ontology that model a Business Process? Figure 6
displays the formal representation of this CQ
using SPARQL query. The query asks for the
subclasses of the class BusinessProcess.
Consequently, the result of this query as shown in
the Figure 6 contains all instances of the
BusinessProcess.

Figure 6. SPARQL query results for CQ2

 CQ3: What are the concepts modeled in the
ontology that can be used to be applied to
Business Processes? Fig. 6 presents the SPARQL
query formalizing CQ3 to retrieve the subclasses
of the class BusinessProcess that are linked to the
BusinessResource/Actor class via the object
property appliesTo. The result of this query, as
shown in the Figure 7, contains the business
resource/actor for each business process modeled
in the IBPMO.

Figure 7. SPARQL query results for CQ3

 CQ4 : What are the concepts modeled in the
ontology that can be used to be applied to
Business Processes in a specific (particuler)
domain? Figure 8 presents the SPARQL query
formalizing CQ3 to retrieve the subclasses of the
class BusinessProcess that are linked to the
BusinessResource/Actor class via the object
property appliesTo. The result of this query, as
shown in the Figure 8, contains the business
resource/actor and the domain for each business
process modeled in the IBPMO.

By providing a set of CQs for the validation purpose,
the completeness of the ontology is evaluated. Each query
is run on the IBPMO to test if all requirements can be met
and the correct answers can be inferred. For those queries
that fail to run, the missing concepts or relations are added
in the IBPMO. Nonetheless, one of the main problems that
hamper the proper use of CQs lies on the completeness of
the ontology that can never be proved and constant
enhancement of the IBPMO needed.

Figure 8. SPARQL query results for CQ4

B. Technology-based evaluation

The present evaluation is concerned with the structural
characteristics of an ontology. It investigates the syntax,
consistency and formal semantics and thereby aims to
ensure the correctness and usability of the ontology.
Different tools have been developed to support the
technology-based evaluation. In this study, our IBPMO is
evaluated through the OOPS ! tool, which is a web-based
evaluation tool used for the detection of common pitfalls
or anomalies in ontologies according to a pitfall catalogue
currently containing 41 errors. This tool helps developers
to improve ontology quality by automatically detecting
potential errors [13].

45Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 57 / 141

Figure 9. The OOPS! Validation results.

After executing the online tool reliably OOPS ! with
the IBPMO, a summary of the pitfalls encountered is
generated as shown in Figure 9. The diagnosis results
obtained from OOPS! were manually revised. In fact, the
OOPS! tool detects most anomalies found in the ontology
and suggests improvements. Nonetheless the modifications
of the ontology needs to be done manually. OOPS !
classified the results for each pitfall into three levels:
critical, important, and minor levels. Priority was given for
the critical level first. The minor level was not mandatory
since it was not counted as a problem; however, by doing
so, it will improve the IBPMO performance. Fig.8 shows
the validation results for our IBPMO. It achieved two
important and three minor pitfalls. It attains zero critical
pitfalls. The three minor pitfalls resulted from missing
annotations (P08), Inverse relationships not explicitly
declared (P13) and using different naming conventions in
the ontology (P22). The two important pitfalls in the
opposite are caused by missing domain or range in
properties (P11) and the absence of a declared license
(P41). The pitfalls detected by OOPS ! can also be
classified by the following evaluation criteria :
consistency, completeness, and conciseness. The obtained
results show that no consistency nor conciseness pitfalls
are detected. Nevertheless, other pitfalls are detected (P08,
P22,P41) and two of them (P11, P13) are related to the
ontology completeness. Table 1 presents the five pitfalls
encountered.

TABLE I. IBPMO PITFALLS DETECTED BY OOPS

Criteria Pitfall
Description

Importance
level

Cases

Consistency No detected
pitfalls that
correspond to
consistency

_ 0

Completeness

P11 : Missing

domain or

range in

Important

18

properties

P13 : Inverse

relationships

not explicitly

declared

 Minor

11

Conciseness No detected
pitfalls that
correspond to
conciseness

_ 0

Other Pitfalls

P08 : Missing

annotations

P22 : Using

different

naming

conventions in

the ontology

P41 : No

license

declared

Minor

Minor

Important

45

The pitfall
applies to the
ontology in
general

The pitfall
applies to the
ontology in
general

Figure 10 shows an excerpt of the first important pitfall

(P11: Missing domain or range in properties). It shows a
missing domain and range for some properties. But this
pitfall was reported for the properties which were already
mentioned as inverse properties in the IBPMO. Eighteen
cases were detected for this pitfall as they represented 18
object properties without domain and range. The OD101
provided the guidelines regarding this property’s facet.
The effect of range and domain constraints as axioms is
the most common problem in OWL [29] [30]. In IBPMO,
the domain and range of properties are not assigned to
avoid the above problems. Thus, no ontology repair action
was carried out for this pitfall.

46Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 58 / 141

Figure 10. An excerpt from the first important pitfall.

Figure 11 shows the second and the last important
pitfall in IBPMO (P41: No license declared). It reports
about uses of no license agreement in the IBPMO. The
pitfall concerns the ontology metadata aspect, which does
not have any guidelines in OD 101. The repair
recommendation by OOPS! was to include a statement
containing the license information using any of the
following properties: dc:rights, dcterms:rights,
dcterms:license, cc:license or xhv:license.

Figure 11. Second important pitfall.

In Protégé, the metadata annotations are under the
ontology header view. Figure 12 shows the interface of
metadata annotations where the license of the IBPMO is
declared. The predicate for the license declaration of the
IBPMO was taken from the dcterms:license and assigned
to the CC-BY license [31], which is the most popular open
Creative Commons Attribution License.

Figure 12. License declaration.

The IBPMO has three minor pitfalls. Figure 13 shows
the first minor pitfall (P08: Missing annotations). The
description of this pitfall was in creating an ontology
element, human readable annotations have failed to be
attached to it. The label annotation properties (rdfs:label)
and the description annotation properties (rdfs:comment)
were considered to define annotations of the IBPMO
elements. These are the two most commonly used
annotation properties, besides owl:versionInfo [32]. This
pitfall will be repaired for further reuse.

Figure 13. First minor pitfall.

The second minor pitfall is P13 : Inverse relationships
not explicitly declared. It suggested some object properties
which can be declared as inverse. The description of this
pitfall was when any relationship (except for those that
were defined as symmetric properties using
owl:SymmetricProperty) did not have an inverse
relationship (owl:inverseOf) defined within the ontology.
OOPS! listed all of the object properties in IBPMO, which
did not have the inverse relationship (see Figure 14). OD
101 provided the guidelines regarding inverse
relationships. Poveda-Villalón et al. [33] stated that the
specification of the inverse properties is needed for
completeness.

Figure 14. Second minor pitfall.

The final minor pitfall is P22: Using different naming
conventions in the ontology (see Figure 15). It detected
uses of different naming conventions in the IBPMO. This
was reported because for some long class names the
symbol “-” (dash) was used, but for short class names, it
was not used. A modification was not necessary. OD 101
provided guidelines on naming conventions. It emphasized
consistency with the chosen naming conventions. The
benefits from the consistency help to avoid modeling
mistakes, improve readability, and ease the understanding
of the ontology.

Figure 15. Third minor pitfall.

After correcting the observed errors, the pitfall scanner
is run again to ensure all errors are corrected and no new
ones are detected. OOPS! plays a significant role in
ensuring the ontology is free from the common pitfall by

47Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 59 / 141

double checking the modeling guidelines provided by the
Ontology Development 101. For example, it supports the
latest common modeling errors that are not listed in the
Ontology Development 101, such as the annotation issue.
The main advantage of OOPS! is the repair
recommendation made by it. It shows how the ontology
element can be repaired to improve the ontology technical
quality. In the IBPMO, the evaluation results from OOPS!
have improved the inferencing, understanding, clarity and
metadata aspects. Nevertheless, OOPS! has a limitation. It
still needs to be revised manually in some cases of the
pitfall.

C. Application-based evaluation

The last step of the evaluation process consists of using
the ontology in a dedicated application. In the present
evaluation approach, the IBPMO is evaluated by providing
an application-based approach to assess the ability of the
IBPMO to serve as a knowledge base for a computer
system. The effectiveness of the IBPMO has been assessed
by putting it to the real application. It was designed to
work for as a knowledge base. The IBPMO is validated by
providing the following applications.

 IBPMO database and interface: A standalone
application, which enables the visualization of
knowledge modeled in the IBPMO, was
developed. The interfaces provided by the
application are designed to configure user needs
on selection criteria. In order to provide an easy
means to configure each criterion, three User
Interface (UI) components can be used, which
allow modifying a criteria’s configuration. The
UI components concern the performance criteria,
the BP languages and the application fields. Such
interfaces display the selection criteria. Figure
16-18 show interface examples of the
application : interface for performance criteria
(Figure 16), interface for BP languages (Figure
17) and interface for application fields (Figure
18).

 BPIGuide tool: The IBPMO is used in
conjunction with the BPIGuide tool decribed in
previous works. The BPIGuide enables the
decision rules represented in the IBPMO to be
automatically infered. Since, using the ontology-
based engine, the result of the execution of these
rules are the rank of the recommended
technologies 4.0 which will be presented to users
and could be used to redesign and implement
optimized BPs 4.0. Besides, our validated
ontology was used in the context of patient care
in the healthcare field. We applied the different
rules that we extracted from IBPMO in the
surgical monitoring business process.

Figure 16. Interface for performance criteria

Figure 17. Interface for BP languages

Figure 18. Interface for application fields

VI. DISCUSSION

The evaluation of the IBPMO indicates that the
ontology is well-designed and suitable for its application.
Only minor changes and adaptations regarding the lexical
and structural layer are made. The conducted evaluation
revealed that the developed IBPMO is : correct since it
meets the completeness, conciseness, and consistency
standards, and effectiveness since it can be used concretely
in a variety of applications. Nevertheless, evaluating the
IBPMO demonstrated that most probable no automatic
method will ever be enough to perform a complete
ontology evaluation. The evaluator has to decide on the
criteria relevant for the evaluation, has to evolve the CQs
and has to make decisions based on the evaluation results
over each metric. But as good science should exclude
subjectivity, it is advisable that more than one person
performs the evaluation. Experts should be included for a
satisfactory result in the evaluation.

VII. CONCLUSION AND FUTURE WORK

Ontology evaluation is a main task in the process of
ontology development that takes a lot of effort and
thought-process as each ontology needs an individual
approach for evaluation adapted to the intended

48Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 60 / 141

application of the ontology. The ontology evaluated in this
study, IBPMO, has been developed to select the most
suitable technologies 4.0 for BPs. We mainly focused on
the end-to-end evaluation methodology. First, the IBPMO
is evaluated against CQs. This first phase focuses on
reformulating CQs as queries, which are expressed in DL
and SPARQL language to retrieve data from the ontology
and to verify whether the CQs are answered or not. During
the second phase, a technology-based evaluation approach
is addressed to specify quality criteria in order to ensure
that the IBPMO is rid from pitfalls. At last, the ontology is
evaluated using an application-based approach to assess
the effectiveness of the IBPMO. For future work, the
IBPMO will be upgraded with linked open data to enable
domain knowledge sharing and reuse.

REFERENCES

[1] S. Mejri and S. Ghannouchi. "Towards a New Approach

for Intelligent BPM Based on Technologies 4.0". New

Trends in Intelligent Software Methodologies, Tools and

Techniques: Proceedings of the 20th International

Conference on New Trends in Intelligent Software

Methodologies, Tools and Techniques (SoMeT_21). vol.

337, pp. 313-326, September 2021.

https://doi.org/10.3233/FAIA210030.

[2] V. R. Sampath Kumar, et al. “Ontologies for Industry 4.0”.

The Knowledge Engineering Review. vol. 34, pp. e1-e17,

November 2019.

https://doi.org/10.1017/S0269888919000109.
[3] S. Jaskó, A. Skrop, T. Holczinger, T. Chován, and J.

Abonyi. “Development of manufacturing execution

systems in accordance with Industry 4.0 requirements: A

review of standard-and ontology-based methodologies and

tools”. Computers in Industry. Vol. 123, pp. 1-18,

December 2020.
[4] C. Kaar, J. Frysak, C. Stary, U. Kannengiesser, and H.

Müller. “Resilient Ontology Support Facilitating Multi-

Perspective Process Integration in Industry 4.0”.

Proceedings of the 10th International Conference on

Subject-Oriented Business Process Management. pp. 1–10,

April 2018.
[5] A. Annane, N. Aussenac-Gilles, and M. Kamel. “BBO:

BPMN 2.0 Based Ontology for Business Process

Representation.” 20th European Conference on Knowledge

Management (ECKM 2019). pp. 49–59, September 2019.
[6] M. Poveda-Villalón, MC. Suárez-Figueroa, and A. Gómez-

Pérez. “Validating ontologies with oops!” Knowledge

Engineering and Knowledge Management: 18th

International Conference, EKAW 2012. Galway City,

Ireland, pp. 267–81, October 2012.
[7] A. A. Alsanad, A. Chikh, and A. Mirza. “A Domain

Ontology for Software Requirements Change Management

in Global Software Development Environment”. IEEE

Access. vol. 7, pp. 49352-49361, January 2019.

https://ieeexplore.ieee.org/abstract/document/8684236/

(accessed January 30, 2023).
[8] A. Abdelghany, N. Darwish, and H. Hefni. “An Agile

Methodology for Ontology Development”. IJIES 2019.

Vol. 12, pp. 170–181, April 2019.

https://doi.org/10.22266/ijies2019.0430.17.

[9] N. Noy and DL. McGuinness. “Ontology development

101”. Knowledge Systems Laboratory, Stanford University

2001. vol. 2001, pp. 1-18, January 2001.

[10] W. Chansanam, K. Suttipapa, and A.R. Ahmad. "COVID-

19 ontology evaluation". International Journal of

Management. vol. 11, pp. 47-57, October 2020.
[11] N. M. Yusof and S. A. M. Noah. "Malaysian food

composition ontology evaluation". International Journal of

Machine Learning and Computing. vol. 9, pp. 700–705,

October 2019.
[12] C. Bezerra, F. Freitas, F. Santana da Silva. “Evaluating

Ontologies with Competency Questions”. pp. 284-285,

November 2013. https://doi.org/10.1109/WI-IAT.2013.199.
[13] M. Poveda-Villalón, A. Gómez-Pérez, and MC. Suárez-

Figueroa. “Oops!(ontology pitfall scanner!): An on-line

tool for ontology evaluation”. International Journal on

Semantic Web and Information Systems (IJSWIS). vol. 10,

pp. 7–34, April 2014.
[14] S. Jain, V. Meyer. “Evaluation and refinement of

emergency situation ontology”. Int J Inform Educ Technol.

vol. 8, pp. 713–719, July 2018.
[15] M. Richard, X. Aimé, M.C. Jaulent, M.O. Krebs, and J.

Charlet. “From Patient Discharge Summaries to an

Ontology for Psychiatry”. MEDINFO 2017: Precision

Healthcare through Informatics, IOS Press. pp. 930–934,

June 2017.
[16] D. Kalita, and D. Deka. “Ontology for preserving the

knowledge base of traditional dances (OTD)”. The

Electronic Library. vol. 38, pp. 785–803, October 2020.
[17] T. Pizzuti, G. Mirabelli, Grasso G, and G. Paldino.

“MESCO (MEat Supply Chain Ontology): An ontology for

supporting traceability in the meat supply chain”. Food

Control. vol. 72, pp. 123–133, Février 2017.
[18] M. Uschold and M. King. “Towards a methodology for

building ontologies”. Citeseer. pp. 1-13, July 1995.
[19] M. Gruninger. “Methodology for the design and evaluation

of ontologies”. Proc. IJCAI’95, Workshop on Basic

Ontological Issues in Knowledge Sharing. April 1995.
[20] M. Fernández-López, A. Gómez-Pérez, and N. Juristo.

“Methontology: from ontological art towards ontological

engineering”. pp. 33-40, March 1997.
[21] N. F. Noy, and D. L. McGuinness. “Ontology development

101: A guide to creating your first ontology”. Stanford

knowledge systems laboratory technical report KSL-01-05.

pp. 1-25, March 2001.
[22] H. S. Pinto, S. Staab, and C. Tempich. "DILIGENT:

Towards a fine-grained methodology for DIstributed,

Loosely-controlled and evolvInG Engineering of

oNTologies”. ECAI. vol. 16, pp. 1-393, January 2004.
[23] M. C. Suárez-Figueroa, A. Gómez-Pérez, and M.

Fernández-López. “The NeOn methodology for ontology

engineering. Ontology engineering in a networked world”.

pp. 9–34, Springer; December 2011.

[24] F. Giustozzi, J. Saunier, C. Zanni-Merk. “Context modeling

for industry 4.0: An ontology-based proposal”. Procedia

Computer Science. vol. 126, pp. 675–684, January 2018.
[25] H. Hlomani and D. Stacey. “Approaches, methods, metrics,

measures, and subjectivity in ontology evaluation: A

survey”. pp. 1-11, August 2014.

49Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 61 / 141

[26] Z. C. Khan.” Evaluation metrics in ontology modules”. pp.

1-13, April 2016.
[27] Kurukshetra, S. Jain S, and V. Meyer. “Evaluation and

Refinement of Emergency Situation Ontology”. IJIET. vol.

8, pp. 713–719, January 2018.

https://doi.org/10.18178/ijiet.2018.8.10.1127.
[28] J. D. Warrender and P. Lord . "How, What and Why to test

an ontology". pp. 1-4, Mai 2015.
[29] A. Rector, et al. “OWL pizzas: Practical experience of

teaching OWL-DL: Common errors & common patterns”.

Engineering Knowledge in the Age of the Semantic Web:

14th International Conference, EKAW. Whittlebury Hall,

UK, pp. 63–81, October 2004. Proceedings 14, Springer.
[30] D. Allemang and J. Hendler. “Semantic web for the

working ontologist: effective modeling in RDFS and

OWL”. pp. 1-510, May 2011.
[31] M. Poblet, et al. “Assigning Creative Commons Licenses to

Research Metadata: Issues and Cases”. In: Pagallo U,

Palmirani M, Casanovas P, Sartor G, Villata S, editors. AI

Approaches to the Complexity of Legal Systems, vol.

10791, pp. 245–256, October 2018.

https://doi.org/10.1007/978-3-030-00178-0_16.
[32] M. Horridge, et al. “A practical guide to building owl

ontologies using protégé 4 and co-ode tools edition1”. vol.

2. pp. 1-107, March 2011.

[33] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann.

“Modelling ontology evaluation and validation”. The

Semantic Web: Research and Applications: 3rd European

Semantic Web Conference, ESWC. Budva, Montene, pp.

140–154, June 2006.

50Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 62 / 141

OSS-Fuzzgen: Automated Fuzzing of Open Source Java Projects

Sheung Chi Chan
Ada Logics

London, England, UK
arthur.chan@adalogics.com

Adam Korczynski
Ada Logics

London, England, UK
adam@adalogics.com

David Korczynski
Ada Logics

London, England, UK
david@adalogics.com

Abstract—OSS-Fuzz is an open source service for managing the
fuzzing of open source projects. Open source projects integrate
into OSS-Fuzz by adding a set of fuzzing harnesses targeting their
project and relevant build logic for the OSS-Fuzz infrastructure.
OSS-Fuzz will then build and run these harnesses continuously
and report when finding any security or reliability issues. To date,
OSS-Fuzz has reported tens of thousands of bugs in software
and the list is continuously growing. Unfortunately, the process
of integrating projects into OSS-Fuzz is still largely manual
and both the creation of fuzzing harnesses and build setup are
time-consuming tasks. In this paper, we propose OSS-Fuzzgen,
a system that can automatically generate OSS-Fuzz integrations
for open source Java projects, including fuzzing harness synthesis
and build infrastructure generation. The input to OSS-Fuzzgen
is a GitHub URL to a given open source project. The output
is a list of ranked OSS-Fuzz integration candidates that can be
run by OSS-Fuzz. We empirically evaluate our setup by running
the system through more than 200 open source projects, which
resulted in more than 100 generated OSS-Fuzz integrations. We
manually inspect the results and submit 31 of these to OSS-
Fuzz resulting in more than 50 reported bugs across the 31
projects. For 11 of these bugs, we submitted fixes to the relevant
open source projects, and 9 fixes were accepted and merged into
the upstream open source project. We have open-sourced OSS-
Fuzzgen and the code is available on GitHub[1].

Keywords—OSS-Fuzz; Fuzz-Introspector; Java; fuzzing; secu-
rity testing; libfuzzer.

I. INTRODUCTION

Fuzzing is an effective technique for finding security and re-
liability issues in software. The high-level idea behind fuzzing
is to pass arbitrary inputs to a given application and monitor if
unexpected behaviour happens. There are many success stories
from fuzzing, both in terms of finding difficult-to-catch issues
and also rapidly catching regressions in software. OSS-Fuzz is
an open source fuzzing service that currently manages fuzzing
infrastructure for more than 1000 widely used open source
projects and has reported tens of thousands of security and
reliability bugs in these projects[2][3].

To integrate fuzzing in a project, coverage-feedback fuzzing
specifically, the general approach is to write fuzzing harnesses
that execute the target software package with input seeded by
data from the fuzzing engine. In coverage-guided fuzzing, a
harness is a small program that aims to explore the target
code base by continuously mutating its input and collecting
seeds (inputs) that trigger unique code execution in the target.
They are often similar to unit tests, but instead of testing
a specific input, the harnesses test a generalised domain of
inputs, and the domain is often much larger than what is
feasible to brute-force, e.g. arbitrarily large buffer, hence the

use of genetic mutational algorithms in the fuzzing engine.
During execution, the fuzzing engine observes the execution
of the target code and uses coverage data to guide the input
generation and mutation, resulting in the creation of inputs to
the fuzzing harness that incrementally explore the target code
base[4].

The harnesses comprise a central role when fuzzing a
software package and many projects have several harnesses to
trigger different parts of the project’s code base. For example,
OSS-Fuzz has around 1100 projects integrated into the fuzzing
service but runs more than 4500 fuzzing harnesses daily[5].
Another central component when fuzzing is to have a build
infrastructure in place that makes it possible to build the
target software using an environment that supports fuzzing.
Specifically, the target codebase needs to be instrumented
appropriately, which happens during the compilation stage and
the harnesses need to be appropriately linked to the project.

The process of writing harnesses for a software package as
well as constructing the built environment that makes fuzzing
possible is cumbersome and time-consuming. It can often take
several weeks to integrate fuzzing into medium-sized software
packages, and many years to integrate fuzzing into extensive
code bases such as modern browsers or operating systems.
Furthermore, despite the success of OSS-Fuzz fuzzing more
than 1100 software packages continuously, there remain tens
of thousands of open source software packages that are not
being fuzzed.

There has been efforts into automating fuzzing harness
writing[6][7][8][9][10][11] and also related efforts for infer-
ring API specifications[12][13]. In general, a fuzzing harness
requires the effort from OSS-Fuzz to observe and mutate the
input to extensively cover the underlying code base of the
target projects. Otherwise, there is no difference compared
to unit testing. These efforts are, however, not targeted open
source projects and are only generating fuzzing harnesses
but not the full OSS-Fuzz integrations. Some of the efforts
require manual studying of the target projects to specify target
methods or classes for the fuzzing harnesses generation. This
setting makes it difficult to automatically generate the full
OSS-Fuzz integration and requires extensive manual efforts
before and after the automatic generation process.

In this paper, we introduce OSS-Fuzzgen, a system for au-
tomatically generating OSS-Fuzz integrations for open source
Java projects. Our system takes as input a list of GitHub
repositories and will output a set of fuzzing harnesses and
build infrastructure for the projects such that the projects

51Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 63 / 141

can be fuzzed by way of OSS-Fuzz. Our system relies on
static and dynamic program analysis techniques, which are
developed as extensions to Fuzz Introspector[14]. To verify
our system, we present an empirical evaluation of running our
system against 257 open source projects which resulted in
more than 100 possible project submissions to OSS-Fuzz. We
submit 31 resulting projects with high coverage and fuzzing
performance to OSS-Fuzz. For several of the bugs found by
the generated harnesses, we reported them to the relevant open
source projects, which confirmed that the bugs found were
legit and accepted our patches to fix the issues.

Contributions This paper makes the following contribu-
tions:

• We present a novel system for automatically synthesising
Java fuzzing harnesses.

• We present the first system to automatically construct
OSS-Fuzz project integrations.

• We present an extensive empirical evaluation of more
than 200 open source projects and verify that our system
finds real bugs in widely used Java projects.

The remainder of this paper is structured as follows. In
Section II, we introduce the OSS-Fuzz and Fuzz Introspector
services. In Section III, we give an overview of the OSS-
Fuzzgen tool. In Section IV, we illustrate the detailed design
of the OSS-Fuzzgen tool. In Section V, we give details of
the empirical evaluation of the OSS-Fuzzgen tool. We then
discuss the limitation and future enhancement plan for the
OSS-Fuzzgen tool in Section VI and conclude the paper in
Section VII.

II. BACKGROUND

In this section, we introduce OSS-Fuzz and Fuzz Introspec-
tor, each comprising a central role in our system. Specifically,
our solution is built as an extension to Fuzz Introspector while
we rely on OSS-Fuzz as the runtime environment for our
generated harnesses.

A. OSS-Fuzz

OSS-Fuzz[2] is a free online service that manages the
execution of fuzzing harnesses for open source projects. The
process for integrating into the service is that an open source
project develops a set of fuzzing harnesses targeting the project
and also some necessary glue for OSS-Fuzz to build these
harnesses. This glue is composed of a project.yaml file with
metadata, a Dockerfile to construct the container in which the
harnesses are built and also a shell script, build.sh, that holds
the commands for building the target project and harnesses
inside the container.

To submit the project for OSS-Fuzz integration, a pull
request is made to the OSS-Fuzz repository with the specific
glue in the dedicated project directory. Once the pull request is
merged OSS-Fuzz will daily build the fuzzing harnesses using
the latest upstream code. OSS-Fuzz then runs these harnesses
for an extended period and reports to the people listed in
the project.yaml metadata if any of the harnesses find any
bugs. OSS-Fuzz provides the infrastructure to build and run

harnesses locally for each project integrated into OSS-Fuzz. In
this way, there is a unified interface for building and running
more than 4500 fuzzing harnesses spread across more than
1100 projects.

B. Fuzz Introspector

Fuzz Introspector[14] is a tool for providing introspection
capabilities into the fuzzing of a given software package. Fuzz
Introspector can, for example, analyse the static reachability
of fuzzing harnesses, find candidate methods in the target code
that are likely good targets for fuzzing and combine runtime
code coverage data with static analysis capabilities to identify
potential runtime blockers for the fuzzing harnesses [15].

Fuzz Introspector is architecturally split between multiple
frontends and a single backend. The frontends are language-
specific static analysis tools, often in the form of compiler
extensions, which extract data about the software under anal-
ysis. The Java frontend of Fuzz Introspector is built on top
of SOOT[16] and this is the primary component of Fuzz
Introspector that OSS-Fuzzgen uses.

III. OSS-FUZZGEN OVERVIEW

OSS-Fuzzgen takes as input one or more URLs to a given
set of open source projects on GitHub. OSS-Fuzzgen outputs
a set of OSS-Fuzz integrations for each of the provided open
source projects, where each integration includes the base OSS-
Fuzz files (Dockerfile, build.sh and project.yaml) and a fuzzing
harness. Each of these integrations can be built and run locally
using the OSS-Fuzz setup.

The mechanics behind OSS-Fuzzgen are divided into five
sequential stages, and these five stages happen for each open
source project input to OSS-Fuzzgen:

• Stage 1: Build system generation. This stage creates
a build system comprising the OSS-Fuzz Dockerfile and
build.sh to build the target codebase. The challenge of
this stage is to automatically build a Java project purely
based on the GitHub URL.

• Stage 2: Target project static analysis. This stage
uses static program analysis to extract details, such as
method signatures, of the target code which can be used
for fuzzing harnesses generation. This stage relies on
building the target code and performing static program
analysis during the building.

• Stage 3: Fuzzing harness generation. This stage takes
as input the data generated from Stage 2, and uses it
to generate a candidate set of fuzzing harnesses. These
harnesses are Java source code files that can be linked to
the target’s project build artefacts.

• Stage 4: Fuzzing harness validation. This stage com-
bines the output from stage 1 and stage 3 into a set of
candidate OSS-Fuzz project integrations and then builds
and runs the fuzzing harness for each candidate project.
The output of this stage is a set of logs showing the
result of running the fuzzing harness for each candidate
integration.

52Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 64 / 141

• Stage 5: Fuzzing harness integration ranking. This
stage interprets the output from stage 4 and ranks each
of the candidate OSS-Fuzz integrations. The output of
this stage is a list of viable OSS-Fuzz integrations that
are ranked according to which is the best integration.

IV. OSS-FUZZGEN DESIGN

This section describes the stages of OSS-Fuzzgen in de-
tail, including implementation details and higher-level design
decisions.

A. Stage 1: Build system generation

The first stage generates the OSS-Fuzz Dockerfile and
build.sh, which are used to build the project in the OSS-Fuzz
container image. The general problem to be solved is how
to build a given arbitrary Java project and instructions for
building fuzz harnesses against the project’s build artefacts.

Java projects can be built in many different ways, such as
directly compiled by Javac or using managed build systems
like Maven or Gradle. To this end, OSS-Fuzzgen supports
three build systems Maven, Gradle and Ant. OSS-Fuzzgen has
heuristics for recognizing which build system is used by the
target project by traversing the files of the target repository
in the search for build files related to each build system.
Specifically, OSS-Fuzzgen looks for pom.xml for Maven,
build.gradle or build.gradle.kts for Gradle and build.xml for
Ant. If multiple build properties exist, it indicates that the
project can be built using multiple different build systems,
OSS-Fuzzgen will use the first supported build system from
the order: Maven, Gradle, Ant.

In addition to the build system, OSS-Fuzzgen needs to
support different versions of the Java Development Kit (JDK).
The default JDK version adopted by OSS-Fuzz is OpenJDK-
15 at the time of writing. However, many projects require a
different version of JDK to compile. To support this, OSS-
Fuzzgen tries building the project using different versions
of JDK until a successful build is found. The order of the
JDK used are OpenJDK-15, OpenJDK-17, OpenJDK-11 and
OpenJDK-8 and OSS-Fuzzgen will record and use the first
successful build.

Finally, in addition to the build system and JDK version, an
important step is identifying the class and jar files produced
by the project, as these are necessary when linking fuzzing
harnesses to the code. To support this, OSS-Fuzzgen traverses
the folder of the project post-building to find the class files
generated by the build and packs these class files into a single
jar file. Additionally, OSS-Fuzzgen locates possible project
jars, including dependencies, and moves them to a suitable
classpath location so the generated fuzzing harnesses can use
them.

B. Stage 2: Target project static analysis

The next task is to extract information about the target code
for generating fuzzing harnesses. To do this, OSS-Fuzzgen
relies on the Java frontend of Fuzz Introspector to retrieve
a list of methods and classes of the target project. The list

includes type information for each function, including both
return type and argument types.

The Java frontend logic analyses the project’s class and
jar files, including third-party dependencies. However, OSS-
Fuzzgen is not interested in generating harnesses for third-
party dependencies, and, therefore, limits the analysis to the
code within the source code directory of the target project.
This is achieved by introspecting the source code location of
the methods and classes within the jar files.

The static analysis component depends on the Soot frame-
work, and a limitation of this is that the Soot framework fails
to discover generic types and lambda expressions in the target
code. For this reason, OSS-Fuzzgen can only generate general
parameters for methods requiring generic type parameters or
lambda expressions as input.

Following the static program analysis step, OSS-Fuzzgen
creates a base OSS-Fuzz project integration directories and
generates the correct set of base files from the template and
the build configurations obtained in stage 1. OSS-Fuzzgen also
includes an empty base fuzzing harness in the directory. At this
point, OSS-Fuzzgen has created a Dockerfile, build.sh and a
fuzzing harness, although the fuzzing harness is empty. The
setup can now be tested in the OSS-Fuzz container images.

C. Stage 3: Fuzzing harness generation

This stage uses the output of the static analysis stage to
create fuzzing harness source codes and combine them with
the build artefacts from stage 1 to create working OSS-Fuzz
integrations. To do this, OSS-Fuzzgen uses three steps to
transform the raw data from Fuzz Introspector to a set of
candidate OSS-Fuzz integrations, each with a fuzzing harness
targeting the project.

The first step is extracting the specific methods in the target
code to add metadata describing how to call these methods.
Fuzz Introspector iterates through all the possible methods
and classes in the project where each method may require
different handling to execute. For example, some methods may
be declared static which allows direct invocation, and some
methods may require object creation or other code initializa-
tion. Furthermore, some methods may be class constructors or
throw exceptions that need specific handling. This step extracts
this information from the Fuzz Introspector result and groups
the target methods accordingly.

The second step is filtering methods to reduce the candidate
set of target methods. It is not uncommon for a medium-sized
Java project to have more than a thousand methods, where
many of them are not good targets to fuzz. OSS-Fuzzgen
applies four filters to discard non-relevant methods:

• Inaccessible methods filter. This filter discards inacces-
sible classes and methods. This includes abstract classes,
interfaces or protected / private elements which are not
accessible by fuzzing harnesses and will likely fail in the
fuzzing harnesses validation stage.

• Helper methods filter. This filter discards methods that
do not have a lot of complexity. This includes general

53Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 65 / 141

methods from the Object class, methods with no param-
eters or helper methods that only get or set variables.

• Out-of-scope methods filter. This filter discards methods
that do not belong to the target project. Some projects
include third-party dependencies in their resulting jar
files. OSS-Fuzzgen identifies the source code location for
the target project and filters out all methods and classes
which are not part of the source files for the target project.

• Method call-depth filter. This filter discards methods
that may be hit by other possible entry points. Specifi-
cally, OSS-Fuzzgen extracts the call tree of each method
and discards methods if other possible entry points will
reach the given method. This filter consists of two stages.
The first stage sorts all target methods by calling tree
depth descendingly. Target methods with deeper call trees
likely cover more logic which is a desired property when
fuzzing. OSS-Fuzzgen then keeps the top 20% of the
sorted method target list. The second stage adds any
methods that are not called by any other methods, as
these are considered public APIs which are determined
to be good candidates for fuzzing.

Following the filtering step, OSS-Fuzzgen now has the list
of method candidates to target and metadata on how to invoke
each of these methods. Next, OSS-Fuzzgen proceeds to apply
10 heuristics for creating fuzzing harnesses against the target
methods. These heuristics create a fuzzing harness that calls
the target method in a manner where the arguments to the
method are seeded with fuzzer-provided data. Some of these
heuristics may produce code that won’t run for a given target
method.

The idea behind this step is to generate a lot of potential fuzz
harness candidates and then use runtime evaluation later in the
process to assess the quality of each harness. These heuristics
are summarised in Table I. We came up with these heuristics
by studying the existing OSS-Fuzz projects and abstracting
existing fuzzing harnesses into higher-level code patterns.

In addition to creating the logic around the heuristics, OSS-
Fuzzgen adds possible exception handling by traversing the
call tree of each method, as well as including the import
statements necessary for the code. OSS-Fuzzgen augments
the code with comments that indicate the target methods and
heuristics used.

Heuristics 1-4 are simple heuristics that consider different
ways to execute static methods and instance methods directly.
Static methods can be invoked directly while instance methods
require object initialisation. For these four heuristics, OSS-
Fuzzgen handles methods with up to 20 parameters where the
parameters have to be primitive types, an array of primitive
types and String (or CharSequence in general). Each argument
is seeded with data from the fuzzing engine.

Heuristics 6-10 are more complicated than heuristics 1-4.
Heuristic 6 considers some method execution that requires
prerequisite settings and auto-discover possible settings meth-
ods and invokes them before the target method is executed.
Heuristic 7 considers testing the consistency of method calling
of some supposedly deterministic method. Heuristic 8-10

TABLE I. HEURISTICS FOR GENERATING FUZZING HARNESSES

Heuristic 1 Each possible target contains a fuzzing harness calling
to one of the static methods in the target method list
directly.

Heuristic 2 Each possible target contains a fuzzing harness calling
to one of the instance methods in the target method
list after the creation of the required object with the
object constructor. It will search for a constructor from
the subclass if the target object is an abstract class or
interface.

Heuristic 3 Each possible target contains a fuzzing harness calling
to one of the instance methods in the target method list
after the creation of the required object using a static
method like get instance or else.

Heuristic 4 Each possible target contains a fuzzing harness calling
to one of the instance methods in the target method
list after the creation of the required object with static
or instance factory methods. It will also create an
instance of the class containing the factory methods
if necessary.

Heuristic 6 Similar to Heuristic 2-4, but before the target method is
called, some setting methods will be called to simulate
the case that some methods have some prerequisite
method before the real execution logic.

Heuristic 7 Similar to Heuristic 2-4, but it will execute the target
method twice and compare the result to fuzz for a
deterministic result.

Heuristic 8 Similar to Heuristic 2-4, but it will handle enum type
parameters with random choice of enum value.

Heuristic 9 Similar to Heuristic 2-4, but it will handle parameters
that request a static number of choices.

Heuristic 10 Similar to Heuristic 2-4, but it will handle class type
parameters of the target method.

Heuristic 11 Each possible target contains a fuzzing harness calling
to one of the class constructors from classes in the
project, excluding throwable classes or test classes.

considers complicated parameters in addition to simple object
creation, primitive types, an array of primitive types and string
considered in heuristic 1-4. Those complicated parameter types
include Class object, Enum object and parameters that require
a fixed set of choices. Last but not least, heuristic 11 considers
various kinds of parameters for executing public and concrete
class constructors.

The result of this stage is a set of candidate fuzzing
harnesses where each of them is stored in an OSS-Fuzz
integration directory together with the generated Dockerfile,
build.sh and project.yaml. At this point, each of these direc-
tories represents a candidate OSS-Fuzz project.

A sample fuzzing harness is shown in Figure 1. The target
method in this example is feign.template.UriUtils::encode
and the heuristic applies is Heuristic 1. The heuristic simply
calls into the static method using arguments seeded with data
from the fuzz engine.

D. Stage 4: Fuzzing harness validation

Following the fuzzing harness generation, OSS-Fuzzgen has
assembled a list of possible fuzzing harness integrations. OSS-
Fuzzgen then validates each fuzzing harness by building and
running it using the wrapping OSS-Fuzz project integration.
The output from the runtime execution is logged and the
return value and messages are used to judge if the execution

54Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 66 / 141

import com.code_intelligence.jazzer.api.FuzzedDataProvider;
import feign.template.UriUtils;

// jvm-autofuzz-heuristics-1
public class Fuzz {
public static void fuzzerTestOneInput(FuzzedDataProvider data) {
// Heuristic name: jvm-autofuzz-heuristics-1
// Target method: [feign.template.UriUtils] public static java.lang.String
// encode(java.lang.String,boolean)
feign.template.UriUtils.encode(data.consumeString(100),data.consumeBoolean());
}

}

Figure 1. Sample fuzzing harness generated by OSS-Fuzzgen on feign.template.UriUtils::encode method of project feign using heuristic 1

is successful or not. The runtime execution time can be set by
the user of OSS-Fuzzgen and is by default set to 20 seconds.

OSS-Fuzzgen determines the status of the run with some
additional fuzzing statistics including coverage information.
These logs are stored in a separate directory together with a
summary.json recording key statistical data for later analysis
purposes. Both the building and running of the harness may
break, either due to limitations in the artefacts produced,
SOOT, Fuzz Introspector or the generated code.

E. Stage 5: Fuzzing harness integration ranking

The OSS-Fuzzgen results are ready to use after the fuzzing
harnesses validation phase, however, OSS-Fuzzgen may have
generated several hundred successful runs for any given
project. To aid the analysis and choosing of the best result to
be integrated into OSS-Fuzz, OSS-Fuzzgen also provides some
post-processing and summarization of data. OSS-Fuzzgen
ranks the possible targets according to the maximum code
coverage achieved and the maximum difference in coverage
between the start and finish of each fuzzing run.

OSS-Fuzzgen also comes with several utilities for extracting
an overview when analysing many open source projects at
the same time, to ease the efforts needed to identify the
best performing harnesses. The resulting OSS-Fuzz integra-
tion directories for each successfully generated target can be
integrated directly into OSS-Fuzz.

V. EMPIRICAL STUDY OF OSS-FUZZGEN PROCESS AND
GENERATED FUZZING HARNESSES

In this section, we present the empirical evaluation of our
work. The evaluation process consists of two experiments:
a large-scale study running OSS-Fuzzgen autonomously and
an extension of this study where we integrate a subset of
the successful projects into OSS-Fuzz with minor manual
additions.

A. Large scale evaluation

To empirically verify OSS-Fuzzgen, we ran it against 257
open source Java projects not covered by OSS-Fuzz yet. We
made an effort to pick popular Java libraries or frameworks,

where popularity was based on the number of GitHub Star
and GitHub Watch rankings. There were no UI applications
in the target projects and in general, we picked libraries that
are meant for use by applications rather than stand-alone
applications as such. To set up the experiment, we created a
text file containing the URLs to each of the 257 projects and
provided it as input to OSS-Fuzzgen. For the validation phase
of OSS-Fuzzgen, we set the fuzzing harnesses to run for 20
seconds. We divide the results into the following categories:

1) S1: Successful build and generate fuzzing harness. A
build script and some fuzzing harnesses were generated.
Fuzzing harnesses may not be runnable.

2) S2: Successful build and generate fuzzing harness
that runs. A build script and fuzzing harnesses were
generated. Some fuzzing harnesses are built and run
successfully.

3) S3: Successful build and generate fuzzing harness
that runs and increases coverage. A build script and
fuzz harnesses were generated. Some fuzzing harnesses
build and run successfully and explore more than one
code path within 20 seconds of execution.

TABLE II. RESULTS FROM RUNNING OSS-FUZZGEN ON OPEN
SOURCE SOFTWARE

Total java project targets 257 100%
S1 Successful build and generate fuzzing harness 123 47%
S2 Successful build and generate fuzzing harness

that runs
116 45%

S3 Successful build and generate fuzzing harness
that runs and increases coverage

94 37%

Table II shows the results of our evaluation. Amongst
the 257 total targets, OSS-Fuzzgen succeeded in generating
project integrations that match category S2 for 116 (45% of
the total) projects. However, 22 of these generated projects
failed to increase coverage during the initial 20 seconds of
fuzzing harnesses validation, meaning a total of 94 projects
(37% of the total) got results matching group S3.

B. Submitting projects to OSS-Fuzz

The goal of OSS-Fuzzgen is to generate OSS-Fuzz integra-
tions that are useful in testing and fuzzing the code of the target

55Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 67 / 141

projects. To empirically validate this goal, we submitted 31 of
the 94 resulting OSS-Fuzz integrations where we picked those
projects with the most promising signs of code exploration.
We identified this by looking at the code coverage delta of the
harnesses achieved from the 20-second initial fuzzing run. The
goal was to monitor if the fuzzing harnesses found any issues
in the target projects and ensure the projects ran continuously.

Before submitting the generated projects to OSS-Fuzz, we
applied some manual efforts on several resulting projects.
First, when OSS-Fuzzgen generated multiple targets for a
given project, we hand-picked the best targets, in terms of
code coverage and target method call depth, and merged them
into a single directory. Second, sometimes the auto-generated
code may reveal additional entry points in the target code
that are good for fuzzing. For example, additional functions
that are fuzzable within the same class as an auto-generated
fuzzing harness, and we added these. Third, some of the
promising generated harnesses would run into issues early in
the execution due to missing initialization code and in these
cases, we added logic to the fuzzing harnesses that would
properly initialise the relevant logic. Finally, we went over
the auto-generated code to improve readability by e.g., setting
the names of variables appropriately and cleaning up code
formatting.

Amongst the 31 projects we submitted to OSS-Fuzz, we
received more than 50 bug reports. Commonly, projects with
issues have 2 to 3 issues reported whereas a few projects have
a significantly higher amount. For example, Joni has 7 bugs
reported, however, after root-cause analysis we found that they
are caused by triggering 2 core bugs via different entry points,
meaning the two bugs are triggered in a handful of ways.
The types of bugs found include out-of-memory errors, integer
overflow errors, regular expression Denial-of-Services, index
out-of-bounds errors for array or string accesses, and string
encoding errors.

