
ICSNC 2018

The Thirteenth International Conference on Systems and Networks

Communications

ISBN: 978-1-61208-669-9

October 14 - 18, 2018

Nice, France

ICSNC 2018 Editors

Eugen Borcoci, University Politehnica of Bucarest, Romania

Przemyslaw Pochec University of New Brunswick Canada

 1 / 76

ICSNC 2018

Forward

The Thirteenth International Conference on Systems and Networks Communications (ICSNC 2018), held
on October 14 - 18, 2018- Nice, France, continued a series of events covering a broad spectrum of
systems and networks related topics.

As a multi-track event, ICSNC 2018 served as a forum for researchers from the academia and the
industry, professionals, standard developers, policy makers and practitioners to exchange ideas. The
conference covered fundamentals on wireless, high-speed, mobile and Ad hoc networks, security, policy
based systems and education systems. Topics targeted design, implementation, testing, use cases, tools,
and lessons learnt for such networks and systems

The conference had the following tracks:

• TRENDS: Advanced features
• WINET: Wireless networks
• HSNET: High speed networks
• SENET: Sensor networks
• MHNET: Mobile and Ad hoc networks
• AP2PS: Advances in P2P Systems
• MESH: Advances in Mesh Networks
• VENET: Vehicular networks
• RFID: Radio-frequency identification systems
• SESYS: Security systems
• MCSYS: Multimedia communications systems
• POSYS: Policy-based systems
• PESYS: Pervasive education system

We welcomed technical papers presenting research and practical results, position papers
addressing the pros and cons of specific proposals, such as those being discussed in the standard forums
or in industry consortiums, survey papers addressing the key problems and solutions on any of the
above topics, short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the ICSNC 2018 technical
program committee as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and efforts to contribute to the ICSNC 2018. We truly
believe that thanks to all these efforts, the final conference program consists of top quality
contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the ICSNC 2018 organizing
committee for their help in handling the logistics and for their work that is making this professional
meeting a success. We gratefully appreciate to the technical program committee co-chairs that
contributed to identify the appropriate groups to submit contributions.

 2 / 76

We hope the ICSNC 2018 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in networking and systems
communications research. We also hope Nice provided a pleasant environment during the conference
and everyone saved some time for exploring this beautiful city.

ICSNC 2018 Steering Committee

Eugen Borcoci, University "Politehnica"of Bucharest (UPB), Romania
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Leon Reznik, Rochester Institute of Technology, USA
Zoubir Mammeri, IRIT - Paul Sabatier University, Toulouse, France
Maiga Chang, Athabasca University, Canada
David Navarro, Lyon Institute of Nanotechnology, France
Christos Bouras, University of Patras / Computer Technology Institute & Press 'Diophantus', Greece

ICSNC 2018 Industry/Research Advisory Committee

Yasushi Kambayashi, Nippon Institute of Technology, Japan
Christopher Nguyen, Intel Corp., USA

 3 / 76

ICSNC 2018

Committee

ICSNC Steering Committee
Eugen Borcoci, University "Politehnica"of Bucharest (UPB), Romania
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Leon Reznik, Rochester Institute of Technology, USA
Zoubir Mammeri, IRIT - Paul Sabatier University, Toulouse, France
Maiga Chang, Athabasca University, Canada
David Navarro, Lyon Institute of Nanotechnology, France
Christos Bouras, University of Patras / Computer Technology Institute & Press 'Diophantus', Greece

ICSNC Industry/Research Advisory Committee
Yasushi Kambayashi, Nippon Institute of Technology, Japan
Christopher Nguyen, Intel Corp., USA

ICSNC 2018 Technical Program Committee

Habtamu Abie, Norwegian Computing Center - Oslo, Norway
Talal Alharbi, University of Queensland, Australia
G. G. Md. Nawaz Ali, Nanyang Technological University (NTU), Singapore
Samr Samir Ali, Abu Dhabi University, UAE
Muhammad Sohaib Ayub, Lahore University of Management Sciences (LUMS), Pakistan
K. Hari Babu, Birla Institute of Technology & Science (BITS Pilani), India
Ilija Basicevic, University of Novi Sad, Serbia
Robert Bestak, Czech Technical University in Prague, Czech Republic
Eugen Borcoci, University "Politehnica"of Bucharest (UPB), Romania
Christos Bouras, University of Patras / Computer Technology Institute & Press <Diophantus>, Greece
An Braeken, Vrije Universiteit Brussel, Belgium
Martin Brandl, Danube University Krems, Austria
Francesco Buccafurri, University of Reggio Calabria, Italy
Dumitru Dan Burdescu, University of Craiova, Romania
Vicente Casares Giner, Universitat Politècnica de València, Spain
Maiga Chang, Athabasca University, Canada
Hao Che, University of Texas at Arlington, USA
Stefano Chessa, University of Pisa, Italy
Enrique Chirivella, University of the West of Scotland, UK
Jorge A. Cobb, The University of Texas at Dallas, USA
Bernard Cousin, Irisa | University of Rennes 1, France
Fisnik Dalipi, University College of Southeast Norway, Norway
Sima Das, MST, USA
Poonam Dharam, Saginaw Valley State University, USA
Gulustan Dogan, Yildiz Technical University, Istanbul, Turkey
Jawad Drissi, Cameron University, USA

 4 / 76

Safwan El Assad, University of Nantes, France
Marco Furini, University of Modena and Reggio Emilia, Italy
Katja Gilly, Universidad Miguel Hernández, Spain
Hector Marco Gisbert, University of the West of Scotland, UK
Rich Groves, A10 Networks, USA
Anna Guerra, University of Bologna, Italy
Barbara Guidi, University of Pisa, Italy
Youcef Hammal, USTHB University Bab-Ezzouar, Algeria
Eman Hammad, University of Toronto, Canada
Chitra Javali, UNSW Sydney, Australia
Muhammad Javed, Cameron University, USA
Fang-zhou Jiang, Data61 | CSIRO & UNSW, Australia
Yasushi Kambayashi, Nippon Institute of Technology, Japan
Sarah Kamel, Télécom ParisTech, France
Sokratis K. Katsikas, Norwegian University of Science & Technology (NTNU), Norway
Jinoh Kim, Texas A&M University-Commerce, USA
Yagmur Kirkagac, Netas Telecommunication Inc., Turkey
Peng-Yong Kong, Khalifa University, United Arab Emirates
Michał Król, University College London, UK
Takashi Kurimoto, National Institute of Informatics, Japan
Gyu Myoung Lee, Liverpool John Moores University, UK
Jin-Shyan Lee, National Taipei University of Technology (TAIPEI TECH), Taiwan
Shunbo Lei, University of Hong Kong, Hong Kong
Wolfgang Leister, Norsk Regnesentral (Norwegian Computing Center), Norway
Shouxi Luo, Southwest Jiaotong University, China
Zoubir Mammeri, IRIT - Paul Sabatier University, Toulouse, France
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Francisco J. Martinez, University of Zaragoza, Spain
Victor Mehmeri, Technical University of Denmark (DTU), Denmark
Farouk Mezghani, Inria Lille - Nord Europe, France
David Navarro, Lyon Institute of Nanotechnology, France
Christopher Nguyen, Intel Corp., USA
António Nogueira, University of Aveiro / Instituto de Telecomunicações, Portugal
Jun Peng, University of Texas - Rio Grande Valley, USA
Zeeshan Pervez, University of the West of Scotland, UK
Kandaraj Piamrat, LS2N | University of Nantes, France
Paulo Pinto, Universidade Nova de Lisboa, Portugal
Aneta Poniszewska, Lodz University of Technology, Poland
Victor Ramos, Metropolitan Autonomous University, Mexico
Piotr Remlein, Poznan University of Technology, Poland
Yongmao Ren, Chinese Academy of Sciences, China
Leon Reznik, Rochester Institute of Technology, USA
Mohsen Rezvani, Shahrood University of Technology, Iran
Sebastian Rieger, Fulda University of Applied Sciences, Germany
Laborde Romain, University Paul Sabatier (Toulouse 3), France
Imed Romdhani, Edinburgh Napier University, UK
Luis Enrique Sánchez Crespo, University of Castilla-la Mancha & Sicaman Nuevas Tecnologías Ciudad
Real, Spain

 5 / 76

Julio A. Sangüesa, University of Zaragoza, Spain
Oliver Schneider, DIPF - Deutsches Institut für Internationale Pädagogische Forschung / Hochschule
Darmstadt, Germany
Ahmed Shahin, Zagazig University, Egypt
Roman Shtykh, Yahoo Japan Corporation, Japan
Mujdat Soyturk, Marmara University, Istanbul, Turkey
Agnis Stibe, MIT Media Lab, Cambridge, USA
Masashi Sugano, Osaka Prefecture University, Japan
Young-Joo Suh, POSTECH (Pohang University of Science and Technology), Korea
Ahmad Tajuddin bin Samsudin, Telekom Malaysia Research & Development, Malaysia
António Teixeira, Universidade de Aveiro, Portugal
Tzu-Chieh Tsai, National Chengchi University, Taiwan
Thrasyvoulos Tsiatsos, Aristotle University of Thessaloniki, Greece
Costas Vassilakis, University of the Peloponnese, Greece
Juan José Vegas Olmos, Mellanox Technologies, Denmark
Jingjing Wang, Tsinghua University, Beijing, China
Yunsheng Wang, Kettering University, USA
Armin Wasicek, Technical University Vienna, Austria
Mingkui Wei, Sam Houston State University, USA
Jozef Wozniak, Gdansk University of Technology, Poland
Demir Yavas, Netas Telecommunication Corp. / Istanbul Technical University, Turkey
Quan Yuan, The University of Texas of the Permian Basin, USA
Daqing Yun, Harrisburg University, USA
Chuanji Zhang, Georgia Institution of Technology, USA
Gaoqiang Zhuo, State University of New York at Binghamton, USA

 6 / 76

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 76

Table of Contents

M2ANET Performance Under Multiple Competing Data Flows
Oluwatola Ayansiji, John DeDourek, and Przemyslaw Pochec

1

An Efficient Estimation Scheme of Timing Offset for OFDM Transmission Over Multipath Fading Channels
Keunhong Chae, Eunyoung Cho, and Seokho Yoon

5

Efficient Video-Based Packet Multicast Method for Multimedia Control in Cloud Data Center Networks
Nader Mir, Abhishek T. Rao, and Rohit Garg

10

Non-binary Encoded STBC-CPM Signals for Wireless Slicing Networks
Piotr Remlein

15

Secure SDN-based In-network Caching Scheme for CCN
Amna Fekih, Sonia Gaied, and Habib Youssef

21

Reliability-aware Optimization of the Controller Placement and Selection in SDN Large Area Networks
Eugen Borcoci and Stefan Ghita

29

Green ISP Networks via Hybrid SDN
Krishna Kadiyala and Jorge Cobb

37

Comparative Evaluation of Database Performance in an Internet of Things Context
Denis Arnst, Valentin Plenk, and Adrian Woltche

45

Design Method of Wireless Sensor Networks in Railway Environments Considering Power Consumption
Tomoki Kawamura and Nagateru Iwasawa

51

Routing Algorithm Based on the Transmission History for Monitoring Railway Vehicles
Nagateru Iwasawa, Satoko Ryuo, Tomoki Kawamura, and Nariya Iwaki

58

Behavior Modeling of Networked Wireless Sensors for Energy Consumption Using Petri Nets
Jin-Shyan Lee and Yuan-Heng Sun

64

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 76

M2ANET Performance under Multiple Competing Data Flows

Oluwatola Ayansiji, John DeDourek, Przemyslaw Pochec

Faculty of Computer Science

University of New Brunswick

Fredericton, Canada

e-mail: { tola.ayansiji, dedourek, pochec}@unb.ca

Abstract—A Mobile Ad hoc Network (MANET) is a network of

wireless mobile devices capable of communicating with one

another without any reliance on a fixed infrastructure. A Mobile

Medium Ad hoc Network (M2ANET) is a set of mobile

forwarding nodes functioning as relays for facilitating

communication between the users of this Mobile Medium. The

performance of a Mobile Medium depends not only on the

forwarding node density, their distribution and movement but

also is affected by the traffic load present in the Medium. The

traffic in the Mobile Medium may be due to multiple users using

the Medium or due to rogue users performing a Denial of

Service (DOS) attack. We investigate the performance of a

Mobile Medium serving multiple users under different routing

protocols, focusing on the performance of the Ad hoc On-

demand Distance Vector (AODV) routing protocol. The

simulation results show that the packet delivery is only

moderately affected (Packet Delivery Ratio (PDR) dropped

form 93% to 83% in the sample network) by the presence of a

competing flow in the Medium, due to the resilience of ad hoc

networks. On the other hand, in the same network, the packet

delay is affected significantly (four fold increase in packet delay,

from 0.2s to 0.8s, in the sample network).

Keywords-MANET; M2ANET; performance; delivery ratio;

delay; multiple data flows; DOS.

I. INTRODUCTION

A MANET is a set of mobile devices that cooperate with

each other by exchanging messages and forwarding data [1].

A Mobile Medium Ad hoc Network (M2ANET) proposed in

[2] is a particular configuration of a typical MANET where

all mobile nodes are divided into two categories: (i) the

forwarding only nodes forming the so called Mobile

Medium, and (ii) the communicating nodes, mobile or

otherwise, that send data and use this Mobile Medium for

communication. The advantage of this M2ANET model is

that the performance of such a network is based on how well

the Mobile Medium can carry the messages between the

communicating nodes and not based on whether all mobile

nodes form a fully connected network. An example of a

M2ANET is a cloud of autonomous drones released over an

area of interest facilitating communication in this area. The

movement of nodes in a M2ANET can be preplanned by the

user, selected at random or purposefully controlled for the

best network performance. When the mobile nodes are

designed to guide their movement themselves, we call such a

network a Self-organizing Mobile Medium Ad hoc Network

(SMMANET) [3].

As in any network, the performance depends on many

factors: link data rates, protocol used and, for MANET type

networks, node density and movement pattern. The traffic

pattern and network congestion will also have an impact on

M2ANET performance. In this paper, we set out to

investigate the effect of additional users on M2ANET

performance. These new users can be legitimate users of the

M2ANET or even some rogue nodes purposely interfering

with legitimate M2ANET operations.

In Section II, we present background on M2ANETs and

their operation. The simulation experiment investigating the

presence of multiple flows in a M2ANET on its performance

is presented in Section III, with results analyzed in Section

IV. The conclusion is in Section V.

II. STATE OF THE ART

We introduced the concept of a Mobile Medium in our

seminal paper on M2ANETS in 2011 [2]. A M2ANET

realizes the connection between two hosts with the cloud of

nodes serving as the data communication medium (aka

Mobile Medium) and forming the communication channel.

Any particular connection in the Medium does not matter as

long as the channel between communicating users of the

M2ANET can be formed. As a consequence, M2ANETs

exhibit fault-resilience, given that they are not operating with

a single point of failure. Examples of networks operating on

a similar principle include the Google Loon project [4],

Facebook's flying internet service [5] and a swarming micro

air vehicle network (SMAVNET II) [6].

Despite the possibility that the nodes forming a Mobile

Medium can operate in a manner similar to traditional

MANETS using the same type of hardware nodes and the

same routing protocols, the means of investigation of

M2ANETs are different from traditional approaches to

investigating ad hoc networks as they rely on different

performance metrics. Specifically, the performance of any

individual links and the connectivity between the M2ANET

nodes does not matter directly. What is important is the

performance of the channel through the Mobile Medium

allowing the users of the M2ANET to communicate

successfully. For example, the question whether all the nodes

in the Mobile Medium are connected together is of no

importance.

Our past investigation of M2ANETs centered on the

following issues: node density in the Mobile Medium, node

1Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 9 / 76

movement pattern and the cooperation among the nodes.

The node density in general indicates how many mobile

forwarding nodes are present in an area of interest where

wireless communication is to be supported by means of the

Mobile Medium. The smaller the area and the larger the

number nodes the better the performance that the M2ANET

offered to the users of the Medium [2]. For a M2ANET to

operate efficiently, the available mobile nodes need to be

positioned and moved over the area of coverage. Having the

forwarding nodes mobile contributes to greater resiliency of

the implementation, because new nodes move in and take

over form the failing ones [7], and allows for the use of aerial

drones, like micro air vehicles/planes [6], with hard limits on

the sustained minimum velocity. M2ANET mobile nodes can

move at random [8], in groups [9], along fractal paths [10] or

can even be cooperating among themselves like an intelligent

swarm, to best facilitate the demand from M2ANET users

[3].

Our past investigations of M2ANETs focused on the

Mobile Medium operating autonomously and serving a pair

of users, similar to having two users connecting wirelessly

with a line of sight link. In this paper, we set out to investigate

the behavior of the Mobile Medium in the presence of

multiple data flows being carried simultaneously in a

M2ANET. There are many practical scenarios that

correspond to this model: (i) a simple scenario where multiple

users rely on the same Mobile Medium to carry their data and

(ii) a malicious attack scenario, where rogue nodes inject data

into the Mobile Medium in an attempt to interfere with the

legitimate traffic.

III. PERFORMANCE OF A M2ANET IN THE PRESENCE OF

COMPETING FLOWS

The performance of the Mobile Medium in the presence

of competing flow is investigated using the ns2 simulator [11]

in a simulated generic scenario with a preset number of

Mobile Medium nodes moving randomly in a bounded

region. As in the previous studies [2][3][7]-[10], the

performance of the Mobile Medium is measured at different

forwarding node densities by varying the number of nodes in

the M2ANET network. Experiments with three different

MANET routing protocols: AODV, Destination Sequenced

Distance Vector (DSDV), and Dynamic Source Routing

(DSR) are conducted [12]. Three user scenarios are

investigated: a pair of users communicated through the

Mobile Medium without any other traffic present (so called

"no DOS" scenario), and the same but with one or two other

flows active across the Medium (DOS1 and DOS2

scenarios). In the multi flow scenarios, the additional flows,

for the sake of argument, are considered as rogue flows that

are interfering with the original flow (thus the name DOS1/2:

Denial Of Service with one/two rogue flow(s) scenario) and

only the performance of the first (principal) flow is

investigated. In order to investigate the potential interference

between data flows in the Mobile Medium, the locations of

the sources and destinations were selected so that straight line

paths between pairs of users would intersect with one

another, Figure 1.

Figure 1. Screen shot of the simulation showing a M2ANET network with
two communicating nodes 0 and 1, and four rogue nodes 2 to 5.

In the mobile network simulation, the random mobility

model is used as a reference case scenario, mostly because it

is a standard model used in network simulation. The base case

model used is the Random Way Point (RWP) model available

in ns2 [11]. In RWP, nodes are moved in a piecewise linear

fashion, with each linear segment pointing to a randomly

selected destination and the node moving at a constant, but

randomly selected speed. The mobile nodes forming the

Mobile Medium move at random speeds with an average

speed of 4 m/s. The main communicating nodes 0 and 1 are

stationary. The source and destination nodes are located at

(200,650) and (900,700) coordinates, respectively. The

simulation details are summarized in Table 1.

TABLE I. SIMULATION PARAMETERS

Parameters
Simulator NS-2.34

Channel Type Channel / Wireless Channel

Network Interface Type Phy/WirelessPhy

Mac Type Mac/802.11

Radio-Propagation Type Propagation/Two-ray ground

Interface Queue Type Queue/Drop Tail

Link Layer Type LL

Antenna Antenna/Omni Antenna

Maximum Packets in ifq 50

Area (n * n) 1000 x 1000m

Source Type CBR over UDP
packetSize_ 512

interval_ 0.05

Simulation Time 300 s

Routing Protocol AODV, DSDV, DSR

The data traffic for each flow is modelled with the CBR

traffic generator and sent using UDP over simulated Mobile

Medium networks with five different node densities from 20

to 120 nodes. Node density indicates the total number of

mobile nodes in the 1000 m by 1000 m square region

modelled in the experiments. The delivery ratio is the ratio of

the number of packets successfully received at the destination

N

1

2Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 10 / 76

node to the number of packets sent during each simulation

experiment. The packet delivery time (delay) is the difference

between the time the packet was received at the destination

and the time the same packet was sent from the source node.

Each mobile network scenario has been simulated three times

for a 300 second simulation run time and the average results

taken.

IV. RESULTS AND ANALYSIS

The Mobile Medium performed as expected (matching

the packet delivery rate results of previous studies, e.g., [2])

when presented with a single flow to transmit and no other

flows interfering with it, i.e., no DOS. When additional flows

were present in the Mobile Medium the performance

decreased. The decrease was more pronounced for DSDV

and DSR, and very moderate for AODV, in the presence of

moderate disturbance to the Mobile Medium (only one

additional rogue flow in DOS1), Figure 2. Better

performance of AODV can be attributed to it being reactive

and distributed [1][12].

Figure 2. Delivery ratio for three scenarios.

Further investigation of the DOS1 scenario shows that the

AODV advantage is present over the full range of node

densities, Figure 3 and 4. Finally, with more significant load

in the Mobile Medium, i.e., in the presence of two rogue

flows in DOS2, the delivery ratio for all tested routing

protocols dropped similarly to just below 50%, as seen in

Figure 2.

Figure 3. Packet delivery ratio vs number of nodes, no DOS.

Figure 4. Packet delivery ratio vs number of nodes, DOS1.

The investigation of packet delivery times shows

significant increases in the average packet delays when a

second flow is present, DOS1 scenario. In the single flow

scenario, no DOS, the delays were well below 0.5s in all

experiments across all node densities, Figure 5. With the

second flow present, the DOS1 scenario, the delays increased

in general, with the most significant delay in the range of 5s

registered in the DSR experiments, Figure 6. For the best

performing protocol, AODV, the delays were below 0.2s in

the single flow scenario and up to 0.79s in the DOS1 scenario.

Figure 5. Average delay [sec] vs number of nodes, no DOS.

Figure 6. Average delay [sec] vs number of nodes, DOS1.

0

1

2

3

4

5

6

7

20 40 60 80 100 120

AODV DSDV DSR

N

1

0

0.5

1

No DOS DOS1 DOS2

AODV DSDV DSR

0

0.5

1

20 40 60 80 100 120

AODV DSDV DSR

0

0.1

0.2

0.3

0.4

0 50 100 150

AODV DSDV DSR

0

0.5

1

0 20 40 60 80 100 120

AODV DSDV DSR

N

1

3Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 11 / 76

Figure 7. AODV: path lenght for each packet sent, DOS1.

Figure 8. AODV: path lenght for each packet sent, no DOS.

Further investigation of the AODV protocol indicates that

increase in packet delays may be attributed to much longer

forwarding path lengths, and more frequent path changes. In

the network with two flows, DOS1, up to 34 hops were

registered for packet 2200 on Figure 7, compared to the path

length reaching only 17 in a network with a single flow, no

DOS scenario in Figure 8.

V. CONCLUSION AND FUTURE WORK

Previous studies showed the dependence of the

performance of a Mobile Medium on network infrastructure

characteristics: the forwarding node density, movement

pattern, routing protocol etc. In this paper, we showed how

the Mobile Medium performance is affected by the presence

of multiple flows in the network. Introducing competing

flows in the Mobile Medium network results in gradual

degradation of packet delivery ratio, from close to 93% for

AODV for a single flow scenario, down to 83% for two flows

and only 44% for three flows. The decrease is even more

significant for DSDV and DSR. What is more significant, the

Mobile Medium experiences a drastic increase in average

packet delays when the second flow is added across all

investigated configurations. The AODV average delays

increased from less than 0.2s up to 0.79s. The delays for the

worst performing DSR increased from 0.79s to 6.48s.

The Mobile Medium, while showing a great resilience to

packet loss with a moderate traffic increase, is expected to

experience significant delays in packet delivery when the

traffic carried through the medium increases.

Future work could focus on investigation of AODV class

routing protocols (on-demand, reactive) centering on

maintaining high delivery ratio while improving on packet

delays.

REFERENCES

[1] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic (Eds.), Mobile

Ad Hoc Networking, New York, Wiley-IEEE Press, 2001.
[2] J. DeDourek and P. Pochec, "M2ANET: a Mobile Medium Ad Hoc

Network", Wireless Sensor Networks: Theory and Practice, WSN 2011,

Paris, France, Feb. 2011, pp. 1-4.
[3] H. Almutairi, J. DeDourek, and P. Pochec, "Node Movement Control

Based on Swarm Intelligence for a Mobile Medium Ad hoc Network", The

Eight International Conference on Advances in Future Internet, AFIN2016,
July 27, 2016, Nice, France, pp. 1-8.

[4] H. Hodson, "Google's Project Loon to float the internet on balloons",

New Scientist, October 2013.

[5] J. Brustein, "Facebook’s Flying Internet Service, Brought to You by

Drones", Bloomberg Businessweek, March 4, 2014.

[6] A. J. Pacheco, et al., "Implementation of a Wireless Mesh Network of
Ultra Light MAVs with Dynamic Routing; Proceedings of the IEEE Globe

Work; Anaheim, CA, USA. 3–7 December 2012, pp. 1591–1596

[7] K. Patel, J. DeDourek, and P. Pochec, "M2ANET Performance Under
Variable Node Sleep Times", Third International Conference on Advances

in Future Internet, AFIN2011, Nice, France, Aug. 2011, pp. 31-34.
[8] M. Alzaylaee, J. DeDourek, and P. Pochec, "Linear Node Movement

Patterns in MANETS", The Ninth International Conference on Wireless and

Mobile Communications ICWMC 2013, Nice, France, July 21-26, 2013, pp.
162-166.

[9] A. Alshehri, J. DeDourek, and P. Pochec, "The Advantage of Moving

Nodes in Formations in MANETs and M2ANETs", The Ninth International
Conference on Wireless and Mobile Communications ICWMC 2013, Nice,

France, July 21-26, 2013, pp. 228-232.

[10] H. Alseef, J. DeDourek, and P. Pochec, "A Method for Custom
Movement Generation in Wireless Mobile Network Simulation", The

Seventh International Conference on Emerging Networks and Systems

Intelligence, EMERGING 2015, July 19 - 24, 2015, Nice, France, pp. 27-32.
[11] H. Ekram and T. Issariyakul, Introduction to Network Simulator ns2,

Springer, 2009

[12] S. K. Sarkar, T. G. Basavaraju, and C. Puttamadappa, Ad Hoc Mobile
Wireless Networks, Principles, Protocols, and Applications, Auerbach

Publications Taylor & Francis Group, 2007.

N

1

N

1

0

10

20

30

40

0

5
0

0

1
0

00

1
5

00

2
0

00

2
5

00

3
0

00

3
5

00

4
0

00

4
5

00

5
0

00

5
5

00

6
0

00

0

5

10

15

20

0

5
0

0

1
0

00

1
5

00

2
0

00

2
5

00

3
0

00

3
5

00

4
0

00

4
5

00

5
0

00

5
5

00

6
0

00

4Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 12 / 76

An Efficient Estimation Scheme of Timing Offset for
OFDM Transmission Over Multipath Fading Channels

Keunhong Chae, Eunyoung Cho, and Seokho Yoon
College of Information and Communication Engineering

Sungkyunkwan University
Suwon, South Korea

e-mail: syoon@skku.edu

Abstract— This paper proposes a novel estimation scheme of
the timing offset for orthogonal frequency division
multiplexing transmission over multipath fading channels. We
first design an impulse-like correlation function and obtain the
sample standard deviation of the correlation values, and then,
develop a decision metric based on the reciprocals of the
sample standard deviations for the timing offset estimation,
which has the maximum value when the timing offset is
estimated correctly. Unlike the conventional schemes, the
proposed scheme exploits the change in statistics by the first-
arriving path rather than the magnitude itself of the first-
arriving path. Numerical results show that the proposed timing
offset estimation scheme offers a performance improvement
over the conventional schemes in various multipath fading
channels.

Keywords- OFDM; timing offset estimation; multipath fading
channels; decision metric; standard deviation

I. INTRODUCTION AND RELATED WORKS
Compared with the single carrier communication systems,

Orthogonal Frequency Division Multiplexing (OFDM) has
many advantages such as simple equalization and high
spectral efficiency [1]. However, the OFDM is very sensitive
to the timing synchronization error [2]: Specifically, the
timing offset causes an error in determining the starting point
of the Fast Fourier Transform (FFT) window at the receiver,
eventually resulting in a serious Signal-to-Noise Ratio (SNR)
degradation [1]. Although several timing offset estimation
techniques [3]-[7] were proposed, all of them do not perform
well under the influence of the multipath fading common in
wireless channels, since they often mistake one of the
timings of the delayed paths for the (correct) timing of the
first-arriving path, i.e., they suffer from a problem of
ambiguity in timing. Thus, the timing offset estimation
techniques alleviating the influence of the multipath fading
were developed: [8] takes the earliest among the paths with
magnitudes exceeding a pre-determined threshold as the
first-arriving path, and on the other hand, [9] and [10]
perform a preprocessing based on power normalization to
increase the relative magnitude of the first-arriving path to
those of the delayed paths. Although these techniques offer
an improvement in timing offset estimation to some degree,
all of them would perform poorly when the first-arriving
path is attenuated severely or when the first-arriving path is
not the strongest one.

In this paper, thus, we propose a novel timing offset
estimation scheme with a higher degree of robustness to the
multipath fading, where we exploit the change in statistics by
the first-arriving path rather than the magnitude itself of the
first-arriving path, unlike in the conventional schemes.
Specifically, we estimate the timing offset based on the
change in the reciprocal of the standard deviation of the
correlation samples of the OFDM symbol. From numerical
results, the proposed scheme is confirmed to provide a better
estimation performance over the conventional schemes in
multipath fading environments.

In the following sections, we describe the OFDM system
model in multipath channel environments (Section II),
propose a novel timing offset estimation scheme (Section III),
compare the performance of the proposed and conventional
schemes (Section IV), and finally, conclude this paper with a
brief summary (Section V).

II. SYSTEM MODEL
The baseband equivalent of the thn  received OFDM

sample ()y n can be expressed as

1

2 /

=0
() = () () (),

L
j fn N

l
y n m l s n l e w n


   (1)

where 1
={ ()}N

n NP
s n 

 is a transmitted OFDM signal comprising
the data part 1

=0{ ()}N
ns n  with size N and the Cyclic Prefix (CP)

part 1
={ ()}n NP

s n 
 with size ,PN  is the timing offset

normalized to the sample interval, f is the carrier
frequency offset normalized to the subcarrier spacing 1 / N ,

()m l is the thl  channel coefficient of a multipath fading
channel with length L , and ()w n is the complex Gaussian
noise sample with mean zero and variance 2 2= [| () |]w E w n ,
where []E  denotes the statistical expectation. In this paper,
we consider the timing offset estimation based on training
symbols and it is assumed that a training symbol 1

=0{ ()}N
ns n 

with two identical halves (i.e., () = (/ 2)s n s n N for
= 0,1, , / 2 1n N ) is used, as in other studies.

III. PROPOSED SCHEME

A. Generation of Impulse-like Correlation Function
Considering that the ideal form of the correlation

function for the timing offset estimation is the impulse-like

5Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 13 / 76

one, where the correlation is very high at the correct timing,
whereas the correlation remains very low at the incorrect
timings, we first generate

1

*

=0

() = () ()
N

k

A d y d k s k


 (2)

by correlating the received OFDM samples and a locally
generated training symbol samples, where d is the candidate
for the timing offset . As shown in Figure 1(a), ()A d has
three correlation peaks at and (/ 2),d N   and the two
correlation peaks at (/ 2)N  can be significantly reduced

by the product of 2()A d and
2/ 2 1

*

=0 =0

1() = () (/ 2)
1

N NP

i kP

C d y d i k y d i k N
N



    
   (3)

with *() the complex conjugate operation, as shown in
Figure 1(b), where

2() =| () | ()I d A d C d (4)
and it should be noted that ()C d is the moving average of the
absolute-squared correlation between the received OFDM
samples with length / 2.N Although ()I d has an impulse-
like form, it is severely distorted by multipath fading as
shown in Figure 2, where the multipath channel is assumed
to be Rayleigh distributed with an 8-path exponential Power
Delay Profile (PDP). Yet, we will propose a novel timing
offset estimation scheme exploiting the distorted (),I d since
it still keeps its impulse-like feature to some degree.

Figure 1. (a) A(d) and |C(d)| in the absence of channel distortion. (b) I(d) in the absence of channel distortion.

Figure 2. I(d) in a multipath Rayleigh fading channel with an 8-path
exponential power delay profile.

Figure 3. A magnified version of Figure 2.

