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Abstract— Massive Multiple-Input Multiple-output (MIMO) is 

a high-potential radio antenna technology for mobile wireless 

networks, such as 5th Generation (5G). The use of hybrid 

analog and digital precoding to minimize the energy 

consumption as well as the hardware complexity of mixed 

signal components is an essential strategy. Machine Learning 

(ML) could be able to boost 5G technologies due to the rising 

difficulty of configuring cellular networks. More than ever, an 

ML computational framework focused on successfully 

processing the expected huge data generated normally by 5G 

networks with high subscriber cell density, is required. In the 

Ultra-Dense Networks (UDNs) of 5G and beyond high 

demanding networks paired with beamforming and massive 

MIMO technologies, ML struggles to define network traffic 

aspects distinctively, especially when they are projected to be 

much more dynamic and complicated. This paper presents a 

state-of-the-art analysis of the combined and multiple uses of 

ML along with MIMO technology in 5G Networks. 

Keywords-MIMO; Machine Learning; 5G; Deep Learning; 

Internet of Things; Big Data. 

I.  INTRODUCTION  

In recent decades, a rise in Internet traffic has been 
observed, which is projected to continue to grow 
exponentially in the near future. The reason for this is the 
widespread use of a wide range of User Equipment (UE), 
which includes everything from Internet of Vehicles (IoV) 
and Machine-to-Machine Communication (M2M) to Internet 
of Things (IoT), and so on. Network traffic management is 
expected to be a critical problem, especially in the 5th 
Generation (5G) and beyond cellular Ultra-Dense Networks 
(UDNs) and Heterogeneous Networks (HetNets), which are 
the main technologies that will host this traffic, reason being 
the significant congestion on wireless communication 
networks due to the amount of traffic generated from big 
data. The primary problem with the wireless network's 
ongoing growth is that to achieve the necessary area 
throughput, it must either increase bandwidth (spectrum) or 
densify the cells and increasing bandwidth or densifying the 
cells raises hardware costs and increases latency. 

Because of its unique performance and freedom, Massive 
Multiple-Input Multiple-Output (MIMO) is a critical method 
for 5th Generation and future mobile wireless networks. 
Massive MIMO is a type of MIMO that requires connecting 
a base station with hundreds or even thousands of antennas 
to be able to boost spectral efficiency and throughput. 
Massive MIMO makes use of huge antenna arrays at base 
stations and Access Points (APs). When combined with 
millimeter-wave (mm-Wave) communications, which 
employ a bigger spectrum, this architecture enables for 
enhanced cellular communications with increased spectral 
density and reduced complexity. Massive MIMO can 
perceive data from several sensors in real time thanks to its 
high multiplexing gain and beamforming capabilities, 
resulting in decreased latency and larger data rates for 
sensors. 

Artificial Intelligence (AI) has emerged as a cutting-edge 
method with the potential to make major advancements in a 
variety of telecommunications problems, thanks to the uses 
of Machine Learning (ML) and furthermore deep Learning, 
including network management, self-organization, self-
healing, and Physical Layer (PHY) improvements (DL). The 
communication system will be taught how to recognize 
emergent channel models and how to react to changing 
channel conditions by utilizing deep learning techniques, all 
while delivering a cutting-edge tool for maximizing end-to-
end efficiency. DL-based approaches are also perfect for 
operating on Graphics Processing Units (GPUs) to fully use 
parallel hardware because of the Deep Neural Network 
(DNN) framework with ways that can help manage big data 
and fast evolving scenes based on parallel processing 
architectures. The secure uses of AI can greatly optimize 
classical ways in most of the areas. To improve its 
performance, many machine learning methods have been 
applied to MIMO technology. 

In [2], a methodology is presented for producing channel 
realizations that depict 5G scenarios with transceiver and 
artifact mobility. In [3], researchers investigate MT 
localization in Distributed Massive MIMO (DM-MIMO) 
systems using the Apache Spark big data computing 
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framework and the RSS fingerprinting approach in 
conjunction with ML algorithms, with the goal of using it in 
microcells in metropolitan areas. The work in [1] explains 
how to utilize deep Long Short-Term Memory (LSTM) 
learning to produce localized traffic load estimates at the 
UDN base station, while [4] shows a Partial Learning (PL)-
based detection technique and [5] gives a comprehensive 
review of 5G communications research utilizing DL. In [6], 
the authors undertake a review of the evolution of DL 
solutions for 5G communication before providing efficient 
strategies for DL-based 5G scenarios, whilst in [7], they 
provide a complete overview of the primary enabling 
technologies 5G and 6G networks, with a focus on massive 
MIMO systems. For successful hybrid precoding, [8] 
proposes a deep-learning-enabled mmWave massive MIMO 
architecture, in which each precoder selection for getting the 
best decoder is considered as a DNN mapping link. We will 
include a study of how MIMO technology can benefit from 
the modern application of ML in this paper. 

We will present how the components of a single 5G 
network that uses this combination work, what has been 
researched so far, and how it might be enhanced in the 
future. The rest of this work is organized as follows: In the 
following section, we showcase the literature review of the 
most state-of-the-art combinations of MIMO and ML. In 
Section III, we evaluate the use of ML and MIMO in 5G 
networks and Section IV includes our conclusions and future 
applications. 

 

II. RELATED WORK 

A. MIMO 

We can think of communicating in a MIMO system as 
sending a matrix rather than a single vector. As a result, we 
can deliver a data stream in parallel to numerous recipients. 
The data to be delivered is encoded by the system, and the 
stream is sent via transmitters. MIMO is using multiple 
antennas to send data to a large number of wireless endpoints 
simultaneously. MIMO is a technique for doubling the 
capacity of a radio link by taking advantage of multipath 
propagation by using multiple transmission and receiving 
antennas. MIMO, being a radio antenna technology, uses 
many antennas at the transmitter and receiver to offer several 
signal channels for data transmission, effectively. Each 
antenna is associated with a distinct signal path, allowing for 
the usage of several signal paths. Massive MIMO is a new 
technology that scales up MIMO and provides significant 
energy economy, spectrum efficiency, resilience, and 
dependability benefits. 

To highlight the importance of massive MIMO, we look 
at the work that has been done in [9]-[11]. In [10], Massive 
MIMO as an enabling technology for future generation of 
networks, is being showcased as a novel technology that 
scales up MIMO and offers considerable benefits. It enables 
both the base station and the mobile unit to use low-cost 
hardware. Expensive and powerful but inefficient equipment 
is replaced at the base station with many low-cost, low-
power components that work together. The term "massive" 

refers to the utilization of the multiple antenna arrays to 
support a plethora of terminals at the same time-frequency 
resource. Comprehensively describing massive MIMO 
systems from several different perspectives in [11], the 
authors point out that, by expanding the capacity of Radio 
Frequency (RF) networks, MIMO provides a more reliable 
connection and reduces congestion. A base station's 
spectrum and energy efficiency can be considerably 
optimized by providing it with hundreds or even thousands 
antennas.  

MIMO can enhance data carrying capacity without 
requiring more bandwidth due to spatial multiplexing, 
however, when compared to the classic single antenna 
antenna-based system, the resource requirements and 
hardware complexity are higher. Investigating the 
performance constraints of developing "wireless-powered" 
communication networks using opportunistic energy 
harvesting from ambient radio signals or specialized wireless 
power transfer, the authors conclude at [9] that when 
developing MIMO systems, compromises must be made in 
order to make simultaneous information and energy 
transmission as efficient as possible. When allocating 
resources in terms of communication to provide optimal 
solutions for network interference levels for maximum 
information vs. energy transfer, there are a few nontrivial 
considerations to keep in mind. 

B. Machine and Deep Learning 

Machine learning is a subfield of AI that refers to when 

computers are using data for learning techniques. It's the 

intersection of computer science and statistics when 

algorithms are used to carry out a procedure without being 

specifically written. The learning process for these 

algorithms falls into two categories based on the variety of 

data hat are given as an input: supervised or unsupervised. 

