
MOPAS 2011

The Second International Conference on Models and Ontology-based Design of

Protocols, Architectures and Services

April 17-22, 2011

Budapest, Hungary

MOPAS 2011 Editors

Michel Diaz, LAAS, France

Ernesto Exposito, LAAS, France

 1 / 29

MOPAS 2011

Foreword

The Second International Conference on Models and Ontology-based Design of Protocols,
Architectures and Services [MOPAS 2011], held between April 17 and 22 in Budapest, Hungary,
proposed a new context for presenting achievements, surveys and perspectives in the areas of design,
architecture and implementation based on ontologies and related models.

We take here the opportunity to warmly thank all the members of the MOPAS 2011 Technical
Program Committee, as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors who dedicated much of their time and efforts to contribute to MOPAS 2011. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the MOPAS 2011 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that MOPAS 2011 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the areas of models and
ontology-based design of protocols, architectures and services.

We are convinced that the participants found the event useful and communications very open.
We also hope the attendees enjoyed the historic charm of Budapest, Hungary.

MOPAS 2011 Chairs:

Michel Diaz, LAAS, France
Ernesto Exposito, LAAS, France
Raj Jain, Washington University in St. Louis, USA
Arun Prakash, Fraunhofer Institute for Open Communication Systems (FOKUS) - Berlin, Germany

 2 / 29

MOPAS 2011

Committee

MOPAS Chairs

Michel Diaz, LAAS, France
Ernesto Exposito, LAAS, France
Raj Jain, Washington University in St. Louis, USA

MOPAS Industry/Research Chair

Arun Prakash, Fraunhofer Institute for Open Communication Systems (FOKUS) - Berlin, Germany

MOPAS 2011 Technical Program Committee

Mourad Alia, Orange Business Services - Grenoble, France
Agnieszka Brachman, Silesian University of Technology, Poland
Hakki Candan Cankaya, University of Texas at Dallas, USA
Olivier Curé, Université Paris-Est, France
Michel Diaz, LAAS, France
Petre Dini, IARIA, USA / Concordia University, Canada
Rachida Dssouli, Concordia University, Canada
Ernesto Exposito, LAAS, France
Bin Guo, IT-SudParis, France
Robert C. H. Hsu, Chung Hua University, Taiwan
Zahid Iqbal, University Graduate Center (UNIK) - Kjeller, Norway
Raj Jain, Washington University in St. Louis, USA
Brigitte Jaumard, Concordia University - Montreal, Canada
Achilles Kameas, Hellenic Open University-Patras, Greece
Marc Lacoste, Orange Labs, France
Thomas D. Lagkas, University of Western Macedonia, Greece
Myriam Lamolle, IUT de Montreuil, France
Vlad Nicolicin Georgescu, Université de Nantes / SP2 Solutions - La Roche sur Yon, France
Peera Pacharintanakul, TOT, Thailand
Arun Prakash, Fraunhofer Institute for Open Communication Systems (FOKUS) - Berlin, Germany
Neeli R. Prasad, Aalborg University, Denmark
Samir Sebbah, Concordia University, Montreal, Qc, Canada
Shensheng Tang, Missouri Western State University - St. Joseph, USA
Saïd Tazi, LAAS-CNRS. Université Toulouse 1, France
Zoltan Theisz, Ericsson Ireland Ltd., Ireland
Dimitrios D. Vergados, University of Piraeus, Greece
Krzysztof Walkowiak, Wroclaw University of Technology, Poland
Roberto Willrich, Santa Catarina Federal University, Brazil
Hirozumi Yamaguchi, Osaka University, Japan
Nataša Živic, University of Siegen, Germany

 3 / 29

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 4 / 29

Table of Contents

The Design, Instantiation, and Usage of Information Security Measuring Ontology
Antti Evesti, Reijo Savola, Eila Ovaska, and Jarkko Kuusijarvi

1

Involving Non Knowledge Base Experts With the Development of Ontologies
Vlad Nicolicin Georgescu, Vincent Benatier, Remi Lehn, and Henri Briand

10

Formal Logic Based Configuration Modeling and Verification for Dynamic Component Systems
Zoltan Theisz, Gabor Batori, and Domonkos Asztalos

14

Towards Semantic Interoperability of Graphical Domain Specific Modeling Languages for Telecommunications
Service Design
Vanea Chiprianov, Yvon Kermarrec, and Siegfried Rouvrais

21

Powered by TCPDF (www.tcpdf.org)

 1 / 1 5 / 29

The Design, Instantiation, and Usage of Information
Security Measuring Ontology

Antti Evesti, Reijo Savola, Eila Ovaska, Jarkko Kuusijärvi
VTT Technical Research Centre of Finland

Oulu, Finland
e-mail: antti.evesti@vtt.fi, reijo.savola@vtt.fi, eila.ovaska@vtt.fi, jarkko.kuusijarvi@vtt.fi

Abstract—Measuring security is a complex task and requires a
great deal of knowledge. Managing this knowledge and
presenting it in a universal way is challenging. This paper
describes the Information Security Measuring Ontology
(ISMO) for measuring information security. The ontology
combines existing measuring and security ontologies and
instantiates it through example measures. The ontology
provides a solid way to present security measures for software
designers and adaptable applications. The software designer
can utilise the ontology to provide an application with security
measuring capability. Moreover, the adaptable application
searches for measures from the ontology, in order to measure a
security level in the current run-time situation. The case
example illustrates the design and run-time usage of the
ontology. The experiment proved that the ontology facilitates
the software designer’s work, when implementing security
measures for applications that are able to retrieve measures
from the ontology at run-time.

Keywords-adaptation; run-time; quality; measure; security
metric; software

I. INTRODUCTION
Software applications running on devices and systems

may face needs for changes due to alterations happening in
their execution environments or intended usages. These
changes may have a considerable effect on the security
requirements of the software system. Moreover, emerging
security threats and vulnerabilities may affect the achieved
security level. However, the software system is required to
achieve a desired security level in these changing
circumstances [1]. Therefore, the software has to be able to
observe the security level at run-time, measure the fulfilment
of the security requirements, and adapt itself accordingly.
However, measuring the security level at run-time requires
the correct measures and measurement techniques for each
situation. Defining the measures and the measuring
techniques is a time consuming task and requires the use of
experts from different domains. Thus, it is important to
present the defined measures in a universal and reusable
form. In addition, problems concerning how to present these
measures, the measuring techniques, and their mutual
relationships have to be solved in a way that facilitates run-
time security measuring. Ontologies provide a possibility to
manage this knowledge, making it possible to describe

different security requirements and ways to measure the
fulfilment of these requirements.

Ontologies are utilised in [2] to achieve the required
quality of the software at a design-time. Thus, it is
reasonable to utilise ontologies as a knowledge base for
quality management at the run-time. Furthermore, the work
in [3] presents the architecture for developing software
applications with security adaptation capabilities – the
presented approach assumes that the knowledge required for
security monitoring and adaptation is available from
ontologies.