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 14 / 76

B. Proposed Timing Offset Estimation Scheme
Using (),I d first, we obtain an initial timing offset

estimate Id as
 = arg max{ ()}.I d

d I d (5)

From Figure 3, then, we can expect that ()I  would be
within the interval I (I Id d d  ), where is such that
all channel paths are expected to be received within 1 
samples (i.e., { 1, , , }).PL L N   Denoting d in the
interval I by cd (i.e., { , 1, , }c I I Id d d d     ), thus,
we can make the following three observations: (i) The values
of ()cI d in the sub-interval II (1)I cd d     are much
smaller than those in the sub-interval III (),c Id d   (ii) the
values of I(d) in the sub-interval IV
(/ 2 1 1)I Id N d d        have statistics similar to
those of the values of ()cI d in the sub-interval II, but
different from those of the values of ()cI d in the sub-interval
III, and (iii) the timing offset  is the smallest value of cd in
the sub-interval III. Based on the observations, now, we can
model the estimating problem of the timing offset as the
detecting problem of the variation between the values of

()I d for / 2 1 1Id N d       and those of ()I d for
,Id d   and we exploit the sample standard deviation

0

2

= 2 2
2

1() = (()) ,
2 2

2

z
Nk

z I z k
N



 
   

 
 

 (6)

of ()I d for { 1, , , }I I Iz d d d      as a measure for
detecting the variation, where z is the sample mean of

()I d for 2 2 .
2
Nz d z     It should be noted that the

standard deviation is more sensitive to the variation of ()I d
compared with the variance, due to it being expressed in the
same unit as that of (),I d and thus, the standard deviation
would offer a better performance in detecting the variation
over the variance. Since  is the smallest value of cd in the
sub-interval III and ()cI d in the sub-interval III often varies

significantly, | () (1) |     is expected to be larger than
| () (1) |c cd d   in the sub-interval II, whereas to be
smaller than | () (1) |c cd d   in the sub-interval III. In
this paper, we thus propose to use

1 1 (1) ()() = =
() (1) () (1)

c c
c

c c c c

d dD d
d d d d

 
   

 


 
 (7)

as the decision metric for detecting the variation for
{ , 1, , }.c I I Id d d d      Unlike | () (1) |,c cd d  

()cD d has its maximum value at =cd  as shown in the
following: (i) () (1)c cd d   when < ,cd  and thus,

0() = 0
() (1)c

c c

D d
d d 




(ii) () (1)a    when

= ,cd  and thus, () 1() = ,
() (1) (1)

D  


     
 

 
and

(iii) () (1)cd    and (1) (1)cd    when

> ,cd  and thus, 1 1 1() = = ().
() (1) (1)c

c c

D d D
d d


   

 
 

The discussions above can be summarized as
(1) () 0, when < ,
() (1)

(1) () 1() = , when = ,
() (1) (1)

1 1 1< , when > ,
() (1) (1)

c c
c

c c

c c
c c

c c

c
c c

d d d
d d

d dD d d
d d

d
d d

  
 

  
   


   

  



   

 

 
  

 (8)

for { , 1, , },c I I Id d d d      where we can see that
()cD d has the maximum value when =cd  regardless of

the multipath components, and thus, the proposed scheme is
anticipated to achieve the robustness to the channel
attenuation and randomness. Finally, we can obtain the
timing offset estimate

ˆ = arg max{ ()}cdc
D d (9)

for { , 1, , }.c I I Id d d d      Figure 4 depicts the
structure of the proposed timing estimator comprising the
operations in (2)-(9).

Figure 4. The overall structure of the proposed timing estimator.

7Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 15 / 76

IV. NUMERICAL RESULTS
In this section, the timing offset estimation performance

of the proposed scheme is compared with those of the
conventional schemes in [3]-[10] in terms of the Mean
Square Error (MSE) and detection probability in multipath
fading environments. We assume the following real
transmission parameters: The IFFT size = 128,N the CP
length = 8,PN the carrier frequency offset = 0.1,f and 8-
path multipath Rayleigh fading channels with exponential
(E-) and uniform (U-) PDPs having the average power of

7/8 /8
=0

/ { }l l
l

e e  and 1/ 8, respectively. In addition, the
probability of false alarm and  are set to 510 and PN ,
respectively.

From Figure 5 showing the MSE and detection
performances of the timing offset estimation schemes as a
function of the SNR defined as 2 2[| () |] / wE s k  over the
multipath fading channels, we can clearly see that the
proposed scheme provides a better performance in timing
estimation over the conventional schemes as expected.
Especially, from the figures, it is observed that the difference
in performance is more significant with the E-PDP than with
the U-PDP of the multipaths, which stems from the fact that
the variation in statistics by the first-arriving path is more
pronounced compared with those of the delayed paths with
the E-PDP than with the U-PDP of the multipaths, and thus,
the advantage of the proposed scheme based on the change
in statistics by the first-arriving path is more prominent with
E-PDP over the conventional schemes based on the
magnitude itself of the first-arriving path. In addition, the

Figure 5. The MSE performances of the timing offset estimation schemes
in an 8-path multipath fading channel with (a) exponential power delay

profile (E-PDP) and (b) uniform power delay profile (U-PDP).

Figure 6. The detection probabilities of the timing offset estimation
schemes in an 8-path multipath fading channel with (a) exponential power

delay profile (E-PDP) and (b) uniform power delay profile (U-PDP).

8Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 16 / 76

difference in performance increases as the value of SNR
becomes larger. This is because the influence of the
multipaths becomes more dominant over the noise in high
SNR region, and thus, the advantage of the proposed scheme
(designed to alleviate the influence of the multipaths)
becomes more obvious than it is in low SNR region.

In short, we can conclude that the proposed scheme
overcomes the multipath fading more efficiently than the
conventional schemes.

V. CONCLUSION
In this paper, we have proposed a novel timing offset

estimation scheme for OFDM transmission in multipath
fading channels. We have first designed a correlation
function having an impluse-like form, and then, have
developed a decision metric based on the standard deviation
of the correlation values to estimate the timing offset. From
numerical results, it is confirmed that the proposed scheme
provides a better MSE and detection performance compared
with the conventional schemes in various multipath fading
environments. Our future work is to verify the applicability
of the proposed scheme to more realistic channel
environments.

ACKNOWLEDGMENT
This research was supported by Basic Science Research

Program through the National Research Foundation (NRF)
of Korea under Grant 2018R1D1A1B07042083 with funding
from the Ministry of Education.

REFERENCES
[1] M. Morelli, C.-C. J. Kuo, and M.-O. Pun, “Synchronization

techniques for orthogonal frequency division multiple
access (OFDMA): a tutorial review," Proc. IEEE, vol. 95,
no. 7, pp. 1394-1427, July 2007.

[2] R. V. Nee and R. Prasad, OFDM for Wireless Multimedia
Communications, Boston, MA: Artech House, 2000.

[3] T. M. Schmidl and D. C. Cox, “Robust frequency and
timing synchronization for OFDM," IEEE Transactions on
Communications, vol. 45, no. 12, pp. 1613-1621, Dec.
1997.

[4] H. Minn, M. Zeng, and V. K. Bhargava, “On timing offset
estimation for OFDM systems," IEEE Communications
Letters, vol. 4, no. 7, pp. 242-244, July 2000.

[5] K. Shi and E. Serpedin, “Coarse frame and carrier
synchronization of OFDM systems: a new metric and
comparison," IEEE Transactions on Wireless
Communications, vol. 3, no. 4, pp. 1271-1284, July 2004.

[6] J. W. Choi, Q. Zhao, and H. L. Lou, “Joint ML estimation
of frame timing and carrier frequency offset for OFDM
systems employing time-domain repeated preamble,” IEEE
Transactions on Wireless Communications, vol. 9, no. 1, pp.
311-317, 2010.

[7] J. Liu, C. Wei, X. Zeng, J. Lu, and M. Wang, “Research on
timing synchronization algorithms for CO-OFDM systems,’
in Proc. International Conference on Optical
Communications and Networks (ICOCN), 2016.

[8] A. Awoseyila, C. Kasparis, and B. G. Evans, “Improved
preamble-aided timing estimation for OFDM systems,"
IEEE Communications Letters, vol. 12, no. 11, pp. 825-827,
Nov. 2008.

[9] S. Suyoto, A. Kurniawan, and S. Sugihartono “Timing
estimation based on normalized 3rd-order central moment
for symmetric correlator in OFDM systems,” in Proc.
International Conference on Information Technology
Systems and Innovation (ICITSI), pp. 135-158, 2014.

[10] S. Suyoto, I. Iskandar, S. Sugihartono, and A. Kurniawan,
“Improved Timing Estimation Using Iterative
Normalization Technique for OFDM
Systems,” International Journal of Electrical and Computer
Engineering (IJECE), vol. 7, no. 2, pp 905-911, 2017.

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 17 / 76

Efficient Video-Based Packet Multicast Method for Multimedia Control in Cloud
Data Center Networks

Nader F. Mir, Abhishek T. Rao, and Rohit Garg
Department of Electrical Engineering
San Jose State University, California

San Jose, CA, 95195, U.S.A
email: nader.mir@sjsu.edu

 Abstract— The objective of this paper is to demonstrate the best
architectural remedy with the required QoS under running that
can handle high end real time streaming traffic while
multicasting. Since streaming media accounts for a large portion
of the traffic in networks, and its delivery requires continuous
service, it is required to analyze the traffic sources and investigate
the network performance. IP multicasting technology adds
tremendous amount of challenge to a network as streamed media
delivered to users must be multiplied in volume. In this paper, we
first demonstrate a study of the complexity and feasibility of
multicast multimedia networks by using different multicast
protocols and video sources. In our proposed method, we then
create peer-to-peer (P2P) and data center topologies in order to
analyze the performance metrics. The implementation and
evaluation of the presented methodology are carried out using
OPNET Modeler simulator and the various built-in models.
Further, we implement performance tests to compare the
efficiency of the presented topologies at various levels.

Keywords-video streaming; cloud data centers; multicast;
multimedia; performance evaluation; video codecs.

I. INTRODUCTION
Over the years, major development in the industry have

been involved in the integration of various multimedia
applications. Delivery of streaming media (video on demand),
e-learning with minimum delay and highest quality has been
one of the major challenges in the networking industry. Video
service providers, such as Netflix, Hulu are constantly changing
the architecture in order to service these needs. These service
providers face stiff competition and pressure to deliver the next
generation of streaming media to the subscribers. The next
generation media can be divided into categories: real-time and
non-real time. Examples of real time can be live streaming and
video conferencing and non-real time can be e-learning and
video on demand [1]. The next generation of streaming media
[2] involves a large number of subscribers whose delivery is
closer aligned with the latest protocols than with the traditional
systems. In such cases, it is required that the service providers
upgrade their infrastructure and support them [3].

One of the main challenges in the multimedia industry that
motivates us to look into it in this paper is multicasting the
video streams. IP Multicast is one of the major techniques that
can be used for efficient delivery of streaming multimedia

traffic to a large number of subscribers simultaneously. Group
membership, unicast and multicast routing protocols are mainly
required for multicast communications [4]. Inter Group
Membership Protocol (IGMP) utilized in our study maintains
one of the most commonly used multicast protocols at user
facility site. IGMP is used to obtain the multicast information in
a network. Unicast routing protocols can be distance vector or
link state, the latter being preferred due to the dynamic reaction
of these protocols to changes in topology. Multicast routing
protocols can be integrated with the unicast routing protocol or
can be independent of them. Protocols, such as the Multicast
Open Shortest Path First (MOSPF), depend on the underlying
unicast protocols used, whereas protocols, such as Protocol
Independent Multicast (PIM), are independent on the type of
unicast routing protocols used. A combination of IGMP,
MOSPF and PIM in sparse mode or dense mode can be used
for successful implementation and efficient delivery of
multimedia traffic in networks [4].

Multicast routing enables transmission of data to multiple
sources simultaneously. The underlying algorithm involves
finding a tree of links connecting to all the routers that contain
hosts belonging to a particular multicast group. Multicast
packets are then transmitted along the tree path from source to
destination (single receiver or group of receivers belonging to
a multicast group). In order to achieve the multicast routing
tree, several approaches have been adopted. Group-shared
tree, source based tree and core based tree are some which are
explained here.

a. Group-based tree: In this approach a single routing
tree is constructed for all the members in the
multicast group

b. Source-based tree: This involves constructing a
separate routing tree for each separate member in the
multicast group. If multicast routing is carried out
using source-based approach, then N separate routing
trees are built for each of the N hosts in the group [7].

c. Core-based tree: This is a multicast routing protocol,
which builds the routing table using a group-shared
tree approach. The tree is built between edge and core
routers in a network, which helps in transmitting the
multicast packets.

MOSPF and PIM use one of the above mentioned
approaches in the transmission of packets. As PIM is the

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 18 / 76

multicast routing protocol used in the implementation, we
discuss the working of PIM.

PIM is a multicast routing protocol that is independent of
the underlying unicast routing protocols used [7]. PIM works
in two modes- dense mode and sparse mode. In the former
mode the multicast group members are located in a dense
manner and the latter approach has the multicast group
members distributed widely. PIM uses Reverse path
forwarding (RPF) technique in dense modes to route the
multicast packets. In dense mode, RPF floods packets to all
multicast routers that belong to a multicast group whereas in a
sparse mode PIM uses a center based method to construct the
multicast routing table. PIM routers which work in sparse
mode sends messages to a center router called rendezvous
point. The router chosen to be rendezvous point transmits the
packets using the group based tree model. As seen in Fig. 1,
the RP can move from a group based tree model to a source
based approach if multiple sources are specified.

The rest of this paper is organized as follows: Section II
provides a detail of our architecture and its functionality and
Section III presents a performance analysis of the designed
architectures. Finally, Section IV concludes the paper.

II. NETWORK ARCHITECTURE

Network architecture has been designed from service
provider’s and user’s perspective. Network service providers
are concerned with the available bandwidth and utilization of
resources whereas end user’s main concern is with the
delivery of streaming media with lowest time and maximum
efficiency. In order to obtain the various parameters that are
required for the best design of multimedia network, two
network models were implemented and analyzed.

A. Implemented Peer to Peer (P2P) Network Design
Peer to peer network model is a distributed architecture

where the application is transmitted between source and
destination through peers. Applications such as music sharing,
file sharing use peer-to-peer network model for transmitting
the data. A peer-to-peer network was built using the values as
shown in Table I. The network architecture shown below
represents an organizational division where the admin
department is the source of multimedia traffic, which is
simultaneously streamed to the remaining departments namely
the HR, finance and IT. The topology contains two backbone
routers connected back-to-back, a video streaming source is
configured and stored in the admin department, where the
video frames are encoded with a H.264 codec and generating a
frame rate of 15-20 frames per sec. The backbone routers are
configured with PIM-DM as the multicast protocol that is
responsible to carry multicast packets. The topology diagram
can be seen in Fig. 2.

Figure 1. Sample diagram of multicast routing

Figure 2. Peer to Peer (P2P) Network Topology

TABLE I. CONFIGURATION PARAMETERS FOR A PEER TO PEER NETWORK

DESIGN
Link speed

(in
Mbps)

Frame size Frame
interarrival

rate

Video
Codec

Multicast
protocol

used

100 128x120 10 fps H.264 PIM-DM

100 128x240 15fps H.264 PIM-DM

1000 352x240 30 fps H.264 PIM-DM

B. Implemented Data center topology

A data center contains certain facilities for computing, data
storage, and other technology resources distributed over
different parts of the world. Data center architecture is divided
into access, distribution and core layers. Access layers consist
of switches that are connected to servers, distribution layer
contains switches which transfer the data from access to core
layers, and core layer has high speed switching circuitry that
transmits the data over WAN links and to other sites. The data
center testbed topology implemented in this paper is shown
Fig. 3.

11Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 19 / 76

Figure 3. Data Center Topology as the test bed for multimedia

streaming

The topology has been implemented taking into account
redundancy at all levels. The topology responds dynamically
to failures at link, path and device level. Scaling the number of
nodes, both horizontally and vertically has been considered in
order to analyze the performance metrics of the network.
Streaming media content stored at the servers are configured
for varying bit rates and varying frame sizes. OPNET
simulator has been used as the simulation tool for
implementing and testing multicast multimedia traffic detailed
metrics that are used for data center implementation has been
shown in the Table II.

TABLE II. CONFIGURATION PARAMETERS FOR A DATA CENTER
Number of servers per rack 2

Number of TOR switches used per rack 2

Number of distribution switches per rack 2

Number of core switches per rack 1

Total number of servers 8
Total TOR Switches 8

Total distribution switches 4
Total Core switches 2
Link speeds in data centers 1000 Mbps
Link speeds to WAN PPP DS3
Video Application and codec used Video streaming,

H.264

Frame sixe Constant (5000)

Bit rates Constant (10 fps)

III. PERFORMANCE ANALYSIS

The configuration parameters for used for the performance
evaluation are shown below in Table III. Since backbone
routers are majorly involved in the transmission of traffic over
the internet, Ethernet load across these links has been
considered. As the frame size increases load across the
backbone links increases, which leads to increase in the
delivery of media to destination.

TABLE III. VIDEO CONTENT CONFIGURATION PARAMETERS
Test

Name
Frame Size
(in bytes)

Video
Codec
Used

Frame
Inter-arrival

Time

Ethernet Load
Across the Link

(packets/sec)

Video1 15,360 H.264 10 Frames/sec 280

Video2 5,000 H.264 Exponential 530

In order to reduce the end to end delay, latency and

prioritize traffic Quality of Service (QoS) was implemented.
Opnet simulator has various built-in QoS profiles, some of
them being WFQ, FIFO, priority queueing. Differentiated
services code point based QoS is being used in this
implementation wherein based on the priority of traffic
delivery, a certain level of service is configured depending on
which resources are allocated along the path of delivery.

Now, we present the Ethernet load test – a performance
metric which determines the amount of data packets that are
carried by the network. Although each link in the network
carries data packets WAN / core routers are chosen for
analysis. In peer-to-peer topology mentioned earlier, the links
connecting the backbone routers are considered, whereas in a
data center topology core router links/WAN links have been
chosen.

The variation in the graph can be explained as follows. In
this case the bit rate and frame size s, both have been kept as
exponential increasing functions. From Fig. 4 it can be
observed that in a two node network since there is a single link
connecting the backbone routers, Ethernet load across these
links is considerably higher than that of a multi node model
where, PIM builds a tree structure (source based or center
based) for sending the multicast packets. As a result, the load
is distributed across various links thereby reducing the failure
percentage. One more alternative that can be used is port-
channel can be configured to distribute the load across the
links connecting the routers. Over the time period considered
it was observed that the load was higher in a two mode
network and lesser in a multi node network.

Figure 4. Comparison of Ethernet Load between 2 nodes and multimode

case

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 20 / 76

Our next experiment is concerned with the queueing delay
which is the amount of time that a packet waits in the router’s
queue before being sent onto the network. This is one of the
most important parameters for multicast networks as an
increase in the queueing delay can cause significant delay in
the transmission of packets across the network. Queueing
delay can be due to many factors, such as buffer size in a
router, router’s processing capacity, link speed used, number
of hops from source to destination. In this analysis, the
queueing delay has been analyzed for a two node and a multi-
node environment. From the graphs shown in Fig. 5, it can be
observed that although in a two node network links of higher
speed were used, when packets of multiple applications arrive,
a two node network experienced significant queueing delay
which led to the delay in the transmission of packets. Since no
QoS was configured all the packets were serviced based on
packet arrival times. The graph for a 2 node network shows
peaks of highest queueing delay and lows of least queueing
delay. This is due to the fact that when packets related to
multiple applications arrive there has been peaks of high
queue delay and when packets related to single applications
arrive less queueing delay has been experienced. In order to
have less queueing delay priority traffic can be classified
based on QoS policies which helps in serving these packets
better.

Next, we consider a test on QoS - a mechanism which is
used to analyze the performance of networks. QoS policies
configured ensures traffic prioritization and reservation of
resources along the path from source to destination. QoS plays
a major role in multimedia networks where defining QoS
policies defines the traffic priority when real time multimedia
traffic and interactive media is involved. Since these types of
traffic have rigid delay constraints defining QoS policies for
these types can result in prioritizing them when requests for
other traffic are in queue.

Simulation results of QoS implementation is shown in Fig.
6. Since real time interactive media could not be created in a
simulation environment, two video sources (video1 and
video2) were created and video1was configured with a WFQ
QoS profile traffic group of video 1 being set to high priority
and traffic group of video 2 being set to best effort with no
QoS configured. From the plots in the figure, it can be
observed that over a period of time when requests arrive for
video1 and video2 packets requesting information, video1 is
serviced with less packet delay than those packets for video2
while multicast flow is also included in the configuration.
Since the IGMP convergence time was 2 min the QoS traffic
servicing has started after the first few minutes.

Finally, the latency is our last performance metric to focus
on. The latency is the amount of delay involved in
transmitting the data from source to destination. For
calculating the Latency issues in network different pixel sizes
were chosen for analysis. Three different Pixel sizes were
configured over a period of time with link speed and other
parameters being kept constant. The link speed was defined

to be 100 Mbps and pixel sizes of 352x240, 128X240 and
128X120 were defined with frame interarrival rates to be
logarithmic. After several tests it was observed that the latency
in the transmission of a high quality video was more compared
to the latencies of the transmission of a video of lesser
resolution as shown in Fig. 7. If a video of high quality has to
be transmitted in minimum time, then separate channels can
be used for high definition video where source specific trees
can be used for routing thereby achieving successful routing
of packets.

Figure 5. Comparison of queueing delay between 2 nodes and multimode

case

Figure 6. QoS servicing of priority and non-priority traffic

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 21 / 76

Figure 7. Comparison of Latency of various frame sizes.

IV. CONCLUSION
In this paper, we designed and implemented peer to peer

and data center topologies. The two topologies were
implemented for various video streaming applications such as
video conferencing and video streaming. The parameters of
these video sources were changed in to measure the
performance metrics of the multicast networks. Parameters
such as video codecs, frame size, frame interarrival rate, link
speed, QoS were changed for analysis. From the analysis it
was observed that a multitier architecture connected to high
speed links was best suited for high end real time traffic.
Further it was observed that the QoS configuration for these
real time traffic reduces the packet end to end delay and the
latency of these packets was also less as compared to other
packets. Building a multitier not only helped in better load
distribution of traffic across links but also this type of
topology was better equipped to handle failures at device,
links and server levels. This paper also covered the different
multicast routing protocols that can be used and how the
routing table can be constructed.

REFERENCES
[1] K. Oe, A. Koyama, and L. Batolli, “erformance evaluation of multicast

protocols for multimedia traffic,” IEEE Xplore document, IEEE 27th
International Conference on Advanced Information Networking and
Applications (AINA), 2013.

[2] T. Do, K. Hua, and M. Tantaoui, “P2VoD: Providing fault tolerant
video-on-demand streaming in peer-to-peer environment.” Proc. of the
IEEE ICC 2004. Paris: IEEE Communications Society, 2004.

[3] B. Cheng, L. Stein, and J. Hetal, “Grid Cast: Improving peer sharing
for P2P VOD,” ACM Transactions on Multimedia Computing,
Communications, and Applications, vol. 4, 2008.

[4] B. Quinn and K. Almeroth, “IP Multicast Applications: Challenges and
Solutions.” RFC, 2001, ACM Digital Library.

[5] “OPNET Technologies Inc. OPNET Modeller Product Documentation
Release 14.5,” OPNET Modeller, 2008.

[6] X. Sun, and J. Lu, “The Research in Streaming Media OnDemand
Technology based on IP Multicast,” 3rd International Conference on
Computer and Electrical Engineering, 2010.

[7] http://www2.ic.uff.br/~michael/kr1999/4-network/4_08-mcast.htm,
Access date: July 2018.

[8] Z. Bojkovic, B. Bakmaz, and M. Bakmaz, “Multimedia Traffic in New
Generation Networks: Requirements,” Journal of Control and
Modeling, 2016.

[9] S. Khanvilkar, F. Bashir, D. Schonfeld, and A. Khokhar, “Multimedia
Networks and Communication,” 2015

[10] X. Wang, C. Yu, and H. Schulzrinne, “IP Multicast Simulation in
OPNET,” Semantic Scholar, 2015.

.

14Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 22 / 76

Non-binary Encoded STBC-CPM Signals

for Wireless Slicing Networks

Piotr Remlein
Chair of Wireless Communications,
Poznan University of Technology

Poznan, Poland
e-mail: piotr.remlein@put.poznan.pl

Abstract—The paper considers a wireless transmission system in

a multiple-user environment that can support slicing networks.

It involves a combination of non-binary convolutional codes and

Space Time Block Codes (STBC) technique with narrowband

Continuous-Phase Modulation (CPM) for transmission in an

uplink channel using the Frequency Division Multiple Access

(FDMA) method. Energy efficiency signals, e.g., Continuous

Phase Modulation could be used for transmission managing or

feedback information signals in return channels of slicing

networks. We analyse performance of a transmission in such

return channels which apply FDMA method with coded CPM

signals via computer simulations. In order to reduce the Bit

Error Rate (BER) a concatenation of CPM with non-binary

convolutional codes over ring and STBC technique has been

used. The spectral efficiency of investigated system is improved

by reducing the inter-carrier frequency spacing and using a low-

complexity iterative algorithm for Inter-Carrier Interference

(ICI) cancellation at the receiver. BER results obtained in

computer simulations are presented for the proposed solution.

The results suggest that FDMA coded STBC-CPM transmission

might constitute a desirable option for return channels in slicing

networks.

Keywords-Continuous Phase Modulation; Frequency Division

Multiplexed system; Slicing Networks, Non-binary codes, Inter-

Carrier Interference Receiver

I. INTRODUCTION

The network slicing has recently been proposed in the
industry solutions for wireless networks as an enabler of
network service convergence and on-demand customized
services [1]–[3]. The network slicing can support on-demand
tailored services for distinct application scenarios at the same
time using the same physical network. Supported by network
slicing, network resources can be dynamically and efficiently
allocated to logical network slices according to the
corresponding Quality of Service (QoS) demands. The
authors in [4] proposed a network slicing mechanism for
network edge nodes to offer low-latency services to users.
The mobility management schemes and an optimal gateway
selection algorithm to support seamless handover was
described. In [5], a resource allocation scheme with the
consideration of interference management was presented. In
[6], a flexible software defined networking (SDN) based 5G
network architecture was proposed. The SDN was used to
allocate physical network resources to slices within a local
area and to perform scheduling among slices. The research

on mobility management in network slicing systems has
been focused mostly on SDN based control and handover
procedures [6]–[8].

In this article, we propose and investigate the
transmission method which can be used in such systems to
provide managing and control signals in the return channels.

In the paper, the focus is on FDMA CPM systems which
are power and spectral efficiency. We concentrate on the
study of non-binary coded STBC-CPM signals in an uplink
scenario. The CPM signals are well suitable for wireless
return channel transmission through its features constant
envelope and its disruptions immunity occurring when
signals are transmitted [9]. Additionally, CPM signals are
resistant to non-linear distortion of power amplifiers. Multiuser
FDMA CPM systems wherein all users employ a portion of the
spectrum have been studied in, e.g., [10] – [13].

In order to increase the reliability or bit rate of
telecommunication systems, the multi-antenna Multiple
Input Multiple Output (MIMO) technique is used more and
more often [14]. The technique involves multiple antennas
on the transmitter and receiver sides. Employing the MIMO
technique in wireless systems allows the use of Space-Time
Codes (STC), improving transmission quality [14]. The one
of the most popular STC codes and widely used in MIMO
systems are space-time block codes (STBC) [15]. These
codes are orthogonal and can achieve full transmit diversity
specified by the number of transmit antennas. In [16] and
[17], the authors studied CPM signals encoded using the so-
called orthogonal space-time codes. The CPM signals
concatenated with STBC codes are characterized by a low bit
error rate attainable at a simultaneously low receiver
complexity. Neither of the above solutions for MIMO
transmission concerned FDMA CPM systems.

In order to obtain a further improvement in energy
efficiency, CPM was combined in classical systems with an
external binary Convolutional Encoder (CE) and a mapper. It
has been shown that a CPM scheme can be decomposed into
a Continuous Phase Encoder (CPE) followed by a
memoryless modulator (MM) [18], where the CPE is a CE
over a ring of integers [19]. Therefore, a natural way to
combine CPM with an outer CE is to use a CE over the same
ring of integers. Since the CE and CPE are over the same
algebra, no mapper is needed, and an extra coding gain was
reported [19].

The literature has discussed the aspects of increasing the
spectral efficiency of systems employing CPM and FDMA,

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 23 / 76

e.g., in [12], [13] but STBC coding concatenated with
convolutional codes over ring in multiuser scenario has not
been taken into consideration.

This paper considers a wireless MIMO FDMA
transmission in return channel of slicing networks. It
involves a combination of non-binary convolutional codes
with STBC and CPM signals for transmission in an uplink
channel using the FDMA method. For a more efficient
available band utilization, the distances between individual
sub-carriers are reduced. Such a solution causes the
deterioration of transmission quality due to the occurrence of
ICI. In order to reduce the BER in such a system, a
combination of CPM with non-binary convolutional codes
over a ring has been used and a low-complexity iterative
algorithm for ICI cancellation was employed on the receiver
side.

The paper is organized as follows. In Section II,
properties of CPM modulation are presented. The description
of the convolutional codes over ring is included in
Section III. Section IV presents the considered system.
Section V provides the obtained simulation results. The
paper is summarized and concluded in Section VI.

II. CONTINUOUS-PHASE MODULATION

A general form of a continuous-phase modulation
describes the following formula [9]:

x�t, α� = ����
�

cos�2πf� + φ�t, α� + φ�� (1)

where ES is the energy per symbol, T is the symbol interval,
f0 is the carrier frequency, φ� is the initial phase, α = (…, 0-1,
α0, α1, …) refers to a sequence of data symbols adopting one
of the values from the set:

α� ϵ �±1, ±3, … , ±(M − 1)� (2)

where M is the cardinality of the set and is typically chosen
as a power of 2.
Phase φ�t, α� , in which the transferred information is
included, may be described as follows:

φ�t, α� = 2πh∑ α�q�t − iT��
��	� (3)

where h is the modulation index defining the value by which
the phase changes in each modulation interval.

CPM signals are characterized by the following
parameters: modulation index h, pulse length L and phase
response function q(t), or its derivative g(t), the frequency
response function. One of the parameters having an influence
on the spectral characteristics of CPM signals is the shape of
a frequency pulse g(t) [9]. In this paper, CPM signals with a
rectangular (REC) pulse are analyzed.

The CPM modulator may be performed as cascade
concatenation of a continuous-phase encoder (CPE) and
memoryless modulator (MM). Such a system is known as the
Rimoldi decomposition [18]. The CPE is a convolutional
encoder that performs the function of a CPM modulator

memory. The memoryless modulator assigns relevant signal
shapes to symbols received from the CPE.

To increase CPM signals’ resistance to different types of
interference arising during transmission, a connection of the
CPM signal modulator system with an external encoder is
employed. Most frequently it is a convolutional coder. Such
a solution is known as Serially-Concatenated Convolutional
Coder (SCCC) [11]. A block diagram of the CE and
modulator’s serial concatenation is shown in Figure 1.

Figure 1. Serially concatenated convolutional encoder CE and CPM
modulator.

The convolutional encoder is connected to the modulator
by an interleaver and a mapper. The mapper is no needed if
external convolutional encoder connected to CPE of CPM
modulator are over the same ring of integers modulo-M. The
external convolutional encoder CE with rate R
� is equipped
with a symbol puncturer with the rate R��
 . The overall

encoding rate R, with the puncturing operation allowed for, is:

R = R
�R��
 (4)

The discussed method of serially concatenation of the
external convolutional encoder and CPM is called in
literature a SCCC-CPM and guarantees obtaining of a low
BER. There is obtained with the iterative receiver which
makes many iterations between the CPE decoder and the
decoder of the external convolutional code CE to make a
decision on the transmitted information [11].

III. PROPERTIES OF NON-BINARY CONVOLUTIONAL

CODES OVER RING

In this paper, we concentrate on the usage of non-binary
convolutional codes known as convolutional codes over
rings [19]-[21]. These codes in many cases have larger
Euclidean distances than binary codes over GF(2) [19] [21].

In Figure 2, it is shown a realization of the systematic
feedback convolutional encoder of rate R
� = k/n, n=k+1.
Input to the encoder, at time t, is information vector Ut with
M-ary elements ut

(i)
 belonging to the ring ZM={0, 1, 2, ... ,M-1}

Ut = (ut
(1),

 ut
(2)

, ..., ut
(k)

) (5)

The convolutional encoder produces a coded sequence of
the symbols which belong to the same ring ZM

Vt = (vt
(1)

, vt
(2)

, ..., vt
(n)

) (6)

where n = k+1.

Convolutional

binary encoder
Mapper CPE

Memoryless

modulator

CPE SISO
decoder and

demapper

Memoryless
demodulator

Channel

DeInterl.

Interl.

Interl.

Convolutional
SISO

decoder

???

??

??(??; ??)

??(??; ??)

CPM modulator

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 24 / 76

u

u

u v

v

v

v

Figure 2. Systematic feedback convolutional encoder over the ring of
integers modulo-M (ZM).

The coefficients of the encoder in Figure 2 are taken
from the set {0,...,M-1}. The memory cells are capable of
storing the ring elements. Multipliers and adders perform
multiplication and addition respectively in the ring of
integers modulo-M.

The encoder output Vt at time t due to the input Ut is:

Vt =Ut G, (7)

where G denotes the generator matrix of the encoder [21].
In Figure 3, we show an example of the systematic

convolutional encoder with feedback this is the encoder over
the ring Z4 of integers modulo-4.

Figure 3. The systematic convolutional encoder over ring ℜ=Z4.

The code rate is R��=1/2 (k=1, n=2) and the generator
matrix is:










++

++
=

2

2

331

23
1)(

DD

DD
DG

 (8)

At instant t, an information vector with 4-ary symbols
belonging to the ring Z4, inputs the encoder. The
convolutional encoder generates encoded vector which
contains sequence of the symbols elements belonging to the
same ring Z4. The encoder coefficients in Figure 3 are from
the set {0,1,2,3}. The memory cells are capable of storing
the ring elements. Multiplications and additions are
performed in the ring of integers modulo-4.

IV. FDMA SYSTEM WITH RING ENCODED

STBC-CPM SIGNALS

In this paper, FDMA system for uplink wireless
transmission, using ring encoded CPM signals is analysed.
To obtain the best spectral efficiency of the examined system
with multiple users, the space between carrier frequencies
are minor. The tight inter-carrier frequency spacing between
adjacent channels causes strong ICI. To eliminate the ICI in
the receiver, an ICI cancelation algorithm is employed.