DL algorithms are a mathematically more complex and 

advanced evolution of machine learning techniques. DL is a 

subset of machine learning that deals with algorithms that 

analyze data in a way similar to the human brain. 
The work that has been done in [3], [4] and [8] best 

describes the role of ML and DL in enhancing MIMO. The 
Partial Learning (PL)-based detection scheme that is 
proposed in [4] can achieve low Bit Error Rate (BER) with 
low computational complexity. They use non-linear 
techniques to have a more efficient BER while relying on 
linear methods to reduce computing complexity, which can 
be even more optimized by using neural network for linear 
detection. Because neural networks ensure that the signals 
are appropriately recognized at the start, this technique can 
achieve lower BER than standard techniques. The results of 
the evaluation of thirteen machine learning methods that is 
performed comparatively, in conjunction with fingerprint-
based MT localization for dispersed Massive MIMO 
topologies [3], reveals that a subset of the assessed ML 
systems may accurately anticipate the position of an MT. 
Finally, the K-Nearest Neighbor (KNN) has been proven to 
appear the best ML algorithm performance, second being the 
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Kernel Ridge Regression (KRR) and Random Forest (RF) in 
all scenarios evaluated. 

The deep-learning-enabled mmWave massive MIMO 
framework proposed in [8] presents a solution to the 
difficulty that already implemented hybrid precoding 
schemes have, which is that they are computationally 
complex and do not fully leverage geographical information. 
This method achieves successful hybrid precoding by 
treating each precoder choice as a associating relation in the 
DNN in order to achieve the best decoder, which is chosen 
by DNN training for optimization of the mmWave massive 
MIMO precoding process. The system model is a typical 
mmWave massive MIMO system with one BS and a modern 
DNN utilized to create a unique precoding framework. The 
suggested approach which has DL in it’s core is viewed as a 
operation that is performing the mapping, and a training 
mechanism to acquire the mmWave-based model's structural 
statistics. With the data fed dynamically changing in 
accordance with the channel circumstances, the DNN is 
trained. The computational complexity of this unsupervised 
learning training strategy is reduced as well. 

C. 5G Networks 

After 1G, 2G, 3G, and 4G networks, 5G is a new global 
standard that is taking over wireless communications. 5G is 
intended to provide data speeds many times faster than the 
previous classic networks, latency that is being characterized 
as “ultra-low”, enhanced dependability, massive network 
capacity, increased availability, larger bandwidth of up to 10 
gigabits per second (Gbit/s) ensuring a more consistent user 
experience for a larger number of people. AI along with the 
infrastructure of Internet of Things (IoT) enable higher 
performance and efficiency. In 2019, cellular phone 
companies began installing 5G networks around the world, 
which are the projected successors to the 4G networks that 
connect the majority of today's handsets. In 5G, the service 
area is separated into cells, which are small geographical 
areas. All 5G wireless devices are connected to the Internet 
and to the telephone network via radio waves via a local 
antenna in the cell. Massive New antennas will be employed 
by MIMO for the several transmitters and receivers to be 
able to transfer a larger amount of data at the same time. 

Observing [1], [2], [7] and [11], the authors take a close 
look at the fundamental technologies that will be critical for 
5G and beyond networks, with a particular focus on massive 
MIMO systems. They discuss some of the many and most 
important challenges in a massive MIMO system, such as 
pilot contamination, channel estimation, precoding, user 
scheduling, energy efficiency, and signal identification, as 
well as some cutting-edge mitigation measures, as seen in 
[7]. For massive MIMO systems, they discuss contemporary 
advances, such as terahertz communication, Ultra-Massive 
MIMO (UM-MIMO), Visible Light Communication (VLC), 
ML, and DL. They believe that MIMO is the solution to the 
massive increase in wireless data traffic because to achieve 
excellent spectrum and energy efficiency with very simple 
processing, antennas are used in combination at both the 
transmitter and the receiver ends. In [11], the authors 
conclude that DL models, such as DNN and Convolutional 

Neural Networks (CNN), while optimizing channel 
estimations and feedback for large MIMO, will dramatically 
improve BER performance and system capacity. Massive 
MIMO and Non-Orthogonal Multiple Access (NOMA) will 
give improved performance and lower internal power usage, 
resulting in overall energy efficiency gains. 

[1] describes the way to employ the deep LSTM learning 
method to produce traffic load based on location estimates at 
the base station of UDN, emphasizing how important it is for 
the 5G network operators to perform control on all the 
resources of the radio in an efficient manner. According to 
this study, traditional traffic control strategies are "reactive," 
meaning that if alike traffic circumstances arise, they are 
prone to congestion again. Predicting congestion incidents 
seeks to prevent them from happening in the first place. The 
study in [2] describes a system with a car traffic simulator 
along a raytracing simulator, in combination, to create 
channel realizations that reflect 5G scenarios and allow for 
the use of sophisticated traffic simulator features with 
mobility of transceivers as well as objects. The research then 
goes on to offer a dataset that may be used to investigate 
beam selection approaches for vehicle-to-infrastructure 
communication utilizing millimeter waves in mmWave 
MIMO. 

 

III. MACHINE AND DEEP LEARNING ALGORITHMS 

COMPARISON 

ML and DL methods’ dynamic nature may be 
advantageous for analysis of complex tasks while also 
conserving a substantial amount of processing power. 
Massive MIMO beamforming, channel estimation, signal 
detection, load balancing, and spectrum optimization can all 
benefit from ML and DL technology, according to [7]. 
During channel estimation, data coming from the channel 
can be assumed to be big, and a variety of ML methods can 
be used to predict massive MIMO channels. Massive MIMO 
will see a significant increase in throughput thanks to ML-
based channel prediction. In massive MIMO, ML was 
utilized in the past for effective beam alignment to track 
users, and numerous machine learning and DL approaches 
are also useful for uplink signal detection in massive MIMO. 
Despite its benefits, massive MIMO has many challenges, 
including pilot contamination, channel estimation, 
precoding, user scheduling, hardware impairments, energy 
efficiency, and signal detection, all of which need 
understanding and need to be applied in a real-world setting 
before their promised benefits can be realized. 

The work in [8] indicates that using DL to solve the 
channel feedback problem could be a promising path for 
addressing concerns like codebook size and feedback 
overhead. The work in [6] states that improvement can be 
found if the data set acquisition and selection of the model 
issues are overcome, while the explainable development of 
DL methods is progressing, and we will have to establish the 
standard data sets that individuals in the industry support. 
The work in [1] discovers opportunities for improvement by 
taking a large number of traffic parameters and tensor-
modeling them in order to create a learning framework that is 
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even more robust and that can adapt and forecast with even 
more precision. The two challenges encountered in [3] are 
the effect of different locations and terrain on accuracy in 
terms of localization and the quantity of training datasets, as 
well as the effect of employing other DM-MIMO antenna 
array shapes and their effect on MT localization. Future work 
from [2] will entail simulating many sites and scenarios, as 
well as testing some of them with measurements, because it 
is crucial to decrease the computing cost in addition to 
precise modeling. DL in 5G can be examined utilizing a 
systematic and repeatable technique via experimentation. 

All in all, finding effective techniques to decrease the 
pilot contamination effect is a crucial subject to research. A 
scheduling method that guarantees more efficiency and 
fairness that can deliver a higher rate of data while also 
ensuring fairness among users, to increase overall system 
performance is also an important topic of research, as is 
finding effective precoding techniques for massive MIMO. 
Finding a more effective and low-complexity uplink signal 
identification method is one of the most important topics of 
research. Designing a Massive MIMO that is able to work 
with today's 4G network is a fascinating topic to research 
(Figure 1). The following two algorithms show especially 
favorable results. [6] illustrates how DL models, like DNN 
and CNN for massive MIMO, may dramatically optimize the 
performance of BER and the capacity of the system while 
channel estimation and feedback are optimized. [4] proposes 
a neural network-based intelligent detection method to strike 
a balance between cheap computing complexity and low 
BER. 

 

 

Figure 1.  Massive MIMO 

 

IV. PERFORMANCE EVALUATION 

In this section, we discuss the performance evaluation of 
the works done in [1], [6] and [8]. We are observing 
interesting results in the use of ML and especially DL in 
combination with MIMO in 5G and beyond networks.  