In this work, we will present a novel ontology for the
run-time security measuring – called Information Security
Measuring Ontology (ISMO). ISMO combines a
terminology from a software measurement area in general
and the security related terminology. In addition, a few
security measurements are added to the ontology in order to
instantiate it. The novelty of our work comes from this
combination – based on our current knowledge, there isn’t
any other ontology which describe security measuring in a
run-time applicable way. The content of ISMO can be
enhanced after the software application has been delivered.
Hence, the measuring process is based on the up-to-date
specifications of security measures. The purpose of this new
ontology is to make it possible for software applications to
utilise security measures during run-time in changing
environments. Therefore, it is possible for the application to
measure the fulfilment of its security requirements and adapt
the used security mechanisms if the required security is not
met. In other words, the measuring acts as a trigger for the
adaptation. However, to achieve software applications with a
measuring capability, the developer must have implemented
a set of measuring techniques as a part of it. Thus, ISMO
also provides input for developers – presenting what
measuring techniques are to be implemented and how.

The remainder of the paper is organised as follows:
Section 2 provides background information; Section 3
presents an overview of the combined ontology and
mentions some security measurements. Section 4 instantiates
the defined ontology. Section 5 explains how the ontology is
utilised. A case example is presented in Section 6. Finally, a
discussion and conclusions close the paper.

1

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 6 / 29

II. BACKGROUND
ISO/IEC defines security in [4] as follows: “The

capability of the software product to protect information and
data so that unauthorized persons or systems cannot read or
modify them and authorized persons or systems are not
denied access to them.” Furthermore, in some sources
security is thought to be a composition of confidentiality,
integrity and availability [5, 6]. In [7], these security sub-
attributes are called security goals.

Zhou [8] defines ontology as a shared knowledge
standard or knowledge model, defining primitive concepts,
relations, rules and their instances, which comprise topic
knowledge. It can be used for capturing, structuring and
enlarging explicit and tacit topic knowledge across people,
organizations, and computer and software systems.

Blanco et al. [9] lists several security ontologies in their
work. In addition, our earlier work [10] also compares a
number of security ontologies, particularly those that are
applicable for run-time usage. It is noticed in [10] that
security ontologies for run-time usage exist – especially for
service discovery and matchmaking, for example, ontologies
from Denker et al. [11] and Kim et al. [12]. In addition,
security ontologies which concentrate on software design
and implementation phases also exist, e.g., works from
Savolainen et al. [13] and Tsoumas et al. [14]. From these
ontologies, only the work from Savolainen et al. [13] takes
measurements into account, by presenting a high level
classification for different security measures. However, the
most extensive information security ontology at the moment
is the one proposed by Herzog et al. [7], called an ontology
of information security – abbreviated as (OIS) in this work.
The OIS is intended to provide a general vocabulary or an
extensible dictionary of information security. It is applicable
at design and run-time alike, and it contains more concepts
than all the above mentioned security ontologies altogether.
Thus, this ontology provides a sound starting point for
defining the concepts of ISMO.

The OIS does not contain concepts for describing
measures. Therefore, the Software Measurement Ontology
(SMO) [15] is utilised for measurement definitions. The
SMO presents the generic measurement terminology related
to software measurements. In other words, ontology is
quality attribute independent. The SMO collects and aligns
terminology from several standards of software engineering,
software quality metrics, and general metrology. It is
important to notice that the SMO uses a term measure
instead of metric. Thus, the measure term will be used in this
work. The SMO divides measures into three sub-classes:
namely a base measure, derived measure, and indicator – all
of which inherit the same relationships from other concepts.
The base measure is an independent ‘raw’ measure. A
derived measure is a combination of other derived measures
and / or base measures. Finally, an indicator can be a
combination of all of these three types of measures. The
complexity of these measures increases when moving from
base measures to derived measures and further on to
indicators. In literature, base measures and derived measures

are also called direct and indirect measures; however we will
follow the terminology defined by the SMO.

Hence, this work draws mappings between the OIS and
SMO, instead of defining a new ontology from scratch. This
is considered to be reasonable since a remarkable effort has
been invested into these existing ontologies and both are
scientifically reviewed and accepted. In addition, the reuse of
existing ontologies is suggested in [16] as one potential
approach for ontology development.

III. THE DESIGN OF INFORMATION SECURITY MEASURING
ONTOLOGY

This section describes how the combined ontology ISMO
is designed. SMO [15] contains 20 generic measurement
related concepts and their relationships. Thus, security
measures will be used to instantiate ontology for security
measuring purposes – creating base measures, derived
measures, and indicators. On the other hand, OIS [7]
contains concepts related to threats, assets, countermeasures,
security goals, and the relationships between those concepts.
In addition, the OIS describes a couple of vulnerabilities and
how these act as enablers for threats. The OIS already
contains some of these concepts as an instantiated form, such
as the security goals of authentication, integrity, etc.

The purpose of combining these two ontologies is to
achieve an ontology that makes it possible to measure the
fulfilment of security requirements, i.e., security goals and
levels. In other words, the purpose is to enable an operational
security correctness measurement, as called in [17].
Therefore, the requirements are described by a means of
vocabulary from the OIS. The requirements fulfilment is
measured with indicators – which combine several measures
– defined in the SMO. The security measures, i.e., indicators,
are different for each security goal, e.g., a level of
authentication or non-repudiation is measured with different
measures. However, these measures can utilise the same base
measures. On the other hand, the same security goal can be
achieved with different countermeasures, which in turn
might require their own measures. For instance, the
authentication level, which is achieved, is measured in a
different way when a security token is used instead of a
password authentication. Hence, there are only a few
concept-to-concept mappings between these two ontologies,
but additional mappings appear when the measures are
instantiated. By using a terminology from ontologies, a
mapping refers to the property between the concepts. Adding
mappings for instantiated measures requires domain
expertise, i.e., the capability to recognise applicable
measuring techniques for a particular security goal and
related mechanisms. Furthermore, the mapping requires a
capability to recognise threats which affect to the particular
security goal and/or mechanism. Mappings at the
instantiation phase are described more detail in Section IV.

Fig. 1 shows an overview of the combining process.
Firstly, the mappings between the concepts are drawn.
Secondly, security measure instances are added and related
mappings for each measure are defined. Thus, the SMO is
used as a guideline as how to define the instances of security
measures.

2

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 7 / 29

Figure 1. An overview of the combining process.

TABLE I shows mapping properties between concepts
from the SMO and OIS. These are mappings made from
concept to concept. Each SecurityGoal has an Indicator –
intended for measuring the fulfilment of the goal. The SMO
uses the term QualityModel for defining measurable
concepts. QualityModel is a quality attribute dependent, i.e.,
security in this case. Thus, the QualityModel concept is
related to SecurityGoal. The MeasurableConcept from the
SMO is also mapped to the SecurityGoal, through the means
of the isDefinedFor property.