TABLE III. UPSTREAM BUG FIXING STATUS

Projects # bug
fixes

Status

https://github.com/fusesource/jansi 2 Accepted
https://github.com/jruby/joni 2 Accepted
https://github.com/openfeign/feign 2 Accepted
https://github.com/virtuald/curvesapi 1 Accepted
https://github.com/xdrop/fuzzywuzzy 1 Accepted
https://github.com/graphql-java/graphql-java 1 Accepted
https://github.com/fasseg/exp4j 1 Submitted
https://github.com/locationtech/jts 1 Submitted

To verify that the issues found by the fuzzing harnesses are
valid, we performed a root-cause analysis of 11 of these from 8
different projects. Most of the bugs are invalid input checking
or memory overflow issues. We then generate bug fixes and
make pull requests with fixes on the relevant repositories.
9 bugs from 6 projects have been accepted and merged by
the project maintainers with positive comments. Table III
summarises the bug reports.

VI. LIMITATION AND FUTURE WORK

OSS-Fuzzgen has several limitations in the implementation
domain. First, extending the system to support more build
systems and more versions of JDK would enable more targets
to be processed. For almost half the projects tested OSS-
Fuzzgen created an OSS-Fuzz integration that builds the
project with a fuzzing harness that runs. Extending to further
JDK and build systems will likely increase this proportion.

Additionally, we can extend the system to support lambda
expressions and generic types for fuzzing harness generation.
To do this, we can migrate the existing Fuzz Introspector
frontend with SootUp[17].

A limitation in OSS-Fuzzgen is the scope of generating
fuzzing harnesses. Currently, it’s limited to 10 different heuris-
tics. We can extend this to support additional heuristics to
increase the possible set of fuzzing harnesses to generate.

An interesting avenue for improving fuzzing harness gener-
ation is extending the system with more general approaches.
For example, recent work has explored using Large Language
Models to generate fuzzing harness code which shows promis-
ing results[18].

To integrate the projects in OSS-Fuzz, we picked the best
projects constructed by OSS-Fuzzgen based on how much
a given integration achieved in code coverage exploration.
A limitation is that we made manual assessments in this
case, and further work would explore how we can improve
the ability to rank the auto-generated projects. This includes
features such as automatically identifying the threat model
of a project and matching this with auto-generated fuzzing
harnesses; automatically assessing how security-critical an
open source project is to enable selection of those where
vulnerabilities are most important and also include more data
from Fuzz Introspector as to how promising a given harness
is.

VII. CONCLUSION

In this paper, we introduce OSS-Fuzzgen, a first effort in
automatic OSS-Fuzz project integration. OSS-Fuzzgen enables
automatic fuzzing of open source Java projects by generating
fuzzing harnesses, constructing appropriate build scripts and
validating the generated harnesses to identify those that per-
form the best.

OSS-Fuzzgen significantly lowers the barrier of entry for
continuous fuzzing and to demonstrate these capabilities, we
ran OSS-Fuzzgen against a dataset of 257 open source Java
projects. As a result, OSS-Fuzzgen produced 116 valid OSS-
Fuzz project integrations with some fuzzing harnesses that
build and run. Furthermore, to prove the use of the generated
fuzzing harnesses we added 31 of these projects to OSS-Fuzz
which resulted in more than 50 issues being found. Finally,
we submitted bug fixes for 11 reported issues, 9 of which have
been accepted and merged by the open source projects.

In conclusion, OSS-Fuzzgen provides a good entry point
for open source project fuzzing. This setting could encourage
open source project maintainers to start fuzzing their projects

56Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 68 / 141

and adopt OSS-Fuzz for continuous security issues and bug
discovery.

ACKNOWLEDGMENT

We would like to thank the OSS-Fuzz team for responding
to our issues on GitHub and reviewing our contributions. We
would also like to thank the maintainers who reviewed our
bug fixes.

REFERENCES

[1] “OSS-Fuzzgen.” https://github.com/AdaLogics/OSS-Fuzzgen, 2023. Re-
trieved: October, 2023.

[2] “OSS-Fuzz.” http://github.com/google/oss-fuzz, 2023. Retrieved: Octo-
ber, 2023.

[3] Z. Y. Ding and C. L. Goues, “An empirical study of OSS-Fuzz bugs,”
2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pp. 131–142, 2021.

[4] V. M. Manes, H. Han, C. Han, S. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Transactions on Software Engineering, vol. 47, pp. 2312–2331, nov
2021.

[5] “Fuzzing Introspection of OSS-Fuzz projects.” https://introspector.
oss-fuzz.com/, 2023. Retrieved: October, 2023.

[6] D. Babic, S. Bucur, Y. Chen, F. Ivancic, T. King, M. Kusano,
C. Lemieux, L. Szekeres, and W. Wang, “FUDGE: Fuzz Driver Gen-
eration at Scale,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019.

[7] Y. Fu, J. Lee, and T. Kim, “autofz: Automated fuzzer composition
at runtime,” in 32nd USENIX Security Symposium, USENIX Security
2023, Anaheim, CA, USA, August 9-11, 2023 (J. A. Calandrino and
C. Troncoso, eds.), USENIX Association, 2023.

[8] K. K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “Fuzzgen: Auto-
matic fuzzer generation,” in 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020 (S. Capkun and F. Roesner, eds.),
pp. 2271–2287, USENIX Association, 2020.

[9] B. Jeong, J. Jang, H. Yi, J. Moon, J. Kim, I. Jeon, T. Kim, W. Shim, and
Y. H. Hwang, “Utopia: Automatic generation of fuzz driver using unit
tests,” in 44th IEEE Symposium on Security and Privacy, SP 2023, San
Francisco, CA, USA, May 21-25, 2023, pp. 2676–2692, IEEE, 2023.

[10] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated ran-
dom testing,” in Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, (New
York, NY, USA), p. 213–223, Association for Computing Machinery,
2005.

[11] C. Rahalkar, “Automated fuzzing harness generation for library APIs
and binary protocol parsers,” 06 2023.

[12] M. Pradel and T. R. Gross, “Automatic generation of object usage spec-
ifications from large method traces,” in 2009 IEEE/ACM International
Conference on Automated Software Engineering, pp. 371–382, 2009.

[13] M. Pradel and T. R. Gross, “Leveraging test generation and specification
mining for automated bug detection without false positives,” in 2012
34th International Conference on Software Engineering (ICSE), pp. 288–
298, 2012.

[14] “Fuzz Introspector.” http://github.com/ossf/fuzz-introspector, 2023. Re-
trieved: October, 2023.

[15] W. Gao, V. Pham, D. Liu, O. Chang, T. Murray, and B. I. P. Rubinstein,
“Beyond the coverage plateau: A comprehensive study of fuzz blockers
(registered report),” in Proceedings of the 2nd International Fuzzing
Workshop, FUZZING 2023, Seattle, WA, USA, 17 July 2023 (M. Böhme,
Y. Noller, B. Ray, and L. Szekeres, eds.), pp. 47–55, ACM, 2023.

[16] P. Lam, E. Bodden, O. Lhotak, and L. Hendren, “The soot framework
for java program analysis: a retrospective,” October 2011. Event Title:
Cetus Users and Compiler Infastructure Workshop (CETUS 2011).

[17] “SootUp, howpublished = https://soot-oss.github.io/sootup/, year = 2023,
note = Retrieved: October, 2023.”

[18] “Fuzz target generation using LLMs.” https://google.github.io/oss-fuzz/
research/llms/target generation/, 2023. Retrieved: October, 2023.

57Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 69 / 141

INTERACT: a Tool for Unit Test Based Integration
of Component-based Software Systems

Nils Wild
Research Group Software Construction

RWTH Aachen University
Aachen, Germany

email: wild@swc.rwth-aachen.de

Horst Lichter
Research Group Software Construction

RWTH Aachen University
Aachen, Germany

email: lichter@swc.rwth-aachen.de

Abstract—Testing complex component-based software systems
is hard. Unit tests are focused but are not effective in exposing
integration faults. However, integration test cases are difficult to
develop and maintain. This paper presents a tool that uses unit
tests to expose integration faults in component-based software
systems. This is done by observing the component’s unit test
cases to derive the component’s expectations of its interactions
with other components. These expectations are validated using
newly generated component integration test cases. Because the
approach requires no new tests to be written, we consider it
economical and effective.

Keywords – component-based software; integration testing.

I. INTRODUCTION

Testing aims to expose faults and to assess that customer
requirements are fulfilled. Many approaches have been devel-
oped to test software systems [1]. Testing isolated components
of a software system - called unit testing - is an industry
best practice. However, exposing certain types of faults at
the unit level is impossible. Thus, tests on the integration
level are needed that test the interaction of a component with
other components - its environment [2]. However, creating
and maintaining these integration tests is tedious. Architectural
changes of the system and changes of the components require
changes in the unit and integration tests [3]. We aim to
automate this process for certain types of integration tests. To
overcome some challenges of integration testing, we present
a tool-supported approach that relies on existing unit tests.
The knowledge encoded therein is used to determine how
components expect to interact with their environment and
to manipulate the unit tests such that integration aspects are
tested. The thereby generated component integration test cases
are related to each other such that they are equivalent to
traditional integration tests that test those expectations.

The proposed approach and the tool were developed with
the following research questions in mind:

• How can interaction expectations of components be ex-
tracted from unit test cases?

• How can tests, checking the interaction between a com-
ponent and its environment, be derived from the unit test
cases of the participating components?

• How to determine if a system can be integrated consid-
ering those component integration tests to continuously
check the integration of a system as it evolves?

This paper is structured as follows: First, challenges of
integration testing are presented in Section II. Section III
introduces the Unit Test Based Integration (UTBI) model
which is the conceptual core of the approach. In Section
IV we describe how UTBI models are used to derive the
expectations components have regarding their environment
and how these can be verified. Section V presents the tool
INTERACT, implementing the proposed approach. Related
work is discussed in Section VI. The planned next steps and
future work conclude this paper in Section VII.

II. CHALLENGES OF INTEGRATION TESTING

Whenever a system is changed, tests need to be re-executed,
and new tests are needed for new and changed features.
In addition to knowing when a component is ready to be
integrated, testers need to know how each component expects
to interact with other components. Dedicated test specifications
or any other form of documentation specify these interactions.
However, creating integration tests is difficult, and studies
show that documented specifications start to diverge from the
implemented system over time [4] [5].

Furthermore, integration tests must be adapted when the
underlying components change. Given an arbitrary number of
interactions, there are a huge number of possible integration
tests. Each interaction between two components can be tested
separately by component integration tests as well as each pos-
sible subpath of interactions contained in the interaction path
of all components that realize a customer feature. Creating
and maintaining these tests is generally not feasible. Because
of this, often only the most important integration tests are
automated [1], [2], [6]. This contradicts the principle of testing
as early as possible because these tests require all components
to be ready for integration.

An automatable approach to keep the specification, which
is used to test the integration, up-to-date with the system’s
implementation is needed to ensure that each component is
integrated with all components as expected.

III. THE UNIT TEST BASED INTEGRATION META-MODEL

In the following, we introduce the UTBI meta-model (see
Figure 1) which defines elements and relationships to model
structural as well as behavioral information needed to test the

58Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 70 / 141

integration of components based on existing unit tests. A more
detailed definition of the model and its foundations is already
published. [7]

Components are core elements of the model. To abstract
from various types of communication protocols, any inter-
action between components is treated as an activation of a
component by a Message through an Interface that is provided
by the component. A distinction is made between an Incoming
Interface and an Outgoing Interface. Through an incoming
interface, a message is received by a component, whereas mes-
sages are sent by an outgoing interface. An incoming interface
is bound to an arbitrary number of outgoing interfaces and
vice versa. Which interfaces are bound to each other depends
on the concrete communication protocol. The protocol data
is an attribute of the interface, e.g., for the Advanced Mes-
sage Queueing Protocol (AMQP), the respective bindings are
defined depending on the exchange type and queue bindings,
while URLs and methods are used for (Representational State
Transfer (REST).

For each component, the respective unit test cases are
modeled. To this end, Abstract Test Cases for each Component
Under Test (CUT) are included, which are templates without
concrete input and expected values. A Test Case is derived
from an abstract test case by providing concrete values.

Once a test case gets executed, a sequence of messages is
triggered by it. We distinguish three types of messages:

• A stimulus is a message received by the CUT from the
test case.

• A component response is a message sent by the CUT back
to the test case or to other components (those components
are called the CUT’s environment).

• An environment response is a message sent by a com-
ponent of the CUT’s environment back to the CUT as a
reaction to a received component response.

Instances of the UTBI meta-model are called UTBI com-
ponent models. They provide the core information for the
automated integration testing process, introduced next.

IV. INTEGRATION TESTING BASED ON UTBI MODELS

In the following section, we describe the activities of the
automated integration testing process based on such UTBI
component models (see Figure 2).

Create UTBI component models (A1): To create all UTBI
component models, the Unit Test Suites (UTS) of all compo-
nents are executed. During execution, information regarding
the unit test cases, the sent and received messages, and the
used interfaces are extracted into a UTBI component model.

Derive interaction expectations (A2): To test the integra-
tion of all components, it is necessary to know how these
components expect to interact with each other. These expec-
tations towards their environment are implicitly defined by
the messages triggered during UTS execution. Given a UTBI
component model, every environment response that follows
after a component response defines an expectation of that
component towards the reaction of its environment. Resulting
in a list of interaction expectations for each component.

Component

+ name: String Abstract
Test Case

+ name: String

Test Case

+ values: String[]

Message

+ payload: String
+ type: MsgType

«abstract»
Interface

+ protocolName: String
+ protocolData:String

Incoming
Interface

Outgoing
Interface

tested by 1 0..*

derived
from

1

0..*

triggered by

10..*

next 0..1
0..1

provided by0..* 1

bound to0..* 0..*

sent by
1

0..*
received by

1
0..*

Figure 1. Unit Test Based Integration Meta-Model.

Create the UTBI system model (A3): To validate that all
interaction expectations are fulfilled by the integrated system,
all UTBI component models need to be merged into one
UTBI system model. For this purpose, incoming and outgoing
interfaces that are bound to each other are determined. This is
done using protocol-specific interface matching based on the
protocol information attached to the interfaces. The resulting
UTBI system model is complete concerning the provided
UTSs.

Lookup possible interaction paths (A4): Each interaction
expectation can be validated by searching for interaction paths
from the interface via which the component response was sent
by, to the interface that received the environment response.
This might result in multiple paths, each spanning two or more
components and interactions. However, which path is activated
by the concrete component response depends on its content
and the component’s behavior.

Create interaction tests (A5): To validate the interaction
expectations, the determined paths can be executed by ex-
changing the original stimulus message in a unit test case with
the respective component response. We call these generated
component integration test cases Interaction Test Cases (ITC)
because they test exactly one interaction on an interaction path.

Run interaction tests (A6): When an ITC is successful,
a new component response can be observed that replaces
the originally mocked environment response in an additional
interaction test case that is derived from the original UTC. If
all ITCs on an interaction path are successful the interaction
expectation is validated.

V. INTERACT - AN INTEGRATION TESTING TOOL

The presented concept is implemented in the INTERACT
tool (code: https://github.com/NilsWild/InterACt, video: https:
//owncloud.swc.rwth-aachen.de/s/NtbMqMSByUoxv0q). IN-
TERACT is designed to support different protocols and their
implementations. As shown in Figure 3 Interface Observers
collect the messages that are sent by and sent to the CUT.
The collected data is stored in the UTBI model store to
create the UTBI component models and the UTBI system

59Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 71 / 141

A1
Create UTBI
component

models

UTBI
component

models

Interaction
expectations

A2
Derive

interaction
expectations

UTBI system
model

A3
Create UTBI
system model

A4
Lookup possible
integration paths

Possible
integration

paths

A5
Create

interaction
tests

Interaction
tests

A6
Run

interaction
tests

UTSs

Figure 2. The integration testing process based on UTBI models.

model. INTERACT implements an extension mechanism to
specify how the interfaces contained in the UTBI component
models are bound via so-called Interface Binders to create
the UTBI system model. Based on the UTBI system model,
the Interaction Test Harness retrieves integration data from
the ITC generator and provides alternative parameters to
the abstract test cases according to the derived interaction
expectations and the corresponding interaction paths that need
to be tested. INTERACT needs to be re-executed until no more
interaction paths are untested or all interaction expectations are
validated successfully.

Unit Test Harness C1

Interface
ObserverUTBI model

store

UTSC1

Interface
Binder

InterACt

Interaction Test Harness
Mocks

ITSC1 ITSCn

ITC
Generator

Mocks
Unit Test Harness Cn

UTSCn

Component 1
(C1)

Mocks

Unit Test Execution Infrastructure

pr
ov

id
es

pr
ov

id
es

Component n
(Cn)

Figure 3. Embedding INTERACT in a unit test execution infrastructure.

A. An example application

To explain INTERACT’S integration testing process we
present an example project (available on GitHub https://
github.com/NilsWild/InteractionTestExample). This simple bank-
ing project consists of three components implemented as
microservices using Spring Boot:

• MoneyTransfer (MT): Transfers money if the target
IBAN is valid and the user’s balance is sufficient.

• IBANValidator (IV): It checks if a given IBAN is valid.

• BlacklistChecker (BLC): It checks if a given IBAN
is on the bank’s blacklist.

Triggered by a transfer request, these components collab-
orate as follows (see Figure 5): First, the MoneyTransfer

component asks the IBANValidator to validate the IBAN.
To do so, the IBANValidator checks the IBANs format and
requests the BlacklistChecker to check if the receiving
IBAN is on the blacklist before it returns the validation result
to the MoneyTransfer component. For each component, a
unit test suite was created as well as mocks needed to test the
components as shown in Figure 4.

UTSMT

IV Mock

MT

MoneyTransfer IBANValidator

/api/v2/transfer

I2I3

I4 I1

UTSIV

BLC Mock

IV

/api/v2/validate/iban

/api/v2/validate/iban

I6I7

I8 I5

UTSBLC

BLC

/api/v1/check/blacklist

<<component>> <<component>> <<component>>

/api/v1/check/blacklist

I10 I9

BlacklistChecker

Figure 4. Components, unit test suits, and mocks of the example application.

Using this example, the integration process activities A1 to
A6 are explained below.

Create UTBI component models (A1): To create the UTBI
component models, INTERACT, its REST interface binder,
and the UTBI model store (a neo4j database) are started.
Then the unit test suites of all components are executed.
The unit test cases are implemented similarly to JUnit pa-
rameterized tests. The same argument sources can be used
but the tests are annotated with InterACtTest instead of
ParameterizedTest. The parameters of each test case are
the stimulus and environment response messages the CUT
receives during test execution plus additional expected values
for validation. For the MoneyTransfer component, three unit
tests exist:

• MT-UT1: The IBANValidator mock returns that the
IBAN is not valid. Thus, the transfer should fail.

• MT-UT2: The IBANValidator mock returns that the
IBAN is valid but the test sets the state of the
MoneyTransfer component such that the balance is
insufficient. Thus, the transfer should fail.

• MT-UT3: The IBANValidator mock returns that the
IBAN is valid and the test sets the state of the

60Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 72 / 141

User Money Transfer IBAN Validator Blacklist Checker

transfer request
IBAN

IBAN

validation result
validation result

transfer result

Figure 5. Target sequence of messages triggered by a transfer request.

MoneyTransfer component such that the balance is
sufficient. Thus, the transfer should succeed.

When they are executed, the UTBI component model for
the MoneyTransfer component is created. It contains the
triggered interfaces and the three collected message sequences.
This model is stored in the UTBI model store. This is done
for each component.

For the IBANValidator three unit tests exist:
• IV-UT1: The IBAN is valid but the BlacklistChecker

mock returns that it is on the blacklist. Thus, the IBAN
should be invalid.

• IV-UT2: The IBAN is valid, the BlacklistChecker

mock returns that it is not on the blacklist. Thus, the
IBAN should be valid.

• IV-UT3: An invalid IBAN is provided. Thus, the
BlacklistChecker is not requested and the IBAN
should be invalid.

For the BlacklistChecker two unit tests exist:
• BLC-UT1: The test provisions a blacklist that contains

the given IBAN. Thus, the BlacklistChecker should
respond with a match message.

• BLC-UT2: The test provisions a blacklist that does not
contain the given IBAN. Thus, the BlacklistChecker

should respond with a no-match message.
After all UTSs have been executed, all three UTBI compo-

nent models are in the UTBI model store.
Derive interaction expectations (A2): Whenever new data

is added to a UTBI component model INTERACT checks if
an interaction expectation is contained in the new data. For
the test case MT-UT3 (Figure 6), an interaction expectation
from M2 to M3 is derived. For the other two behaviors of the
MoneyTransfer component and the behaviors of the other
components, interaction expectations are derived accordingly.

Create the UTBI system model (A3): After the UTBI
component models are stored, INTERACT tries to bind the
incoming and outgoing interfaces of each component using the
provided interface binders. In our example, the REST interface
binder handles the captured interfaces shown in Figure 4.
They are bound such that the sequence of messages shown in
Figure 5 is represented by the resulting UTBI system model.
Specifically, the following interface pairs are bound together:
(I2 and I5), (I6, I9), (I10, I7), (I8, I3).

Lookup possible interaction paths (A4): Given the inter-
action expectations and the interface bindings, INTERACT

Unit Test Money Transfer IBAN Validator
Mock

M1: {amount:300,
fromIban:FI2151636216494979,
toIban:DK0850516475368988}

/api/v2/transfer M2: DK0850516475368988
/api/v2/validate/iban

M3: {result: valid}
M4: {result: success, newAmount: 700}

Figure 6. Sequence diagram showing the execution of unit test MT-UT3.

tries to find path candidates to validate the expectations.
For the interaction expectation from M2 to M3, it tries to
find a path from the outgoing interface I2 with the URL
/api/v2/validate/iban of the MoneyTransfer compo-
nent to the incoming interface I3 where M3 was received.
This is done with a breadth-first path expansion algorithm.

First, messages M2 and M3 are mapped to the interfaces I2
and I3 the messages were sent to, respectively received from.
Next, all outgoing interfaces that are bound to the incoming
interface I3 that M3 was received from, are collected. In this
case I8. These are the interfaces that terminate the following
path expansion. Starting with I2 all incoming interfaces that
are bound to it – in this case I5 – and could thus receive
M2 are looked up. For all found interfaces, test cases that
triggered messages on them are retrieved (IV-UT1, IV-UT2,
IV-UT3). To keep the intention of the test cases, the found test
cases are filtered such that only those that triggered stimulus

messages on that interface are considered. This is true for all
three of them. Next, all outgoing interfaces that are triggered
as a reaction to a message on the respective incoming interface
during these tests are collected. For IV-UT1 and IV-UT2 this
is I6. For IV-UT3 this is I8, as the IBANValidator responds
directly and the BlacklistChecker is not requested via I6. If
one of those interfaces is a terminal interface the path is added
to the list of possible interaction paths (IP). In the following,
the IPs are represented by the unit test sequences that trigger
the corresponding interfaces.
IP1 : MT-UT3−→IV-UT3−→MT-UT3

Then the remaining paths are further expanded starting with
the found outgoing interface (I6) instead of I2. In our example
the only interface bound to I6 is I9. The test cases that
triggered messages on I9 are BLC-UT1 and BLC-UT2. I10
is the outgoing interface that reacts to messages on I9. It
is the start of the next expansion step as it is no terminal
interface. The only interface bound to I10 is I7. IV-UT1 and
IV-UT2 triggered messages on I7. However, those messages
were environment response and no stimulus messages. But as
the tests have already been visited with the stimulus message
and they are the next incoming message triggered during test
execution, the path expansion is continued. This ensures that
the integration path remains consistent with the unit test’s
intention. In both cases (IV-UT1, IV-UT2), a message on I8 is
triggered as a reaction to the message on I7. I8 is a terminal
interface. Thus, these paths are added to the list of possible
interaction paths:

61Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 73 / 141

IP2 : MT-UT3−→IV-UT1−→BLC-UT1−→IV-UT1−→MT-UT3
IP3 : MT-UT3−→IV-UT1−→BLC-UT2−→IV-UT1−→MT-UT3
IP4 : MT-UT3−→IV-UT2−→BLC-UT1−→IV-UT2−→MT-UT3
IP5 : MT-UT3−→IV-UT2−→BLC-UT2−→IV-UT2−→MT-UT3
When no further expansion is possible, all interaction paths are
found. Each found path is transformed into a test execution
plan. Such a plan consists of the list of test cases in con-
junction with the required information to replace the stimulus
and environment response message with those triggered by
the preceding test cases. All five paths and the resulting
test execution plans are stored as candidates to validate the
interaction expectation.

Create interaction tests (A5): When the test suites are re-
executed the INTERACT JUnit extension requests the test
execution plans for the CUT from INTERACT. Based on
these plans, INTERACT determines parameter sets for the
abstract test cases of the CUT based on the messages that
were triggered by the components on that path so far. These
parameter sets are sent to the JUnit test templates that represent
the abstract test cases, resulting in new interaction test cases.

Run interaction tests (A6): When an interaction test gets
executed and fails, the corresponding interaction path is not
able to validate the interaction expectation. If every interaction
test of an interaction path succeeds, the path validates the
interaction expectation.

In our example, the process looks like this:
• IP1: Test case IV-UT3 which originally used an invalid

IBAN and thus responded with a validation-failed mes-
sage is parameterized with the IBAN contained in M2

(DK0850516475368988) that was sent in MT-UT3 by I2,
resulting in a new interaction test. With the now provided
valid IBAN on I5, the test fails as the behavior that was
tested by IV-UT3 was about receiving an invalid IBAN.
The interaction path is not further considered.

• IP2-IP5: Based on IV-UT1 and IV-UT2 respectively, new
interaction tests are generated that use the IBAN sent
in MT-UT3 as well. As the IBAN format is valid like
the one used in the unit test cases, both tests succeed.
The paths get evaluated further. For IP3 and IP5, a new
interaction test based on BLC-UT2 is generated. Therein
the blacklist check received by I9 contains the IBAN that
originated from the unit test case of the MoneyTransfer
component. As the test gets this message as a parameter,
it sets the state such that the IBAN is not on the
blacklist. The BlacklistChecker responds with a no-
match message and the test succeeds. The response is
sent via I10 and is fed back to the IBANValidator

test cases IV-UT1 and IV-UT2 as expected. In the two
resulting interaction tests the IBANValidator receives
the IBAN (DK0850516475368988), sends the blacklist
check to the mock and the mock responds with the no-
match response that was just observed in the preceding
interaction test. The interaction test based on IV-UT1
fails, as the unit test case covered and asserted the
behavior when the BlacklistChecker found a match.
As the test failed, the path candidate IP3 was skipped for

further evaluation. The one based on IV-UT2 succeeds
accordingly. IP5 is evaluated further and the response
triggered on I8 is used as the mock response on I3 in
another interaction test based on test case MT-UT3. It
succeeds and thus IP5 contains the unit tests that check
the components’ behaviors that are needed to satisfy the
interaction expectation derived in A2. The expectation is
validated by IP5. Note, that the response does not need
to be equal to the mocked response M3 in the unit test
but leads to a validation of the defined assertions.

B. Detecting integration faults

Leung and White [3] presented a taxonomy for integration
faults. Accordingly, integration faults are the result of misin-
terpretations of the documented specification on the providing
or consuming side of a service as components are always
developed based on an interpretation of their documented
specifications.

INTERACT captures these interpretations by observing the
sent and received messages by the executed UTSs and utilizes
that information to validate that the consumer component and
provider component interact compatibly with respect to their
expectations. By analyzing the UTBI system model certain
interaction fault types can be detected.

Mismatching interface definitions are detected as the re-
placed messages in the interaction test cases cannot be de-
serialized by the receiving component if the interface contract
is broken. Furthermore, the assertions implemented in the
UTS fail if the replaced environment responses or triggered
component responses do not match the specified expectations.
Wrong function faults are detected similarly.

In addition, extra function faults and missing function faults
are detected, by querying the UTBI system model for unbound
incoming and outgoing interfaces. If these are not public APIs
they are either an indicator for such faults or an indicator for
test gaps.

VI. RELATED WORK

Instead of testing the implementation, specification-based
approaches like protobuff ensure the structural consistency of
APIs by generating the actual implementation from specified
documents. – These approaches lack behavioral information
[8]. Thus, only interface faults can be prevented.

Approaches like consumer-driven contracts were developed
to test early. However, these require additional tests and
do not replace integration tests [9]. – In contrast to our
approach, consumer-driven contracts cannot be used to check
pass-through APIs, which are common in choreography-based
architectures [10].

To test message-oriented systems, Santos et al. [11] propose
a testing technique, that requires specifying the behavior of a
system in advance. It is closely related to other specification-
based testing approaches that use Linear Temporal Logic
(LTL) to test such systems [12] [13]. – This is only possible if
the specification is kept up-to-date with the actual specification
of the system under test, which is rarely the case.

62Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 74 / 141

Benz [14] presents an approach that requires existing mod-
els of components and systems to generate test cases that cover
critical interaction scenarios. – Our approach reconstructs the
models from the observation of the unit test cases and allows
to execute the integration tests on a per-component basis.

Elbaum et al. [15] present an approach, called differential
unit testing, that contrasts with our approach. Instead of using
isolated unit test cases to derive integration test cases, they use
system test cases to derive unit test cases to test for differences
in implementations of the same component in isolation. – This
is only applicable if multiple implementations of the same
component are developed.

Gälli et al. [16] present the EG-meta-model to create
composable test cases. Since tests contain examples of how
to use the units, these examples are extracted to composite
new more complex tests. – The idea of composing unit test
cases that serve as examples for the use of a component is
also the basis of the presented approach. However, InterACt
considers different kinds of communication protocols and
extracts expectations towards other components from those
examples to generate tests automatically.

Schätz and Pfaller [17] propose an approach to validate
a component after it is embedded into a system without
instrumenting the component itself, treating it as a black-box
test. – While our approach aims to assess the functionality of
the system by reusing unit tests, their approach aims to verify
the functionality of a component through system tests.

VII. CONCLUSION & FUTURE WORK

INTERACT allows testing component-based systems using
the implicitly specified interaction expectations encoded in
the unit test cases. However, it is currently limited to those
expectations encoded within the unit test cases and requires
looking into the UTBI model store to verify that all interaction
expectations are validated. To overcome these limitations and
to widen the applicability of our approach, the following
improvements are planned:

• Creating a report generator that provides an overview
regarding the fulfillment of all interaction expectations.

• Extend INTERACT to validate state expectations and
extend the UTBI model by higher order interaction ex-
pectations. For example, once an “add IBAN to blacklist”
request is sent and a 200 response code was received a
transfer with that IBAN fails. This would allow testing
that both parties interpret “IBAN was added to the
blacklist” in the same way.

• Extending the approach to support asynchronous inter-
faces, where a request should result in some action but
the result is not observed by the component that issued
the request. Such expectations are not part of unit test
cases and would require a separate specification approach.
However, the validation process of INTERACT could be
reused.

INTERACT as it is right now requires to parameterize the
UTSs by the messages the CUT receives. However, unlike tra-
ditional integration testing which requires a resource-intensive

integration environment, the interaction tests require the same
resources as the UTSs. Furthermore, INTERACT is capable to
detect certain types of interface faults, missing function faults,
and wrong function faults. Last but not least the interaction
test cases adapt to architectural changes, as they are generated
based on the provided interfaces and resulting interaction
paths. We expect that our approach decreases the burden for
integration testers, by reducing the amount of integration tests
that need to be written manually. We plan to evaluate our
approach and INTERACT in a larger industry case study to
not only show the concepts effectiveness but also evaluate its
effectiveness and efficiency in a larger project.

REFERENCES

[1] B. Lima and J. P. Faria, “A survey on testing distributed and heteroge-
neous systems: The state of the practice,” in Software Technologies,
E. Cabello, J. Cardoso, A. Ludwig, L. A. Maciaszek, and M. van
Sinderen, Eds. Cham: Springer Int. Publishing, 2017, pp. 88–107.

[2] V. Garousi and T. Varma, “A replicated survey of software testing
practices in the canadian province of alberta: What has changed from
2004 to 2009?” Journal of Systems and Software, vol. 83, no. 11, pp.
2251–2262, 2010.

[3] H. K. N. Leung and L. J. White, “A study of integration testing and
software regression at the integration level,” Proceedings. Conference
on Software Maintenance 1990, pp. 290–301, 1990.

[4] S. Mahmood and A. Khan, “An industrial study on the importance of
software component documentation: A system integrators perspective,”
Information Processing Letters, vol. 111, no. 12, pp. 583–590, 2011.

[5] M. Nasution and H. Weistroffer, “Documentation in systems develop-
ment: A significant criterion for project success,” in 2009 42nd Hawaii
International Conference on System Sciences, 2009, pp. 1–9.

[6] A. Mann, A. Brown, M. Stahnke, and N. Kersten, “State of devops
report,” Puppet, Circle CI, Splunk, Tech. Rep., 2019.

[7] N. Wild and H. Lichter, “Unit test based component integration
testing (to be published),” in 30th Asia-Pacific Software Engineering
Conference (APSEC 2023). IEEE Computer Society, 2023, [retrieved:
Oct, 2023]. [Online]. Available: https://swc.rwth-aachen.de/docs/2023
APSEC Wild Preprint.pdf

[8] Google, “Protocol buffers,” http://code.google.com/apis/protocolbuffers/,
[retrieved: Oct, 2023].

[9] C.-F. Wu, S.-P. Ma, A.-C. Shau, and H.-W. Yeh, “Testing for event-
driven microservices based on consumer-driven contracts and state
models,” in 2022 29th Asia-Pacific Software Engineering Conference
(APSEC), 2022, pp. 467–471.

[10] C. K. Rudrabhatla, “Comparison of event choreography and orchestra-
tion techniques in microservice architecture,” Int. Journal of Advanced
Computer Science and Applications, vol. 9, no. 8, pp. 18–22, 2018.

[11] A. Santos., A. Cunha., and N. Macedo., “Schema-guided testing of
message-oriented systems,” in Proceedings of the 17th International
Conference on Evaluation of Novel Approaches to Software Engineering
- ENASE,, INSTICC. SciTePress, 2022, pp. 26–37.

[12] A. Michlmayr, P. Fenkam, and S. Dustdar, “Specification-based unit
testing of publish/subscribe applications,” in 26th IEEE Int. Conference
on Distributed Computing Systems Workshops (ICDCSW’06), 2006, pp.
34–34.

[13] L. Tan, O. Sokolsky, and I. Lee, “Specification-based testing with linear
temporal logic,” in 2004 IEEE International Conference on Information
Reuse and Integration, IRI 2004, 2004, pp. 493–498.

[14] S. Benz, “Combining test case generation for component and integration
testing,” in 3rd International Workshop on Advances in Model-Based
Testing, ser. A-MOST ’07. New York, USA: ACM, 2007, p. 23–33.

[15] S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, “Carving and
replaying differential unit test cases from system test cases,” IEEE
Transactions on Software Engineering, vol. 35, no. 1, pp. 29–45, 2009.

[16] M. Gälli, R. Wampfler, and O. Nierstrasz, “Composing tests from
examples.” Journal of Object Technology, vol. 6, pp. 71–86, 2007.

[17] B. Schätz and C. Pfaller, “Integrating component tests to system tests,”
Electronic Notes in Theoretical Computer Science, vol. 260, pp. 225–
241, 2010, Proceedings of the 5th International Workshop on Formal
Aspects of Component Software (FACS 2008).

63Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 75 / 141

Bridging the Gap: Introducing a Universal Data Monetization Method from

Information and Game Theories

Domingos S. M. P. Monteiro, Felipe Silva Ferraz,

Silvio R. L. Meira
Center of Advanced Studies and Systems of Recife

Recife, Brazil

E-mail: {dsmpm, fsf, srlm}@cesar.school

Domingos S. P. Salazar

Distance Education and Technology Unit

Rural Federal University of Pernambuco

Recife, Brazil

domingos.salazar@ufrpe.br

Abstract— Despite significant research on data monetization in

recent years, the academic literature lacks universally

applicable methods for this endeavor. This study seeks to

introduce a versatile method suitable for various databases and

prevalent challenges in both academic and commercial realms.

Our methodology draws from information theory and game

theory, leveraging the Return On Investment (ROI) metric as a

value determinant. The derived method calculates the ROI

contributed by distinct databases for binary decision-making,

incorporating the Shapley Value concept from cooperative

game theory. We tested this method on a practical dilemma—

underwriting car insurance policies in Brazil. Our method

adeptly pinpointed the financial contribution of each dataset to

the assessed decisions. It can be adapted for other binary

decision contexts where financial outcomes of decisions are

either provided or quantifiable. Given the novelty of this

research domain, we anticipate this study to spur further

exploration into data valuation in the realm of data science and
Big Data.

Keywords-Big Data; Data Value; Big Data Monetization;

Artificial Intelligence; Game Theory; Information Theory;

Shapley Value; Digital Assets.

I. INTRODUCTION

Despite the advancements in Big Data applications, in
research related to the subject, and in the widespread
application of analytical and artificial intelligence solutions in
recent decades, a method has not yet been established that can
be widely disseminated to determine the intrinsic value of a
specific piece of data (or specific database) within a Big Data
context. Academic research, in this context, has provided little
emphasis on the dimension of Data Value, especially when
contrasted with investigations directed at the other three
classic dimensions of Big Data, namely: Volume, Velocity,
and Variety [1]. In the more specific context of financial or
economic value, research is even scarcer, and available studies
do not share a common view on methods for its measurement
[2].

The aim of this research is to create a flexible method that
can be applied to any database that becomes available to solve
a specific problem, both in the academic and business
environments. At this moment will center our proposal on the
binary decision-making problem involving risk as explaned in
section III. The exploration of this method aims to shed light
on a gap in the domain of data analysis and valuation,
providing a methodological structure that can be used

effectively and relevantly in different contexts, regardless of
the specifics inherent to the data.

Every day, new data is collected from various sources,
formats, and domains. A lack of information can lead to
inefficient decision-making, thus making the impacts of these
decisions less predictable or riskier [3]. Given this scenario,
our research questions were:

 Is it possible to develop a method to measure the
financial impact (value) of new data available for a
binary decicion making problem?

 Can the new information lead to more predictable and
efficient decision-making?

The data monetization method proposed in this study is
based on the concept of Return On Investment (ROI) [4]
provided by different databases that become available for
binary decision-making. In the Big Data context, this is a
common and realistic scenario since new data is constantly
arriving in larger volumes, with greater speed (velocity) and
variety [1]. In the research phase, in the searching for suitables
methods, we evaluated the application of both information
theory [5] and game theory, and the final formulated method
was based on the Shapley Value concept borrowed from
cooperative game theory [6].

To validate our method, we have executed a series of
controlled experiments applied to a real decision-making
problem of underwriting car insurance policies in the
Brazilian market. For our experiments, we used two databases
provided by a partner company of the project, Neurotech SA
(Neurotech) [7], and conducted eight (8) different
experiments considering the results of each database
individually and the combined databases for two (2) distinct
real problems with two (2) distincts combination
arrangements:

1. Claims: represents the occurrence of a covered risk

during the insurance plan's validity period, and;
2. Theft: represents the occurrence of subtraction of the

insured asset during the insurance plan's validity
period.

The application of the proposed method was able to
precisely isolate the financial value added by each of the
databases used for the different decisions evaluated, and these
results shed significant light on the research problem in focus.

The proposed method offers the possibility of replication
in a multitude of scenarios characterized by problems of a

64Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 76 / 141

similar nature [8]. Essentially, it is pertinent to those that
constitute binary decisions, in which the assessment of the
financial gain or loss of each decision, in itself, is provided by
concrete information or can be duly inferred or measured. The
reach of this method goes beyond its initial application,
extending to various contexts that share similar
characteristics.

We hope that this study can stimulate the development of
other methodological approaches, whether derivations of the
method proposed in this study or as new proposals
themselves. We also hope that this stimulation can contribute
to a more comprehensive and insightful understanding of data
value in the universe of data science, when inserted into the
complex environments that characterize Big Data.

This article is structured as follows: in Section 2, we
explore the context that we have adopted in our study related
to the topic of Big Data Monetization and detail our main
objective; in Section 3, we present the data our experiments
relyed on; in Section 4, we discuss how to apply information
and games theorie to the problem; in Section 5, we proposed
the method; in Section 6, we provide details on the related
experiments; in Section 7, we present the method results to the
available data; in Section 8, we present the conclusion and
suggest further future studies.

II. DATA: A VALUABLE DIGITAL ASSET

In a 2016 review comprising over a thousand and five

hundred studies that mentioned the term “Big Data”, De

Mauro et al. [9] proposed the following definition that would

be able to bundle most of the assessed texts: “Big Data is the

information asset characterized by such a High Volume,

Velocity and Variety to require specific Technology and

Analytical Methods for its transformation into Value”. This

definition is the one taken into consideration in our study and

what makes the proposed method even more relevant, once it

highlights that the explicit objective of a Big Data
environment is to turn digital assets into Value.

The debate on how “value” itself was formed has been

going on for millennia, since pre-Christian era, when

Aristotle argued that value is based on the need for exchange

(Aristotle, 350 BC) [11]. This concept is in the core of

economic adjustment and is the basis to define what will be

produced, how it will be produced and who will produce it.

Another key discussion in economic theory includes

questioning the reasons for a product or service to be priced

the way it is, that is, how the value of a product or service is

determined and how to calculate it correctly [12].
The theory was formulated and applied in a world where

products and services were in their entirety represented by

physical assets with well-defined characteristics: raw

material, finished products and services provided by physical

living beings (humans and animals) [13].

The advent of computers brought the world a new

category of assets, digital ones, represented in a discrete

numerical way and used in digital devices with computational

processing. These digital assets are capable of delivering a

new category of products and services: better decisions,

increased performance, competitive advantages and they can

even be sold directly as a product [10]. It is in this context of

“data” as a digital asset and as a product itself that we will

propose a way for its monetization in this study.
Our objective in this project was to apply a strategy that can

accurately estimate the value of data in a real-world situation,
using concepts from information theory and game theory in
conjunction with machine learning. We will center our
proposal on finding value of data to the binary decision-
making problem involving risk. This decision was driven by
two primary reasons:

1. The operational focus of our partner company,

Neurotech, which has developed and implemented
thousands of solutions for binary decision problems,
impacting millions of decisions made daily by its
clients related to credit risk analysis, underwriting
insurance policies, among other areas (retail,
finance, health plans, etc.);

2. Being a class of problems well-known and
researched by the academic community [14];

Although our proposal concentrates on the binary
decision-making problem, most used for classification
purposes, these types of solutions can be grouped into decision
trees that are applicable for both multiple classifications and
regression [15]. Hence, the generalization of this method can
encompass both classes of problems.

A. Value Search

The price of data can depend on various premises, such as
its acquisition cost, its storage and update cost, its scarcity, etc.
However, as Warren Buffett remarked regarding financial
assets, "Price is what you pay, value is what you get" [16]. In
other words, the value of an asset is an intrinsic characteristic
that differs from its price. In the case of investments, Buffet
evaluates a company, for instance, based on its ability to
generate future profits.

An analogy with data assets would be that their value, and
not their price, depends on their ability to inform better
decision-making [17], which is often directly linked to a
company's operational profit. In this way, the value of data can
be mapped to the quantification of this data's capacity to
enhance decision-making.:

 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 = 𝑉(𝑑𝑎𝑡𝑎, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

It's interesting to note that the decision is part of the
equation. In other words, even if the acquisition cost remains
unchanged, data can have different values for different
decision-making processes. Thus, it is expected that a rational
agent would only purchase specific data if it were traded at a
price equal to or less than its added value; for our method, this
would be represented by a positive ROI upon the addition of
the new data. However, quantifying this value can be a
complex issue.

We evaluated information theory and game theory as
potential paths for our method. We will delve deeper into
these possibilities in the following sections using a subset of

65Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 77 / 141

our experimental data, which we detail from this point
forward.

III. AVALIABLE DATA SET

The data used in this study were provided by the
partnering organization of this research. The company,
Neurotech SA, is a leading data and analytics provider for the
Brazilian market that serves over 200 major corporations,
including large retailers, banks, financial institutions, and
insurance companies in Brazil. We considered the initial
database (DB1) as that containing Neurotech's proprietary and
public collected data consisting of roughly 3.3 million
vehicles, and their respective owners.

In our experiments, we have joined the former database
(DB1) with a new database provided by a third-party company
specialized in collecting data on automatic payments via
radio-frequency identification (RFID) [18], often used in toll
payments, commonly known as TAG. This database was
considered to represent the new data available for the problem
(DB2).

We investigated how the value of this new data (DB2)
could be determined for monetization purposes, using the
method detailed here. We selected an auto insurance company
to test our method.