In general, in [6], a DL-based communication 
framework's performance has been demonstrated for channel 
estimation, encoding and decoding in massive MIMO, even 
though no theoretical work has been derived in this work to 
further verify and improve the framework's performance 
through understanding. Specifically, three deep learning-
based frameworks, NOMA, massive MIMO, and mmWave 
hybrid precoding, are introduced and their performance 
evaluated with an emphasis on 5G. These models use 
extremely large parameters, a high level of memory and have 
increased time complexity. This suggests that we can create 
high-performance deep compression techniques and model 
compression strategies to increase the efficiency of the 
networks that utilize deep learning, making them simpler as 
well. As a result, in the future, the deep reinforcement 
learning-based wireless physical layer should be thoroughly 
researched in order to optimize critical resource management 
tasks and be capable of improving precoding performance, 
BER, SNR, and data rates by enhancing equipment 
performance, such as CSI, latency, and bandwidth 
management. Because the original input signals are 
frequently transformed into binary signals, one-hot vectors, 
modulated integers, and other styles of data representation 
for improving network performance in the DL area, it is 
unclear whether the most modern methods’ performance is 
able to be achieved in DL-based wireless communication 
frameworks while the representation data is varying. In the 
field of DL-based wireless physical layer, the principles of 
learning schemes are still unclear, and a mechanism for 
picking training instances has not been created, which is one 
of the challenges that must be investigated further.  

The authors in [8] compare the DNN-based scheme's 
BER performance to that of the SVD-based hybrid precoding 
scheme, fully digital SVD-based precoding method, fully 
GMD-based precoding method, and new GMD-based 
precoding scheme, demonstrating that the techniques with 
deep-learning at their core are more efficient than the 
traditional methods. In terms of BER, it is noticed that the 
deep-learning-based strategy's performance diminishes as 
batch size increases. In the DNN-based method, the 
performance of hybrid precoding is improved by using a 
lower rate of learning to guarantee a smaller validation error. 
The suggested hybrid precoding strategy surpasses prior 
strategies by achieving improved hybrid precoding 
performance thanks to DL's superior mapping and learning 
capabilities. The Mean Square Error (MSE) performance 
improves as the number of iterations increases, which is due 
to the fact that all of these algorithms approach conversion 
with more iterations. As a result, when compared to existing 
systems, the proposed DL-based methodology achieves 
improved performance in terms of hybrid precoding 
accuracy and conversion.  

By comparing the work in [1] to the conventional 
method, the technique showcased in [1] achieves a lower rate 
of packet loss than the conventional method. The resource 
allocation approach that is given clearly leads to increased 
throughput. This result demonstrates that, even with a huge 
number of UEs, the proposed strategy outperforms the 
standard way. The solution that is stated results in a much 
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lower packet loss rate, because it may make a localized 
prediction of future crowding and attempt to alleviate or 
completely eschew it ahead of time. Unlike the traditional 
methodology, the proposed method may employ DL to 
generate a localized forecast of future bottleneck, which 
would then be utilized to adjust the UL/DL settings to reduce 
congestion. When compared to the old technique, the UDN 
that utilizes the proposed method can achieve significantly 
higher throughput and lower rates of packet loss. 
Furthermore, in comparison to the traditional method, the 
proposal results in a higher throughput while, in terms of 
network efficiency, surpasses traditional solutions. 

To sum up, from DL-based communication frameworks 
to DL predictions, the DL is clearly the state-of-the-art 
technique that seems to have overtaken the way MIMO in 
5G and beyond networks work. 

 

V. CONCLUSIONS 

All in all, we conclude that the use of ML and DL in 
combination with MIMO in 5G and beyond networks 
(Figure 2) has a lot of benefits and better performance in the 
variety of the aspects that are being showcased. Especially, 
the most promising state-of-the-art techniques consist of the 
various uses of DL. It is obvious that such techniques, as 
well as all the principles of learning schemes, still have some 
unclear areas that can be further explored. In the future, more 
analysis needs to be conducted on DL-based wireless 
physical layer mechanisms, congestion optimization 
techniques and precoding strategies, expanding the 
comparison presented in Table I. It is safe to assume that 
with exploration and exploitation of the aforementioned 
artificial intelligence combinations, various benefits can be 
derived in terms of BER, energy consumption, complexity, 
throughput, congestion and, in general, overall efficiency. 

 

 

Figure 2.  Machine/Deep Learning – 5G - MIMO 

 
 
 
 
 

TABLE I.  COMPARISON OF DL-BASED MECHANISMS, CONGESTION 

OPTIMIZATION TECHNIQUES AND PRECODING STRATEGIES 

Work Strategy Results 

[2] In mmWave MIMO, a dataset is used 

to examine beam selection algorithms 

for vehicle-to-infrastructure interaction 

Channel 

realizations that 

simulate 5G 

scenarios with 

transceivers and 

objects moving 

about. 

[10] Energy and spectrum efficiency, 

robustness, and reliability analyses 

Massive MIMO 

description 

[7] Overview of core issues in massive 

MIMO system 

MIMO as the 

solution to the 

massive increase in 

wireless data traffic 

[8] Deep-learning-enabled mmWave 

massive MIMO framework  

Successful hybrid 

precoding 

[6] Overcoming the dataset acquisition 

and model selection issues 

Better results with 

the progressing use 

of DL 

[1] Deep LSTM learning technique for 

localized traffic load predictions at the 

UDN base station 

Learn and forecast 

with even greater 

precision 

[4] Partial Learning (PL)-based detection 

scheme 

Low BER with low 

computational 

complexity 

[3] Comparative performance evaluation KNN was the best 

ML algorithm 

performance that 

could effectively 

forecast the 

position of an MT. 

[11] Comprehensively describing massive 

MIMO systems from several different 

perspectives 

Better BER 

performance and 

system capacity 

while optimizing 

channel estimates 

and feedback for 

massive MIMO and 

overall energy 

efficiency gains on 

NOMA 

[5] Overview of 5G communications 

research using DL 

DNN and CNN can 

increase BER 

performance and 

system capacity 

while optimizing 

channel estimates 

and feedback for 

massive MIMO 

[9] Investigating the performance 

constraints of developing "wireless-

powered" communication networks 

using opportunistic energy harvesting 

from ambient radio signals or 

specialized wireless power transfer 

To maximize the 

efficiency of 

simultaneous 

information and 

energy 

transmission, 

fundamental 

compromises must 

be made when 

developing wireless 

MIMO systems. 
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Abstract—Through the study of existing lightweight 

cryptographic algorithms, we suggest a number of design 

guidelines for creating new sponge-based extendable-output 

functions for use in resource-constrained environments. While 

several such algorithms exist, some knowledge that can be 

generalized from studying them in aggregate has not 

previously been presented. The developed guidelines include 

consideration of the round function width, the number of 

rounds, the selection of round constants, the rate, the linear 

and non-linear layers, and the required security claim. The 

result of these guidelines is a set of recommendations for the 

design of sponge-based extendable-output functions that 

should allow correctly balanced security and performance in 

environments where compute power, available memory, and 

battery life may all be limited. These recommendations could 

be used to help design purpose-built implementations for 

various wireless or mobile systems. 

Keywords-lightweight cryptography; extendable-output 

function; security analysis; Internet of Things. 

I.  INTRODUCTION  

The Internet of Things (IoT), sensor networks, Radio 
Frequency Identifiers (RFID) and smart devices are 
connecting the world in ways not previously imagined [1]. 
However, many of these devices are resource-limited, having 
low computational power, small amounts of memory and 
limited power supply, often relying on batteries. Because of 
this limitation, traditional standardized cryptographic 
algorithms, such as the Advanced Encryption Standard 
(AES) [2] and Secure Hash Algorithms SHA-2 [3] and SHA-
3 [4], which can have high computational and memory 
requirements, are not appropriate for use in these lightweight 
devices.  

The combination of having these resource-constrained 
devices interacting directly with the real world and not being 
able to protect them using traditional algorithms means new 
approaches are needed to ensure their security and privacy 
[5]. Lightweight cryptography aims to develop secure 
cryptographic primitives that better fit the environment of 
resource-constrained devices [5]. The US National Institute 
of Standards and Technology (NIST) is currently holding a 
competition to standardize lightweight cryptographic 
algorithms because the performance of existing standards is 

not acceptable [6] but the competition does not cover all 
cryptographic primitives. In particular, the competition does 
not include an extendable-output function (XOF), and even a 
cryptographic hash function is optional. 