Therefore, it is possible to obtain high spectral efficiency and
low bit error rate [13]. Asymptotic spectral efficiency (ASE)
can be determined assuming that the signal to noise ratio
approaches infinity. ASE is directly proportional to the
encoding rate of CE �R���	and the number of bits falling for
one symbol and inversely proportional to the value of
normalized spacing between carrier frequencies. ASE for
MIMO systems with multiple transmit antennas (MT) is
given by means of the following formula:

ASE � lim��

��
→�

SE � M�
� ��	�

���
� (9)

where Eb/N0 is the signal to noise ratio, R is the encoding
rate, and	���	is the normalized spacing between inter-carrier

frequencies, M-ary modulation. The obtained overall spectral
efficiency depends strictly on the number of transmission
channels used in the defined frequency band. The encoder
rate R is described by relation (4) and can be changed by the
rate of the puncturer whose value is changeable in order to
obtain specific spectral efficiency.

The CE encoder has a structure determined
experimentally, enabling low bit error rate. Performing
comparing performance of binary encoded CPM and non-
binary CPM, FDMA systems requires selecting codes of
equal complexity defined by the number of states. While
comparing CE one has to also take into consideration that the
comparison in only fair when binary and non-binary systems
achieving this same ASE are investigated.

The non-binary code that contributes to acquiring the
lowest BER was found for the examined FDMA CPM
system. Such defined optimal CE over the ring of Z
 that has
been found in the study and is described by the generator
matrix: �1, D	 � 	3, 3D	 � 	1�.

I this paper, we consider the reception of non-binary
encodes CPM signals in an FDMA system employing the
MIMO technique and STBC coding. An STBC-CPM system
analyzed in this paper is based on scheme described in [15].

The transmitted CPM signal vector can be expressed as it
was shown in [15].

x� � 	 �x��, x��, … , x����� (10)

where nT is the number of transmit antennas, and T denotes
the transpose of the vector [].

The modified Alamouti scheme [15] is used for two and
four transmit antennas FDMA CPM system. The
transmission matrix for two antennas is showed below
formula:

S � 	 �s� �s�∗
s� s�∗ (11)

In this case, the signals transmitted by the first and
second antennas into two time intervals are described by
equations x� � �s� 	� s�∗� and x� � �s�	s�∗�, respectively.

Similarly, we can identify the signals in the case of four
transmit antennas when transmission matrix is in the form:

17Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 25 / 76

Figure 4. Block diagram of the analyzed CPM system.

S =

��
��
	 s� s�

−s�
∗ s�

∗
s� s�

−s�
∗ s�

∗

s� s�
−s�

∗ s�
∗

s� s�
−s�

∗ s�
∗
�
��
�
 (12)

Figure 4 shows a block diagram of the proposed system
with STBC coding. At the input, each kth user binary
information sequence α�, … , α�	�, is Convolutional Encoded
(CE), interleaved (Int.) and converted into several (M�)
parallel streams in an STBC encoder. Each data stream is
conveyed to one of CPM modulators. In order to achieve
higher rates, the CE output is punctured as in [22]: a rate-
matching algorithm is used to obtain an appropriate coding
rate R. The interleaver (Int.) is a symbol, spread (S-random)
interleaver [22].

Each user’s transmitter consists of an CE, interleaver,
STBC encoder and a CPM modulator. The efficiency of an
STBC encoder depends on the number of transmit antennas.
The STBC encoder considered in the paper uses two or four
transmit antennas. Each user signal is characterized by a
distinct phase φ� and delay τ�, as typically occurs in uplink
systems.

The channel model used in the simulation takes into
account multipath propagation. The channel model has been
implemented as a Taped Delay Line (TDL) and it models a
channel with flat fading and Additive White Gaussian Noise
(AWGN) [14].

Each receive antenna receives a faded superposition of
MT simultaneously transmitted signals corrupted by additive
white Gaussian noise. The fading is assumed to be flat and
distributed according to a Rayleigh pdf. The random path
gains between transmit antenna m and receive antenna p,
hm,p(t) are independent complex Gaussian random variables
with zero mean and variance per dimension 1/2. The fading
is slow, such that the M�xM� fading coefficients are constant
during a frame, but vary from frame to frame. The AWGN
noise components np(t) are independent zero-mean complex
Gaussian random processes with power spectral density N0.

At the receiving end, the system consists of a MIMO
MMSE/STBC detector/decoder and a low-complexity
iterative algorithm to ICI cancellation [13].

With the assumption of uniform parameters of CPM, and
an equal number of transmit antennas MT for each system
user, the signal at the input of the p-th receiver antenna is
described by:

r��t� = ∑ ∑ ∑ g�,�,�
t − nτ�, α�,� ��	�
���

��	�

���
�	�
���

∙ e�����∆�
���� + n��t�, j = 0, … , M� − 1 (13)

where B is the number of intervals for which the STBC-CPM
signal is transmitted, for the analyzed in the paper system
with STBC encoding B=2 or 4.

The MMSE/STBC block realizes the STBC decoding
and computes the cost function, i.e., minimizes:

G���� = ���
��

H�H +
�� �

��
I���

	�

H� (14)

where H is the matrix of channel impulse response estimates,
I – identity matrix, N0 – spectral density of noise power,
upper index of quantity H

H
 denotes the Hermitian transpose

of matrix H and it is the sum of the operations of transpose
and complex conjugate of the matrix. Signal y from
MMSE/STC reaches the ICI cancellation block. The receiver
carries out ICI cancellation through a set of single-user MAP
detector/remodulator blocks, as described by Perotti et al.
[13]. The remodulators make use of the output of the MAP
detector to compute the remodulated signal sk

(i)
(t) relative to

the kth user and ith iteration. The channel decoder performs
two iterations loops. The inner loop is formed by the ICI
canceller, the MAP detector, the CPE SISO decoder and the
remodulator, while the outer loop involves the CPE SISO
decoder, the CE SISO decoder, the interleaver and the
deinterleaver between the inner CPE decoder and the outer
CE decoder. ICI cancellation can be performed while
executing the decoding iterations to enhance the receiver
performance. In such a case, after the inner CPE decoder is
executed, remodulation is performed. Then, interference
cancellation is performed and the CPM receiver, including
the inner CPE decoder, is again executed. The decoder starts
decoding a received code word executing NI inner iterations.
Then, it executes NO times an outer iteration followed by an
inner iteration. This way, ICI cancellation is performed as
part of the decoding iterations and it results in an improved
ICI cancellation [13]. On the final outer iteration, a decision
is made on the transmitted data symbols α��, … , α��	�.

V. SIMULATION RESULTS

The Monte-Carlo simulation method was used to
determine the BER for the described FDMA system with
STBC-CPM modulation concatenated with binary CE or CE
over the ring. The simulations have been performed with the

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 26 / 76

aid of a simulation program written in C++ using IT++
libraries, ver. 4.2 [23]. The analysis assumed that each user
transmits CPM signals with the same modulation and coding
parameters, and of equal strength. We established the ideal
power control, this means that the received signal power is
the same for all users. It was assumed that the standardized
value of the interval between the carrier frequencies of

consecutive channels ��� in the system is equal to 3/4, and

that the transmission is performed via 4 neighboring
channels (FDMA users). The signals are transmitted through
AWGN channel with spectral power density N0/2. The
transmitted packets were 1000 bits long. The simulation was
stopped if at least 100 errors occurred.

The analysis, for the FDMA system with CPM signals
and CE over the ring Z4, has been performed with reference
to binary encoded CPM modulation with the parameters
h=1/4, L=1 and the REC shape frequency pulse. The number
of iterations in the receiver was experimentally fixed as a
good trade-off between receiver performance and
complexity.

Two iterations (NI=2) in the interference cancellation
loop have been made and five iterations (NO=5) in soft
output non-binary MAP decoder. The CPM modulator is
concatenated with CE over the ring �1, D	 � 	3, 3D	 � 	1�	 or
the binary [7, 5] encoder (from [19], described in octal
notation), both with four states. The obtained BER results for
the CPM-FDMA systems with CE over a ring were
compared with BER for CPM-FDMA systems employing
binary CE, which has the same spectral efficiencies.
Figure 5 presents BER for systems employing convolutional
encoded CPM modulation concatenated with STBC
encoding for different numbers of receive antennas. In this
case, each of the four users transmitted signals via one, two
or four transmit antennas, and the receiver used one, two or
four receive antennas. In this scenario, the error rate at the
BER level of 10

-5
 obtained for the 2x2 system was worse

than the one obtained for the 4x4 system by about 3 dB and
better at the BER level of 10

-5
than the one obtained for the

1x1 system by about 4dB.

Figure 5. BER for STBC system (CPM: h = 1/4, M = 4, L = 1, Δ�T = 3/4),
4-users, with ICI cancelation and different numbers of transmit

and receive antennas.

In all cases, we observe that a slight improvement in
BER is achieved for the systems using binary encoded STBC
CPM signals comparing to the systems without
convolutional encoding. We can see that the best results of
BER can be obtained when concatenation STBC and non-
binary CE was used. It should be noted that, the SE for all
the systems 1x1 was equal 1 b/s/Hz, for systems 2x2
amounted 2 b/s/Hz and for 4x4 the SE was 4 b/s/Hz. BER
results obtained in computer simulations shoved that
proposed solution with non-binary CE gives noticeable
improvements compared with results for FDMA systems
without convolutional encoding.

VI. CONCLUSIONS

In this paper, a multiuser FDMA STBC-CPM
transmission with non-binary encoding has been proposed.
Through MMSE-based multiuser detection and low-
complexity iterative ICI cancellation, considerable
improvements in both BER are achieved with respect to
single antenna systems, while the multiuser receiver
complexity is kept low. A performance evaluation has been
presented to demonstrate the superiority of the proposed
multiuser FDMA STBC-CPM MIMO system. The study
shows that it is possible to increase transmission efficiency
by using CPM modulation and concatenation non-binary
convolutional encoding with STBC coding for MU
transmissions. The presented results show that proposed
method can be used in the slicing networks to the
transmission of the managing and the control signals.

ACKNOWLEDGMENT

This work has been partially funded by the Polish
Ministry of Science and Higher Education within the status
activity task 08/81/DSPB/8134 in the year 2018.

REFERENCES

[1] P. Rost et al., “Mobile network architecture evolution toward
5G,” IEEE Commun. Mag., vol. 54, no. 5, pp. 84–91, May
2016.

[2] M. Jiang, M. Condoluci, and T. Mahmoodi, “Network slicing
management & prioritization in 5G mobile systems,”
European Wireless 2016; 22th European Wireless
Conference, Oulu, Finland, pp. 1-6, 2016.

[3] Ericsson, Ericsson White Paper: 5G system, Jan. 2015.

[4] J. Heinonen, P. Korja, T. Partti, H. Flinck, and P. Poyhonen,
“Mobility management enhancements for 5G low latency
services,” 2016 IEEE International Conference on
Communications Workshops, Kuala Lumpur, pp. 68–73,
2016.

[5] H. Zhang et al., “Resource allocation in spectrum-sharing
OFDMA femtocells with heterogeneous services,” IEEE
Trans. Commun., vol. 62, no. 7, pp. 2366–2377, July 2014.

[6] V. Yazici, U. C. Kozat, and M. O. Sunay, “A new control
plane for 5G network architecture with a case study on unified
handoff, mobility, and routing management,” IEEE Commun.
Mag.,, vol. 52, no. 11, pp. 76–85, Nov. 2014.

[7] H. Song, X. Fang, and L. Yan, “Handover scheme for 5G C/U
plane split heterogeneous network in high-speed railway,”

19Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 27 / 76

IEEE Trans. Veh. Technol. vol. 63, no. 9, pp. 4633–4646,
Nov. 2014.

[8] S. Kuklinski, Y. Li, and K. T. Dinh, “Handover management
in SDN-based mobile networks,” 2014 IEEE Globecom
Workshops, Austin, TX, pp. 194–200, 2014.

[9] J.B. Anderson, T. Aulin, and C.-E. Sundberg, Digital Phase
Modulation. New York, London: Plenum Press, 1986.

[10] D. Bokolamulla and T. Aulin, “Multiuser detection for
continuous phase modulation over Rayleigh fading channels,”
IEEE Communications Letters, vol. 9, pp. 906-908, October
2005.

[11] P. Moqvist and T. Aulin, “Multiuser serially concatenated
continuous phase modulation,” International Symposium on
Turbo Codes, (Brest, France), pp. 211-214, 2003.

[12] A. Barbieri, D. Fertonani, and G. Colavolpe, “Spectrally-
efficient continuous phase modulations,” IEEE Transactions
on Wireless Communications, vol. 8, pp. 1564-1572, March
2009.

[13] A. Perotti, S. Benedetto, and P. Remlein, “Spectrally efficient
multiuser CPM Systems,” IEEE International Conference on
Communications (ICC 2010), Cape Town, South Africa, pp.
1-5, 2010.

[14] E. Biglieri, MIMO wireless communications. Cambridge
University Press, 2007.

[15] S. M. Alamouti, “A simple transmitter diversity scheme for
wireless communications,” IEEE J. Select. Areas Commun.,
vol. 16, no. 8, pp. 1451–1458, October 1998.

[16] B. Özgül, M. Koca, and H. Deliç, “Orthogonal Space-Time
Block Coding for Continuous Phase Modulation with
Frequency-Domain Equalization,” IEEE Trans. Commun.,
vol. 57, no. 12, pp. 3579–3584, Dec. 2009.

[17] G. Wang and X.-G. Xia, “Orthogonal space-time coding for
CPM system with fast decoding,” Int. Symp. Inform. Theory,
p. 107, 2002.

[18] B. E. Rimoldi, “A Decomposition Approach to CPM,” IEEE
Transactions on Information Theory, vol. 34, pp. 260-270,
1988.

[19] M. Xiao and T. Aulin, “Serially Concatenated Continuous
Phase Modulation with Convolutional Codes Over Rings,”
IEEE Trans. Commun., vol. 54, no. 8, pp. 1387-1396, 2006.

[20] J.L. Massey and T. Mittelholzer, “Convolutional codes over
rings,” 4th Joint Swedish-USSR Int. Workshop Information
Theory, pp. 14-18, 1989.

[21] R. A. Carrasco and M. Johnston, Non-binary error control
coding for wireless communication and data storage. Wiley,
2009.

[22] D. Divsalar and S. Dolinar, “Weight Distributions for Turbo
Codes Using Random and Nonrandom Permutations,” JPL
TDA Progress Report, vol. 42-122, pp. 56-65, Apr-Jun 1995.

[23] IT++ project, http://itpp.sourceforge.net/4.3.1/, accessed
August 2018.

20Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 28 / 76

Secure SDN-based In-network Caching Scheme for CCN

Amna Fekih,

 Isitcom,

 GP1 H-Sousse, Tunisia

emna.fekih@isetso.rnu.tn

Sonia Gaied,

 ESST,

Abassi H-Sousse, Tunisia

soniagaied3@gmail.com

Habib Youssef,

CCK,

 Univerity campus of Manouba,

Tunisia habib.youssef@fsm.rnu.tn

Abstract—The different technologies deployment for in-

formation exchange on the network and the terminal diver-sity

that support them, produce users unwittingly attracted to the

Internet that is everywhere in their daily lives. Users require a

high Quality of Service (QoS) especially for video streaming

applications that generate the main part of the internet traffic.

For service providers, it is important to reduce this traffic and

increase the Quality of user Experience (QoE). To meet these

needs, two additional keys must be exploited: routing and

caching. Content Centric Networks (CCN), which is one of the

most developed Information Centric Networks (ICN)

approaches, offers efficient management of caches at CCN

nodes, but the lack of scalable routing is one of the obstacles

that slow down its deployment at the internet level. Then,

Software Defined Networks (SDN) architecture has been

proposed to facilitate programming of the network and to

automate the management of the complex architecture but

without taking advantage of the capacity of the intermediate

caches of the connected nodes. To accomplish tasks, a CCN

node uses three tables, Content Store, Forwarding Information

Base, and Pending Interest Table, which present attacks to

privacy of content requesters and producers. In this paper we

propose a Secure In-network Caching Scheme (SICS) for CCN

networks based on SDN architecture taking advantage of its

global vision. SICS does not only improve cache hit rate and

reduce response time, but it also allows to monitor access to

CCN routers and detect attacks in order to block them. The

results of our model implemented in NS-3 simulator will be

presented and evaluated.

Keywords- CCN; SDN; in-network caching; popularity;

Security.

I. INTRODUCTION

The Internet architecture has long been based on the
concept of a stack of independent protocols, which requires
that all data exchanges via this network must be carried out
by establishing communication channels between the
network equipment. They are end-to-end, host-centric
communications. Today, the Internet is no longer a small
network connecting a small community of researchers but it
is a large global network connecting virtually all people and
organizations around the world. Its use itself is changed too.
The evolution of software technologies, improved storage
media capabilities, the heterogeneity of terminals and
connected equipment, and the nature of frequently used
applications such as video streaming [1]. All these factors
push researchers to revise, modify and even radically change

the current architecture in order to meet the needs of users
and service providers without offering temporary solutions to
attach them to the Internet architecture.

In recent decades, a simple analysis of network traffic

allows us to see that streaming video applications either live
or on demand are increasing explosively with the increase in
the number of users connected to the Internet. These
applications are very greedy in terms of spatial and temporal
resources. CCN [2]-[4] is an innovative paradigm that
attracts the atten-tion of several researchers. Its principle is to
provide content to users instead of establishing
communication channels as-sociated with its requests. It
aligns with the trend of Internet usage. Users do not look for
where and how the requested content will be delivered but
they check and compare when at what quality will be
received. CCN architecture saves energy consumption and
achieves green communication as it dramatically reduces
distances by pushing content to users. The important issue in
CCN is how to store and manage data packets in local caches
of CCN nodes in order to optimize network performance and
improve the quality perceived by users. Therefore, this
problem is discussed in this article to minimize total network
traffic. CCN that is based in-network caching using caches
operated at the nodes (Content Store) is able to respond
adequately to users’ expectations. But the deployment of
CCN equipment in existing networks is a critical issue as
their design strategies are totally different. In this context, the
SDN [5][6] architecture presents a real opportunity, via
network programming, to introduce the CCN functionality
such as caching and to improve it. The rest of this paper is
structured as follows: Related work will be detailed in
Section II. The next section describes original CCN and
SDN architectures. Section IV provides an overview of our
model and details its specifications. The results of our model
will be presented and evaluated in Section V. Finally, this
work will be closed by a brief conclusion introducing our
future work in Section VI.

II. RELATED WORK

In the last years, several works are focused on in-network
caching. Although all are aimed at the same objectives, the
techniques used are different. [9] exploited the cooperation
of the neighbor. The principle was to select cluster headers.
Then, they perform cooperative mechanisms of redundancy
and elimination avoidance to optimize caching performance.
In [10], the authors proposed an admission policy based on a

21Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 29 / 76

content discovery protocol that allows the router to decide
whether the transported content should be cached or not.
WAVE [11] is also a system that integrates router
collaboration to suggest caching of content blocks to the
downstream CCN router. The latter makes caching decision
by examining the content polarity and inter-chunk distance.
[12] proposed an SDN-based forwarding strategy in CCN as
an alternative to the basic strategy that causes additional
network traffic due to the flooding of interest packets. For
this purpose, the authors used two types of routers,
intermediate and gateway routers. The latter are responsible
for interconnecting clusters and redirecting inter-cluster
interest packets thus minimizing the traffic on the network.
[13] split the network into autonomous systems (AS). Each
AS selects a control node based on betweenness centrality
and cache replacement rate. Their idea is to map SDN
features in a CCN network to improve cache performance by
exploiting a cache table managed by control nodes.

In CCN, no data packet will be transported on the

network if it did not have an explicit request initiated by an
Interest packet. These explicit requests slow down DoS
attacks [14]-

Although CCN relies heavily on cryptography to authen-

ticate content, the dynamic nature of CCN routers produces
vulnerabilities related to these interior tables. The Pending
Interest Table (PIT) is critical since it exploits a stateful
routing of CCN network. PIT attack [17] is both easy to
perform and difficult to detect. A hacker can flood the PIT
table with requests for any content that results in the denial
of service of pending communications. In contrast to the
limited IPv4 / IPv6 address space, the CCN space is
delimited opening the door to FIB attacks by generating and
publishing content belonging to non-routable domains on
CCN network. An adversary looking to decrease caching
system performance uses a content store attack DoS.
Fortunately, this attack is difficult to achieve since it is
greedy in bandwidth.

Our approach is a hybrid solution inspired by the works

already mentioned. It is characterized by: i)The control is
provided by local SDN controllers whereas CCN routers are
simple forwarding devices. ii)A distributed content
popularity base that is filled and operated by local SDN
controllers. iii)A secure policy-based forwarding strategy
defined in [12] where the FIB tables are managed only by the
local SDN controllers. iv)A collaboration between CCN
routers and their local SDN controller defined in [13] is
adopted to ensure the visibility of content stored for CCN
routers in the same cluster. v)A new popularity-based
caching strategy that associates each content with local
popularity according to interest packets processed by
transited CCN router. Content may be marked by global
popularity. vi)Caching is supplemented by replication and
replacement policies based on content popularity, number of
CCN router claims (probe packet), and number of hops to
retrieve the data.

III. BACKGROUND

In this section, we describe the CCN and SDN
architectures. Table 1 presents the different aspects that
motivate our work [7][8].

TABLE I. TRADITIONAL IP NETWORKS VS CCN - SDN

Traditional

IP Networks

Content Centric

Networks

Software Defined

Networks

Control Tightly

coupled

control and

data planes

Forwarding

strategy

is separate from

the

routing strategy

Decoupling network

control and

forwarding functions

Native

cache

Not supported Supported (key to

success)

Not supported

Routing Hybrid Distributed

between

CCN routers based

on prefixes

Centralized,

managed by the

SDN controllers

A. CCN Architecture

Content Centric Networks is the most popular ICN archi-
tecture that motivates many researchers with its in-network
caching feature.

Naming: In CCN, names are hierarchical. This

architecture uses name prefix aggregation to ensure routing
scalability. Each content publisher uses a unique prefix to
name each content before publishing it. CCN defines two
types of packets. Clients use interest packets (INTEREST) to
express their requests by specifying the name and the data
packet (DATA) is the response provided by any cache router
with a copy of the requested content or by the data source.

Routing and Transport: In CCN, each router contains

three tables. Each is characterized by one or more well-
defined functionalities. The Content Store (CS) is used to
cache Named Data Object (NDO). The Pending Interest
Table (PIT) that contains a list of pending interests ensures
data delivery and the Forwarding Information Base (FIB),
which ensures requests forwarding. Subscribers send
INTEREST packets to express their requests by specifying
the requested NDO that arrive as DATA packets. The data is
sent only in response to an interest.

Caching: Unlike other ICN architectures that enable or

disable caching, CCN natively supports on-path caching. The
Content Store (CS) is a fundamental component in CCN that
can be compared to the buffer in IP routers but with a
persistent data storage capacity. When an Interest packet is
received, each content router verifies its CS first to deliver
the requested content directly from its local CS. And when it
receives a DATA packet, it stores the transported data in its
CS according to the defined caching policy. If there is no
match in CS, content router uses the FIB table to forward the
request and the PIT table to keep all received interest packets

22Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 30 / 76

requesting the same NDO. This removes unnecessary
transfers on the network.

Security: CCN uses a human-readable hierarchical
namespace to improve routing scalability. Security is
provided by the content publisher by signing each DATA
packet with its secret key. This packet contains a signature
over the name, the information included in the message and
information about the key used to produce the signature. So
the naming in CCN does not contain the publisher key which
makes self-certification impossible. The trust in the signing
key must be established by external means.

B. SDN Architecture

The technological revolution has made available a
diversity of services and a range of equipment and devices
that exceed the capacity of the current Internet. This is
obvious since the internet was not designed to support these
technologies. SDN is a new emerging network paradigm that
presents the results of research into virtualization and
automation solutions for hardware and software resource
management. Open Networking Foundation describes SDN
architecture that consists of three layers and different types
of APIs allowing communication between them.

Layers and Open API: From the bottom up, the infras-

tructure layer that consists of network devices that are simple
forwarding devices. The control layer is the heart of the SDN
architecture. It includes SDN controllers. The latter exploit
Open-API to control and manage the forwarding behavior on
the network. They communicate via interfaces: southbound,
northbound and east/westbound interfaces. The last, applica-
tion layer where we find user applications such as network
virtualization, monitoring and network application.

Features of SDN:

Data/Control planes are decoupled: The decoupling of

two planes facilitates the fast automated management and
reconfiguration of forwarding devices according to the state
of the network.

Logical centralized control: Via its interfaces, the SDN
controller can collect information and build a global view of
the network.

Network programmability: It is the key feature of the
SDN architecture. It ensures scalability and encourages
innovation.

Dynamic updating of forwarding rules: This feature
aligns with the objectives of managing network resources.
enhancing configuration and improving performance thanks
to the global knowledge on the network.

OpenFlow Protocol: is the most popular protocol for

communication between the infrastructure/control layers. It
standardizes information exchange between controller and
forwarding devices. Each forwarding device or OpenFlow
switch communicates with a controller via secure channel.
Each contains one or more flow tables themselves consist of
flow entries. These determine how packets will be processed
and transmitted.

IV. SECURE SDN-BASED IN-NETWORK CACHING

SCHEME

In this section, we describe our secure caching scheme
and detail its different features.

A. Overall Architecture

We propose a Secure In-network Caching Scheme for
CCN networks based on SDN architecture (SICS) in order to
reduce response time, minimize network traffic and improve
user perception. SICS is depicted in Figure 1. CCN routers
and gateways are located in the data plane with a simple role
of forwarding without any control. The control layer consists
of SDN controllers.

Figure 1. Secure SDN-based In-network Caching Scheme

Figure 2. Interest and Data packets

Each local controller SDN forms a network global view
on its controlled area and manages it by communicating with
the forwarding devices by OpenFlow protocol. Automated
management and dynamic reconfiguration of network
resources are assigned to managers and programmable
modules that are specified in the application layer. The
module analysis-attack Detection allows the controller to
supervise the contents circulating on the network and to
block attacks if detected. Flow manager and Update Manager
Table are responsible for the flows and routes forwarding of
interest packet (respectively data packet) from original
producer or any CCN cache to requester. Content Manager
manages the transferred content. On the other hand, Cache

23Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 31 / 76

Manager and Update Manager Table are responsible for
managing and updating the list of contents cached on CCN
routers. These are the managers who update Content List
Table, Content Update Table, and Controller Cache
Summary Table accordingly when they detect network
changes.

B. Proposed Packet Types

Our system organizes the packet types into two
categories. The first presents the forwarding packets
exchanged between clients, CCN routers and SDN
controllers. The second includes management packets
exchanged between CCN routers and SDN controllers to
retrieve, manage, and update CCN caches.

1. Interest Packet: Upon receiving client request, the CCN
router looks for the content name specified in the packet
interest in CS and then in Local Cache Summary Table. In
case of cache hit, the response will be transferred to the
client. Otherwise, CCN router sends this interest packet to its
local controller (as packet_IN in original OpenFlow
protocol). To guarantee the transfer of the request from local
area to another in case of cache miss, the original CCN
interest packet is extended by five fields (Figure 2) to
globally identify a request on the network.

2. Data Packet: To deliver a requested content, two cases
will be possible. the content exists in the same controlled
area or another. Then, we adopt the proposal of [12] to add a
new field, RCID, to the original CCN data packet to specify
the controller ID that initiated the request since the local
areas are interconnected by gateways. The RID field (Figure
2) specifies the identifier of CCN router that received the
request. The local controller of the area where this CCN
router belongs will be recorded in the CID field. The RCID
field contains the identifier of the controller where the first
CCN router belongs, which will begin the retrieval of
requested content. In addition, we add another field, NHop,
which presents the number of routers crossed during the
delivery of data packet in order to require caching or not.
NHop is initialized to 0. While the data packet is transferred
to a router belonging to the same controller, NHop will be
incremented by 1. If it is forwarded to a router belonging to
another controller, NHop will be incremented by 1+ SUM
(CCN routers in local controller). The last P field specifying
the perimeter of content search. P is local if it is a request to
retrieve content from content store of a router belonging to
the same local controller. Otherwise, P is extended.

3. Report Packet: To inform their local controller of the
state of the local caches, the attached CCN routers send
periodically the state of their CSs. However, when the CS is
changed, the CCN router reports the CS update directly to its
controller. CCN router also uses this packet to claim that the
CS is full so that the local controller executes the proper
content replacement strategy.

4. Update Packet: Collecting CS summaries allows the
local controller to form a complete view of cached content in
con-trolled area, calculate popularity, and replicate when
needed. Each local controller advertises its CCST table by
sending update packet periodically to its CCN routers.
Otherwise, local controller sends an update packet to a

specified CCN router requesting replication or delete of a
particular content based on its popularity, number of probe
packets and the number of hops to deliver it.

Figure 3. CCN router Tables

Figure 4. Caching process

5. Probe Packet: If CCN router sends a packet interest to
local controller, a new entry is added to its PIT table
specifying the requested content name and its creation date.
Then, a timeout is executed. Once it reaches the value 0 and
the router does not receive a data packet. The later sends a
probe packet to controller to signal response delay.

6. Attack_Avoidance Packet: when SDN controller detects
an attack during the content flow analysis, it blocks the
source of this attack and forward results to all its CCN
routers by an attack_avoidance packet to mark this source.

C. CCN Router Structure

The basic CCN router includes three types of tables:
Content Store, Pending Interest table, and Forwarding

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 32 / 76

Information Base. Content Store (CS) where the content
chunks are stored to minimize latency. Pending Interest table
(PIT) stores pend-ing requests grouped by name content to
reduce network traffic and avoid gateway-level congestion.
Forwarding Information Base (FIB) is the forwarding table
that plays the same role as FIB in IP protocol. When
receiving an interest packet, CCN router first checks its CS.
If the content name exists, it provides this content directly to
the requester. Otherwise, it checks in PIT. If it exists, it adds
an entry specifying the port and deletes this interest packet.
If there is no corresponding entry in PIT, then it creates a
new entry in PIT and FIB table to transfer to other routers.
To achieve our goal, we enrich CCN router with two tables
to manage the content store properly and reduce the latency
of users. These tables are issued by the local controller. The
FIB table is also entrusted to SDN controllers. Upon
receiving a data packet, the CCN router checks the CS_MGT
field. If it is set to 1 in Cache Decision Table (CDT), this
content is saved in CS. Otherwise, the CCN router checks
the PIT table and sends the content to the ports that
requested. Our system assumes that the network is divided
into clusters where each is administered by a local controller.
Only the local controller that collects the caching
information by the exploit of report packets received from
CCN routers when CS is updated. For that we propose Local
Cache Summary Table (LCST) in order to publish the CS
information between CCN routers present in the same
cluster. Local controller groups this information into
Controller Cache Summary Table (CCST). In other words,
having like a caching cooperation managed by local
controller to improve use of cache resources in the same
cluster. Interest and data packets structures are presented in
Figure 2. Whereas, Figure 3 details tables format in CCN
router already described.

D. Forwarding Process

The packet forwarding process in SICS is summarized by
the activity diagram in Figure 5. A user requests desired
content by sending an interest packet to its home CCN
router. When this packet is received, our CCN router works
in the same way as a basic CCN node for CS and PIT tables.
If there is no corresponding entry in PIT, it creates a new
entry in PIT. Thereafter, it verifies LCST. If there is an entry
for the re-quested content. Then, the P field of the packet
interest is set to 0 (default value for external perimeter
initialized to 1). Finally, the router checks if there is a FIB
entry then it transfers interest packet. Otherwise, it transfers
the request to its local controller. The latter exploits two
forwarding mechanisms according to the location of data
packet. When a request is transferred to the local controller.
It first checks P field. Two cases are possible. If P equal 0,
then the forwarding mechanism is limited in the cluster
managed by local controller. After that, the local controller
looks in its CCST table for the corresponding entry. If it
exists, it modifies the interest packet and calculates the
requested content popularity. Interest packet will forward to
a router belonging to the same controller, the number of hops
(NHop) will be incremented by 1. Finally, install the rules in
FIB and CDT of CCN router while the RID router that stores

the requested content is not found. If P is not 0, the
forwarding mechanism is beyond the scope of the local
controller. Local controller checks CLT to retrieve the
default values and then modify the interest packet to retrieve
the data packet stored elsewhere. Interest packet will forward
to a router belonging to another controller, NHop will be
incremented by 1+ SUM (CCN routers in local controller).
Finally, it installs the rules in FIB and CDT tables. When
receiving a data packet, CCN router checks if there is a
match in its PIT table. If it exists, it delivers the packet to the
client. Otherwise, data packet is forwarded to its local
controller to process it. The latter specifies the requesting
router and injects the corresponding route into FIB table.

E. Caching Process

In SICS, a CCN Router stores content in its CS if and
only if its local controller has validated caching by setting
the CS-MGT field to 1 in the CDT table. Whenever the local
controller receives a packet interest, it calculates and updates
the local popularity of requested content. For effective use of
CCN caches, it then compares this probability with the local
popularities of this interest packet in other controllers
through distributed content popularity base. If local
popularity is greater than the maximum of local popularities
in other clusters, then local SDN controller marks this
interest packet with a global popularity. Our caching strategy
is detailed in Figure 4. Two cases are possible. If interest
packet is marked with global popularity, then local SDN
controller executes betweenness centrality cache to select the
best location (selected router) and validates caching by
setting the CS-MGT field to 1 in the CDT table of the
selected router. If interest packet reaches the local popularity
threshold, then local controller verifies its existence in CCST
table. If it is present and the associated priority is set to G
(Global), then it sets the CS-MGT field to 0. Otherwise, local
controller validates caching by setting the CS-MGT field to 1
for requesting router and asks cache router to remove this
content and avoid cache redundancy.