In the SMO, MeasurableConcept relates to Attribute,
meaning a characteristic that will be measured. Thus,
Attribute can relate to countermeasures, threats, or assets,
depending on the measure which is used.
hasMeasurableAttribute is optional, meaning that mappings
to the attributes are made during the phase when the
measures are instantiated.

TABLE I. MAPPING PROPERTIES BETWEEN SMO AND OIS

Concept from OIS Mapping property
(direction)

Concept from SMO

SecurityGoal hasIndicator (->) Indicator
SecurityGoal isRelatedTo (<-) QualityModel
SecurityGoal isDefinedFor (<-) MeasurableConcept
Countermeasure,
Threat, Asset

hasMeasurableAtt-
ribute (->) (optional)

Attribute

A. Security Measures
The overall security level of the product can be

represented by a combination of relevant security attribute
measures. However, it is not possible to cover all security
measures in this work. Consequently, we will concentrate on
user authentication, and thus, the ISMO is instantiated by
these measures.

In [18] measures for various security goals (e.g.,
authentication, integrity, etc.) are defined by using a
decomposition approach introduced by Wang et al. in [19].
Authentication can be decomposed into five components –
called BMCs (Basic Measurable Components) – as follows:
Authentication Identity Uniqueness (AIU), Authentication
Identity Structure (AIS), Authentication Identity Integrity
(AII), Authentication Mechanism Reliability (AMR), and
Authentication Mechanism Integrity (AMI). Savola and Abie
[18] define equations for these BMCs, and in addition, the
equation for combining Authentication Strength (AS) from

these BMCs. AS is an aggregated user-dependent measure
that can be utilized in authentication and authorization.

The user-dependent AS results can be combined into a
system-level AS, which can be utilized in run-time adaptive
security decision-making [18]. When considering a software
application that measures its security level at run-time, AIS,
AII, and AMR are particularly applicable. In other words, an
application cannot measure AIU and AMI, as the
information which is required for these measures is only
available at the server side where the application will be
authenticated. Thus, in this work, the measures for the AIS
will be used as example measures.

To measure AIS, we utilise a measure intended for
situations where the authentication is based on a password –
called the structure of the password. It is commonly
understood that the structure of a password, i.e., the length
and variation of the symbols, affects the achievable
authentication strength. Therefore, we divide passwords into
groups such as: i) a PIN code containing four numbers, ii) a
password containing 5-9 lower case characters, and iii) a
password containing over 10 ASCII symbols. Intuitively,
group i provides the worst authentication level, group ii
offers an increased authentication level, and group iii is the
best alternative.

Another measure that we utilise for password based
authentication is the age of the password, i.e., how long the
same password has been used. This measure can be used for
two different purposes. Firstly, to measure the security policy
fulfilment, e.g., a policy can define that the password has to
be changed every three months. Secondly, the measure can
be utilised as a factor of measuring the authentication
strength by utilising more complex analysis models. The age
of the password is also mapped to the AIS from BMCs.

These two measures are simple to understand, and thus,
provide a good starting point for instantiating ISMO. The
graphs in Fig. 2 illustrate how the password strength is
affected by the structure and age of the password. These are
however merely examples and we do not claim that these
affects are linear.

Figure 2. Conceptual correlation graphs for the authentication measures.

IV. THE INSTANTIATION OF INFORMATION SECURITY
MEASURING ONTOLOGY

In this section, the authentication related measures are
instantiated as a part of the ISMO and the required mappings
are added. Fig. 3, Fig. 4, and Fig. 5 present the instantiated
ontology – rectangles depict the concepts from SMO and
ellipses refer to concepts from OIS. The name of each

3

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 8 / 29

concept is presented in the figures and separated from the
instance name by a colon, i.e., ConceptName :
InstanceName. The property mappings between these two
ontologies are presented in bold fonts. For reasons of clarity,
the instantiated ontology is presented in three separated
figures. Consequently, some concepts may appear in each
figure, but from a different viewpoint, i.e., presenting
different properties.

The SMO contains the concept MeasurableConcept,
which corresponds conceptually to the BMCs, which are
defined in [18]. Thus, AIS BMC is instantiated in the
ontology as a MeasurableConcept. The concept
QualityModel refers to security goals in this work. Hence,
there is a mapping property from the QualityModel concept
to Security goals (authentication, confidentiality, etc.), as
mentioned in Section 3.

The PasswordAge measure (Fig. 3) is the first measure
instance which is added to the ISMO. In the SMO, measures
are defined for attributes and these attributes are related to
the measurable concept. AIS is an instance of the measurable
concept and PasswordAge is one of the related attributes.
This attribute is measured through the means of an
instantiated derived measure, called UsageTime. Hence, the
derived measure is not purely security related, and can also
be applied for other attributes, e.g., the usage time of the
CPU in performance measurements. The derived measure
UsageTime is calculated with a measurement function –
defining that UsageTime is the current date minus the
starting date. The calculation of the value for this
measurement function requires that a base measure instance
called Date is used. Date is a base measure, meaning that it
is not dependant on other measures and its value is measured
by the measurement method. The measurement method for
the Date measure is simple: taking the date value from the
system clock. Defining UsageTime as a derived measure
may seem like an overestimation. However, detailed
definitions are required in order to achieve a measuring
ontology that supports run-time security measuring.

The second measure – presented in Fig. 4 – is connected
to the AIS via an attribute called PasswordStructure. The
attribute is measured with an instantiated indicator called
PasswordType. Indicators are calculated using an analysis
model. In this context, the analysis model is a set of rules,
which can be thought as if-then-else statements. We have
decided to use statements which are very close to the natural
English language, so that the analysis models could be
updated without an extensive knowledge on programming.
The statements of the analysis model can be updated later on
to, e.g., the standard SPARQL [20] queries. The analysis
model itself is saved as a string literal, so it can be easily
changed into a SPARQL statement. For simplicity, the
following analysis model is defined for the PasswordType:

 |Length < 5 AND OnlyNumbers := PINCode|
 |Length >= 5 AND Length <= 9 AND

OnlyAlphabets := NormalPassword|
 |Length > 9 AND Length < 12 AND

NumberOfDifferentSymbols >= 3 := GoodPassword|
 |ELSE := WeakPassword|

Thus, four base measures are used in this analysis model,
i.e., OnlyNumbers, OnlyAlphabets, Length and
NumberOfDifferenSymbols. These are measured using
appropriate measurement methods, respectively (methods for
OnlyNumbers and OnlyAlphabets are omitted from Fig. 4. In
addition, these base measures are also connected to the AIS
via appropriate attributes. For reasons of clarity, these are not
presented in Fig. 4; however, TABLE II also lists these
attributes.