A cryptographic hash function is an algorithm that maps 
a message of any length to a fixed-size message digest. It is a 
one-way function that is difficult and impractical to invert, 
and is important for many forms of authentication, including 
digital signatures [7]. An XOF has similar functionality to a 
cryptographic hash function, but its output can be extended 
to any desired length, rather than a single fixed size. This can 
prove very useful in lightweight environments, allowing 
system designers to choose the length of the output required 
for their individual circumstances to better balance security 
and performance [8]. 

While the inclusion of a cryptographic hash function is 
optional in the current NIST lightweight cryptography 
competition, 12 of the 32 second-round candidates included 
such an algorithm. With the exception of SATURNIN [8], 
each of these candidates chose to use a sponge construction 
(or derivative) [9], which allows for XOFs. Of the ten 
finalists in the NIST competition, the Ascon [10], Photon-
Beetle [11], TinyJAMBU [12] and Xoodyak [13] algorithms 
are the only ones that include hashing, and each of these are 
based on a sponge construction. 

In this paper, we examine three representative candidates 
from the second round of the NIST lightweight cryptography 
competition and, combined with general insight from the 
other candidates and related research, present a new set of 
design aspects that must be taken into account to design a 
secure lightweight sponge-based XOF. Our analysis includes 
two of the finalists (Ascon and Xoodyak) and one algorithm 
that did not make it to the final round of the NIST 
competition (Gimli [14]). The inclusion of Gimli in this 
analysis is because some of the reasons it did not make it to 
the final round are pertinent to this discussion. This 
aggregate study leads to general guidelines that could be 
used to develop custom-built XOFs for lightweight 
environments, including wireless and mobile systems. 

The remainder of this paper is organized as follows. 
Section II recounts literature-supported background 
information required to understand the analysis of the 
existing lightweight sponge-based XOFs presented in 
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Section III. Section IV then generalizes the outcomes of the 
analysis to present a number of design guidelines that should 
be considered when creating such an XOF. Finally, Section 
V concludes the paper and suggests future directions for this 
research. 

II. BACKGROUND INFORMATION 

This section briefly outlines, in Section Ⅱ-A, the 
requirements of cryptographic hash functions and, in Section 
Ⅱ-B, why it is often useful to have a more general XOF 
instead of a fixed-sized hash. Section Ⅱ-C then gives an 
overview of the general sponge construction, which is 
required to create sponge-based XOFs. This information will 
be important when we examine three sponge-based XOFs in 
Section Ⅲ.  

A. Cryptographic Hash Function  

A hash function converts an arbitrarily-sized message 
into a message digest of some fixed length, say d. In order to 
be a cryptographic hash function, a hash function must also 
have the following properties [4]: 

• Pre-image resistance: Given a particular message 
digest, it should be difficult to find a message that 
maps to that value.  

• Second pre-image resistance: Given a particular 
message, it should be difficult to find a different 
message that has the same message digest. 

• Collision resistance: It should be difficult to find any 
two different messages that have the same message 
digest. 

Generic attacks on hash functions, such as brute force 
(which repeatedly tries different inputs until the desired 
message digest is found), depend only on the value of d, so d 
must be large enough to ensure that such an attack is 
computationally inefficient. In general, attacks on hash 
functions attempt to break (some of) the above properties of 
cryptographic hash functions without resorting to brute force 
(i.e., the attack should take fewer than 2d steps). 

B. Applications of Extandable-Output Functions 

XOFs generalize hash functions by allowing an arbitrary 
output digest size. The computational complexity of an XOF 
is a combination of the computational complexity of a hash 
and a stream cipher [15]. Thus, the security of XOFs relies 
on more than just the length of the produced digest, so 
different security strengths can be selected. This is useful in 
areas where available key material might vary dramatically 
from one application to another, with no correlation to the 
required security strength [4].  

For example, the ED448 digital signature standard [7] 
adopts the XOF SHAKE-256 [4] as its internal hash 
function. This significantly increases performance compared 
to using SHA3-512, without reducing the 256 bits of security 
required by the standard [7]. 

C. The Sponge Construction 

Each of the finalists in the NIST lightweight 
cryptography competition that support a cryptographic hash 
function use a sponge construction [16], which can generally 

be extended to an XOF. A sponge function, as illustrated in 
Figure 1, is built from three components: 

• A state memory, S, consisting of r + c bits, where r 
is the rate of the sponge, and c its capacity. 

• A function ƒ: {0,1}r+c → {0,1}r+c that transforms the 
state memory. It typically consists of a non-linear, a 
mixing, and a linear layer. 

• A padding function Pad that appends bits to any 
input string to ensure its length is a multiple of r. 

The state is initialized to zero and then, for each r-bit 
block of the padded input string, the state is updated by 
replacing the first r bits of the state with the first r bits of the 
state bitwise XORed with the r-bit input block. The state is 
then further updated by passing it through the function ƒ, 
which is often a pseudorandom permutation over all possible 
state values. This “absorbs” all blocks of the padded input 
into the sponge construction's state. 

The output of the sponge construction is then “squeezed 
out” by initially outputting the first r-bits of the state and 
then, repeatedly until enough output is generated, replacing 
the state S by ƒ(S) and outputting the first r bits of the result 
(truncating if necessary). 

Assuming ƒ is suitably difficult to invert, the following 
security results can be derived for a sponge construction that 
creates a message digest of length d [17] [18] [36]: 

If d ≥ c and c ˃ 2r   then: 

• The construction has pre-image security of 2d-r. 

• The construction has second pre-image and collision 
security of 2c/2. 

• The best pre-image attack would require a 
complexity of 2d-r + 2c/2. 

Otherwise: 

• The construction has second pre-image security of 
2d. 

• The construction has collision security of 2c/2. 

• The best pre-image attack would require a 
complexity of {min 2d, {max 2d-r, 2c/2}}. 

The security claims of a sponge construction are typically 
flattened to rely purely on the capacity c, allowing the 
required security to be defined independently of the length of 
the output d [16]. Further, the sponge construction is often 
used with duplexing to allow the absorb and squeeze 
operations to alternate [19]. 

Figure 1.  Hashing mode in Sponge Construction. 
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TABLE I.  COMPARSION OF ASCON, GIMLI AND XOODYAK XOFS 

Algorithm Number 

of 

Rounds 

State Size 

(bits) 

Rate (bits) Capacity 

(bits) 

Ascon 12 320 64 256 

Gimli 24 384 128 256 

Xoodyak 12 384 130 254 

III. EXISTING SPONGE-BASED XOFS 

This section examines Ascon-XOF (in Section Ⅲ-A), 
Gimli-XOF (in Section Ⅲ-B) and Xoodyak-XOF (in Section 
Ⅲ-C) in order to understand and generalize design decisions 
for creating sponge-based XOFs. A comparison of the three 
algorithms is presented in Table I. Lessons learned from 
these algorithms will be presented as a set of design 
considerations in Section Ⅳ. 

A. Ascon-XOF 

Ascon-XOF [10] uses a 12-round permutation based on a 
sponge construction with a state size of 320 bits, consisting 
of five 64-bit words. It uses a 64-bit rate and 256-bit 

capacity. The substitution layer is identical to the Keccak  
mapping [20] and an adaptation of the ∑ function of SHA-2 
[21] is used to provide diffusion. 

Ascon-XOF has received significant third-party analysis 
(e.g., [22]). A summary is provided in Table IⅠ. The pre-
image attacks target the low algebraic degree of the reduced 
round version of Ascon-XOF; the search for pre-images can 
be speed up for low degree functions. Ascon-XOF has fast 
diffusion because it applies its linear layer to every five 
words. It also has a strong word structure with a good choice 
of round constants, which makes it challenging to apply a 
cube attack [23] effectively. However, since each output bit 
depends on only three input bits, of which two are non-
linear, consecutive dependent bits can lead to the derivation 
of linear equations that can be solved to break the system. 
Even the original Ascon specification [10] admits that the 
Ascon permutation is not ideal in terms of differential and 
linear properties [22] [24]. However, it has been shown that 
Ascon-XOF has a good security margin against collision 
attacks [22]. Currently, even with the use of all 320 bits of 
the state in a semi-free-start collision, only four out of 
Ascon-XOF's twelve rounds can effectively be broken. 