F. Replication Process

Our caching strategy helps to store the most popular
content and exclude unpopular content. Our replication
policy takes into account the stored content and seeks to
improve the quality perceived by the users. It allows caching
of non-popular content based on the number of probe packets
that are sent from CCN router to the local controller to warn
it of past latency. Each local SDN controller periodically
analyzes the received probe packets. Two cases are possible.
The requested content is popular so SDN controller checks
its CCST table and calculates the time needed to deliver it
according to NHop field. It decides content replication if the
timeout exceeds the average wait time in the cluster. The
content is not popular so SDN controller calculates the
number of probe packets received for this content. If it
reaches the critical threshold of satisfaction, it selects the
CCN router having the maximum popularity for this content
where it decides its caching.

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 33 / 76

Figure 5. Activity diagram for forwarding process

G. Replacement Process

If CS is full, CCN Router sends a Report packet to its
local controller that runs the appropriate content replacement
policy. First, local controller classifies the contents stored in
CS according to their popularities, local or global. Then, they
will be put in order. Content with global popularity will be at
the top of CS table. While the others will be added at the end
of the table. Subsequently, the exclusion will always occur
from the end of CS table.

V. SIMULATION AND EVALUATION

In this section, we evaluate the forwarding and caching

strategies proposed in CCN based on SDN. We focus on
evaluating the efficiency of content delivery, the network
traffic rate, the average number of hops during content
delivery, and the usage rate of caches. Performance is
evaluated using NS3 simulator [21] by integrating OpenFlow
and ndnsim modules.

A. Parameters used for simulation

The parameters used in the simulation are shown in Table
2. Using the important parameters, we evaluate the average
time for content delivery, network traffic, cache hit rate and
average hop count compared to original CCN paradigm
(BasicCCN), Autonomous System Collaboration Caching
Strategy (AS-CCS) [13] and Forwarding Strategy on SDN-
based Content Centric Network (FS) [12].

B. Simulation Results

With simulation results part, we demonstrate four main
comparisons. One is the comparison of the time taken to get

data for requests between the proposed forwarding strategy
SICS and others. The other is the comparison of total number
of interest packets in the network according to different
number of requests. Figure 6-a shows the comparison of the
time taken for data delivery. It is proved that the proposed
forwarding mechanism takes less time for content delivery,
which means that it is more efficient than other forwarding
strategies such as ASCCS, FS and BasicCCN. In Figure 6-b,
as the number of requests gradually increases from 100 to
500 the amount of traffic caused by the packets of interest
increases considerably for the BasicCCN strategy since it
broadcasts interest packets to all other neighboring routers.
On the other hand, ASCCS which exploits the neighbors’
cooperation and FS which is characterized by the global
vision on the network have almost the same increase for
interest packet. But our proposed routing strategy that
combines the benefits of other strategies does not have as
much impact on the total amount of traffic as BasicCCN
does. Figure 6-c shows that SICS can dramatically improve
the success rate of the cache, which is shown in the graph
clearly compared to the basic CCN architecture and
architectures adopted. By increasing the size of the caches
the redundancy of the contents will be more possible. Figure
6-d shows that our SICS policy works better than the others
by avoiding redundant content in each cluster.

VI. CONCLUSION

In this paper, we proposed a novel Secure In-network
Caching Scheme for CCN networks based on SDN
architecture (SICS) in order to reduce response time,
minimize network traffic and improve user perception. The
proposed strategy enables to overcome the problems that the
original CCN faces with the help of centralized table
management for packet forwarding. Furthermore, simulation
result was shown to prove that the efficiency of the average

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 34 / 76

Figure 6. Simulation Results

time for content delivery, network traffic, cache hit rate and
average hop count were reasonably decreased. In the near
future, these results will be brought together with those of
our analytical model presenting our strategy to prove the
observed performance improvements. In addition, our
current work will be followed by a detailed and deeper study
of the compatible protocols between SDN and CCN,
guaranteeing the reliability of the proposed architecture.

TABLE II. PARAMETERS USED FOR SIMULATION

Parameters Symbol Value

Number of users

U

10

Number of requests λ 100, 300, 500

File size F 1

chunk Size S 10 KB

Forwarding FS SICS, ACCCS, FS, and BasicCCN

Cache Size CS 1, 10, 100, 1000, 10000, 1E5, 1E6,

1E7

REFERENCES

[1] Visual Networking Index: Forecast and Methodology, 2016-
2021, CISCO, Tech. Rep., September 2017.

[2] Z. Liu, M. Dong, and B. Gu, “Impact of item popularity and
chunk popularity in CCN caching management”, In Network
Operations and Management Symposium (APNOMS), 18th
Asia-Pacific, IEEE, 2016. pp. 1-6, 2016.

[3] C. Yufei, Z. Min , and W. Muqing, “A centralized control
caching strategy based on popularity and betweenness

centrality in CCN”, In Wireless Communication Systems
(ISWCS), International Symposium on, IEEE, 2016, pp. 286-
291, 2016.

[4] G. Xylomenos, C. Ververidis, and V. Siris, “A survey of
information-centric networking research”, IEEE
Communications Surveys & Tutorials, vol. 16, no 2, pp.
1024-1049, 2014.

[5] A. Lara, A. Kolasani, and B. Ramamurthy, “Network
innovation using openflow: A survey”, IEEE communications
surveys & tutorials, vol. 16, no 1, pp. 493-512, 2014.

[6] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN
Control: Survey, Taxonomy and Challenges”, IEEE
Communications Surveys & Tutorials, vol. 20, no 1, pp. 333-
354, 2017.

[7] R. Jmal and L.C. Fourati, “Content-Centric Networking
Management Based on Software Defined Networks: Survey”,
IEEE Transactions on Network and Service Management, vol.
14, no 4, pp. 1128-1142, 2017.

[8] A. Fekih, S. Gaied Sonia, and H. Yousef, “A comparative
study of content-centric and software defined networks in
smart cities”, In Smart, Monitored and Controlled Cities
(SM2C), International Conference on. IEEE, 2017, pp. 147-
151, 2017.

[9] Y. Zhang, H. Qu, and J. Zhao, “A distributed caching based
on neighbor cooperation in ccn”, In Wireless
Communications, Networking and Mobile Computing
(WiCOM), 10th International Conference on, Sept 2014, pp.
386–392, 2014.

[10] W. Wong, L. Wang, and J. Kangasharju,“Neighborhood
search and admission control in cooperative caching
networks”, In Global Communications Conference
(GLOBECOM), 2012 IEEE, Dec 2012, pp. 2852– 2858,
2012.

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 35 / 76

[11] K. Cho, M. Lee, and K. park, “Wave: Popularity-based and
collaborative in-network caching for content-oriented
networks”, In Computer Communications Workshops
(INFOCOM WKSHPS), 2012 IEEE Conference on. IEEE,
pp. 316-3212012.

[12] J. Son, D. Kim, and H.S. Kang, “Forwarding strategy on
SDN-based content centric network for efficient content
delivery”, In Information Networking (ICOIN), 2016
International Conference on, IEEE, pp. 220-225, 2016.

[13] W. Kaili, W. Muqing, and Z. Min, “An autonomous system
collaboration caching strategy based on content popularity in
CCN”, In Personal, Indoor, and Mobile Radio
Communications (PIMRC), 2016 IEEE 27th Annual
International Symposium on, IEEE, pp. 1-6, 2016.

[14] K. Thakker, C.H. Lung, and P. Morde, “Secure and Optimal
Content-centric Networking Caching Design”, In Trustworthy
Systems and Their Applications (TSA), 2015 Second
International Conference on, IEEE, 2015. pp. 36-43.

[15] C. Li, S. Gong, and X. Wang, “Secure and Efficient Content
Distribution in Crowdsourced Vehicular Content-Centric
Networking”, IEEE Access, 2018, vol. 6, pp. 5727-5739.

[16] J. Lv, X. Wang, and M. Huang, “RISC: ICN routing
mechanism incorporating SDN and community division”,
Computer Networks, 2017, vol. 123, pp. 88-103.

[17] D. Goergen, T. Cholez, and J. François, “Security monitoring
for content-centric networking”, In Data privacy management
and autonomous spontaneous security, Springer, Berlin,
Heidelberg, 2013. pp. 274-286.

[18] “Software-defined networking: The new norm for networks”,
Palo Alto, CA, USA, White Paper, Apr. 2012.

[19] O. Blial, M. Ben Mamoun, and R. Benaini, “An overview on
SDN architectures with multiple controllers”, Journal of
Computer Networks and Communications, 2016, vol. 2016.

[20] B.A. Nunes, M. Mendonca, and X.N. Nguyen, “A survey of
software-defined networking: Past, present, and future of
programmable networks”, IEEE Communications Surveys &
Tutorials, 2014, vol. 16, no 3, pp. 1617-1634.

[21] https://www.nsnam.org/ [retrieved: November 2017].

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 36 / 76

Reliability-aware Optimization of the Controller Placement and Selection in SDN

Large Area Networks

Eugen Borcoci, Stefan Ghita

University POLITEHNICA of Bucharest - UPB

Bucharest, Romania

Emails: eugen.borcoci@elcom.pub.ro, stalghita@gmail.com

Abstract — For large networks SDN-controlled, distributed

control plane solutions are proposed, to solve the scalability

problems generated by the SDN control centralization

principle. In a multi-controller environment, the Controller

Placement Problem (CPP) should be solved. Additionally, in a

dynamic networking context, including possible failures of

links or nodes, a forwarder node could try to select an

available and reachable controller among those alive. Although

several studies have been published, the above problems are

still open research issues, given the various network contexts,

providers’ policies and possible multiple optimization criteria.

Multi-criteria decision algorithms can provide valuable

solutions. This paper extends a previous work, considering in

the developed model some reliability aspects of the distributed

SDN control and an extension to a dynamic controller selection

method.

Keywords — Software Defined Networking; Multi-criteria

optimization; Controller placement; Controller selection;

Forwarder nodes assignment; Reliability;

I. INTRODUCTION

Software Defined Networking (SDN) has as basic

principles the decoupling of the architectural Control Plane

(CPl) w.r.t Data Plane (DPl) and also CPl centralization in

SDN controllers. In the case of large network environments,

scalability problems of the CPl appear [1]. The usual

solution for this is a distributed multi-controller

implementation of the SDN control plane. Different flat or

hierarchical organizations for a multi-controller SDN

control plane have been developed, e.g., in [2][3].

Note that in a basic approach, the SDN controller (SDN-

C) is understood as a control entity placed in a

geographically distinct location, i.e., a particular physical

network node. However, recently, the Network Function

Virtualization technologies [4] allow that several logical

SDN-Cs realized in a virtual manner (notation will be

vSDN-C) can be collocated in the same physical node. In

the following text we suppose the basic approach; however

the models developed in this paper can be as well applied

also to a virtualized environment.

Actually, several associated problems exist together with

controller placement problem (CPP) itself. Some examples

are: how the network topology is specified - flat or

clustered; what criteria are considered to solve the CPP;

number of controllers - predefined or not; failure-free or

failure-aware metrics (e.g., considering backup controllers

and node/link failures); how the DPl forwarders nodes are

assigned to controllers (in static or dynamic way, i.e.,

depending on actual network conditions and network

provider policies), and others. The evaluation of the degree

of optimality of different approach can be studied on some

simplified topologies – in order to compare the efficiency of

approaches or, on real specific network topologies. Several

studies [5-15] considered various aspects and solutions of

the CPP problem.
In a real network environment, it has been apparent that

there is no uniform and strict placement rule to be the best
for any SDN-controlled network. Dynamic nodes addition
and deletion can happen and, in such cases, a forwarder
could dynamically select an appropriate controller, if it has
enough pertinent and updated information. This is called
controller selection problem (CSP) and can be considered as
an extension of the CPP [11].

The CPP is a non-polynomial (NP) -hard problem [5];

therefore different pragmatic solutions have been proposed,

many of them with specific optimization criteria, targeting

performance in failure-free or failure-aware approaches.

Examples of specific, individual criteria could be: to

maximize the controller-forwarder or inter-controller

communication throughput; reduce the latency of the path

connecting them; limit the controller load imbalance; find

an optimum controllers’ placement and forwarder-to-

controller allocation, offering a fast recovery after failures

(controllers, links, nodes). Also, other specific optimization

goals could be added to the above list, depending on specific

context (wire-line, wireless/cellular, cloud computing and

data center networks) and on some specific business targets

of the Service Provider.

One main issue is that different optimization criteria

could lead to different solutions; so, a multi-criteria global

optimization could be a better approach.

The paper [12] provides a contribution on multi-criteria

optimization algorithms for the CPP not by developing

specific single-criterion algorithms (many other studies

already did that) but to achieve an overall optimization by

applying multi-criteria decision algorithms (MCDA) [16].

The input of MCDA is the set of candidates (an instance of

controller placement is called a candidate solution).

Examples have been analyzed, on some real network

topologies, proving the usefulness of the approach.

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 37 / 76

This paper extends the model of [12]; several reliability
aware criteria have been added to the CPP solution. Also
the novel CSP extension is introduced, being appropriate for
a dynamic network context. It is shown that the same basic
MCDA can be applied in both static and dynamic context,
but with different sets of criteria. Simulation experiments and
novel results are presented.

The structure of the paper is described here. Section II is
a short overview of related work. Section III revisits several
metrics and optimization algorithms and presents some of
their limitations. Section IV revisits the framework for
MCDA-RL (the variant which is called “reference level”) as
a simple but powerful tool to solve the CPP and CSP
problems. Section V presents the implementation performed
to validate the MCDA proposed model in reliability-aware
approach, and outlines the simulation experiments
performed. Section VI offers few samples of simulation
results to illustrate the validity of the approach. Section VII
presents conclusions and future work.

II. RELATED WORK

This short section is included mainly for references.
More comprehensive overviews on published work on CPP
in SDN-controlled WANs are given in [10-13]. The goal is
to find those controller placements that provide high
performance (e.g., low delay for controller-forwarder
communications) and also create robustness to controllers
and/or network failures.

Heller et al. [5] have early shown that it is possible to
find optimal solutions for realistic network instances, in
failure-free scenarios, by analyzing the entire solution space,
with off-line computations (the metric is latency). Going
further, the works [6][7][8][9][14] additionally considered
the resilience as being important with respect to events like:
controller failures, network links/paths/nodes failures,
controller overload (load imbalance). The Inter-Controller
Latency is also important and, generally, it cannot be
minimized while simultaneously minimizing controller-
forwarders latency; a tradeoff solution could be the answer.

The works [6][8] developed several algorithms for real
topologies, considering reliability of SDN control, but still
keep acceptable latencies. The controller instances are
chosen as to minimize connectivity losses; connections are
defined according to the shortest path between controllers
and forwarding devices. Muller et.al. [9] eliminate some
restrictions of previous studies, like: single paths, processing
(in controllers) of the forwarders requests only on-demand
and some constraints imposed on failover mechanisms. Hock
et.al. [7] adopted a multi-criteria approach for some
combinations of the metrics (e.g., max. latency and controller
load imbalance for failure-free and respectively failure use
cases).

In a recent work [11], K.Sood and Y.Siang propose to
transform the CPP problem into Controller Selection
Problem (CSP), i.e., consider the dynamics of the network
and make controller selection. They explore the relationship
between traffic intensity, resources requirement, and QoS
requirements. It is claimed that to optimize the control layer
performance, the solutions must be topology-independent

and adaptive to the needs of the underlying network
behaviour. They propose a topology independent framework
to optimize the control layer, aiming to calculate the optimal
number of controllers to reduce the workload, and
investigate the placement/location of the controllers.
However, their first declared objective has been not to
determine the optimal placement of controllers in the
network, but to motivate the CSP.

In [12], a multi-criteria algorithm is used (applicable for

an arbitrary number of decision criteria) to solve the CPP;

validation of results have been presented for some real

network topologies [17][18].

This paper extends the [12] work, by adding new

reliability–aware metrics and also outlines the usage of the

multi-criteria method to solve the controller dynamic

selection problem (CSP).

III. EXAMPLES OF CONTROLLER PLACEMENT METRICS

AND ASSOCIATED ALGORITHMS

This section is a short presentation of a few typical
metrics and optimization algorithms for CPP and CSP. A
more detailed presentation of them can be found in [12].
Considering a particular metric (criterion) an optimization
algorithm can be run for a given metric, as in [5][6][7][9].

However, this paper goal is not to develop a new
particular algorithm based on a given single metric, but to
search for a global optimization. The individual metrics
presented in this section can be embedded in a multi-criteria
optimization algorithm.

The SDN-controlled network is abstracted by an
undirected graph G(V, E), with V - set of nodes, E – set of
edges and n=|V| the total number of nodes. The edges
weights represent an additive metric (e.g., propagation
latency [5]).

A basic metric is d(v, c): shortest path distance from a

forwarder node v∈V to a controller c∈V. We denote by Ci a

particular placement of controllers; Ci ⊆ V and |Ci| < |V|. The
number of controllers is limited to |Ci|= k for any particular
placement Ci. The set of all possible placements is denoted
by C = {C1, C2 …}. Some metrics are basic, i.e., failure-free;
others take into account failure events of links or nodes.

An important metric for SDN control is the latency
between nodes. Note that, while it has a dynamic nature, in
some simplified assumptions it is estimated as a static value.

A. Failure-free scenarios

• Forwarder-to-controller latency
 In Heller’s work [5], two (failure-free) metrics are

defined for a given placement Ci: Worst_case_latency and
Average_latency between a forwarder and a controller. An
optimization algorithm should find a placement Copt, where
either average latency or the worst case latency is minimized.

The work [15] proposes an algorithm to maximize the
number of nodes within a latency bound, i.e., to find a
placement of k controllers, such that they cover a maximum
number of forwarder nodes, but with an upper latency bound
of each forwarder latency to its controller.

• Inter-controller latency

30Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 38 / 76

The SDN controllers should inter-communicate and
therefore the inter-controller latency is important. For a given
placement Ci, one can minimize the maximum latency
between two controllers. Note that this can increase the
forwarder-controller distance (latency).Therefore, a trade-off
is necessary, thus justifying the necessity to apply some
multi-criteria optimization algorithms, e.g., like Pareto
frontier - based ones [7].

B. Failure-aware scenarios

In such scenarios controller and/or network failures
events are considered. The optimization process aims now to
find trade-offs to preserve a convenient behavior of the
overall system in failure cases (controllers, or nodes, or
links).

• Multiple-path connectivity metrics
If multiple paths are available between a forwarder node

and a controller [9], this can exploited in order to reduce the
occurrence of controller-less events, in cases of failures of
nodes/links. The goal in this case is to maximize connectivity
between forwarding nodes and controller instances. A special
metric can be defined as:

 
∈∈

=

VvCc

i cvndp
V

CM

i

),(
||

1
)((1)

The ndp(v,c) is the number of disjoint paths between a
node v and a controller c, for an instance placement Ci. An
optimization algorithm should find the placement Copt which
maximizes M(Ci).

• Controller failures
To minimize the impact of such failures, the latency-

based metric should consider both the distance to the
(primary) controller and the distance to other (backup)
controllers. For a total number of k controllers, the failures
can be modeled [7], by constructing a set C of scenarios,
including all possible combinations of faulty controller
number, from 0 of up to k - 1. The Worst_case_latency_cf
will be:

 ()cvdL
ii CcCCVv

cfwc ,minmaxmax
∈∈∈

− = (2)

The optimization algorithm should find a placement
which minimizes the expression (2).

Note that in failure-free case, the optimization algorithm
tends to rather equally spread the controllers in the network,
among the forwarders. To minimize (2), the controllers tend
to be placed in the center of the network, such that in a worst
case, a single controller can take over all control. However,
the scenario supposed by the expression (2) is very
pessimistic; a large network could be split in some
regions/areas, each served by a primary controller; then some
lists of possible backup controllers can be constructed for
each area, as in [9]. The conclusion is that an optimization
trade-off should be found, for the failure-free or failure cases.
A multi-criteria approach can provide the solution.

• Nodes/links failures

For such cases, the objective could be to find a controller
placement that minimizes the number of nodes possible to
enter into controller-less situations, in various scenarios of
link/node failures. A realistic assumption is to limit the
number of simultaneous failures at only a few (e.g., two [7]).
If more than two arbitrary link/node failures happen
simultaneously, then the topology can be totally
disconnected and optimization of controller placement would
be no longer useful.

For a placement Ci of the controllers, an additive integer
value metric Nlf(Ci) could be defined, as below: consider a

failure scenario denoted by fk, with fk∈F, where F is the set
of all network failure scenarios (suppose that in an instance
scenario, at most two link/nodes are down); initialize

Nlfk(Ci) =0; then for each node v∈V, add one to Nlfk(Ci) if

the node v has no path to any controller c∈Ci and add zero
otherwise; compute the maximum value (i.e., consider the
worst failure scenario).

 () ()iki CNlfCNlf max= (3)

The optimization algorithm should find a placement to
minimize (3), where k should cover all scenarios of F. It is
expected that increasing the number of controllers, will
decrease the Nlf value. However, the optimum solution based
on the metric (3) could be very different from those provided
by the algorithms using the latency-based metrics.

• Load balancing for controllers
It is desired a good balance of the node-to-controller

distribution is desired. A metric Ib(Ci) will measure the
degree of imbalance of a given placement Ci as the difference
between the maximum and minimum number of forwarders
nodes assigned to a controller. If the failure scenarios set S
is considered, then the worst case should evaluate the
maximum imbalance as:

 }minmax{max)(
s
c

Cc

s
c

CcSs
i nnCIb

ii ∈∈∈
−= (4)

where
s

cn is the number of forwarder nodes assigned to a

controller c. Equation (4) takes into account that in case of
failures, the forwarders can be reassigned to other controllers
and therefore, the load of those controllers will increase. An
optimization algorithm should find that placement which
minimizes the expression (4).

IV. MULTI-CRITERIA OPTIMIZATION ALGORITHMS

SDN controllers’ placement and/or selection may involve
several particular metrics (as summarized in Section III). If
optimization algorithms for particular metrics are applied,
then one can obtain different non-convergent solutions.
Actually the CPP and CSP problems have naturally multi-
criteria characteristics; therefore MCDA is a good way to
achieve a convenient trade-off solution.

This paper uses the same variant of MCDA
implementation as in [12], i.e., the reference level (RL)
decision algorithm [16] as a general way to optimize the

31Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 39 / 76

controller placement, and controller selection, for an
arbitrary number metrics. The MCDA-RL selects the optimal
solution based on normalized values of different criteria
(metrics).

The MCDA considers m objectives functions (whose
values, assumed to be positive should be minimized). A
solution of the problem is represented as a point in a space
R

m
of objectives; the decision parameters/variables are: vi, i

= 1, ..m, with ∀i, vi ≥ 0; so, the image of a candidate
solution is Sls=(vs1,vs2, ..,vsm), represented as a point in R

m
.

The number of candidate solutions is S. Note that the value
ranges of decision variables may be bounded by given
constrains. The optimization process consists in selecting a
solution satisfying a given objective function and
conforming a particular metric.

The basic MCDA-RL [16], defines two reference
parameters: ri =reservation level=the upper limit, not allowed
to be crossed by the actual decision variable vi of a solution;
ai=aspiration level=the lower bound beyond which the
decision variables (and therefore, the associate solutions) are
seen as similar (i.e., any solution can be seen as “good”-
from the point of view of this variable). Applying these for
each decision variable vi, one can define two values named ri
and ai, i= 1, ..m, by computing among all solutions s = 1, 2,
..S:

, ..S, , s = v = a

, ..S, s = v r

isi

isi

21][min

21],[max =
 (5)

An important modification is proposed in [16], aiming to
make the algorithm agnostic versus different nature of
criteria. The absolute value vi of any decision variable is
replaced with distance from it to the reservation level: ri-vi;
(so, increasing vi will decrease the distance); normalization is
also introduced, in order to get non-dimensional values,
which can be numerically compared despite their different
nature. For each variable vsi, a ratio is computed:

 is)-a)/(r-v' = (rv iisiisi ,, ∀ (6)

The factor 1/(ri-ai) - plays also the role of a weight. A
variable for which the possible dispersion of values is high
(max – min has a high value in formula (6)) will have lower
weight and so, greater chances to be considered in
determination of the minimum in the next relation (7). On
the other side, if the values min, max are rather close to each
other, then any solution could be enough “good”, w.r.t. that
respective decision variable.

The basic MCDA-RL algorithm steps are (see also [12]):
Step 0. Compute the matrix M{vsi'}, s=1…S, i=1…m

Step 1. Compute for each candidate solution s, the minimum

among all its normalized variables vsi':

 ...m'}; i={v = sis 1minmin (7)

Step 2. Select the best solution:

 , ..S}, s= { = v sopt 1minmax (8)

Formula (7) selects for each candidate solution s, the

worst case, i.e., the closest solution to the reservation level

(after searching among all decision variables). Then the

formula (8) selects among the solutions, the best one, i.e.,

that one having the highest value of the normalized

parameter. One can also finally select more than one

solution (quasi-optimum solutions in a given range). The

network provider might want to apply different policies

when deciding the controller placement; so, some decision

variables could be more important than others. A simple

modification of the algorithm can support a variety of

provider policies. The new normalized decision variables

will be:

)-a)/(r-v(r' = wv iisiiisi (9)

where wi ∈ (0,1] is a weight (priority), depending on policy
considerations. Its value can significantly influence the final
selection. A lower value of wi represents actually a higher
priority of that parameter in the selection process.

V. MCDA-BASED IMPLEMENTATION FOR SDN

CONTROLLER PLACEMENT

A proof of concept simulation program (written in
Python language [12]) has been constructed by the authors,
to validate the MCDA–RL based CPP problem and
allocation of forwarders to controllers. The program has been
extended in this work with reliability evaluation features.

The simplifying assumptions (they could be also seen as
limitations) of the model studied here, are: the network
architecture is flat, i.e., no disjoint regions are defined; the
network graph is undirected; any network node can be a
forwarder but also can collocate a controller; when
computing paths or distances, the metrics are additive; the
number of controllers is predefined; the data traffic aspects
and signaling interactions are not considered yet.

 A. The MCDA basic model

The basic model to solve the CPP problem considered in
this paper has two working modes:

a. static mode - the input data are: network graph
(overlay or physical), link costs/capacities, shortest path
distances between nodes (e.g., computed with Dijkstra
algorithm based on additive metric), desired number of
controllers, etc.).

Two phases are defined:
 (1)Phase 1:
1.1. Define the criteria (i.e., the parameters of interest)

and their priorities. The decision variables could be anyone,
among those of Section III.

1.2. Compute all controller placements C1, C2, …. (i.e.
the set of candidate solutions). The number of placements is
Cn

k
(n= total number of network nodes; k= number of

controllers).

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 40 / 76

1.3. Compute the values of the normalized metrics for
each possible controller placement (i.e. future MCDA
candidate solution), by using specialized algorithms and
metrics like those defined in Section III.

The Phase 1 phase has as outputs the set of candidate
solutions (i.e., placement instances) and values to fill the
entries of the matrix M defined in Section IV. The Phase 1
computation could be time consuming (depending on
network size) and therefore, could be performed off-line [5].
For instance, in a real network, a master SDN controller
having all these information can perform these computations.

 (2) Phase 2: MCDA-RL: define ri and ai, for each
decision variable; eliminate those candidates having
parameter values out of range defined by ri; define – if
wanted – convenient weights wi for different decision
variables; compute the normalized variables (formula (6));
run the MCDA Step 0, 1 and 2 of the (formulas (7) and (8)).

The Phase 2 provides the CPP solution.

b. dynamic mode – the input information is the total

number of network nodes and desired number of controllers.

The graph (which could be full-mesh or not) and costs of the

links are randomly generated by a simulation program. The

desired total number of nodes and the number of controllers

should be specified as inputs in the program.

B. Reliability aware model

As shown in Section III, more realistic scenarios consider
the possible occurrence of controller and/or network failures
events. The optimization process aims now to find trade-offs
to preserve a convenient behavior of the overall system in
failure cases.

• Backup controllers
A simple static solution for assignment of forwarders to

primary and backup controllers is presented below. We
assume that CPP has been solved for a given network.
Therefore the identities of controller nodes are known. The
simplest assignment of forwarders to controllers is to
consider the shortest paths between a forwarder to a
controller. So, an algorithm computes all distances from a
forwarder Fi to each controller CTk and selects the closest
CTm as primary controller (based on shortest path between
Fi and any controller) and the next (let it be CTn in the
ordered list of distances) as a backup controller.

However, while the primary controller placement after
first run of the MCDA) is a global trade-off optimum, there
is no guarantee that in case of node/link failures the
placement of the backup controller is optimum, given the
individual choice of the secondary/backup controller for each
forwarder node.A natural solution is to add a novel criterion
to the MCDA set of decision parameters.

An auxiliary algorithm is used to compute a simple
metric (mean distance to a backup controller) to be added to
MCDA. We introduce a novel decision variable dist_backup
and perform the following computation (for each possible
controller placement Ci containing the controllers CT1, CT2,
….CTk):
For each forwarder Fi, i=1..N

 Do

Dist_backup = 0;

 Compute dist. from Fi to any CTj, j=1..k;

 Dist_backup=Dist_backup + second_shortest_cost;

 Od

 Dist_backup_avg = Dist_backup/N;

This Dist_backup_avg can be added as a new decision
variable to MCDA (maybe with appropriate wight)
Therefore, the optimization will select a solution which
considers also the backup controller nodes in the factors
influencing the selection. Note that the inclusion of the
backup controllers will increase the number of computations
in the Phase 1.2 from Cn

k
 to Cn

2k
.

• Load balancing for controllers
As shown in Section III, a good balance of the node-to-

controller distribution is desired. If the number of nodes is N
and the number of controllers is k, then the average number
of nodes allocated to a controller is N/k. A simple new
metric can be added to the set of MCDA criteria. This
decision variable D_avg will measure the deviation of the
number of nodes allocated to a controller CTi, i.e., ni from
the average value N/k, and averaging this for all controllers.

D_avg = (1/N) Sum |(ni – N/k)|, i= 1…k (13)
Again, this variable can get an appropriate weight in the
optimization process.

• Nodes and link failures

Nodes and link failures could appear in the network.

Evaluation of effects of such events could be taken into

account by adding new decision appropriate parameters in

the set of MCDA input multi-criteria. Here, we adopted a

different approach. Given that most important metrics are

forwarder-controller latency, inter-controller latency, load

balancing of the controllers, optimization of the placement

of the primary and backup controllers, the MCDA has been

first run to produce controllers’ placement optimization

based on these important parameters. Then the simulation

program allows some events to happen (e.g., nodes or link

failures). The MCDA has been run again and produce a new

placement after removing the entities in failure. Finally the

placement produced in the updated conditions can be

compared with the initial one, to evaluate if significant

changes appeared. In such a way one can evaluate the

robustness of the initial placement, and decide if that can be

preserved or must be changed.

Two input parameters have been defined in the model:

nf- number of nodes supposed to fail

ef – number of links supposed to fail.

The specific nodes and links which will fail will be

selected as to to simulate the “worst case”, i.e., those nodes

having the lowest cost of the adjacent links and, respectively

those links having the least costs. If after second run of the

MCDA, the initial placement of the controllers does not

change, this means that initial placement has enough good

robustness properties. Of course, this result will depend on

selection of nf and ef values, for a given N nodes of the

graph.

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 41 / 76

C. Controller placement optimization- Simulation program

 The user interface of the simulation program is

presented in Figure 1.

stefan@mint ~/Desktop/simulator_mcda $ python mcda.py -h

usage: mcda.py [-h] [-a [A]] [-w [W]] [-i [I]] [-b [B]] [-l [L]] [--dynamic] [-n N] [-c C] [-nf NF] [-ef

EF] [--debug]

Multi-criteria optimization algorithm

Optional arguments:

 -h, --help show this help message and exit

 -a [A] Average latency - failure free scenario. Expects a weight (priority) in interval (0, 1].

 -w [W] Worst case latency - failure free scenario. Expects a weight (priority) in interval (0, 1].

 -i [I] Inter controller latency. Expects a weight (priority) in interval (0, 1].

 -b [B] Average latency - failure scenario. Expects a weight (priority) in interval (0, 1].

 -l [L] Controller load-balancing. Expects a weight (priority) in interval (0, 1].

 --dynamic Generate dynamic undirected graph

 -n N Number of graph nodes. Valid only in dynamic mode.

 -c C Number of controllers in graph. Valid only in dynamic mode.

 Allowed values are between N/3 and N/7

 -nf NF Number of nodes that fail. Valid only in dynamic mode. Allowed values: 1.. N-C.

 -ef EF Number of edges that fail. Valid only in dynamic mode. Allowed values: 1 ..N-C.

 --debug Prints some computing results for debugging purposes.

Figure 1. The interface of the MCDA CPP simulation program

The decision parameters considered have been: average and

worst latency between a forwarder and controller, inter-

controller latency and load balancing related parameter.

The program can be run isn static or dynamic mode, with

any number and set of criteria among those presented in the

interface. Note that if wanted, the set of decision parameter

can be enriched; the only needed modification is the number

of columns of the matrix M.

 Several numerical examples and results of the basic CPP

solutions have been already presented in the work [8]. The

current version of the implementation added reliability

feature presented in Section IV.B.