Currently, Neurotech has millions of car insurance quotes
transacted monthly on its platforms that consider the initial
database (DB1) in their analyses. In this project, we will
supplement these quotes with the data from the new database
to understand if this new data can assist in the risk decision-
making of policy underwriting compared to decisions based
solely on the original base.

For our project, a sample of 120 million transactions from
DB2 was provided. A transaction in this context means an
event related to a TAG, such as passing through a particular
toll. While toll usage is the most common application for a
TAG, the market now allows TAG use in transactions at
affiliated networks that involve not just tolls, but also use in
parking lots, refueling at gas stations, and even purchases at
some fast-food drive-thrus and restaurants. These 120 million
transactions involve 2.2 million TAGs, roughly 2.2 million
vehicles, and their respective owners.

The next step was to combine the consolidated new data
(DB2) with the original database (DB1). Of the 2.2 million
TAGs provided, we found similar keys (vehicle/owner) in the
original base for 540,000 of these TAGs. The result leads us
to an initial conclusion that approximately 25% of the TAG
holders present in DB2 sample also went through DB1 of the
partner company seeking insurance for their car.

As a result, we were able to enrich 540,000 policies from
the original database (DB1) with the data from the new
database (DB2). This represented 16.5% of the partner
company's original database, meaning 16.5% of the policies
transacted in the original database involved individuals who
had transaction data from their TAGs available for enrichment
from the new database. We summarize these conclusions in
the Venn diagram below.

Figure 1. Data: Transformations and Enrichment.

IV. VALIDATING THE THEORIES

Our goal in this project was to apply a strategy that can
accurately estimate the value of data in a real-world situation,
by applying concepts from information theory and game
theory in conjunction with machine learning.

A. Testing theories with a data samples

For the purpose of comparing theories and defining our
strategy, we initially considered only one of the focal
problems: identification of Theft or Robbery. In this example,
we used a random sample from the available database
consisting of 328,565 annual car insurance policies. Among
them, 756 had an occurrence of a certain type of theft or
robbery claim (0.23% of the cases), and 327,809 did not
record the occurrence of this type of claim. The database
consists of various explanatory variables that were available
(or known) at the beginning of the underwriting process. The
goal is to quantify the value that this information has with the
aim of predicting the occurrence of the claim. For this, we will
use the approach of information theory based on mutual
information [5] and game theory considering the Shapley
Value [6].

Consider the following variables and their respective
descriptions.

TABLE I. VARIABLE DESCRIPTION

Variable Descriptions

MEDIA_DISTANCIA_PARCEIROS
Average distance between the residential address and
the nearest point of interest.

STD_VALOR_TRANSACAO
Standard deviation of the historical transactional values
(in BRL) of the vehicle with partners..

QTD_NOITE Number of vehicle transactions during the nighttime.

QTD_MADRUGADA
Number of vehicle transactions during the early morning
hours.

MAIOR_DISTANCIA_PARCEIROS
Minimum distance between the residential address and
the nearest point of interest.

QTD_TAGS Number of tags registered for the vehicle in question.

QTD_TARDE Number of vehicle transactions during the afternoon.

MIN_VALOR_TRANSACAO
Minimum among the historical transactional values (in
BRL) of the vehicle with partners..

MEAN_VALOR_TRANSACAO
Average of the historical transactional values (in BRL) of
the vehicle with partners.

QTD_PARCEIROS
Number of points of interest registered for the vehicle in
question.

The selected variables are numerical, and depending on

their value, one may observe a greater or lesser quantity of the
target class (occurrence of Theft or Robbery). The
dependency between each variable and the target class (Y=1)
was represented in a bivariate analysis, and we will present
below, for illustrative purposes, the result for the variable
QTD_TAGS. The bivariate analyses for the other variables
are available at the following Kaggle reference [19]. Those

66Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 78 / 141

analysis supported the Entropy calculation when applying
Information Theory.

TABLE II. FREQUENCY OF THEFT AND BURGLARY

OCCURRENCES FOR THE VARIABLE QTD_TAGS

QTD_TAGS Y=1 Y=0 Total

1.0 - 1.0 0,1% 22,9% 23%

2.0 - 3.0 0,1% 27,1% 27%

4.0 - 4.0 0,0% 12,3% 12%

5.0 - 7.0 0,0% 21,8% 22%

8.0 - 345.0 0,0% 15,6% 16%

TOTAL 0,2% 99,8% 100%

QTD_TAGS Y=1 Y=0 Total

B. Apply Information Theory

Shannon's information theory is not directly applied to
determine the specific value of a piece of data itself, but rather
to quantify the information contained in a dataset or to
understand how information is transmitted and processed.
However, information theory can be used to address
prediction and probability problems, and thus we will test an
approach considering Shannon's information theory. Consider
the Shannon entropy of a given information X [5],

𝐻(𝑋) = − ∑𝑖 𝑝(𝑥𝑖) 𝑙𝑜𝑔
2

𝑝(𝑥𝑖) (2)

Where:

 𝐻(𝑋) is the entropy of the information source X

 𝑝(𝑥𝑖) is the probability of occurrence of the symbol
xi na fonte de informação.

 The logarithm is in base 2, which measures
information in bits.

Note that this magnitude depends solely on the given data

X in question, but it does not depend on the decision for which
the data X will be used. For this reason, it does not meet our
value criteria in (1) and therefore would not be applicable to
our method. One possible way to incorporate information
theory into our method, to quantify the impact that a data point
X has on a decision Y, would be to measure the mutual
information:

𝐼(𝑋; 𝑌) = − ∑𝑖 𝑝(𝑥𝑖 , 𝑦𝑖) 𝑙𝑜𝑔
2

[𝑝(𝑥𝑖 , 𝑦𝑖)/𝑝(𝑥𝑖)𝑞(𝑦𝑖)], (3)

Where:

 𝐼(𝑋; 𝑌) is the mutual information between sources X
and Y.

 𝑝(𝑥𝑖 , 𝑦𝑖) is the joint probability of xi and yj occurring
in sources X and Y, respectively.

 p(xi) and q(yi) are the marginal probabilities of X and
Y, respectively.

 Y is the target, we would like to predict.

In a binary decision problem, Y would be 0 or 1,

suggesting two possible events (or decisions). Meanwhile,
p(x,y) represents the probability of observing the data X=x
and the target Y=y simultaneously, while p(x) and q(y) are the
probabilities of observing X=x and Y=y, respectively.

Intuitively, mutual information is the gain in information we
have regarding the decision Y, given that X is known. In terms
of entropy, it can be written as:

𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋), (4)

Where H(Y|X) is the conditional entropy.

𝐻(𝑌|𝑋) = − ∑𝑖 𝑝(𝑥𝑖 , 𝑦𝑖) 𝑙𝑜𝑔
2

[𝑝(𝑥𝑖)/𝑝(𝑥𝑖 , 𝑦𝑖)], (5)

Where:

 𝐻(𝑌|𝑋) is the conditional entropy of Y given X

 𝑝(𝑥𝑖 , 𝑦𝑖) is the joint probability of xi and yi occurring
in sources X and Y, respectively.

Note that, if X and Y are independent, we have 𝑝(𝑥𝑖 , 𝑦𝑖) =
𝑝(𝑥𝑖)𝑞(𝑦𝑖), which would result in H(Y∣X)=H(Y) and (X;Y)=0.
That is, the information gain is null when knowing data X,
since the decision Y does not depend on this data. In this
specific case, it's expected that the data holds no value for this
decision-making process. Alternatively, if X truly provides
some information gain regarding the decision Y, we should
have I(X;Y)>0, and the value of the information X can be given
by:

𝑉𝑎𝑙𝑜𝑟(𝑋) = 𝑉(𝐼(𝑋; 𝑌)). (6)

In summary, the value of data X depends on the decision

Y through the information gain (or mutual information). For
the value to be consistent, the function V(.) must be increasing
and V(0)=0. In the following example, we will quantify the
value of data X for the binary event Y that indicates the
occurrence (Y=1) or non-occurrence (Y=0) of a claim on a car
insurance policy over a one-year validity period, as per the
bivariate analysis shown in Table II and others available on
Kaggle [19] for the variables presented in Table III.

TABLE III. APPLYING ENTROPY DEFINITION, CONDITIONAL ENTROPY

AND MUTUAL INFORMATION

Variable H(X) H(Y) H(Y|X) I(X;Y)

MEDIA_DISTANCIA_PA
RCEIROS 2,3212402 0,0234799 0,0234632 1,68E-05

STD_VALOR_TRANSA
CAO 2,3329737 0,0234799 0,0234459 3,40E-05

QTD_NOITE 2,3204087 0,0234799 0,0234735 6,50E-06

QTD_MADRUGADA 2,2215431 0,0234799 0,0234482 3,17E-05

MAIOR_DISTANCIA_PA
RCEIROS 2,3212402 0,0234799 0,0234564 2,36E-05

QTD_TAGS 2,2686251 0,0234799 0,0234591 2,08E-05

QTD_TARDE 2,3215146 0,0234799 0,0234591 2,08E-05

MIN_VALOR_TRANSAC
AO 1,6651711 0,0234799 0,0234486 3,14E-05

MEAN_VALOR_TRANS
ACAO 2,3329732 0,0234799 0,0234725 7,40E-06

QTD_PARCEIROS 2,3135011 0,0234799 0,023463 1,70E-05

One way to assess the value of the data from the Table III

is as follows. Since a value function V(.) is increasing, it is
expected, for instance, that the variable
X1=MIN_VALOR_TRANSACAO holds more value for the
business in question (which involves the decision Y) than the
variable X2=QTD_NOITE, as I(X1;Y)=3.14E-05 >
I(X2;Y)=6.50E-06. However, note that X1 has a lower

67Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 79 / 141

entropy than X2, with H(X1)=1.665 and H(X2)=2.32. This
result demonstrates that having higher entropy, and therefore
more information, is not always synonymous with a better
decision, as what matters in reality for our method is the
mutual information I(X;Y) that data X1 and X2 have
concerning decision Y. Thus, information theory does not
determine specific data values but helps quantify the
uncertainty or information contained in probabilistic events.
To determine the specific value of data, we need to consider
other methods, depending on the context and the data
involved.

C. Game Theory in Action

The same variables from the previous section were
assessed based on their SHAP values [20]. SHAP (SHapley
Additive exPlanations) values are a model interpretability
technique that quantifies the relative impact of individual
features on the output of a machine learning model [21].
Within the realm of binary classification tasks, SHAP values
are employed to discern the proportional contribution of each
feature to a model's prediction.

This method becomes particularly valuable when dealing
with highly complex models, such as Random Forests or Deep
Neural Networks [22], where the functional relationship
between the input features and the model's output can be
highly non-linear and intertwined. SHAP values, grounded in
cooperative game theory, provide a solution to the problem of
fairly distributing "rewards" (in this context, the contribution
to the model's prediction) to each "player" (feature).

Such distribution considers both the marginal contribution
of each feature as well as all potential synergistic interactions
among them. For this analysis, the variables were used to train
an XGBoost binary classification model aiming to predict the
target class (Y=1). Subsequently, the average absolute SHAP
value of each feature was calculated and represented in Table
IV.

TABLE IV. SHARP VALUE FOR EACH VARIABLE USED IN THE MODEL

Variável mean(SHAP value)

MEDIA_DISTANCIA_PARCEIROS 0.09022027

STD_VALOR_TRANSACAO 0.07902433

QTD_NOITE 0.05610221

QTD_MADRUGADA 0.05555103

MAIOR_DISTANCIA_PARCEIROS 0.04823394

QTD_TAGS 0.04670959

QTD_TARDE 0.04214765

MIN_VALOR_TRANSACAO 0.02885941

MEAN_VALOR_TRANSACAO 0.0260881

QTD_PARCEIROS 0.0217269

In Table IV, the variable STD_VALOR_TRANSACAO had

an absolute average SHAP value of 0.079 and ranks second
among the variables, despite the same variable having shown
the highest mutual information with the target class in the
table from the previous section (Information Theory). Such
behavior is expected since different methods were used, and
although they quantify the variable's impact on the decision in
some way, they won't necessarily agree on the importance of
the variables and, consequently, the value of the data. Even
considering the different methods, it's interesting that there's
an agreement between them that STD_VALOR_TRANSACAO

is a significant variable. Fig. 2 shows the relevance of each
variable in the final constructed model.

Figure 2. Variable importance according to Shapley Value.

D. Theory Selection

While we validated the potential use of both theories in the
last two sessions, it became evident that we would face a much
greater generalization challenge with Information Theory
compared to Game Theory when applied to real-world
problems.

In the case of the analysis presented based on the entropy
formula and the mutual information of Information Theory,
we simplified our problem to a bivariate analysis for each of
the available attributes in a selected small sample. We would
face a significant challenge in generalizing our method using
this theory as the number of attributes or, equivalently, the
number of databases to be combined and jointly evaluated
increased.

When analyzing the Shapley Value (SHAP) calculation
method from game theory, we discerned an objective very
similar to what our method aims for. Analogously to SHAP,
our method seeks to provide a solution to the problem of fairly
distributing Monetary Value based on the contribution of each
of the databases used for decision-making. To reach this
conclusion, the financial gains obtained from decisions
considering all possible combinations between the databases,
both in isolation and combined, must be evaluated, precisely
as proposed by the method based on game theory. By doing
so, we will determine how the gains should be distributed. In
our case, each "player" (resource) would be one of these
available databases.

Such distribution considers both the marginal contribution
of each resource and all possible synergistic interactions
between them, and it's precisely for this reason that from this
point forward, we'll be developing our method using Game
Theory as the foundation.

V. THE METHOS BASED ON ROI

The data monetization method resulting from this study
employs the concept of ROI added by a new database that
becomes available for a binary decision-making when applied
to a decision through a decision score (decision model) [23].

68Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 80 / 141

This is an anticipated scenario in the Big Data context as new
data are continuously emerging.

ROI is a widely used financial indicator to assess the
effectiveness and profitability of an investment. It compares
the net gain achieved against the initial investment cost.
Calculated as the difference between the net gain and the
investment cost, divided by the investment cost, it's expressed
as a percentage. ROI offers insights into an investment's
efficiency, allowing organizations to evaluate the value
produced relative to the invested resources [4].

We will illustrate the method using our experiment related
to the decision-making process of analising insurance
policies, in the underwriting process of a given quote.
Specifically, car insurance underwriting may use data and/or
an individual predictive score to determine whether an
individual will be granted insurance (underwriting) or will be
denied access following the quote process. An individual
might be rejected, for instance, if there's any indication of
potential fraud or risky behavior the insurer does not want to
price.

In this case, the policy price is not shown, and the
individual is said to have been declined during underwriting.
Typically, this process does not reject a significant portion of
the quotes. Underwriting rules tend to decline between 1% to
10% of the quotes, and this can vary among regions and
profiles.

This process is beneficial for estimating data value since
the operational outcome with an underwriting rule can be
gauged on a historical policy base (backtest). This outcome is
calculated based on the issued premium (in currency), which
corresponds to the amount the insured pays to the insurer to
access the insurance, and the observed indemnity during the
policy period, which is the amount the insured received in the
event of a claim. The insurer's operational gain equates to the
difference between the premiums received from the insured
(net of brokerage commission) and the compensations paid
out resulting from occurred claims (indemnities).

𝑅𝑒𝑠𝑢𝑙𝑡0 = ∑𝑁
𝑖=1 𝑃𝑟𝑒𝑚𝑖𝑢𝑚(𝑖) (1 −

 %𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑖)) − 𝐼𝑛𝑑𝑒𝑚𝑛𝑖𝑡𝑦(𝑖), (7)

Where:

 𝑅𝑒𝑠𝑢𝑙𝑡0 is the insurer operational Gain.

 𝑃𝑟𝑒𝑚𝑖𝑢𝑚(𝑖) is the amount payed by insured i.

 %𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑖) is the percentage commission
payed by the insurer to the brokerage of the insured i.

 𝐼𝑛𝑑𝑒𝑚𝑛𝑖𝑡𝑦(𝑖) is compensations paid out by the
insurer resulting from occurred claims of insured i
policy

A good underwriting rule can reject some of these policies

that, in general, would have resulted in a loss. In this way, a
new operational gain can be calculated without them,
considering only the policies that have a risk score above a
given cutoff point. This rule can be written as follows:

𝑅𝑒𝑠𝑢𝑙𝑡1 = ∑𝑁
𝑖=1 𝜃(𝑆𝑐𝑜𝑟𝑒(𝑖) − 𝑐𝑢𝑡𝑜𝑓𝑓_𝑝𝑜𝑖𝑛𝑡)

 [𝑃𝑟𝑒𝑚𝑖𝑢𝑚(𝑖)(1 − %𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑖)) −
 𝐼𝑛𝑑𝑒𝑚𝑛𝑖𝑡𝑦(𝑖)] , (8)

Where:

 θ(x) is the Heaviside step function [24].

 𝑆𝑐𝑜𝑟𝑒(𝑖) is is insurer i risk score.

 𝑐𝑢𝑡𝑜𝑓𝑓_𝑝𝑜𝑖𝑛𝑡 is minimum score for acceptance.

 The remaining itens are the same in (7).

Finally, the gain with an underwriting rule can be written
as the difference between the results above (with and without
the rule).

From this point on, we will build the artificial intelligence
solutions (models) that will transform the raw data into the
scores that will be used in the decision-making for the
different scenarios of our experiment.

The models will transform the data into different scores
according to the databases used (DB1, DB2, or both) and with
the problem being addressed (target objective of the
modeling). Table V summarizes all the models that were built
in this research. At the end of each of the experiments, we
apply (8), and the results are presented in section VIII.

VI. EXPERIMENTS

We conducted controlled experiments applied to real
databases in a laboratory setting. The initial application
assesses the ability to highlight the gain in understanding the
risk of a new insurance quote when considering all the
different scenarios including both available databases (DB1
and DB2) and how this gain can be measured in terms of ROI.
We have used all the available data in our experiments, i.e.,
all the 540 thousands records (Fig. 1) where used for the
modeling phase.

The experiments were repeated for different strategic
decision-making, within the same domain (risk decision),
allowing us to learn from the process and develop a
generalizable method by the end of the study.

A. Model Construction (Risk Scores)

After the data was collected and processed, we moved on
to the modeling phase, also known as knowledge discovery
[25]. At this juncture, the data mining process begins.
Algorithms will automatically sift through the data, trying to
create the best possible representation of this data through
scores. We split the dataset into two samples: one used for
model training, with 75% of the available data, and the other
for testing the model, where we assessed the performance of
the built solutions, with the remaining 25%. For training, older
insurance policies were used, while the newer ones were set
aside for model testing.

With the datasets prepared, we could conduct experiments
combining all possible scenarios. We had two databases (DB1
and DB2), two possible targets/objectives (claims and
theft/robbery), and we also selected two different approaches
to combine the resulting models: Stacking and linear
combination.

All these possibilities resulted in eight different
experiments as presented in Table V below.

69Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 81 / 141

TABLE V. 8 (EITGH) EXPERIMENTS

#Experiment Description

1 DB2 x theft/robbery

2 DB2 x claims

3 DB1 x theft/robbery

4 DB1 x claims

5 Stacking x theft/robbery

6 Stacking x claims

7 Combinação Linear x theft/robbery

8 Combinação Linear x claims

B. The Choosen Technics

We chose two Machine Learning (ML) techniques to be
applied in the model building for our project: Multilayer
Perceptron (MLP) and eXtreme Gradient Boosting
(XGBoost). The former was selected as it's a more traditional
and widely used technique with a known performance track
record for various problems. XGBoost has gained prominence
in recent years for outperforming various ML algorithms [26].
For each of these techniques, different hyperparameter
combinations were tested (For MLP: number of layers,
number of neurons in each layer, etc. For XGBoost: depth,
learning rate, lambda, etc.).

Each constructed model resulted in a risk scoring system
(risk score) with the score indicating the risk level of that
policy (claims or theft/robbery). A lower score indicates
higher risk, while a higher score signifies lesser risk. After
each model was built, to standardize our analyses, we divided
the scored population into a uniform distribution with 10
bands (10 deciles), with the first decile (decile 1) representing
the top 10% at highest risk, and the last decile (decile 10)
representing the 10% at lowest risk.

We consider the model construction as a preliminary and
necessary stage for our method and therefore will not delve
deep into the details of each of the eight experiments. We will
only detail the results of the third experiment here since it has
the highest KS [27] among all (see summarized results in
Table II).

C. Models Results

 In the chart shown in Fig. 3 below, the average percentage
of Theft/Robbery is depicted by the dashed line (0.45%). The
chart displays the results of the model application to the test
set of the third experiment conducted. The results for the other
experiments can be found at the following Kaggle link [19].
The frequency of theft or robbery is represented by the red
curve. We observed that the percentage of theft or robbery in
the first score band (decile 1) is 283% (1.69% in the band)
higher than the overall theft or robbery frequency of the base.
In the last band (decile 10), this percentage is 91% lower
(0.04% in the band).

Figure 3. Histogram and risk curve by decile for the experiment 3.

The KS for this model was 33.4%, meaning we cannot
assume the null hypothesis [28], and the model can distinguish
the policies that will result in theft or robery from those that
will not. We present in Table VI the results for the 8 (eight)
experiments conducted:

TABLE VI. SUMMARY OF TECHNICAL RESULTS OF SOLUTIONS

CONSIDERING THE ISOLATED AND COMBINED DATABATES

Model Database Theft / Robery Claims

DB2 28 4.2

DB1 33.4 5

Stacking Comb 33 5.6

Linear Comb 33 6.5

D. Experiment Conclusion

When evaluated individually, the solutions developed
using the original database have a technically superior
performance compared to those developed with the new
database provided for both defined objectives. This was
expected since the original database was developed and
adjusted for this application by the partner company. The
results from combining the databases were vastly different for
the different objectives.

For the goal of predicting theft or robbery, none of the
combinations achieved a technical result superior to the
solution developed exclusively with the original database. We
will investigate further to determine whether it's still possible
to compute an added economic value to the addition of these
new data using the proposed ROI method.

For the goal of predicting claims, both combinations
achieved technically superior results to solutions developed
with each of the databases exclusively. We will further
investigate if this superior technical result can also be
estimated in terms of ROI.

VII. RESULTS

To reach a conclusion about our method, we applied (8) to
the 8 (eight) solutions developed during the experimental
phase, considering a real database from a major Brazilian
insurance company.

We are using a sample with R$ 100 million (one hundred
million reais) in issued premium in the original portfolio
(before the underwriting rule) and a 60.3% claims rate. We
also considered an 18.2% commission. All these parameters
were extracted from Table VII, which presents the comparison
disclosed by SUSEP (Superintendency of Private Insurance)

70Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 82 / 141

concerning the operational performance among all car
insurance companies for the year 2023.

We used the parameters related to the month of April from
this table in (8). Although the report provides data for each
insurance company individually, we refrained from using the
parameters of the insurance company under study due to
confidentiality reasons.

TABLE VII. PUBLISHED DATA ABOUT OPERACIONAL RESULTS OF

INSURANCE COMPANIES

The two available databases (DB1 and DB2) on

individuals were used to create separate underwriting rules.
Subsequently, two new rules were created from the
combination of the two databases using the different
combination methods as explained in the section on
Experiments. The operational gains from the four situations,
extracted through backtesting, are listed in tables VIII and IX
below. For this, an optimization of the cut-off point was
considered, which would result in a refusal of 10% of the
policies applying (8).

A. Calculating ROI for Each Scenario

To arrive at these results, we applied (8) for calculating the
financial return for all the scenarios simulated in our
experiment according to Lifts (applying an approval cut-off
point at the 10th percentile) and their respective gains (ROI)
presented in Tables VIII and IX.

TABLE VIII. RESULTS FOR THE THEFT AND ROBERY TARGET.

Modelo Lift Gain

DB2 isolated 170% R$ 5.137.858,00

DB1 isolated 283% R$ 10.711.628,20

Stacking Comb. 293% R$ 11.204.882,20

Linear Comb. 296% R$ 11.352.858,40

TABLE IX. RESULTS FOR THE CLAIM TARGET.

Model Lift Gain

DB2 isolated 19% -R$ 2.310.277,40

DB1 isolated 40% -R$ 1.274.444,00

Stacking Comb 33% -R$ 1.619.721,80

Linear Comb 50% -R$ 781.190,00

From the calculation of the result for all possible
combinations, we can apply the Shapley Value to isolate the
contributions of each of the databases to the final combined
result.

B. Calculating the Data Value

Finally, by applying the values shown in Tables VIII and
IX and using the SHAP formula, we can come to an exact
conclusion about the value of each data for each of the selected
problems and for each of the combinations made.

Just to recap, the formula for the data value we want to
solve is presented below (as detailed in section II.A:

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 = 𝑉(𝑑𝑎𝑡𝑎, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

As defined in our method, we will use the SHAP value to

determine how much each of the Databases used contributes
to the final value of the coalition (combination of the two
databases). Recalling the Shapley Value formula that will be
used in this calculation is presented below:

𝑣𝑖 = ∑
(𝑆⊆𝑁∖{𝑖})

|𝑆|! (|𝑁| − |𝑠| − 1)!

|𝑁|!
∗ (𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)),

Where:

 N is a players set.

 is a coalition that does not include player i.

 v(S) is the coalition value S.

 v(S∪{i}) is the coalition that includes player i.

From now on we present the computation of the value of

the both datbases calculated according to our method for each
of the databases in each of the combinations carried out in our
experiments.

1) Value of DB1 and DB2 for Theft and Robery Using

Stacking

Table X shows all possible coalitions and their respective
ROIs for the Theft and Robery problem using Stacking as a
technique to combine DB1 and DB2 in their coalition.

TABLE X. RESULTS FOR THE THEFT TARGET WITH STACKING.

Coalisões ROI

C({Ø}) R$ 0,00

C({DB1}) R$ 10.711.628,20

C({DB2}) R$ 5.137.858,00

C({DB1,DB2}) R$ 11.204.882,20

We can interpret the Result as follows: The coalition

(combination) of the two databases yields a Result greater
than any other coalition that has only one of the two databases.

By applying the SHAP formula, we arrive at the following
division of Gains between DB1 and DB2:

71Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 83 / 141

TABLE XI. DATA VALUE OF DB1 AND DB2 FOR THEFT USING

STACKING.

Player Result (SHAP)

DB1 R$ 8.389.326,20

DB2 R$ 2.815.556,00

As we can see from Table XI, although the coalition with

the two databases yields a higher result for the decision being
made, the result for each of the databases is less than the ROI
of each one individually. This outcome is expected because
the new data added for decision-making is unlikely to be
entirely independent of the data previously available. These
characteristics and discussions regarding the results are also
applicable to the other experiments, so we will present the
results in a summarized form for the remaining experiments.

2) Value of DB1 and DB2 for Theft and Robery Using

Linear Combination

TABLE XII. RESULTS FOR THE THEFT TARGET WITH LINEAR

COMBINATION

Coalision ROI

C({Ø}) R$ 0,00

C({DB1}) R$ 10.711.628,20

C({DB2}) R$ 5.137.858,00

C({DB1,DB2}) R$ 11.352.858,40

Applying SHAP formula, it possible to get to these gains

between DB1 and DB2:

TABLE XIII. DATA VALUE FROM DB1 AND DB2, USING LINEAR

COMBINATION

Player Result (SHAP)

DB1 R$ 8.463.314,30

DB2 R$ 2.889.544,10

3) Value of DB1 and DB2 for Claims Using Stacking.

TABLE XIV. RESULTS FOR THE CLAIM WITH STACKING

Coalision ROI

C({Ø}) R$ 0,00

C({DB1}) -R$ 1.274.444,00

C({DB2}) -R$ 2.310.277,40

C({DB1,DB2}) -R$ 1.619.721,80

Applying SHAP formula it is possible to get the following

division between DB1 e DB2:

TABLE XV. VALUE OF DATA DB1 AND DB2 FOR CLAIMS USING

STACKING.

Player Result(SHAP)

DB1 -R$ 291.944,20

DB2 -R$ 1.327.777,60

4) Value of DB1 and DB2 for Claims Using Linear

Combination.

TABLE XVI. RESULTS FOR CLAIMS USING LINEAR COMBINATION.

Coalision ROI

C({Ø}) R$ 0,00

C({DB1}) -R$ 1.274.444,00

C({DB2}) -R$ 2.310.277,40

C({DB1,DB2}) -R$ 781.190,00

Applying the sharp method it was possible to calculate the

following gaing between bases DB1 and DB2:

TABLE XVII. DATA VALUE OF DB1 AND DB2 FOR CLAIMS USING LINEAR

COMBINATION.

Player Result (SHAP)

DB1 R$ 127.321,70

DB2 -R$ 908.511,70

From the calculated data values from DB1 and DB2 for all

the different combined experiments (Tables XI, XIII, XV and
XVII) it became clear that a database value would depend
cleary on the problem and the decision we are puirsuiting. We
found situations where both data brought value do the decision
(Tables XI, XIII), cases where none of the databases where
able to add value do the decision (Tables XV) and situation
where only one of then brought additional value (Table XVII).

VIII. CONCLUSIONS AND FUTURE WORK

In conclusion, this study addresses a significant gap in the
field of data monetization, proposing a method that provides
a systematic and adaptable approach to assess the value of data
across various databases and problem domains. While data
monetization has garnered substantial attention, the absence
of widely applicable methods in academic literature has
hampered the realization of its full potential [2]. By
integrating information theory, game theory, and the ROI
metric, this research introduces a new method rooted in the
Shapley Value concept from cooperative game theory.

The successful application of the method to the real-world
decision-making problem of underwriting car insurance
policies in the Brazilian market exemplifies its efficacy in
precisely quantifying the financial contribution of individual
datasets to binary decision outcomes. By isolating the added
ROI generated by each data set, this approach offers a
comprehensive perspective on data's value in decision-making
processes. Notably, the versatility of the proposed method
extends to analogous scenarios featuring binary decisions with
measurable financial implications.

Venturing into this emerging research domain, we
anticipate this study will serve as a catalyst for the
development of future methodologies. These methodologies
might build on the foundations laid out in this work or
introduce innovative frameworks further illuminating the
multifaceted value of data in the dynamic landscape of data
science in Big Data environments. As organizations continue
to recognize data's strategic importance, the proposed method
presents a promising avenue for maximizing the benefits
derived from data monetization efforts.

Despite its contributions, the proposed method is not
without limitations. Firstly, its application is confined to
binary decision problems where financial gains and losses can
be explicitly quantified. This constraint may hinder its direct
applicability to scenarios with more complex decision
structures or non-monetary objectives. Additionally, the

72Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 84 / 141

method relies on the availability of accurate and reliable data
to compute ROI, making it susceptible to inaccuracies
stemming from data quality issues.

Moreover, while the Shapley Value provides a fair value
attribution in cooperative games, its implementation may
demand computational resources that could become
burdensome for exceptionally large datasets or high-
dimensional decision spaces [29].

Regarding future research directions, several paths merit
exploration. A fundamental area is extending the proposed
method to accommodate more complex decision structures,
potentially involving multiple parties or sequential decisions.
This could entail adapting concepts from cooperative game
theory to capture such scenarios' dynamics.

Furthermore, as the data monetization field continues to
evolve, exploring alternative value metrics beyond ROI could
offer a more comprehensive understanding of data's value.
This could involve incorporating qualitative factors, long-
term strategic impact, or even societal implications.

Additional investigations into methods for dealing with
noisy or incomplete data might enhance the proposed
approach's robustness. Exploring machine learning
techniques, data preprocessing, and statistical analysis could
help mitigate data quality issues' impact.

Lastly, a broader application of the method across various
sectors and contexts would provide empirical evidence of its
versatility and limitations. Comparative studies involving
different decision problems and data sets could shed light on
the proposed approach's generalization and efficacy in diverse
settings.

In conclusion, while the current method offers a valuable
contribution to evaluating data's value in binary decision
scenarios, it's imperative that future research overcome its
limitations and broaden its scope to address the complexities
of real-world decision-making environments. By embracing
these challenges and pursuing innovative directions,
researchers can propel the advancement of data monetization
methodologies and pave the way for more informed, data-
driven decisions in an increasingly data-rich world.

REFERENCES

[1] ORACLE, “What Is Big Data? Big Data Definition -,” Jul.
11, 2020. https://www.oracle.com/br/big-data/what-is-big-
data.html (accessed Jul. 11, 2020).

[2] D. Monteiro, L. Monteiro, F. Ferraz, and S. Meira, “Big Data

Monetization: Discoveries from a Systematic Literature
Review,” Oct. 2020.

[3] A. McAfee and E. Brynjolfsson, “Big Data: The
Management Revolution,” Harv. Bus. Rev., 2012.

[4] R. S. Kaplan and D. P. Norton, “The Balanced Scorecard—
Measures that Drive Performance,” Harvard Business
Review, Jan. 01, 1992. Accessed: Aug. 31, 2023. [Online].
Available: https://hbr.org/1992/01/the-balanced-scorecard-

measures-that-drive-performance-2
[5] C. E. Shannon, “A Mathematical Theory of

Communication,” p. 55, Jan. 1948.
[6] L. S. Shapley, “A value for n-person games,” in

Contributions to the Theory of Games, Princeton University
Press, 1953, pp. 307–317.

[7] Neurotech SA, “Neurotech SA.” [Online]. Available:
https://www.neurotech.com.br/

[8] D. S. Johnson, “The NP-completeness column: An ongoing
guide,” J. Algorithms, vol. 11, no. 4, pp. 434–451, 1990.

[9] A. De Mauro, M. Greco, and M. Grimaldi, “A formal

definition of Big Data based on its essential features,” Libr.
Rev., vol. 65, no. 3, pp. 122–135, 2016, doi: 10.1108/LR-06-
2015-0061.

[10] K. Ruan, “Digital Assets as Economic Goods,” in Digital
Asset Valuation and Cyber Risk Management, K. Ruan, Ed.,
Academic Press, 2019, pp. 1–28. doi: 10.1016/b978-0-12-
812158-0.00001-6.

[11] Aristotle, Nicomachean Ethics. Publisher Not Specified,

350AD.
[12] A. Smith, An Inquiry into the Nature and Causes of the

Wealth of Nations. Publisher Not Specified, 1776.
[13] K. Marx, Das Kapital. Publisher Not Specified, 1867.
[14] M. R. Garey and D. S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[15] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,

Classification and Regression Trees. CRC Press, 1984.
[16] W. E. Buffett and L. A. Cunningham, The Essays of Warren

Buffett: Lessons for Corporate America. Cunningham
Group, 2013.

[17] F. Provost and T. Fawcett, Data Science for Business: What
you need to know about data mining and data-analytic
thinking. O’Reilly Media, 2013.

[18] R. Journal, “What is RFID?” 2023. [Online]. Available:

https://www.rfidjournal.com/what-is-rfid
[19] “Data Monetization - Auto Isurance data.”

https://www.kaggle.com/datasets/domingosmonteiro/auto-
insure-data (accessed Sep. 05, 2023).

[20] S. Lundberg and S.-I. Lee, “A Unified Approach to
Interpreting Model Predictions,” in Proceedings of the 31st
International Conference on Neural Information Processing
Systems, 2017.

[21] J. Li, B. Shao, J. Xu, H. Li, and Q. Wang, “A big data based

product ranking solution,” in 2016 IEEE International
Conference on Service Operations and Logistics, and
Informatics (SOLI), Jul. 2016, pp. 190–194. doi:
10.1109/SOLI.2016.7551685.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[23] S. Lohiya, Decision Trees for Decision Making. Springer,
2018.

[24] E. Kreyszig, “Advanced Engineering Mathematics, 10th
Edition | Wiley,” Wiley.com, 2010.
https://www.wiley.com/en-
us/Advanced+Engineering+Mathematics%2C+10th+Editio
n-p-9781119455929 (accessed Aug. 31, 2023).

[25] G. Piatetsky-Shapiro, Knowledge Discovery in Databases.

AAAI/MIT Press, 1991.
[26] Q. Tang, G. Xia, X. Zhang, and F. Long, “A Customer Churn

Prediction Model Based on XGBoost and MLP,” in 2020
International Conference on Computer Engineering and
Application (ICCEA), Guangzhou, China: IEEE, Mar. 2020,
pp. 608–612. doi: 10.1109/ICCEA50009.2020.00133.

[27] J. Berkson, “A Note on the Kolmogorov-Smirnov Test,” J.
Am. Stat. Assoc., vol. 40, no. 230, pp. 269–272, 1945.

73Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 85 / 141

[28] D. S. Moore, G. P. McCabe, and B. A. Craig, Introduction to
the Practice of Statistics. W. H. Freeman, 2017.

[29] W. S. Jewell and C. H. Owen, Cooperative Game Theory and
Applications. Oxford University Press, 1999.

74Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 86 / 141

Combining Retrieval and Classification: Balancing Efficiency and Accuracy in
Duplicate Bug Report Detection

1st Qianru Meng
LIACS

Leiden University
Leiden, Netherlands

mengqr@vuw.leidenuniv.nl

2nd Xiao Zhang
CLCG

University of Groningen
Groningen, Netherlands

xiao.zhang@rug.nl

3rd Guus Ramackers
LIACS

Leiden University
Leiden, Netherlands

g.j.ramackers@liacs.leidenuniv.nl

4th Visser Joost
LIACS

Leiden University
Leiden, Netherlands

j.m.w.visser@liacs.leidenuniv.nl

Abstract—In the realm of Duplicate Bug Report Detection
(DBRD), conventional methods primarily focus on statically
analyzing bug databases, often disregarding the running time
of the model. In this context, complex models, despite their high
accuracy potential, can be time-consuming, while more efficient
models may compromise on accuracy. To address this issue, we
propose a transformer-based system designed to strike a balance
between time efficiency and accuracy performance. The existing
methods primarily address it as either a retrieval or classification
task. However, our hybrid approach leverages the strengths of
both models. By utilizing the retrieval model, we can perform
initial sorting to reduce the candidate set, while the classification
model allows for more precise and accurate classification. In
our assessment of commonly used models for retrieval and
classification tasks, sentence BERT and RoBERTa outperform
other baseline models in retrieval and classification, respectively.
To provide a comprehensive evaluation of performance and
efficiency, we conduct rigorous experimentation on five public
datasets. The results reveal that our system maintains accuracy
comparable to a classification model, significantly outperforming
it in time efficiency and only slightly behind a retrieval model in
time, thereby achieving an effective trade-off between accuracy
and efficiency.

Keywords-Duplicate Bug Detection; Deep Learning; Natural
Language Processing; Transformer; Running Time; Accuracy.

I. INTRODUCTION

Bug reports are crucial in the software development and
maintenance phase, providing valuable information to soft-
ware developers [1][2]. It commonly comprises structured text
(e.g., timestamp, version, component, and bug status) and
unstructured text, such as title and description [3]. Typically,
bugs are recorded in the Bug Database (also known as Bug
Tracking System) by developers, testers and users [3][4][5].
Unfortunately, the inconsistent understanding of bug descrip-
tions by different writers leads to the continuous generation
of numerous duplicate bug reports [6], which increases main-
tenance costs. Consequently, significant research efforts have
been devoted to detecting duplicate bugs, aiming to reduce
redundant work involving the testing of bugs that have already
been resolved [5][7][8], thereby enhancing the efficiency of the
bug fixing process [9].

DBRD task can be defined as: the automatic process of
identifying and comparing the semantic content in bug reports
to discover new reports that are duplicate or highly similar to
existing reports. As shown in Table I, there are two instances

TABLE I: COMPARISON OF DUPLICATE BUG REPORTS FROM
ECLIPSE

Bug id 178
Title Maintain sync view expansion state when switching

modes
Description It would be nice if when things got filtered out, their

expansion would be remembered, so that when the
item is revealed again it has the correct expansion.
For example, if you have one outgoing change;
switch to the catchup pane and then come back, the
tree is completely collapsed.

Bug id 226
Title Switching between sync UI modes should preserve

expansion state
Description When you switch between Catch Up and Release

modes, it loses the expansion state of the tree. It
should remember this and probably the selection and
top item (scroll bar position) as well.

of duplicate bug reports where similar features have been high-
lighted. These features are not limited to exact word matching,
but also extend to semantic similarity and context. Therefore,
this places high demands on the capacity of automatic text
processing techniques.

Traditionally, the automatic approach to DBRD has been
divided into two distinct tasks: Information Retrieval (IR) and
classification[1]. Early methods for IR primarily relied on
word-based approaches (e.g., Vector Space Model), as well
as topic-based models like Latent Dirichlet Allocation (LDA)
and Latent Semantic Analysis (LSA), which transformed bug
reports into feature vectors. More recently, embedding models,
such as Word2Vec [10][11], GloVe [12], and sentence BERT
[13] have gained traction. These models generate embeddings
that are then utilized to calculate similarities between bugs,
typically using distance measurements, such as Cosine simi-
larity. These retrieval methods have demonstrated promising
performance, particularly in terms of recall rate [1]. Simultane-
ously, classification models, particularly deep-learning-based
approaches, have emerged as prominent research focus in
DBRD [1][5][9]. Initially, the classifier employed the Con-
volutional Neural Network (CNN) [6][11][14][15], followed
by the Recurrent Neural Network (RNN) [15] and eventually
transitioning to the Long Short-Term Memory (LSTM) model
[15]. However, due to the challenges associated with process-
ing lengthy text, the performance of these three models has
been surpassed in recent years by transformer-based classi-

75Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 87 / 141

fiers, most notably BERT [3][5], sentence BERT [3][13] and
RoBERTa [3]. These large language models are pre-trained
on large corpus and fine-tuned on domain-specific data, which
enables them to capture contextual semantic information and
generate word and sentence representations efficiently. Not
surprisingly, transformer-based models became the state-of-
the-art for this task [3].

However, in previous studies, we found that commonly used
dataset splitting methods have data leakage issues, which may
lead to biased results. Specifically, it is possible for a single
data within a pair in the train set to be combined with another
data and consequently appear in the development or test set.
This unintentional leakage has not been explicitly addressed
by most existing methods, with only one work taking this
matter into account without explicitly acknowledging it [3].
Therefore, one of the main contributions of our work is
the design of a Cluster-based dataset partition mechanism to
address this problem.

Most importantly, while there has been a considerable em-
phasis on performance metrics, such as recall and precision in
existing studies, the evaluation of these approaches’ efficiency
in terms of speed has often been overlooked. As highlighted
by Haruna et al. [13] in their research, with the advent of large
language models, such as BERT, the performance of retrieval
and classification tasks has shown remarkable advancements.
Nevertheless, the deployment and execution of these models
can present difficulties due to their relatively slower inference
times. Especially when it comes to practical applications,
the speed plays a critical role. As a result, it’s essential to
evaluate a model not just based on its accuracy, but also on
its efficiency.

In our research, we propose a novel system based on
the transformer architecture that combines the advantages
of retrieval model and classification model. Our approach
integrates retrieval techniques to retrieve an initial set
of potential duplicate instances, which is then fed into
a classification model for further triage. This innovative
methodology enables us to achieve faster performance
without compromising accuracy. By effectively merging these
two components, we attain a balance between efficiency and
accuracy in DBRD task.

The contributions of our work are as follows:
• Cluster-based dataset partition mechanism: To address the

problem of train set leakage, we introduce a cluster-based
dataset partition mechanism. This mechanism ensures that
duplicate instances are evenly distributed across the train
and test sets, effectively mitigating any potential data
leakage issues.

• Comparison with previous models: We conduct a com-
prehensive comparison between the performance of the
transformer-based models and that of previous methods in
retrieval and classification. Through rigorous experiments
and evaluations, we demonstrate that our transformer-
based models outperform on both tasks, surpassing the
performance of previous models.

• Integration of retrieval model and classification: Our
proposed system leverages the strengths of both retrieval
models and classification models. As demonstrated in the
experiments, our system can achieve a balanced between
speed and accuracy in two real-world scenarios.

We introduce the related work in Section II, detail our ap-
proach in Section III and validate the experiments in large open
source projects to demonstrate the effectiveness in Section IV
and Section V.

II. RELATED WORK

As previously mentioned, solutions to DBRD can be viewed
as IR task and classification task. Approaches to IR tasks focus
on identifying duplicates by computing similarities between
textual representations, while classification tasks typically uti-
lize deep learning techniques to train models in distinguishing
between ”duplicated” and ”non-duplicated” instances based
on learned patterns. In the following subsections, we present
related work on these methods.