B. Gimli-XOF 

     Gimli-XOF [14] uses a 24 round permutation based 
on sponge construction with a state size of 384 bits, 
represented as a 3×4 matrix of 32-bit words. It uses a 128-bit 
rate and 256-bit capacity. The non-linear layer operates on 
the column level. The linear layer operates on the row level 
and applies one of two swap operations, a small swap, or a 
big swap. 

Gimli has a slow diffusion compared to Ascon because 
its small and big swap operations only apply to the first row, 
and not in every round. This makes it easier to analyze 
multiple rounds of Gimli-XOF. Table III demonstrates 
Gimli's lower diffusion compared to Ascon. 

 

TABLE II.  SUMMARY OF ATTACKS ON ASCON-XOF  

Attack Method Round Time 

Complexity  

Ref 

Pre-image cube 2 239 [22] 

Pre-image Algebraic 6 263.3 [22] 

SFS collision Differential 4 Practical [22] 

Collision Differential 2 Practical-215 [25] 

TABLE III.  UPPER BOUND FOR THE ALGEBRAIC DEGREE OF 

DIFFUSION AFTER DIFFERENT NUMBERS OF ROUNDS FOR ASCON AND 

GIMLI 

Round 1 2 3 4 5 6 7 8 9 

Ascon 2 4 8 16 32 64 128 256 298 

Gimli 2 4 8 16 29 52 95 163 266 

 
A divide-and-conquer technique, which applies an 

exhaustive search to a divided message space, allows 
theoretical pre-image attacks on up to five of the nine rounds 
of Gimli-XOF [26]. By exploiting Gimli's weak diffusion, 
equations that represent the bit dependencies in Gimli-XOF's 
rate can be constructed and solved. This did require fixing 
the block size to 128 bits, and ignoring the padding rule, but 
does give a practical attack on a reduced-round version of 
Gimli-XOF. 

The slow diffusion of Gimli's state means that the swap 
operations only affect 256 of the 384 bits of Gimli's state, 
and this does not even occur each round. This can be 
exploited to construct equations that can be practically 
solved with a SAT solver [27]. 

C. Xoodyak-XOF 

Xoodyak-XOF [13] uses a 12-round permutation based 
on a sponge construction with a state size of 384 bits, 
consisting of three planes of 128 bits. It uses a 130-bit rate 
and 254-bit capacity (reduced by two for internal reasons 
[13]). It is based on the Xoodoo Permutation [28] and uses a 
column parity mixer [29]; this provides good diffusion and is 
suitable for modes that do not need inverses, such as sponge 
constructions. The non-linear layer uses a shift-invariant 
mapping based on the parity of three bits and implements 
bitwise boolean operations. The narrowing of the non-linear 
layer from five bits to three bits increases Xoodyak's 
resistance to cube attacks [13]. 

A deep-learning pre-image attack has been proposed on 
Xoodyak-Hash [30], though only with a fixed message size 
of 32 bits and with adjusted squeeze rates, hash lengths, or 
round numbers. The first model increases the squeezing rate 
to 384 bits, rather than the original 128 bits, representing the 
entire state. The second model increases the hash length to 
384 bits, rather than the original 256. The third model is 
identical to Xoodyak-Hash, but they reduce the number of 
rounds to just one. Xoodyak-Hash is proven to be strong 
enough to resist these attacks, as they only have any success 
on at most one round [30], though it has been demonstrated 
that reducing the capacity of Xoodyak down to 128 bits 
helps make pre-image attacks over a small number of rounds 
possible [30]. 
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IV. DESIGN CONSIDERATION FOR LIGHTWEIGHT SPONGE-

BASED XOFS 

The main goal when designing a lightweight XOF should 
be to provide the best trade-off between security and 
performance in both hardware and software. While the 
sponge construction gives a general framework that can 
work well in a resource-constrained environment, choices 
related to a particular implementation can greatly affect the 
overall result. In this section, we discuss the main choices 
that need to be made, including recommendations and 
considerations, when developing a sponge-based XOF. 

A. Round Function Width 

In general, a wider round function (i.e., one that maps 
more bits) offers improved security over a narrow one, 
though typically has performance and cost implications [29]. 
Wider round functions may require more circuitry or more 
complex software implementations which may not be 
appropriate in lightweight environments. Implementing 
widths that are a multiple of 32 or 64 bits, such as Ascon 
(320-bit state), Gimli (384-bit state) and Xoodyak (384-bit 
state), can allow vectorization on some platforms to allow 
parallel computation on different blocks of the state. In 
contrast Keccack [15], which SHA-3 is based on, uses 
permutations that are a multiple of 25 bits, which can 
severely impact performance on lightweight devices since 
vectorization cannot be used [14].  

B. Number Of Rounds 

A round function is typically used multiple times per 
round, potentially with some different parameters (e.g., 
round constants). A high number of rounds reduces 
performance but can improve security [31]. For lightweight 
algorithms it is best to select the minimum number of rounds 
for which there are no shortcut attacks that have a higher 
success probability than generic attacks such as brute force. 
Linear, differential and truncated differential [32] attacks 
exploit constructed propagation in n rounds, then attack later 
rounds of the primitive. If an attack is successful on n 
rounds, the designer should double the number of rounds to 
increase security resistance [33]. 

C. Selection Of Round Constants 

Good rounds constants eliminate symmetries in iterative 
primitives [33]. Round constants should be different for each 
round, independent of the non-linear layer and defined by a 
specific rule to avoid slide, rotational, self-similarity, and 
similar attacks [34]. 

To see how important round constants are, consider 
Gimli. Gimli's use of round constants only each four rounds 
and having them affect just one 32-bit word of the state, led 
to the construction of a distinguisher for the full Gimli 
permutation [27]. Instead, some constant rotation should be 
applied each round to help provide fast diffusion [13]. 

Round constants also have an implication for 
performance. For example, Ascon's choice of round 
constants allows pipelining, while still ensuring that 
differential attacks are impossible [10]. 

D. Rate 

In general, a low rate is less susceptible to pre-image and 
differential cryptanalysis attacks [31]. In Ascon-XOF, a rate 
of 64 bits is used. Increasing the rate would decrease the 
capacity, reducing robustness of the primitive [10] and 
increasing the likelihood of rebound attacks [36]. Recent 
collision attacks on Ascon [22] [25], Gimli [26] [27] and 
Xoodyak [30] are constrained to at most six round reduced 
versions of these algorithms, primarily because each uses a 
small rate. 

E. Non-linear Layer 

The non-linear layer is essentially an s-box, which is a 
vectorial Boolean function that performs substitution. It is 
mainly responsible for creating confusion (measured using 
Shannon's entropy) in the cryptographic primitive [37]. 
There is a trade-off between the size of s-boxes and the 
security they provide; a small differential probability, high 
algebraic degree and significant non-linearity reduce the 
number of rounds needed to secure the primitive, but often 
require larger, less efficient sizes [38]. In resource-
constrained devices, designers are left with the choice of 
using smaller optimal s-boxes (perhaps combined to give a 
virtual larger s-box) or using a larger sub-optimal s-box that 
gives moderate performance [38]. In lightweight 
cryptographic primitives, smaller 4×4 s-boxes are the most 
commonly used [38]. 

F. Linear Layer 

The design of a linear layer specifies how the non-linear 
and mixing layers are combined and affects propagation of 
the function [39]. For lightweight cryptography, a bit-
oriented design should be used to improve efficiency. 
Further, the linear layer should be carefully considered to 
ease the derivation of algebraic, diffusion and correlation 
propagation [29]. This is achievable by ensuring weak 
alignment of the primitive [40], as this reduces susceptibility 
to truncated differential, saturation and trail clustering efforts 
related to differential or linear cryptanalysis. Ascon-XOF 
achieves this using a similar approach to SHA-2, using 
variant rotation constants for each word without decreasing 
performance [10]. On the other hand, Xoodyak uses column 
parity mixers, similar to Keccak [29], which are lightweight 
and offer weak alignment [39]. Further, using an odd number 
of rows makes a column parity mixer invertible, which gives 
immediate full diffusion in the backward direction [29]. 