Figure 3. The age of the password.

The above mentioned attributes PasswordStructure and
PasswordAge are mapped to the BruteForceAttack threat
from the OIS. Thus, these are possible extension points in the
future, in so far as risk related measures are added to ISMO.
The risk measures are applied for run-time usage in [21].

MeasurableConcept : BMC
Authentication Identity

Structure (AIS)
Attribute : PasswordStructure

BaseMeasure :
Length

MeasurementMethod :
count number of symbols

uses

definedFor

BaseMeasure :
NumberOfDifferentSymbols

(type)

AnalysisModel :
|Length < 5 AND OnlyNumbers := PINCode|

|Length >= 5 AND Length <= 9 AND OnlyAlphabets := NormalPassword|
|Length > 9 AND Length < 12 AND NumberOfDifferentSymbols >= 3 :=

GoodPassword|
|ELSE := WeakPassword|

Indicator : PasswordType

calculatedWith

uses uses

MeasurementMethod :
count number of different

symbol categories

uses

Credential :
Password

hasMeasurableAttribute

Threat :
BruteForceAttack

dependsOn

relates

BaseMeasure :
OnlyAlphabets

BaseMeasure :
OnlyNumbers

uses

uses

Figure 4. The structure of the password.

4

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 9 / 29

The final measure instantiated into the ontology is
AuthenticationLevel (Fig. 5), which is an instance of the
indicator concept – intended to combine the above described
measures. The AuthenticationLevel is calculated with an
analysis model in a similar manner as described for the
PasswordType above. The analysis model is as follows:

 |PasswordType == PINCode := Level1|
 |PasswordType == NormalPassword AND

UsageTime >= 180 AND UsageTime < 365 :=
Level2|

 |(PasswordType == GoodPassword AND
UsageTime < 180) OR (PasswordType ==
NormalPassword AND UsageTime < 90 := Level3)|

 |ELSE := Level1|

The analysis model for the AuthenticationLevel uses the

results from the PasswordType indicator and the UsageTime
derived measure. Therefore, the calculation of the
authentication level, according to this analysis mode,
requires the five base measures, i.e., OnlyNumbers,
OnlyAlphabets, Date, Length, and NumberOfDifferent-
Symbols, presented in Fig. 3 and Fig. 4.

Information Need : Authentication
Strength, i.e., authentication level

of the application

MeasurableConcept : BMC
AuthenticationIdentityStructure (AIS)

isAassociatedWith

satisfies

DerivedMeasure :
UsageTime

Indicator :
PasswordType

Indicator :
AuthenticationLevel

AnalysisModel :
|PasswordType == ’PINCode’ := Level1|

|PasswordType == ’NormalPassword’ AND UsageTime >= 90
AND UsageTime < 365 := Level2|

|(PasswordType == ’GoodPassword’ AND UsageTime < 180) OR
(PasswordType == ’NormalPassword’ AND UsageTime < 90 := Level3)|

|ELSE := Level1|

calculatedWith

usesuses

SecurityGoal :
Authenticationhas

Countermeasure :
PasswordAuthentication

isApplicableFor

hasIndicator

Figure 5. Authentication level.

Currently, the presented analysis models are very simple,
utilising only a few base measures, and need to be enhanced
in the future. Nevertheless, these analysis models provide the
possibility to test the suitability of ISMO for run-time
security measurements. Furthermore, the presentation of
analysis models in the ontology makes it possible to modify
and update them at run-time. The following table lists the
mapping properties made from/to instantiated security
measures. Again, these mappings are measure dependent.
Hence, the addition of a new measure instance also creates
new mapping properties.

TABLE II. MAPPING THE PROPERTIES OF INSTANTIATED MEASURES

Concept from
OIS [7]

Mapping
property in

ISMO
(direction)

Concept from the SMO [15]

Threat : Brute-
ForceAttack

dependsOn (->) Attribute : PasswordStructure
Attribute : PasswordAge

Credential :
Password

hasMeasurable-
Attribute (->)

Attribute : PasswordStructure
Attribute : PasswordAge
Attribute : PasswordLength
Attribute :
NumberOfDifferentSymbols
Attribute : OnlyAlphabets
Attribute : OnlyNumbers

Countermeasure :
Password-
Authentication

relatesToCount
ermeasure
(<-)

Measurable concept :
AuthenticationIdentity
Structure

Countermeasure :
Password-
Authentication

isApplicableFor
(<-)

Analysis model : analysis
model for authentication level

V. THE USAGE OF INFORMATION SECURITY MEASURING
ONTOLOGY

 This section describes how the ISMO will be used at
design and run-time. In addition, ontology evolution is
discussed.

A. Utilisation at Design-time
The software designers have to take several issues into

account when they design an application that is intended to
measure its security level and adapt itself accordingly.
Firstly, the required security goals are defined – such as the
user authentication. Secondly, the levels for each security
goal are defined, e.g., level 1 for security goals which are not
very critical and level 5 for extremely critical security goals.
It is notable that ISMO does not restrict the number of
security levels, for example, the analysis models in the
previous section utilised three levels instead of five. Thirdly,
the security mechanisms to achieve the required goals are
selected, e.g., a username-password pair for authentication.
The micro-architecture for run-time security adaptation is
presented in [3] – working as a guideline for the software
developer by showing the components which are required in
an adaptation applicable software.

The OIS already contains mapping properties from goals
to supporting mechanisms. However, there is no possibility
to define the required levels for the goals. It should be noted
that the selection and implementation of security
countermeasures is highly context-dependent. The ISMO
draws a mapping from the security goal to the level indicator
– in our case authentication level – as presented in Fig. 5.
Therefore, the software designer can retrieve the base
measures from ISMO, used for calculating a particular level
indicator. Based on this information, she implements the
measuring methods of base measures as the part of
application. For example, the authentication level indicator
requires five base measures and the related measurement
methods as mentioned earlier, which must all be
implemented to the application. However, measurement
functions and analysis models that combine base measures
are not hard coded to the application. Instead, a generic

5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 10 / 29

parser and monitor components are utilised. The parser
component retrieves analysis models from ISMO and parses
the rules, which depict how the base measures have to be
combined. The monitor component utilises these rules and
calculates the security level (the authentication level at this
time) from the base measures, which is utilised in the
software adaptation. The generic and implementation
specific parts are presented in Fig. 6. The internal design of
these components is not within the scope of this paper.

AnalysisModelParser

MeasurementMet
hodOfBaseMeas

ure1

MeasurementMet
hodOfBaseMeas

ure2

MeasurementMet
hodOfBaseMeas

ureN

Monitor
Rules

BaseMeasure

Information Security Measuring Ontology (ISMO)

Implemented base measures

Generic part

SecurityLevel

Figure 6. Generic and implementation specific parts.