 The pseudo-code of the simulation program for dynamic

mode is presented below, in high level view.
Start

 Generate the random graph;

 Generate all controlers’ placements;

 Run MCDA;

 If link_failures specified then eliminate from

the graph a number of ef links having the minimum

costs;

 If node_failures specified then eliminate from

the graph a number of nf nodes;

 If failures_produced

 Then {generate modified graph; Run MCDA;}

 Display the graphs;

Stop

D. Dynamic controller selection

In a dynamic network context, the controller choice
(CSP) can be performed in a dynamic way. The multi-criteria
algorithm can be as well applied in such cases. We consider
here only the situations in which controller/node/link –
related occur.

In the static approach the backup controllers are
predefined; the placement is selected by the optimization

algorithm. For a real network, the algorithm can be run
offline in a management center (in a hierarchical
organization of the control plane, this could be a master SDN
controller). This center is supposed to know all information
in order to run MCDA-RL algorithm. The aspects related of
providing these information constitute a separate problem,
which is not studied in this paper.

Supposing that a forwarder looses its connectivity with
its controller, it can act in two ways; a. try to connect to a
known backup controller; b. select among several by running
a MCDA algorithm. The input information for MCDA
(decision criteria) could be : identities/addresses of possible
SDN controllers; degree of load for those controllers (this
could be periodically communicated to the forwarder by a
master SDN controller); local information observed by the
forwarder, like connectivity to different nodes/controllers,
etc. So, the forwarder can select based on MCDA-RL a novel
controller.

VI. SAMPLES OF RESULTS

This section will shortly present samples of results, in
order to prove the validity of approach. The experiments are
reliability feature related.

• Load balancing for controllers
Figure 2 shows an example in which the network graph

has been dynamically generated with N=6 nodes and k= 2
controllers. The decision criteria have been inter-controller
latency (weight = 1) and balancing criterion (weight = 0.5,
i.e. twice higher priority). The MCDA program is run with
parameters :

stefan@mint$ python mcda.py -i 1 -l 0.5 --

dynamic -n 6 -c 2

The results obtained are: controllers in CT0 and CT3. The
allocation of forwarders are :
 Controller 0 has allocated node(s): 0, 2, 4.

 Controller 3 has allocated node(s): 1, 3, 5.

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 42 / 76

 One can see that while the inter-controller latency is not
minimum, the allocation of the forwarders to controllers is
balanced (3 forwarders per each controller).

• Links and node failures

 If the unique parameter considered in MCDA would be

the average latency of the forwarders to backup controllers,

then one would expect that the resulting placement could be

enough resilient to a low number of nodes and/or link

failures.

Figure 2. Simple example of a balanced allocation of the forwarders to

controllers (after MCDA run)

 Figure 3. Example of placement resilient to link failures

Left: placement before link failures; Right: placement after some links failures.

Figure 4. Example of placement non-resilient to link failures

Left: placement before link failures; Right: placement after some links failures.

35Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 43 / 76

 Figure 3 shows such an example, by presenting the

graphs resulted after running the program with the

command:
 python mcda.py -b --dynamic -n 8 -c 3 -ef 2

 In this example, we have N=8 nodes and c= 3

controllers; the number of failure links ef=2.

 One can see that after some links failure (1-6, 3-7) still

the controller placement (after running MCDA on the

reduced graph) is the same, i.e., 3,4,5.
On the other side, if the initial criterion of MCDA is the

to minimize the average latency between the forwarders and
controllers (parameter introduced with weight = 1) the
optimum placement after some link/nodes failures will be
different (Figure 4). The command for such a run is:
 python mcda.py -a --dynamic -n 8 -c 3 -ef 2

These examples illustrate the power of the MCDA
algorithm where various sets of criteria and different
priorities (driven by policies) can be considered.

VII. CONCLUSIONS AND FUTURE WORK

This paper extended the study [12], on using multi-
criteria decision algorithms (MCDA) to optimally place the
controllers in large SDN, based networks. The MCDA
advantage is that it can produce a tradeoff (optimum) result,
while considering several weighted criteria, part of them
even being partially contradictory.

In this study, a previous simulation program has been
extended to include reliability aware metrics in the multi-
criteria optimization algorithm. The optimum controller
placement has been found, while different weights policy-
driven have been introduced. Also, forwarder-controller
mapping optimization and backup controller selection have
been also considered. The examples given demonstrate the
flexibility of the approach in selecting the best solution while
considering various criteria.

Future work will be done to a more deep study of the
dynamic possibilities to apply the multi-criteria based
selection of the SDN controllers and to consider also aspects
of signaling traffic (inter-controller). Hierarchically
organized SDN control planes are also open research topics
for CPP and CSP problems.

REFERENCES

[1] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On

Scalability of Software-Defined Networking”, IEEE Comm.

Magazine, pp. 136-141, February 2013..

[2] A. Tootoonchian, and Y. Ganjali, “Hyperflow: a distributed

control plane for openflow” in Proc. INM/WREN, 2010,

https://pdfs.semanticscholar.org/f7bd/dc08b9d9e2993b3639

72b89e08e67dd8518b.pdf, [retrieved: 5, 2018].

[3] T. Koponen, , M.Casado, , N.Gude, J.Stribling, L. Poutievski,

et.al., “Onix: a distributed control platform for large-scale

production networks,” in Proc. OSDI, 2010,

https://www.usenix.org/legacy/event/osdi10/tech/full_papers

/Koponen.pdf, [retrieved: 5, 2018].

[4] B.Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network

Function Virtualisation: Challenges and Opportunities for

Innovations”. IEEE Communications Magazine, pp. 90-97,

February 2015.

[5] B. Heller, R. Sherwood, and N. McKeown, “The controller

placement problem,” in Proc. HotSDN, pp. 7–12, 2012,

https://dl.acm.org/citation.cfm?id=2342444, [retrieved: 5,

2018].

[6] H. Yan-nan, W. Wen-dong, G. Xiang-yang, Q. Xi-rong, and

C. Shi-duan, ”On the placement of controllers in software-

defined networks”, ELSEVIER, Science Direct, vol. 19,

Suppl.2, pp. 92–97, October 2012, ,

http://www.sciencedirect.com/science/article/pii/S10058885

1160438X, [retrieved: 1, 2018].

[7] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner,

and P. Tran-Gia, “Pareto-Optimal Resilient Controller

Placement in SDN-based Core Networks,” Proceedings of

the ITC, Shanghai, China, 2013,

https://ieeexplore.ieee.org/document/6662939/, [retrieved: 1,

2018].

[8] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan,

“Reliability aware controller placement for software-defined

networks,” in Proc. IM. IEEE, pp. 672–675, 2013,

https://ieeexplore.ieee.org/document/6573050/, [retrieved:

1, 2018].

[9] L. Muller, R. Oliveira, M. Luizelli, L. Gaspary, and M.

Barcellos, “Survivor: an Enhanced Controller Placement

Strategy for Improving SDN Survivability”, IEEE Global

Comm. Conference (GLOBECOM); 12/2014,

https://ieeexplore.ieee.org/document/7037087/, [retrieved: 1,

2018].

[10] G.Wang, Y.Zhao, J.Huang, and W.Wang, “The Controller

Placement Problem in Software Defined Networking: A

Survey”, IEEE Network, pp. 21- 27, September/October

2017.

[11] K. Sood and Y.Xiang, “The controller placement problem

or the controller selection problem?”, Journal of

Communications and Information Networks, Vol.2, No.3,

pp.1-9, Sept.2017.

[12] E. Borcoci, T. Ambarus, and M. Vochin, „Multi-criteria

based Optimization of Placement for Software Defined

Networking Controllers and Forwarding Nodes,” The 15th

International Conference on Networks, ICN 2016, Lisbon,

http://www.iaria.org/conferences2016/ICN16.html,

[retrieved: 5, 2018].

[13] S.Yoon, Z.Khalib1, N. Yaakob, and A.Amir, “Controller

Placement Algorithms in Software Defined Network - A

Review of Trends and Challenges”, MATEC Web of

Conferences ICEESI 2017 140, 01014

DOI:10.1051/matecconf/201714001014, 2017.

[14] Y. Zhang, N. Beheshti, and M. Tatipamula, “On Resilience

of Split-Architecture Networks” in GLOBECOM 2011,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69

1.795&rep=rep1&type=pdf, [retrieved: 5, 2018].

[15] D. Hochba “Approximation algorithms for np-hard

problems”, ACM SIGACT News, 28(2), pp. 40–52, 1997,.

[16] A. P. Wierzbicki, “The use of reference objectives in

multiobjective optimization”. Lecture Notes in Economics

and Mathematical Systems, vol. 177. Springer-Verlag, pp.

468–486.

[17] Internet2 open science, scholarship and services exchange.

http://www.internet2.edu/network/ose/, [retrieved: 4, 2018].

[18] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M.

Roughan, “The Internet Topology Zoo,” IEEE JSAC, vol. 29,

no. 9, 2011, pp.1765-1475..

36Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 44 / 76

Green ISP Networks via Hybrid SDN

Krishna P. Kadiyala

Telecommunications Engineering Program
The University of Texas at Dallas

Richardson, Texas 75080
Email: krishna.kadiyala@utdallas.edu

Jorge A. Cobb

Telecommunications Engineering Program
The University of Texas at Dallas

Richardson, Texas 75080
Email: cobb@utdallas.edu

Abstract—The development of Software Defined Networking
(SDN) has introduced many benefits to legacy networks, and has
become an appealing option for Internet service providers. How-
ever, doing a complete overhaul of an existing service provider
network in an attempt to transform it into an SDN network
is a significant economical, managerial, and technical challenge.
To alleviate this, research is being performed on hybrid SDN
networks, in which only a few routers are retrofitted to become
capable of supporting SDN. In this paper, we study the impact
that hybrid SDN can have on the electrical power usage of a
service provider network. Most service providers have redundant
routers for reliability purposes and for accommodating changes
in traffic over time. These redundant routers and links are always
powered on, wasting valuable energy. This waste of energy can
be mitigated by identifying such routers and shutting them down.
However, turning off routers reduces the number of routing
paths available to the intra-domain routing protocol, which in
turn has the consequence of having an unbalanced traffic load
in the egress links of the service provider. This increase in link
utilization experienced by some egress links leads to packet losses
and long packet delays. To alleviate this, we propose retrofitting
a few legacy routers to become SDN routers. By introducing just
a few well-placed SDN routers, the routing flexibility increases
within the network. This allows for a larger number of routers
to be shutdown without exceeding a desired upper bound on
link utilization. We present heuristics for choosing which routers
should be augmented with SDN capabilities, and we evaluate via
simulation their impact on the number of routers than can be
powered down.

Keywords–Software-defined networking; Traffic engineering;
Load balancing.

I. INTRODUCTION

A current concern in society is minimizing the use of
energy. This concern has reached various aspects of computing,
and it is often referred to as green computing. In this paper,
we focus on reducing the energy usage of enterprise networks,
in particular, Internet Service Providers (ISPs).

Traditional ISP networks are over-provisioned to accom-
modate for unforeseen link/router failures and sudden traffic
bursts. These redundant routers and links are always powered
on, even though they may not be used to their full capacity
at all times. Thus, the energy consumption of the network
remains consistently high while the network resources remain
under-utilized. By identifying such routers and shutting them
down, we are able to reduce the energy consumption of the
network to a certain extent.

However, an important consideration when shutting down
internal routers of an ISP is that the reduced network must

satisfy the traffic demand without over-provisioning the peer-
ing (i.e., external) links of the ISP. That is, the links joining
the ISP to other Autonomous Systems (AS) must not reach
high utilization levels. This is critical due to the fact that the
peering links of an AS have been shown to be bottlenecks and
are often the cause for congestion [1]. Shutting down routers
may lead to high utilization of the peering links of the AS since
all the traffic may have to exit through only a few reachable
egress routers.

Balancing the traffic over the egress links is dependent
upon the routing paradigm of the ISP. The typical routing
paradigm consists of moving the transit traffic along the least-
cost path. That is, each internal link has a cost, and the traffic
arriving via an ingress link exits via the egress link where the
total cost of the links traversed is the least. This is commonly
known as hot-potato routing (HPR). Although HPR minimizes
the cost of transit traffic through the ISP’s network, it does
not take into consideration the load on the peering links of the
ISP, which, as mentioned above, are the most likely to become
congested.

Figure 1. Hybrid Service Provider Network

The flexibility of routing inside the ISP’s network is greatly
limited by HPR. One possibility to free the ISP from the
drawbacks of HPR is the Software-Defined Networking (SDN)
paradigm. The purpose of introducing SDN routers into the
legacy infrastructure is to make this internal routing less rigid,
thereby enabling us to achieve greater load balancing on the
egress links.

However, the complete overhaul of an existing ISP network

37Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 45 / 76

into an SDN network is an economical, managerial, and tech-
nical challenge. To this end, ISPs may choose to transition to
SDN in incremental steps, migrating from traditional networks
to hybrid networks that are a combination of legacy and SDN
routers. An example of such a network is shown in Figure
1. Introducing SDN incrementally reaps the potential benefits
of SDN while imposing a smaller economical and managerial
cost.

The increase in routing flexibility introduced by SDN will
have a positive effect on the redistribution of traffic that must
be performed when a legacy router is shutdown. Keeping this
in mind, the problem we explore in this paper is to leverage the
presence of SDN routers in the legacy network to shutdown
as many routers as possible while ensuring that the maximum
link utilization (MLU) at the egress links remains less than
100%. The presence of SDN routers ensures that traffic can
be distributed more evenly between egress links, since it adds
more flexibility to the internal routing decisions, and it allows
the possibility of routing traffic over paths that would otherwise
not be chosen by an intra-domain routing protocol such as
OSPF.

A. Results and Contributions

In this paper, we address the problem of minimizing the
total power consumed by the network subject to the constraints
that the traffic demand is met and that the MLU at the egress
links is bounded. The goal is to minimize power consumption
by shutting down routers in the network. Both legacy routers
and SDN routers may be shutdown. The only restrictions we
impose is that ingress routers cannot be shutdown, and a
router cannot be shutdown if by doing so the network becomes
partitioned.

We formulate the green hybrid SDN problem, and we
propose a heuristic to choose which routers are to be upgraded
with SDN capabilities. We show through simulations that our
heuristic outperforms the random selection of routers. That
is, carefully selecting which routers are upgraded with SDN
increases routing flexibility in such a way that a larger number
of routers can be shutdown without exceeding the desired MLU
of the egress routers.

The rest of the paper is organized as follows. In Section
II, we review related works that independently address the
energy efficiency problem in legacy, hybrid, and SDN-only
networks. In Section III, we review some background in inter-
AS vs intra-AS routing, and also review our earlier work on
minimizing egress link utilization in hybrid SDN networks. In
Section IV, we present the green hybrid SDN problem, and
our heuristics are presented in Section V. Simulation results
are presented in Section VI. Concluding remarks are given in
Section VII.

II. RELATED WORK

We first review work related to incremental SDN deploy-
ment and traffic engineering in hybrid networks. Hybrid SDN
networks, in which legacy routers co-exist with SDN nodes,
have been an interesting field of study in the SDN community
starting with the ideas discussed in [2]. The problem of traffic
engineering in a hybrid enterprise network has also been
studied in recent years. The first paper to address network

performance issues in an incrementally deployed SDN net-
work, [3], explores how SDN can be leveraged to dynamically
manage traffic in a hybrid environment.

The traffic engineering (TE) problem in an SDN/OSPF
environment is studied in [4], where the goal is to optimize
OSPF link weight settings to lower the MLU in the network.
Optimizing TE performance over all the network links in a
hybrid-SDN environment is studied in [5]. In [6], the maximum
flow problem in hybrid SDN networks is explored and an
FPTAS is proposed for solving it. Further, [7] focuses on ISP
networks with the TE objective of minimizing the MLU over
its peering links.

Energy efficiency in ISP networks has been significantly
explored in various network scenarios including legacy net-
works, hybrid SDN networks, and pure SDN networks. We
first look at the most relevant studies in the legacy network
scenario.

To reduce the total power consumption in a legacy network,
numerous studies propose shutting down links and/or entire
routers in the network, based on the ideas discussed in [8].
The idea explored in [9] and [10] is to increase energy savings
by turning off links and routers in the network subject to QoS
constraints such as MLU. In the former, simple heuristics are
presented to selectively turn off links and routers while in the
latter, a new algorithm based on the power consumption of
nodes and links is proposed. The goal in [11] is to shut down
cables in bundled links while ensuring that there is enough
room to satisfy the traffic demand.

In [12], the authors propose a routing algorithm that
precomputes loop-free next-hops for each primary next-hop to
effectively detour around links with low traffic load, allowing
for traffic aggregation onto links for increased power savings.
The study in [13] minimizes energy consumption by turning off
unused links in cabled bundles and nodes, while ensuring the
traffic demand for each session is satisfied. The authors in [14]
present a technique that uses a scalable, online technique to
spread the load among multiple paths so as to increase energy
savings while achieving the same traffic rates as the energy-
oblivious approaches.

In [15], the authors propose a framework that identifies
energy critical paths and uses an online TE mechanism to
deactivate and activate network elements on demand. [16]
proposes a mechanism that maximizes the number of links
and/or line-cards that can be put to sleep under constraints
such as link utilization and packet delay. This mechanism
relies on a centralized controller to make the TE decisions and
disseminates the decisions to routers, which then turn on/off
line cards and ports as needed. Finally, [17]–[19] are a few
other green networking studies in legacy networks.

Next, we briefly go over the energy efficiency research in
hybrid SDN networks.

The authors in [20] propose an SDN-based energy-aware
routing and resource management model in which the SDN
controller uses pre-established multi-paths and performs rout-
ing and admission control based on these paths. These paths
are turned on/off based on traffic load for energy savings. In
[21], the authors propose a hybrid energy-aware TE algorithm
which determines the optimal setting for the OSPF link weight
and the splitting ratio of SDNs to enable aggregating traffic
onto partial links and turning off underutilized links to save

38Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 46 / 76

energy. [22] focuses on finding the most appropriate percentage
of legacy IP nodes to be upgraded to SDN with the goal of
putting to sleep links and/or SDN nodes where applicable. The
study also gives a selection criterion for selecting SDN nodes
to increase energy efficiency of the network. Further, the study
in [23] determines the minimum-power network subsets that
can satisfy the traffic demand and shuts down unnecessary
SDN switches and links.

Studies that focus on energy saving in pure SDN networks
include [24]–[28]. The approaches here include modifica-
tions/extensions to the OpenFlow protocol and heuristics to
aggregate traffic and/or minimize the number of active SDN
elements required to satisfy traffic demands.

To the best of our knowledge, our study is the first to take
into consideration inter-AS traffic engineering while shutting
down nodes in hybrid SDN networks for reducing total energy
consumption of the network.

III. BACKGROUND

We next review some background in inter-AS vs. intra-AS
routing, and also our earlier work on minimizing egress link
utilization in hybrid SDN networks.

A. Intra-AS vs. Inter-AS Routing

An autonomous system (AS) is a group of networks (i.e.,
IP prefixes) that is controlled by a single administrative entity,
such as a university, a company, or an organization. Currently,
the Internet has over 80,000 autonomous systems (ASms). Fig-
ure 2 shows an AS M that has four neighboring ASms. In this
figure, we assume that IP prefix 210.1.0.0/16 is reachable via
both ASms A and B (perhaps several AS-hops away), while
IP prefixes 200.1.0.0/16 and 220.1.0.0/16 are only reachable
via AS A and AS B, respectively.

Border routers exchange prefix reachability information
with each other via the BGP protocol. E.g., border router r1 in
AS M learns about IP prefix 210.1.0.0/16 via its neighboring
router rA in AS A, and border router rB learns about this same
prefix via its neighboring router rB in AS B. It is possible that
these IP prefixes are located many AS-hops away from ASms
A and B. For the purposes of this paper, we only consider the
fact that IP prefixes are being advertised by border routers, and
ignore the number of AS-hops to reach them.

We assume that interior routers (i.e., routers not located at
the border of the AS) do not speak BGP. This is commonly
the case for a medium-sized AS. Thus, interior routers are not
aware of the existence of other ASms. They do, however, run
an Internal Gateway Protocol (IGP), such as RIP or OPSF, to
find a path to every IP prefix available within its own AS.

To allow interior routers to find a path to the external
prefixes, such as 210.1.0.0/16, the border routers employ route
redistribution. That is, border routers advertise the external
prefixes over the IGP as if these prefixes belonged to a link
directly attached to them. In this way, each internal router can
reach an external prefix by following the shortest path to any
border router that advertises the prefix. In Figure 2, routers r1,
r3, r5 and r6 will reach prefix 210.1.0.0/16 via neighboring
router rA, while routers r2 and r4 will reach this same prefix
via neighboring router rB .

r4

r5r3

rQ

rPrA

rB

r2
r6

r1

AS A AS P

AS M

AS QAS B

200.1.0.0/16

210.1.0.0/16

210.1.0.0/16

220.1.0.0/16

2 Gbps

2 Gbps

Figure 2. Autonomous systems.

B. Optimizing Egress Link Utilization via Hybrid SDN

As discussed in the next section, shutting down routers
will increase the utilization of the egress links. Therefore,
finding a method to distribute the traffic evenly over the egress
links is beneficial to this problem. Since we assume that the
network has SDN routers, we choose to use SDN Egress
Selection (SES), which we introduced in earlier work [7], to
minimize the utilization of egress links. We briefly overview
this technique below.

Consider again Figure 2. The links between AS M and its
neighbors A and B are labeled with their respective bandwidth,
and assume that the IGP uses minimum-hop routing.

Let AS P send 1.5 Gbps to prefix 200.1.0.0/16. This traffic
is only advertised by r1 and thus it must exit via r1. Let AS
Q send 1.5 Gbps to prefix 220.1.0.0/16. Similarly, this must
exit via r2 because only r2 advertises it. Finally, let each of P
and Q send 0.3 Gbps to prefix 210.1.0.0/16. Due to minimum-
hop routing, this 0.6 Gbps will exit via r1, causing this egress
link to overflow. Consider now turning a single router into an
SDN router, in particular, r3. This allows r3 to divert traffic
in any way we choose. Let r3 forward the traffic for prefix
210.1.0.0/16 towards r1 if it originates from AS P , and towards
r2 (via r4) if it originates from Q. In this way, both links
receive only 1.8 Gbps each, reaching a utilization of 90%.

The SES problem has similarities with the NP-hard prob-
lem of minimizing the makespan in unrelated parallel machines
[29], [30]. This scheduling problem consists of m parallel
machines and n independent jobs, such that, processing job
j on machine i requires time pi,j . The makespan of a schedule
is the maximum total time used by any machine. The objective
is to find a schedule that minimizes the makespan. Note that we
can map the SES problem to the above scheduling problem by
considering each egress link to be a machine, and each traffic
flow from an ingress router to a destination prefix to be a job.
The processing time of a flow at an egress is set to either
the bandwidth of the flow or infinity, depending on whether
or not the routing of the flow via minimum-hop routing plus
SDN re-routing reaches that egress router.

A 2-approximation solution to the makespan problem is
given in [29], [30]. Given the specific nature of the SES
problem, we have shown in [7] that the rounding obtains a
solution that is very close to optimal, and thus, much smaller
than the theoretical bound of twice the optimal.

39Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 47 / 76

IV. THE GREEN HYBRID SDN PROBLEM

We consider an AS where each router is either a border
router or an interior router. Border routers are divided into two
sets: ingress routers and egress routers. Interior routers are also
divided into two sets: SDN routers and legacy routers. Each
egress router r has an egress link of capacity C(r).

A traffic flow f(i, p) corresponds to the traffic from ingress
router i destined for IP prefix p. Each flow f(i, p) has a
demand, D(i, p), that corresponds to the amount of traffic
of the flow. A traffic flow exits the AS via a single egress
router, i.e., we assume that a flow cannot be split among
multiple egress routers. For each IP prefix p and egress router
e, avail(e, p) is true if and only if e received an advertisement
for p from its neighboring AS. Thus, flow f(i, p) can only exit
the AS via some egress e where avail(e, p) is true.

A sequence of routers, r0, r1, . . . , rn, is said to be a hybrid
routing path iff r0 is an ingress router, rn is an egress router,
and for each ri, 0 ≤ i < n, ri+1 is the next-hop router along
the IGP path from ri to rn, or ri is an SDN router whose
neighbors include ri+1.

We assume that there exists an SDN controller node that
determines the forwarding tables of the SDN routers. The SDN
controller is assumed to be aware of the network topology and
the paths chosen by the IGP. E.g., the IGP could be OSPF,
and the SDN routers forward to it a copy of the link-state
advertisements that they receive. The controller is also aware
of the traffic matrix either directly from the network operators
or via some interaction with the ingress routers.

Our Green Hybrid SDN problem is as follows. Consider
a legacy AS network, and let R be the set of legacy routers
in this network. We are given two upper bounds. The first is
an upper bound U on the link utilization on egress links. The
second is an upper bound k on the number of legacy routers
that will be replaced by SDN routers. The output consists of
finding two sets, S and R′, such that:

• R′ ⊂ R. This set contains the routers that are to be
powered down.

• S ⊂ R and |S| ≤ k. Each router in S will be replaced
by an SDN router.

• For every IP prefix p, every ingress i, and every egress
e, the reduced network (i.e., the network consisting of
routers in R−R′) contains a hybrid routing path from
ingress i to an egress e such that avail(e, p) is true.
Notice that, assuming that every ingress has traffic
from at least one prefix, then no ingress router can be
part of R′. Egress routers, along with interior routers,
may belong to R′.

• The egress MLU is at most U . That is,

∀e, Load(e)

C(e)
≤ U ≤ 1

Above, Load(e) is the sum of all the traffic demands
of flows that are assigned to egress router e.

• The cardinality of R′ is the largest possible, i.e., the
energy savings is maximized by powering down the
largest possible number of routers.

Note that S and R′ are not defined to be mutually exclusive.
However, if a router r belongs to both sets, then r will be

6

43

21

AS

5 7p3

p2

p1

p2, p3

p2

p1, p2

Figure 3. SDN selection example.

powered down. In this case, the SDN functionality of r is of
no use, and its inclusion in S is meaningless. Thus, effectively,
S and R′ can be thought of as being disjoint.

As routers are turned off and network paths become un-
available, it is paramount to distribute the traffic evenly among
the remaining egress routers. Otherwise, the egress MLU
increases beyond the desired bound. As mentioned above, we
use the (SES) method that we introduced in [7] to perform this
load balancing.

In [7], we assumed that the location of the SDN routers
was given as input to the problem. In this paper, however, we
assume that that we are free to choose which routers will be
upgraded with SDN.

Different choices for set S will yield significantly different
cardinalities for set R′, and hence, different savings in power.
As an example, consider Figure 3, where there is a single
AS with three ingress routers, three egress routers, and three
prefixes. Note that in light of the IGP, prefixes p1, p2, p3, will
exit via egresses 2, 4, and 7, respectively.

Note that 4 is the only router that can be shutdown. This
is because the ingress routers cannot be shutdown (otherwise
incoming traffic is dropped), and furthermore, each of p1 and
p3 is available at a single egress, so egress routers 2 and 7
cannot be shutdown either. Finally, 6 cannot be shutdown since
otherwise p3 would not reach its egress. Thus, assume router
4 is shutdown. The IGP would then route traffic for p2 via
egress 2 since it is closer than egress 7.

Assume next that the combined traffic of p1 and p2 exceeds
the desired utilization of egress 2. However, assume egress
7 can easily handle the combined traffic of p2 and p3. Let
k = 1, i.e., we are only allowed to transform a single router
with SDN. The only sensible choice is router 3, which can
divert the traffic of p2 towards 5, and hence, towards egress
7. Any other choice for the SDN router would be unable to
affect the traffic, leading to an over-utilization of egress 2, and
thus, router 4 would not be allowed to shutdown in this case.

The above example illustrates the importance of the heuris-
tic to select the routers in S. Here, there will be energy savings
if and only if the heuristic chooses router 3.

V. HEURISTICS

We next present several heuristics for selecting set S.
Before doing so, we present the overall steps of the method.

40Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 48 / 76

1) First, k routers are chosen by one of the heuristics
below to be transformed into SDN routers.

2) A router is chosen at random (not including ingresses)
and is shutdown.

3) The network is checked to ensure that it is not
partitioned, and that there is a hybrid routing path for
each flow to an egress router advertising the flow’s
prefix.

4) The method in [7] is used to see if the SDN nodes
can help in routing the traffic in such a way that the
egress MLU is at most U .

5) If bound U is not violated, the router is permanently
removed from the network.

6) We return to step 2 above. We end when no router
can be removed from the network without violating
U .

A. Diverting Traffic

For this heuristic, we pick routers that have the ability
to “bump” traffic towards any egress other than the IGP-
chosen egress, provided the egress is advertising the prefix.
To elaborate, let p be an IP prefix, and let distance(r, e) be
the IGP distance or cost from router r to egress router e. Also,
let exit(r, p) be the egress router through which the traffic from
r to p exists the AS. That is,

∀e, avail(e, p)⇒ distance(r, exit(r, p)) ≤ distance(r, e)

Finally, let path(r, e) be the IGP path from router r to egress
router e. Then, we say that r is an SDN candidate if there
is a router s and a prefix p such that: s is a neighbor of r,
exit(r, p) 6= exit(s, p), and r /∈ path(s, exit(s, p)).

Consider the example in Figure 4. Let prefix p be an-
nounced by egress routers 9 and 10. Then, for routers 1, 3,
5, and 7, egress 9 is the exit router for prefix p. Similarly, for
routers 2, 4, 6, 8, and 11, their exit router is 10. Thus, one
SDN candidate is router 3, because exit(3, p) 6= exit(4, p),
and 3 is not contained in path(4, 10). Similarly, routers 4, 7,
and 8 are also SDN candidates.

On occasions, the number of SDN candidates can be
greater than the desired number of SDN routers. If so, we
simply choose randomly within the set of candidates.

B. Most Visited

This heuristic is based on the diverting-traffic heuristic. The
steps are as follows:

• Apply the diverting traffic heuristic to find the SDN
candidate routers.

• Calculate all the IGP paths from each input flow to its
egress router.

• Rank the SDN candidate routers according to the
number of these IGP paths that cross the candidate
router.

For Figure 4, the most-visited heuristic results in choosing
routers 4 and 8 first since they both appear in two paths: (2,10)
and (11,10). These are followed by 3 and 7 since they are
visited by only one path: (1,9).

108642

97531

prefix
p

AS

11

Figure 4. Network example.

C. Degree
This heuristic first identifies SDN candidates as in the

diverting traffic heuristic, and the degree of the router is
then used to rank the SDN candidates. We arrange routers
in decreasing order of their degree. Thus, in Figure 4, router
4 is picked first. This is followed by routers 3, 7, and 8.

D. Most Traffic
For the final heuristic, we assume that we know the pattern

of the traffic demand in the network. For each flow, we first
calculate the shortest path from its ingress to the closest egress
that advertises its prefix, i.e., the path taken by the legacy IGP.
We prioritize routers by adding the traffic demands of all the
flows that the IGP routes through them. Higher priority is given
to those routers that handle the largest amount of traffic.

VI. SIMULATION RESULTS

We evaluate our heuristics by performing simulations on a
Rocketfuel [31] ISP topology with 53 routers and 84 Intra-
AS links in the network. Using the Rocketfuel topology
information, we conclude that the routers that are not acting as
backbone routers are acting as border routers, and we separate
these border routers into 14 ingress routers and nine egress
routers. We assume that the intra-domain protocol is OSPF,
and that the distances are hop-based. Therefore, the shortest
path to a destination is the path with the least number of hops.

We generate synthetic traffic flows from each ingress router,
where the number of traffic flows through the network is
the number of ingress routers times the number of prefixes.
We also assume that each ingress router has incoming traffic
destined to all the prefix advertised in the network. For
example, in the case of 40 prefixes, this would give us 14
× 40 = 560 traffic flows.

We consider a traffic scenario with 40 prefix advertise-
ments. Typically in an ISP, the number of prefixes in the
routing table can scale to large numbers. However, it has been
shown that only a small fraction of these prefixes are actually
responsible for a major portion of the traffic traversing the
ISP network [32]. Generally, a prefix advertisement may be
received and advertised by multiple egress routers in the AS.
In this paper, we simply choose to advertise each prefix at all
the egress border routers.

Each of the egress routers is assumed to connect with the
neighboring AS with a single peering link. The capacity of
the egress links is set to 1000 scaled units. The total amount

41Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 49 / 76

of traffic generated is a fraction of the total capacity of the
egress links. E.g., with nine egress links, where each link has
a capacity of 1000, the total traffic generated is f × 1000× 9,
where 0 < f < 1. In the case of six egress links, the total
traffic generated is f×1000×6. This total traffic is distributed
randomly across the input flows, ensuring that the total traffic
is exactly this amount. We have chosen f to be 0.2. Although
relatively small, this amount allows us to shut down many
routers in the network and observe the impact of adding SDN
routers.

In each of the scenarios, we start with zero SDN routers
and increment up to twenty SDN routers. Each point in our
plots represents the number of routers that can be turned off
averaged over ten simulation runs. Of the heuristics discussed
above, the diverting traffic heuristic performed the best. No
improvement was seen by adding the most visited refinement
nor the degree refinement. For lack of space, we focus on
comparing the diverting traffic heuristic against randomly
selecting SDN routers.

We begin by presenting the diverting-traffic heuristic in
Figures 5, 6 and 7. The number of available egress routers
varies from three up to nine. For each of these cases, the bound
U on the MLU is varied from 0.7 up to 0.9. This is followed
by Figures 8, 9, and 10 with a similar configuration except
that the heuristic is just random selection of the SDN routers.