1) Information Retrieval Methods: Hiew [16] introduces
a retrieval method for unstructured text including titles and
descriptions. Textual fields are converted to TF-IDF vectors,
which are then organized into clusters based on their similar
characteristics to identify duplicates. Runeson et al. [7] utilized
a Vector Space Model to present text-based information and
determined the text similarity by using three similarity cal-
culation methods. Wang et al. [17] integrated execution data
into their strategy to detect similar bug reports. Sun et al. [18]
proposed a REP model that incorporates similarity of lexical
features and categorical features from bug reports. Nguyen
et al. [9] introduced the DBTM model that processes topic
features extracted by LDA model and unstructured textual
features. It combines topic model and retrieval model to show
both similarity and dissimilarity between bug reports. Some
follow-up studies [19][20][21] adopt a similar approach to
previous studies, also implementing topic models for retrieval,
but differentiate their studies by analyzing distinct corpora and
utilizing varied feature inputs in bug reports.

Therefore, traditional IR methods primarily focus on the
calculation of word frequency feature to detect duplicates,
which show advantages in processing structured text and
keyword-based queries. However, IR methods exhibit lim-
itations in processing contextual information and complex
semantic features, areas where deep learning (DL) methods
demonstrate proficiency.

2) Deep Learning Methods: Deshmukh et al. [14] were
the first to introduce deep learning into duplicate bug report
detection, proposing a model that uses Siamese Convolutional
Neural Networks and Long Short Term Memory to process
hybrid input from bug reports for retrieval and classification.
Budhiraja et al. [22][23] proposed Deep Word Embedding
Networks (DWEN), a framework designed to retrieve sim-
ilar reports by processing unstructured input, including bug
report titles and descriptions. Xie et al. [10] introduced a
deep learning framework named DBR-CNN, which enhances

76Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 88 / 141

traditional CNN by integrating domain-specific features ex-
tracted from bug reports. The hybrid features are fed into
the CNN model to obtain concatenated vectors, which are
utilized for classification task. Poddar et al. [24] proposed a
neural architecture for multi-task learning, with joint tasks of
classifying duplicates and clustering latent topics, operating
on unstructured descriptions as input. Building upon the CNN
framework, He et al. [11] subsequently developed a Dual-
Channel CNN (DC-CNN) method to classify duplicate bug
reports using hybid-structured text as input. Kukkar et al. [6]
presented a deep learning based classification model applied
on hybrid features, also leveraging CNN to extract relevant
features that are subsequently used to compute similarities for
classification purposes.

Following these advancements, transformer-based language
models have gained considerable attention and popularity
within the present landscape of duplicate bug report detection,
due to their rich context-based learning capabilities. Isotani et
al. [13] introduced transformer-based deep learning embedding
model of SBERT to vectorize the unstructured textual features
(title and description) and then computes the similarity of
the embedding representations, enabling retrieval of similarly
ranked bug reports. Rocha et al. [5] proposed a SiameseQAT
approach, using BERT and MLP to concatenate structured and
unstructured features and features extracted based on corpus
topics for retrieval and classification tasks respectively. Mes-
saoud et al. [3] proposed a BERT-MLP model for classifying
duplicate bug reports, which considers only unstructured data.
The model utilizes BERT to generate contextualized word
representations and applies an MLP for classification. Jiang Y
et al. [25] suggested a CombineIRDL method, which utilizes
different deep learning models to extract lexical, categorical,
and semantic features from hybrid input and then employs a
retrieval model to obtain ranked duplicates.

Building on these deep learning methods discussed in
the literature, we find that most of them accomplish du-
plicate detection by implementing retrieval and classifica-
tion tasks separately [5][6][14] or focus on a single task
[3][10][11][13][22][23][24][25]. Furthermore, deep learning
methods have demonstrated significant effectiveness in both
tasks. In IR tasks, deep learning enhances similarity assess-
ments by employing advanced word embedding models, such
as transformer models. In classification tasks, it trains models
(such as CNN, LSTM or transformer models) to predict
whether two bug reports are duplicates by leveraging their
learning capabilities to discern complex textual patterns. By
employing these advanced deep learning models, classification
tasks can achieve higher accuracy than IR tasks through
the extraction of comprehensive textual features, but at the
cost of thousands of computations to achieve such precision.
Conversely, IR tasks can achieve more significant efficiency in
reducing the search space than classification tasks. However,
previous work has not considered the trade-off between accu-
racy and efficiency. Therefore, our approach combines those
two tasks in order to fully exploit their strengths in terms
of efficiency and accuracy, thereby achieving a balance. In

doing so, we apply transformer-based models in our approach,
which are widely recognized as the state-of-the-art for Natural
Language Processing (NLP) tasks by exploiting their ability to
learn semantic and contextual information. These models are
utilized to generate embedding representations in the retrieval
task and to identify duplicate pairs in the classification task.
The following section contains more details of our methodol-
ogy.

III. METHODOLOGY

In this section, we outline our methodology for the DBRD
task, including the overall architecture, pre-processing, data
split, and model fine-tuning.

A. Overall Architecture

The overall architecture of our proposed approach is shown
in Figure 1, which consists of three important phases: data
split, retrieval and classification.

• Data split is to split the test and train set for preparing
for the training of retrieval and classification models and
we introduce it detailed in Section III-C.

• In the Retrieval phase, the retrieval model is responsible
for generating the embedding representation of bug report
input. Using cosine similarity [26], it calculates the
embedding similarity and selects the Top K similar bug
reports. This ”ranking” is primarily used to identify the
top-K candidates, which serve as the target input for the
subsequent classification model.

• In the Classification phase, the model takes the top-K
candidates from the retrieval phase and aims to output
the final results by labeling them as duplicates or non-
duplicates.

B. Pre-processing

In DBRD task, the input of bug reports can typically be
unstructured input containing only unstructured textual fields,
or hybrid input including both unstructured textual features
and structured categorical features. Our emphasis lies on
unstructured input, specifically title and description. These
text constitute the most critical component of bug reports and
they are also noisy and complex, covering a large number of
domain-specific technical fields. To eliminate the redundant
and invalid data in the content of bug report datasets, the
following operations are used to clean the datasets:

• Remove all non-English words from the text (note: adjust
this based on the primary language of the dataset)

• Remove some special characters but keep periods and
commas

• Remove stop words
• Unify all letters to lowercase

C. Data Split

As outlined in Section I, most prior studies have neglected
the leakage from the train set to the development and test
set. To address this issue, we introduce a cluster-based dataset
generation method, as illustrated in the Data Split Phase of

77Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 89 / 141

Fig. 1: Transformer-Based Framework split into Two Phases: 1). Data Generation Phase and 2). Model Fine-Tuning Phase

Figure 1. This approach ensures a stringent separation between
the train set, development set, and test set.

Data Separation. After pre-processing, the bug reports are
categorized into two groups: independent bug reports and
duplicate bug reports. Independent bug reports refer to those
that do not have any duplicates among the dataset.

Cluster Generation. In this particular step, we adopt the
assumption of transitivity in the relationship between duplicate
bug reports. This means that if Bug A is a duplicate of Bug
B, and Bug B is a duplicate of Bug C, then Bug A and Bug
C are also considered duplicates. Consequently, based on our
example, Bugs A, B, and C would be grouped together in a
single distinct cluster. Leveraging this assumption, we employ
a cluster-based method to group pairs of duplicated bug reports
into distinct clusters. Within each cluster, every two bugs are
marked as duplicates.

Cluster Selection. Unlike prior studies that randomly select
duplicate pairs for train/test sets, we choose clusters to form
train, development, and test sets. This ensures each bug

appears only once in any set, and the clusters across these
sets are distinct. This method reduces potential biases and data
leakage from directly selecting duplicate pairs.

Pair Generation. In this step, we generate two train/test
datasets with different data structures for retrieval and clas-
sification models respectively. The retrieval dataset follows
the format of [Bug ID: Bug IDs], where bugs sharing the
same cluster are considered duplicates of each other. On the
other hand, the classification dataset comprises both duplicated
pairs and non-duplicated pairs in a one-to-one format of [Bug
ID: Bug ID], which are generated based on the clusters.
For a cluster with n bugs, n∗(n−1)

2 duplicated pairs can be
derived. Furthermore, for two clusters (with sizes n and m,
respectively), we can generate n ∗m non-duplicated pairs.

Notably, the train set is carefully balanced in terms of
positive (duplicate) and negative (non-duplicate) data, while
the development and test sets are intentionally left unbalanced.
This setting aims to reflect the real-world scenario, where the
number of non-duplicate bug pairs far exceeds the number of

78Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 90 / 141

duplicate bugs.

D. Model Fine-tuning

As shown in Figure 1, Model Fine-tuning phase encom-
passes the process of training two models: the retrieval model
and the classification model.

To adapt SBERT for the retrieval task, we modify the dataset
structure into triplets [Anchor, Positive, Negative], where we
aim to fine-tune the model’s ability to distinguish between
relevant (positive) and irrelevant (negative) instances. The loss
function employed is the Triplet Loss [27], represented by 1. In
this equation, || · || denotes a distance metric used to assess the
similarity between embeddings. It is important to note that this
loss function imposes a condition that the distance between the
anchor text and the positive text should be at least θ greater
than the distance between the anchor text and the negative
text.

Triplet Loss = Max(||Ea −Ep|| − ||Ea −En||+ ϵ, 0) (1)

In the context of classification, BERT operates by taking
in two texts simultaneously, and using [SEP] token to differ-
entiate them. The embedding of the [CLS] token, obtained
from the final layer of BERT, is processed through a linear
layer. The softmax function is then applied to generate the
final prediction. The loss function employed in this case is the
CrossEntropy (CE) Loss, as represented by 2.

CE(y, p) = −
N∑
i=1

yi log pi (2)

where the yi is the true label and pi is the predicted label.

IV. EXPERIMENTAL SETTINGS

In this section, we detail the experiments, discussing setup,
datasets, hyperparameters, evaluation, baselines, and model
selection.

A. Setup

To ensure a fair and consistent comparison between the
models, we maintain uniformity by implementing and building
the models using Python within the PyTorch framework. We
will provide the structured code in subsequent documentation.
All experimental procedures were conducted on a Linux server
featuring an AMD EPYC-Rome processor and an NVIDIA
A40 GPU card. This setting allows for efficient execution and
reliable performance evaluation of the models.

B. Datasets

We use five open source bug report repositories 1 to verify
the effectiveness of our system, namely Eclipse, Firefox,
Mozilla, JDT, and ThunderBird (TBird), as the experimental
datasets in our study. These repositories have been extensively
utilized in previous research [1]. We focus on the following

1Datasets available at: [Online]. Available: https://github.com/logpai/
bugrepo

statistical attributes to characterize the datasets as Table II
shown.

We have detailed the process of Data Split in Section III-C,
where we employ an 8:1:1 ratio to split train, development, and
test sets respectively. As previously discussed, we introduce
skew to the development and test data, while maintaining
balance in the train set. Consequently, we adhere to the ’Dup
Bug Ratio’ as indicated in Table II, to establish the ratio of
duplicate pairs in both the development and test sets. Since a
substantial number of duplicate and non-duplicate pairs can be
generated, we limit the size of the train/test/dev set as shown
in Table III.

C. Hyperparameters

We leverage pre-trained transformer-based models along
with their respective tokenizers. Fine-tuning of these models
is performed using the AdamW optimizer [28] with a learning
rate of 10−5.

In the classification scenario with SBERT, we introduce a
linear layer comprising two hidden layers of 768 hidden size
each. For the Bi-LSTM model, we utilize the SGD optimizer,
implementing a learning rate of 0.5 and a decay rate of 0.25.
For the CNN model, we adhere to the configurations outlined
in DC-CNN [11].

To mitigate overfitting, we apply a 0.5 dropout across all
models. We process training data in 32-size batches. To bolster
the robustness and reliability of the results, each experiment
is conducted five times.

D. Evaluation

1) Individual Evaluation: The performance of retrieval and
classification models is individually assessed in our study. For
the retrieval model, we evaluate the performance by measuring
the recall and precision under different Top-k settings. For
the classification model, we employ precision, recall, and the
corresponding F1 score to indicate the performance.

Metrics: Utilizing a confusion matrix, which tabulates the
counts of True Positives (TP), False Positives (FP), False
Negatives (FN), and True Negatives (TN), we characterize the
recall, precision, and F1 score as delineated in 3, 4, and 5
respectively. Above fomulas are the performance indicators
for classification. However, in the context of retrieval, the
computation of recall@k and precision@k deviates slightly,
as demonstrated in 6 and 7.

Recall = TP/(TP + FN) (3)

Precision = TP/(TP + FP) (4)

F1 =
2 ∗ (Precision ∗Recall)

(Precision+Recall)
(5)

Recall@k =
(relevant items in top− k)

(relevant items)
(6)

Precision@k =
(relevant items in topk)

k
(7)

79Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 91 / 141

TABLE II: STATISTICS OF FIVE OPEN SOURCE DATASETS

Dataset Bugs Dup Pairs Separate Bugs Dup Bug Ratio Cluster Numbers Cluster size
Eclipse 84020(85156) 13231 70752 0.1564 7519 2.760
Firefox 96258(115814) 15742 80000 0.1689 6654 3.366
Mozilla 195248(205069) 34507 160378 0.1786 17263 2.998

JDT 44154(45296) 6513 37608 0.1483 3828 2.701
TBird 24767(32551) 4404 20050 0.1905 2133 3.065

TABLE III: DISTRIBUTION OF BUG PAIRS IN
TRAIN/DEV/TEST SET

Dataset
Train Dev Test

Total
Dup Nondup Dup Nondup Dup Nondup

Eclipse 6615 6615 258 1394 258 1394 16534
Firefox 7871 7871 332 1635 332 1635 19676
Mozilla 17253 17253 770 3542 770 3542 43130

JDT 3256 3256 120 693 120 693 8138
TBird 2202 2202 104 445 104 445 5502

2) Architecture Evaluation: We conduct a comprehensive
evaluation of our proposed system, comparing its performance
and efficiency against individual retrieval and classification
methods in two common real-world scenarios.

One VS All: In this scenario, when a user enters a bug, the
system compares the user’s input bug with existing bug reports
in the entire database. To evaluate this scenario, we divided
the test set into two parts: 20% for user input and 80% for the
database.

All VS All: This scenario often arises on the database side,
where developers need to locate and eliminate all duplicate
errors in the database. It resembles the One VS All scenario,
except that we utilize the entire test set as the database.

The applications of our proposed system as well as retrieval
and classification methods in the above scenarios are as
follows:

One VS All scenario: when a user submits a bug report,
• retrieval scans the entire database to find the report most

similar to the submitted report;
• classification predicts which reports in the database are

relevant to the submitted report based on certain charac-
teristics;

• proposed system firstly retrieves the top K most similar
reports from the database based on user submissions,
and then the classifier further predicts these K reports
to ultimately determine the duplicate results.

All VS All scenario: each method repeats the One VS All
process, aiming to identify and eliminate all duplicates in the
database.

In our approach, the classification process primarily serves
to enhance the quality of retrieval results, so using the retrieved
metrics allows for a more comprehensive comparison of
overall performance, while also displaying the improvements
attained by the classification part. Therefore, this evaluation
consists of the following metrics: recall@k, precision, accu-
racy (as depicted by 8) and inference time.

Accuracy = TP + TN/TP + TN + FP + FN (8)

It should be noted that the maximum k set in our experiments
is 100 which builds also in the real word scenario. In practical
information retrieval settings, users rarely browse beyond the
top 100 results due to the huge amount of data and the
limitation of their own attention. Therefore, capping k at 100
strikes a balance between presenting enough relevant results
and preventing users from being overwhelmed by too many
results.

E. Baselines

Based on individual evaluation in retrieval and classification
respectively, we employ GloVe [12] and FastText [29] as
retrieval baseline methods. Since both methods generate word-
level embeddings, we compute sentence embeddings by aver-
aging the word embeddings. In the evaluation of classification
models, we incorporate the Bi-LSTM and DC-CNN as the
baselines. Both the Bi-LSTM model and the CNN model have
been previously applied as classification models in DBRD
research [11][14].

In the overall evaluation, we select outperforming retrieval
and classification models as baselines and compare them with
our combined approach.

F. Model Selection

In our proposed approach, we select transformer-based
models for retrieval and classification. For the retrieval model,
we leverage sentence BERT (SBERT) to generate text em-
beddings and evaluate its efficacy on the retrieval task. In the
classification task, we choose three transformer-based models
as classification models, BERT, ALBERT and RoBERTa, and
compare their performance. We selected these transformer-
based models because they have demonstrated effectiveness
in previous state-of-the-art studies [3][5][13] for DBRD.

V. EXPERIMENT RESULTS

We analyze our experimental results by answering following
two research questions.

RQ1: Compared to baseline models, how do the
transformer-based models perform on retrieval and clas-
sification?

In our first evaluation, we conduct experiments on retrieval
models and classification models, presenting the results in
Table IV and Table V, respectively.

Consistent with previous research, our evaluation of the re-
trieval model primarily focuses on the recall value. Notably, as
the k value increased, we observed a substantial improvement
in the recall of the model. This result is expected as increasing
the value of k allows for more candidates to be considered,

80Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 92 / 141

TABLE IV: RECALL@K OF MODELS IN DUPLICATE BUG RETRIEVAL FOR ALL DATASETS

Eclipse Firefox Mozilla JDT TBird

r@20 r@60 r@100 r@20 r@60 r@100 r@20 r@60 r@100 r@20 r@60 r@100 r@20 r@60 r@100 Avg r@100

Fasttext 0.489 0.678 0.783 0.596 0.716 0.809 0.414 0.526 0.588 0.608 0.785 0.972 0.627 0.874 1.000 0.8304

Glove 0.602 0.727 0.824 0.705 0.789 0.843 0.478 0.608 0.662 0.579 0.798 0.975 0.689 0.888 1.000 0.8608

SBERT 0.848 0.935 0.960 0.892 0.956 0.973 0.771 0.892 0.919 0.872 0.990 0.997 0.880 0.983 1.000 0.9698

TABLE V: PRECISION, RECALL & F1 SCORES OF MODELS IN DUPLICATE BUG CLASSIFICATION TASK FOR ALL DATASETS

Eclipse Firefox Mozilla JDT TBird

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Avg F1

Bi-LSTM 0.511 0.506 0.473 0.510 0.515 0.469 0.507 0.506 0.506 0.490 0.490 0.490 0.621 0.510 0.474 0.4824

DC-CNN 0.752 0.813 0.785 0.744 0.765 0.753 0.792 0.765 0.736 0.763 0.781 0.773 0.833 0.752 0.781 0.7660

BERT 0.825 0.888 0.848 0.881 0.921 0.899 0.824 0.892 0.849 0.772 0.857 0.797 0.870 0.898 0.883 0.8552

ALBERT 0.806 0.896 0.834 0.874 0.920 0.893 0.819 0.889 0.845 0.825 0.872 0.843 0.885 0.902 0.893 0.8616

RoBERTa 0.846 0.892 0.866 0.886 0.925 0.903 0.835 0.891 0.857 0.824 0.868 0.841 0.846 0.898 0.866 0.8666

thereby raising the probability of identifying duplicate bugs.
Upon setting k to 100, we discovered that nearly all duplicates
are successfully detected, resulting in an approximate recall
value of 1.

Furthermore, by comparing the retrieval performance of the
three models, as shown in Table IV, we find that SBERT
achieves the highest recall value, under different k values.
It outperforms Glove and FastText in all five datasets by an
average lead of 12.42%. This significantly demonstrates the
superiority of the transformer model in information retrieval
capabilities.

In the classification task, we compared the performance
of traditional models, such as Bi-LSTM, DC-CNN, with
transformer-based models on the three indicators of precision,
recall and f1. Our results in Table V show that f1 is signif-
icantly improved by 20% to 38% when using transformer-
based models compared to traditional methods. When com-
paring transformer models, their performance does not exhibit
significant variations. However, RoBERTa has emerged as the
frontrunner, surpassing the others with a slightly higher F1
score of 0.8666.

Therefore, the above experimental results indicate that
transformer-based models outperform traditional models in
both classification and retrieval performance.

RQ2: Compared to single retrieval and classification
model, how does the proposed system perform in case of
recall precision, accuracy and time?

Figure 2 presents a comparative performance overview
showing the difference in recall, precision, accuracy and
running time for single retrieval model, classification model
and proposal system in the One VS All scenario, and Figure
3 presents the overall performance in the All VS All scenario.
The results obtained in the One vs All and All VS All
scenarios of the five datasets are relatively similar, so we
choose one of datasets, firefox, to show the results.

It is important to emphasize that, as shown in Figure 2,

the performance of the classification model is not affected by
changes in k, thus presenting a horizontal line in the figure.

In Figure 2a, we observed that at lower k, both the retrieval
model and our system exhibit lower recall scores compared
to the classification model. The reason is that the limited k
prevents the retrieval of a large number of duplicate pairs.
However, as k gradually increases, after reaching around 20,
the recall of the retrieval model exceeds that of the classifica-
tion model. At the same time, since the classification step of
the system may introduce positive and false samples, the recall
rate of the system is lower than that of the retrieval model,
resulting in a decrease in the overall recall rate. Given that our
system incorporates retrieval, such recall aligns with the rising
trend demonstrated by retrieval models as k increases, albeit at
a slightly slower pace. For example, it is not until ”k” equals
40 that the recall of our method starts to be comparable to that
of classification. This suggests that as the value of k rises to
higher values (e.g., over 100), our recall will continue to rise,
thereby establishing an increasingly discernible gap from the
recall of classification.

In the Figure 2b, we note that the precision of the retrieval
model and our proposed system decrease as k increases, a
consequence of increasing the number of retrieved candidates.
Nevertheless, it is worth mentioning that compared with the
retrieval precision, the decrease of system precision is not
obvious. Even when k is equal to 100, the precision of the
system is still higher than the classification precision, which
demonstrates the effectiveness of our system in terms of
precision. Similar to precision in Figure 2c, accuracy also
exhibits a sonsistent trend. As the k increases, both the
accuracy of the system and retrieval decrease. The decline in
system accuracy is also slower compared to retrieval accuracy.
This highlights the advantage of our system for introducing a
classification step after retrieval, as it can efficiently preserve
the performance in precision and accuracy, especially better
than classification.

Comparatively, as displayed in Figure 2d, the classification

81Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 93 / 141

(a) Recall (b) Precision

(c) Accuracy (d) Running Time

Fig. 2: Time-Performance Evaluation on Firefox Dataset in One VS All scenario

process is more time-consuming than both retrieval and our
system. This observation can be explained through a simple
calculation. Assuming we have n user input bugs and m
database bugs, and assuming that both the classification model
and the retrieval model require the same time for a single in-
ference, the following holds: The classification model requires
n∗m inferences. The retrieval model requires n+m inferences,
along with n ∗ m calculations of embeddings similarity and
subsequent sorting. As the similarity calculation and sorting
are considerably faster than model inference, the retrieval
process roughly takes n + m seconds per inference. Our system
incorporates the results of retrieval. Therefore, it includes the
retrieval model inference time n + m, similarity calculation,
and sorting time, followed by n ∗ topk classifications. Conse-
quently, the system’s required time amounts to n+m+n∗topk
inferences. The preceding calculations are equally applicable
to the All VS All scenario as well. It is clear that our method
exhibits almost the same remarkable efficiency as retrieval and
classification in terms of time. This is proven by the fact that
the time consumed by the classification is approximately 60
times greater than our approach.

Figure 3 shows that the All VS All scenario exhibits similar
performance trends as the One VS All scenario. The running
time in Figure 3d represents the average time taken to match
each bug with its similar ones, comparable to Figure 2d.

Overall, our system makes a trade-off by sacrificing some
running time in order to maintain robust performance in terms
of recall, precision, and accuracy. As k increases from 0 to 100,
the recall of our system increases, demonstrating the ability
of our model to successfully retrieve all relevant duplicates.
At the same time, the accuracy and precision are only slightly
reduced, effectively alleviating the sharp decline in retrieval,
but never fall below those achieved by classification. The
steady improvement in recall between retrieval and classifi-
cation, coupled with the maintained superior precision, shows
that we minimize the time cost while maintaining accuracy
performance. This convincingly demonstrates our ability to
obtain a trade-off between accuracy performance and time
efficiency.

Therefore, selecting the appropriate value for k requires
careful consideration. While a smaller k value may improve
the time efficiency, it may also lead to a degradation in model
performance. On the other hand, choosing a larger k value may
result in increased time consumption. Thus, striking a balance
between speed and model performance depends on selecting
the optimal k value.

VI. CONCLUSION AND FUTURE WORK

In our work, we proposed a novel system based on the
transformer models, that leverages the strengths of both re-

82Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 94 / 141

(a) Recall (b) Precision

(c) Accuracy (d) Running Time

Fig. 3: Time-Performance Evaluation on Firefox Dataset in All VS All scenario

trieval and classification approaches for duplicate bug report
detection task. We have evaluated the transformer-based mod-
els employed by our method on five datasets, demonstrating
their effectiveness compared to traditional models for both
classification and retrieval. More importantly, our method
shows a competitive edge by achieving a balance between
time efficiency and accuracy, compared to solutions employing
only one of them. This advantage holds significant impor-
tance in real-time bug report detection where requires high-
quality results in a short time. In other words, under resource
constraints, combining retrieval and classification as a novel
solution enables dynamic adjustments to efficiently address
issues related to changes in data volume and quality, while
flexibly adapting to time-sensitivity and shifts in user demands.
This approach enhances resource efficiency and ensures the
maintenance of response speed and accuracy in a constantly
changing environment. Furthermore, our combined strategy
can be expanded to tackle similar issues in other tasks, such
as recommendation tasks.

While our system addresses the running time concern that
previous methods overlooked, and achieves a trade-off be-
tween time and accuracy, there are several factors need to
be considered for practical application, such as the size of the
model. Our system relies on both the retrieval and classifica-
tion models, resulting in a larger memory space requirement

compared to a single model. As a result, future efforts could
explore the possibility of employing multi-task learning to
integrate these two models, allowing for the completion of
both tasks with a single model simultaneously. Additionally,
there are some limitations in our study that can be addressed
in the future, such as expanding to new datasets. This not
only includes datasets that are more current, but also those
that are more diverse in terms of types, which would enhance
the generalizability of our methods.

ACKNOWLEDGMENT

This work was funded by the China Scholarship Council
(CSC) and supported by the Leiden Institute of Advanced
Computer Science (LIACS).

REFERENCES

[1] S. Gupta and S. K. Gupta, “A systematic study of
duplicate bug report detection,” International Journal of
Advanced Computer Science and Applications, vol. 12,
no. 1, pp. 578–589, 2021.

[2] B. S. Neysiani and S. Morteza Babamir, “Automatic du-
plicate bug report detection using information retrieval-
based versus machine learning-based approaches,” pp.
288–293, 2020.

83Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 95 / 141

[3] M. B. Messaoud, A. Miladi, I. Jenhani, M. W. Mkaouer,
and L. Ghadhab, “Duplicate bug report detection using
an attention-based neural language model,” IEEE Trans-
actions on Reliability, pp. 1–13, 2022.

[4] T. Zhang, H. Jiang, X. Luo, and A. T. Chan, “A literature
review of research in bug resolution: Tasks, challenges
and future directions,” The Computer Journal, vol. 59,
no. 5, pp. 741–773, 2016.

[5] T. M. Rocha and A. L. D. C. Carvalho, “Siameseqat: A
semantic context-based duplicate bug report detection us-
ing replicated cluster information,” IEEE Access, vol. 9,
pp. 44 610–44 630, 2021.

[6] A. e. a. Kukkar, “Duplicate bug report detection and
classification system based on deep learning technique,”
IEEE Access, vol. 8, pp. 200 749–200 763, 2020.

[7] P. Runeson, M. Alexandersson, and O. Nyholm, “Detec-
tion of duplicate defect reports using natural language
processing,” in 29th International Conference on Soft-
ware Engineering (ICSE’07). IEEE, 2007, pp. 499–510.

[8] J. Uddin, R. Ghazali, M. Mat Deris, R. Naseem, and
H. Shah, “A survey on bug prioritization,” Artificial
Intelligence Review, vol. 47, pp. 145–180, 2017.

[9] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and
C. Sun, “Duplicate bug report detection with a combi-
nation of information retrieval and topic modeling,” in
2012 Proceedings of the 27th IEEE/ACM international
conference on automated software engineering. IEEE,
2012, pp. 70–79.

[10] Q. Xie, Z. Wen, J. Zhu, C. Gao, and Z. Zheng, “Detecting
duplicate bug reports with convolutional neural net-
works,” in 2018 25th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2018, pp. 416–425.

[11] J. He, L. Xu, M. Yan, X. Xia, and Y. Lei, “Duplicate bug
report detection using dual-channel convolutional neural
networks,” in Proceedings of the 28th International Con-
ference on Program Comprehension, 2020, pp. 117–127.

[12] V. Pankajakshan and M. Sridevi, “Detecting duplicate
question pairs using glove embeddings and similarity
measures,” in Advances in Automation, Signal Process-
ing, Instrumentation, and Control. Springer, 2021, pp.
695–702.

[13] H. e. a. Isotani, “Duplicate bug report detection by using
sentence embedding and fine-tuning,” in 2021 IEEE
International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2021, pp. 535–544.

[14] J. Deshmukh, K. Annervaz, S. Podder, S. Sengupta, and
N. Dubash, “Towards accurate duplicate bug retrieval
using deep learning techniques,” in 2017 IEEE Interna-
tional conference on software maintenance and evolution
(ICSME). IEEE, 2017, pp. 115–124.

[15] G. Xiao, X. Du, Y. Sui, and T. Yue, “Hindbr: Hetero-
geneous information network based duplicate bug report
prediction,” in 2020 IEEE 31st International Symposium
on Software Reliability Engineering (ISSRE). IEEE,
2020, pp. 195–206.

[16] L. Hiew, “Assisted detection of duplicate bug reports,”

Ph.D. dissertation, University of British Columbia, 2006.
[17] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An

approach to detecting duplicate bug reports using natural
language and execution information,” in Proceedings of
the 30th international conference on Software engineer-
ing, 2008, pp. 461–470.

[18] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards
more accurate retrieval of duplicate bug reports,” in 2011
26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011). IEEE, 2011, pp. 253–
262.

[19] A. Alipour, A. Hindle, and E. Stroulia, “A contextual
approach towards more accurate duplicate bug report
detection,” in 2013 10th Working Conference on Mining
Software Repositories (MSR). IEEE, 2013, pp. 183–192.

[20] A. Lazar, S. Ritchey, and B. Sharif, “Improving the
accuracy of duplicate bug report detection using textual
similarity measures,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, 2014, pp.
308–311.

[21] K. e. a. Aggarwal, “Detecting duplicate bug reports
with software engineering domain knowledge,” Journal
of Software: Evolution and Process, vol. 29, no. 3, p.
e1821, 2017.

[22] A. Budhiraja, K. Dutta, R. Reddy, and M. Shrivastava,
“Dwen: deep word embedding network for duplicate bug
report detection in software repositories,” in Proceedings
of the 40th International Conference on software engi-
neering: companion proceeedings, 2018, pp. 193–194.

[23] A. Budhiraja, K. Dutta, M. Shrivastava, and R. Reddy,
“Towards word embeddings for improved duplicate bug
report retrieval in software repositories,” in Proceedings
of the 2018 ACM SIGIR International Conference on
theory of information retrieval, 2018, pp. 167–170.

[24] L. e. a. Poddar, “Train one get one free: Partially super-
vised neural network for bug report duplicate detection
and clustering,” arXiv preprint arXiv:1903.12431, 2019.

[25] Y. Jiang, X. Su, C. Treude, C. Shang, and T. Wang, “Does
deep learning improve the performance of duplicate bug
report detection? an empirical study,” Journal of Systems
and Software, p. 111607, 2023.

[26] F. Rahutomo, T. Kitasuka, and M. Aritsugi, “Seman-
tic cosine similarity,” in The 7th international student
conference on advanced science and technology ICAST,
vol. 4, no. 1, 2012, pp. 1–2.

[27] N. Reimers and I. Gurevych, “Sentence-bert: Sentence
embeddings using siamese bert-networks,” CoRR, vol.
abs/1908.10084, 2019. [Online]. Available: http://arxiv.
org/abs/1908.10084

[28] I. Loshchilov and F. Hutter, “Fixing weight decay regu-
larization in adam,” CoRR, vol. abs/1711.05101, 2017.
[Online]. Available: http://arxiv.org/abs/1711.05101

[29] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov,
“Enriching word vectors with subword information,”
CoRR, vol. abs/1607.04606, 2016. [Online]. Available:
http://arxiv.org/abs/1607.04606

84Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 96 / 141

“Elderly, with location data, while shopping?”
Spotting Privacy Threats Beyond Software:

A Quasi-Experimental Study

Tuisku Sarrala
Faculty of Information Technology

University of Jyväskylä, Jyväskylä, Finland
email: tuisku.rad.sarrala@jyu.fi

Tommi Mikkonen
Faculty of Information Technology

University of Jyväskylä, Jyväskylä, Finland
email: tommi.j.mikkonen@jyu.fi

Abstract—In software development, privacy has become an
increasingly critical aspect due to privacy legislation, the growing
complexity of software, and the private nature of many com-
puting systems. However, studies reveal that developers often
have security-focused understanding of privacy and expect user
privacy needs to align with their own. This can risk regulatory
compliance and potentially lead to harm to individuals. In this
paper, we present a quasi-experimental study that explores how
a card-based privacy threat modeling method using systems
thinking elements could help to think about privacy threats on
a broader scope and from another person’s perspective. Sixty-
five software engineering course participants used the same
card deck. The experimental group created several scenarios,
whereas the control group described their software with the
cards. Both reflected against privacy principles. The experimental
group’s threats had broader and more often social scope, showed
consideration for individuals, and were more often context-based.
The control group’s threats were more security focused and had
software artifact focused scope. These findings help to understand
how developers’ understanding of privacy could be broadened.
On a practical level, they have the potential to improve current
privacy-by-design tools and methods, ultimately leading to more
robust privacy protection in software development.

Keywords—Privacy; privacy impact; software development; card-
based modeling; systems thinking; personas; scenarios; process
improvement.

I. INTRODUCTION

Today’s companies processing personal data cannot avoid
addressing privacy, which involves protecting personal infor-
mation and assessing potential impacts on individuals. Privacy-
related legislation enforces the requirement for understanding
and mitigating harmful impact, such as the EU General Data
Protection Regulation (GPDR) [1] and the forthcoming EU AI
Act [2]. A lack of understanding of privacy threats, the source
of privacy impact, can eventually expose customers to the risk
of subjective and objective harms, and the company to sig-
nificant financial losses. Consequently, privacy has become an
important non-functional property to consider when building
and deploying software systems.

Previous studies show that software developers have a
narrow security-focused understanding of privacy [3]. During
development, software is typically considered as a technical
artifact. However, when the software is in use, it becomes
a socio-technical system operating in the rich real world with
real privacy-vulnerable individuals as its users. Threats arising
from this complex context can go unnoticed by developers

if their focus is merely on the security of the technical
artefact. Therefore, to be successful in mitigating privacy
threats in software development, studies suggest developers’
understanding of privacy ought to be broadened [3]–[5].
Moreover, improving privacy tooling could help the situation,
since developers prefer practical solutions and rely on privacy
tools [3]. Furthermore, tools based on traditional reductionist
approaches are a poor fit for broadening one’s understanding
of complex socio-technical issues [6].

Our research seeks to improve the situation, based on the
following:

• Engineering activity: We target privacy threat modeling
since it is a practical privacy thinking exercise which
developers take part in.

• Approach: We apply systems thinking, which is an ap-
proach that

– helps to understand complex issues, such as today’s
socio-technical software and privacy;

– helps to develop one’s thinking; and
– involves techniques suited for broadening develop-

ers’ understanding of privacy, through offering mul-
tiple perspectives, narrative and human focus.

• Implementation: We utilise on practical familiar tech-
niques that fit systems thinking approach, namely per-
sonas and scenarios techniques, and ideation cards.

In this paper, we present a quasi-experimental study with 65
software engineering course participants during a short course
where they developed a piece of software in small teams.
We experimented with a card-based privacy threat modeling
approach and examined its outcome, hoping to see threats
that focus on privacy, consider harm to individuals, and have
a broader scope beyond the technical artifact. In particular,
we were interested in how a method with systems thinking
features compares to a method with traditional features in
privacy threat discovery in terms of identified threats.

”Systems thinking” analyzes complex situations by examin-
ing interactions and dependencies among system components
[7]. The study revealed that with the systems thinking based
method the identified privacy threats were wider in scope, less
security-focused, more contextual and human-focused. Our
results suggest that moving attention from the technical artifact
to the wider context and directing it to the users’ potential pri-

85Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 97 / 141

vacy vulnerabilities and interaction with the artifact appear to
be key factors in improving privacy threat modeling outcome,
leading to an enhanced understanding of privacy as a whole.

The rest of this paper is structured as follows. In Section
2, we present the background for the work. In Section 3, we
describe our research approach and method. In Section 4, we
provide the results of the study. In Section 5, we present a
discussion regarding the key findings. In Section 6, we draw
some final conclusions.

II. BACKGROUND

A. Privacy and Privacy Threats

Privacy is a multifaceted concept that has many definitions,
such as the right to be let alone [8] or one’s control over their
data [9]. A particular characteristic of privacy is that it touches
people through the lack of it, resulting in harm which we
call the privacy impact. Hence, it has been argued that rather
than asking what privacy is, we should focus on the negative
impacts and harms to address privacy [10]. Along similar lines,
Daniel J. Solove, an influential privacy researcher, offers a
taxonomy of privacy violations [11]. Privacy legislation too
recognises the harms and impacts viewpoint. For example,
the GDPR [1] mandates the anticipation of negative impacts
arising from personal data processing to ensure the protection
of individuals. In this article, we take the harms and impacts
focused approach to privacy, and define privacy impact as any
negative impact to individuals arising from the processing of
personal data, in line with the GDPR. Similarly, we define
privacy threat as something that has the capability of causing
privacy impact to an individual.

Engineering is dominated by an approach that considers
privacy as pre-definable through the application of compliance
requirements and privacy principles [12]. Privacy-related leg-
islation dictates the generic approach to privacy threat identifi-
cation. Privacy impact and data protection impact assessment
methods and templates from authorities [13] are commonly
followed. Specifically for technical audience, there are privacy
engineering methods for privacy threat and impact identifi-
cation [14][15]. Typically, extensive modelling or description
of the target is required and then compliance requirements,
privacy principles or privacy goals are iterated against it.
However, many threats can arise from the rich real world
context where the system operates, and the traditional narrow
focus on pre-defined privacy issues and the artifact model can
leave these threats unnoticed.

B. Developers’ Understanding of Privacy

Understanding privacy is imperative for software develop-
ers, for several reasons. The developers are required to (1)
make privacy-safe and ethical design decisions, (2) spot and
escalate privacy issues that they observe from their deeply
technical viewpoint, and (3) collaborate effectively with busi-
ness owners and company legal experts. These objectives con-
solidate the developers’ contribution to the company achieving
its main goal, legal compliance.

Recent research [4][5] points out that supporting developers’
privacy understanding and practical privacy work is an under-
researched area that requires attention. Security dominates
when it comes to privacy in software development, but privacy
is much more than security. Security is prominent in privacy
research related to developers, developers understanding, and
privacy tools for developers [3]–[5]. Previous research [3][16]
shows that developers use security vocabulary to discuss
privacy, which limits their perception of privacy to external
threats, such as a hacker gaining access to personal data.

There are further aspects narrowing down developers’
views. Developers have a practical rather than theoretical
understanding of privacy, which does not match the pol-
icy makers’ view [3][16]. Developers’ understanding is built
through practical work and online communities, as well as
by observing the (at times questionable) privacy practices
of big tech companies [4][17][18]. User privacy appears to
be considered through the developer’s own privacy persona
[17][19], whose privacy needs may vastly differ from the needs
of the individuals that become the users [19][20].

Due to the lack of skills in implementing privacy in practice,
developers rely heavily on privacy tools and methods to carry
out the necessary tasks [4]. Simultaneously, effective use of
these tools is hampered due to developers still lacking a mental
model of privacy. Training alone appears to be insufficient in
bridging this gap, due to the lack of its practical relevance [4].

C. Systems thinking

”Systems thinking” is a conceptual approach used to under-
stand and analyze complex situations, problems, or phenomena
by focusing on the interactions and interdependencies among
various components or elements within a larger system [7][21].
”System” could be comprised of physical entities, processes,
people, organizations, or even abstract concepts. Arnold and
Wade [7] propose the following definition for the purpose of
systems thinking: ”Systems thinking is a set of synergistic
analytic skills used to improve the capability of identifying
and understanding systems, predicting their behaviors, and
devising modifications to them in order to produce desired
effects. These skills work together as a system.”. In practice,
systems thinking commonly involves taking a holistic view, ex-
amining the dynamic interconnections of the different elements
and observing the behaviour of the system that arises from
the interconnections and the system’s structure (i.e., behaviour
that cannot be seen by examining the parts in isolation) [21].
Specific techniques include probing from different angles,
multiple perspectives and narrative techniques [21].

The need for systems thinking skills for dealing with
complex socio-technical systems and problem situations is
recognised in literature [6][22]. Many of today’s software
systems can be seen as social systems [23]. They are embedded
in their environment and constantly evolving [24]. This makes
them complex and their boundaries blurred. Privacy is a
complex social-technical issue, and more complex and ever-
evolving software has more potential to create dangerous com-
binations for privacy. Both generic and engineering approaches

86Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 98 / 141

for identifying privacy threats commonly rely on a detailed
description and analysis of all the parts of the target. This
traditional reductionist engineering approach can be heavy
and poorly matched to today’s complex software systems and
privacy threats [6]. Where traditional approaches may struggle,
systems thinking is suited for understanding complex human
of problem situations [6].

D. Understanding Users and Their Privacy Vulnerabilities

Personas is a technique to model actual users as fictitious
personas so that the software design can better fit their needs
and expectations. Personas are commonly generated based on
focus groups, interviews and workshops [25]. In the case of
privacy personas, the unveiled privacy preferences of the users
are used for privacy persona creation [26][27]. Understanding
gained through personas can be enriched and strengthened
by the use of scenarios [28]. Scenarios are a general non-
standardised way of creating narratives around user activities.
Personas based on users’ preferences may not, however, help
to identify privacy threats towards them, since their source
may not be known to the user. The users may not be aware of
their privacy vulnerabilities nor understand how threats may
arise through their interaction with the software. Modeling
personas with a variety of privacy vulnerabilities, rather than
privacy preferences, could address this. This approach would
be similar to the suggestion to model personas with various
disabilities [29].

E. Card-based Implementation

Card-based design tools are virtual or physical cards com-
monly used for various design, planning, brainstorming, and
collaborative activities. The cards typically represent individ-
ual pieces of information, concepts, tasks, or elements, and
can be arranged, grouped, and manipulated by the users.
A review of card-based design tools [30] shows that the
most worthwhile outcomes appear to be produced by cards
that stimulate creativity, facilitate early user participation, and
summarise design or good practice guidelines. The review
called for independent scientific trials since the cards had
been evaluated mostly by their developers. Recent studies
with privacy-related cards list accessibility and potential for
communicating complex ideas as their benefits, and well as
how cards intertwine with practice rather than separate privacy
to be considered in separate forms [18]. Cards can enhance
understanding at an introductory level, bring practical value
and engage participants with the topic [17][31]. Weaknesses
include overloading user with information, topic oversimplifi-
cation, and being difficult to use, apply and update [30].

Next, studies with setups similar to ours are discussed. In
contrast to our study, the identified privacy threats were neither
studied nor reported in detail. Rather, the studies focused on
the process of using the cards, so their findings will be more
relevant for our future studies. We were interested in card-
based methods that have a threat discovery element and scoped
out methods that see privacy as pre-definable [12], such as
compliance and privacy principle checklists.

1) Security and Privacy Threat Discovery Cards: The
method [32] has some elements that are present in systems
thinking approach, namely multiple perspectives and combin-
ing cards to create new viewpoints. The focus is on security
threats by an attacker, but impact on humans is considered. The
deck has four suits: human impact, adversary’s motivations,
adversary’s resources and adversary’s methods. Cards can be
added. The eight human impact cards cover impacts on a wide
scope: emotional, financial, physical and societal wellbeing,
relationships, security of personal data, the biosphere and
’unusual impacts’. Different activities with the cards are sug-
gested, such as combining, sorting, considering the unusual,
and risk assessment.

2) An Ideation Card Study ”Playing the legal card”:
The study was carried out by Luger et al. [31]. The systems
thinking element of multiple user perspectives is present but
the card usage was very linear. The target scenario was created
specifically for the study. The card deck contained cards
covering four GDPR requirements (data breach notification,
use of consent, right to be forgotten and privacy by design),
cards providing context (a description of a system), cards
providing user groups (e.g., older people, ex-offenders, women
of all cultures and faiths), and cards with system constraint
descriptions. System architects and programmers took part
along with HCI and research oriented players. The players
drew one card of each category for discussion at five minute
intervals and then discussed all of them for 15 minutes. The
user cards reportedly had a significant effect on the system
design. The groups saw the users through a stereotype, but
these stereotypes highlighted several privacy issues.