B. Utilisation at Run-time
The application, which contains a capability to measure

its security, is assumed to be aware of its security goal(s) and
level(s) and how to measure the fulfilment of its goal(s).
Hence, the application retrieves an indicator which is used to
measure the level of a particular security goal, e.g., the
authentication level indicator for the authentication goal.
However, separate analysis models are required for the
alternative countermeasures used to achieve user
authentication. For example, Fig. 5 contains the analysis
model for the password based authentication.
Simultaneously, the ontology may contain an analysis model
for the security token based authentication, and both of these
analysis models are related to the authentication level
indicator. Thus, the application must check the currently
used countermeasure and select an appropriate analysis
model for it from the ISMO. The isApplicableFor property
maps the analysis model to the countermeasure and makes
this selection possible.

Now, the application has a right analysis model. Based
on this information, the application searches the measures
that are used in the analysis model. The authentication level
indicator and the related analysis model, presented in Fig. 5,
use the PasswordType indicator and the UsageTime derived
measure. Thus, the application queries ISMO until it finds
the base measures which are required to calculate a value for
the authentication level indicator. It is notable that these
searches only have to be made at application start-ups and
when the countermeasure is to be changed at run-time, due to
security adaptation demands.

As a result of this search, the application possesses all the
information which is required for measuring security. The
application has the knowledge of required security goals and
levels, and the base measures to be used. Therefore, the
application uses measurement methods, which are
implemented as a part of it during the design-time. The
monitor component (in Fig. 6) combines these base measures
to a security level indicator. In a situation where the
application is unable to reach the required security level, it
adapts the used countermeasure. The results of measuring
help to recognise the part of the application that has to be
adapted. The security adaptation is discussed in more detail
in [21].

It is possible that the required security level changes
during the application execution. For instance, the usage of
the application may change in a way that requires a higher
security level. This type of change does not affect the
utilisation of ISMO or the measuring itself. Only the level,
compared to the measurement result, changes.

C. Ontology Evolution
At some point, it is necessary to make changes and

additions to ISMO. This is required because new threats
appear, the usage of the application changes, or the
environment of the application changes. The ontology
evolution is a challenge from the application point of view,
since ISMO is also used for making design decisions. In
other words, the required base measures are selected and
implemented at the design-time. Thus, a new base measure
cannot appear for the application by adding it to ISMO. On
the contrary, the analysis models which are used for
indicators, such as the authentication level, can be
dynamically changed to ISMO. For instance, the analysis
model in Fig. 5 defines that level 2 is achieved with a normal
password that is used for 3-12 months (90-365 days).
However, this can be easily changed to the form: level 2 is
achieved with a normal password that is used for 3-6 months.
More complicated changes can also be made easily – the
only requisite is that the application contains the required
base measures. The AnalysisModelParser and Monitor
components (Fig. 6) ensure that changes in the analysis
models do not require any changes to the application.
However, the analysis models have to be described in a
common syntax that the AnalysisModelParser is able to
parse. ISMO uses simple logical operations to combine the
named measurement results, as seen in Fig. 4 and Fig. 5.

VI. A CASE EXAMPLE OF INFORMATION SECURITY
MEASURING ONTOLOGY

Run-time security measuring and adaptation was earlier
validated in [21, 22] – released on YouTube [23]. Now, a
case example is used to exemplify both the design-time and
run-time usage of ISMO. The case study takes place in a
smart home environment, where the user performs different
tasks with her mobile device. The RIBS platform [24] is used
to build up the smart home environment. RIBS is a platform
that makes it possible for heterogeneous devices to
communicate with each other by a means of SIB (Semantic
Information Broker) and agents. The SIB is an information

6

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 11 / 29

storage where agents publish and subscribe information. The
smart home environment contains agents which publish
environmental information, for instance, temperatures,
humidity, etc. Home automation devices contain agents
which subscribe to control information from the home SIB.
Furthermore, the smart home environment contains agents,
which offer entertainment information for the user, i.e.,
news, weather forecasts, etc.

In the case study, information from the smart home is
utilised with a smart space application, which is running on a
Nokia N900 mobile device. The smart space application and
the related base measures are implemented using the Python
programming language. In this case example, two SIBs exist.
The first one (personal SIB) runs on the user’s N900, as
storage for ISMO. Alternatively, ISMO can be stored in the
mass storage of the N900 in an OWL format. The second
one (home SIB) runs on a computer in the smart home, and
constitutes the home smart space. The application
communicates with the personal and home SIB via TCP/IP
communication and measures the achieved authentication
level by a means of ISMO.

Firstly, ISMO is used at the smart space application
design time as described in the previous section. The generic
part, i.e., AnalysisModelParser and Monitor components, are
imported to the application. The application developer makes
a decision that passwords will be used for authentication and
searches the supporting analysis model from ISMO.
Furthermore, the base measures which are required in the
analysis models are retrieved and implemented to the
application. In this case, the used base measures are
OnlyNumbers, OnlyAlphabets, Length, NumberOf-
DifferentSymbols, and Date.

Secondly, ISMO is used while running a smart space
application. When the user opens the smart space
application, the application automatically retrieves ISMO
from the personal SIB. The user then opts to join the home
smart space with the smart space application. During the join
operation, the user is authenticated for the first time and the
authentication level monitoring process starts. The
AnalysisModelParser component reads ISMO. The Monitor
component receives rules on how to combine different base
measures and provides the authentication level for the
security adaptation. Both the AnalysisModelParser and
Monitor components are running on the N900. The used
countermeasure is password authentication – based on this
information, the monitor component selects the correct
analysis model to calculate the authentication level. It is
notable that the application can contain several
authentication mechanisms and ISMO provides information
concerning which analysis model to use with each
mechanism. The home smart space contains various types of
information and the utilisation of different information
requires their own authentication levels. Thus, we defined
the following authentication requirements for different tasks:

 Level 1 for entertainment usage,
 Level 2 for retrieving information from sensors, etc.,
 Level 3 for controlling building automation devices.

The smart space application is aware of what the user is
currently doing, i.e., it monitors the current context and
reports this information to the security adaptation. The user
decides to login with a username and password on
authentication level 2. Thus, the user is unable to control the
building automation devices. In an accelerated use case,
when the password usage time reaches 12 months, the
authentication level decreases to level 1. Hence, the smart
space application only provides entertainment information
for the user. When the user attempts to perform a task which
requires higher authentication level, the smart space
application recognises that an adaptation is required. The
adaptation asks the user to re-authenticate with a better
password, as is shown in Fig. 7. Consequently, the
application user does not require any knowledge of ISMO,
i.e., the smart space application seamlessly utilises the
content of ISMO.

Figure 7. Re-authenticating the user.