An interesting phenomenon occurs in Figures 5 and 8.
Even without SDN routers, having only three egress routers
allows us to turn off a total of 29 routers. It appears to
suggest that a lower number of egress routers is best. However,
this is just a side-effect of how we chose to generate traffic.
Recall that the total input traffic generated is f × 1000 ×
(number of egress routers). Thus, the input traffic in the case
of only three egress routers is only a third of the input traffic in
the case when nine egress routers are available. Thus, as routers
are shut down, the nine egress routers case has to squeeze a
larger amount of traffic through a smaller number of egress
links, and thus, requires a large number of SDN routers to
turn off the same number of routers as the case of three egress
routers.

Figures 6, 7, 9, and 10, clearly show that as the number of
SDN routers in the network is increased, a larger number of
routers can be shutdown without violating the link utilization
bound. The number of SDN routers need not be large. For
example, from Figure 7, with only six SDN routers we are
able to shutdown about 23 routers of the maximum 29 possible.
No simulation point, regardless of its parameters, was able to
shutdown more than 29 routers.

A direct comparison of the diverting traffic vs. random
is given in Figure 11. It clearly shows the superiority of the
diverting traffic approach over the random approach regardless
of the utilization bound chosen.

Finally, Figure 12 shows the diverting-traffic heuristic with
U = 0.75, and a curve for each of 3, 6, and 9 routers. The
figure clearly shows that, for each of these cases, as the number
of SDN routers increases, the number of routers that can be
shutdown also increases, as desired.

VII. CONCLUDING REMARKS

We have introduced the green SDN hybrid problem and
evaluated several heuristics for it. Our goal was to ensure

 10

 15

 20

 25

 30

 0 5 10 15 20

N
u
m

b
e
r

o
f

ro
u
te

rs
 t

u
rn

e
d

 O
FF

Number of SDN Nodes

3 egress routers announce each prefix

CutOff Util 0.7
CutOff Util 0.8
CutOff Util 0.9
CutOff Util 1.0

Figure 5. Diverting traffic for three egress routers

 10

 15

 20

 25

 30

 0 5 10 15 20

N
u
m

b
e
r

o
f

ro
u
te

rs
 t

u
rn

e
d

 O
FF

Number of SDN Nodes

6 egress routers announce each prefix

CutOff Util 0.9
CutOff Util 0.8
CutOff Util 0.7

Figure 6. Diverting traffic for six egress routers

 10

 15

 20

 25

 30

 0 5 10 15 20

N
u
m

b
e
r

o
f

ro
u
te

rs
 t

u
rn

e
d

 O
FF

Number of SDN Nodes

9 egress routers announce each prefix

CutOff Util 0.9
CutOff Util 0.8
CutOff Util 0.7

Figure 7. Diverting traffic for nine egress routers

42Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 50 / 76

 10

 15

 20

 25

 30

 0 5 10 15 20

N
u
m

b
e
r

o
f

ro
u
te

rs
 t

u
rn

e
d

 O
FF

Number of SDN Nodes

3 egress routers announce each prefix

CutOff Util 0.7
CutOff Util 0.8
CutOff Util 0.9
CutOff Util 1.0

Figure 8. Random placement for three egress routers

 10

 15

 20

 25

 30

 0 5 10 15 20

N
u
m

b
e
r

o
f

ro
u
te

rs
 t

u
rn

e
d

 O
FF

Number of SDN Nodes

6 egress routers announce each prefix

CutOff Util 0.9
CutOff Util 0.8
CutOff Util 0.7

Figure 9. Random placement for six egress routers

 10

 15

 20

 25

 30

 0 5 10 15 20

N
u
m

b
e
r

o
f

ro
u
te

rs
 t

u
rn

e
d

 O
FF

Number of SDN Nodes

9 egress routers announce each prefix

CutOff Util 0.9
CutOff Util 0.8
CutOff Util 0.7

Figure 10. Random placement for nine egress routers

 10

 15

 20

 25

 30

 0 5 10 15 20

N
u
m

b
e
r

o
f

ro
u
te

rs
 t

u
rn

e
d

 O
FF

Number of SDN Nodes

6 egress routers announce each prefix

Divert U = 0.9
Random U = 0.9

Divert U = 0.8
Random U = 0.8

Divert U = 0.7
Random U = 0.7

Figure 11. Diverting traffic vs. random placement

 10

 15

 20

 25

 30

 0 5 10 15 20

N
u
m

b
e
r

o
f

ro
u
te

rs
 t

u
rn

e
d

 O
FF

Number of SDN Nodes

Cutoff Utilization = 0.7

3 Egresses
6 Egresses
9 Egresses

Figure 12. Diverting traffic from three up to nine egress routers

egress links are not over utilized due to the diverting of all
the traffic onto a few egress links. We show through our
simulations that it is possible to achieve significant energy
savings and maintain a bounded link utilization with only a
few SDN routers. We also show that in such a hybrid network,
the location of the SDN routers play an important role in
maximizing energy savings.

There are several directions possible for future work. We
plan to continue to investigate various heuristics and apply
them to a wide variety of topologies to study their effective-
ness. Also, we have assumed that the traffic load is static. If
the traffic load changes over time, the SDN controller must
recalculate routes and propagate them to the SDN routers. It
would be beneficial to come up with a scheme that would allow
a smooth transition between the old and new set of routing
tables. Finally, we have assumed that all routers consume the
same amount of energy, and we have not considered shutting
down individual links rather than entire routers. Thus, we also
plan to investigate more complex energy models.

REFERENCES

[1] T. Bressoud, R. Rastogi, and M. A. Smith, “Optimal configuration for
BGP route selection,” in In Proc. IEEE INFOCOM, 2003.

[2] D. Levin, M. Canini, S. Schmid, a. feldmann, and f. schaffert, “Panop-
ticon: Reaping the benefits of incremental sdn deployment in enterprise
networks,” in USENIX Annual Technical Conference, 2014.

43Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 51 / 76

[3] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering
in software defined networks,” in 2013 Proceedings IEEE INFOCOM,
2013, pp. 2211–2219.

[4] Y. Guo, Z. Wang, X. Yin, X. Shi, J. Wu, and H. Zhang, “Incremental
deployment for traffic engineering in hybrid sdn network,” in 2015
IEEE 34th International Performance Computing and Communications
Conference (IPCCC), Dec 2015, pp. 1–8.

[5] J. He and W. Song, “Achieving near-optimal traffic engineering in hy-
brid software defined networks,” in 2015 IFIP Networking Conference
(IFIP Networking), May 2015, pp. 1–9.

[6] Y. Hu, W. Wang, X. Gong, X. Que, Y. Ma, and S. Cheng, “Maximizing
network utilization in hybrid software-defined networks,” in 2015 IEEE
Global Communications Conference (GLOBECOM), Dec 2015, pp. 1–
6.

[7] K. P. Kadiyala and J. A. Cobb, “Inter-as traffic engineering with sdn,”
in 2017 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), Nov 2017, pp. 1–7.

[8] M. Gupta and S. Singh, “Greening of the internet,” in Proceedings
of the 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, ser. SIGCOMM ’03.
New York, NY, USA: ACM, 2003, pp. 19–26. [Online]. Available:
http://doi.acm.org/10.1145/863955.863959

[9] L. Chiaraviglio, M. Mellia, and F. Neri, “Reducing power consumption
in backbone networks,” in 2009 IEEE International Conference on
Communications, June 2009, pp. 1–6.

[10] ——, “Energy-aware backbone networks: A case study,” in 2009 IEEE
International Conference on Communications Workshops, June 2009,
pp. 1–5.

[11] W. Fisher, M. Suchara, and J. Rexford, “Greening backbone
networks: Reducing energy consumption by shutting off cables
in bundled links,” in Proceedings of the First ACM SIGCOMM
Workshop on Green Networking, ser. Green Networking ’10. New
York, NY, USA: ACM, 2010, pp. 29–34. [Online]. Available:
http://doi.acm.org/10.1145/1851290.1851297

[12] Q. Li, M. Xu, Y. Yang, L. Gao, Y. Cui, and J. Wu, “Safe and practical
energy-efficient detour routing in ip networks,” IEEE/ACM Transactions
on Networking, vol. 22, no. 6, pp. 1925–1937, Dec 2014.

[13] B. Mumey, J. Tang, and S. Hashimoto, “Enabling green networking
with a power down approach,” in 2012 IEEE International Conference
on Communications (ICC), June 2012, pp. 2867–2871.

[14] N. Vasić and D. Kostić, “Energy-aware traffic engineering,” in
Proceedings of the 1st International Conference on Energy-Efficient
Computing and Networking, ser. e-Energy ’10. New York, NY, USA:
ACM, 2010, pp. 169–178. [Online]. Available: http://doi.acm.org/10.
1145/1791314.1791341

[15] N. Vasić, P. Bhurat, D. Novaković, M. Canini, S. Shekhar,
and D. Kostić, “Identifying and using energy-critical paths,” in
Proceedings of the Seventh COnference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’11. New York,
NY, USA: ACM, 2011, pp. 18:1–18:12. [Online]. Available:
http://doi.acm.org/10.1145/2079296.2079314

[16] M. Zhang, C. Yi, B. Liu, and B. Zhang, “Greente: Power-aware
traffic engineering,” in Proceedings of the The 18th IEEE International
Conference on Network Protocols, ser. ICNP ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 21–30. [Online]. Available:
http://dx.doi.org/10.1109/ICNP.2010.5762751

[17] A. Cianfrani, V. Eramo, M. Listanti, M. Marazza, and E. Vittorini, “An

energy saving routing algorithm for a green ospf protocol,” in 2010 IN-
FOCOM IEEE Conference on Computer Communications Workshops,
March 2010, pp. 1–5.

[18] O. Okonor, N. Wang, Z. Sun, and S. Georgoulas, “Link sleeping and
wake-up optimization for energy aware isp networks,” in 2014 IEEE
Symposium on Computers and Communications (ISCC), June 2014, pp.
1–7.

[19] R. Bolla, R. Bruschi, A. Cianfrani, and M. Listanti, “Enabling
backbone networks to sleep,” Netwrk. Mag. of Global Internetwkg.,
vol. 25, no. 2, pp. 26–31, Mar. 2011. [Online]. Available:
http://dx.doi.org/10.1109/MNET.2011.5730525

[20] M. R. Celenlioglu, S. B. Goger, and H. A. Mantar, “An sdn-based
energy-aware routing model for intra-domain networks,” in 22nd Inter-
national Conference on Software, Telecommunications and Computer
Networks (SoftCOM), Sept 2014, pp. 61–66.

[21] Y. Wei, X. Zhang, L. Xie, and S. Leng, “Energy-aware traffic engineer-
ing in hybrid sdn/ip backbone networks,” Journal of Communications
and Networks, vol. 18, no. 4, pp. 559–566, Aug 2016.

[22] J. Galn-Jimnez, “Legacy ip-upgraded sdn nodes tradeoff in energy-
efficient hybrid ip/sdn networks,” Comput. Commun., vol. 114, no. C,
pp. 106–123, dec 2017. [Online]. Available: https://doi.org/10.1016/j.
comcom.2017.10.010

[23] H. Wang, Y. Li, D. Jin, P. Hui, and J. Wu, “Saving energy in partially
deployed software defined networks,” IEEE Transactions on Computers,
vol. 65, no. 5, pp. 1578–1592, May 2016.

[24] R. Bolla, R. Bruschi, F. Davoli, and C. Lombardo, “Fine-grained energy-
efficient consolidation in sdn networks and devices,” IEEE Transactions
on Network and Service Management, vol. 12, pp. 132–145, 2015.

[25] A. Markiewicz, P. N. Tran, and A. Timm-Giel, “Energy consumption
optimization for software defined networks considering dynamic traffic,”
IEEE 3rd International Conference on Cloud Networking (CloudNet),
pp. 155–160, 2014.

[26] S. S. Tadesse, C. Casetti, C.-F. Chiasserini, and G. Landi, “Energy-
efficient traffic allocation in sdn-basec backhaul networks: Theory
and implementation,” 14th IEEE Annual Consumer Communications
Networking Conference (CCNC), pp. 209–215, 2017.

[27] S. Oda, D. Nobayashi, Y. Fukuda, and T. Ikenaga, “Flow-based routing
schemes for minimizing network energy consumption using openflow,”
in The Fourth International Conference on Smart Grids, Green Com-
munications and IT Energy-aware Technologies (ENERGY 2014), April
2014.

[28] H. Ying, L. Tao, B. N. C., and W. Wenjie, “An initial load-based
green software defined network,” Applied Sciences, vol. 7, no. 5, 2017.
[Online]. Available: http://www.mdpi.com/2076-3417/7/5/459

[29] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algo-
rithms for scheduling unrelated parallel machines,” in Foundations of
Computer Science, 1987., 28th Annual Symposium on. IEEE, 1987,
pp. 217–224.

[30] D. Du, K.-I. Ko, and X. Hu, Design and Analysis of Approximation
Algorithms. New York, NY: Springer, 2012.

[31] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring
isp topologies with rocketfuel,” IEEE/ACM Trans. Netw., pp. 2–16, feb
2004.

[32] N. Feamster, J. Borkenhagen, and J. Rexford, “Guidelines for interdo-
main traffic engineering,” in ACM SIGCOMM Computer Communica-
tion Review, October 2003, pp. 19–30.

44Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 52 / 76

Comparative Evaluation of Database Performance in an Internet of Things Context

Denis Arnst∗, Valentin Plenk†, Adrian Wöltche‡
Institute of Information Systems at Hof University, Hof, Germany

Email: ∗denis.arnst@iisys.de, †valentin.plenk@iisys.de, ‡adrian.woeltche@iisys.de

Abstract—We use an application scenario that collects, transports
and stores sensor data in a database. The data is gathered with
a high frequency of 1000 datasets per second. In the context of
this scenario, we analyze the performance of multiple popular
database systems. The benchmark results include the load on the
system writing the data and the system running the database.

Keywords–performance; benchmark; nosql; relational;
database; industry 4.0; mariadb; mongodb; influxdb; internet of
things; high frequency data acquisition; time series.

I. INTRODUCTION

Recently popular media are heralding the advent of a
new age with buzzwords like ”Internet of Things” (IoT) or
”Industry 4.0” (I4.0). One of the popular mantras is ”data is
the new oil”. This claim is surely true for applications like
predictive maintenance where data gathered during operation
of a production machine is mined for wear indicators. Many
papers address the ”refining process” (e.g. [1]–[3]) and propose
data-mining algorithms that extract said indicators from a
database or a data lake.

In this paper, however, we focus on collecting and storing
time series data as integral part of the industrial data analytics
process [4]. This can be very challenging both in terms of
engineering the instrumentation and in implementing fast data-
acquisition and data-handling software. In one of our research
projects, we collect and store ≈ 4GB

day .
Standard databases can be tuned towards high performance

reading or writing of data, but often not towards both at once.
Especially when a fast retrieval of time series data is of interest,
for example in predictive analytics, relational databases rely
on B-tree indexes that permit a fast search for data. These
indexes are a huge performance bottleneck if frequent updates
are made. This stems from B-trees being optimized for random
fills and not for updates only coming from one side of the
tree. [5] propose structures like the B(x)-tree to overcome this
problem. Nevertheless, standard databases do not implement
specialized index structures in most cases. Instead, specialized
”time-series” databases for this use case exists (e.g. [6]–[9]).

To verify whether these databases are more suitable for
our application, we use the benchmark scenario presented in
Section II that generates a standard load on all subsystems
of the setup, to compare relational, NoSQL and specialized
time-series databases. Section III presents our test candidates.

In Section IV, we describe the different implementations
we developed for writing to the databases. We evaluated
several ideas from [10], such as time series grouping.

To evaluate the database performance we measure the load
on the involved infrastructural components, i.e., CPU, memory,
network and hard disk, and perform the benchmarking, as
described in Section V. Section VI discusses our findings.
Section VII summarizes the paper and gives a brief outlook
on our future work.

Figure 1. The test setup

II. BENCHMARK APPLICATION

One of our currrent projects is using predictive maintenance
for analyzing data stemming from a complex tool operating
within an industrial machine. The tool is equipped with 13
analog and 37 digital sensors recording mechanical parameters
during operation of the tool. The machine tool opens and closes
the tool ≈ 3 times per second, i.e., 3 working cycles per
second. Our application records ≈ 300 samples per cycle from
the sensors and stores them in a database for later analysis.

For the tests in this paper, we substitute tool and machine
tool with electronic function generators as shown in Figure
1. One function generator is set to make a sinus wave. It is
wired to a divider circuit, which accepts one input and divides
it into four outputs of different amplitudes. The other generator
creates a sawtooth wave. The resulting five analog outputs are
wired to GPIO-Inputs of a STM32F4-Discovery board.

In total, we sample 5 analog channels with a resolution
of 12 Bit (represented using 2 bytes) and a sample rate of
1000 samples

sec . This corresponds to a data rate of 10, 000bytes
sec .

Figure 2 shows the flow of the data through our setup. The
sensor data is gathered by a microcontroller which sends it
to a single board computer via a parallel interface. The single
board computer is running two separate applications: one reads
from the parallel interface and adds a timestamp to the sensor
data. The second application receives the data and writes it
to the database on our server. These applications are linked
via a Linux message queue. If the second application is not
reading fast enough to keep the buffered data in the queue
below ≈ 16kByte data is lost.

We use a STM32F407 on a STM32F4Discovery evaluation
board to convert the sensor data from analog to digital. The

45Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 53 / 76

Figure 2. Block diagram of the test setup

embedded application is written in C and does not use any
operating system.

The Single-board-Computer is a Banana Pi M3 running
the Linux distribution CentOS 7 without an X.Org-Server.
This system uses an ARM Cortex A7 Octa-Core with 2 GB
RAM and has GigaBit Ethernet on board. The two applications
running on this system are written in C and C++.

The database is run on a dedicated server running Linux
with an AMD Phenom(tm) II X6 1055T Processor, 16GB
RAM (4 x 4GB, DDR3, 1333 MHz) and a 128GB SSD running
on a ASRock 880G Extreme 3 mainboard. It also runs CentOS
7 as distribution.

Banana Pi and server are linked via fast ethernet.
The parts of Figure 2 shown with gray background are

database specific. We use high-level libraries to access the
database and provide three different implementations and
server installations.

III. CHOICE OF DATABASES

Various publications like [7] or [11] list an huge num-
ber of different databases. They distinguish three categories:
Relational Database Management Systems (RDBMS), NoSQL
Database Management Systems (DBMS), and the more spe-
cialized Time Series Databases (TSDB). For our benchmark,
we chose one system for each category. For the selection
we focus on mature (stable releases available for at least 3
years) and free software with options for enterprise support.
We mainly consulted the database ranking website [11] as basis
for selecting databases for our comparison.

As a representative RDBMS we selected the open source
database MariaDB [12]. It is a fork of the popular MySQL
database and widely used in Web-Applications and relational
scenarios. [13] lists MySQL and its more recent fork MariaDB
combined as top RDBMS.

We selected MongoDB [14] as a DBMS advertised ex-
pressly for its usefulness in an IoT context with a lot of sensor
data. It is also the most promising document store [15].

As TSDB we chose InfluxDB [16] which claims to be
highly specialized in sensor data. This claim is confirmed by
the score in [17].

IV. THE DIFFERENT IMPLEMENTATIONS

Every millisecond the Database Writer application running
on the single-board computer receives a new datapoint. Listing
1 shows the structure of the datapoint: It contains a timestamp
and a set of five analog values. The timestamp has a resolution
of one nanosecond and uses 12 bytes of memory. The analog

values are represented as 16-bit integers. Thus one datapoint
uses 22 bytes of memory.

Depending on the architecture of the database, we im-
plemented different ways of storing the data detailed in the
following sections. Each implementation itself is optimized
concerning runtime complexity for reduced influence on the
benchmarks by using memory usage techniques (i.e. stack
memory allocation), database specific techniques (i.e. prepared
statements), and general algorithmic design principles. This
way, we are able to receive optimal database performance
results. It is, however, possible, that non-optimized client
implementations negatively impact the throughput. This is not
covered by this paper for now.

A. MariaDB – Individual datapoints
This is a straightforward maybe even naive implementation

of the data structure. We sequentially store each datapoint
in the database. This results in a high rate of operations on
the database (5000 writes

second). Table I shows the structure of the
data. A compound index is set on second and nanosecond.
number describes the index of the sensor, measurement the
corresponding sensor value.

TABLE I
MARIADB - TABLE STRUCTURE OF INDIVIDUAL DATAPOINTS

Field Type
second bigint(20)
nanosecond int(11)
number smallint(5) unsigned
measurement smallint(5) unsigned

Our implementation of the algorithm based on
libmariadb uses prepared statements and struct
data binding for higher performance. Our performance
optimizations because of the creation of tables and the
explicit transaction preparation and commitment make the
MariaDB code the largest and most complicated of all our
implementations.

B. MariaDB – Bulk Datapoints
This implementation collects all data from one machine

cycle at once (in our test scenario: one cycle per second)

Listing 1. One datapoint
1 struct data_point
2 {
3 int64_t s;
4 int32_t ns;
5 uint16_t measurements[5];
6 };

46Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 54 / 76

and writes out one row per cycle. Therefore, we can store
the data in bigger units, which reduces the load dramatically.
In MariaDB, the JSON field is an alias for longtext field. Yet,
the specialized JSON query commands in MariaDB work for
such fields, which allows to later query the denormalized data
saved. Table II shows the used structure. second is an index,
measurements contains a JSON document built according to
the example in Listing 2. The document contains the measure-
ments and its time in nanoseconds in relation to the second of
the table. Thus, the rate of index updates is reduced to 1 per
second.

TABLE II
MARIADB - TABLE STRUCTURE OF DATAPOINTS IN BULK

Field Type
second bigint(20)
size int(10) unsigned
measurements json

Listing 2. MariaDB - JSON Documents
1 {
2 "measurements": [
3 {"ns":346851124,"m":[389,792,1202,315,552]}
4 ,{"ns":346933204,"m":[516,794,634,317,559]}
5 ...
6]}

The difficulty of this adaption is similar to the original
”naive” approach , but in one detail even more complicated: As
it is theoretically impossible to know how many measurements
one cycle will have (most of the time the stated 5000 measure-
ments per second in our case, but this is not guaranteed), we
needed to implement a dynamically growing character field for
the JSON data. We also needed to change the struct binding in
the transaction commitment for honoring the dynamical length
of the JSON data.

C. MongoDB – Individual Datapoints

As a document-orientated database, MongoDB allows for
flexible schemata. Data is organized internally in BSON
(Binary JSON) documents, which are in turn grouped in
collections.

Saving the individual datapoints according to Listing 1
each measurement would be a document with the time of
measurement and the values organized as a JSON-array.

The database supports setting an index on a field of
a document. To support further searching of measurements,
an index is set on time. With such a structure, numerous
documents are created per second. After each document, the
index needs to be updated, which results in high computational
effort.

The software for the MongoDB Database Writer is writ-
ten in C++ and uses mongocxx in conjunction with the
bsoncxx library. The document orientated approach of Mon-
goDB makes designing data structures very flexible. However,
the freedom leads to more work on the initial programming
approach. Also the need to link two libraries creates additional
effort.

D. MongoDB – Bulk Datapoints
As stated in Section IV-B we can store a bigger number of

datapoints at once. In MongoDB, we can implement this with
the structure shown in Listing 3.

Listing 3. Datapoints in bulk
1 {
2 "time" : ISODate("2018-02-12T19:56:49Z"),
3 "measurements" : [
4 { "time" : ISODate("2018-02-12T19:56:49.13

5Z"), "sensors" : [0, 0, 0, 9, 347] }
,

5 { "time" : ISODate("2018-02-12T19:56:49.13
6Z"), "sensors" : [0, 2, 4, 10, 351]
},

6 ...
7]
8 }

The time value of the top-level document has a precision of
a second. This document holds all datapoints sampled during
this second in an array. Every nested document contains the
exact time of its measurement and the actual sensor-values.
With this approach, the index has to be updated only once per
second resulting in optimized write performance. Nevertheless,
it must be considered that in this case only a whole second but
no parts of it can be retrieved efficiently. However, because of
the high increase in write throughput, we accept this drawback.

The application creates a document for a whole second
and fills it until the second has passed. Accordingly one such
document is inserted per second.

The documentation for MongoDB provides examples for
the use of streams and basic builders consisting of function
calls. Yet the use of nested structures and the nature of C++-
streams is poorly documented in the doxygen-based manuals,
increasing the implementation effort.

E. InfluxDB
As a time-series database InfluxDB has a strict schema

design. Every series of data consists of points. Each point has a
timestamp, the name of the measurement, an optional tag, and
one or more key-values fields. Timestamps have an accuracy
of up to one nanosecond and are indexed. The name of the
measurement should describe the data stored. The optional tags
are also indexed and used for grouping data. Data is retrieved
with InfluxQL, a SQL-like query language. Data is written
using the InfluxDB line-protocol (Listing 4). The first string
is the name of the measurement, here simply measurement.
Subsequently following the key-values with five measurements
and finally a timestamp in nanosecond precision.

Listing 4. InfluxDB Line-Protocol example
1 measurement m0=0, m1=0, m2=0, m3=9, m4=347

1518465409001000000

The Database Writer for InfluxDB is written in C. The
default API for InfluxDB is HTTP. For our high-frequency
write access however, we haven chosen the UDP protocol
which is also supported. In this case, the data is composed into
a line-protocol with simple C-String functions and sent with

47Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 55 / 76

the Unix function sendto. Since no external code is required
and a custom design of the data structure is not possible, using
the database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not necessary,
which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData [18].

V. TESTING

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The system load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also, we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ≈ 53MByte of raw data during the one hour of
our test.

LIO shows the average disk input output in kb
s caused

by the database writing operation. This was measured via
pidstat command.

Lnet shows the average bandwidth used. We obtain that
value with the command nload. We run our test in the uni-
versity network and therefore have additional external network
load. However before each test, we observed the additional
network load and as it was always smaller than 1kbytes

sec , we
neglected it.

To put LIO and Lnet in perspective: In our benchmark we
transfer 10.000bytes

sec from the microcontroller to the single-
board computer.

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give

both systems ≈ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VI. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criterion.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the disk
was significantly higher when using MariaDB compared to the
others. InfluxDB and the bulk implementation of MongoDB
got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step, before we add them up, we
assign each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criterion and ag-
gregated, resulting in points. High point values indicate high
resource usage according to weighting. For scoring we ”invert”
the points with the formula

Score = max(Points)− Points

and normalize the scores relative to the maximum score.
Figure 4 shows the scores without aggregation, where the

components forming the final results are outlined. For the final
ranking shown in Table III we aggregated all scores by adding
the non normalized values.

48Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 56 / 76

TABLE III
SCORED RANKING

Implementation Rank Score
MariaDB – bulk 1 73
MongoDB – bulk 2 70
InfluxDB 3 64
MongoDB – individual 4 54
MariaDB – individual 5 3

VII. CONCLUSION AND FUTURE WORK

Generally speaking, MongoDB is a good choice. Due to
the open structure, additional information can also be stored if
required and it performs quite well on both implementations.

However, the optimized MariaDB implementation that
saves data in bulks ranks first, as it consumed the least amount
of CPU and network.

On the contrary, if a saving of individual values is desired,
MariaDB is the last one and InfluxDB is the best in this case.

Our ranking is weighted after the use case described in
Section II. When IO is much more important than CPU,
MariaDB is potentially lesser ranked, as it had the most IO
usage in both implementations.

The paper only covered the writing of databases. Later on,
we want to measure the reading and querying performance in
another paper. By ensuring that each database uses an index
for time, we have already established a good basis for it.
Nevertheless, we expect different winners in each test category
for the readings.

REFERENCES
[1] D. Wang, J. Liu, and R. Srinivasan, “Data-driven soft sensor approach

for quality prediction in a refining process,” IEEE Transactions on
Industrial Informatics, vol. 6, no. 1, Feb 2010, pp. 11–17, URL:
https://dx.doi.org/10.1109/TII.2009.2025124 [retrieved: 2018-08-14].

[2] G. Köksal, İ. Batmaz, and M. C. Testik, “A review of data mining appli-
cations for quality improvement in manufacturing industry,” Expert Sys-
tems with Applications, vol. 38, no. 10, 2011, pp. 13 448 – 13 467, URL:
http://www.sciencedirect.com/science/article/pii/S0957417411005793
[retrieved: 2018-08-14].

[3] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, and X. Rong, “Data
mining for the internet of things: Literature review and challenges,”
International Journal of Distributed Sensor Networks, vol. 11, no. 8,
2015, p. 431047, URL: https://doi.org/10.1155/2015/431047 [retrieved:
2018-08-14].

[4] J. Lee, H. D. Ardakani, S. Yang, and B. Bagheri, “Industrial big data
analytics and cyber-physical systems for future maintenance & service
innovation,” Procedia CIRP, vol. 38, 2015, pp. 3 – 7, proceedings of
the 4th International Conference on Through-life Engineering Services.

[5] C. S. Jensen, D. Lin, and B. C. Ooi, “Query and update effi-
cient b+-tree based indexing of moving objects,” in Proceedings of
the Thirtieth International Conference on Very Large Data Bases
- Volume 30, ser. VLDB ’04. VLDB Endowment, 2004, pp.
768–779, URL: http://dl.acm.org/citation.cfm?id=1316689.1316756 [re-
trieved: 2018-08-14].

[6] S. Acreman, “Top 10 time series databases,” URL:
https://blog.outlyer.com/top10-open-source-time-series-databases
[retrieved: 2018-08-14].

[7] A. Bader, O. Kopp, and M. Falkenthal, “Survey and Comparison of
Open Source Time Series Databases,” Datenbanksysteme für Busi-
ness, Technologie und Web - Workshopband, 2017, pp. 249 – 268,
URL: http://btw2017.informatik.uni-stuttgart.de/slidesandpapers/E4-14-
109/paper web.pdf [retrieved: 2018-08-14].

[8] D. Namiot, “Time series databases,” in DAMDID/RCDL, 2015,
URL: https://www.semanticscholar.org/paper/Time-Series-Databases-
Namiot/bf265b6ee45d814b3acb29fb52b57fd8dbf94ab6 [retrieved:
2018-08-14].

[9] S. Y. Syeda Noor Zehra Naqvi, “Time series databases and in-
fluxdb,” Studienarbeit, Université Libre de Bruxelles, 2017, URL:
http://cs.ulb.ac.be/public/ media/teaching/influxdb 2017.pdf [retrieved:
2018-08-14].

[10] A. M. Castillejos, “Management of time series data,” Dissertation,
School of Information Sciences and Engineering, 2006, URL:
http://www.canberra.edu.au/researchrepository/file/82315cf7-7446-fcf2-
6115-b94fbd7599c6/1/full text.pdf [retrieved: 2018-08-14].

[11] solidIT consulting & software development gmbh, “DB-Engines Rank-
ing,” URL: https://db-engines.com/en/ranking [retrieved: 2018-08-14].

[12] “MariaDB homepage,” URL: https://mariadb.org/ [retrieved: 2018-08-
14].

[13] solidIT consulting & software development gmbh, “DB-
Engines Ranking of Relational DBMS,” URL: https://db-
engines.com/en/ranking/relational+dbms [retrieved: 2018-08-14].

[14] “MongoDB homepage,” URL: https://www.mongodb.com/what-is-
mongodb [retrieved: 2018-08-14].

[15] solidIT consulting & software development gmbh, “DB-
Engines Ranking of Document Stores,” URL: https://db-
engines.com/en/ranking/document+store [retrieved: 2018-08-14].

[16] “InfluxDB homepage,” URL: https://www.influxdata.com/time-series-
platform/influxdb/ [retrieved: 2018-08-14].

[17] solidIT consulting & software development gmbh, “DB-
Engines Ranking of Time Series DBMS,” URL: https://db-
engines.com/en/ranking/time+series+dbms [retrieved: 2018-08-14].

[18] “UDP Configuration of InfluxDB,” URL:
https://github.com/influxdata/influxdb/tree/master/services/udp
[retrieved: 2018-08-14].

TABLE IV
TEST RESULTS

LCPUS
LmemS

LCPUC
LmemC

Lio Ldisk Lnet Difficulty

MariaDB – individual 36.6 % 201 kB 7 % 7.8 kB 7396 kB/s 1.27 GB 1.41 Mbit/s 5 (Very high)MariaDB – bulk 0.6 % 172 kB 2.2 % 8 kB 378 kB/s 240 MB 0.37 Mbit/s
MongoDB – individual 3 % 758 kB 6.6 % 12 kB 117 kB/s 204 MB 0.78 Mbit/s 4 (high)MongoDB – bulk 1 % 209 kB 3 % 12 kB 56 kB/s 86 MB 0.63 Mbit/s
InfluxDB 15.4 % 178 kB 4.9 % 2 kB 81 kB/s 89 MB 0.87 Mbit/s 1 (Very low)
Weight 2 0.25 2.5 0.25 2.5 0.5 1.5 0.2

49Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 57 / 76

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU_Server RAM_Server IO_Server CPU_Client RAM_Client Netzwerk (inc, mBit/s) Festplatte (M)

MariaDB_Single MariaDB_Bulk MongoDB_Single MongoDB_Bulk InfluxDB

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Figure 3. Overview of all Benchmark Values (normalized to respective Maximum)

MariaDB_Single

MongoDB_Single

InfluxDB

MongoDB_Bulk

MariaDB_Bulk

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

CPU_Server RAM_Server IO_Server CPU_Client RAM_Client Netzwerk

(inc, mBit/s)

Festplatte

(M)

Difficulty

Score

MariaDB_Single MongoDB_Single InfluxDB MongoDB_Bulk MariaDB_Bulk

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Figure 4. Weighted scores (normalized to maximum score)

50Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 58 / 76

Design Method of Wireless Sensor Networks in Railway Environments
 Considering Power Consumption

Tomoki Kawamura and Nagateru Iwasawa
Telecommunications and Networking Laboratory, Signaling Transport Information Technology Division

Railway Technical Research Institute
Kokubunji-shi, Japan

e-mail: kawamura.tomoki.41@rtri.or.jp

Abstract—In recent years, various researches have been condu-
cted for the purpose of applying Wireless Sensor Networks
(WSNs) to monitoring the condition of railway facilities. In
designing WSNs, it is important to effectively arrange the
nodes that compose WSNs. In railway environments, it is
necessary to design WSNs in consideration of the presence of
obstacles and constraints on the placement. In this paper, we
propose a method of calculating an optimal relay nodes place-
ment and a routing method of WSNs in railway environments
by combining the mathematical optimization method and Seq-
uential Monte Carlo method.