3) An Ideation Card Study: The study by Tang et al. [17]
elaborated the ”Playing the legal card” study and involved
teams of undergraduate students completing an industry-
sponsored software development project. All the projects were
different. The deck was similar to the ”Playing the legal card”
deck. From systems thinking perspective, the elements were
the same. The cards included personas with qualities such
as age, mental health, language, country, gender spectrum
and physical health. The teams drew user, constraint and
regulation cards from the deck, discarding cards which they
felt were not applicable to their software. Teams could draw
more cards, time permitting. The teams discussed each card
for five minutes, and then all the drawn cards together. A
week later, the teams provided a list of changes to be made
in their projects based on the session. The teams struggled
to understand the privacy concepts on the cards and rarely
were able to generalise the concept to the team’s context.
Nevertheless, the authors suggest that privacy ideation cards
are a promising pedagogical tool and should be used in student
projects to help students learn about privacy.

III. RESEARCH APPROACH

A. Research Question and Experiment Design

To investigate how the problem situation could be improved,
we set up a quasi-experiment. We selected privacy threat mod-
eling as the practical engineering activity and implemented

87Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 99 / 141

it as an experimental card-based tool with added systems
thinking features. To control the experiment, we implemented
a similar tool but with traditional features instead. The research
question we sought to answer was:

RQ: How does a method with systems thinking features com-
pare to a method with traditional features in privacy threat
discovery in terms of identified threats?

In the experimental version, the systems thinking elements
were the following:

• Multiple perspectives: looking at the situation through the
persona cards’ perspectives

• Narrative technique: creation of scenarios with the per-
sonas and explaining these to others

• Exploring interconnections and system behaviour arising
from them: creation of scenarios from different elements
and observing what privacy threats they may generate

• System’s blurred boundary, context, environment: The
modeling was not bounded by the software artifact
boundaries or centred to that. The artifact was not mod-
eled but was to be kept in mind.

Our reasoning for including personas was that they would:
• add a social dimension and thus broaden the scope where

threats can appear (not bounded to the technical artifact);
• reveal impacts – privacy is easier to understand through

its impacts, than through the abstract privacy concepts;
• illuminate in depth why privacy matters, since they am-

plify privacy threat effects for the particular persona due
to their special vulnerabilities [31]; and

• offer an alternative for the participants reflecting against
their own personas.

In the control version, the traditional features were the
following:

• The modeling steps: the target is first described and then
a check through privacy principles is carried out

• Focus: the technical artifact in the centre
• Pre-defined and checklist-based approach to privacy: the

target is compared to privacy principles.
Although not a traditional feature but a compromise, we

opted to ask the control group to describe their target with the
given cards rather than words or diagrams, so that the cards
available to both teams would be the same.

For the visual design and user instructions, we took into
account the recommendations from the other card based stud-
ies. The cards were designed to be aesthetically pleasing and
the threat modeling was organised as fun game, with short
descriptions and no jargon, as recommended [17]. Along the
recommendations, we provided an information session about
privacy before the exercise and provided the teams all the
cards as a reference, rather than restricting participants to
drawn cards. In the experimental game, the user scenario
was designed to be considered before the privacy principles.
This is in line with ”Playing the Legal Card” [31] where the
participants saw the user and technology cards forming one
inseparable whole, and ranked them higher in importance than
the privacy regulation cards. Furthermore, the experimental

game was designed to move focus from the technical artifact
to threat scenarios, which is supported by a machine learning
ethics cards study [33] stating that,”focus should be less on
technology and more on consequences and implications”. In
another ethics focused card based study [18], it was observed
that participants ’clustering’ cards together enabled more nu-
anced discussions and communicating about complex threats.
The experimental teams ’cluster’ cards together into scenarios.

To narrow down the exercise, the discovered threats were
not required to be a risk assessed. Free threat brainstorming
was encouraged on the basis that a larger number of threats,
less criticism on the ideas, allowing unusual ideas, and build-
ing on the ideas of others would produce more quality threats
[34] and therefore be more valuable for the risk assessment
process that would normally follow. The experiment focus
was on initiating broader privacy thinking, rather than a final
plausible threat listing. The participants were explained that
in an industry setting, the threats would be the raw material
for a risk assessment process, where their quality, likelihood
and impact would be weighed, but that would not be part of
this exercise.

B. Participant Selection and Experiment Setting

The experiment was conducted during a five-week remotely
taught (online) software engineering course. The course was
open both to persons already in the industry as well as to
current students at master’s level. Sixty-five participants gave
research consent. The participants responded to a pre-course
survey that asked how confident they were in any programming
language and how many years of work experience in software
engineering or development they had. The participants’ work
experience varied from none to over 10 years. Twenty partic-
ipants had no relevant work experience; 19 had less than 1
year; 20 had 1-5 years; and 6 had over 6 years.

The main course assignment was to develop a piece of
working software in teams of 3-5 participants. Participants
were arranged in 16 teams, which were split to experimental
and control group, as shown in Table I. The majority’s
experience in each team is in bold. It was not disclosed to
the participants whether they belonged to the experimental or
control group. The split was based on the confidence scores
and then the experience scores, making the groups equal and
avoiding variance within teams, as far as practicable.

The developed software was to be an online auction system,
where users could sell and buy goods by bidding. The required
features included email registration, user authentication, seller
and buyer interfaces, system operator functions, and currency
conversion. The course had an industry sponsor, and the team
who delivered the best solution was promised a low-value
prize.

In week two, all the participants were given a 30-minute
basic lecture about privacy. In week four, the participants were
given a 15-minute lecture focusing on privacy threats, and
introducing the privacy threat modeling game that was created
for the experiment. At the end of the lecture, the participants
were instructed to play the privacy threat game within their

88Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 100 / 141

TABLE I
CONFIDENCE LEVEL AND YEARS OF WORK EXPERIENCE IN

PROGRAMMING.

Experimental Team Confidence 0-10 Work experience in yrs 0-10+
Team E1 1.8-3 0, 1-5
Team E2 3.6-4 <1
Team E3 4.1-5 0, <1, 1-5
Team E4 6 0, <1, 1-5
Team E5 6.9-7 <1, 1-5
Team E6 7-8 0, 1-5, 6-10
Team E7 7-8.5 0, <1, 1-5
Team E8 9 1-5, 6-10, 10+

Control Team Confidence 0-10 Work experience
Team C1 0-1 0, <1, 6-10
Team C2 4 0, 1-5
Team C3 5-5.5 0, <1, 1-5
Team C4 5.5-6 0, <1
Team C5 6-6.9 0, 1-5
Team C6 7.5-8 0, <1, 10+
Team C7 4.5-8.5 <1, 1-5
Team C8 9-10 <1, 1-5

Figure 1. Examples of each card.

teams at their chosen time, with the aim of identifying privacy
threats relating to the software they were designing. It was
not disclosed to the participants that there were two different
versions of the game.

C. Experimental and Control Game Implementation

The experimental card deck design was similar to the deck
in the ”Playing the legal card” [31] study. The cards depicted
personas, technological context and privacy principles. Both
games included the same cards, examples shown in Figure 1.
There was a difference in usage of the software aspect cards
and the game board, as shown in Figure 2.

The five categories of the cards were:
• Software aspect cards, describing the following:

– Technology: 10 technologies that may be utilised
in software (chat bot, office software, AI/machine
learning, sensor, wearable, mobile phone, website,
wireless, photos and video, location)

– Function: 9 software functions (marketing, profile,
ranking or status, security, shopping, social, access
and identification, customer service, incidents and
accidents)

– Stakeholder: 10 personas that the stakeholders could
be (elderly, family, influencer, knowledge worker,
person with a past, child/teen, contractor, temporary
staff, very important person, visitor)

• 12 “Make it worse” cards describing things that may
weaken privacy in software, like anti-privacy principles

Figure 2. Experimental teams’ board A and control teams’ board B.

(1) Familiarise yourself with the game board. You can add your own
cards by using the blank ones, if the ones provided are not enough.
Experimental teams: “Your scenario” area is used to represent
different scenarios relating to the team software with one blue, one
green and one purple card.
Control teams: “Your software” area is used to represent different
aspects of the team software. From the blue, green and purple cards,
choose all the technologies, functions and stakeholders that could
represent your software now or in the future. Place them in the purple,
green and blue boxes below (”Your software”).

(2) Play the game. The cards are meant to give you ideas, rather than
restrict you. So don’t be bound by the exact things written on them.
Experimental teams: First make a scenario that could relate to your
software, now or in the future. Pick one purple, green and blue card
and place them in the middle under ”Your scenario”.
Both teams: Split into two roles: Baddies vs Goodies. Play takes place
in turns. The Baddies’ aim is to come up with privacy problems with
the (E: software scenario)/(C: software). Baddies have the “Make it
worse” cards to help them with bad ideas. The Goodies’ aim is to
mitigate baddies’ ideas. Goodies have the “Make it better” cards to
help them to mitigate the bad ideas. The Baddies go first. Baddies
choose one card to worsen the software scenario and describe verbally
a privacy problem that would happen, relating it to the software in a
believable way. Then it is Goodies’ turn to mitigate it, with the help
of one or more ”Make it better” cards. The aim is that the Goodies
can mitigate all the privacy problems that the Baddies come up with,
and keep the software safe for people to use. After each round, write
down the privacy problem and its mitigation in the ”Privacy problems
catalogue” below the game board.
For the next round, swap roles and re-use all cards as you like! (E:
You can change the scenario. Mix and match to make new scenarios)
Come up with as many problems as you can. Play for 30-45 mins.

Figure 3. Instructions as given to the teams.

89Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 101 / 141

(more is more, inaccuracy, kept forever, vague purposes,
identity and access, revealed, not available, no secrets,
don’t tell them, take advantage, sensitive data, combina-
tion)

• 12 “Make it better” cards describing things that may
strengthen privacy in software, like privacy principles
(use and reuse controlled, fair and ethical, minimise,
expiry date, identity and access, let them steer, tell them
about it, fresh and accurate, basic data, data segregation,
availability, it’s confidential)

Each card listed privacy vulnerabilities or related consider-
ations about the topic or persona, to help the participant to
think of the topic from the privacy angle. The cards were not
specifically tailored for the target, but generic in their nature.
All the card categories included also one ”invent your own”
card.

Written instructions to the teams are shown in Figure 3. The
experimental teams were instructed to consider three software
aspect cards of their choice at a time (1 technology, 1 function,
1 stakeholder) to come up with threats. The control teams had
an additional step in the beginning, to choose all the software
aspect cards that related to their software and lay them out on
the game board. After that, they could start freely identifying
threats.

The game was delivered through a Miro board1. A separate
password-protected board was created for each team. The
boards included a gaming area, cards movable with a mouse,
a table where to record the identified threats and mitigations,
and written instructions on how and why to play the game.
Participants were instructed to record their online gaming
session (showing a shared screen, with no participant video
required). Everyone participated remotely. There was no facili-
tator. Using a game format instead of workshop format allowed
participants to play without a facilitator, thus minimising
external influences. A previous study [17] had listed strict time
limits as a limiting factor for higher level cognitive processes.
In our study, the teams could ultimately decide themselves
how long they would play, but 30-45 minutes was instructed.

IV. RESULTS

Once the teams had carried out the privacy threat exercise,
the resulting privacy threat catalogues were collected from
each team for analysis. The threats that the teams identified
were categorised from different viewpoints to reveal differ-
ences in the number of threats discovered by the experimental
and control groups based on threat type, scope, contextuality
and the description for the harmed party, as well as the overall
number of threats. In addition, the time taken to do the exercise
was noted.

The threat analysis was done by coding the threat descrip-
tions by the main author. For the initial coding the group codes
were hidden and the threats were mixed, after which a sample
of approx. 20% was reviewed by a researcher outside of this
project. The final codings were adjusted based on the reviewer

1miro.com

TABLE II
TYPE OF THREATS DISCOVERED.

Type Experimental teams Control teams
Privacy 31 21
Security 4 16
Other 8 6
Total 43 43

TABLE III
SCOPE OF THE THREATS.

Scope Experimental teams Control teams
Software 15 26
Malicious 5 14
Social 21 3
Society 2 0

comments. Codings which had no room for interpretation were
not validated, such as merely highlighting the word used to
describe the harmed party.

A. Number of Threats and Time Taken

It was found that teams in both experimental and control
groups reported similar number of threats, between 4 and
7, approximately 5 each. Coincidentally, both groups’ total
was 43 threats. Among both experimental and control groups,
the more experienced teams found fewer threats than the
less experienced (around 4.4 against 6). No instructions on
how many threats should be identified had been given to the
teams, but the privacy threat catalogue template included three
numbered rows and a help text how to add more.

The teams were instructed to play for 30-45 minutes, and
they actually played for 28-65 minutes based on the lengths
of the video recordings. On average per team, those in the
experimental group played for 42:23 in mm:ss (5:39:07 in
total, hh:mm:ss), whereas those in the control group played
for 38:56 (5:11:27 in total). On average per team, those in the
experimental group played approximately 3.5 minutes longer
than those in the control group.

B. Types of Threats

The threats were categorised under three different types of
threats:

• Privacy threats: Threat relates to how the person’s per-
sonal data is used or exposed, or how their private life
is exposed. Example: ”The system collects data without
telling the user and uses the data for other purposes.”
(Team C3)

TABLE IV
DESCRIPTIONS OF THE HARMED PARTY.

- Experimental teams Control teams
None 12 18
Neutral 12 25
Persona 19 0

90Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 102 / 141

• Security threats: Threat is a security issue without a
distinct privacy element. Example: ”Database credentials
reveals from public GitLab repository and gives full
access to database.” (Team E8)

• Other threats: Threat is about harm to a person, but does
not relate to privacy or personal data use or exposure.
Example: ”Shopping website can have secretly extra fees
hidden from customers.” (Team E3)

Table II shows that experimental group uncovered a higher
number of privacy threats than the control group.

C. Contextuality of Threats

The contextuality of the threats was analysed as either:

• Pre-definable: Threat could have existed on a generic
checklist and the context does not matter much. Example:
”Sensitive and unnecessary data is collected from users.”
(Team C8)

• Context-based: The threat is such as it would not have
existed on a generic checklist, but it arises from the
context. Example: ”Financial status of the user can be
identified though his purchase history.” (Team C3)

Control group found 24 pre-definable threats and 19 context-
based threats. Experimental group found 14 pre-definable
threats and 29 context-based threats.

D. Scope of Threats

The scope of each threat was categorised, from narrow to
wide scope:

• Software: Threat description is limited to the scope of
software, where something is wrong with the software
and it can be fixed there. Example: ”Transactional data
is never removed, regardless of success or date of the
auction” (Team C6)

• Malicious party: Threat materialises through a malicious
party, a greedy company or an attacker, internal or
external. Example: ”If forms are not controlled enough,
user can input malicious data on input fields such as SQL
injection and destroy or steal user data from database.”
(Team C4)

• Social: Threat materialises through how people interact
with the software and touches people’s social sphere.
Example: ”An elderly user inputs wrong payment data
(account number, telephone number, address).” (Team E8)

• Society: Threat touches the society. ”The app could
collect excess amounts of GPS data from user’s phone,
the user could be e.g., a member of the parliament. Threat
to national security.” (Team E3)

Table III shows that most of the experimental group’s threats
were on the social scope. The control group uncovered threats
on a narrower scope, with most of their threats being on the
software and malicious scope. Only three social threats and
no society threats were identified by the control group.

E. Descriptions of the Harmed Party

The words used by the experimental and control groups to
describe the harmed party were as follows:

• Experimental teams: Child, family, elderly, famous per-
son, influencer, knowledge worker, member of parlia-
ment, teenager, VIP, seller, customer, person, ’they’, user,
(or: no description)

• Control teams: Buyer, customer, person/people, someone,
user, (or: no description)

The description of the harmed party for each threat was
categorised as follows:

• No description: The threat description did not describe the
harmed party in any way. Example: ”Some page contains
forgotten debug lines that reveal too much data.” (Team
C3)

• Neutral description: The harmed party was described
as user, seller, buyer, customer, person/people, some-
one/they/who. Example: ”Without authentication and
with shared credentials user would see other user’s info.”
(Team C4)

• Persona description: The harmed party has a persona.
Example: ”Customer service worker is obsessed with a
famous individual, which happens to contact our cus-
tomer service. Now he/she learns lots about his/her target
of obsession!” (Team E4)

Table IV shows that that the control group’s descriptions were
limited to neutral descriptions of buyer, customer, person or
people, someone and user. Experimental group used persona
descriptions from the cards as well as descriptions that appear
to be inspired by the cards (famous person, member of
parliament) in addition to neutral descriptions. Both groups
had threats where they had not described the harmed party at
all. The neutral descriptions were invented by the individual
teams. Within the experimental group, team E1 did not use
any personas, and in contrast, team E4 only used personas.
The rest of the experimental teams used a mix of personas,
neutral descriptions and no descriptions.

The control group were instructed to choose the relevant
cards in the beginning. Thus, their game boards were analysed
to ascertain to what extent that had narrowed their selection of
stakeholder cards. One control team had picked 9 out of the
10 stakeholder cards, five teams had picked 4-6 stakeholder
cards, and two teams had picked 1-2 cards and supplemented
their selections with 5-6 invented neutral stakeholders (such
as seller, buyer and product owner). The experimental group
chose relevant cards as the game went on. Based on the
average number of threats found, the teams in the experimental
group had picked 1-5 different stakeholder cards during the
game.

V. DISCUSSION

In this study, we set out to find ways to broaden developers’
understanding of privacy beyond security and bring more focus
to the harm to individuals via improving the threat modeling
process. The research question to be addressed was:

91Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 103 / 141

RQ: How does a method with systems thinking features com-
pare to a method with traditional features in privacy threat
discovery in terms of identified threats?

The findings to the question were that the experimental group’s
threats had broader and more often social scope, were more
often context-based and described the harmed party more often
in a personal way. The control group’s threats were mostly
security-focused, their scope was the software artifact and the
harmed party was described in a non-personal way.

The control group’s results were in line with existing
research regarding developers’ understanding of privacy. The
experimental group’s results showed a positive result, pointing
to that systems thinking features may improve the situation
and is a promising direction of research. The findings could
be used to inform the design of privacy threat modeling and
privacy impact assessment methods for developers as well as
privacy education.

A. Why Did the Same Card Deck Yield Different Results?

1) More Material to Consider: The experimental group
used the software aspect cards to create several scenarios and
the control group used them in a static way, for describing
the software. The experimental group’s changing scenarios
introduced new additional viewpoints for every round, which
means that they had more new material to consider than the
control group. Having more material did not result in higher
number of threats identified, but it may have contributed
to the wider scope and contextuality of the threats. The
experimental teams played approximately 3.5 minutes longer
each. Therefore the experimental group was slightly slower,
but not considerably, taking into account the extra scenario
creating.

2) Scenarios Before Privacy Principles: The control group
relied on the privacy principle cards for identifying threats,
which may have led them to describe their threats more
often in a pre-definable way, stating what is written on the
card. The learning value of cards for understanding privacy
concepts (privacy principle cards) is not well supported [17].
The experimental group had to be already thinking of threats
when constructing the scenarios before applying the privacy
principle cards. The threat scenario creation stage likely led
to the threats being not pre-defined, but unique.

3) Mixing and Matching: Connected to scenario creation,
mixing and matching cards may have contributed to the
experimental group threats having a wider scope and more
contextual, since mixing and matching is a different sense-
making activity to concept generalisation. Whilst this study
did not analyse the interaction with the cards, the instructions
were that the experimental teams should mix and match cards,
whereas control teams were instructed to pick a card (privacy
principle / anti-priciple). The other card-based studies reported
on the varying usage of the cards, such as sorting, grouping
and so on, but not on the effects of this. It is likely that the
card sorting was done in an attempt to increase understanding
of the cards and possibly for getting more ideas.

4) Personas for Social Threats: Each scenario had a
stakeholder card depicting a persona. This meant that the
experimental group was first focused on the persona’s pri-
vacy story, rather than the privacy concepts. This likely led
the experimental group to use the personas in their threat
descriptions. In ”Playing the legal card” [31], the persona
cards had a major effect, causing the players to see threats
through their individual circumstances. Similarly in our study
the experimental teams described nearly half of their threats
through the personas and centred their threats to them. The
control group did not describe any personas, probably since
their focus was foremost on the static, described software
artifact. This in turn may explain the very low number of social
threats for the control group. In contrast, the experimental
group’s scenarios were inherently social since they always
involved a persona, and the scenarios were natural interactions
rather than happening inside the software artifact.

B. What May Have Affected the Results?

1) Time and Available Threats To Be Found: The com-
bined effect of time, potential threats to be found, and the
participants’ effort, motivation and privacy-related experience,
is difficult to establish. Neither the time for the task nor
the threats to be identified were controlled. It is not known
how many potential threats there were to be found in each
software, which were all slightly different. This made the task
more realistic but less controlled. Furthermore, this study was
interested in non-pre-defined contextual threats in particular.

2) Controls for Persona Use: Whilst personas appear to
have improved the experimental group’s threats in our study,
persona use comes with challenges [25] that may have affected
this experiment. The experiment did not include detailed
instructions about how to consider the persona cards, so it
is possible that the participants did not know how to apply
them against their software. For example, it was not explicitly
stated that the personas depicted in the stakeholder cards
had privacy vulnerabilities, although the bullet points under
each hinted that way. It is possible that the experimental
group relied on the personas too much, since all but one
team used them in their threat descriptions. Due to the story-
telling nature of scenarios and the personas not being directly
representative of the software’s users from the viewpoint of
its functionality (buyers, sellers, etc.), it is possible that threat
scenarios became a stories of their own, rather than tightly
relating to their software. The control group did not use any
of the personas given on the stakeholder cards in their threat
descriptions although six out of the eight teams had selected
them to represent their software. Again this could be due to the
personas appearing unrepresentative. In addition, the control
group was not challenged on their stakeholder card selections
after they had selected them in the beginning.

3) Controls for Participants: The participants’ program-
ming confidence and software engineering related work ex-
perience was varied. Having variety is natural in the industry
and being in a group somewhat helped to balance the variety.
Participants were arranged in groups based on experience and

92Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 104 / 141

confidence, so that the difference between the results of high
and low confidence and experience could be also compared.
No information about participants’ understanding of privacy
was collected beforehand. The effects of this was mitigated
by delivering all participants the same lectures about privacy.
No training on the delivery platform, Miro, was given, but it
was excepted that due to its simplicity, the possible learning
curve would not be too steep. Participants were instructed to
familiarise themselves with the platform functionality before
beginning the exercise. Since the exercise was completed only
once, the teams could not enjoy the benefits of learning the
platform and the tool. The participants’ physical environment
was not controlled but all individuals were remote.

C. Threats to External Validity

1) Presence of Complexity and Systems Thinking: One of
the drivers for the research was using systems thinking for
understanding complex systems. Although privacy and socio-
technical systems are complex phenomena and the results may
be generalizable to those, the teams’ modeling targets were
not complex from a technical viewpoint. Hence, the results’
applicability to technically complex systems remains open.
Traditional approaches may work well with simple systems
[6], but so far as our control method can be considered
”traditional”, it was outperformed by the experimental method
from our research perspective. Systems thinking approach uses
various techniques, some of which can be found in other
settings too but here they were applied from the systems
thinking perspective. For example, the personas technique is
commonly used to model the actual users, whereas here it was
used to bring in multiple perspectives and probe the issues.
However, it would be worth exploring whether the general
approach or the specific techniques made the difference, or
perhaps their interplay.

2) Realistic Control Method: Instead of using an exist-
ing traditional method for the control groups, the control
method was specifically designed for the experiment, making
it somewhat artificial and simplified. This was a compromise
to increase control of the experiment, but it can lower the
generalizability of the results. The control group version was
designed based on the traditional way of identifying privacy
threats, where the teams built a representation of the soft-
ware (their selection of relevant cards) and then examined it
against the privacy principles and anti-principles. The control
group’s ’traditional’ results indicate that the control version
design was successful and provided appropriate control for
the experiment.

3) Plausibility of the Threats: Due to the threat scenario
building encouraging story-telling, there is a chance that the
experimental group threats came out as far fetched stories
about the personas and were not so closely related to the
software. This is not a major concern since in this study we
were interested in what can evoke broader and human centred
privacy thinking, rather than focusing on the threats’ quality
from the impact and likelihood assessment viewpoint. It is also

possible that any implausible threat scenarios can be modified
to plausible ones in the risk assessment stage.

4) Generalizability to Developers and Industry Setting:
The experiment was not carried out with software developers
in an industry setting. Two thirds of the participants had no
or very little relevant work experience, while the remaining
third been in the industry for at least one year. When looking
at the teams, all but two teams had participants with at least
one year of industry experience, which helps to increase the
generalizability of the results. Other aspects that made the set-
up more realistic were that the course had an industry sponsor
acting as the client, who evaluated and commented on the
final pieces of software at the end of the course, and the
experiment was embedded as a natural element in the software
development process.

D. Directions for Future Work

To address the threats to validity and limitations discussed
above, we plan to validate the findings in an industrial envi-
ronment with a more complex target and extend the analysis to
the plausibility of the threats. Secondly, we plan to analyse the
session recordings so that comparisons to the other card-based
studies can be made, which concentrated on the participants’
interaction with the cards. To investigate the participants’
understanding of privacy, the session recordings could be
analysed for cognitive processes, as done in study by Tang
et al. [17].

In terms of the experimental method, in addition to review-
ing and refining all of the cards, the persona cards and related
guidance should be developed further. Each persona’s privacy
vulnerabilities should be stated more clearly and users should
be instructed clearer on their usage for reflection.

VI. CONCLUSION

In this paper, we were motivated by the potentially harmful
combination of the impact that developers can have on user
privacy and their limited security-focused understanding of
this subject. In response, we designed a quasi-experiment that
targeted the privacy threat modeling activity and investigated
how an experimental method with systems thinking features
compared to a traditional-style method in terms of identified
threats.

The threats identified within the experimental group promi-
nently considered wider contextual factors and human interac-
tions, which equals to a positive result showing a broader view
of privacy. The control group, employing the traditional-style
method, generated more security-focused threats, aligning with
the prevailing norms. We attribute the experimental group’s
result to the shift of focus from the software artifact and
privacy principles to the human interaction with the software
beyond its technical boundaries. The shift was achieved with
the use of personas and scenarios with a systems thinking
approach. These techniques can be inserted in privacy tools
and methods to improve current practice and ultimately help
to produce more privacy safe software. Following these results,
we plan to gain additional insights by analysing the session

93Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 105 / 141

recordings, refine the cards and the user guidance accordingly,
and finally validate the results in the industry.

REFERENCES

[1] Regulation (EU) 2016/679, “General Data Protection Regulation
(GDPR). Regulation (EU) 2016/679 of the European Parliament and of
the Council of 27 April 2016, on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC,” 2016. [Online]. Available:
https://eur-lex.europa.eu/eli/reg/2016/679/oj [Retrieved: October, 2023]

[2] Proposal for Regulation (EU) COM/2021/206 final, “Proposal for a
regulation of the European Parliament and of the Council laying down
harmonised rules on artificial intelligence (Artificial Intelligence Act)
and amending certain Union legislative acts.” 2021.

[3] I. Hadar et al., “Privacy by designers: software developers’ privacy
mindset,” Empirical Software Engineering, vol. 23, no. 1, pp. 259–289,
2 2018.

[4] M. Tahaei, “The Developer Factor in Software Privacy,” Ph.D. disserta-
tion, The University of Edinburgh, 2021.

[5] M. Peixoto et al., “The perspective of Brazilian software developers on
data privacy,” Journal of Systems and Software, vol. 195, p. 111523, 1
2023.

[6] P. F. Katina, C. B. Keating, and R. M. Jaradat, “System requirements
engineering in complex situations,” Requirements Engineering, vol. 19,
no. 1, pp. 45–62, 2014.

[7] R. D. Arnold and J. P. Wade, “A definition of systems thinking: A
systems approach,” in Procedia Computer Science, vol. 44, no. C.
Elsevier, 2015, pp. 669–678.

[8] S. D. Warren and L. D. Brandeis, “The Right to Privacy,” Harvard law
review, vol. 4, no. 5, pp. 193–220, 1890.

[9] A. F. Westin, Privacy and freedom. New York: Atheneum, 1970.
[10] W. Hartzog, “What is Privacy? That’s the Wrong Question,” U. Chi. L.

Rev., vol. 88, p. 1677, 2021.
[11] D. J. Solove, “A Taxonomy of Privacy,” University of Pennsylvania Law

Review, vol. 154, no. 3, pp. 477–564, 2006.
[12] R. Y. Wong and D. K. Mulligan, “Bringing Design to the Privacy

Table,” in Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. New York, NY, USA: ACM, 5 2019, pp. 1–17.

[13] Information Commissioner’s Office, “Sample DPIA
template,” 2018. [Online]. Available: https://ico.org.uk/for-
organisations/guide-to-data-protection/guide-to-the-general-data-
protection-regulation-gdpr/accountability-and-governance/data-
protection-impact-assessments/ [Retrieved: October, 2023]

[14] M. C. Oetzel and S. Spiekermann, “A systematic methodology for
privacy impact assessments: a design science approach,” European
Journal of Information Systems, vol. 23, no. 2, pp. 126–150, 3 2014.

[15] K. Wuyts, L. Sion, and W. Joosen, “LINDDUN GO: A Lightweight
Approach to Privacy Threat Modeling,” in 2020 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS&PW). IEEE, 9
2020, pp. 302–309.

[16] M. Peixoto et al., “On Understanding How Developers Perceive and
Interpret Privacy Requirements Research Preview,” in Requirements
Engineering: Foundation for Software Quality, ser. Lecture Notes in
Computer Science, N. Madhavji, L. Pasquale, A. Ferrari, and S. Gnesi,
Eds., vol. 12045. Cham: Springer International Publishing, 2020, pp.
116–123.

[17] Y. Tang, M. L. Brockman, and S. Patil, “Promoting Privacy Considera-
tions in Real-World Projects in Capstone Courses with Ideation Cards,”
ACM Transactions on Computing Education, vol. 21, no. 4, p. 34, 12
2021.

[18] L. D. Urquhart and P. J. Craigon, “The Moral-IT Deck: a tool for ethics
by design,” Journal of Responsible Innovation, vol. 8, no. 1, pp. 94–126,
2021.

[19] A. R. Senarath and N. A. G. Arachchilage, “Understanding user pri-
vacy expectations: A software developer’s perspective,” Telematics and
Informatics, vol. 35, no. 7, pp. 1845–1862, 10 2018.

[20] S. Sheth, G. Kaiser, and W. Maalej, “Us and Them: A Study of Privacy
Requirements across North America, Asia, and Europe,” in Proceedings
of the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: Association for Computing Machinery,
2014, pp. 859–870.

[21] J. P. Monat and T. F. Gannon, “What is Systems Thinking? A Review
of Selected Literature Plus Recommendations,” American Journal of
Systems Science, vol. 2015, no. 1, pp. 11–26, 2015.

[22] K. E. Dugan, E. A. Mosyjowski, S. R. Daly, and L. R. Lattuca, “Systems
thinking assessments in engineering: A systematic literature review,”
Systems Research and Behavioral Science, vol. 39, no. 4, pp. 840–866,
7 2022.

[23] R. L. Ackoff, “Systems thinking and thinking systems,” System Dynam-
ics Review, vol. 10, no. 2-3, pp. 175–188, 1994.

[24] M. M. Lehman, “Program evolution,” Information Processing & Man-
agement, vol. 20, no. 1-2, pp. 19–36, 1 1984.

[25] D. Karolita, J. McIntosh, T. Kanij, J. Grundy, and H. O. Obie, “Use of
personas in Requirements Engineering: A systematic mapping study,”
Information and Software Technology, vol. 162, p. 107264, 10 2023.

[26] E. Kim, J. K. Yoon, J. Kwon, T. Liaw, and A. M. Agogino, “From
innocent irene to parental patrick: Framing user characteristics and
personas to design for cybersecurity,” in Proceedings of the International
Conference on Engineering Design, ICED, vol. 2019-August. Cam-
bridge University Press, 2019, pp. 1773–1782.

[27] M. Rudolph, S. Polst, and J. Doerr, “Enabling users to specify correct
privacy requirements,” in Requirements Engineering: Foundation for
Software Quality: 25th International Working Conference, REFSQ 2019,
Essen, Germany, March 18–21, 2019, Proceedings 25, 2019, pp. 39–54.

[28] J. Salminen, K. Wenyun Guan, S. G. Jung, and B. Jansen, “Use Cases
for Design Personas: A Systematic Review and New Frontiers,” in
Conference on Human Factors in Computing Systems - Proceedings.
Association for Computing Machinery, 4 2022, pp. 1–21.

[29] J. T. Nganji and S. H. Nggada, “Disability-Aware Software Engineering
for Improved System Accessibility and Usability,” International Journal
of Software Engineering and Its Applications, vol. 5, no. 3, pp. 47–62,
7 2011.

[30] R. Roy and J. P. Warren, “Card-based design tools: A review and analysis
of 155 card decks for designers and designing,” Design Studies, vol. 63,
pp. 125–154, 7 2019.

[31] E. Luger, L. Urquhart, T. Rodden, and M. Golembewski, “Playing the
legal card: Using ideation cards to raise data protection issues within
the design process,” in Conference on Human Factors in Computing
Systems - Proceedings, vol. 2015-April. Association for Computing
Machinery, 4 2015, pp. 457–466.

[32] T. Denning, B. Friedman, and T. Kohno, “The Security Cards,” 2013.
[Online]. Available: http://securitycards.cs.washington.edu/index.html
[Retrieved: October, 2023]

[33] K. E. K. Bilstrup, M. H. Kaspersen, and M. G. Petersen, “Staging
reflections on ethical dilemmas in machine learning: A card-based design
workshop for high school students,” in DIS 2020 - Proceedings of the
2020 ACM Designing Interactive Systems Conference. Association for
Computing Machinery, Inc, 7 2020, pp. 1211–1222.

[34] J. E. Danes, J. Lindsey-Mullikin, and K. Lertwachara, “The sequential
order and quality of ideas in electronic brainstorming,” International
Journal of Information Management, vol. 53, p. 102126, 8 2020.

94Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 106 / 141

An Empirical Investigation of Usability
Measurement in Canvas Educational Applications

A Case Study at the University of North Texas

1st Shabbab Algamdi
Computer Science Department

University of North Texas
Denton, Texas

shabbab.algamdi@unt.edu

2nd Stephanie Ludi
Computer Science Department

University of North Texas
Denton, Texas

stephanie.ludi@unt.edu

Abstract—A Learning Management System (LMS) is a com-
puter software that enables teachers and students to become more
actively involved in their studies and learn more effectively. The
Canvas LMS is one of the best examples in this field as it is
a widely adopted LMS. It is extensively utilized throughout a
range of educational institutions, involving K-12 schools as well as
universities. The platform has received recognition for its intuitive
user interface and comprehensive selection of impacts educational
resources.This study is conducted on computer science students
at the University of North Texas because this sample of students
is more familiar with the terminologies used in the study
regarding gauging usability in Canvas applications. This is done
in accordance with the Jacob Nielsen usability factors study. The
goal of this study is to identify the most significant problems with
the usability of the Canvas application. This study simultaneously
examines and classifies them according to several aspects, and
then determines how to address and improve the responses
for each of these factors. This methodologies adopted in this
study serve as a tool for the main investigation, and the 104
students successfully completed it. The overall scale in the study
had a Cronbach’s alpha rating of 0.969, which shows that the
reliability and consistency of the questionnaire in this study are
quite high.The survey’s framework was built upon the principles
outlined by Jacob Nielsen for mobile usability. During the pilot
testing phase of the survey, the results revealed a substantial
percentage of reliability and validity. Despite minor fluctuations,
the findings consistently demonstrated a commendable level of
reliability. These results open the door for further investigations.

Keywords—Usability; Human-Computer Interaction; Learning
Management Systems; User Reviews; Mobile Application Platform.

I. INTRODUCTION

During the COVID-19 pandemic, the evolution and en-
hancement of Learning Management Systems (LMS) have
been notably pronounced, with Canvas emerging as a promi-
nent example. Canvas LMS boosts a comprehensive set of
features that benefit both students and instructors, contributing
to the positive development of online education during this
challenging period [1]. The Canvas app is one of the most
significant LMS applications [2]. These platforms offer a
variety of functions and resources to help in managing courses,
distributing content, and grading students. The ease of use and

steep learning curves of these platforms greatly influence their
efficiency. A LMS is highly useful when it is simple for users
to use, efficient, and requires minimal effort on their part to
fulfill tasks. The value of the Canvas app has been examined
in a few of studies [1][3] when compared to other educational
apps, the usefulness of the Canvas application is proven to be
high. It is discovered that students using Canvas scored higher
on its navigation easiness and friendly layout.
Mobile learning has a lot of educational potential. The most
recent iteration of mobile technology makes it simple to pro-
vide digital material using portable wireless mobile devices.
Because of the inherent limitations of mobile devices, such
as their small screens, lack of input capabilities, and low
computing capacity, creating mobile learning applications is
not an easy task [4].

In a separate investigation, Hossain [5] conducted a survey
involving college students, revealing a paradox in their percep-
tions of Canvas. While they granted Canvas high marks for its
usability, their assessment of the platform’s search features
and mobile usability was notably unfavorable. In addition
to these studies, a collection of articles and blog posts also
underscores the apparent simplicity of using Canvas. Similarly,
within the domain of educational technology, a blog post
emphasized Canvas’s adaptability and functionality compared
to Blackboard (another widely used LMS), further affirming
the significance of customization and usability within different
LMS platforms [6].

One notable tool that contributes to enhancing the user
experience of educational apps, such as Canvas, is the utiliza-
tion of app reviews. As the usage of smartphones and tablets
by students surges, mobile usability becomes an increasingly
crucial aspect determining the performance of mobile apps.
The usability of an app on mobile devices pertains to its ease of
use and its efficient functionality. A mobile application is con-
sidered user-friendly when it is intuitive, performs seamlessly,
and minimizes user effort. In 2023, the task of identifying
high-quality educational apps appears to be a challenging
endeavor, particularly considering the staggering number of
over 567,000 educational apps available [7]. Thus, instead of

95Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 107 / 141

relying solely on app reviews, this study opted for a more
empirical approach by conducting a usability survey for the
Canvas app. The rest of this paper is organized as follows.
Section II highlights the recent research endeavors related to
the scope of this study. Section III presents the main core
of the methodology adopted. Section IV presents the results
and discussions achieved. Section V discusses the correlation
between the variables, and finally Section VI concludes this
paper and presents recommendations for future work.

II. RELATED WORK

Related work is investigated on two levels. One is address-
ing the mobile application usability in general, while the other
is focusing on education apps usability specifically.

A. Mobile Application Usability

Building upon Shackel’s model, Nielsen [4] in 1993 pre-
sented his own conceptualization of usability. Initially en-
compassing four attributes (Learnability, Effectiveness, Effi-
ciency, and Satisfaction). Nielsen subsequently revised this
by eliminating ’Effectiveness’ and introducing ’Memorability’
and ’Errors’, culminating in a five-attribute framework. This
conceptualization garnered substantial recognition within the
Human-Computer Interaction (HCI) community, particularly
due to its emphasis on users’ perceptions of the system
and aspects of recall, as highlighted by the inclusion of
’Satisfaction’ and ’Memorability’[8] [9].
Usability in mobile applications is delineated based on the
International Standards Organization’s (ISO) definition, char-
acterizing it as the degree to which a designated user can
employ such an application to realize predetermined objectives
with accuracy, proficiency, and contentment within a given
usage context [10] [11]. Usability studies focus on how system
features and user interactions interact when placed within
particular activities and expected results. Due to the fact that
many software products have been found to be less than ideal
in meeting user needs, a variety of thorough study projects that
go under the general heading of ”usability” have been started.
These efforts aim to promote more profound understanding
and relevant measurement, with the goal of capturing all
relevant phenomena in a single framework or model [12].

B. Education Apps usability

Several academic studies have been conducted to evaluate
the effectiveness of educational applications. A recent inves-
tigation employed deep learning models to discern usability
issues within mobile applications in the education applications
[13]. This research has focused alot on how application
functionality and design affect student learning results [14].
Mobile learning offers a paradigm wherein educational ac-
quisition is untethered from traditional spatial and temporal
constraints. Instead of being confined to established settings
like classrooms or predefined schedules, it facilitates peda-
gogical engagement across diverse locales and at any chosen
moment[15].

This literature review delves into pertinent insights extracted
from recent research concerning the usability of educational
applications. Earlier investigations have primarily focused on
appraising the efficacy of employing educational apps for
instructing young children [16] [17]. Their analysis culmi-
nated in the observation that the efficacy of educational apps
predominantly hinged on factors such as the quality of the
user interface, the ease of navigation, and the capacity to
engage with content. In a similar vein, Perera and Yacef’s
investigation underscored that student motivation and engage-
ment were profoundly impacted by the visual and experiential
aspects inherent in educational app design [18]. Tailoring
learning experiences to individual students stands as another
pivotal attribute of educational apps, contributing to their
user-friendliness. In this context, Lee et al. examined the
influence of personalized learning approaches on the ease
of utilizing educational apps[19]. Their findings underscored
students’ inclination toward personalized learning features,
particularly adaptive content and feedback mechanisms. These
attributes emerged as effective tools for sustaining student
interest and motivation [20]. The usability of educational apps
presents a multifaceted and intricate challenge, encompassing
numerous elements that influence student engagement, moti-
vation, and learning achievements. Through the adoption of
a comprehensive perspective encompassing app design and
functionality, coupled with the integration of attributes that
foster personalization and usability, developers can elevate the
overall usability of educational apps and thereby elevate the
quality of student learning experience [21].

Based on the Jakob Nielsen factors, the scope of this
study can be formulated as follows: For the Canvas LMS
application, and as outlined by Nielsen’s study, to what extent
are the interrelationships between the different usability factors
observable, and what are their effects?

III. METHODOLOGY

To comprehensively understand the usability factors of the
Canvas LMS application in light of Nielsen’s criteria, we
adopted a structured approach. This section delineates the
methods we used, starting with a foundation in the informa-
tion background, followed by an exploration of the general
challenges users encounter.

A. Information Background and General Challenge

In Table 1 valuable insights into the Information Back-
ground and General Challenges encountered by users of
Canvas within the study. The breakdown of users by educa-
tional level indicates a majority of Graduate students (72.1%),
followed by Undergraduate (23.1%) and Doctoral (4.8%)
students. This diversity of academic levels engaging with the
LMS is noteworthy.
The duration of usage of the Canvas mobile app displays an
even distribution, with a significant portion of respondents
(30.8%) using it for 6 months to 1 year and 19.2% for 1 year
to 2 years. This result suggests a moderate level of familiarity
with the platform. Interestingly, fewer users have used the app

96Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 108 / 141

for longer durations, implying that turnover among users could
impact the interpretation their experiences and challenges.
Within the Computer Science Engineering (CSE) department,
a considerable number of respondents (92.3%) are enrolled in
various programs, with Computer Science (62.5%) emerging
as the predominant academic department. This concentration
highlights the potential for tailoring Canvas features to address
this department’s specific needs and requirements. Notable
representation is also seen from other departments, such as
Computer Engineering (13.5%), AI (16.3%), and Cybersecu-
rity (4.8%), underscoring the platform’s adaptability across
diverse fields of study. These findings emphasize the impor-
tance of comprehending the CSE department’s educational
backgrounds, usage patterns, and program enrollments. Such
understanding can guide the enhancement of Canvas to better
serve the distinct needs and challenges faced by users at
different academic stages and within various fields of study.
These demographics are visually represented in Figure 1.

Fig. 1. Information Background for Canvas Users in the Study

TABLE I
INFORMATION BACKGROUND FOR CANVAS USERS IN THE STUDY

Items N %
What is the current level of education?

Undergraduate 24 23.1%
Graduate 75 72.1%
Doctoral 5 7.8%

How long have you been using the LMS
Canvas app on mobile?

Less than 6 months 20 19.2%
6 months to 1 year 32 30.8%
1 year to 2 years 20 19.2%
2 years to 3 years 15 14.4%
More than 3 years 17 16.3%

Are you enrolled in any program at the
CSE department?