The purpose of the case example was to test designed and
instantiated ontology. Thus, the content of the analysis
models and measures was not within the scope of the case.
The utilisation of ISMO ensured that security can be
measured in a dynamic environment. Without ISMO, the
used analysis models have to be hard coded to the
application, which is unreasonable in the dynamic
environment. The case example proved that when the
AnalysisModelParser and Monitor components exist, the
implementation of the security measures to the application is
straightforward. The application developer merely has to
implement the required base measures as declared in the
ISMO, or use existing base measures. The application
developer is able to utilise measures from ISMO, without a
need to implement ontology parsers. Moreover, the
application was able to retrieve analysis models from ISMO
and monitor the authentication level at run-time. The
Monitor component calculates a new authentication level
each time the used base measures change. However, the
AnalysisModelParser component checks the content of
ISMO at pre-defined intervals.

It is a commonly known issue that ontology searches may
cause performance overheads. However, in this case
example, the ontology was used in a mobile device without a
major overhead. Nevertheless, it is important to optimise
how often information is retrieved from ISMO. This helps to
achieve the performance requirements of the application,

7

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 12 / 29

since changes in ISMO are only checked at pre-defined
intervals. Therefore, there is no need to continually query the
personal SIB. In the case example, the searches were made
every 60 seconds and this kind of checking interval had no
visible effects on the usability or performance of the
application. Another alternative is to utilise subscriptions,
which automatically inform to applications when ISMO is
changed. However, the performance overhead of this option
is not known beforehand, i.e., changes in ISMO can take
place at anytime.

VII. DISCUSSION
In this work, we utilised existing ontologies – instead of

starting from scratch – to achieve the information security
measuring ontology for run-time usage. Thus, we gained a
wide and extensible ontology that is compatible with its
predecessors. The combination also ensures a higher
maturity level, as the ontologies which were used were
already validated. It can be seen from the ontology
comparison presented in [10] that the existing security
ontologies contain a large deal of overlapping. This work
does not add overlapping concepts, which is important from
a compatibility viewpoint. Utilisation of the SMO ensures
that the measurement part of ISMO is generic. Therefore, the
addition of new measures in the future will be easy.
Furthermore, the used concepts can also be utilised to
measure other quality attributes. Initially, the SMO is not
intended for run-time usage. However, there are no
constraints to applying the SMO at run-time situations as
measuring related terminology is similar in both design and
run-time measurements.

It might seem that using ontology to achieve a run-time
measuring applicability is a too heavy weight solution.
Nevertheless, in cases where an application contains several
mechanisms for reaching a particular security goal, it will be
necessary to describe the measures in detail. This is
particularly necessary when the application is intended to
adapt used security mechanisms. In addition, ISMO makes it
possible to update and add analysis models – when a new
vulnerability is found or the application usage changes.
Currently, measurement functions and analysis models are
described by using simple logical operations in the ontology
– parsed by the AnalysisModelParser component. Logical
operations were suitable for the measures used in this work.
However, in the future, there is a need for additional
mathematical operations, required in security measuring. The
ontology definition is made at a level that possesses
sufficient detail, and thus, it is possible for ISMO to provide
the required knowledge for an autonomous measuring
process.

Mapping between OIS and SMO is a complex task due to
the complexity of measuring security. Currently, a concept
level mapping is done, but there were only a few concept-to-
concept mappings, which enforces the creation of mapping
from/to instantiated security measures. Authentication
related measures are instantiated to ISMO as an example.
Additional mappings are required when a new measure
instance is added. However, the measure instances added in
this work offer an example of how to add the mappings, and

thus, facilitate future additions. It is notable, that different
types of measures will create entirely different mappings
between these ontologies. For example, risk measures will
create mappings between assets from the OIS and attributes
from the SMO. On the other hand, there is not always a
mapping property from the attribute concept (in SMO) to
some specific credential (in OIS). Hence, mappings between
these ontologies depend on the security goal, the used
security mechanism, and the used measure.

The performed case example showed that ISMO can be
used even in a mobile device without a major performance
overhead. However, a more thorough performance
evaluation has to be performed in the future. One question is
how the usage of ISMO affects the achieved security. For
instance, an attacker may cause constant environment
changes, which in turn create a set of queries for ISMO and
might jeopardize the availability. In addition, measurement
methods and results might also be the target of an attack.
Thus, it is necessary to perform the run-time measurement in
a way that supports the achievement of security
requirements, instead of creating new vulnerabilities and
possibilities for attacks.

Survey of adaptive application security in [25] lists few
adaptation approaches. Added to these, the Extensible
Security Adaptation Framework (ESAF) [26] utilises
security policies to adapt security mechanisms in the
middleware layer. Furthermore, adaptation for Secure Socket
Layer (SSL) is presented in [27][28] and monitoring for Java
ME platform in [29]. The ISMO offers several advantages
compared to existing self-adaptation and policy based
approaches. Firstly, security measuring triggers an adaptation
task, instead of beforehand defined situation. Secondly,
ISMO is a generic solution, i.e., it is not tied to only one
security mechanism, platform, or security goal. Finally,
ISMO based approaches are dynamic – new analysis models
can be added and the existing ones can be modified.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel ontology – called

ISMO – for information security measuring, developed
particularly for the needs of run-time security measuring.
The main purpose was to achieve an ontology that is able to
support security measuring at the run-time of an application.
The ontology development utilises two existing ontologies:
(i) an ontology of information security, describing security
related concepts, and (ii) a software measuring ontology,
describing general measuring terminology. Firstly, a
conceptual mapping between these ontologies was
introduced. However, security measuring is a complex task
where only a few concept-to-concept relationships can be
made. Secondly, the ontology was instantiated by using
password related measures. The measures which were used
were simple – password structure and password age –
however, these measures offered a good starting point to
construct ontology which is applicable to run-time security
measurements. After the ontology instantiation, we described
how to utilise the ISMO in a way that supports run-time
measurements. The case example was utilised to exemplify
how to use ISMO in a smart home environment. Finally, we

8

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 13 / 29

discussed the advantages and shortcomings related to the
designed ontology.

In the future, it is important to evaluate the performance
cost of using ISMO. In addition, it is important to add new
security measures to ISMO, and test how easily these
extensions can be made.

ACKNOWLEDGMENT
This work has been carried out in the SOFIA ARTEMIS

and GEMOM EU FP7 projects, funded by Tekes, VTT, and
the European Commission.

REFERENCES

[1] D. M. Chess, C. C. Palmer, and S. R. White, "Security in an
autonomic computing environment," IBM Systems Journal, 42(1), pp.
107-118. 2003.

[2] E. Ovaska, A. Evesti, K. Henttonen, M. Palviainen, and P. Aho,
"Knowledge based quality-driven architecture design and evaluation,"
Information and Software Technology, 52(6), pp. 577-601. 2010.

[3] A. Evesti and S. Pantsar-Syväniemi, "Towards micro architecture for
security adaptation," 1st International Workshop on Measurability of
Security in Software Architectures (MeSSa 2010), pp. 181-188, 2010.