G. Security Cliam 

For sponge-based XOFs, the security claim is typically 
flattened to only rely on the capacity c, though the length of 
the digest used must be long enough to make generic attacks 
implausible (i.e., at least 128-bits). It is recommended to use 
a 255-bit capacity to give a strength of 128 bits [41]. 

V. CONCLUSION AND FUTURE WORK 

This paper examined three sponge-based XOF 
implementations (Ascon-XOF, Gimli-XOF and Xoodyak-
XOF) to inform some design considerations that need to be 
taken into account when designing a secure lightweight 
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XOF. While exact considerations depend on the environment 
in which the XOF will operate, the following general 
guidelines were presented: 

• Wider round functions offer improved security, 
though often at the expense of performance. 

• Many platforms that support vectorization perform 
best when the round function width is a multiple of 
32 or 64 bits. 

• The number of rounds used should be minimized to 
improve performance while giving an adequate level 
of security; if there is a known attack on n rounds, 
doubling the number of rounds should give adequate 
security in many cases. 

• Round constants should be different for each round 
and should eliminate symmetries in the primitive. 

• Low absorbing and squeezing rates are preferable; 
64 bits seems to be a good rate size. 

• The non-linear layer should consist of smaller (e.g., 
4 × 4) optimal s-boxes or larger sub-optimal s-boxes 
to balance performance and security. 

• A bit-oriented design should be used for the linear 
layer and should ensure weak alignment of the 
primitive. The use of column parity mixers is 
recommended. 

• A capacity of at least 255 bits and a digest length of 
at least 128 bits should be used to provide a security 
strength of 128 bits. 

These guidelines help ensure the creation of a performant 
and secure lightweight sponge-based XOF, suitable for use 
in low-resource environments such as mobile systems. 
Future work will consider automatic security analysis of 
XOFs created using these guidelines with the goal of using 
evolutionary computation to design XOFs that are fit for 
purpose in a wide range of resource-constrained 
environments. 
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Abstract— Massive Multiple-Input Multiple-Output (m-

MIMO) is a promising technique for operating fifth-generation 

wireless networks (5G). However, this technique suffers from 

the radio frequency chain's higher cost and processing 

complexity. One solution to deal with this problem is improving 

the antenna selection method. Nevertheless, many antenna 

selection methods require knowledge of channel state 

information (CSI) to select the best performing antenna subset. 

Which is impossible due to the driver contamination issue in m-

MIMO. Furthermore, the exhaustive search method used in 

conventional multiple-Input Multiple-Output is inefficient for 

the m-MIMO system. Consequently, this paper proposes an 

optimal selection algorithm for determining the best subset of 

antennas at the receiver when CSI is unavailable. For this 

purpose, we propose a water-filling algorithm based on the 

mutual information maximization criterion and Raptor-

decoded symbols. Numerical results show that our proposed 

selection algorithm attains close to optimal values as the 

exhaustive search method.  

Keywords-antenna selection; CSI; m-MIMO; pilot-

contamination; water-filling. 

I.  INTRODUCTION 

Massive Multiple-Input Multiple-Output (m-MIMO) is a 

promising technique that uses hundreds of antennas at the 

transmitter and receiver to improve channel performance in 

Fifth Generation (5G) wireless networks. m-MIMO 

demonstrates improved link reliability, data rate, and radiated 

energy efficiency than conventional systems [1]. However, 

the large number of antennas requires the addition of radio 

frequency (RF) chain elements at both links, increasing the 

cost and system complexity of m-MIMO. An antenna 

selection method is used in MIMO conventional to address 

this issue. A practical solution where a subset of the available 

antennas at the transmitter and receiver are chosen on a 

predefined selection criterion to minimize the system 

complexity and cost in MIMO [2] [3]. The successive 

selection method, an exhaustive search method, is the most 

used in these systems for its optimality to find the most 

performant subset of antennas. However, this method is 

inefficient for the massive MIMO system because of the 

significant number of antennas which introduce complexity 

in the processing. Therefore, an efficient antenna selection 

algorithm that performs an affordable computational cost is 

required in m-MIMO. 

Several solutions have been proposed in the literature to 

fix the antenna selection methods problem in m-MIMO. One 

of those studies used a maximum sum-rate criterion to find 

the optimal number of antennas [4]. Another paper proposed 

the maximisation of capacity/sum-rate as the selection 

criteria for transmitting antennas in massive MIMO's 

downlink [5]. This later study performed several 

measurement campaigns in the 2.6 GHz frequency range and 

used convex optimisation to select the antenna subset that 

maximises the downlink's Dirty-Paper Coding (DPC) 

capacity. The authors of the paper assumed that perfect CSI 

was available at the transmitter. A third method for selecting 

an optimal antenna is based on a binary searching algorithm 

using the maximising energy criterion [6]. The authors aimed 

to ensure energy efficiency in the m-MIMO system and 

assumed there was imperfect channel estimation at the 

transmitter. 

An algorithm that selects antennas with the highest channel 

gain in m-MIMO has also been proposed [7]. The selected 

antennas are combined with Non-Orthogonal Multiple 

Access (NOMA) to achieve high spectral efficiency in the 5G 

communication network. Antenna selection at the receiver 

side has also been studied [8]. In this paper, upper channel 

capacity bounds were statistically derived for both the Sub-

Array Switching (SAS) and Full-Array Switching (FAS) 

systems in the large-scale limit. The authors assumed that the 

CSI was only available on the receiver side. 

Several of these solutions are fast and optimal. However, 

most of the solutions that have been proposed in the literature, 

including those cited above, assume that the channel is 

perfectly known when selecting antennas. This is impossible 

in practice, especially when m-MIMO suffers from pilot 

contamination. 

Motivated by these observations, we previously proposed 

an antenna selection method that considers pilot 

contamination issue [10]. For this purpose, we presented a 

water-filling algorithm combined with Low-Density Parity-

Check (LDPC) to find the optimal subset of the antennas that 

maximised the ergodic capacity [10]. In this method, an 

LDPC decoder retrieves the received symbols. The recovered 
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message was then used to estimate the gain 𝐻. The estimated 

channel was employed to select the optimal subset of 

antennas that satisfied the maximum capacity criterion. For 

more details about the channel estimation method, we refer 

the readers to our previous work [9] 

This paper aims to enhance the performance of our 

previously published method [10] The Raptor codes are the 

most reliable among the erasure code, therefore, we include 

them instead of LDPC codes [10].  For more details about 

these codes, we refer the readers to [11] [12] [13] [14]. We, 

furthermore, add theoretical analysis to demonstrate how the 

water filling and the Raptor code will judiciously be exploited 

to select a performant subset of the antennas. 

The proposed solution exploits the physical layer features 

and does not add more chain elements. In addition, the 

method based on Raptor decoded symbols requires less 

transmit power and avoids overload in the network since the 

symbol pilot are not sent. Furthermore, the Lagrangian and 

the Water filling algorithm do not require an exhaustive 

search, making them less complex. Consequently, the 

proposed solution contributes to reducing energy 

consumption and processing resources. 

At the beginning of the process, when the decoded 

symbols are not yet available, we assume that the estimated 

channel is equal to one (that is, �̂� = 1); moreover, no subset 

is selected.  

This document is organised as follows: Section II presents 

the system models. Section III presents the simulation results, 

and Section IV concludes the paper. 

II. SYSTEM MODEL 

We consider  m-MIMO system with a total of 𝑁𝑡 transmit 

antennas and 𝑁𝑟  receive antennas, 𝑁𝑟 ≥ 𝑁𝑡 . For each 

transmission period, a set of 𝐿𝑟 < 𝑁𝑟  receive antennas is 

chosen for signal reception. Here, we consider the case where 

𝐿𝑟 > 𝑁𝑡  to ensure spatial multiplexing. If 𝐿𝑟 < 𝑁𝑡 , the 

system will be rank-deficient [15]. The channel gains form 

the channel matrix 𝑯 = [ℎ𝑖𝑗] ∈ ℂ𝑁𝑟×𝑁𝑡 , where ℎ𝑖𝑗 ∼

𝒞𝒩(0,1) are independent and identically distributed (i.i.d.). 