Yes 96 92.3%
No 8 7.7%

Academic departement
Computer Science 65 62.5%

Computer Engineering 14 13.5%
Cybersecurity 5 4.8%

AI 17 16.3%
other 3 2.9%

B. Reliability analysis

In Table 2 the Cronbach alpha levels of the study variables
concerning the Canvas users is presented. The conducted
reliability analysis on the Canvas user study variables offers
a comprehensive evaluation of the key factors influencing
user satisfaction and experience. The Cronbach’s alpha values
assigned to each variable serve as internal consistency and
measurement reliability indicators, thus shedding light on the
robustness of the study’s conclusions. Remarkably, the notably
high Cronbach’s alpha values for several variables such as
Visibility of System Status (0.920), Aesthetic and Minimalistic
Design (0.900), and User Control and Intuitiveness (0.911)
underline the robust reliability and interconnectedness of these
aspects. While certain variables exhibit somewhat lower Cron-
bach’s alpha values, such as Recognition Over Recall (0.737)
and Realistic Error Management (0.667), they still indicate a
reasonable level of reliability.
Furthermore, Consistency and Standards, Efficiency of Use
and Performance, and Alignment Between System and Real-
World Context display satisfactory Cronbach’s alpha values of
0.772, 0.798 and 0.777, respectively. Finally, Cronbach’s alpha
level for the total scale in the study was 0.958, indicating that
this questionnaire has excellent reliability and consistency.

TABLE II
THE RELIABILITY ANALYSIS OF THE FACTORS IN THE STUDY

Variable No.
of

items

Cronbach
alpha

Visibility of System Status 2 0.920
Match Between System and Real World 2 0.777

Aesthetic and Minimalistic Design 2 0.900
Recognition Rather than Recall 2 0.737

Effective Design to Lesson User’s Workload 2 0.870
Flexibility and Efficiency of use 2 0.680

User control and obviousness 2 0.911
Realistic error management 2 0.667
Consistency and standards 3 0.772

Efficiency of use and performance 2 0.798
Total scale 21 0.958

C. Validity Analysis

Table 2 exhibits the outcomes of the validity analysis
conducted on the factors within the Canvas user division.
The validity of the factors was determined via a Pearson
correlation analysis. To establish their construct validity, each
item of the scale was correlated with the entire scale. All
items showcased an immensely significant positive correlation
with the entirety of the scale they are associated with. Thus,
the essential items sufficiently established the concept of the
factors and effectively expressed their significance in assessing
the impressions of Canvas users.

IV. DESCRIPTIVE STATISTICS ANALYSIS

Table 3 and Figure 2 show the descriptive statistics, includ-
ing mean, standard deviation, and the agreement levels of the
Canvas users factors in the study. The ”Visibility of System
Status” factor reflects a positive user sentiment. The users

97Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 109 / 141

TABLE III
USABILITY MEASUREMENT SCORES

Factor Mean Std.
Dev.

Level

Visibility of System Status
The status of icons is clearly indicated in the
application.

4.36 1.153 Agree

Graphical user interface menus make obvious
whether deselection is possible.

4.11 1.187 Agree

Visibility of System Status mean score 4.23 1.126 Agree
Match Between System and Real World
The selected colors correspond to common ex-
pectations about the color codes.

4.22 0.996 Agree

Function keys labeled clearly and distinctively,
even if this means breaking consistency rules.

4.06 1.153 Agree

Match Between System and Real World mean
score

4.14 0.974 Agree

Aesthetic and Minimalistic Design
Field labels are brief, familiar, and descriptive. 4.32 1.138 Agree
The large objects, bold lines, and simple areas
have been used to distinguish icons.

4.32 1.193 Agree

Aesthetic and Minimalistic Design mean score 4.32 1.112 Agree
Recognition Rather than Recall
The system provides mapping: do the relation-
ships between controls and actions appear to the
user?

4.19 1.176 Agree

There is a good color and brightness contrast
between image and background colors.

4.32 1.099 Agree

Recognition Rather than Recall mean score 4.26 1.013 Agree
Effective Design to Lesson User’s Workload
A simple design canvas is easy to navigate and
understand and it can significantly reduce the
amount of cognitive load required to complete a
task.

4.40 1.030 Agree

Feedback and error messages can help users
quickly identify and correct mistakes, reducing
the time and effort needed to complete a task.

4.27 1.193 Agree

Effective Design to Lesson User’s Workload
mean score

4.34 1.048 Agree

Flexibility and Efficiency of use
The canvas supports both beginner and expert
users, are multiple levels of error message detail
available.

4.34 1.151 Agree

Canvas offer ”find next” and ”find previous”
shortcuts for database searches.

3.99 1.364 Agree

Flexibility and Efficiency of use mean score 4.16 1.098 Agree
User control and obviousness
Canvas has design and services which make it
customizable and easy to use

4.28 1.177 Agree

Canvas is customizable and simple to use be-
cause to its design and service features.

4.21 1.163 Agree

Realistic error management
Canvas is providing clear and concise error
messages that communicate what went wrong
and how the user can fix it.

3.72 1.282 Agree

Realistic error management mean score 3.93 1.059 Agree
Consistency and standards
Canvas symbols, icons, and symbolism should
be consistent.

4.38 0.818 Agree

When users interact with content on Canvas cat-
egories, they should expect a clear and familiar
experience

4.54 0.743 Agree

Consistency and standards mean score 4.45 0.706 Agree
Efficiency of use and performance
The Canvas application offers specific features
and tools that can help users to quickly locate
the information they need, potentially making it
more efficient than other learning management
systems.

4.22 1.109 Agree

Efficiency of use and performance mean score 4.18 1.026 Agree
Other Considerations
Users may be accessing the device in a variety
of settings, such as while walking, standing in a
crowded area, or sitting in a quiet space.

4.40 1.091 Agree

Fig. 2. All Canvas Users’ Factors Mean in The Study

agree that icons are clearly indicated (M= 4.36, SD = 1.153),
and the graphical user interface menus clarify deselection (M=
4.11, SD = 1.187). The whole mean score factor was 4.23,
indicating a high agreement of the Canvas users toward its
Visibility of System Status. Similarly, the factor ”Match Be-
tween System and Real World” garners agreement, with users
finding that selected colors align with common expectations
(M= 4.22, SD= 0.996) and function keys are distinctly labeled
(M= 4.06, SD= 1.153). Also, the overall mean score of this
factor was 4.14, reflecting the higher matching between the
Canvas system and the real world.
In terms of ”Aesthetic and Minimalistic Design,” users ap-
preciate the use of brief, familiar, and descriptive field la-
bels (M= 4.32, sd= 1.138) and the incorporation of large
objects and bold lines to distinguish icons (M= 4.32, SD=
1.193). Likewise, the overall mean score of this factor was
also 4.32. Furthermore, the ”Recognition Rather than Recall”
factor emphasizes user-friendly design, with users recognizing
the presence of mapping between controls and actions (M=
4.19, SD= 1.176) and appreciating good color and brightness
contrast (M= 4.32, SD= 1.099). The overall mean score of this
factor was 4.26, indicating the increased agreement from the
Canvas users toward this factor.
In addition, the ”Effective Design to Lessen User’s Workload”
factor suggests that a simple design reduces cognitive load
(M= 4.40, SD= 1.030), and users find feedback and error
messages helpful (m= 4.27, SD= 1.193) in streamlining tasks.
The overall mean score showed a high agreement degree with a
mean score of 4.34. similarly, the ”Flexibility and Efficiency of
Use” factor demonstrates Canvas’s support for both beginner
and expert users (M= 4.34, SD= 1.151), although the ”find
next” and ”find previous” shortcuts receive slightly lower
agreement (M= 3.99, SD= 1.364). However, the overall mean
score of this factor was high (4.16), indicating the flexibility
and efficiency of the Canvas use by the participants in the
study.

Moreover, the ”User control and obviousness” factor un-
derscores Canvas’s customizability and ease of use (M= 4.28,
SD= 1.177), aligning with users’ positive perceptions of its
design and services (M= 4.21, SD= 1.163). In this context,

98Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 110 / 141

the User control and obviousness mean score was 4.24. In
terms of ”Realistic error management,” users agree that Canvas
provides clear error messages (M= 3.72, SD= 1.282) and
emphasizes plain language over technical jargon (M= 4.14,
SD= 1.160). Although this factor has the lowest overall mean
score (3.93) among other factors, it still has an agreement level
of response.
On the other hand, The ”Consistency and standards” factor
reflects users’ positive reactions to consistent symbols and
icons (M= 4.38, SD= 0.818), familiar interaction experiences
(M= 4.54, SD= 0.743), and a navigational design standard on
the homepage (M= 4.41, SD= 4.41). The overall mean score
was consistent with these variable scores, with 4.45. Lastly, the
”Efficiency of use and performance” factor highlights Canvas’s
potential efficiency in locating information (M= 4.22, SD=
1.109) and the potential workflow improvements brought by
shortcuts (M= 4.14, SD= 1.142). The overall mean score of
this factor was 4.18, suggesting a highly effective use and good
performance of the Canvas application.

Overall, these results indicate a generally positive percep-
tion of Canvas, with users agreeing on its effectiveness in
delivering a user-friendly, efficient, and consistent experience.
The findings offer actionable insights for further enhancing
the platform’s usability and addressing specific areas for
improvement.

V. CORRELATIONS BETWEEN VARIABLES

Figure 3 show the correlation analysis among the variables
within the Canvas user scale. It yields valuable insights into
the connections between different facets of user experience
and system functionality. The matrix of correlation coefficients
presents a glimpse into the interrelationships of these variables,
illuminating potential patterns and interdependences.
All the variables in the scale show a positive significant
correlation with each other, indicating a high interconnection
between these factors. Where, X1= Visibility of System Status
mean score, X2= Match Between System and Real World, X3=
Aesthetic and Minimalistic Design, X4= Recognition Rather
than Recall, X5= Effective Design to Lessen User’s Workload,
X6= Flexibility and Efficiency of use, X7= Handling varied
contexts of use in mobile environments, X8= User control and
obviousness, X9= Realistic error management, X10= Consis-
tency and standards, X11= Efficiency of use and performance.
Also, P-value calculated by a Pearson correlation test.

VI. CONCLUSION AND RECOMMENDATIONS FOR FUTURE
WORK

As for the research question addressed in this study, and
following the discussion of the significance of The validity
analysis of the factors pertaining to Canvas user division is pre-
sented herein. A questionnaire was implemented on 104 CSE
students to evaluate the different usability factors. To ascertain
the validity of each factor, a Pearson correlation analysis was
employed. Construct validity was gauged by correlating each
item on the scale with the totality of the scale. Notably, all
items exhibited a robust and statistically significant positive

Fig. 3. The Heat Correlation Map of the Variables within the Canvas User
Scale

correlation with their respective scales. Consequently, these
items are deemed competent in representing the conceptual
underpinnings of the factors and are pivotal in assessing the
perceptions of Canvas users. An explanation of the interactions
between the elements is made possible by Figure 3, which
clearly shows the correlations among them.
The achieved results open the door for further comparative ex-
amination between the components in the investigated Canvas
LMS and other apps such as the Blackboard application.

REFERENCES

[1] M. J. J. Gumasing, A. B. Vasquez, A. L. S. Doctora, and
W. D. D. Perez, “Usability evaluation of online learning
management system: Comparison between blackboard
and canvas,” in 2022 the 9th international conference on
industrial engineering and applications (europe), 2022,
pp. 25–31.

[2] K. Haan, Best Learning Management Systems (LMS)
Of 2023, https://www.forbes.com/advisor/business/best-
learning-management-systems/, Jul. 2021.

[3] M. N. Yakubu and S. I. Dasuki, “Factors affecting the
adoption of e-learning technologies among higher edu-
cation students in nigeria: A structural equation mod-
elling approach,” Information Development, vol. 35,
no. 3, pp. 492–502, 2019.

[4] A. A. Arain, Z. Hussain, W. H. Rizvi, and M. S.
Vighio, “Evaluating usability of m-learning application
in the context of higher education institute,” in Learning
and Collaboration Technologies: Third International
Conference, LCT 2016, Held as Part of HCI Interna-
tional 2016, Toronto, ON, Canada, July 17-22, 2016,
Proceedings 3, Springer, 2016, pp. 259–268.

99Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 111 / 141

[5] A. A. M. S. Hossain, “Evaluating and testing user
interfaces for e-learning system: Blackboard usability
testing,” J. Inf. Eng. Appl, vol. 5, no. 1, p. 23, 2015.

[6] J. Kaliski, J. Kalinowski, P. Schumann, T. Scott, D.
Shin, et al., “Competition in the elearning industry: A
case study,” Journal of Business Case Studies (JBCS),
vol. 4, no. 2, pp. 106–122, 2008.

[7] G. A. Store, Educational Applications on Store, https:
/ / www. educationalappstore . com / app - lists / apps - for -
education/, [Online; accessed 02-October-2023], 2023.

[8] J. Nielsen, Usability engineering. Morgan Kaufmann,
1994.

[9] W. Ali, O. Riaz, S. Mumtaz, A. R. Khan, T. Saba, and
S. A. Bahaj, “Mobile application usability evaluation:
A study based on demography,” IEEE Access, vol. 10,
pp. 41 512–41 524, 2022.

[10] N. A. N. Ahmad and M. Hussaini, “A usability testing
of a higher education mobile application among post-
graduate and undergraduate students.,” International
Journal of Interactive Mobile Technologies, vol. 15,
no. 9, 2021.

[11] H. Hoehle and V. Venkatesh, “Mobile application us-
ability,” MIS quarterly, vol. 39, no. 2, pp. 435–472,
2015.

[12] P. Weichbroth, “Usability of mobile applications: A sys-
tematic literature study,” Ieee Access, vol. 8, pp. 55 563–
55 577, 2020.

[13] S. Alagmdi, A. Albanyan, and S. Ludi, “Investigating
the usability issues in mobile applications reviews using
a deep learning model,” in 2023 IEEE 13th Annual
Computing and Communication Workshop and Confer-
ence (CCWC), IEEE, 2023, pp. 0108–0113.

[14] A. H. Safar, A. A. Al-Jafar, and Z. H. Al-Yousefi,
“The effectiveness of using augmented reality apps in
teaching the english alphabet to kindergarten children:
A case study in the state of kuwait,” EURASIA Journal
of Mathematics, Science and Technology Education,
vol. 13, no. 2, pp. 417–440, 2016.

[15] B. A. Kumar and P. Mohite, “Usability of mobile
learning applications: A systematic literature review,”
Journal of Computers in Education, vol. 5, pp. 1–17,
2018.

[16] D. O’Brien, K. A. Lawless, and P. Schrader, “A taxon-
omy of educational games,” in Gaming for classroom-
based learning: Digital role playing as a motivator of
study, IGI Global, 2010, pp. 1–23.

[17] P. G. Schrader and K. A. Lawless, “The knowledge,
attitudes, & behaviors approach how to evaluate perfor-
mance and learning in complex environments,” Perfor-
mance Improvement, vol. 43, no. 9, pp. 8–15, 2004.

[18] T. Hidayati and S. Diana, “Students’ motivation to learn
english using mobile applications: The case of duolingo
and hello english,” JEELS (Journal of English Educa-
tion and Linguistics Studies), vol. 6, no. 2, pp. 189–213,
2019.

[19] Y.-C. Hsu and Y.-H. Ching, “Mobile app design for
teaching and learning: Educators’ experiences in an
online graduate course,” International Review of Re-
search in Open and Distributed Learning, vol. 14, no. 4,
pp. 117–139, 2013.

[20] D. Zhang, “Delivery of personalized and adaptive con-
tent to mobile devices: A framework and enabling
technology,” Communications of the Association for
Information Systems, vol. 12, no. 1, p. 13, 2003.

[21] N. S. A. Rashid, X. W. Chen, M. F. Mohamad Marzuki,
et al., “Development and usability assessment of a mo-
bile app (demensia kita) to support dementia caregivers
in malaysia: A study protocol,” International Journal
of Environmental Research and Public Health, vol. 19,
no. 19, p. 11 880, 2022.

100Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 112 / 141

Ecosystems in Business
A systematic literature review of ecosystems and its dimensions

Luiz Henrique N. G. Moreira, Silvio R. L. Meira1, Andre Neves, Felipe Silva Ferraz

Center of Advanced Studies and Systems of Recife
Recife, Brazil

E-mail: {lhgm}@cesar.school, 1lhgondim@gmail.com

Abstract—Business leaders and scholars struggle to separate
Business Ecosystem (BE), Digital Ecosystem (DE), Digital
Platform Ecosystem (DPE), and Innovation Ecosystem (IE).
Uncertain ecosystem definitions affect business performance,
innovation, and decisions. The objective of this paper is to conduct
a systematic literature review of ecosystem and its dimensions in
order to achieve clarity and precision about the definition of the
concept. Snowball technique was used to identify relevant articles
and mining techniques to examine how ecosystems have been
defined. The results of the review revealed different meanings of
digital ecosystems, but key similarities were identified.

Keywords-ecosystems; digital ecosystems; business ecosystems;
innovation platforms; business innovation; systematic literature
review.

I. INTRODUCTION
The term ecosystem is a set of actors that includes a focal

firm and other participants who share the same vision of value
creation and are willing to work together through multi-lateral
co-specializations under mutually agreed governance
mechanisms [9]. The use of the term ‘ecosystem’ has increased
in frequency as it entered the lexicon of technological and
commercial companies; the concept of which can include
different forms of associations of organizations like platforms,
clusters, networks, and incubators [4]. Within the specific
context of innovation, ecosystems refer to a complex and
interconnected network that collaborate and interact with each
other to drive innovation through the creation of new products,
services, or solutions.

The terms Business Ecosystem (BE), Digital Ecosystem
(DE), Digital Platform Ecosystem (DPE), and Innovation
Ecosystem (IE) are often used interchangeably. These terms
generally refer to the system that is in place for innovation in a
business company to be created or developed [21]. However,
these terms pertain to different aspects of ecosystem.

Unclear ecosystem definitions can affect the performance,
innovation, and decisions of businesses. Having multiple
definitions of a concept within a business company can lead to
confusion and misalignment among employees, hindering
effective communication and decision-making. It can also
result in inconsistent implementation of strategies or objectives,
impacting the company's overall efficiency and performance.

To address this problem, this research will attempt to
examine how the concept ecosystem and its dimensions have
been defined using previous research studies. Specific focus
will be given to the business setting, where the concept of

digital ecosystem is necessary for competitive advantage and
sustainability [14].

The research questions of the study are the following: 1.
How has ecosystem been defined in business? and 2. What are
the core similarities of the different terms that have been used
to define ecosystem in business? These two research questions
served as the basis that grounds this study.

The purpose of this research is to conduct a Systematic
Literature Review (SLR) of ecosystem and its dimensions in
order to achieve clarity and precision about the definition of the
concept. Through this SLR, core similarities about the different
definitions of ecosystem in the business setting can be
identified.

This research is limited by the approach of SLR. The quality
of SLR is dependent on the quality of the studies included. If
the studies included have flaws and biases in their
methodology, these issues may carry over to the SLR itself.
Moreover, because of the heterogeneity of studies included in
SLR, the methods, populations, and outcomes can vary, making
the process of synthesizing and drawing clear conclusions
challenging.

The structure of the paper will include several sections that
will cover the entire study. Section II will cover the
methodology of the SLR. Section III will present the different
definitions and dimensions of ecosystem based on the SLR.
Section IV will present the conclusions and future work
recommendations.

II. METHODOLOGY
The methodology of the study will be informed by SLR.

Systematic literature reviews aim to provide a comprehensive
summary of existing research on a specific topic [20]. This
comprehensive summary can be instrumental in helping other
researchers and decision-makers acquire a deeper
understanding of the current state of knowledge in a particular
area of topic. The selection of SLR as a methodology was
appropriate because the current study aims to examine how
ecosystem and its related terms have been defined by previous
researchers. Through this information, the researcher will be
able to have a more precise definition of the core
characteristics of this term.

The objective of this SLR is to examine the different
definitions that have been made to define ecosystem and its
other related terms. This SLR can be instrumental in the
determination of themes or patterns from previous research that

101Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 113 / 141

can lead to a deeper and more precise understanding of the
concept of ecosystem. This review can identify primary studies
that focus on different definitions of the ecosystem, how it can
be clarified and how it can be applied inside organizations. The
review will also focus on key differentiations that can help in
the understanding of the multi-dimensional nature of the
concept of ecosystems.

A. Search Strategies
The databases considered in the study are listed below:

● ACM Digital Library (see Table 1)
● IEEE Xplore (see Table 1)
● ScienceDirect – Elsevier (see Table 1)

Many different terms were created to guarantee that
important information would not be excluded when querying
different search engines and databases. As a result, four search
strings were created:
1. “Innovation”
2. “Decentralized Innovation” or “Regional Innovation”
3. “Regional Innovation Systems” and “Regional

Innovations”
4. “Digital Business Strategy”
Within the search, the criteria below were applied in each

database:
● Articles published after 2015 for qualitative analysis
● Studies that are published in the English language
● Studies that are available online
● Studies not based on research that express only the

official opinions of governments and field experts
● Duplicated articles (see Table 1)

TABLE I: AMOUNT OF STUDIES FOUND ON EACH DATABASE

Database Number of studies
ACM Digital Library 271

IEEE Xplore 2603
ScienceDirect – Elsevier 1656

Studies Duplicated – Removed 803
Manual Process Added

B. Studies Selection Process
In the process of selecting information from the databases,

the search strings were used separately on each database, all
grouped later using Zotero software to adjust duplication and
mine references, using a snowball approach. The searches were
performed for articles not older than 2015. Table 1 shows the
number of studies found on each database.

A total of 83 primary studies were selected, supplemented
by adopting backward snowballing [19]. In snowballing,
additional papers are identified either from the paper’s
reference list (backward snowballing), or from the citations to
that paper (forward snowballing). As a result, an additional two
primary studies were identified from backward snowballing,
increasing the final tally to 85.

TABLE II: AMOUNT OF STUDIES FILTERED IN EACH STEP OF
SELECTION PROCESS

Phase of Selection Process Number of studies
1. Databases Search 3726
1.1 Database cleansing (before 2015) 303 removed | 3423
2. Title Analysis (contain Ecosystem,
Systems, Innovation, Hub) 1571 removed | 1852
3. Abstract Analysis (contain Business,
Ecosystem) 1769 removed | 83
4. Last articles for Quality Analysis 83

C. Quality Assessment
For quality and quantitative assessment, six questions were

used to help in the quality assessment of the SLR. The questions
are:

1. Does the study provide a definition of ecosystem or its
related terms?

2. Is the study peer-reviewed?
3. Is the study based on research – not merely on

specialists' opinions?
4. Is the context of the study adequately described?
5. Were research results adequately explained and

described?
6. Does the study contribute to research related to

innovation, where business ecosystems are described?

III. DEFINITIONS & DIMENSIONS OF
ECOSYSTEMS

In the context of ecosystem research, our systematic
literature review has not only provided valuable insights into
the various definitions and dimensions of ecosystems in the
business setting but has also laid the foundation for future
investigations, which may explore barriers to ecosystem
adoption, the potential for establishing a culture of innovation
collaboration, and a deeper understanding of the components
essential for the functionality of ecosystems in diverse
organizational contexts.

A. Definitions
Ecosystems, derived from the field of biology, pertain to

collections of mutually reliant entities. Complementarities are a
necessary condition for their functioning, as they must be
present in both the consuming and production domains.
Ecosystems inside organizations undergo changes as partners
engage, disengage, allocate investments, or redirect their
efforts. The promotion of a diversified environment has the
potential to provide useful knowledge and facilitate accelerated
learning [18].

Business ecosystems refer to “a distinctive organizational
form consisting of members co-evolving their capabilities and
aligning themselves with a common interest” [13]. In another
research, business ecosystem has been defined as a group of
actors who are economically connected to each other in order
to produce valuable goods and services to customers [22].

The term digital ecosystem has been defined in terms of
being a virtual environment that consists of various digital
entities such as software applications, hardware, and related
processes [12]. Another definition of digital ecosystem focuses

102Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 114 / 141

on the interconnectedness of different businesses with shared
interest in order to utilize digital technology in order to generate
products or services [3].

Digital platform ecosystem refers to the context that
facilitates the configuration of a new model based on the ability
to combine different processes, technology, actors, and interests
in order to create new services or products [6]. Another study
operationalizes the concept in terms of its five key
characteristics, which include “generativity, convergence,
share-ability, modularity, multiplicity and sustainable business
model innovation” [11].

Innovation ecosystem pertains to the processes that allow
the adaptation needed for sustainable transition and
transformation of a particular context [5]. The term has also
been defined as the loose connection among different business
entities that evolve each other’s capabilities based on shared
technology, knowledge, or skills [8].

B. Dimensions
The scope of ecosystem research is contingent upon the

chosen unit of analysis. There are three broad categories that
can be identified: the "business ecosystem," which emphasizes
the relationship between enterprises and their surrounding
environment; the "innovation ecosystem," which revolves on
the concept of innovation and the actors that support it; and the
"platform ecosystem," which investigates how players organize
themselves in relation to a platform. Our primary focus will be
on the examination of innovation ecosystems.

The concept of an ecosystem may be described as a
framework that comprises several stakeholders who are crucial
for the realization of a value proposition [1]. The
aforementioned interconnections exhibit a state of multilateral
interdependence, which distinguishes them from conventional
economic frameworks.

Ecosystems can be characterized as assemblies of agents
that possess multilateral, non-generic complementarities, rather
than being governed in a hierarchical manner [10]. The primary
area of interest lies in the temporal and causal factors
contributing to the emergence of ecosystems.

The concept of business ecosystems centers on the interplay
between a company and various external entities, such as other
businesses, institutions, and individuals. These interactions
have a significant influence on the enterprise itself, as well as
its consumers and suppliers [15].

The concept of innovation ecosystems centers around the
examination of innovations and its various components and
complements. It places particular emphasis on the collaborative
efforts of interdependent actors in the creation of customer-
facing solutions [2].

Platform ecosystems consist of both organizational and
market intermediary platforms. These platforms are
characterized by a core platform that is surrounded by
peripheral companies. These companies are connected through
shared technologies, which facilitate the process of value co-
creation [16].

Platform ecosystems exhibit distinct features in the form of
intricate inter-organizational connections, resembling
commercial networks. These connections facilitate

entrepreneurial endeavors and facilitate transactions across
diverse user groups [7]. In essence, ecosystems encompass
intricate interdependencies and diverse complementarities,
presenting different viewpoints on their functioning, be it in the
realms of business, innovation, or platforms.

IV. CONCLUSION AND FUTURE WORK
The purpose of this research is to conduct a Systematic

Literature Review (SLR) of ecosystem and its dimensions in
order to achieve clarity and precision about the definition of the
concept. Through this SLR, core similarities about the different
definitions of ecosystem in the business setting can be
identified. The results of the SLR suggest that the different
terms highlight themes of interconnectedness of different
entities and the creation of a new product or services. The
results also reaffirmed the existence of different dimensions of
ecosystems.

Based on the results that were presented, future research
could further examine the barriers in the adoption or success of
ecosystems in business setting. Future researchers could also
explore the question of whether companies can establish a
culture of innovation collaboration that is independent of their
core. More detailed information of the components of a well-
functioning ecosystem can also be pursued by future
researchers.

REFERENCES
[1] R. Adner, “Ecosystem as structure,” J. Manag., vol. 43, pp. 39–

58, 2017.
[2] R. Adner, “Match your innovation strategy to your innovation

ecosystem,” Harv. Bus. Rev., vol. 84, pp. 98–107, 2006.
[3] T. H. Bui and V. P. Nguyen, “The impact of artificial intelligence

and digital economy on Vietnam’s legal system,” International
Journal for the Semiotics of Law, vol. 36, pp. 969-989, 2023.

[4] S. Y. Barykin, I. V. Kapustina, T. V. Kirillova, V. L. Yadykin,
and Y. A. Konnikov, “Economics of digital ecosystems,” Journal
of Open Innovation: Technology, Market, and Complexity, vol.
6, pp. 1-16, 2020.

[5] J. Boyer, J., Ozor and P. Rondé, “Local innovation ecosystem:
structure and impact on adaptive capacity of firms,” Industry and
Innovation, vol. 28, pp. 620-650, 2021.

[6] M. Calabrese, A. La Sala, R. P. Fuller and A. Laudando, “Digital
platform ecosystems for sustainable innovation: Toward a new
meta-organizational model?,” Administrative Sciences, vol. 11,
pp. 1-14, 2021.

[7] C. Cennamo and J. Santalo, “Platform competition: strategic
trade-offs in platform markets,” Strateg. Manag. J., vol. 34, pp.
1331–1350, 2013.

[8] O. Granstrand and M. Holgersson, “Innovation ecosystems: A
conceptual review and a new definition,” Technovation, vol. 90,
pp. X-X, 2020.

[9] H. Hou and Y. Shi, “Ecosystem-as-structure and ecosystem-as-
coevolution: A constructive examination”, Technovation, vol.
100, p. x-x, 2021.

[10] M. G. Jacobides, C. Cennamo and A. Gawer, “Towards a theory
of ecosystems,” Strat. Manag. J., vol. 39, pp. 2255–2276, 2018

[11] X. Li, L. Zhang and J. Cao, “Research on the mechanism of
sustainable business model innovation driven by the digital
platform ecosystem,” Journal of Engineering and Technology
Management, vol 68, pp. 1-48, 2023.

[12] P. K. Senyo, L. Liu, and J. Effah, “Digital business ecosystem:
Literature review and a framework for future research,”

103Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 115 / 141

International Journal of Information Management, vol. 47, pp. 52-
64, 2019.

[13] M. M. Shin, S. Jung, and J. S. Rha, “Study on business ecosystem
research trend using network text analysis. Sustainability, vol. 13,
pp. 1-17, 2021.

[14] M. Subramaniam, “Digital ecosystems and their implications for
competitive strategy,” Journal of Organization Design, vol. 9, pp.
1-10, 2020.

[15] D. J. Teece and G. Linden, “Business models, value capture, and
the digital enterprise,” Journal of Organization Design, vol. 6, pp.
1-14, 2017.

[16] L. D. Thomas, E. Autio and D. M. Gann, “Architectural leverage:
Putting platforms in context. Academy of Management
Perspectives, vol. 28, pp. 198-219, 2014

[17] J. Wareham, P. B. Fox, and J. L. Cano Giner, "Technology
ecosystem governance," Organ. Sci., vol. 25, pp. 1195–1215,
2014.

[18] P. J. Williamson and A. De Meyer, “Ecosystem advantage: How
to successfully harness the power of partners,” Calif. Manag.
Rev., vol. 55, pp. 24–46, 2012.

[19] C. Wohlin, M. Kalinowski, K. R. Felizardo and E. Mendes,
“Successful combination of database search and snowballing for
identification of primary studies in systematic literature studies,”
Information and Software Technology, vol. 147, pp. X-X. 2022

[20] Y. Xiao and M. Watson, “Guidance on conducting a systematic
literature review,” Journal of Planning Education and
Research, vol. 39, 93-112, 2019.

[21] S. Yablonsky, S., “A multidimensional platform ecosystem
framework,” Kybernetes, vol. 49, pp. 2003-2035, 2020.

[22] S. T. D. Yuan, S. Y. Chou, W. C. Yang, C. A. Wu, and C. T.
Huang, “Customer engagement within multiple new media and
broader business ecosystem–a holistic perspective,” Kybernetes,
vol. 46, pp. 1000-1020. 2017.

104Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 116 / 141

Prerequisites for Simulation-Based Software Design and Deployment

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology

Bozetechova 2, 612 66 Brno, Czech Republic

emails: koci@fit.vut.cz, janousek@fit.vut.cz

Abstract—The fundamental problem associated with software
development is correctly identifying, specifying, and realizing
the software system requirements. Many methodologies are not
formally defined and rely on intuitive use. In contrast, the formal
description techniques clearly describe the user requirements and
their specific solutions. We are involved in modeling the require-
ments and behavior of software systems using formal models used
in a specific manner. The approach combines intuitive modeling
with the precise expression of specified requirements and a
detailed implementation description. Models serve for analysis,
system design, validation, and simulation. Models can also be
directly deployed in real environments of developed systems. This
paper summarizes the current state of the approach to system
development, which is being developed by our team.

Keywords—Modeling; simulation-based design; model-driven
engineering; model-continuity.

I. INTRODUCTION

Software Engineering deals with the issues of efficient

development of correct and reliable systems. Correctness

means that the system fits perfectly with the intentions and

goals of deploying this system. Reliability means the system

does not contain errors or provide for damage caused by

unexpected and wrong behavior. The primary development

cycle of each software product is divided into several phases

that are continuously linked to each other. The first phases

are mainly analysis and specification of requirements, system

design, implementation and testing, and finally, system de-

ployment. Many software development methodologies work

with phases in different ways. It is possible to follow the

phases one by one accurately, to overlap or iterate them.

In any case, they are part of every development process.

One of the fundamental problems is the correct specification

and validation of the requirements for the system [1]. A use

case diagram from the Unified Modeling Language (UML)

is often used to specify the requirements, which is then

developed with other UML diagrams [2]. The disadvantage

of this approach is the difficulty in validating the specification

models. In response, methods for working with modified UML

models having executable form have been developed, such as

the Model Driven Architecture (MDA) methodology [3], the

Executable UML language (xUML) [4] or the Foundational

Subset for xUML [5]. However, these approaches still need to

solve the problem of model transformations as it is difficult

to transfer back to the model all the changes that result from

the validation process. Another approach, for example, uses a

modified subset of the UML, called fUML, with the formal

language Alf [6][7]. This approach is supported by modeling

and analysis tools [8].

The fundamental prerequisite for achieving the correct and

reliable system is continuous verification or validation of spec-

ification documents, design documents, and implementation

[9]. Another area for improvement is the transition between

different development process phases, from one document

type to another. An example may be the transition from an

informal specification to the model or from a design model

to the implementation. In these cases, mistakes often occur

due to misinterpretation of the outgoing model or by simply

overlooking any model element. Two main reasons for these

mistakes are the complexity and informal semantics. Many

elements of the used modeling means need a clearly defined

syntax and semantics, and their use is relatively intuitive. In

this paper, we summarize the concepts of software product

development and deployment using a combination of formal

and informal models, programming languages, and simulation.

The paper is structured as follows. We discuss related work

in Section II. In Section III, we specify basic requirements

for reliable software development and deployment. Section IV

introduces models that may appear during the development life

cycle. Section V addresses techniques needed for exploiting

the potential of visual and formal languages in the simulation-

based design.

II. RELATED WORD

The approach that combines formal models, simulations,

and their deployment or transformation is mainly applied in

control software. Many of these approaches [10]–[12] propose

to generate models in a particular language (e.g., System Mod-

eling Language—SysML) from UML models, usually from a

class diagram. Other work, such as [13], transforms different

levels of diagrams. Some approaches attempt to transform

conceptual models, described, i.e., in SysML, into simulation

models [14]. The approach most closely resembles ours is

based on the network-within-networks (NwN) formalism, with

which the Renew tool is associated [15]. In the design of more

general software systems, an example is already mentioned

xUML or fUML. The resulting system can often be generated

from the designed models [16][17]. However, freely available

tools only allow partial output (often, only a skeleton in the

chosen language is generated). However, these approaches also

do not allow formal models to implement the system but

only for simulation runs. Our proposed approach retains the

generated models throughout the software development and

105Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 117 / 141

deployment. We aim to create more efficient representations

of models and their simulators for deployment purposes on

commonly used platforms and languages (Java, C++).

III. PREREQUISITES FOR A SIMULATION-BASED

APPROACH

This section briefly summarizes the basic requirements

for reliable software design and defines the prerequisites for

meeting these requirements.

A. Basic requirements

First, we define points that have to be met to create the

correct and reliable software system.

1) understand the goals of the software project and pre-

cisely specify the specific requirements whose imple-

mentation meets the declared objectives,

2) verify that the requirements specification is in line with

the objectives,

3) based on a verified specification, create a system design

that reflects the conditions of a particular implementa-

tion environment,

4) verify that the system design complies with the require-

ments,

5) implement the verified design,

6) verify that implementation is consistent with the design,

7) verify accuracy and reliability of implementation under

real conditions

In the following sections, we explain the basic principles of

our approach and how they fulfill the above points.

B. Model Continuity

The primary means for specifying requirements is plain text

in the native language. In this form, the specification is also

part of the contract between the developer and the customer.

Validation of the text description of requirements specification

is, however, difficult and very often impossible. This validation

can not be performed in an automated manner but by a

person. Nevertheless, someone is limited by his/her memory

and cannot analyze multi-page text in all its dependencies.

Visual models with a clear formal foundation make it

possible to capture a particular aspect of requirements un-

equivocally, helping to understand the developed system better

and detect errors. For these reasons, the ideal state is to use

one type of model that captures everything. However, such a

model would be too extensive to get into the same problem

as the text description.

A more appropriate approach is to combine models captur-

ing the system at different levels of abstraction so that it is

possible to view and analyze system models as a whole and

their details. This approach is complemented by other models

or text descriptions that include those features or requirements

that can not be captured in the existing models; eventually,

their capture would be very complicated. It satisfies the point

1 from the list in Section III-A.

An important feature that extends the capability of validat-

ing specification models is the ability to simulate these models.

It allows live testing of models in simulated conditions instead

of simply passing through a document. Another aspect that

affects validation capabilities is the environment or context in

which the simulation is performed. If models are integrated

into a realistic environment, the credibility of simulation

results increases. It satisfies the point 2 from the list in Section

III-A.

After the validation of specification models, the question of

a correct transition to the design models and the subsequent

implementation in the chosen environment remains. We aim

to work with the same models in all development phases,

especially the specification, design, and implementation, with

no transformation and minimization of errors. The models

are only complemented with further details while preserving

the possibility of previewing models at different levels of

abstraction from the specification to the implementation view.

It satisfies points 3 and 4 from the list in Section III-A.

Requirements model System model System implementation

use-cases

 use-case

realization

simulation
simulation

behavior

structure
source

 code

 other

components

Figure 1. Model Continuity: Basic principle.

At the end of the development process, we have functional

models that fully reflect the system requirements. In certain

situations, especially concerning performance, these models

can serve as implementation models, i.e., become part of the

target system. If this is inappropriate or impossible for the

above reasons, we must implement or exploit the ability to

generate code from such models. Consistency with the design

does not need to be checked, as the same set of models is still

being developed. Verification accuracy and reliability under

real conditions are proved in the same or partially modified

manner. It satisfies points 5, 6, and 7 from the list in Section

III-A.

The prior text presents the basic principle of the continuity

model, which is depicted in Figure 1. Design models comple-

ment and extend each other in the development process, and

there is no need to transform or create new models based on

existing ones. If the nature of the resulting application permits,

it is possible to maintain the models in the target system.

IV. MODELS IN THE SIMULATION-BASED DEVELOPMENT

LIFE-CYCLE

In this section, we will introduce the types of models

that may appear during the life cycle of simulation devel-

opment of software systems. One of the basic principles of

simulation development is the continuity of models over the

entire development process until deployment in the application

environment. We define categories of models and typical

106Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 118 / 141

representatives and evaluate their applicability in simulation

development.

The process of modeling software systems consists of sev-

eral phases that follow and interleave [18]. Various modeling

tools may be used in each phase, but there must be a way of

interconnecting them. We distinguish between Domain Model,

Behavioral Model, and Design Model that are supplemented

by Architecture Model.

In the following text, we will explain and analyze the

importance of each model in more detail. We will proceed

from a simple example of a robotic system, which we now

briefly specify. The example, which is based on the case

study presented in [19], presents a robot control system whose

motion is controlled by a pre-specified algorithm.

A. Domain Model

Domain Model captures concepts of the domain system

as identified and understood during the requirements analysis

process. The class diagram modeling conceptual classes and

their links is usually used. The domain model is the initial

model for modeling functional requirements and creation of

design models and is one of the first models to use when

designing the software.

B. Behavioral Model

Behavior Model captures an external view of the system’s

functionality, specific behavior, and system interaction with

its surroundings. The behavior model can be divided into two

complementary types:

• User Requirements Model captures an external view of

the system functionality. Use case models are used.

• Scenario Model (Model of Functional Requirements) cap-

tures specific behavior and interaction of individual use

cases. Different descriptions are used, e.g., structured text,

activity diagrams, or state charts. Generally speaking, it

is possible to use such models that describe the work-

flow of the use case supplemented by communication

mechanisms.

Use case diagrams are used to model user requirements. The

goal of modeling is to identify system users, user requirements,

and how the user works with these requirements. The essential

elements are users of the system, their role, and activities.

Roles are modeled through actors and activity through in-

dividual use cases in the use case diagram. Interconnected

scenarios (activity nets or role nets) then specify the behavior

of the individual elements (see Figure 2) and can be described

by different formalisms.

Activity diagrams, state diagrams, or interaction diagrams

can model case scenarios (activities). However, formal models

or formal languages, such as Petri nets, can also be used with

advantage. An important feature is an interconnection between

use case diagrams and scenarios modeled by specific diagrams

since both models represent a different view of the system

under development.

Figure 3 shows an example of the scenario model for the

elements Robot (role) and Execute Scenario (activity). The

Figure 2. Interrelation of elements and their descriptions.

walking

r isCloseToObstacle.

t1

r stop. r turnRight.

r

r

p1

r isCloseToObstacle.

t2

r turnRight.

r

r isCloseToObstacle.

t3

r turnRight.

r isClearRoad.

t11

r

r isCloseToObstacle.

t4 blocked

r isClearRoad.

t12

r isClearRoad.

t13

r

r

r

r go.

r go.

r go.

r

p2

r

r

r

p3

r

r

r

Execute Scenario

Robot

subject

self delay: 10

d := r getDistance.

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

r

d

oldD

p1

p2

t1

t2

Role Robot Activity net Scenario

Figure 3. Sample scenario model for role and use case.

formalism of Petri nets, its variant Object-Oriented Petri nets,

models the scenarios and uses its inherent synchronous port

mechanism (e.g., isCloseToObstacle) to synchronize with each

other [20].

C. Design and Architecture Model

Design Model is based on the domain and behavioral

models. Generally speaking, these are elaborate models of the

domain, requirements, and behavior that can be directly imple-

mented. Class diagrams, activity diagrams, or state diagrams

are used. The Architecture Model captures the organization of

the design classes. Class diagrams and grouping diagrams or

deployment diagrams are used. Usually, the architecture model

merges with the design models.

D. Interrelation of Models

As indicated in Figure 4, the scenario models at the level

of behavioral and design models merge into a single concept.

Therefore, the class diagram is also included in this concept.

The scenarios associated with the diagram of use cases corre-

spond to classes from the design model. A specific class type

models each element. Thus, we can identify groups of classes

107Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 119 / 141

modeling actors, use cases, and other classes based on the

domain model. As behavioral models evolve, they become

design models that also serve the purpose of requirements

specification. The basic view of requirements is conveyed by

use case diagrams, class diagrams provide the architectural

view, and individual scenarios are represented as workflows

specified by Petri nets. Additional objects from the domain

environment can be used in the workflow to simulate the

system or run it under realistic conditions without displaying

these implementation details at the scenario level. Thus, the

same model can be used both for requirements documentation

and for the developed system’s executable version (prototype,

implementation).

Figure 4. The role of models in the development process.

V. SUPPORTING TECHNIQUES

The mentioned prerequisites need to be complemented by

supporting techniques that exploit the potential of visual and

formal languages in the simulation-based design. Many of

these techniques have already been developed and introduced

in previous papers.

A. Components

The possibility of exchanging parts of the software to debug

and verify the correctness or behavior of the system under

different conditions. The exchange should be enabled on the

fly (simulation). For this purpose, a component concept based

on the Discrete Event System Specification formalism (DEVS)

[21][22] was chosen. It makes possible to associate the formal

models described by High-level nets with an executable code

that is incorporated into DEVS formalism structures. DEVS

formalism is abstract concept that can be easily adapted to a

particular environment.

B. Debugging and Constraints

An important aspect is, of course, the possibility of debug-

ing and stepping. Simulation stepping is an obvious function-

ality of the simulation tool. We have also explored tracking

and reverting the model run using Petri nets [23]. However,

the presented concept still needs to consider all possible

applications.

We also introduced the basic concept of requirements vali-

dation and its implementation through scenarios described by

sequence diagrams [24]. Scenarios can be created manually

or generated from running (simulation) models. It allows us

to obtain assumed scenarios of the behavior of the use case

under study and real scenarios reflecting the design that can

be compared.

We introduced the concept of constraints and exceptions

over the Petri net formalism, which can be used to verify the

consistency of component interfaces or the correctness of the

behavior of the modeled system [21].