[4] ISO/IEC 9126-1:2001. Software Engineering - Product Quality - Part
1: Quality Model. 2001.

[5] A. Avižienis, J. Laprie, B. Randell, and C. Landwehr, "Basic concepts
and taxonomy of dependable and secure computing," IEEE
Transactions on Dependable and Secure Computing, vol. 1, pp. 11-
33, 2004.

[6] ISO/IEC 15408-1:2009, Common Criteria for Information
Technology Security Evaluation - Part 1: Introduction and General
Model. International Organization of Standardization, 2009.

[7] A. Herzog, N. Shahmehri, and C. Duma. (2009, "An ontology of
information security," In Techniques and Applications for Advanced
Information Privacy and Security: Emerging Organizational, Ethical,
and Human Issues, Eds. H. R. Nemati, pp. 278-301, 2009.

[8] J. Zhou, "Knowledge Dichotomy and Semantic Knowledge
Management," Industrial Applications of Semantic Web, pp. 305-316,
2005.

[9] C. Blanco, J. Lasheras, R. Valencia-García, E. Fernández-Medina, A.
Toval, and M. Piattini, "A systematic review and comparison of
security ontologies," 3rd International Conference on Availability,
Security, and Reliability (ARES 2008), pp. 813-820, 2008.

[10] A. Evesti, E. Ovaska, and R. Savola, "From security modelling to
run-time security monitoring," European Workshop on Security in
Model Driven Architecture (SECMDA), pp. 33-41, 2009.

[11] G. Denker, L. Kagal, and T. Finin, "Security in the Semantic Web
using OWL," Information Security Technical Report, 10(1), pp. 51-
58. 2005.

[12] A. Kim, J. Luo, and M. Kang, "Security Ontology for annotating
resources," LNCS, vol. 3761, pp. 1483-1499, 2005.

[13] P. Savolainen, E. Niemelä, and R. Savola, "A taxonomy of
information security for service centric systems," 33rd EUROMICRO

Conference on Software Engineering and Advanced Applications
(SEAA 2007), pp. 5-12, 2007.

[14] B. Tsoumas and D. Gritzalis. "Towards an Ontology-based Security
Management," 20th Advanced Information Networking and
Applications 2006 (AINA 2006), pp. 985-992, 2006.

[15] F. García, M. F. Bertoa, C. Calero, A. Vallecillo, F. Ruíz, M. Piattini,
and M. Genero, "Towards a consistent terminology for software
measurement," Information and Software Technology, 48(8), pp. 631-
644, 2006.

[16] N. F. Noy and D. L. McGuinness. "Ontology development 101: A
guide to creating your first ontology,", pp. 1-25 2001.

[17] R. Savola, "A Security Metrics Taxonomization Model for Software-
Intensive Systems," Journal of Information Processing Systems, 5(4),
pp. 197-206, 2009.

[18] R. Savola and H. Abie. "Development of measurable security for a
distributed messaging system," International Journal on Advances in
Security, 2(4), pp. 358-380, 2010.

[19] C. Wang and W. A. Wulf, "Towards a Framework for Security
Measurement," Proceedings of the Twentieth National Information
Systems Security Conference, pp. 522-533, 1997.

[20] SPARQL Query Language for RDF, W3C Recommendation,
http://www.w3.org/TR/rdf-sparql-query/, 31.1.2011

[21] A. Evesti and E. Ovaska, "Ontology-Based Security Adaptation at
Run-Time," 4th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO), pp. 204-212, 2010.

[22] A. Evesti, M. Eteläperä, J. Kiljander, J. Kuusijärvi, A. Purhonen, and
S. Stenudd, "Semantic Information Interoperability in Smart Spaces,"
8th International Conference on Mobile and Ubiquitous Multimedia
(MUM'09), pp. 158-159, 2009.

[23] Semantic Information Interoperability in Smart Spaces,
http://www.youtube.com/watch?v=EU9alk9t7dA, 31.1.2011

[24] J. Suomalainen, P. Hyttinen, and P. Tarvainen, "Secure information
sharing between heterogeneous embedded devices," 1st International
Workshop on Measurability of Security in Software Architectures
(MeSSa 2010), pp. 205-212, 2010.

[25] A. Elkhodary and J. Whittle, "A Survey of Approaches to Adaptive
Application Security," International Workshop on Software
Engineering for Adaptive and Self-Managing Systems, 2007 SEAMS
'07., p. 16, 2007.

[26] A. Klenk, H. Niedermayer, M. Masekowsky, and G. Carle, "An
architecture for autonomic security adaptation," Ann Telecommun,
61(9-10), pp. 1066-1082. 2006.

[27] C. J. Lamprecht and A. P. A. van Moorsel, "Adaptive SSL: Design,
Implementation and Overhead Analysis," First International
Conference on Self-Adaptive and Self-Organizing Systems, 2007.
SASO '07., pp. 289-294, 2007.

[28] C. J. Lamprecht and A. P. A. van Moorsel, "Runtime Security
Adaptation Using Adaptive SSL," Dependable Computing, 2008.
PRDC '08. 14th IEEE Pacific Rim International Symposium, pp. 305-
312, 2008.

[29] G. Costa, F. Martinelli, P. Mori, C. Schaefer, and T. Walter,
"Runtime monitoring for next generation Java ME platform,"
Comput. Secur., 29(1), pp. 74-87. 2010.

9

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 14 / 29

Involving Non Knowledge Base Experts With the
Development of Ontologies

Vlad Nicolicin-Georgescu*, Vincent Bénatier
SP2 Solutions

La Roche Sur Yon, France
vladgeorgescun@sp2.fr, vbenatier@sp2.fr

Rémi Lehn, Henri Briand
*Ecole Polytechnique de l’Université de Nantes

Nantes, France
remi@fc.univ-nantes.fr, henri.briand@univ-nantes.fr

Abstract - The paper presents an approach to ontology
development with the help of regular, non technical users. The
specific objective is the construction of a software ontology
with a much higher level of detail (e.g., patch version or
software version compatibility) than existing propositions like
OpenCyc. To this end, we need the feedback of software
experts and users. The problem is that these are not knowledge
experts with a background in working with ontology concepts,
as required by the actual ontology development solutions. Our
strategy is to provide an intuitive online platform through
which users can provide feedback about their software
configurations without the perquisites of ontology modeling.
The platform, called TimSys, is linked with the ontology model
via mapped data bases and it represents a bridge between the
technical and non technical knowledge base worlds.

Keywords – Ontology, Information System, Software, Decision
Support System

I. INTRODUCTION

The evolution of information systems (IS) lead to
complex description of their architectures, from hardware
resources to installed software. As the number of software
vendors increased exponentially, so did the number of
offered functionalities and services. It is assessed that up to
90% of the requested functionalities is already available with
existing applications [1]. The variety of software products
implies an increased number of problems, from bugs to
product incompatibility. These are referenced in different
non or semi-structured sources, such as readme documents or
technical forums. Integration propositions such as
Microsoft’s knowledge base (KB) articles for driver
development [2] are very specific and are addressed to expert
users.