Moreover, 𝑯  is known to the transmitter but not to the 

receiver. 𝑁𝑡  Raptor-encoded symbols are sent through the 

channel, and the received signal is given by: 

 

 𝑌 = 𝐻𝑋 + 𝑁 (1) 

 

𝑿 contains the elements 𝑥𝑖,are the transmitted signals from 

antenna 𝑖 . 𝒀  contains the entries 𝑦𝑗 , which represent the 

received signals of the 𝑗𝑡ℎ antenna where  𝑗 = 1, . . . , 𝑁𝑟.  

The water-filling algorithm was used to find the optimal 

subset of the antennas that maximized the ergodic capacity 

[15]. Moreover, we used  Raptor-decoded symbols to 

estimate the channel [9]. 

Gaussian noise vector 𝑵 ∈ 𝐶𝑁𝑟 consists of i.i.d. 𝐶𝑁(0, 𝑁0) 

variables so that 𝐸[𝑵𝑵†]  =  𝜎𝑛
2𝐼𝑁𝑟  . 

The receiver uses the belief propagation algorithm to 

retrieve the transmitted message with a soft decoding process. 

The likelihood ratio of the channel for each coded bit are 

expressed as follows [7]: 

 

 𝑍0 =
2�̂�

𝜎𝑛
2 𝑌 (2) 

 

The details for Raptor encoding and decoding are provided 

in a previous study [7]. 

�̂� is the estimated random variable coefficients of 𝐻. The 

channel estimation is calculated using the Minimum Mean 

Squared Error (MMSE) as previously described [11] [13]. 

The �̂� channel is given by: 

 

 �̂� = 𝑅𝐻𝐻(𝑅𝐻𝐻𝑋𝑋𝑇 + 𝜎𝑛
2𝐼)−1𝑋𝑇𝑌 (3) 

 

where 𝑅𝐻𝐻 is the covariance of 𝐻. 

To avoid symbol pilot contamination, the Raptor-decoded 

symbols 𝑆 ̂ are used instead of the pilot symbols X to 

estimate. 

the channel, as previously described [9]. Hence, X is 

substituted with �̂� in (3) as follows: 

 

 �̂� = 𝑅𝐻𝐻(𝑅𝐻𝐻𝑆𝑆𝑇 + 𝜎𝑛
2𝐼)−1𝑆𝑇𝑌 (4) 

 

However, to perfectly estimate 𝐻  at the receiver, the 

average Bit Error Rate (BER) must approach zero, which 

means that the message must be entirely recovered (i.e., 𝑆 =
𝑋); otherwise, the system is in an outage and 𝐻 cannot be 

estimated. 

Corresponding to this outage probability, there is a 

minimum received Signal-to-Noise Ratio (𝑆𝑁𝑅), 𝑆𝑁𝑅𝑚𝑖𝑛 ,  

given by: 

 

 𝑃𝑜𝑢𝑡 = 𝑝(𝑆𝑁𝑅 <  𝑆𝑁𝑅𝑚𝑖𝑛) (5) 

 

𝐵𝐸𝑅 =
1

2
𝑒𝑟𝑓𝑐√𝑆𝑁𝑅 

 

𝐵𝐸𝑅𝑚𝑎𝑥 =
1

2
𝑒𝑟𝑓𝑐√𝑆𝑁𝑅𝑚𝑖𝑛 

 

𝐵𝐸𝑅𝑚𝑎𝑥 ∝
1

𝑆𝑁𝑅
 

 

𝑃𝑜𝑢𝑡 = 𝑝(𝐵𝐸𝑅 >  𝐵𝐸𝑅𝑚𝑎𝑥) 

 

When 𝑆𝑁𝑅 ≥ 𝑆𝑁𝑅𝑚𝑖𝑛 , the outage probability at the 

receiver reaches zero: 𝑃𝑜𝑢𝑡 → 0  and 𝐵𝐸𝑅 → 0 .Under the 

fading, the channel is varying slowly. The capacity of the 

channel C  can therefore be expressed as the maximum of 

mutual information using the following equation: 

 

 𝐶 = 𝑙𝑜𝑔2 𝑑𝑒𝑡(𝐼 + 𝑆𝑁𝑅) (6) 
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Because =
�̂��̂�𝑇

𝜎𝑛
2  , (6) can be rewritten as: 

 

 𝐶 = 𝑙𝑜𝑔2 𝑑𝑒𝑡 (𝐼 +
�̂��̂�𝑇

𝜎𝑛
2 ) (7) 

A. Antenna Selection 

As discussed in the previous section, no symbols are 

recovered when 𝑆𝑁𝑅 = 𝑆𝑁𝑅𝑚𝑖𝑛  the system is in an outage. 

In this case, the estimated channel cannot be processed using 

our approach  .Therefore, our antenna selection method will 

not be applied since it is based on maximizing the capacity 

criterion. 

However, when the BER at the receiver approaches zero, 

�̂�  can be calculated. Antenna selection can then be 

performed to find the optimal antenna subset.  

As in a previous study [15], a diagonal matrix Δ of size 

𝑁𝑟 × 𝑁𝑟 is defined as follows: 

T𝑟(Δ) = ∑ ∆𝑖= 𝐿𝑟 ≤ 𝑁𝑟
𝑁𝑟
𝑖  represents the number of receive 

antennas selected at the reception. The received signal is re-

written, including receive antenna selection, as: 

 

 𝑌 = ∆𝐻𝑋 + 𝑁 (8) 

The ergodic capacity function of selected antennas can be 

written through the matrix Δ as follows: 

 

 𝐶 = 𝑙𝑜𝑔2 𝑑𝑒𝑡(𝐼 + ∆�̂��̂�𝐻) (9) 

 

The optimization problem is to pick the 𝐿𝑟  receive 

antennas such that the capacity in (9) is maximized. It is 

equivalent to finding the matrix Δ such that: 

 

 𝐶(∆) = 𝑎𝑟𝑔 𝑚𝑎𝑥
∆𝑖 ∈{0,1}

∑ ∆𝑖𝑖 =𝐿𝑟

𝑙𝑜𝑔2 𝑑𝑒𝑡(𝐼 + ∆�̂��̂�𝐻) (10) 

The antenna selection problem in the massive antenna 

system can be expressed as: 

 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
{∆}

𝐶(∆) = 𝑙𝑜𝑔2 𝑑𝑒𝑡(𝐼 + ∆�̂��̂�𝐻) (11) 

 

subject to: 

 0 ≤ ∆≤ 1 → (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1) (12) 

 

𝑇𝑟𝑎𝑐𝑒(∆) = 𝐿𝑟  → (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2) 

 

However, the term �̂��̂�𝐻  introduces a complexity on the 

order of 𝑜(𝑛6). This complexity can be reduced using the 

low-rank approximation method. The key point is to use the 

Single Value Decomposition (SVD) method to achieve an 

ideal low-level estimator.  

According to the signal processing theory, the channel 

correlation matrix can be decomposed using SVD of low-

rank approximation, as previously described [16]: 

 

 𝑅𝐻𝐻 = 𝑈 ∧ 𝑈𝐻 (13) 

 

U is a unitary matrix and ∧ is a diagonal matrix with the 

singular values of 𝑅𝐻𝐻. The MMSE equation can therefore be 

represented by: 

 

 𝑠𝑣𝑑(�̂�) = 𝑈 ∧ 𝑈𝐻(𝑈 ∧ 𝑈𝐻𝑆𝑆𝑇 + 𝜎𝑛
2)−1𝑆𝑌 (14) 

 

If taking Σ =∧ (𝑈 ∧ 𝑈𝐻𝑃 + σn
2)−1, the eigenvalue of ∧ is 

𝜆1 ≥ 𝜆2 ≥ ⋯ 𝜆𝑛 ≥ 0 non-zero. 