C. Models Supported by Programming Languages

Models can be combined with programming (or other for-

mal) languages that can be interpreted together with the model.

Thus, they can also use concepts (e.g., objects) from another

environment or programming languages. Current simulator can

work with only Smalltalk objects.

D. Transformations

Transform the model into the chosen programming language

for more efficient running. In the case of a transformed model,

using some of the above resources is limited. Currently, we

have the experimental implementation of transformations to

Java and C++ languages done by our master students.

VI. CONCLUSION

This paper summarized the concept of simulation-based

software development in conjunction with model-continuity

principles and the current state of the art that our research team

has achieved. The simulator has experimentally implemented

many of the techniques presented but is only partially suitable

for wider use (experimental implementation in a Smalltalk

environment). We are, therefore, currently working on a new

implementation of the simulator and a comprehensive model

editor in Java. The goal is to create a comprehensive tool for

modeling, designing, and verifying software systems with the

possibility of direct deployment (with a lightweight version of

the virtual machine for running models) or direct transforma-

tion into a programming language for more efficient running.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project

FIT-S-23-8151 – Reliable, Secure, and Intelligent Computer

Systems.

REFERENCES

[1] K. Wiegers and J. Beatty, Software Requirements. Microsoft Press,
2014.

[2] N. Daoust, Requirements Modeling for Bussiness Analysts. Technics
Publications, LLC, 2012.

[3] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in International Conference on Software
Engineering, FOSE, 2007, pp. 37–54.

[4] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model Driven
Architecture with Executable UML. Cambridge University Press, 2004.

108Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 120 / 141

[5] S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “A framework for
testing uml activities based on fuml,” in Proc. of 10th Int. Workshop
on Model Driven Engineering, Verification, and Validation, vol. 1069,
2013, pp. 11–20.

[6] T. Buchmann and A. Rimer, “Unifying modeling and programming
with alf,” in SOFTENG 2016: The Second International Conference on
Advances and Trends in Software Engineering, 2016, pp. 10–15.

[7] E. Seidewitz, “UML with meaning: executable modeling in foundational
UML and the Alf action language,” in HILT ’14 Proceedings of the 2014
ACM SIGAda annual conference on High integrity language technology,
2014, pp. 61–68.

[8] Z. Micskei and et al., “On open source tools for behavioral
modeling and analysis with fuml and alf,” in 1st Workshop on Open
Source Software for Model Driven Engineering, MODELS 2014,
pp. 31–41, [online; retrieved: September, 2022]. [Online]. Available:
http://ceur-ws.org/Vol-1290/paper3.pdf

[9] D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuity in
discrete event simulation: A framework for model-driven development
of simulation models,” ACM Transactions on Modeling and Computer
Simulation, vol. 25, no. 3, 2015, pp. 17:1–17:24.

[10] T. Hussain and G. Frey, “UML-based Development Process for IEC
61499 with Automatic Test-case Generation,” in IEEE Conference on
Emerging Technologies and Factory Automation. IEEE, 2010.

[11] C. A. Garcia, E. X. Castellanos, C. Rosero, and Carlos, “Designing
Automation Distributed Systems Based on IEC-61499 and UML,” in
5th International Conference in Software Engineering Research and
Innovation (CONISOFT). IEEE, 2017.

[12] I. A. Batchkova, Y. A. Belev, and D. L. Tzakova, “IEC 61499 Based
Control of Cyber-Physical Systems,” Industry 4.0, vol. 5, no. 1, Novem-
ber 2020, pp. 10–13.

[13] S. Panjaitan and G. Frey, “Functional Design for IEC 61499 Distributed
Control Systems using UML Activity Diagrams,” in Proceedings of the
2005 International Conference on Instrumentation, Communications and
Information Technology ICICI 2005, 2005, pp. 64–70.

[14] G. D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, and D. Anag-
nostopoulos, “Model-based system engineering using SysML: Deriving
executable simulation models with QVT,” in IEEE International Systems
Conference Proceedings, 2014.

[15] L. Cabac, M. Haustermann, and D. Mosteller, “Renew 2.5 - towards a
comprehensive integrated development environment for petri net-based
applications,” in Application and Theory of Petri Nets and Concurrency
- 37th International Conference, PETRI NETS 2016, Toruń, Poland,
June 19-24, 2016. Proceedings, 2016, pp. 101–112. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-39086-4 7

[16] F. Ciccozzi, “On the automated translational execution of the action lan-
guage for foundational uml,” Software and Systems Modeling, vol. 17,
no. 4, 2018, doi: 10.1007/s10270-016-0556-7.

[17] E. Seidewitz and J. Tatibouet, “Tool paper: Combining alf and uml
in modeling tools an example with papyrus,” in 15th Internation
Workshop on OCL and Textual Modeling, MODELS 2015, pp.
105–119, [online; retrieved: September, 2022]. [Online]. Available:
http://ceur-ws.org/Vol-1512/paper09.pdf

[18] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development. Prentice
Hall, 2004.

[19] R. Kočı́ and V. Janoušek, “Formal Models in Software Development
and Deployment: A Case Study,” International Journal on Advances in
Software, vol. 7, no. 1, 2014, pp. 266–276.

[20] R. Kočı́ and V. Janoušek, “Specification of Requirements Using Unified
Modeling Language and Petri Nets,” International Journal on Advances
in Software, vol. 10, no. 12, 2017, pp. 121–131.

[21] R. Kočı́ and V. Janoušek, “The Object Oriented Petri Net Component
Model,” in The Tenth International Conference on Software Engineering
Advances. Xpert Publishing Services, 2015, pp. 309–315.

[22] R. Kočı́ and V. Janoušek, “Incorporating Petri Nets into DEVS For-
malism for Precise System Modeling,” in ICSEA 2019, The Fourteenth
International Conference on Software Engineering Advances. Xpert
Publishing Services, 2019, pp. 184–189.

[23] R. Koci and V. Janousek, “Possibilities of the reverse run of software
systems modeled by petri nets,” International Journal on Advances in
Software, vol. 12, no. 3, 2019, pp. 191–200.

[24] R. Kočı́, “Requirements validation through scenario generation and
comparison,” in The Fifteenth International Conference on Software
Engineering Advances, ICSEA 2020. Xpert Publishing Services, 2020,
pp. 129–134.

109Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 121 / 141

Engineering IoT-based Software Systems for
Forestry: A Case Study

Marko Jäntti
School of Computing

University of Eastern Finland
P.O.B. 1627, 70211, Kuopio, Finland

Email: marko.jantti@uef.fi

Markus Aho
UEF Business School

University of Eastern Finland
Yliopistokatu 2, 80100 Joensuu, Finland

Email: markus.aho@uef.fi

Markus Aho
Funlus Oy

Sepontie 15, 73300 Nilsiä, Finland
Email: markus.aho@funlus.fi

Abstract—The Internet of Things (IoT) is a rapidly growing
technology that offers huge possibilities for optimizing processes
and increasing productivity in various domains. The IoT technol-
ogy connects software services, devices, various types of sensors,
and machines to the internet and enables real-time data collection,
analysis and sharing. However, ensuring the quality of the IoT
is a complex challenge for software engineers and requires new
development skills, as well as coordination of third party service
providers. In this case study, we use embedded single case design
with two Internet of Things experiments to study the quality
factors in IoT system implementation. The research problem of
this study is: How quality aspects should be taken into account
while designing and implementing IoT-based software systems
for forestry inventory management? The main contribution of
this paper is to present lessons learnt from two experiments
with different monitoring targets: liquid level monitoring and
continuous mass monitoring of oil canister pallets. Both IoT
experiments were performed in facilities of the second largest
forest harvesting company in Finland.

Keywords—Internet of Things; software system; software engi-
neer; sensor; ICT quality.

I. INTRODUCTION

The Internet of Things (IoT) is a fast-growing network
of interconnected devices that exchange data and enable a
wide range of applications. From smart homes and cities to
industrial automation and intelligent machinery, the IoT has the
potential to transform our lives, workplaces, communication
and processes. However, implementing IoT systems is not a
straightforward task even for experienced software engineers.
Building IoT-based software systems of high quality requires
careful planning and integration of various technologies, de-
vices, services and sensors together.

Especially for forestry domain where actors still operate
with traditional non-digital practices, IoT technology provides
numerous opportunities for improvement and ways to improve
productivity and increase level of automation. While forest
machines involve high tech components, such as machine
vision, robotics and intelligent sensors, the support and mainte-
nance of forest machines including orders for liquids and other
supplies, includes a large number of manual work activities.

Previous studies on using Internet of Things in forestry
domain have mainly focused on monitoring forest assets [1],
creating IoT-based systems for forest environment monitoring
systems [2], improving the safety of forestry workers [3],
establishing IoT-enabled plantation monitoring systems [4]

and studying IoT implementation challenges in experiments
conducted in rural areas [5]. However, surprisingly few of
these studies focus on discussing how to ensure quality in
IoT systems implementation. Identification of these quality
aspects would help IoT engineers and developers to make
better informed decisions on selecting IoT sensor components,
services and platforms. Information on IoT quality aspects
would also help IoT customers, consultants and coordinators
of IoT projects to produce better quality and more accurate
invitations for tender and make acquisition of IoT systems
smoother.

There are several quality factors that software engineers
in IoT projects should take into account. One of the most
important quality aspects of the IoT is reliability. Reliability
means that various IoT devices, sensors, software services and
platforms must work together seamlessly to deliver accurate
and timely data. In Finland, poor network coverage is a real
challenge [6], especially in eastern and northern parts of
Finland. Network failures can lead to significant consequences,
such as loss of data, severe information security breaches,
and unavailability of systems. Thus, it is critical to ensure
that all IoT components are reliable and no weak links shall
exist in the infrastructure. Additionally, when an IoT service
is running in the operation phase, the service provider should
provide frequent reports on the service quality which is part
of a broader service-oriented philosophy [7].

Information security is another important quality aspect
related to the IoT technology. While increasing amount of
data is exchanged over the internet, security breaches have
become a significant concern in Internet of Things projects.
Cyberattacks may be performed even through very standard
IT components, such as web cameras [8].

Fortunately, large cloud service providers have addressed
security concerns of IoT, established security controls by using
IT governance frameworks, such as COBIT [9], created secu-
rity roadmaps and cybersecurity reference architectures [10]
and presented mechanisms for ensuring secure access control,
authentication of various types of devices and detecting poten-
tial security vulnerabilities and providing secure connections
from sensors to IoT cloud services. Cybersecurity plays a very
important role for IoT systems that can control critical systems
or services, such as heating, ventilation, lighting and access
control in smart buildings [11].

The results of this article are aimed at IoT system develop-

110Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 122 / 141

ers, companies in IoT customer role, Internet of Things consul-
tancy companies and persons responsible for coordinating IoT
projects to increase their awareness of quality aspects related to
IoT implementations in Finland, especially in forestry sector.

In Section 2, research methodology of the study is pre-
sented. In Section 3, case study results are presented. Section 4
is the analysis and finally, the conclusions are given in Section
5.

II. RESEARCH PROBLEM & METHODOLOGY

This study aimed at answering the following research
problem: How quality aspects should be taken into account
while designing and implementing IoT-based software systems
for forestry? The forestry domain was selected because it has
a large financial impact in Finland. We admit that oil and gas
industries may be forerunners in IoT but they play a very minor
role in Finland compared to forest industry. In this study, we
utilized a case study research method to answer the research
problem with a single case organization (Motoajo Oy, a forest
machine operator from Finland) with an embedded structure
involving two IoT experiments. The research problem was
divided into following three research questions:

• What types of IoT monitoring needs does a forest
machine operator company have?

• How quality attributes are visible in building IoT
solutions?

• How IoT monitoring shall support forest operations?

The case study can be defined as ”an empirical inquiry that
investigates a contemporary phenomenon within its real-life
context” [12]. The real life context refers to daily operations
management of a forest machine operator company. Figure 1
shows the context of this study.

Fig. 1. The context of the case study.

A. Case Organization

Our target organization Motoajo Oy (SME) is a forestry
contractor company located in Nurmes, Eastern Finland. The
company is Finland’s second largest harvesting company.

Motoajo operates as a family-owned company with 51 forest
machines and 81 employees. Additionally, the company has
in possession 3 Volvo transport trucks, 2 Volvo excavators,
1 wheel loader, 5 MB Sprinter light trucks and 64 Pick-up
trucks. Regarding the staff, there are 35 harvester operators,
28 forwarder operators, 2 transport truck drivers, 3 excavator
operators, 5 mechanics and 8 management staff. Reliable
inventory management and order management of liquids and
other supplies for forest machines are critical business func-
tions for Motoajo. Forest machines cannot operate without
these liquids and supplies and even short operational outages
may cause remarkable costs for the company.

During the case study, the research team including the
authors of this paper collaborated with various Motoajo em-
ployees but especially foreman, CEO, financial administrator
and development manager. The collaboration occurred in joint
digital experiment workshops, work meetings on preparing the
experiment handbook, experiment status reporting meetings
(Motoajo, AIKA DIH, DIH-World coordinator), joint webi-
nars and seminars (2 DIH community days, 2 other regional
dissemination events on digital transformation).

Digital Innovation Hubs (DIH) [13] are one-stop shops that
help companies, especially SMEs and start-ups become more
competitive with regard to their business/production processes,
products or services using digital technologies. The funding
for the first IoT case was received from the 1st call of
experiments of DIH-World project (funded by Horizon 2020).
The idea for the second IoT case was identified in the continual
improvement workshop that was organized at the end of the
first IoT case.

B. Data Collection Methods

Qualitative data for this case study were collected by using
multiple sources of evidence between August 2021 - May
2023. Most of the data were captured while visiting Motoajo’s
facilities (main storage in Nurmes, Finland as well as remote
storage areas). The following sources of evidence were used:

• Documentation: IoT device specification for Tekelek
tank alert sensor (ultrasonic), Enless Wireless Trans-
mitter product specification, supporting documentation
sent by IoT providers during the bidding process of
weight monitoring system, safety instruction docu-
mentation of diesel exhaust fluid and log marking
colour.

• Archival records: Data records (JSON) from the IoT
provider, online forms for truck drivers and forest
machine operators (triggered by QR codes in contain-
ers), LoraWAN data conversion Excel sheet by Enless
Wireless.

• Interviews/discussions: Online meeting discussions
with 9 Internet of Things providers, live discussions
in Solver X reverse pitching event in April 19th, 2023,
interviews with CEO of Motoajo, project discussions
during work meetings with foreman of Motoajo, phone
discussions with CEO.

• Participative observation: digital experiment work
meetings, several field visits to case organization’s
facilities, such as the main storage area, the remote

111Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 123 / 141

storage area, a logging site in Nurmes, Finland; partic-
ipative observation in DIH webinars and dissemination
meetings related to Green and Digital Forest Service
Management experiment.

• Physical artifacts: Artifacts related to case 1 included
Tekelek ultrasonic sensor module, various types of
liquid containers, such as a portable fuel container,
a fungicide container, plastic Intermediate Bulk Con-
tainers (IBC) containing log marking colour and diesel
exhaust fluid. Artifacts related to case 2 included oil
canister pallet, industrial scale PCE RS 2000 by PCE
Instruments and Enless Wireless Analog Transmitter.

• Direct observations: Monitoring forest machine oper-
ational work in logging site (January 11th, 2022)

C. Data Analysis

Data analysis of this study was performed by case compar-
ison technique with two units of analysis. The case comparison
analysis technique [14] is a common way to compare and
analyze data from multiple cases. Our units of analysis were
two different types of Internet of Things experiments. The first
experiment focused on liquid level monitoring and the second
experiment on weight monitoring.

During the article writing period, the second experiment
was still ongoing. The analysis was performed by two re-
searchers that are also authors of this paper. The case compar-
ison was based on predefined categories (=patterns) describing
the nature and settings of experiments and reflecting the quality
aspects of IoT.

III. RESULTS OF THE STUDY: ENGINEERING IOT-BASED
SOFTWARE SYSTEM FOR FORESTRY

The results of this exploratory case study are presented in
this section as case narratives with Situation, Task, Action,
Results (STAR) approach. The STAR approach includes four
steps: 1) Situation describing the context within the IoT de-
velopment was performed, 2) Tasks describing responsibilities
or tasks to be done in that particular situation, 3) Action
describing how the task was completed or how the challenge
was resolved, and 4) Results describing the outcomes or results
generated by the action.

A. Situation

Case A: According to the data we received from our
site visits and conversations with the case organization, we
noticed that the process for refilling and retrieving liquids
from containers is mostly done manually. Additionally, we
observed that the online form is not consistently used by truck
drivers and forest machine drivers. The primary issue is that
the company lacks an accurate view of their forestry liquid
inventories, which can lead to a scenario where drivers of forest
machines do not receive the necessary liquids they require.
Motoajo and Digital Innovation Hub AIKA Ecosystem applied
and received funding for the digital transformation initiative
from DIH-WORLD project around 90 Keur.

Case B: The idea for Case B, continuous mass measure-
ment using sensor technology, was received in the end of
Case A when the research team asked case organization what

would be next potential improvement targets for IoT based
monitoring. A joint research consortium was established to
find solutions for the problem. The first research organization
provided expertise on metrology (purchasing and calibration of
the scale) and the second research organization took care of
designing cloud services. No external regional or international
funding was related to this experiment.

B. Task

Case A: The EU funding for the experiment enabled the
research consortium to design, implement, test and validate
the monitoring solution. When the experiments started, no
sensors were used for liquid level monitoring and the company
did not have sensor platform in use. Monitoring consumption
was based on manual checks and required traveling to remote
sites frequently (1-2 monthly visits). The expected benefits
involved, first, increased productivity and quality of operations
for a forest machine operator due to decreased number of
interruptions in production. Significant costs are caused if a
forest machine cannot operate due to lack of liquids; in worst
case scenario, salaries need to be paid to forest machine drivers
also when a machine does not operate and fixed costs, such as
insurance fees are still running. Second, IoT based monitoring
reduces costs associated to travelling to remote storage areas
due to checking whether there is sufficient amount of liquids
available.

Third, monitoring of containers provides more accurate and
timely information on inventory in containers through real-
time consumption monitoring. Fourth, the company can order
refilling of containers proactively and organize pick up for
waste from storage areas. Fifth, our goal was also to increase
operational safety related to dealing with liquids (fungicide,
AdBlue, fuel) that may also lead to decreased workload for
forest machine drivers. Finally, more automated process will
decrease the number of contact requests from employees to
work managers due to unclear or missing liquids-related work
instructions.

Case B: The main task in case B was to design a continuous
mass measurement system using smart sensors and state of
the art cloud services. Our goal was to place an industrial
class ”scale” under the standard IBC container to continuously
measure the mass of the liquid container. The public LoraWAN
was selected as the data network solution because the research
team had positive experiences from the first pilot.

The planned work tasks included research work to design
the solution and select the components, make a build or buy
decision, test and experiment the selected solution, and identify
constraints in Motoajo’s warehouse environment.

C. Action

Case A: The main purpose of the action was to plan,
design, implement, test and validate the IoT based monitoring
system for forestry liquids including tank level sensors and
install sensor modules into plastic IBC containers containing
log marking colour and Diesel Exhaust Fluid. The following
list contains action items from the beginning to the end of the
experiment:

112Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 124 / 141

• Kick off for the experiment (objectives and deliver-
ables of the experiment presented and discussed, SME
and DIH plan the work to the Trial Handbook)

• Capturing user stories for the system

• Technical specification (technical features of the mo-
bile application, technical details of IoT sensors and
dashboard)

• Development (development of mobile, IoT dashboard,
configuring and coding)

• User Interface design (User interface design of the
mobile app, IoT dashboard design)

• User feedback (collect information from forest ma-
chine drivers and work managers, implementation of
corrections and changes)

• Testing (sensor testing, data network and integration
testing, testing related to alerts, agile test report)

• Deployment (deploy solution for diesel exhaust fluid
and marking colour container)

• User training (train related user groups)

• Experiment closure meeting (conduct closure meeting,
reflect to the experiment objectives, capture lessons
learnt, plan further dissemination and exploitation
opportunities)

Case B: The main purpose of the action was to imple-
ment a continuous mass measurement system. However, the
monitoring target was changed to the oil canister pallet that is
delivered to the warehouse or a remote storage and the goal
was to find out when there are only few canisters (200 kg/1000
kg) left. The following list contains action items for the case
B:

• Study the required components for the system (scale,
IoT services, signal transmitter, etc.)

• Purchase and integrate selected hardware components
(PCE RS 2000, Enless Wireless Signal Transmitter)

• Conduct meetings with AWS specialists to identify
potential ways to implement the system

• Sign up an Open Cloud Research Environment Con-
tract to make purchase of services smoother (however,
we decided not to wait this contract to be signed)

• Establish and test the connection between the signal
transmitter and Digita IoT network (this part went
successfully)

• Participate in Solver X reverse pitching event in
Helsinki, Finland to identify potential IoT providers
for the cloud system

• Negotiate with IoT providers and initiate a public
bidding process on implement the system in our own
AWS subscription (we have reached this step)

• Start implementation (our next step)

D. Results: Case A

Case A: The experiment was considered successful in the
case organization. As the results of Case A, the company
has now an IoT-based monitoring system for liquid containers
(Diesel Exhaust Fluid, log marking colour) that enables moni-
toring liquids in remote storage areas. The monitoring system
includes a mobile application that machine drivers use when
they pick up supplies and liquids from storage areas. Through
the mobile application work managers are able to monitor
containers and see the level of liquids. The system also enables
sending alerts when most of the content in liquid containers has
been consumed. Three sensor modules were installed during
the experiment and according to our knowledge, the company
has ordered more similar sensor modules from the IoT sensor
provider in 2023.

Case B: As main results of Case B, we defined a system ar-
chitecture for the continuous mass measurement system. Figure
2 shows the architecture with key system components. Based

Fig. 2. The IoT sensor architecture.

on discussions with customer, data transmission frequency
can be approximately one hour and the test site would be in
Nurmes, Eastern Finland in Motoajo’s main storage area. Our
aim was to establish a system where sensor data is directed
to a cost-effective cloud-based IoT environment where data
is stored and a simple graph (for example, generated by open
source visualization tools) is constructed. By implementing the
system to our own AWS premises, we try to avoid potential
vendor lock-in. The scale shall be placed on the warehouse
floor and the system allows lifting goods onto the scale with
a forklift. The prototype of the system is almost ready (at the
time of submitting this paper) and we are preparing to deliver
the system to the customer’s storage facilities.

IV. ANALYSIS

The data analysis for the study was performed by case
comparison technique. The results of this exploratory case
study are presented in this section according to three research
questions: 1) What types of IoT monitoring needs does a forest
machine operator company have?, 2) how quality attributes
are visible in building IoT solutions for forestry domain? and
3) how IoT-related challenges and barriers can be solved?.
In Table 1, analysis of case study results reflecting the three
research questions of the study is presented.

The following lessons learnt can be identified based on our
cases:

113Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 125 / 141

TABLE I. ANALYSIS OF THE CASE STUDY WITH TWO IOT
EXPERIMENTS AS UNITS OF ANALYSIS

Category Case A
Monitoring needs Monitoring liquid containers

Proactive orders for liquids
Sending alerts on low levels

Ordering refilling containers in time
Quality Accurate view on liquid level

Data conversion on distance to percent
Data frequency 6 hours

Install sensor to cap of container
Calibration of sensors

Benefits Check liquid levels remotely
Setting alerts on critical liquid levels

Proactive way to ensure availab. of liquids
Provides data on liquid consumption trends

May reveal container leaks
Category Case B

Monitoring needs Contin. mass monitoring
Proactive orders for supplies: oil canisters

Sending alerts on low levels
Oil orders in time

Quality Number of canisters
4-20 mA to kg

Data frequency 1 hours
Scale under pallet

Calibration of scale
Benefits Number of oil canisters

Setting alerts on only few oil canisters left
Enables monitoring any tangible items

Consumption of oil canisters
May detect that items are stolen

Lesson 1: Security is a top priority quality aspect: As IoT
devices are connected to the internet, they are prone to cyber
attacks. It is important to ensure that security is top priority
when designing and implementing IoT solutions. In our cases,
data does not control anything and IoT platform was protected
by usernames and passwords. Data was sent from sensors
to IoT platform and further to mobile app. The mobile app
showing virtual version of the container forces users to use
strong passwords.

Lesson 2: Scalability is crucial: IoT solutions may need
to handle large amounts of data and devices. It is important
to design solutions that can scale to accommodate growth.
Regarding case A, our mobile app Alfa was running in AWS
cloud to ensure scalability. In case B, we also aim at using
scalable cloud services instead of third party IoT platforms to
ensure scalability of the system.

Lesson 3: Interoperability is key: IoT devices and platforms
need to be able to communicate with each other seamlessly.
It is important to ensure that devices and platforms are in-
teroperable and can work together. Data in our case A was
delivered by using JSON, standard communication protocol. It
is very likely that case B shall be using the JSON or the MQTT
protocol. We observed in case A that data transmission from
sensors was conducted every 6th hour (the goal was to transmit
data on hourly basis). In case B, we put data transmission
frequency clearly to Invitation for tender document.

Lesson 4: Maintenance is important: IoT devices need
to be maintained and updated regularly to ensure they are
functioning properly and securely. Battery life is impacted by
cold weather. Offers from IoT providers could have clearlier
statements on battery life and maintenance of IoT devices.
Most of the providers are offering their own platform instead
of implementing IoT in customer’s premises.

Lesson 5: Data management is critical: IoT devices gener-

ate large amounts of data. It is important to have proper data
management and analytics tools in place to make sense of this
data. Third party IoT platform was responsible for receiving
data from Digita LoraWAN network. Data was further stored
in AWS MySQL database. The application server of Alfa
application has access only to database server that increases
security of data management.

Lesson 6: User experience is important: IoT solutions
should be designed with the end user in mind. The user
interface should be intuitive and easy to use. In the mobile
application Alfa, visualization of container worked well. We
aimed at listening users carefully to address their needs.
The online form related to QR codes might need further
improvement and clarification.

According to our observations, there are other factors
that might also have effects on IoT system implementations
in Finland: First, if sensors are placed outdoors, there is
significant temperature variation (in extreme cases +35 C - -40
C) between summer and winter seasons in Finland. Second, a
large part of forestry operations are performed in remote forest
destinations, often without official street addresses. This might
cause challenges in producing reliable location data.

Third, there is only one public LoraWAN network provider
Digita in Finland. This should be taken into account while
software engineers build LoraWAN-based systems in Finland.
Creating contracts may take time and thus should not be
ignored while planning IoT project schedules. Fourth, Finland
is a sparsely populated country. Long distances mean a lot
of traveling and eliminating unnecessary traveling creates a
good business case for IoT implementation projects. Finding
a profitable and viable business case for IoT is often a
challenging task.

Fifth, IoT technology also has societal impacts on people
living in rural areas of Finland. Through IoT based monitoring
[15], one can monitor elderly people, detect potential accidents
and incidents both outdoors and indoors or locate injured
forestry workers or trigger alerts.

Finally, despite the high level of digitalization, the lack of
skilled workforce is a challenge for many cities. This means
unavailability of software engineering talents that are able to
design cloud-based IoT systems and take care of advanced
privacy and security requirements.

V. CONCLUSION

This study aimed at answering the research problem: How
quality aspects should be taken into account while designing
and implementing IoT-based software systems for forestry
inventory management? The main contribution of this paper is
to present lessons learnt from two experiments with different
monitoring targets: liquid level monitoring and continuous
mass monitoring of oil canister pallets. Both IoT experiments
were performed in facilities of the second largest forest har-
vesting company in Finland.

There were three research questions in the study. Regarding
the first research question, we observed various IoT monitoring
needs in the forest machine operator, such as various types and
sizes of containers (fuel containers, water containers, oil con-
tainers, fungicide containers, diesel exhaust fluid containers,

114Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 126 / 141

marking colour containers). However, in addition to liquids
there are several tangible supplies that company orders on
frequent basis, such as grease tubes, oil filters, oil canister
pallets, chain blades and chains. These tangible supplies need
another type of monitoring system that we aimed at to design
in the second IoT case.

Concerning the second research question, how quality
attributes are visible in building IoT solutions, we highlighted
activities that were specific to IoT-based digital transformation,
such as selecting right sensor and data network solution,
performing data conversion, defining data storage mechanism
for IoT data, as well as installing the sensor modules. All of
these require work efforts.

Finally, related to the third research question, we studied
how IoT monitoring shall support forest operations. First of all,
IoT-based monitoring allows proactive approach on ordering
both liquids and supplies. The monitoring system enables
sending alerts on low inventory levels, as well as showing
visualization as graphs or tables based on the ingested IoT data.
In the future, this data can be used and analyzed to optimize
the ordering process based on consumption patterns.

The following limitations are related to this study: There
are certain limitations related to the case study research
method. First, case study does not allow the generalization
of results to other organisations but we can use our results to
extend the theory related to planning, designing and building
realtime IoT-based systems. Second, Case B is still ongoing
and we have no detailed information how the selected IoT
provided has done the actual implementation in AWS cloud.
However, the prototype is close to delivery to the customer site.
Third, more staff from user side could have been interviewed to
receive more feedback on improved liquids ordering process.
Further research could focus on ICT quality aspects in cloud-
based Internet of Things projects, for example, in Amazon Web
Services projects or Azure IoT implementations.

ACKNOWLEDGMENT

We would like to thank the case organization for valuable
collaboration during the study and DigiCenterNS DIH and
AIKA Ecosystem DIH for research data collection. Digi-
CenterNS was supported by Digiteknologian TKI-ymparistö
project A74338 (ERDF, Regional Council of Pohjois-Savo).
AIKA Arctic Data Intelligence and Supercomputing Ecosys-
tem in Kainuu project (A78688) is funded by European
Regional Development Fund and Regional Council of Kainuu.
The IoT-based liquid level monitoring case was created in DIH
World experiment co-funded by the Horizon 2020 Framework
Programme of the European Union under grant agreement no
952176.

REFERENCES

[1] J. Gabrys, “Smart forests and data practices: From the internet of trees
to planetary governance,” Big Data & Society, vol. 7, no. 1-10, pp.
362–377, 2020.

[2] S. K. Mohammed, S. M. Kamruzzaman, A. Ahmed, A. Hoque, and
F. Shabnam, “Design and implementation of an iot based forest environ-
ment monitoring system,” in 2019 IEEE 5th International Conference
on Computer and Communications (ICCC), 2019, pp. 2152–2156.

[3] A. Hinze, J. Bowen, and J. König, “Wearable technology for hazardous
remote environments: Smart shirt and rugged iot network for forestry
worker health,” Smart Health, vol. 23, p. 100225, 12 2021.

[4] Y. Wang, J. Song, X. Liu, S. Jiang, and Y. Liu, “Plantation monitoring
system based on internet of things,” in 2013 IEEE International Con-
ference on Green Computing and Communications and IEEE Internet
of Things and IEEE Cyber, Physical and Social Computing, 2013, pp.
366–369.

[5] A. Ferrari, M. Bacco, K. Gaber, A. Jedlitschka, S. Hess, J. Kaipainen,
P. Koltsida, E. Toli, and G. Brunori, “Drivers, barriers and impacts of
digitalisation in rural areas from the viewpoint of experts,” Information
and Software Technology, vol. 145, p. 106816, May 2022.

[6] M. Jäntti and M. Aho, “Improving the quality of ict and forestry service
processes with digital service management approach: A case study
on forestry liquids,” in Quality of Information and Communications
Technology, A. Vallecillo, J. Visser, and R. Pérez-Castillo, Eds. Cham:
Springer International Publishing, 2022, pp. 175–189.

[7] A. Cater-Steel, “It service departments struggle to adopt a service-
oriented philosophy,” International Journal of Information Systems in
the Service Sector, vol. 1, no. 2, pp. 69–77, 2009.

[8] Y. Seralathan, T. T. Oh, S. Jadhav, J. Jonathan Myers, P. J. Jeong,
Y. H. Kim, and J. N. Kim, “Iot security vulnerability: A case study of
a web camera,” in 2018 20th International Conference on Advanced
Communication Technology (ICACT), 2018, pp. 172–177.

[9] COBIT5, Control Objectives for Information and related Technology:
COBIT 5: Enabling Processes. ISACA, 2012.

[10] A. Kudrati, C. Peiris, and B. Pillai, Microsoft Cybersecurity Reference
Architecture and Capability Map, 2022, pp. 183–240.

[11] J. Mace, C. Morisset, K. Pierce, C. Gamble, C. Maple, and J. Fitzgerald,
“A multi-modelling based approach to assessing the security of smart
buildings,” in Living in the Internet of Things: Cybersecurity of the IoT
- 2018, 2018, pp. 1–10.

[12] R. Yin, Case Study Research: Design and Methods, Fourth edition.
Beverly Hills, CA: Sage Publishing, 2009.

[13] A. Kalpaka, J. Sorvik, and A. Tasigiorgou, “Digital innovation hubs as
policy instruments to boost digitalisation of smes,” Publications Office
of the European Union, Tech. Rep., 2020.

[14] K. Eisenhardt, “Building theories from case study research,” Academy
of Management Review, vol. 14, pp. 532–550, 1989.

[15] M. Bacco, G. Brunori, A. Ferrari, P. Koltsida, and E. Toli, “Iot as a
digital game changer in rural areas: the desira conceptual approach,” in
2020 Global Internet of Things Summit (GIoTS), 2020, pp. 1–6.

115Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 127 / 141

Towards Improving Accurate Breast Cancer Diagnosis: Leveraging Pre-trained

Convolutional Neural Network for Mammogram Analysis

Marwa Ben Ammar

Research Laboratory of Biophysics and Medical

Technologies

Higher Institute of Medical Technologies of Tunis

(ISTMT), University of Tunis el Manar

Tunis, Tunisia

marwa.ammar@istmt.utm.tn

Faten Labbene Ayachi

Research laboratory Innov'COM « Innovation of

COMmunicant and COoperative Mobiles Laboratory »

Higher School of Communication of Tunis (SUPCOM),

University of Carthage

Tunis, Tunisia

e-mail: faten.labbene@supcom.tn

Halima Mahjoubi

Research Laboratory of Biophysics and Medical

Technologies

Higher Institute of Medical Technologies of Tunis

(ISTMT), University of Tunis el Manar

Tunis, Tunisia

e-mail: halima.mahjoubi@istmt.utm.tn

Dorra Zaibi

Research laboratory Innov'COM « Innovation of

COMmunicant and COoperative Mobiles Laboratory »

Higher School of Communication of Tunis (SUPCOM),

University of Carthage

Tunis, Tunisia

e-mail: dorra.zaibi@supcom.tn

Riadh Ksantini

Department of Computer Science

College of IT, University of Bahrain

Bahrain, Bahrain

e-mail: ksontiniriadh@yahoo.fr

Abstract— Breast cancer poses a significant global health

challenge, emphasizing the need for improved diagnostic

approaches for early diagnosis and intervention.

Mammography, a widely used screening method, provides

valuable insights into breast tissue anomalies. Nevertheless, its

effectiveness is marred by error-prone interpretations and

time-consuming analyses. To address this, our study introduces

an innovative strategy to enhance breast cancer diagnosis by

employing a Three-Stage One-Class You Only Look Once

(YOLO) classification framework, harnessing the power of

Deep Learning (DL). By incorporating the YOLO-v8 network,

cutting-edge convolutional neural network (CNN) architecture,

our proposed methodology aims to mitigate the shortcomings

of conventional mammography interpretation. To assess the

model's effectiveness, we utilize the Mammography Image

Analysis Society (MIAS) dataset, which encompasses inherent

data imbalances and intricacies. The framework we present is

divided into three stages, each contributing to the refinement

of the diagnostic process. Through the application of a one-

class classification technique, our model effectively

distinguishes between normal and abnormal mammograms.

Furthermore, it offers a higher level of granularity by

categorizing abnormalities into masses or calcifications.

Additionally, the model can differentiate between benign and

malignant cases, thereby facilitating precise clinical decision-

making.

Keywords- Breast cancer; mammography; deep learning;

YOLO; early diagnosis; one-class classification; three stages

methodology; data imbalance

I. INTRODUCTION

In this section, we will provide an overview of the
research problem, outline the research questions, and
delineate the research objectives. This introductory segment
aims to set the stage for a comprehensive understanding of
the context and purpose of our research.

A. Research Problem

Breast cancer has taken the lead as the most commonly
diagnosed cancer and the fifth cause of cancer deaths among
women worldwide. Therefore, only an early and accurate
breast cancer diagnosis can significantly improves patient
survival rates and paves the way for effective treatment.
Mammography remains the most widely utilized by
radiologists for accurate breast cancer diagnosis.

116Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 128 / 141

Nonetheless, the ever-increasing volume of daily
mammograms presents a real challenge for radiologists and
physicians, potentially resulting in diagnostic errors and
unnecessary biopsies. Two significant types of errors can
occur: False-Positive (FP) and False-Negative (FN). False
positives carry negative consequences as they misidentify
benign areas as cancerous. More critically, false negatives
jeopardize patient lives as they occur when radiologists fail
to detect abnormalities. Moreover, studies have shown that to
reduce FN diagnoses, biopsies are recommended for lesions
with a greater than 2% likelihood of malignancy.
Consequently, only 15–30% of patients referred for biopsy
are ultimately found to have malignancies [1]. To tackle
these challenges, our research proposes a computer-aided
diagnosis system using the You Only Look Once version 8
(YOLOv8) Convolutional Neural Network (CNN). It
operates in three stages, leveraging a One-Class
Classification (OCC) approach to effectively detect normal
and abnormal mammograms, categorize abnormalities as
masses or calcifications, and identify benign and malignant
cases for precise clinical decision-making. In the following
section, we highlight key Research Questions (RQs) from
existing literature that inform our proposed breast cancer
diagnosis model.

B. Research Questions

Taking into account the latest advancements in breast
cancer diagnosis using deep learning techniques, our
research focused on the following key questions: Which
imaging method is most effective in detecting breast cancer?
Which algorithm can efficiently and accurately detect and
classify breast cancer within a unified framework? How can
diagnostic accuracy be improved while minimizing the need
for biopsies and reducing errors in identifying malignant
cancers? Which model has the highest accuracy rate across
all databases? Currently, there is no tool capable of
diagnosing breast cancer with both a high degree of accuracy
and minimal errors, while also minimizing the number of
required biopsies.

C. Outline of Objectives

Our primary research objective is to develop a novel and
highly effective YOLOv8-based model for breast cancer
diagnosis using mammograms. Our specific focus includes
achieving : (1) Reliability: Our model aims for high
accuracy, sensitivity, specificity, precision, False-Negative
(FN), False-Positive (FP), F1-score, Receiver Operating
Characteristic (ROC) curve, Area Under The Curve (AUC),
Intersection Over Union (IOU) score, and mean Average
Precision (mAP), as these metrics are crucial in medical
images analysis [2]; and (2) Transferability: We want our
model to be adaptable across different datasets, even when
transitioning from analyzing mammograms to other domains
like lung X-ray images These objectives are in direct
alignment with the research queries outlined in the preceding
subsection focusing on research questions.

The subsequent sections of this study are structured as

follows: Section 2 delivers a concise review of the current

State-Of-The-Art in breast cancer diagnosis using deep
learning algorithms on mammography, accompanied by an
overview of their results. Section 3 provides an in-depth
exposition of our research methodology. Finally, in Section
4, we wrap up the paper by briefly summarizing the expected
research outcomes, detailing the present stage of our
research, and offering insights for potential future
investigations.

II. LITERATURE REVIEW

In this section, we attempt to cover most recent research
works that have been done related to diagnosis of breast
cancers with applying various techniques of deep learning
along with their results. Muduli et al. [3] proposed a deep
CNN model for breast cancer classification in mammogram
and ultrasound images. This CNN model achieved 96.55%,
90.68%, and 91.28% accuracy on MIAS, DDSM, and
INbreast datasets, respectively. Additionally, it reached
100% and 89.73% accuracy on BUS-1 and BUS-2 datasets.
Zhao et al. [4] developed three YOLOv3-based models for
breast cancer detection and classification using
mammograms: a general model, mass model, and
microcalcifications model. Their study achieved detection
accuracy rates of 93.667%, 97.767%, and 96.870%, and
classification accuracy rates of 93.927%, 98.121%, and
97.045%, respectively, using the CBIS-DDSM dataset.
Baccouche et al. [5] used an end-to-end YOLO-based fusion
model to detect and classify breast lesions (mass,
calcification, architectural distortion) in digital
mammograms with the UCHC DigiMammo dataset. The
approach incorporated prior mammograms for early
detection and retrospective prediction. The evaluation
achieved detection rates of 93% for mass lesions, 88% for
calcification lesions, and 95% for architectural distortion
lesions in current mammography. Zebari et al. [6]
constructed a breast cancer detection model from
mammograms using a pre-trained CNN-based approach.
Testing on the mini-MIAS dataset resulted in an impressive
accuracy of 95.71%. Alam et al. [7] applied the Unet3+
architecture for semantic segmentation to enhance breast
cancer diagnosis in ultrasound images of 309 patients. The
Unet3+ model outperformed other models (FCN, Unet,
SegNet, DeeplabV3+, and pspNet) with an average accuracy
of 82.53%, an intersection over union of 52.57%, a weighted
accuracy of 89.14%, and a global accuracy of 90.99%.
Boudouh et al. [8] investigated seven pre-trained CNNs for
accurate breast tumor detection: Xception, InceptionV3,
ResNet101V2, ResNet50V2, ALexNet, VGG16, and
VGG19. They gathered data from three distinct databases:
MiniMIAS, DDSM, and CMMD. The results were
impressive, particularly for ResNet50V2 and InceptionV3,
which achieved the highest accuracy rates of 99.9% and
99.54%, respectively. Despite the accomplishments of these
computer-aided diagnostic methods, challenges like high
memory complexity, practical implementation, and extended
runtime persist. Furthermore, these approaches have the
following flaws. First, the accuracy of recognizing probable
small lesions is quite poor. Second, except for [4] and [5],
techniques only identify breast mass lesions, disregarding

117Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 129 / 141

other types like microcalcifications in mammography. As a
result of these issues, the method's limitations have been
discovered. To address the constraints noted above, we focus
on the detection and classification of mammograms while
also addressing the issues of different types of lesions and
small-sized lesions, and we propose a YOLOv8-based
computer-aided diagnostic system for mammograms.

 Section III summarizes our thorough contributions to the
field of breast cancer diagnosis using deep learning
techniques and mammography image analysis.

III. METHODOLOGY

Our research aims to develop an accurate breast tumor
detection and classification model while reducing FP and FN
outcomes. We utilize the publicly available Mammographic
Image Analysis Society Digital Mammogram (MIAS)
dataset, which can be conveniently accessed through a user-
friendly online interface [10]. Our methodology comprises
four steps, as illustrated in Fig. 1: data acquisition and
splitting, image preprocessing, YOLOv8 deep learning
model deployment with OCC approach, and comprehensive
performance evaluation. In the subsequent subsections, we
will provide detailed insights into each step.

A. Dataset Description

The MIAS dataset, established by a UK research
consortium, comprises 322 single-slice digital mammograms
from 161 patients. The dataset covers various breast
abnormalities, as detailed in Table 1. However, The MIAS
dataset has limitations: it's small, potentially causing
overfitting in deep learning models; it's imbalanced, with 207
normal and 115 abnormal cases, impacting classification
algorithms; and it requires preprocessing to remove
extraneous data outside the mammary area.

TABLE I. COMPREHENSIVE DATA DISTRIBUTION OVERVIEW

Total number of Patients 161

Total number of Mammograms 322

Total number of Mammograms with Pathology 115

Total number of Mammograms without Lesions
(Normal)

207

Number Of Mammograms With Mass Lesions 57

Number of Mammograms with Calcification Lesions 25

Number of Mammograms with Architectural Distortion

Lesions
18

Number of Mammograms with Asymmetry Lesions 14

In this section, we've introduced the mammography

dataset that forms the basis of our study. The subsequent
sections will provide detailed insights into the techniques
utilized for image data preprocessing, a clear explanation of
our classification methodology, a discussion on model
selection, and an overview of our performance evaluation
process.

B. Image Data Preprocessing

To enhance our dataset's quality and applicability. Our
approach includes various techniques like noise removal,
contrast enhancement, data augmentation, resizing, and
normalization for each mammogram breast image within the
MIAS dataset. This dataset contains different noises and
imaging artifacts, such as tape artifacts and high-intensity
rectangular labels, as illustrated in Fig. 2, which need to be
removed. Additionally, MIAS mammograms have limited
contrast, prompting us to consider contrast enhancement
techniques like Contrast Limited Adaptive Histogram
Equalization (CLAHE). Besides, we perform image resizing,
data augmentation, and normalization to align input images
with CNN requirements and address the small dataset size
challenge. Data augmentation involves random
transformations like rotation and flipping to diversify and
expand the training data.