Keywords-Wireless sensor network; Optimization method; Power
consumption; Sequential Monte Carlo method.

I. INTRODUCTION
Nowadays, with the development of the ICT, researches

on the condition monitoring system by mean of a Wireless
Sensor Network (WSN) are proceeding. In the railway field
as well, various condition monitoring systems by means of
WSNs are being researched in order to apply them to such
cases as the monitoring of structures along tracks [1], the
monitoring of trains [2], and so on [3]. Most of the WSNs
consists of sensor nodes for acquiring data of monitored
objects, gateways for aggregating data, and relay nodes for
transferring data when the sensor nodes and the gateway can-
not communicate directly. In designing a WSN, it is import-
ant to effectively arrange these nodes. In WSNs for condition
monitoring, the locations where sensor nodes and gateways
are installed are often predetermined in advance. For this rea-
son, how to efficiently arrange relay nodes is important in
designing WSNs, and various researches have been conduc-
ted on methods for determining effective placements of relay
nodes [4]-[7].

The railway facilities spread long over urban areas and
mountainous areas, and there are many obstacles that inter-
rupt wireless communication. In addition, the placement of
nodes may be restricted due to safety and physical conditi-
ons. Therefore, it is necessary to design WSNs considering
these characteristics when introducing WSNs in railway
environments.

In this study, we propose a method of calculating an opti-
mal relay nodes placement and the routing of the WSN
considering the presence of obstacles and impossible
placement in railway environments by combining a

mathematical optimization method and Sequential Monte
Carlo method.

The rest of the paper is organized as follows. In Section
II, we present the related work. Section III presents the
envisioned WSN in railway environments. In Section IV, we
present the proposed design method of WSN. Section V
provides the numerical results of the proposed method.
Finally, the paper is concluded in Section IV.

II. RELATED WORK
Research on the relay nodes placement in WSNs is

widely conducted and various methods have been proposed
such as methods of determining the relay nodes placement so
as to maximize the communicable range [4], methods with a
focus on fault tolerance [5], methods of determining the
efficient relay nodes placement from the viewpoint of netw-
ork lifetime [6] and methods of determining the placement
considering communication cost [7]. However, these metho-
ds are targeted at environments without obstacles, and it is
assumed that there is no restriction on the node placement.
Therefore, these methods are not suitable for environments
in which many obstacles exist like railway environments.

In [8], a method for determining the relay nodes place-
ment in consideration of constraints on node placement
locations has been proposed. However, even in this method,
the presence of obstacles is not taken into consideration, and
it is difficult to apply it to railway environments.

Also, in [9], a method of determining the relay nodes
placement for the WSN on roads considering the influence of
obstacles has been proposed. In this method, the node place-
ment is calculated for the WSN on roads considering the inf-
luence of obstacles by using digital maps. Furthermore, in
this method, whether or not the intermodal visibility is
hindered by obstacles is determined by utilizing the fact that
nodes are placed on the road. Therefore, it is difficult to
apply this method when nodes are not placed on the road but
placed in railway environments.

III. ENVISIONED WSN IN RAILWAY ENVIRONMENTS
In this study, we envision the situation where the WSN

consisting of sensor nodes, relay nodes, and a gateway is ins-
talled in railway environments. Here, the gateway is a device
that gathers data from each sensor node, and the sensor node
measures data from monitored objects and transmits the data
to the gateway wirelessly. The relay node is a device having

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 59 / 76

a function of relaying sensor data and in cases where data
cannot be transmitted from a sensor node directly to a
gateway, data is transmitted by multi-hop wireless
communication via relay nodes. Additionally, the sensor
nodes and the relay nodes are assumed to be driven by
batteries. For this reason, it is necessary to replace these
batteries before they become empty in order to operate the
WSN continuously.

Furthermore, the characteristic of railway environments
is that railway facilities spread long over urban areas and
mountainous areas, and there are many obstacles that
interrupt radio wave propagation. In addition, the placement
of nodes may be restricted due to safety and physical condi-
tions in railway environments. In this study, we propose a
design method for the WSN to be constructed in railway
environments where there are many obstacles and there are
constraints on the location of nodes as described above.

IV. PROPOSED DESIGN METHOD OF WSN
In railway environments, it is necessary to monitor a long

distance section along railway tracks depending on the
objects monitored. Therefore, it is important to construct a
WSN in railway environments in such a way that the data
can be relayed from each sensor, in which case, as long as
each sensor data reaches the gateway, the smaller the number
of relay node is, the more economical the WSN is. Also,
since the power consumption of each node in the WSN
affects battery replacement frequency, the lower the power
consumption is, the lower the cost of replacing the batteries.

In this study, we propose a method of calculating the
optimal number of relay nodes, the relay node placement and
the routing of the WSN considering the presence of obstacles
and impossible placement in railway environments by
combining a mathematical optimization method and
Sequential Monte Carlo method.

The procedure of the method proposed in this paper is
shown in Figure 1. In the proposed method, we first optimize
the number of relay nodes of the WSN considering the
presence of obstacles and places where node placement is
impossible in the railway environments. Next, based on the
result of the above optimization, we perform the operation
simulation of the WSN using time series Monte Carlo
method, and calculate the power consumption and data

arrival rate of the WSN. Then, we calculate a combination of
the optimal relay node placement and the routing method by
optimizing from the viewpoint of power consumption of
relay nodes based on the power consumption and data arrival
rate calculated. The detail of each item in Figure 1 are
described below.

A. Minimizing the number of relay nodes
Regarding minimizing the number of relay nodes, the

relay nodes placement in which it is minimized is calculated
provided that communication can be established considering
the presence of obstacles and places where node placement is
impossible in the railway environments. More specifically,
the relay nodes placement is calculated by the following
optimization setting the minimization of the number of relay
nodes as the objective function [10].
[Objective function]
 min(Rnum) (1)
[Constraints]
 ri,gat = 1 (2)
 Pi(x,y) ≠ Nj(x,y) (3)

In the above equations, Rnum is the number of relay
nodes, and ri,j is the reachability matrix. ri,j＝1 if there is a
route by which data can reach node j from node i, and ri,j＝0
if there is no reachable route. Also, Pi(x,y) is the position (x
coordinate, y coordinate) of the relay node i, and Nj(x,y) is
the position (x coordinate, y coordinate) where the relay
node cannot be installed. Equation (2) represents the const-
raint relating to the arrival of data from each sensor node to
the gateway, and ri,gat represents the reachability of data
from the sensor node i to the gateway. Equation (3) repre-
sents the constraint relating to the position of the relay node.

Here, the position Nj(x,y) where the relay node cannot be
installed included in the constraint condition is given as
input, and it shall be set according to the conditions of the
environment where the WSN is installed. In addition, the
reachability matrix ri,j is calculated according to the
following procedure by giving as input such conditions as
the position of the gateway, the number of sensor nodes, the
position of each sensor node, the communication distance of
each node, and the position of the obstacles.
STEP1 Generation of the adjacency matrix based on the
communication distance.
STEP2 Updating the adjacency matrix based on the
internodal visibility.
STEP3 Calculation of the reachability matrix based on the
adjacency matrix.

Details of the above procedure are shown below.
1) Generation of the adjacency matrix based on the

communication distance
 In this paper, we consider the reachability matrix show-

ing the reachability of one of the nodes from another by data
using the adjacency matrix in the graph theory. The adjacen-
cy matrix expresses the presence or absence of the relation-
ship between nodes in the graph, and the adjacency matrix
of the graph consisting of n nodes is an n × n square matrix.

Figure 1. Proposed Design Method of WSN

 52Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 60 / 76

Here, on the premise that the adjacency matrix is ai,j,
• if there is an edge from node i to node j, ai,j = 1.
• if there is no edge from node i to node j, ai,j = 0.

In this paper, the gateway, the wireless sensors, and the
relays are assumed to be the nodes in the adjacency matrix,
and the availability of communication between each node is
expressed as an edge. That is, ai,j = 1 when communication
from node i to node j is possible, and ai,j = 0 when
communication from node i to node j is impossible.

Here, the determination of whether or not communi-
cation is possible between the nodes is made as follows
using the communication distance of the wireless devices of
the wireless sensor or relay given as the input condition.
• if Di,j <= Ci : Communication is possible (ai,j = 1),
• if Di,j > Ci : Communication is impossible (ai,j = 0)

Where, Di,j is the distance between nodes, Ci is the
communication distance of each wireless device.

By performing the above judgment between any pair of
all the nodes, the adjacency matrix is generated here.

2) Updating the adjacency matrix based on visibility
Here, the adjacency matrix generated in STEP1 is

updated based on the presence or absence of the internodal
visibility. The presence or absence of the internodal
visibility is determined based on the position of the
obstracles given as input. As shown in Figure 2, the position
of the obstacles is input as the coordinates of a line segment
constituting the area where the obstacles exist like Li (x1, y1,
x2, y2). In this paper, the presence or absence of the
internodal visibility is judged by the possibility of the
intersection of a line segment constituting a certain area of
the obstacles and a line segment connecting the nodes. Here,
assuming that the two line segments are L1 (x1, y1, x2, y2)
and L2 (x3, y3, x4, y4), the two line segments intersect when
the following (4) is satisfied.
 tc × td < 0 (4)

Where, tc = (x1 - x2)(y3 - y1)+(y1 - y2)(x1 - x3),
td = (x1 - x2)(y4 - y1)+(y1 - y2)(x1 - x4).

Here, the intersection determination is made based on
(4), and if any two of the line segments intersect each other
as a result of the judgment, it is determined that there is non-
line of sight and the adjacency matrix is updated as ai,j = 0
(communication is impossible).

3) Calculation of the reachability matrix based on the
adjacency matrix

Here, the reachability matrix is calculated based on the
adjacency matrix calculated above. The reachability matrix
can be calculated by the following procedure.

STEP1 Add unit matrix I to adjacency matrix A
STEP2 Under the Boolean algebra operation, A + I is
repeatedly multiplied by itself r times until the state
represented by the following (5) is obtained
 (A+I)r-1 ≠ (A+I)r = (A+I)r+1 (5)

(A+I)r+1 obtained by the above calculation is a
reachability matrix. In this way, in the method proposed, the
reachability matrix is calculated based on the
communication distance of the wireless devices and the line
of sight between the nodes.

B. Simulation of WSN operation
In simulation of WSN operation, power consumption and

data arrival rate of the WSN are calculated based on the
number of relay nodes and the arrangement of relay nodes
obtained in Section IV-A. At this time, if there are multiple
relay nodes placement candidates as a result of the
calculation described in Section IV-A, simulation is perfo-
rmed for the plural placement candidates. In this study, we
estimate the power consumption and data arrival rate of each
node of the WSN in railway environments using sequential
Monte Carlo method, which is a method of obtaining
approximate solutions by repeatedly performing time series
simulation using random numbers. In the proposed method,
sequential Monte Carlo method was used to perform
simulation considering the routing method, retransmission of
data, and communication uncertainty. The configuration of
the WSN operation simulation is shown in Figure 3.

The proposed method consists of a WSN evaluation
program and routing simulation, and by combining the above
two, the power consumption and data arrival rate of sensor
nodes and relay nodes are predicted in consideration of the
routing methods of the WSN. In the WSN evaluation
program, the timing of routing is determined, and the
operation of the WSN is simulated based on the result of the
routing simulation, and the power consumption and data
arrival rate of the WSN are calculated. In the routing simula-
tion, the routing operation is simulated based on the routing
method of the WSN to be evaluated, and the routing table is
generated. Here, the routing table is a collection of informa-
tion about routing to the destination contained in each node,
and is used to deliver the data. As routing methods used in
the WSN, there are a reactive type in which a route is
determined immediately before data transmission, a proac-
tive type in which a route is determined in advance before
communication, a hybrid type in which both the types are
combined, and the like. In railway environments, various
monitoring targets exist, but in general, a suitable routing
method differs according to the monitoring target. Therefore,
when applying the WSN in railway environments, it is impo-
rtant that the design of the WSN includes the routing method.
In the proposed method, we estimated the power consum-
ption and data arrival rate of the WSN, including the routing,
so that we can examine what kind of routing is desirable.

Next, the flow of the simulation of the WSN is shown in
Figure 4. In Figure 4, “time” is the time frame which is being
calculated, Δt is the time step width of the simulation. In the
simulation of WSN operation, the communication environ-

X-axis

Y-
ax

is

Obstacle

(x1,y1) (x2,y2)

(x3,y3)(x4,y4)

L1(x1,y1,x2,y2)

Figure 2. The coordinates of the line segment

53Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 61 / 76

ment at each time frame, and the routing method of the WSN
are provided, and the power consumption and the number of
communications at each time frame and the data arrival rate
of the WSN in railway environments are calculated. To do
this, we probabilistically simulated the occurrence of packet
loss by a pseudo random number. We ultimately calculated
the power consumption and data arrival rate during a
stipulated period by repeating the calculations while
updating the time frame. Details of each item shown in
Figure 4 are discussed below.

1) Input data
In the simulation of WSN operation, the following data

are provided as inputs for calculating the power consumption
and data arrival rate.

• Routing method of the WSN
• Transmission timing of sensor data
• Number of retransmissions of sensor data
• Position of each node
• Specifications of each node (power consumption,

transmission time, etc.)
• Battery capacity
• Communication environment (communicable

distance, packet loss rate, etc.) at each position
• Time step width and duration of the simulation

2) Settings of various conditions
In the settings of various conditions, we set the

communication environment, and battery health at each time
frame in order to calculate the power consumption and data
arrival rate at each time frame.

3) Routing simulation
Here, the network is constructed based on the routing

method used in the target WSN, and the routing table is
generated. In the proposed method, the routing method is
simulated by utilizing a network simulator or the like, the
routing timing is judged by the WSN evaluation program,
and routing simulation is performed when it is judged as the
routing timing. The inputs and outputs in the routing
simulation are shown below.
[Inputs]

• Position of each node
• Number of retransmissions of data
• Communication environment

[Outputs]
• Number of transmissions and receptions of each node

• Routing table
4) Simulation of data transmission

Here, we calculate the number of communications of
each node and the data arrival rate when data are transmitted
from the sensor nodes to the gateway. The calculations are
performed on the basis of the conditions set according to
various situations. To do this, we probabilistically simulate
the occurrence of packet loss by a pseudo random number.
Additionally, when packet loss occurs, each node retransmits
data until the number of retransmissions reaches the
predetermined number of times given as input and calculate
the data arrival rate at the gateway and the number of
communications (the number of data transmissions and the
number of data receptions) of each node in each time frame.

5) Calculation of power consumption in each time frame
Here, we calculate the power consumption of each node

in each time frame on the basis of the number of
communications calculated in 4). Additionally, the
remaining capacity of each sensor node battery is updated on
the basis of the calculated power consumption.

In this study, we calculate the power consumption in
each time frame using (6) in consideration of the number of
transmissions and the number of receptions of each node in
each time frame.
 Wi(t)=Pt･Tt･Nti(t)+Pr･Tr･Nri(t)+Pw･Twi(t) (6)

Here, Wi(t) is the power consumption of sensor node i in
time frame t, Nti(t) is the number of transmissions of the
sensor node i in time frame t, Nri(t) is the number of
receptions of the sensor node i in time frame t, and Twi(t) is
the standby time of the sensor node i in time frame t.

6) Calculation of power consumption and data arrival
rate

Here, we calculate the power consumption and data
arrival rate during the stipulated period on the basis of the
results obtained by repeating the calculations shown in 2) to
5) while updating the time frame. Specifically, we calculate
the power consumption of each sensor node up to the stipu-
lated period as the sum value of the power consumption in
each time frame. Likewise, we calculate the data arrival rate
during the stipulated period of each sensor node on the basis
of the sum of the data arrival rates in each time frame.

WSN evaluation program
Sequential Monte Carlo

method

Routing simulation
・Network construction
・Generation of routing table

Position of each node
Communication environment

Power consumption of each node
Data arrival rate

Input data

Data transmission simulation

Power consumption calculation

Data arrival rate calculation
Number of transmissions
Number of receives
Routing table

Figure 3. Configuration of WSN operation simulation

(6)Calculation of power consumption
and data arrival rate

(1)Input data

(2)Setting of various conditions

time=time+Δt

time > simulation period?

(3)Simulation of sensor operation

Yes

No

(4) Simulation of data transmission

(5)Calculation of power consumption
in each time frame

Figure 4. Flowchart of WSN operation simulation

54Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 62 / 76

C. Optimization of WSN considering power consumption
In the optimization of WSN considering power

consumption, optimization is performed from the viewpoint
of the power consumption of the relay node based on the
optimum number of relay nodes calculated according to the
description in Section IV-A and the node placement
candidate, the power consumption of the WSN calculated
according to the description in Section IV-B, and the data
arrival rate.

The power consumption of the relay node will affect the
capacity of the relay node's battery and the network lifetime
when operating the WSN. Assuming that the battery
capacities of all the relay nodes are the same, the battery of
the relay node having the largest power consumption is
exhausted first. Therefore, the lifetime of the network
depends on the maximum value of the power consumption
amount of the relay node. In this study, the WSN was
optimized from the viewpoint of the maximization of
network lifetime. The objective function can be defined as
(7) as the minimization of the maximum value of the power
consumption of the sensor node.
[Objective function]
 min(max(W1,..,Wi)) (7)

In the optimization of WSN considering power
consumption, it can be formulated as an optimization
problem intended for the minimization of the objective
function of (7) while satisfying (8) and (9).
[Constraints]
 Ai ≥ Amin (8)
 Rnum = Rnum_min (9)

Where, Wi is the power consumption of node i, Ai is the
data arrival rate of node i, Amin is the lower limit value of the
data arrival rate, and Rnum_min is the number of relay nodes
obtained by minimizing the number of relay nodes consider-
ing railway environments described in Section IV-A.
Equation (8) is a constraint on the data arrival rate, and (9) is
a constraint on the number of relay nodes and consider
limiting the solution to the same number of relay nodes as
that obtained in Section IV-A.

Here, Amin included in the constraint condition shall be
given as input. For Wi and Ai, the node placement, the
routing method, and the number of data retransmissions are
given as input, and values are calculated by the simulation of
power consumption and data arrival rate described in Section
IV-B. In this optimization, the combination of the relay
nodes placement, the routing method, and the number of data
retransmissions in which, provided that the constraints are
satisfied, the objective function is minimized is calculated.
This makes it possible to design optimum relay node
placement, routing method and the number of date
retransmissions from the viewpoint of power consumption.

V. NUMERICAL EXPERIMENT
In this section, we performed numerical experiments to

verify the usefulness of the proposed method in regard to a
WSN installed along a railway line.

A. Calculation condition
We have built a WSN for monitoring a slope condition

along a railway line and have carried out demonstration tests
[11]. In this study, numerical experiments were carried out
for the WSN along the above mentioned railway line. The
conditions of the numerical experiments are as follows.
• Figure 5 shows the WSN for monitoring a slope condition

in the railway line environment targeted for the numerical
experiments. In the targeted WSN, it is assumed that the
data is aggregated from two sensors. The monitoring
positions of the slope is fixed. In Figure 5, the positions of
the sensor nodes are indicated as S, the position of a
gateway is indicated as G. Further the positions of places
where the nodes cannot be installed are denoted as N, and
the positions of the obstacles along the railway line based
on the terrain data is denoted by O, and the positions of the.
In the numerical experiments, it was studied to select
effective relay nodes placement and routing method to
make sensor data reach from the sensor nodes to the
gateway in the Figure 5. We conducted the numerical
experiments under the condition of the communication
distance of wireless devices of the sensor nodes and the
relay nodes as 170 m with which stable communication can
be made in the environment without obstacles according to
the measurement result of the wireless device.

• The routing method of WSN is performed by checking the
nodes that can communicate by flooding and generating
the shortest route. In addition, we examined two patterns of
candidates for routing: reconstructing the route every time
data is transmitted (reactive type) and reconstructing the
route at 0 o'clock every day (proactive type). In addition,
the range of 0 to 3 times of data retransmissions was
assumed as the candidate.

• The power consumption of the sensor nodes and the relay
nodes was assumed to be 69.3 mW when transmitting, 52.8
mW when receieving, and 0.002 mW when standing by,
based on the specifications of a commercially available
wireless device.

• The transmission cycle of sensor data was set to once per
10 min, and the time step width of the simulation was set to
10 min. Also, it is assumed that power consumption and
data arrival rate are calculated as values when WSN is
operated for one year.

• The lower limit value of data arrival rate used for the
calculation of Section IV-C was set to 95%.

B. Calculation result
Figure 6 shows an example of the result of calculating

the relay nodes placement by the proposed method based on
the above experiment conditions. As shown in Figure 6, as a
result of minimizing the number of relay nodes considering
the railway environment, the minimum number of relay
nodes was three. In addition, the position indicated by Ri in
Figure 6 was obtained as one of the relay node positions
which can make all sensor data reach the gateway taking into
consideration the obstacles and the positions where the nodes
cannot be installed.

55Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 63 / 76

Next, we optimized the WSN from the viewpoint of
power consumption and data arrival rate based on the result
of minimizing the number of relay nodes. As a result, it was
found out that the optimal solution is setting the routing
method to the proactive type and retransmission number to 1
time. Also, the power consumption and data arrival rate of
the WSN of the optimal solution are shown in Table I.

Furthermore, for comparison, Table II shows the results
in the case where the routing method is different from the
conditions in Table I, and Table III shows the results in the
case where the number of retransmissions is different from
the conditions in Table I. Here, Ret in Table III indicates the
number of retransmissions. It can be seen that although the

data arrival rate of the two routing methods are not different
from each other, the reactive type has higher power
consumption from Table II. This is probably because the
frequency of the reactive type routing is larger than that of
the proactive type under the set condition, and the power
consumption by routing is increased.

Next, regarding the number of retransmissions, it can be
seen from Table III that increasing the number of retrans-
missions increases the data arrival rate and also increases the
power consumption. Since the data arrival rate is set to 95%
as the condition of the optimization this time, it is considered
that one time, the minimum number of retransmissions was
selected within the range that satisfies this condition.

Finally, we compare the conventional method for
determining the relay nodes placement that does not consider
the influence of obstacles with the proposed method. Here,
we calculated the relay nodes placement by a method not
considering the influence of obstacles by calculating the
determination of the relay nodes placement that minimizes
the number of relay nodes in Section IV-A without
considering the influence of obstacles. Figure 6 shows the
result of determining the relay nodes placement by a method
not considering the influence of obstacles. In Figure 6, the
number of relay nodes is two, and it is smaller than the result
by the proposed method. However, with the placement of the
relay nodes in Figure 6, data from S2, S3, S5 cannot reach
the gateway due to the influence of the obstacles.

O O O O O O O N N N N O
S1 N N N N N N N N O O O O O O O O O O O O O O O O O O N N N N N

S4 N
S5 N N N N N O G N N N N N N N N N N N N N N N N N N N
N N N N N O O O O O O O O O O O O S3 S2
N N O O O O O O O O O O O O O O O O

Figure 5. WSN for the numerical experiment (top view of monitoring area)

O O O O O O O R1 N N N N O
S1 N N N N N N N N O O O O O O O O O O O O O O O O O O N N N R3 N N

S4 N
S5 N N N N N O O G N N N N N N N N N N N N N N N N N N N
N N N N N O O O O O O O O O O O O O S3 S2
N N O O O O O O O O O O R2 O O O O O O

Figure 6. Calculation result of relay nodes placement by the proposed method (top view of monitoring area)

O O O O O O O N N N N O
S1 N N N N N N N N O O O O O O O O O O O O O O O O O O N N N N N

S4 N
S5 N N N N N O O G N N N N N N N N N N N N N N N N N N N
N N N N N O O O O O O O R1 R2 O O O O O O S3 S2
N N O O O O O O O O O O O O O O O O

1cell = 10m × 10m, N: the relays installation impossible, O: the obstacles, S: the wireless sensors’ location
Figure 6. Calculation result of relay nodes placement by the conventional method (top view of monitoring area)

TABLE I. SIMULATION RESULT OF OPTIMUL WSN

 S1 S2 S3 S4 S5 R1 R2 R3
Power
consumption (Wh) 1.13 1.12 1.12 1.13 1.13 5.56 3.77 3.77

Data arrival
rate (%) 99.7 97.8 97.7 99.8 99.3 - - -

TABLE II. SIMULATION RESULT OF REACTIVE ROUTING

 S1 S2 S3 S4 S5 R1 R2 R3
Power
consumption (Wh) 10.2 9.16 9.16 10.2 10.2 24.7 22.9 19.8

Data arrival
rate (%) 99.7 97.8 97.7 99.8 99.3 - - -

TABLE III. SIMULATION RESULT OF DIFFERENT RETRANSMISSIONS

 S1 S2 S3 S4 S5 R1 R2 R3

Ret=0
Power consumption (Wh) 1.08 1.07 1.07 1.08 1.08 4.89 3.35 3.50

Data arrival rate (%) 95.0 81.5 81.5 95.0 90.3 - - -

Ret=2
Power consumption (Wh) 1.13 1.13 1.13 1.13 1.13 5.64 3.80 3.79

Data arrival rate (%) 99.9 99.8 99.8 99.9 99.9 - - -

Ret=3
Power consumption (Wh) 1.13 1.13 1.13 1.13 1.13 5.64 3.81 3.79

Data arrival rate (%) 99.9 99.9 99.9 99.9 99.9 - - -

56Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 64 / 76

It is considered that in this way, the number of relay
nodes, the nodes placement, and the routing method can be
designed considering the influence of the obstacles in
railway environments on the radio communication by using
the proposed method.

VI. CONCLUSION
In this paper, we proposed a method to calculate the

optimal relay nodes placement and routing of the WSN
considering the presence of the obstacles and the positions
impossible for installment in railway environments by
combining a mathematical optimization method and
Sequential Monte Carlo method. Additionally, we
demonstrated the usefulness of the proposed method by
performing numerical experiments using the proposed
method for WSN installed along a railway line.

In the future, we plan to proceed with the verification of
the proposed method, and consider effective nodes place-
ment and routing method of WSN in railway environments
under various conditions using the proposed method.

REFERENCES
[1] R. Bischoff, J. Meyer, O. Enochsson, G. Feltrin, and L.

Elfgren, “Eventbased strain monitoring on a railway bridge
with a wireless sensor network,” in Proc. 4th Int. Conf. Struct.
Health Monitor. Intell. Infrastructure, Zurich, pp. 1-8, 2009.

[2] A. L. Schiavo, “Fully Autonomous Wireless Sensor Network
for Freight Wagon Monitoring,” IEEE Sensors Journal, vol.
16, no. 24, pp. 9053-9063, 2016.

[3] V. J. Hodge, S. O'Keefe, M. Weeks, and A. Moulds,
“Wireless Sensor Networks for Condition Monitoring in the
Railway Industry: A Survey,” IEEE Trans. Intell Transp., vol.
16, no. 3, pp. 1088-1106, 2015.

[4] W. Guo, X. Huang, W. Lou, and C. Liang,”On relay node
placement and assignment for twotiered wireless networks,”
Mobile Networks and Applications, vol.13, no.1-2, pp.186-
197, 2008.

[5] D. Yang, S. Misra, X. Fang, G. Xue, and J. Zhang, “Two-
tiered constrained relay node placement in wireless sensor
networks:Computational complexity and efficient
approximations,” IEEE Trans. Mob Comput., vol. 11, no. 8,
pp. 1399-1411, 2012.

[6] X. Cheng, D. Du, L. Wang, and B. Xu, “Relay sensor
placement in wireless sensor networks,” ACM/Springer
Wireless Netw., vol. 14,no. 3, pp. 425-443, 2007.

[7] M. Nikolov, and Z.J. Haas, “Relay Placement in Wireless
Networks: Minimizing Communication Cost,” IEEE Trans.
Wireless Commun., vol. 15, no. 5, pp. 3587-3602, 2016.

[8] M. Bagaa, A. Chelli, D. Djenouri, and T. Taleb, “Optimal
Placement of Relay Nodes Over Limited Positions in Wireless
Sensor Networks,” IEEE Trans. Wireless Commun., vol. 16,
no. 4, pp. 2205-2219, 2017.

[9] H. Imai, K. Mase, H. Okada, and K. Nakano, “Relay Node
Placement of Wireless Multi-hop Networks Using Line-of-
Sight Spaces over Road Surface”, IEICE Trans. B, Vol.J99-B,
no.10, pp.871-880, 2016. (in Japanese)

[10] N. Iwasawa, T. Kawamura, M. Nozue, S. Ryuo, and N. Iwaki,
“Design of Wireless Sensor Network in the Railway”, 7th
International Conference on Sensor Networks, pp.122-127,
2018.

[11] M. Nozue et al.,” Wi-SUN Monitoring System for Railway
Facilities”, IEICE Technical Report, vol.117, no.352, pp. 41-
46, 2017.

57Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 65 / 76

Routing Algorithm Based on the Transmission History for Monitoring Railway
Vehicles

Nagateru Iwasawa, Satoko Ryuo, Tomoki Kawamura and Nariya Iwaki
Signalling and Transport Information Technology Division

Railway Technical Research Institute
Tokyo, Japan

e-mail: iwasawa.nagateru.81@rtri.or.jp

Abstract— Efforts have been made to utilize the Wireless
Sensor Network (WSN) to monitor the state of railway
facilities, such as structures, tracks, vehicles, etc. In monitoring
the condition of railway cars, items such as the brakes, the
train speed, the truck vibration, etc. are subjected to
monitoring. We are developing a system under which the crew
can monitor the condition of the train's vehicle in real time. In
cases where data are transmitted when the train is running, it
is assumed that the communication distance between the
wireless terminals changes according to changes in the radio
wave propagation environment. Therefore, in this paper, we
propose a transmission method when the train is driving, and
also conduct a functional verification test by an actual machine.

Keywords-routing algorithm; railway vehicle; monitoring;
radio wave environment.

I. INTRODUCTION
Recently, with the development of information and

communication technology, studies on the monitoring of the
condition of the railway facilities by using the WSN have
been in progress [1][2]. They cover diverse fields, such as
the structures, the tracks, the overhead contact lines and the
vehicles. Furthermore, the purpose of the monitoring is
extensive. Two examples are the detection of abnormal
values due to sudden condition changes, such as the
landslide and derailment, and understanding, via long-term
monitoring, of the tendency to deterioration of the facilities.
In the railway vehicle condition monitoring, data such as the
control information of brakes and air conditioning, train
speed, train positions, temperature and vibration of the bogie

are collected. In this paper, our purpose of the railway
vehicle monitoring is that the crew of the train confirms the
control information of the brake in a minute.

Figure 1 shows a typical WSN setup for railway
condition monitoring [2]. The WSN consists of sensor nodes
that measure the physical quantity and wirelessly transmit it
as sensor data and a base station that collects data.
Furthermore, the base station transmits the data to the server
via a network like the mobile telephone network as necessary.
Also, the server accumulates the data in the Data Base (DB).
The users can access the data in the DB via the public or the
private network. In the train consisting of multiple vehicles,
if the vehicles condition is monitored, the sensor nodes of the
WSN are installed linearly. The ways of the transmission the
sensor data from these sensors to the base station are single-
hop and multi-hop. Besides, in areas where fixed power
sources, such as a bogie cannot be supplied, the sensor nodes
are driven by the batteries, so efficient power consumption is
required. When the distance between the lead vehicle and the
last vehicle is several hundred meters, in order to make a
single-hop network, it is necessary to increase the
transmission power. Of course, there is a possibility that
direct communication between the lead vehicle’s node and
the last vehicle’s node cannot be performed with the
prescribed transmission power. So, it is important that the
WSN of the train need efficient multi-hop routing. For
example, some sensor nodes are grouped, and one sensor
node in each group aggregates the sensor data, and the base
station collects data via the aggregated sensor nodes [3][4][5].
In addition, a method of constructing a Wireless Personal
Area Network (WPAN) using ZigBee for communication
within a group and configuring a Wireless Local Network
(WLAN) using Wi-Fi for communication between groups
and base stations has been proposed [6]. However, the sensor
nodes included in each group are fixed, so it is not taken into
consideration that the coupling given thought that the
coupling and the decoupling train vehicles causes groups and
the base station to change. And the wireless communication
technology for WSN called Low Power Wide Area (LPWA),
such as LoRaWAN and SIGFOX can be construct a fixed
wide network. So, it is applicable as long as the train set does
not change.