 

 𝛴 =
𝜆𝑘𝑆𝑌

𝜆𝑘𝑆𝑆𝑇+𝜎𝑛
2  (15) 

 

Only the diagonal value is considered in the low rank, so Σ 

could be written by: 

∆𝑃= {

𝜆𝑘𝑆𝑌

𝜆𝑘𝑆𝑆𝑇+𝜎𝑛
2   𝑖𝑓 𝑘 =  0;  1;……… . . 𝑃 − 1;

0                           𝑖𝑓 𝑘 =  𝑃; 𝑃 +  1;……… . . 𝑁 − 1;
 (16) 

Then finally, the SVD algorithm can be represented as 

previously described [8]: 

 

 𝛴 = [
𝛥𝑃 0
0 0

]  (17) 

 

 𝛥𝑃 =

[
 
 
 
 

𝜆0𝑆𝑇𝑌

𝜆0𝑆𝑆𝑇+𝜎𝑛
2 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝜆𝑃−1𝑆𝑇𝑌

𝜆𝑝−1𝑆𝑆𝑇+𝜎𝑛
2]
 
 
 
 

  (18) 

 

 𝑠𝑣𝑑(�̂��̂�𝐻) = 𝑈∆𝑝
2𝑈𝐻 = 𝑈 [𝛥𝑃

2 0
0 0

]𝑈𝐻   (19) 

 

 𝛥𝑃
2 =

[
 
 
 
 

𝜆0𝑆𝑌𝑌𝐻𝑆𝑇

(𝜆0𝑆𝑆𝑇+𝜎𝑛
2)

2 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝜆𝑃−1𝑆𝑌𝑌𝐻𝑆𝑇

(𝜆𝑃−1𝑆𝑆𝑇+𝜎𝑛
2)

2]
 
 
 
 

  (20) 

 

The simplification term in the denominator can be written 

as: 

 

 (𝑆𝑆𝑇𝜆0 + 𝜎𝑛
2)2 = 𝜆0𝑆

𝑇𝑆𝑆𝑆𝑇 + (𝜎𝑛
2)2  (21) 

Hence, 

 𝛥𝑃
2 =

[
 
 
 
 

𝜆0𝑆𝑌𝑌𝐻𝑆𝑇

𝑆𝑆𝑇𝑆𝑆𝑇+(𝜎𝑛
2)

2 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝜆𝑃−1𝑆𝑌𝑌𝐻𝑆𝑇

𝑆𝑆𝑇𝑆𝑆𝑇+(𝜎𝑛
2)

2]
 
 
 
 

 (22) 
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In high Signal-To-Noise Ratio (SNR), the equation (22) 

can be rewritten as follows: 

 

 𝛥𝑃
2 = 𝜆𝑘

𝑌𝑌𝑇

𝑆𝑆𝑇  (23) 

 𝛥𝑃
2 = ∑ 𝜆𝑘 (

𝑌𝑘

𝑆𝑘
)

2
𝑝
𝑘=1   (24) 

And the equation (11) becomes:  

 𝐶(∆)= 𝑎𝑟𝑔 𝑚𝑎𝑥
∆𝑖 

∑ ∆𝑖𝑖

𝑙𝑜𝑔2 𝑑𝑒𝑡(𝐼 + ∆(𝑈𝛥𝑃
2𝑈𝐻))  (25) 

Because 𝑈∆𝑈𝐻 = Π, 

 

 𝐶(∆) = 𝑙𝑜𝑔2 𝑑𝑒𝑡(𝐼 + 𝛥𝑃𝛱𝛥𝑃) (26) 

 

The objective function is concave in Π. However, the Π 

are binary integer variables making the optimization problem 

hard for Non-deterministic Polynomial-time (NP). In time 

order to solve this optimization problem, as in a previous 

study [17], we relax the constraint that each Π must be a 

binary integer to the weaker constraint that: 

 

 0 ≤ Π ≤ 1  (27) 

The original problem thus becomes a convex optimization 

problem solvable with water-filling. The Lagrangian method 

is used to optimize the power of the selected received 

antennas 𝐿𝑟.  

Let 𝑓(Π) = log2 𝑑𝑒𝑡(𝐼 + Δ𝑃ΠΔ𝑃) and (Π) = 𝑡𝑟(Π) − 𝐿𝑟 . 

The Lagrangian equation is given as follows: 

 

ℒ(Π, 𝜓) = Δ𝑃ΠΔ𝑃 − 𝜓(𝑡𝑟(Π) − 𝐿𝑟)  (28) 

The derived form of equation (25) is given bellow: 

 
𝜕ℒ(Π,𝜓)

𝜕Π
=

Δ𝑃Δ𝑃

(𝐼+Δ𝑃ΠΔ𝑃)
−  𝜓 = 0 ⇒ 

 

𝜓Δ𝑃
−2 = (𝐼 + Δ𝑃ΠΔ𝑃) ⇒ 

 𝜓−1Δ𝑃
2 − 1 = Δ𝑃ΠΔ𝑃

𝐻 ⇒ Π = 𝜓−1 − Δ𝑃
−2 (29) 

 
𝜕ℒ(Π, 𝜓)

𝜕𝜓
= −𝑡𝑟(Σ𝑠) + 𝐿𝑟 = 0 

From (27) at optimality, Π is diagonal. Then the following 

water filling solution can be obtained 

 

 Π = (𝜓−1 − Δ𝑃
−2)

+
  (30) 

III. SIMULATION RESULTS 

The performance of our scheme is evaluated. The 

codeword length chosen for LDPC encoding is 80000 bits, 

the message length is 980 bits, and the code rate is 0.98. The  

degree of distribution of the Luby Transform (LT)  encoding 

is the same as that used in [18]and is as follows: 

Figure1.  Ergodic capacity vs. SNR 
 

𝛺(𝑥) = 0.008𝑥 + 049𝑥2 + 0.166𝑥3 + 0.073𝑥4 +
0.083𝑥5 + 0.056𝑥8 + 0.037𝑥9 + 0.056𝑥19 + 0.025𝑥65 +
0.003𝑥66.  urrteermore, we rse a massiee-MIMO system 

ineoleing 16 antennas at receieer and eiget antennas at tee 

transmitter and a srbset of tee selected antennas Lr=12.  

Figure 1 shows the relationship between ergodic capacity 

and received SNR. The ergodic capacity allows us to select 

the optimal number of antennas. In this part, the simulation is 

performed to evaluate four scenarios: 

1) Scenario 1: represents our proposed method under 

perfect CSI and without performing antenna selection 

method (shown in black with an asterisk) 

2) Scenario 2: depicts our proposed method all antennas 

are selected, and CSI is estimated using the Raptor decoded 

symbols (blue with circular markers) 

3) Scenario 3: describes an exhaustive method (used in 

conventional MiMo), the number of selected antennas Lr=12. 

CSI is estimated using the Raptor decoded symbols (red with 

a triangle pointing to the right) 

4) Scenario 4: illustrates our proposed method where 

Lr=12. CSI estimated using Raptor decoded symbols (black 

with a plus sign). 

Note that the graphs of the first and second scenarios are 

superposed because they meet the same ergodic capacity 

values regardless of SNRs’ values. This proves our 

approach's efficiency. However, the ergodic capacity of the 

two latest scenarios remains low when the SNR is between -

15dB and -5dB since the channel cannot be estimated in this 

interval (see section II-A).  

Figure 2.  Ergodic capacity vs. SNR for successful decoding 
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Figure 3. The capacity of Raptor and LDPC code 
 

The ergodic capacity approaches the values of the first two 

scenarios for an SNR>0. Since the message is completely 

recovered and the channel is correctly estimated. For the 

following simulations, we only consider the values when 

SNR>0. 

Figure 2. shows the ergodic capacity vs received SNR per 

selected antennas Lr, Lr=12, 10 and 8. The results show that 

Lr=12 achieves the near-to-optimal values. 

Figure 3 compares the results of the Raptor-based antenna 

optimizations and LDPC- based antenna optimizations 

method proposed in previous work [10]. The channel 

estimated with Raptor code attains higher optimal capacity 

than the channel estimated with LDPC code.   

IV. CONCLUSION 

This paper proposes an antenna selection method 

performed under imperfect CSI. Our solution combines an 

antenna selection method based on mutual information 

maximization and the Raptor decoded information symbols. 

The Raptor decoded message is used to estimate the channel, 

and then the water-filling algorithm uses the estimated 

channel to select the highest-performing subset of antennas. 

This method requires less transmit power and avoids 

overload in the network since the symbol pilot are not sent. 

Which contributes to reducing energy consumption and 

processing resources Simulation results show that the ergodic 

capacity reaches near to optimal values using Raptor code 

than LDPC. Future work can include other methods of 

antenna selection. 
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