C. Image Data Classification

Our study focuses on developing a YOLOv8-based
pipeline for breast mammogram detection and classification.
It includes three key stages: detecting abnormalities as
normal or abnormal, distinguishing masses from
microcalcifications, and classifying benign or malignant
cases.

Our selection of the YOLOv8 model for our breast
cancer diagnosis study using mammograms is based on
several key considerations that collectively make it
exceptionally well-suited for this task. Firstly, YOLOv8 is
renowned for its efficiency and speed in object detection and
classification tasks, aligning perfectly with our goal of
providing an efficient model for breast cancer diagnosis. Its
real-time capabilities are essential for swift and accurate
diagnosis. Additionally, YOLOv8 has demonstrated
outstanding accuracy in object detection, a crucial aspect for
identifying abnormalities in mammograms, which is
fundamental in the context of breast cancer diagnosis.

Moreover, YOLOv8's architectural versatility is a
significant advantage. The model is capable of handling
various object detection tasks, a valuable trait considering
the diverse abnormalities and conditions that can be present
in mammograms. In the realm of breast cancer diagnosis,
this flexibility is highly advantageous.

Furthermore, our study emphasizes the importance of
achieving high transferability across different datasets.
YOLOv8's adaptability to varying data distributions and its
ability to generalize well across diverse datasets ensure that
our model can maintain consistent performance, regardless
of the specific dataset it is applied to.

Last but not least, the YOLOv8 model is part of a well-
established family of models with a substantial user base and
ongoing research efforts. This provides us with access to
valuable resources, pre-trained models, and a vibrant
community of researchers continually working on model
improvements and adaptations. In conclusion, our choice of
the YOLOv8 model is well-founded in its remarkable
efficiency, accuracy, versatility, and transferability, making
it an ideal candidate for enhancing breast cancer diagnosis
through deep learning techniques. Its real-time capabilities,

118Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 130 / 141

combined with its adaptability to different datasets, position
it as a robust choice for our mission of advancing breast
cancer diagnosis.

The imbalance within the MIAS dataset, consisting of
207 normal cases and 115 abnormal cases, significantly
impacts the classification process. Imbalanced datasets often
pose challenges for traditional binary or multi-class
classification methods, as they tend to favor the larger class,
making it difficult to accurately detect the minority class.
One effective approach to address these issues is the
utilization of OCC. This approach is particularly valuable in
domains such as medical image diagnosis, where acquiring
data from both healthy and unhealthy patients can be
impractical due to high costs or rarity.

In the context of OCC approach, the primary objective is
to classify data when information is available for only one
group of observations. OCC methods operate with a single
dataset, referred to as the "target class," typically
representing the class with fewer instances. The aim is to
distinguish data belonging to the target class from other
potential classes. OCC can be viewed as a specialized form
of the two-class classification problem, where only data from
one class is considered during the training and validation
phases. However, during inference, the classifier encounters
data from both the target class and classes outside the target.

In our study, we adopt the terminology of "target" and
"outside the target" to differentiate between abnormalities
and normal cases, masses and calcifications, and malignant
and benign cases. This approach allows us to effectively
address the classification challenges presented by the MIAS
dataset's class imbalance.

Our choice to primarily employ the MIAS dataset for
evaluation was motivated by several key factors. First and
foremost, the MIAS dataset stands as one of the most
renowned and widely utilized datasets in the realm of
mammography image analysis. With a substantial number of
mammogram images accompanied by annotations, it serves
as a valuable benchmark for our model's performance.

In this study, our principal goal was to construct and
benchmark our YOLOv8-based breast cancer diagnosis
model within the context of a well-recognized dataset, the
MIAS dataset. This approach allows us to assess the model's
performance within a known benchmark and aligns with the
core objectives of our research.

Moreover, by concentrating our initial evaluation on the
MIAS dataset, we intended to establish a solid baseline for
our model's performance. Once this robust baseline is
achieved, we are fully prepared to extend our evaluation to
encompass the other datasets referenced in our literature
review.

It is important to acknowledge that evaluating a model on
multiple datasets can be resource-intensive and time-
consuming. Therefore, it is a customary practice in research
to commence with a specific dataset to validate the model's
viability before proceeding to a broader spectrum of datasets.

While our preliminary evaluation centers on the MIAS
dataset, we are fully cognizant of the significance of future
research endeavors that will encompass a wider array of
datasets outlined in the literature review. This expansion is

vital for a comprehensive assessment of the model's
robustness and adaptability across diverse data sources, as
envisaged in our research question. We are dedicated to
advancing our research to address this aspect thoroughly,
ensuring our model's performance is rigorously validated
across a broader range of datasets, in line with the goals of
our research.

D. Performance Evaluation

Our research will primarily center on evaluating the
YOLOv8-based model's capacity to accurately identify the
position of breast lesions in mammograms. We will employ
two key metrics for this assessment: the IOU score and the
mAP.

Following that, we will shift our focus to gauge the
performance of the YOLOv8 model. In practical terms, the
effectiveness of deep learning-based image classification is
determined through a range of metrics, including accuracy,
sensitivity, specificity, precision, FP and FN rates, the ROC
curve, the AUC, and F1-score.

Consequently, as depicted in Fig. 1, our research work
will incorporate a total of ten essential metrics for a
comprehensive evaluation. The true positive (TP) represents
the number of positive classes that have been correctly
classified as positive. The true negative (TN) is the number
of negative classes that that have been correctly classified as
negative. The false positive (FP) represents the number of
negative classes that have been misclassified as the positive
class. The false negative (FN) represents the number of
positive classes that have been misclassified as negative.

Below, we briefly outline the calculation formulas for the
evaluation metrics used.

 mean Average Precision (mAP)

 Intersection Over Union score (IOU)

 Accuracy (Acc)

 (3)

 Precision (Pr)

 (4)

 Sensitivity (Sn)

 (5)

 Specificity (Sp)

119Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 131 / 141

 (6)

 F1-Score

 (7)

 ROC-AUC

 (8)

Figure 1. Framework for breast lesions detection and classification using deep learning one-class YOLOv8.

Figure 2. Examples of Noise Artifacts in MIAS Dataset.

IV. CONCLUSION AND FUTURE WORK

In the course of our research endeavor, our primary
objective is to develop a state-of-the-art end-to-end learning
model designed to diagnose breast cancer by analyzing
mammogram images. Our vision for this innovative model

centers on two critical aspects: (1) ensuring high reliability
and (2) facilitating seamless transferability.

To this end, we have successfully reached several key

milestones in our research journey. These milestones
encompassed:

 Selection of the most appropriate image modality
and dataset.

 Identification of widely adopted image
preprocessing techniques.

 Determination of the deep learning model for breast
cancer diagnosis and the classification approach.

 Selection of evaluation metrics meticulously
designed to assess the proposed model's
effectiveness.

Moreover, we have made significant progress by
developing an initial YOLOv8-based algorithm. This
algorithm, constructed using Python within the Google
Colab Notebook, is adept at detecting breast lesions by
distinguishing between normal and abnormal cases. The
preliminary results of this algorithm, as demonstrated in Fig.
3, illustrate the proficiency of the YOLOv8 model in
identifying abnormal breast lesions.

120Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 132 / 141

Figure 3. Example of Preliminary Outcomes of the YOLOv8 Model in

Detecting Unusual Breast Lesions.

As we draw our research efforts to a close in this
exploration of an advanced framework for mammogram
image analysis in breast cancer diagnosis, it's important to
note that our experiments are currently underway. The
preliminary findings are highly promising, and we are on the
brink of realizing the full potential of this groundbreaking
technology. We eagerly anticipate sharing the final results,
which have the potential to reshape the landscape of breast
cancer diagnosis.

Looking forward, we propose a novel avenue for future
work: a multimodal fusion architecture that leverages both
breast images and tabular non-image data. This architecture
incorporates a probability fusion approach, often referred to
as "late fusion." It operates on the basis of considering the
output probabilities from an image-only model and a non-
image-only model, with the aim of yielding a final
prediction. The underlying idea is that by incorporating non-
image data alongside image data, we can significantly
enhance predictive performance compared to a unimodal
(single-source) approach.

Broadly, our proposal entails a decision-making pipeline
that enables a hierarchical classification of breast cancer. To
achieve this, we propose to aggregate the predictions from
two models: the Deep Support Vector Data Description
(DSVDD) and the One-Class Convolutional Neural Network

(OCCNN) through a meta-model, consisting of a simple two-
layer Multilayer Perceptron (MLP). This approach is geared
towards improving the accuracy of breast cancer diagnosis.

For the training of these models, we consider specific
combinations of feature subsets and model architectures. In
our pursuit of exploring whether the fusion of image and
non-image features can enhance breast cancer prediction, we
propose to begin by establishing unimodal baseline models
that exclusively employ image data and tabular non-image
data. Subsequently, we propose to embark on the
development of a multimodal fusion model that jointly learns
from both image and non-image data.

REFERENCES

[1] E. A. Sickles, "Periodic mammographic follow-up of

probably benign lesions: results in 3184 consecutive cases,"
Radiology., vol. 179, pp. 463–468, 1991.

[2] E. Mahoro, M. A. Akhloufi, "Applying Deep Learning for
Breast Cancer Detection in Radiology," Curr. Oncol., vol. 29,
pp. 8767-8793, 2022.

[3] D. Muduli, R. Dash, and B. Majhi, "Automated diagnosis of
breast cancer using multi-modal datasets: A deep convolution
neural network based approach," Biomed. Signal Process.
Control., Vol. 71, ISSN. 1746-8094, 2022.

[4] J. Zhao, T. Chen, and B. Cai, "A computer-aided diagnostic
system for mammograms based on YOLOv3," Multimed.
Tools Appl., vol. 81, pp. 19257–19281, 2022.

[5] A. Baccouche, B. Garcia-Zapirain, Y. Zheng, and A. S.
Elmaghraby, "Early detection and classification of
abnormality in prior mammograms using image-to-image
translation and YOLO techniques," Comput. Methods
Programs Biomed., Vol. 221, 2022.

[6] D. A. Zebari, H. Haron, D. M. Sulaiman, Y. Yusoff, and M.
N. Mohd Othman, "CNN-based Deep Transfer Learning
Approach for Detecting Breast Cancer in Mammogram
Images," IEEE 10th Conference on Systems, Process &
Control (ICSPC)., pp. 256-261, 2022.

[7] T. Alam, W. C. Shia, F. R. Hsu, and T. Hassan, "Improving
Breast Cancer Detection and Diagnosis through Semantic
Segmentation Using the Unet3+ Deep Learning Framework,"
Biomedicines., vol. 11, pp. 1536, 2023.

[8] S. S. Boudouh, M. Bouakkaz, "Breast cancer: toward an
accurate breast tumor detection model in mammography
using transfer learning techniques," Multimed Tools Appl.,
vol. 82, pp. 34913–34936, 2023.

[9] G. H. Aly, M. Marey, S. A. El-Sayed, M. F. Tolba, "YOLO
Based Breast Masses Detection and Classification in Full-
Field Digital Mammograms," Comput. Methods Programs
Biomed., Vol. 200, ISSN. 0169-2607, 2021.

[10] https://www.kaggle.com/datasets/kmader/mias-
mammography.

121Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 133 / 141

Design Pattern Detection in Code: A Hybrid Approach Utilizing a Bayesian
Network, Machine Learning with Graph Embeddings, and Micropattern Rules

Roy Oberhauser[0000-0002-7606-8226] and Sandro Moser
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de, sandro.moser@studmail.hs-aalen.de

Abstract—Software design patterns and the abstractions they
offer can support developers and maintainers with program
code comprehension. Yet manually-created pattern
documentation within code or code-related assets, such as
documents or models, can be unreliable, incomplete, and labor-
intensive. While various Design Pattern Detection (DPD)
techniques have been proposed, industrial adoption of
automated DPD remains limited. This paper contributes a
hybrid DPD solution approach that leverages a Bayesian
network integrating developer expertise via rule-based
micropatterns with our machine learning subsystem that
utilizes graph embeddings. The prototype shows its feasibility,
and the evaluation using three design patterns shows its
potential for detecting both design patterns and variations.

Keywords – software design pattern detection; machine
learning; artificial neural networks; graph embeddings; rule-
based expert system; Bayesian networks; software engineering.

I. INTRODUCTION
While the amount of program source code worldwide

continues to rapidly expand, code comprehension remains a
limiting productivity factor. Program comprehension may
consume up to 70% of the software engineering effort [1].
Activities involving program comprehension include
investigating functionality, internal structures, dependencies,
run-time interactions, execution patterns, and program
utilization; adding or modifying functionality; assessing the
design quality; and domain understanding of the system [2].
And code that is not correctly understood by programmers
impacts quality and efficiency.

Software Design Patterns (DPs) have been documented
and popularized, including the Gang of Four (GoF) [3] and
POSA [4]. The application of abstracted and documented
solutions to recurring software design problems has been a
boon to improving software design quality, efficiency, and
aiding comprehension. These well-known macrostructures or
associated pattern terminology in code can serve as beacons
to abstracted macrostructures, and as such may help identify
aspects such as the author’s intention or the purpose of a code
segment, which, in turn, supports program comprehension.

Possible automated DPD development or maintenance
benefits include: quicker comprehension of DP-related
structural aspects of some software; supplementing design
documentation; automatically documenting DPs; reducing
dependence on unreliable or incomplete manual DP
documentation; detection of inadequately implemented DPs,

e.g., as unknown DPs or DP variants. Yet automated DPD
faces challenges, including: 1) tool support for heterogeneous
programming languages, as DPs are independent of
programming language; 2) internationalization and labeling,
since developers may name and comment in their natural
language or any way they like; 3) varying pattern abstraction
levels, such as design vs. architectural patterns; 4) similarities
and intent differentiation, since some similar pattern structures
are primarily differentiated by their intention; 6) DP
localization, indicating where in code a DP was detected; and
7) detecting variants, since each implementation is unique.
While various DPD approaches have been explored [5] [6], no
approach has so far achieved significant traction in practice
and industry tools, and thus additional investigation into
further viable approaches and improvements is warranted.

In previous work, we described DPDML, our ML-based
DPD approach [7], and our hybrid DPD approach HyDPD [8],
which combines two main components: HyDPD-ML that
applies a supervised ML model based on semantic and static
analysis metrics, and HyDPD-GA that applies a graph
analysis technique.

This paper contributes our new DPD solution approach
HyDPD-B (Hybrid DPD using a Bayesian network), which
applies a Bayesian network probabilistic reasoning to flexibly
integrate various DPD subsystems, including an updated
version of HyDPD-ML utilizing graph embeddings, as well as
our new knowledge-based expert rule system and language
utilizing micropattern detection. The DP rule language
supports including developer expertise in refining our DPD.
Our prototype shows its feasibility and the evaluation
demonstrates its potential for detecting both DPs and DP
variations.

This paper is structured as follows: the next section
discusses related work. Section 3 describes our solution. In
Section 4, our realization is presented, which is followed by
our evaluation in Section 5. Finally, a conclusion is provided.

II. RELATED WORK
Surveys including categorizations of DPD approaches

include [5] and [6]. Graph-based approaches include: Yu et al.
[9] transform code to UML class diagrams, analyze the XMI
for sub-patterns in class-relationship directed graphs; Mayvan
and Rasoolzadegan [10] use a UML semantic graph; Bernardi
et al. [11] apply a DSL-driven graph matching approach;
DesPaD [12] extract an abstract syntax tree from code, create
a single large graph model of a project, and then apply an

122Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 134 / 141

isomorphic sub-graph search method. Further isomorphic
subgraph approaches include Pande et al. [13] and Pradhan et
al. [14], both of which require UML class diagrams.

Learning-based approaches map the DPD problem to a
learning problem, and can involve classification, decision
trees, feature maps or vectors, Artificial Neural Networks
(ANNs), etc. Examples include Alhusain et al. [15], Zanoni et
al. [16], Galli et al. [17], Ferenc et al. [18], Uchiyama et al.
[19], and Dwivedi et al. [20]. Thaller et al. [21] describe a
micro-structure-based structural analysis approach based on
feature maps. Chihada et al. [22] convert code to class
diagrams, which are then transformed to graphs, and have
experts create feature vectors for each role based on object-
oriented metrics and then apply ML.

Additional approaches include: reasoning-based
approaches such as Wang et al. [23] based on matrices; rule-
based approaches like Sempatrec [24] and the ontology-based
FiG [25]; metric-based approaches such as MAPeD [26],
Uchiyama et al. [19], and Dwivedi et al. [27]; Fontana et al.
[28] analyze microstructures based on an abstract syntax tree;
semantic-analysis style includes Issaoui et al. [29]; while DP-
Miner [30] uses a matrix-based approach based on UML for
structural, behavioral, and semantic analysis.

Our graph embedding procedure is conceptionally similar
to Gl2vec [31] and Gredel [32], which was applied to drug
discovery from biomedical literature.

Our HyDPD-B composite system uses a hybrid approach
involving graph analysis as does Singh et al. [33]. However,
Singh et al. combine static rules with graph analysis rather
than ML. In our opinion, combining knowledge engineering
with rules learned from data can address biases in expert
knowledge as well as data scarcity. Our HyDPD-ML
component utilizes random microstructures. GEML [34]
initializes a population of random structures and then applies
genetic algorithms to mutate and generate new patterns from
the initial population. In contrast, we do not mutate the
random patterns initially generated. Instead, ML is applied to
determine the weight of each pattern and combine patterns in
a linear way, thus enhancing interpretability. Furthermore,
HyDPD-B utilizes micro-patterns, a recurring concept in
pattern recognition, as does Kouli and Rasoolzadegan [35].
However, instead of binary logic, our work utilizes
probabilistic logic, which in combination with micro-patterns
can improve system flexibility. HyDPD-B offers a hybrid
solution concept integrating multiple DPD subsystems.
Utilizing a Bayesian network with probabilistic reasoning, it
combines an expert knowledge rule system leveraging graph
analysis micropatterns with a ML system utilizing graph
embeddings. Additionally, our DPD solution supports
multiple programming languages without requiring UML
modeling.

III. SOLUTION CONCEPT
DPD approaches can arguably be categorized into three

primary approaches: 1) learning-based, where DPs are (semi-
)automatically learned (e.g., via supervised learning) from
provided data and requiring minimal expert intervention; 2)
knowledge-based, whereby an expert defines DPs by
describing elements and their associations; and 3) similarity-

based, whereby DPs are grouped based on similar metrics or
characteristics.

In previous work our hybrid DPD approach (HyDPD) was
described that seeks to combine various DPD approaches. To
do so, it converts heterogeneous source code into a common
format srcML [36], which is then further processed by a
hybrid set of subsystems as shown in Figure 1. Our HyDPD-
ML machine learning (ML) model in this paper uses
knowledge graph embeddings as input to a supervised
learning model. Our HyDPD-GA converts the srcML to
BSON (Binary JSON) stored in MongoDB, maps it to a graph
model stored in Neo4j that supports the Cypher Query
Language (CQL) [37] for graph-based DPD analysis.

Figure 1. The HyDPD-B solution concept.

This paper describes our new hybrid solution concept
HyDPD-B, which integrates results from our various DPD
subsystems (HyDPD-ML, HyDPD-GA, HyDPD-MP) with a
Bayesian network. It improves HyDPD by: 1) providing a
mechanism to engage developers as experts in defining DP
rules via a simple DP Rule Language (DPRL), 2) enabling
approximate DP matching via micropattern support (HyDPD-
MP), 3) utilizing HyDPD-ML results, and 4) enabling known
and unknown variant detection. The Bayesian network
provides a flexible framework for probabilistic reasoning that
is comprehensible and interpretable for humans, and thus
offering a hybrid solution for utilizing all three DPD
approaches (learning-, knowledge-, and similarity-based).

A. Design Pattern Rule Language (DPRL)
Various languages have been proposed to express DPs in

a programming language-agnostic but human-readable way.
Mainly these consist of logic-, ontology-, or graphical-based
languages [38]. As they vary based on purpose, they can be
classified as intended for description, analysis, or verification.
Most languages described in literature did not fit our purpose,
necessitated a steep learning curve for developers, or were
generalized and challenging to map to a practical and usable
implementation. Since HyDPD-GA already provides a graph-
based representation, we chose to start by simplifying Neo4j’s
CQL to create our own Domain-Specific Language (DSL)
called Design Pattern Rule Language (DPRL). DPRL serves
as a graph-oriented rule language for developers (i.e., the
knowledge experts) that should be relatively easy to learn and
comprehend. While CQL is powerful and offers a human-
readable interface for formulating graph queries, a developer
would nonetheless need to learn the Cypher syntax to
formulate these only for the purpose of DPD. Instead, since
developers are already well acquainted with the relatively

123Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 135 / 141

simple JSON format, we chose to store it in JSON and then
parse and map values to generate Cypher queries.
Consequently, DPRL should be relatively easy to understand
for developers and depend primarily on DP knowledge to
formulate meaningful queries. The primary language concepts
are participants, subpatterns, and relations as shown in the
Adapter DP example in Figure 2.

Figure 2. DPRL example Adapter pattern specification in JSON.

1) Participants: Participants represents a collection of
participant objects in a DP. In its simplest form a participant
consists of the field name (line 21) – for instance, if the nature
of the participant is irrelevant but the role it plays is of
importance. The optional constraints field (line 4 and 14)
allows a collection of arbitrary unary constraints (constraints
that only involve the participant variable) to be specified. In

Cypher, these constraints may correspond to labels while
others may correspond to attributes. The distinction is made
by our DSL parser using an internal symbol table. A
constraint consists of three values: field (line 6 and 16)
corresponding to the target of the constraint; operator (line 7
and 16) corresponding to the truth operator; and value (line 8
and 18) corresponding to the desired field value.

2) Subpatterns: Subpatterns (line 24) represents a
collection of subpattern objects, each of which consists of a
collection of binary relations (line 26 and 43) and the field
truthvalue (line 40 and 57), indicating if the subpattern
should be matched positively or negatively (precluded).
While a pattern can contain only a single positive subpattern,
it can contain an arbitrary number of negative subpatterns.

3) Relations: Relations (line 26 and 43) is a collection of
relations between participants, which are specified by the
fields operand1, operand2, constraints, and directed (lines
28-37). Operand1 and operand2 each contain either a name
reference to a participant or a full description of a participant
object (as described above). The collection constraints
contains constraints analogous to those defined on a
participant.

4) Example Equivalent Cypher Query. Our JSON DSL is
parsed to an equivalent Cypher query. For the example in
Figure 2, this is shown in Figure 3. For a developer with no
knowledge of Cypher, the equivalent Cypher query is more
complex to formulate or comprehend.

Figure 3. Example Equivalent HyDPD-GA Cypher Query.

B. Micro Pattern Catalog (MPC)
Certain structural aspects of design patterns can ideally be

expressed as a set of smaller elementary units or
characteristics we refer to as Micro Patterns (MPs) [39], e.g.,
Instantiation, Inheritance, Delegate, Extend, and
Conglomeration. This also supports the reuse of viable MP
detection components. Decomposing our existing graph-
based queries in the Cypher Query Language (CQL) from our
previous work on HyDPD-GA provided derived MPs with
appropriate queries.

C. Randomized Graph Embeddings
In our previous work, HyDPD-ML was trained on tabular

features extracted from source code. These features include
the existence of specific keywords, as well as object-oriented
metrics, such as the number of classes in a project. This
approach is vulnerable to a change in naming convention or
code obfuscation. To mitigate this issue, we introduce a new
approach, using knowledge-graph-embeddings. Input for
those embeddings is provided by the graphs used by HyDPD-
GA. We apply a simple embedding approach: we first sample
a predetermined number of random substructures in the graph.
Those substructures are always extracted from the training set
to exclude possible information leakage. Substructures

124Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 136 / 141

include information about relationship type. From those
substructures, we derive a pattern query.

A graph embedding is created by matching all generated
pattern queries against a graph. This results in binary vectors,
0 if a pattern matched, else 1. While the number of generated
patterns can be treated as a hyper parameter, we decided to
work with 500 patterns. Another hyper parameter is the
complexity of extracted patterns. We define pattern
complexity as the number of edge traversals in the knowledge
graph as shown in Figure 4. In a grid search experiment, it was
determined, that constraining complexity between 3 and 4
traversals yields optimal results.

Figure 4. Sampling substructures with complexity 3

The graph embeddings are consumed by a simple logistic
regression model with L2 regularization. This enables
learning from sparse data. This composition of random feature
extraction combined with a regularized linear model is
inspired by the ROCKET-algorithm, which is used for time
series classification [40]. By using a linear model, the
interpretability of any results can be better supported.

D. Pattern Variant Detection
DPs often do not conform exactly to some specification,

making detection of DP variants challenging. The problem of
DP variant detection can be partitioned into 1) the detection of
known variants, and 2) the detection of unknown variants as
shown in Figure 5. Assuming DP variants share a substantial
degree of MPs, our solution concept should be able to detect
known pattern variations efficiently. Moreover, by using
hidden variables in the Bayesian network, the algorithm can
also provide precise information regarding the variant.

Figure 5. Detecting known (left) and unknown (right) DP variants.

Figure 6. Expressing DP variants in the Bayesian network.

An example for this is depicted in Figure 6. Here, yellow
variables correspond to DP variants. To learn probabilities of
those variant variables from data, it is necessary to annotate
the data accordingly. If uninterested in variants, the
intermediate variables could be omitted and all MPs involved
wired directly to the DP variables. Probabilities are computed
using Bayes theorem, where a hidden variable per variant can
be calculated using knowledge of all observed variables [41].

Unfortunately, it is questionable if new variant detection
can be done efficiently via a knowledge-based system. This is
due to the fact that system is biased by the expert towards DP
implementations known to him. However, as the proposed
system is more flexible than a classical rule-based approach
due to the usage of MPs and probabilistic reasoning, it should
be able to better detect new variants that share MPs with
known variants.

E. Metamodel Bayesian Network
The output of both the ML and MP DPD subsystems is

integrated into the Bayesian network HyDPD-B as shown in
Figure 7.

Figure 7. Example HyDPD-B Bayesian metamodel integrating ML and
MP inputs.

To enable this, the result of the ML subsystem has to be
interpreted as an observed variable in a network.
Unfortunately, the system only allows binary variables, while
the output cardinality of the ML system is dependent on the
number of considered DPs. To avoid this, one can formulate
variables in the following way: a binary ML variable is
associated with a model, as well as a specific DP. If the
prediction of the model equals the specified DP, the variable
evaluates to true.

125Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 137 / 141

IV. REALIZATION
Software used to realize the solution included: sklearn,

numpy, pandas, matplotlib, seaborn, NetworkX, Pomegranate
for the Bayesian network, Flask, Jupyter notebooks, Docker,
Docker Compose, Neo4j, MongDB, ReactJS, and JointJS.

The core of the backend was realized in Python as a
library, which contains all modules necessary to create the
Bayesian networks and ML models for DPD.

A. Web-based User Interface (UI)
The UI is implemented using a web-based Single Page

Application (SPA). While Jupyter Notebooks can suffice as a
frontend for research purposes, they could be inconvenient for
software developers, who would have to code in Python and
know the API of the library. In contrast, our frontend provides
functionalities to create Bayesian networks in a graphical way
and train them via graphical UI elements as seen in Figure 8.
Here the network can be created (Step 1) and the decision-
making process of the model visualized. After training the
model (Step 2), data can be loaded (Step 3) and a prediction
run (Step 3).

Furthermore, a UI is provided to create, edit, and delete
DPRL rules and show the JSON and CQL as seen in Figure 9.

Figure 8. HyDPD-B model creation UI showing MPs and DPs.

Figure 9. DPRL rule UI: JSON input (left) and generated CQL (right).

B. Micro Pattern (MP) Catalog (MPC) Realization
1) Override Abstract: Derived from the Adapter Cypher

query, it is a general MP describing a method that overrides
an abstract method.

2) Iterate: This MP simply queries if a participant iterates

over another participant, and commonly occurs in the
Observer DP.

3) Abstract Function Call: This MP describes a call of an

abstract function. Such calls occur in the Observer DP, more
precisely when a notify function calls an update function.

4) Has Collection: This MP queries if there is a

participant that owns a collection of abstract types. This MP
is frequent in the Observer DP.

5) Override & Delegate: This MP describes a function

overriding a function and calling another function, and was
extracted from the Adapter DP.

6) Double Inheritance: This MP describes double

inheritance, used in Adapter DP instances. If the Adapter
pattern is implemented in the static, class-based way, the
Adapter participant should in some way inherit from the
adaptee as well as from the target.

7) Overriding Method Creates: This MP describes a

method that overrides another method and creates an object.
It was extracted from the Factory Method DP.

8) Returns Abstract: This MP matches methods that

return an abstract class, and was extracted from the Factory
Method DP.

C. MP Bayesian Network Realization

Each DP is connected to relevant MPs. In HyDPD-GA,
DPs were distinguished in a query by excluding certain
features that would implicate another DP, as certain patterns
exhibit a high degree of overlap in structure and behavior.
Unfortunately, such exclusions make DPD more complex. To
resolve this, output variables of frequently confused DPs are
interconnected with each other. The resulting network can be
seen in Figure 10.

126Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 138 / 141

Figure 10. Bayesian network architecture for 3 DPs utilizing 8 MPs.

D. Metamodel Bayesian Network Realization
1) Leaf variables: A leaf variable corresponds to the

result of a MP match against the graph. Thus, the value of a
leaf variable can be calculated deterministically at inference
time. The variable requires a binary output (False or True).
While it is feasible to use continuous variables, it would make
the system less comprehensible and interpretable.

2) Hidden variables: Hidden variables cannot be directly
detected like measurable variables. The output of a hidden
variable depends solely on the input of parent variables. To
allow a model to learn values of hidden variables from data,
the data must be annotated accordingly. A hidden variable
can be expressed as a conditional table, which maps each
combination of parent variables to a probability value (e.g.,
T/T->0.8, T/F->0.5, F/F->0.2). In practice, such annotations
might indicate the specific pattern variants or participants
involved in the pattern. For DPD, hidden variables may
correspond to following entities: DP probability that code is
instance of a specific DP; DP variant probability that code is
instance of a specific pattern variant; DP participant
probability that code contains a DP participant; and MP
pattern probability that code contains a specific MP.

3) Query variables: We are not necessarily interested in
all available hidden variables. For DPD, we are specifically
interested in the probabilities given to DPs. Consequently, in
most use cases, query variables correspond to DPs.

V. EVALUATION
For the evaluation of HyDPD-B, we used the same dataset

as used for HyDPD [8] Due to resource constraints, we
focused on three common patterns from each of the major
pattern categories: from the creational patterns, Factory
Method; from the structural category, Adapter; and from the
behavioral patterns, Observer. For this, 25 unique single-
pattern code projects per pattern small single-pattern code
projects from public repositories, 49 in Java and 26 in C#
(mostly from github and the rest from pattern book sites,
MSDN, etc.). They were manually verified and labeled as
examples of a specific pattern. srcML supports these two
popular programming languages and the mix of languages
demonstrates programming language independence. For
HyDPD-ML training data, we applied hold-out validation,
selecting 60 of 75 projects (20 per pattern category). with
between 60-75% of the code projects being in Java and the

remainder in C#. To create the ML test dataset, the remaining
15 projects (5 per pattern, 3 in Java and 2 in C#) were
duplicated and their signal words removed or renamed,
resulting in 30 test projects (10 per pattern).

A. HyDPD-MP (Bayesian Network without ML)
1) Performance: Repeated cross-validation was used to

test the performance of the rule-based system. Simple cross-
validation showed high variance leading to inaccurate results.
Thus, 5-fold cross-validation with 5 repetitions was used,
resulting in 25 runs and a more accurate estimation. The mean
was 0.917 and the median 0.944, with the distribution skewed
due to outliers. Hence, accuracy of HyDPD-MP for these 3
DPs using an 8 MPs ruleset is on par with the 0.91 accuracy
of our previous HyDPD-GA system [8].

Figure 11. Confusion matrix for HyDPD-MP.

2) Confusion matrix: To determine if the results vary
across different DPs, a confusion matrix was created using 5-
fold cross-validation as shown in Figure 11. Adapter
performed worse than the other patterns and was more
frequently misclassified as Observer, an indication of some
similarity between the DPs. Apparently, the ruleset does not
properly distinguish Adapter from Observer. This result
could likely be improved via better fitting Adapter rules, or
via more restrictive Observer rules.

B. HyDPD-ML Performance
To evaluate HyDPD-ML, cross-validation was used, with

the confusion matrix shown in Figure 12. Classification errors
exist across all classes, yet no clear bias can be detected.
Observer had the worst recall rate with 0.90, Adapter 0.93,
and Factory Method with 0.97.

Figure 12. Confusion matrix for HyDPD-ML.

127Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 139 / 141

C. HyDPD-ML Variant detection
DP variant datasets are difficult to acquire since most

example DP projects intend to exemplify the reference DP. To
evaluate HyDPD-ML for unknown pattern variant detection,
DP variations were removed from the training dataset and
moved to a test set containing only variations.

TABLE I. DP VARIANT PREDICTIONS

DP Variant Predicted DP
Adapter 2 Adapter
Adapter 4 Adapter
Adapter 7 Adapter

Factory Method 17cs Adapter
Factory Method 2 Factory Method

Observer 12 Observer
Observer 13cs Factory Method
Observer 18cs Observer

As seen in Table I, 6 out of 8 variations were correctly

classified. The recall rate for Adapter was 1.0, Observer was
0.66, and Factory Method was 0.5. On average, accuracy is
0.75. While worse than the estimated general accuracy of
0.95, it shows HyDPD-ML is somewhat capable of classifying
unknown pattern variations.

D. Combined HyDPD-B
To evaluate the performance of the combined HyDPD-B,

repeated cross-validation was performed. HyDBD-ML was
trained on the same dataset as the Bayesian network. HyDBD-
B (HyDPD-MP and HyDPD-ML combined) reached an
accuracy of 0.944 as seen in Figure 13.

Figure 13. Performance comparison.

While the Bayesian network is quite performant, it
outperforms HyDPD-GA only by a very small margin.
HyDPD-ML performs better than the Bayesian network. The
rule set could be improved, as there is lot of potential gain by
introducing more fitting rules. This was not performed in the
context of our current work as this could lead to a risk of
manual overfitting of the available dataset. Combining the
Bayesian network with the ML leads to a performance almost
on the same level as ML itself. However, the new solution
HyDPD-B is now more flexible for incorporating expert
knowledge to continually improve and refine results.

VI. CONCLUSION
This paper described our hybrid DPD solution concept

HyDPD-B, which uses a Bayesian network to integrate a
graph-based expert rule system using micropattern detection
(HyDPD-MP) with a ML system (HyDPD-ML) using graph
embeddings. Via a Bayesian network, inexact DP matching
via probabilistic reasoning is supported with a finer rule
definition granularity via micropatterns. The Bayesian
network provides a flexible framework for probabilistic
reasoning that is comprehensible and interpretable for
humans. Our simple DP rule language (DPRL) was
introduced to integrate developers as experts in defining DP
and MP rules. Whereas HyDPD-MP can support DP
localization and known variant detection via MPs, HyDPD-
ML only indicates a DP is contained somewhere in the dataset.
HyDPD-ML can detect unknown DP variations, yet with less
accuracy than standard DPs.

This could be improved with larger DP training and
variant test datasets, but these remain challenging to acquire.
Since the Bayesian system is dependent on manual knowledge
engineering, future work will investigate its viability and
scalability regarding DP variant detection. Future work
includes expansion across all GoF DPs, measurements against
benchmark pattern repositories and open source projects, and
a comprehensive empirical industrial case study.

ACKNOWLEDGMENT
The authors would like to thank Victor Gouromichos for

his assistance with the implementation and data preparation.

REFERENCES
[1] R. Minelli, A.Mocci, and M. Lanza, “I know what you did last

summer: an investigation of how developers spend their time,”
In: Proceedings of the 2015 IEEE 23rd International Conference
on Program Comprehension, pp. 25-35. IEEE Press, 2015.

[2] M. J. Pacione, M. Roper, and M. Wood, “A novel software
visualisation model to support software comprehension,” In:
Proc.. 11th Working Conference on Reverse Engineering, pp.
70-79. IEEE, 2004.

[3] E. Gamma, Design Patterns: Elements of Reusable Object-
Oriented Software. Pearson Education India, 1995.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, Pattern-Oriented Software Architecture: A System of
Patterns, Vol. 1. John Wiley & Sons, 2008.

[5] M.G. Al-Obeidallah, M. Petridis, and S. Kapetanakis, “A
survey on design pattern detection approaches,” International
Journal of Software Engineering (IJSE), 7(3), pp.41-59, 2016.

[6] H. Yarahmadi and S. M. H. Hasheminejad, “Design pattern
detection approaches: A systematic review of the literature,”
Artificial Intelligence Review, 53, pp. 5789-5846, 2020.

[7] R. Oberhauser, “A Machine Learning Approach Towards
Automatic Software Design Pattern Recognition Across
Multiple Programming Languages,” Proc. of the Fifteenth
International Conference on Software Engineering Advances
(ICSEA 2020), pp. 27-32, IARIA XPS Press, 2020.

[8] R. Oberhauser, “A Hybrid Graph Analysis and Machine
Learning Approach Towards Automatic Software Design
Pattern Recognition Across Multiple Programming Languages,
” International Journal on Advances in Software, vol. 15, no. 1
& 2, year 2022, pp. 28-42. ISSN: 1942-2628.

[9] D. Yu, Y. Zhang, and Z. Chen, “A comprehensive approach to
the recovery of design pattern instances based on sub-patterns

128Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

 140 / 141

and method signatures,” Journal of Systems and Software, vol.
103, pp. 1-16, 2015.

[10] B. Mayvan and A. Rasoolzadegan, “Design pattern detection
based on the graph theory,” Knowledge-Based Systems, vol.
120, pp. 211-225, 2017.

[11] M. L. Bernardi, M. Cimitile, and G. Di Lucca, “Design pattern
detection using a DSL‐driven graph matching approach,”
Journal of Software: Evolution and Process, 26(12), pp.1233-
1266, 2014.

[12] M. Oruc, F. Akal, and H. Sever, “Detecting design patterns in
object-oriented design models by using a graph mining
approach,” 4th International Conference in Software
Engineering Research and Innovation (CONISOFT 2016), pp.
115-121, IEEE, 2016.

[13] A. Pande, M. Gupta, and A. K. Tripathi, “A new approach for
detecting design patterns by graph decomposition and graph
isomorphism,” International Conference on Contemporary
Computing, pp. 108-119, Springer, Berlin, Heidelberg, 2010.

[14] P. Pradhan, A. K. Dwivedi, and S. K. Rath, “Detection of
design pattern using graph isomorphism and normalized cross
correlation,” Eighth International Conf. on Contemporary
Computing (IC3 2015), pp. 208-213, IEEE, 2015.

[15] S. Alhusain, S. Coupland, R. John, and M. Kavanagh, “Design
pattern recognition by using adaptive neuro fuzzy inference
system,” 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence, pp. 581-587, IEEE, 2013.

[16] M. Zanoni, F. A. Fontana, and F. Stella, “On applying machine
learning techniques for design pattern detection,” J. of Systems
& Software, vol. 103, no. C, pp. 102-117, 2015.

[17] L. Galli, P. Lanzi, and D. Loiacono, “Applying data mining to
extract design patterns from Unreal Tournament levels,”
Computational Intelligence and Games. pp. 1-8, IEEE, 2014.

[18] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, “Design pattern
mining enhanced by machine learning,” 21st IEEE In’'l Conf.
on Softw. Maintenance (ICS’'05), IEEE, pp. 295-304, 2005.

[19] S. Uchiyama, A. Kubo, H. Washizaki, and Y. Fukazawa,
“Detecting design patterns in object-oriented program source
code by using metrics and machine learning,” Journal of
Software Engineering and Applications, 7(12), pp. 983-998,
2014.

[20] A. K., Dwivedi, A. Tirkey, and S. K. Rath, “Software design
pattern mining using classification-based techniques,”
Frontiers of Computer Science, 12(5), pp. 908-922, 2018.

[21] H. Thaller, L. Linsbauer, and A. Egyed, “Feature maps: A
comprehensible software representation for design pattern
detection,” IEEE 26th international conference on software
analysis, evolution and reengineering (SANER 2019), pp. 207-
217, IEEE, 2019.

[22] A. Chihada, S. Jalili, S. M. H. Hasheminejad, and M. H.
Zangooei, “Source code and design conformance, design
pattern detection from source code by classification approach,”
Applied Soft Computing, 26, pp. 357-367, 2015.

[23] Y. Wang, H. Guo, H. Liu, and A. Abraham, “A fuzzy matching
approach for design pattern mining,” J. Intelligent & Fuzzy
Systems, vol. 23, nos. 2-3, pp. 53-60, 2012.

[24] A. Alnusair, T. Zhao, and G. Yan, “Rule-based detection of
design patterns in program code,” Int'l J. on Software Tools for
Technology Transfer, vol. 16, no. 3, pp. 315-334, 2014.

[25] M. Lebon and V. Tzerpos, “Fine-grained design pattern
detection,” IEEE 36th Annual Computer Software and
Applications Conference, IEEE, pp. 267-272, 2012.

[26] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, “Using metric-
based filtering to improve design pattern detection
approaches,” Innovations in Systems and Software
Engineering, vol. 11, no. 1, pp. 39-53, 2015.

[27] A. K., Dwivedi, A. Tirkey, and S. K. Rath, “Software design
pattern mining using classification-based techniques,”
Frontiers of Computer Science, 12(5), pp. 908-922, 2018.

[28] F. A. Fontana, S. Maggioni, and C. Raibulet, “Understanding
the relevance of micro-structures for design patterns
detection,” Journal of Systems and Software, vol. 84, no. 12,
pp. 2334-2347, 2011

[29] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, “Using metric-
based filtering to improve design pattern detection approaches.
Innovations in Systems and Software Engineering,” vol. 11, no.
1, pp. 39-53, 2015.

[30] J. Dong, Y. Zhao, and Y. Sun, “A matrix-based approach to
recovering design patterns,” IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 39,
no. 6, pp. 1271-1282, 2009.

[31] K. Tu, J. Li, D. Towsley, D. Braines, and L. D. Turner,
“Gl2vec: Learning feature representation using graphlets for
directed networks,” in Proceedings of the 2019 IEEE/ACM
international conference on advances in social networks
analysis and mining, 2019, pp. 216–221.

[32] S. Sang et al., “Gredel: A knowledge graph embedding based
method for drug discovery from biomedical literatures,” IEEE
Access, vol. 7, pp. 8404–8415, 2018.

[33] J. Singh, S. R. Chowdhuri, G. Bethany, and M. Gupta,
“Detecting design patterns: a hybrid approach based on graph
matching and static analysis,” Information Technology and
Management, 23(3), pp. 139-150, 2022.

[34] R. Barbudo, A. Ramírez, F. Servant, and J. R. Romero,
“GEML: A grammar-based evolutionary machine learning
approach for design-pattern detection,” Journal of Systems and
Software, 175, p. 110919, 2021.

[35] M. Kouli and A. Rasoolzadegan, “A Feature-Based Method for
Detecting Design Patterns in Source Code,” Symmetry, 14(7),
p. 1491, 2022.

[36] M. Collard, M. Decker, and J. Maletic, “Lightweight
transformation and fact extraction with the srcML toolkit,”
IEEE 11th international working conference on source code
analysis and manipulation, IEEE, 2011, pp. 173-184.

[37] N. Francis et al., “Cypher: An evolving query language for
property graphs,” Proc. 2018 International Conference on
Management of Data, pp. 1433-1445, 2018.

[38] S. Khwaja and M. Alshayeb, “Survey on software design-
pattern specification languages,” ACM Computing Surveys
(CSUR), vol. 49, no. 1, pp. 1–35, 2016.

[39] J. Smith and D. Stotts, “An elemental design pattern catalog,”
Technical Report TR-02–040, 2002.

[40] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket:
Exceptionally fast and accurate time series classification using
random convolutional kernels,” Data Mining and Knowledge
Discovery, vol. 34, no. 5, pp. 1454–1495, 2020.

[41] K. P. Murphy, Machine Learning: A Probabilistic Perspective.
MIT press, 2012.

129Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Powered by TCPDF (www.tcpdf.org)

 141 / 141

http://www.tcpdf.org