On the other hand, in the ad hoc network, it is possible to
construct a network with a base station and the sensor nodes
among neighbor vehicles and collect data. So, it is suitable
for a system under which all the sensor data of the trains in

Figure 1. Example of WSN for railway condition monitoring

58Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 66 / 76

the area are accumulated in the DB and the users can browse
the data in it. But in such a system, overhead occurs when
the train crew browse the data in the DB due to data
transmission from the base station to the DB and the access
to the data by the train crew. Therefore, it is necessary to
construct a network among the base station and the sensor
nodes of one train set so as to reduce the length of time until
the crew checks the data. For example, it is possible to
construct an ad hoc network between the base station and the
sensor nodes by manually setting the same network
IDentification (ID) on base station and sensor nodes. But
considering the time required for setting the network ID and
the possibility of misconfiguration, it is desirable to
automatically construct the network in the train set. In ad hoc
network research, a method of estimating the location of a
sensor node based on the Received Signal Strength Indicator
(RSSI), the Time Of Arrival (TOA) and the Time Difference
Of Arrival (TDOA) has been proposed [7]. However, it is
not realistic because it may result in errors with a probability
of 50% or more. Also, instead of the Global Positioning
System (GPS) with high power consumption, a method
capable of discriminating between vehicles of the same train
and different train based on the correlation between the data
for several seconds obtained from the acceleration sensor has
been proposed [8]. However, there are problems in that it is
necessary to scale down in order to implement it on the
Central Processing Unit (CPU) of the sensor node, etc.,
because MATrix LABoratory (MatLab) [9] analyzes data
offline.

Therefore, we have proposed a system configuration and
a method of automatically constructing a closed network
within a train set at the time of the train is stopping at a
station, taking into consideration the coupling and
decoupling [10]. In this paper, we propose a method of
efficiently collecting data in the network of the system
mentioned above at the time the train is running.

The rest of the present paper is organized as follows:
Section II presents our proposed system for the railway
vehicle monitoring. In Section III, we propose the routing
algorithm for the monitoring system at the time the train is
running. In Section IV, we implement the proposed
algorithm in a prototype, and we indicate the result of the

function verification test with it in Section V. Finally,
Section VI concludes the present paper.

II. SYSTEM PROPOSED

A. System Configuration [10]
Figure 2 shows the system configuration we have

proposed regarding the construction of a network for each
train set for collecting data. First, the in-vehicle network
consists of a relay and sensor nodes in one vehicle. The relay
relays the sensor data from the sensor nodes. The networking
components of this network are not variable even if the train
set changes according to the coupling and decoupling, so it
may be a fixed network. Therefore, the communication
between the relay and the sensor node in this network is
possible using a wired as well as a wireless network.

Next, the inter-vehicle network consists of a base station
and relays in one train set. The base station collects the
sensor data from the relays. The base station comprehends
the vehicles and the relays of its own train and constructs a
network based on the organization information in the
operation plan of the vehicles. By selecting a frequency band
different from that of the in-vehicle network, it is possible to
communicate using the in-vehicle network independently
from the communication which is being made
simultaneously using the in-vehicle network, suppressing the
interference in the own system.

B. Problem of Communication at the Time the Train is
Runnning
There is concern that the communication quality at the

time the train is running fluctuates under the fading and the
influence of change in radio environment. Figure 3 shows
the measurement results of the radio environment of a band
of 920MHz, which is the Industrial, Scientific and Medical
(ISM) band of Japan at two stations in the suburban and
urban areas. Figure 4 shows a scene of the measurement. It
indicates that the frequency used differs according to the
location. Therefore, when using a specific frequency, it is
assumed that the communication quality fluctuates as the
location changes. In particular, it is thought that the influence
on long-range inter-vehicle communication is greater than
the in-vehicle communication. In this paper, we propose a
routing algorithm in the inter-vehicle network considering
change in communication environment.

III. PROPOSAL OF NEW ROUTING ALGORITHM

A. Transmission Matrix[10]
In the inter-vehicle network of the system proposed, a

transmission matrix as show in the Table I is created at the
time of network configuration and it is memorized in the
base station. Since the transmission matrix is created based
on the train sets information and communication
confirmation, the physical distance and the communication
environment at the time of network configuration are taken
into consideration. The relay number represents a vehicle
number, for example, relay 1 means a relay of the first
vehicle. The vehicle number is a unique number of a vehicle,

Figure 2. Proposed system configuration for monitoring vehicles

59Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 67 / 76

and the same number does not exist elsewhere. And 1 in the
Table I indicates a communication candidate link, 0 indicates
that it is not a communication candidate link. For example,
between the base station and relay 1, 2, 3 there are
communication candidate links. It means that the
communication candidates of the base station are relay 1, 2
and 3. In addition, we assume symmetric communication
quality, the communication candidate of relay 1, 2 and 3 is
the base station. Also, if the communication toward the base
station is designated as the communication in the uplink
direction and the communication toward the relay as the
communication in the downlink direction, the base station
and the relays hold uplink direction and downlink direction
communication candidates in the routing table respectively.
For example, relay 2 holds {Base station, Relay 1} as the
uplink communication candidate, {Relay 3, Relay 4} as the
downlink communication candidate in the routing table. In
the data collection immediately after the network
configuration in stopped train, based on this routing table,
the routing is performed with the number of hops as a metric
in [10]. When changes in the communication environment
are not considered, it is desirable to transfer data to the relay
close to the destination node and reduce the total number of
hops, thereby reducing the total power consumption in the

network. However, if the communication quality deteriorates
and data cannot be transferred from the relay 3 to the base
station, the relay 3 tries to transfer them to the relay 1.
Changing the transfer destination causes an increase in the
power consumption due to retrial and in the latency due to
timeout.

B. Routing Algorithm Considering Environmental Change
As a method of grasping changes in the communication

environment, there is a method of periodically sending the
hello packets between nodes as communication candidates
and monitoring the RSSI [6]. However, periodic packet
transmission increases the traffic of the entire network, and
the power consumption of the entire network also increases.
Therefore, we examined a method of dynamically
determining a transfer destination from communication
candidates based on the result of past data communication.
Regardless of the frequency of hello packets, it does not need
the power to transmit them. The base station and the relays
hold a table of an arbitrary length α + 1 called a transmission
history table; one for the uplink direction (called forward
history table) and the other for the downlink direction (called
backward history table). Figure 5 shows an example of the
transmission history table of relay2 in Table I. They hold the
result of, in order of lateness, the most recent to the αth
transmissions which were made in the uplink direction and
those in the downlink direction and the downlink direction
and update them in the First In First Out (FIFO) format.
Character 1 in the transmission history table indicates
successful data transmission and character 0 in it indicates
data transmission failure. The data transmission failure or
success is judged by the presence of the ACKnowledgement
(ACK) from the destination node to the source node. The
first column always holds 1. If it does not hold 1, there is a

-130

-120

-110

-100

-90

-80

-70

922 924 926 928

Re
ce

iv
ed

 p
ow

er
 [d

Bm
]

Frequency [MHz]

Urban area

Suburban
area

Figure 3. Measurement results of radio environment

Figure 4. Scenery of measuring radio environment

Base station 1 1 1 0

Relay1 1 1 1 1 1 1 1 1

Relay3 1 1 1 1 1 1 1

Relay4 1 1 1 1 0

the transmission result of last α times

(a) forward history table

(b) backward history table

Figure 5. Example of a transmission history table

TABLE I. EXAMPLE OF TRANSMISSION MATRIX

Relay 1 Relay 2 Relay 3 Relay 4 Relay 5

Base station 1 1 1 0 0

Relay 1 － 1 1 0 0

Relay 2 － － 1 1 0

Relay 3 － － － 1 1

Relay 4 － － － － 1

60Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 68 / 76

possibility that the node whose priority has dropped due to
deterioration of the radio wave environment may not be
selected again. This leads to the increase in the number of
hops. Therefore, holding 1 in this column, it is possible to
raise the priority again for the node whose priority has
dropped.

Figure 6 shows the basic procedure for determining the
transfer destination relay based on the transmission history
table. The arrival rate is the probability that a transmission
from a node to the other node in a specific period α + 1 has
succeeded. This algorithm preferentially selects the furthest
node among the nodes whose arrival rate is higher than the
threshold value β set. In the forward history table of relay 2
in fig. 5 (a), we will assume β, which is the threshold of
arrival rate, to be 0.9. Figure 7 shows an example of the
operation of the transmission procedure. First, in fig. 5 (a),
since the rate of arrival at the base station is 0.75 and the rate
of arrival at relay 1 is 1.0, transmission from relay 2 to relay

1 the arrival rate of which is greater than β in the uplink
direction is selected. After that, the forward history table in
cases where it was transferred to relay 1 successfully is
shown in fig. 7. Next, the table is updated with the passage
of time, and the arrival rate from relay 2 to the base station
decreases. Last, since the rate of arrival from relay 2 at the
base station and that at relay 1 are both 1, base station is
selected in the next transmission. In this way, by always
holding 1 in the first column, the relay which failed in
transmission is also selected again. Therefore, when the
communication environment is improved, it can be expected
to reduce the number of hops. It is assumed that the
communication distance between nodes changes according
to changes in the radio wave propagation environment.
However, even if this algorithm is used in the environment
where the communication distance does not change, the
performance equivalent to the hop metric algorithm.

IV. IMPLEMENTATION
We implemented the proposed method described in

Section III(B) in a prototype. Figure 8 shows the prototype.
The base station consists of a wireless module and a laptop
that controls it. And the relay consists of a wireless module,
a CPU board that controls it, and a battery. Table II shows
the specifications of the wireless module [11]. Then, Figure
9 shows the frame format in the inter-vehicle network. In this

Select the node with highest arrival rate

Add “0” to the history table
Success of

transmission to the
selection node

Add “1” to the history table

No

Yes

Are there any
nodes the arrival
rates are over β?

Yes

Select the closest node to the destination
node from the nodes the arrival rates are

over β

No

Start to route packet

Calculation of the arrival rates to each
nodes in the history table

End

All nodes in the
history table have

selected

Yes

Restart to route packet
except for the failure nodes

of transmission

No

Figure 6. Basic procedure for determining the transfer destination relay

Base station 1 1 1 0

Relay1 1 1 1 1 1 1 1 1

75%
100%

Base station 1 1 0

Relay1 1 1 1 1 1 1 1 1 1

67%
100%

Base station 1 0

Relay1 1 1 1 1 1 1 1 1 1 1

50%
100%

Base station 1

Relay1 1 1 1 1 1 1 1 1 1 1 1

100%
100%

Figure 7. Example of the operation of the transmission procedure

TABLE II. SPECIFICATIONS OF THE WIRELESS MODULE

Standards-compliant ARIB STD-T108 (Japan),
IEEE 802.15.4g/e

Frequency 922.3～928.1 MHz
Band width 200 kHz, 400 kHz

Modulation method 2GFSK
Baud rate 50 kbps, 100 kbps

Transmission power 1 mW, 10 mW, 20 mW

61Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 69 / 76

paper, we set 8 bytes of dummy data for the payload
assuming 1 byte of data length, 4 bytes of dates and time,
and 3 bytes of sensor data.

The data collection sequence of this prototype is that the
base station sequentially performs data request and data
reception for each relay. Therefore, by reconsidering the data
collection sequence, the processing time can be expected to
reduce.

V. EXPERIMENT
We conducted an experiment to confirm the function of

data transmission taking account of the changes in the radio
wave environment using the prototype introduced in Section
IV. Figure 10 shows the scenery of the experiment. Inside
the room, one base station and ten relays were linearly

arranged at 80-cm intervals. Also, the transmission power
was 1 mW. For this experiment, the sensor data are collected
from all relays once. After collecting data 5 times, the
antennas were removed and data were collected again 5
times. After that, the antennas were attached and data were
collected 5 times. We simulated the radio environmental
change by detaching and attaching the antennas. These
operations were carried out by the method which was applied
with the number of hops as a metric, and they were repeated
by the method proposed, and then evaluation was made
based on the length of time required for data collection. In
the proposed method, we assumed that the length of the table
α = 3 and the threshold of the arrival rate β = 0.9. Since this
is a function verification test, α was set to be small and β was
set to a large value in order to frequently change the node
selection. Table III shows the experimental results. The
values in Table III represent the average time. The average
length of time required for data collection of the first five
and the last five operations conducted with the antennas
attached is about 36 seconds. On the other hand, that of the
intermediate five operations conducted with the antennas
detached is 103.7 seconds, almost 3 times as long as 36
seconds, when the former method is applied, and 48.9
seconds, 1.4 times as long as 36 seconds, when the latter
method (the method proposed) is applied. In this

Figure 8. Prototype of the base station and the relay

Sequence
frame

number
[4 bytes]

Frame
control
[1 byte]

Reserved
[2 bytes]

Retry
number
[1 byte]

Source
node ID
[5 bytes]

Destination
node ID
[5 bytes]

Payload
[variable]

Frame
check

sequence
[2 bytes]

Max 500 bytes

Figure 9. Frame format of the prototype in the inter-vehicle network

Figure 10. Scenery of the experiment

62Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 70 / 76

environmental condition change, the difference in length of
time required for data collection between the two methods
becomes about two times. If we apply the method proposed,
the communication distance is actually shortened, and we
confirmed that in the static environment, under the method
proposed the node which sends data is capable of switching
the forwarding destination to the node closer to it, and that
the method proposed is effective when change in radio wave
propagation environment occurs.

VI. CONCLUSION AND FUTURE WORK
We are developing a monitoring system aimed at

confirming control information, such as brakes in real time in
crew members. We have been transmitting hop count metrics
for stoppage until now. In this paper, we propose a data
transmission method considering radio wave environment
change during driving. We implemented the proposed
method in prototype and carried out function verification test.
We simulated the deterioration of the radio wave
environment and the time required for data collection
became less than half, so we confirmed that it is effective
when the radio wave environment deteriorates. In addition, it
was confirmed that even when the environment improved, it
returned to the state before deterioration. In the future we
will study the following.

· How to set the appropriate length and threshold of the
transmission history table

If the length of the transmission history table α is short
and the threshold value β is high, steep change can be made,
the length of that α is long and it can deal with gentle
fluctuation if the threshold value β is low. It is necessary to
appropriately set them according to the allowable delay of
data and the acquisition interval.

· Method of leveling power consumption
In the proposed method, since the communication time

becomes shorter, it can be expected that the electric load of
the whole network is reduced. However, even if a specific
relay is loaded, it will not be avoided. Considering battery
replacement, it is also important that no load is placed on a
specific relay.

· Demonstration experiment of running condition
Since the experiment in this paper was carried out in a

stationary state, it is important to demonstrate even in the
running state.

REFERENCES
[1] G. M. Shafiullah, A. Gyasi-Agyei, and P. Wolfs, "Survey of

Wireless Communications Applications in the Railway
Industry," The 2nd international conference on Wireless
Broadband and Ultra Wideband Communications
(AusWireless 2007), Aug. 2007, pp.65-70, doi:
10.1109/AUSWIRELESS.2007.74.

[2] V. J. Hodge, S. O'Keefe, M. Weeks, and A. Moulds,
"Wireless Sensor Networks for Condition Monitoring in the
Railway Industry: A Survey," IEEE Transactions on
Intelligent Transportation Systems, Nov. 2014, pp. 1088-1106,
doi: 10.1109/TITS.2014.2366512.

[3] H. Scholten, R. Westenberg, and M. Schoemaker,
"Trainspotting, a WSN-based train integrity system,"
Proceedings of ICN 2009, March 2009, Gosier, France, pp.
226-231, IEEE Computer Society Presse, DOI:
10.1109/ICN.2009.59.

[4] N. Wang, Y. Liang, and L. Wang, "On-line Monitoring
Method of Bearing in Rotating Machinery Based on Wireless
Sensor Networks," The 3rd international forum on energy,
environment science and materials (IFEESM 2017), Jan. 2017,
pp. 564-571, doi: 10.2991/ifeesm-17.2018.107.

[5] W. Nan, M. Qingfeng, Z. Bin, L. Tong, and M. Qinghai,
"Research on Linear Wireless Sensor Networks Used for
Online Monitoring of Rolling Bearing in Freight Train,"
Journal of Physics: Conference Series, vol.305, no. 1, July
2011, pp. 1-10 doi: 10.1088/1742-6596/305/1/012024.

[6] P. Mahasukhon, et al., "A study on energy efficient multi-tier
multi-hop wireless sensor networks for freight-train
monitoring," The 7th international wireless communications
and mobile computing conference (IWCMC), Aug. 2011, pp.
297-301, doi: 10.1109/IWCMC.2011.5982549.

[7] A. Savvides, C. Han, and M. B. Strivastava, "Dynamic Fine-
Grained Localization in Ad-Hoc Networks of Sensors," The
7th annual international conference on Mobile computing and
networiking (Mobicom '01), 2001, pp. 166-179, doi:
10.1145/381677.381693.

[8] H. Scholten, R. Westenberg and M. Schoemaker, "Sensing
Train Integrity," the IEEE International Conference on
Sensors, Oct. 2009, pp. 669-674, doi:
10.1109/ICSENS.2009.5398340.

[9] MathWorks, https://mathworks.com/ [retrieved: August 2018]
[10] S. Ryuo, N. Iwasawa, T. Kawamura, A. Hada, and K.

Kawasaki, "Method for Creating Networks between Vehicles
to Monitor Vehicle Condition," Quarterly Report of RTRI,
vol. 58, no. 4, pp. 285-291, Nov. 2017, doi:
https://doi.org/10.2219/rtriqr.58.4_285.

[11] SATORI ELECTRIC CO., LTD.,
http://www.satori.co.jp/english/ [retrieved: August 2018]

TABLE III. RESULT OF THE EXPERIMENT (AVERAGE TIME)

First 5 times
 (antenna attached)

[s]

Next 5 times
 (antenna detached)

[s]

Last 5 times
 (antenna attached)

[s]

Hop number metric 36.1 103.7 37.6

Proposed method 35.8 48.9 36.1

63Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 71 / 76

Behavior Modeling of Networked Wireless Sensors for

Energy Consumption Using Petri Nets

Jin-Shyan Lee

Department of Electrical Engineering

National Taipei University of Technology (Taipei Tech.)

Taipei, Taiwan

e-mail: jslee@mail.ntut.edu.tw

Yuan-Heng Sun

Information & Communications Research Labs

Industrial Technology Research Institute (ITRI)

Hsinchu, Taiwan

e-mail: gilbertsun@itri.org.tw

Abstract— Energy efficiency is a critical design issue in

wireless sensor networks. In order to analyze the energy

consumption of a single node, a system model of networked

wireless sensors is thus required. Based on a Petri net framework,

this paper is proposing a systematic approach to the modeling

and measurement of energy consumption for ZigBee-equipped

sensors. Moreover, an experiment has been conducted to measure

the real power consumption and to provide input parameters to

the Petri net model. The comparative results show that the Petri

net model could approximate the real measurement under the

assumed scenarios. It is believed that the technique presented in

this paper could be further applied to complex and non-periodic

operations in wireless sensor networks.

Keywords-energy consumption; Petri nets; sensor models;

wireless sensor networks; ZigBee.

I. INTRODUCTION

Recently, there has been an increasing emphasis on

developing distributed Wireless Sensor Networks (WSNs)

with self-organization capabilities to cope with device failures,

changing environmental conditions, and different sensing and

measurement applications [1]-[4]. WSNs consist of hundreds

or even thousands of networked wireless sensors which are

linked by radio frequencies to perform distributed sensing

tasks. In general, since these wireless sensors are equipped

with batteries, energy consumption is a major design issue.

Researchers have attempted to determine the best topology, the

optimal way of routing, or whether the sensor node should

aggregate data or not. All these topics are investigated with the

intention of prolonging network lifetime from a global

networking point of view [5]-[7].

On the other hand, from a single node point of view, the

energy conservation could be achieved by applying some

power management techniques. However, in order to propose

methods by which power consumption can be minimized in

networked wireless sensors, it is first necessary to gain an

accurate understanding of their energy consumption

characteristics. Thus, a system model of wireless sensors is

required so as to analyze the energy consumption of a single

node.

Starting from measurements carried out on the off-the-shelf

radio, Bougard et al. [8] evaluated the potential of an IEEE

802.15.4 radio for use in an ultra-low power sensor node

operating in a dense network. Their resulting model has been

used to optimize the parameters of both the physical and

medium access control layers in a dense sensor network

scenario. Also, based on the empirical energy consumption

measurements of Bluetooth modules, Ekstrom et al. [9]

presented a realistic model of the radio energy consumption for

Bluetooth-equipped sensor nodes used in a low-duty-cycle

network. Their model gives users the possibility to optimize

their radio communication with respect to energy consumption

while sustaining the data rate. From a hybrid system point of

view, Sousa et al. [10] modeled and analyzed the power

consumption of a wireless sensor node in sensor networks

using differential hybrid Petri Nets (PNs). With the discrete

event evolution, the continuous battery discharge profile is

updated and the remaining battery capacity is estimated.

Moreover, their Petri net model was further applied to the

design and evaluation of several dynamic power management

solutions [11]. Based on Petri nets, Shareef et al. [12] also

developed a model of a wireless sensor node that can

accurately estimate the energy consumption. They used this

model to identify an optimal threshold for powering down a

sensor node of a specific wireless sensor application.

Most of the previous work focused on developing a

conceptual sensor model and provided limited results on

realistic measurement or comparative experiments. By

applying our previously proposed Petri net framework in [13],

this work has modeled the energy consumption of a

ZigBee-equipped sensor node. Furthermore, an experiment has

been conducted to measure the real power consumption and

provide input parameters to the PN model, which could be

applied to further simulations of ZigBee-based WSNs. This is

the sense to use the PN model to describe the power

consumption of sensor nodes.

The rest of this paper is organized as follows. Section II

introduces the Petri net model of a wireless sensor. Then,

experimental results are provided in Section III. Finally,

Section IV concludes this paper.

64Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 72 / 76

II. PETRI NET MODELING OF WIRELESS SENSORS

This section will introduce the MultiParadigm Modeling

(MPaM) methodology, and then show the behavior modeling

of networked wireless sensors.

A. MultiParadigm Modeling (MPaM)

To deal with specific and complicated problems, we have to

integrate heterogeneous modeling arts, thereby resulting in the

MPaM methodology. It is based on a proposition of giving

different entities of a complex system the most appropriate

modeling abstractions [13]. From a viewpoint of MPaM, the

PN is adopted to design and analyze coordination controllers in

a discrete-event domain. The primary motivation for

employing PN as hybrid models is the situation that all those

good characteristics that make discrete PN a valuable

discrete-event model still be available to hybrid systems.

Examples of these characteristics include: PN does not need

the exhaustive enumeration of the state space at the design

stage and can finitely model systems with an infinite state

space. Moreover, PN provides a modular description where the

structure of each module is maintained in the composed model.

Furthermore, discrete states of PN are modeled by a vector and

not by a symbolic label, thus linear algebraic techniques may

be adopted for system analysis.

Figure 1 represents the previously proposed PN framework

for modeling a system in discrete-event and discrete-time

domains [13]. Each operation is modeled with a command

transition to start the operation, a progressive working place, a

response transition to end the operation, and a completed place.

Note that the start transition (drawn with a dark symbol) is a

controllable event as “command” input, while the end

transition is an uncontrollable event as “response” output. The

working place is a Hierarchical Hybrid Place (HHP, drawn

with a triple circle), in which the state equations of the systems

to be controlled are contained and interacted through the

boundary interface. The interaction between event-driven and

time-driven domains is realized in the following way: a token

put into the working place triggers a discrete (or continuous)

time process with the corresponding equations. Thresholds are

monitored concurrently. Each threshold is corresponding to a

transition, that is, the response transitions. When the threshold

is reached or crossed, it indicates that the associated event is

happening, and the corresponding transition is fired. Next, a

new marking is evaluated, and the combination of the hybrid

system restarts.

Figure 1. Multiparadigm modeling within a Petri net framework [13].

Figure 2. Petri net model of a networked wireless sensor.

Command:

start operation

Response:

end operation

state equations of

to be controlled

subsystems

boundary interface

Working Completed

= Hierarchical Hybrid Place (HHP)

Example:

x1= f (x1, t)

x2= f (x2, t)

y= f (x1, x2, t)

p2 p3t2t1 p4 p5t4t3

p1

p8

p9 t8 t7

p6

p7 t6 t5

p17

p11 t10

t9p10

Startup Sequence MCU Running

Radio in RX mode

for CSMA/CA

p14

t14

t13p12 p13t12t11

Shutdown SequenceProcess Packets

Controllable transitions Hierarchical Hybrid Places

Transmit PacketsReceive Packets

p15

p16

65Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 73 / 76

TABLE I.

NOTATION FOR PETRI NET OF A WIRELESS SENSOR IN FIGURE 1

B. Behavior Modeling of Networked Wireless Sensors

In general, the radio communication is the most energy

consuming part of a wireless sensor as compared with its

sensing and computation tasks. Hence, our model focuses on

the operations of packet transmission and reception. By

applying the design procedure in [13], the PN model of a

networked wireless sensor is constructed as shown in Figure 2,

which consists of 17 places and 14 transitions, respectively.

The corresponding notations are described in Table I. The

model is based on a scenario where a sensor node periodically

transmits and receives some data towards, for example, a base

station.

III. EXPERIMENT AND RESULTS

This section will firstly show the measurement setup and

experimental results. Then, the comparisons between the

measurement and PN model will be described.

A. Measurement Setup

In this section, the energy consumption of a wireless sensor

as computed via its Petri net model will be compared against

real measurements collected from a ZigBee-equipped sensor

node. The measurement setup in [14] has been adopted as

shown in Figure 3 (a), in which a ZigBee End Device is the

Device Under Test (DUT) and powered by a power supply.

The energy consumption measurements are performed at the

End Device, which periodically (every 0.5 sec in our

measurement) wakes up and sends data to the coordinator (base

station). The voltage across a 10 Ohm resistor is monitored to

determine the current draw of the system. The measurement

system has been calibrated with both a digital oscilloscope and

a digital multimeter to ensure an accurate measurement. Figure

3 (b) shows the hardware setup during energy consumption

measurement.

Figure 3. (a) Measurement configuration and (b) hardware setup during energy

consumption measurement.

B. Measurement Results

Figure 4 (a) shows the power consumption during sleep and

awake states. The time base on the oscilloscope is set to 500 ms

per division, and it can be seen that it is about 0.5 sec among

each current peak, showing the power consumption when the

device is awake to send the data to the coordinator. Figure 4 (b)

is a zoomed version of Figure 4 (a) and shows the current

consumption during the active modes in more details. This

snapshot has a time base of 1 ms per division. The duration of

the active mode is about 7 ms. According to the measurement

results, the consumed energy and duration of each operation

can be estimated.

C. Comparisons between Measurement and Petri Net Model

With the measured sets of consumed current and duration

for each transition as the inputs to the Petri net model, the

energy consumption can be obtained as shown in Figure 5. In

general, the energy consumption of the Petri net model is close

to the practical measurement with a mean difference of around

0.9%. However, several peak currents appear during the state

transitions, especially the startup sequence t1. Moreover, note

that between transitions t7 and t9, there are two V-shaped

gullies, which present the transceiver turnaround operations

(RX to TX and TX to RX). Future work would attempt to

model such detailed behaviors.

Place Description Transition Description

p1 Node in sleep mode t1 Cmd: start startup sequence

p2 MCU running at 16MHz t2 Re: end startup sequence

p3 Startup sequence completed t3 Cmd: start running MCU at 32MHz

p4 MCU running at 32MHz t4 Re: end running MCU

p5 MCU running completed t5 Cmd: start CSMA/CA operation

p6 Radio in RX mode t6 Re: end CSMA/CA operation

p7 CSMA/CA operation completed t7 Cmd: start transmitting packets

p8 Radio in TX mode t8 Re: end transmitting packets

p9 Packet transmission completed t9 Cmd: start receiving packets

p10 Radio in RX mode t10 Re: end receiving packets

p11 Packet reception completed t11 Cmd: start processing packets

p12 Processing packets t12 Re: end processing packets

p13 Processing packets completed t13 Cmd: start shutdown sequence

p14 MCU running at 16MHz t14 Re: end shutdown sequence

p15 Shutdown sequence completed

p16 MCU is available

p17 Radio is available
Coordinator

Node

End Device

(Device Under Test)

(a)

(b)

Power Supply

- +

ZigBee

Coordinator

Resistor

10 

ZigBee

End Device

(Device Under Test)

Oscilloscope

1 2

66Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 74 / 76

Figure 4. Measurement results for the division scale at (a) 500 ms and (b) 1 ms.

Figure 5. Comparison of energy consumption between measurement and Petri

net model.

Obviously, the description of the power consumption of a

single node during a standard RX/TX procedure is a very

isolated scenario. For example, the power consumption of a

node would significantly change when a collision is happening

during transmission with a subsequent packet loss which

requires a repeated transmission. Future work would consider

more practical interactions between the nodes so as to simulate

the power consumption of a whole sensor network for different

scenarios.

IV. CONCLUSION AND FUTURE WORK

In this paper, a systematic approach to modeling and

measurement of energy consumption for wireless sensors has

been presented. The sensor operation is modeled using the

Petri nets. Then, an experiment has been conducted to measure

the real power consumption and provide input parameters to

the Petri net model. The comparative results indicate the Petri

net model has approximated the real measurement under the

assumed scenarios. Besides the periodical operations

demonstrated in this paper, the measurement scheme is also

useful for other specific applications and could be fed back to

the Petri net model as a calibration source.

Since the proposed Petri net model in this paper is mainly

designed for packet transmission and reception, as a future

work, operations of sensing and computation tasks could be

further considered so as to make the model much more realistic.

Moreover, with a given battery, the proposed model could be

further applied to the lifetime estimation for periodical

operations.

ACKNOWLEDGMENT

This paper was supported by the Ministry of Science and

Technology (MOST) of Taiwan under grant

MOST-106-2221-E-027-057.

The authors would like to thank Mr. Yu-Kai Wang from

Information & Communications Research Labs, Industrial

Technology Research Institute (ITRI) for his help with the

experiment.

REFERENCES

[1] J. S. Lee and Y. C. Lee, “An application of grey prediction to transmission

power control in mobile sensor networks,” IEEE Internet of Things J., vol.
5, no. 3, pp. 2154-2162, Jun. 2018.

[2] W. Q. Guo, W. M. Healy, and M. C. Zhou, “Impacts of 2.4-GHz ISM band

interference on IEEE 802.15.4 wireless sensor network reliability in
buildings,” IEEE Trans. Instrum. Meas., vol. 61, no. 9, pp. 2533-2544,

Sep. 2012.

[3] J. S. Lee and W. L. Cheng, “A fuzzy-logic-based clustering approach for
wireless sensor networks using energy predication,” IEEE Sensors J., vol.

12, no. 9, pp. 2891-2897, Sep. 2012.
[4] J. S. Lee, “A Petri net design of command filters for semi-autonomous

mobile sensor networks,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp.

1835-1841, Apr. 2008.
[5] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, “Energy

conservation in wireless sensor networks: A survey,” Ad Hoc Netw., vol. 7,

no. 3, pp. 537-568, May 2009.
[6] J. S. Lee and T. Y. Kao, “An improved three-layer low-energy adaptive

clustering hierarchy for wireless sensor networks,” IEEE Internet of

Things J., vol. 3, no. 6, pp. 951-958, Dec. 2016.

[7] J. S. Lee and C. L. Teng, “An enhanced hierarchical clustering approach

for mobile sensor networks using fuzzy inference systems,” IEEE Internet

of Things J., vol. 4, no. 4, pp. 1095-1103, Aug. 2017.
[8] B. Bougard, F. Catthoor, D. C. Daly, A. Chandrakasan, and W. Dehaene,

“Energy efficiency of the IEEE 802.15.4 standard in dense wireless

microsensor networks: Modeling and improvement perspectives,” in Proc.
of Design, Automation and Test in Europe Conference and Exhibition

(DATE), Munich, Germany, Mar. 2005, pp. 196-201.

[9] M. C. Ekstrom, M. Bergblomma, M. Linden, M. Bjorkman, and M.
Ekstrom, “A Bluetooth radio energy consumption model for

low-duty-cycle applications,” IEEE Trans. Instrum. Meas., vol. 61, no. 3,

pp. 609-617, Mar. 2012.
[10] J. R. B. Sousa, A. M. N. Lima, and A. Perkusich, “Modeling and analyzing

power consumption in sensor networks nodes based on differential hybrid

(a)

(b)

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Time (ms)

C
u
rr

e
n
t

C
o
n
s
u
m

p
ti
o
n
 (

m
A

)

measurement

Petri net model

t5 t11

t3

t7
t9

t13
t1

67Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 75 / 76

Petri nets,” in Proc. The Annual Conf. IEEE Industrial Electronics Society

(IECON), Raleigh, NC, Nov. 2005, pp. 389-394.
[11] P. S. Sausen, J. R. B. Sousa, M. A. Spohn, A. Perkusich, and A. M. N.

Lima, “Dynamic power management with scheduled switching modes,”

Comput. Commun., vol. 31, pp. 3625-3637, Sep. 2008.
[12] A. Shareef and Y. F. Zhu, “Power modeling of wireless sensor nodes

based on Petri net,” in Proc. The 39th Int. Conf. Parallel Processing, San

Diego, CA, Sep. 2010, pp. 101-110.
[13] J. S. Lee, M. C. Zhou, and P. L. Hsu, “Multiparadigm modeling for hybrid

dynamic systems using a Petri net framework,” IEEE Trans. Syst., Man,

Cybern. A, Syst., Humans, vol. 38, no. 2, pp. 493-498, Mar. 2008.
[14] B. Selvig, “Measuring power consumption with CC2430 & Z-Stack,”

Application Note AN053, Texas Instruments. Jul. 2007.

68Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

Powered by TCPDF (www.tcpdf.org)

 76 / 76

http://www.tcpdf.org