In this context of problem resolution, whenever an issue
occurs the user searches for answers with several sources,
among which: the available documentation, call centers or
technical forums and discussion lists. This way of
functioning poses two major problems.

First, it requires a perfect knowledge of the used software
configuration (vendor, name, version, patch, OS etc.). For
example, if an interactive reporting software crashes
constantly while using a specific data spreadsheet program,
the user reports at best the reporting software version. He/she

has no knowledge of the Java JRE version, which is actually
the cause of the malfunction. As there is no complete
description of the installed software, it will take several
exchanges, e.g., with the support line, to determine that there
is a third element at the root of the crash.

Second, each time an issue occurs, there is a repetitive
and confusing process of software description. For instance,
help desks employ three levels of competencies [3]. At each
level, you are asked for your software configuration. If the
problem isn’t solved, each time you are in contact with a
person from the help desk, you have to re-specify the
software and the problem. This translates to frustrating
repetitive operations and increased times for problem
resolution. Moreover, it relates to the first problem as a non
technical user is asked for detailed technical pieces of
information.

With the expansion of the Semantic Web, ontologies
have become a standard to model complex IS. Proposition of
ontology usage for software models [4] or for semantic help
desks [5] have proven that this may be a valid path to
explore. Building and managing an ontology is not a trivial
task, and is based on the collaboration of a specific user
community. The problem is that this implies an expertise in
working with ontologies and KBs, thus being reserved to a
‘closed’ category of users.

In consideration with the problems mentioned above, our
objective is to build a software ontology, which should
provide a reference point for system software description.
For the initial ontology, we have chosen a restrained
software perimeter, related to our expertise: decision support
systems (DSS). To this end, we propose a semantic
collaborative online platform, TimSys, which enables the
description of user software environments starting from the
ontology software concepts. The main idea behind TimSys is
to help the evolution of the software ontology by integration
of non technical user feedback. This way, everyone
contributes to the development of the ontology, even if they
are not KB experts.

The remainder of the paper is organized as follows.
Section 2 presents the main software types with DSS and the
problems of software configuration description. Section 3
shows how ontologies are used for knowledge modeling, and
some of the advantages and drawbacks of using them.
Section 4 introduces the TimSys platform, with the data

10

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 15 / 29

model and the use case scenarios. Finally, Section 5 sums up
the conclusion and the future directions for this work.

II. SOFTWARE CONFIGURATION DESCRIPTION

First, this section introduces the main DSS software
types, and then the existent problems and solutions with
software description.

A. Decision Support Systems Software

DSSs represent the use case of our proposition. They are
a type of IS that supports business and organizational
decision-making activities. They have been thoroughly
described by Inmon [6], with focus on data warehouse
architectures. Software environments of DSSs include the
following four major components:

(i) A data provider which contains the data that is
integrated with the data warehouses. This data can be
structured (e.g., DBs) or non-structured (e.g., technical
documentation). The most often met solution is relational
DBs (e.g., SQL Server, Oracle DB).

(ii) ETL (Extract, Transform, Load) software is in charge
of transforming the provided data and loading it into the data
warehouses. ETLs are usually developed by the data
provider software editors (e.g., Oracle DW Builder, Data
Integrator & Data Services by SAP).

(iii) The data warehouse, which stores the aggregated
analytical data. Examples include the Oracle Hyperion
Essbase or SAP Business Objects.

(iv) The use interfaces that provide access to the data
from the data warehouse, usually for reporting (e.g.,
Hyperion Interactive Reporting , Microsoft Excel).

As decisional experts, we have been faced with the need
of describing the software products above. Usually, the
enterprises maintain this information in plain text documents,
or eventually semi-structured ones (e.g., office documents
with templates). This implies that every reference to the
software configuration is based on a specific document,
which must be provided each time. Moreover, version
control has to be investigated for the documentation and for
the software configuration. We have met several situations
where software patches were applied without proper
documentation (e.g. undocumented software migration). If
the initial configuration specification is not updated,
inconsistencies and false information occur.

B. Software Configuration Description

Software description offers many modeling alternatives.
With the development of modeling tools such as UML or
Architecture Description Languages (ADL), companies
understood that integration and easy access are key factors
for fast problem resolution.

In [7], the authors present an overview of the usage of
UML with software architecture description. There is an
extensive area of research over this subject, at a very detailed
and technical level. Although they provide standardization
with the description language, the complexity of such
solutions is in most cases a ‘deal-breaker’ when facing
simpler needs.

Another solution, less complex and simpler to use is
system information software (e.g., Belarc Advisor [8]). For
example, on Windows machines, the SOFTWARE registry
keys contain reference to the installed software.
Nevertheless, this solution has several drawbacks. First, it
requires the installation of a specific program on each
machine. Second, there is no complete view of the system
(i.e., number of physical machines, how they are connected).
Third, there is a problem with information availability, as the
software list is not managed collaboratively; its sharing
requires each time a duplication of the description file.

Our proposition is elaborated over the two modeling
aspects presented above, taking the benefits of both. First, it
uses a model complex enough, which enables the description
of machines, software and the links that exist between them,
but not too complex to enter the ADL world, while providing
an intuitive interface for non-technical users. Second, by
using ontologies, it overcomes the issues of availability and
synchronization. Each software, configuration and system
has its own unique URI, while assuring a complete system
overview. Moreover, as the data model is opened, users
benefit by adding feedback and continually improving it.

III. LINKED DATA AND ONTOLOGIES

With the development of the web and the expansion of
the Internet, linked data is specified as the future of
information throughout online environments. Developed by
Berners-Lee, linked data is founded over the collaborative
efforts of the Web 2.0 and the semantics of the future Web
3.0 [9]. The proposition states that the entire information on
the web is part of a single global KB.

The formalization of the linked data concept is made
through ontologies. Introduced by Gruber [10], an ontology
defines a set of representational primitives able to model a
domain knowledge or discourse [11]. An ontology allows the
definition of three types of concepts: (i) classes (type of
concept), (ii) individuals (instances of classes), and (iii)
properties (links between classes and/or individuals). A
sentence in an ontology is represented under the form of a
triplet (subject, predicate, object), e.g., (Windows2003SRV,
isA, Windows2003). Ontology expression languages are
XML based, such as the W3C standards RDFS and OWL
[12]. Additionally, SPARQL enhances SQL-like data query
to retrieve information from ontologies.

Relating to the problem of software configuration, in
[13], the authors provide an overview over how ontologies
mix with UML. Moreover, some of our previous works with
ontology models for managing DSSs [14] have shown the
advantages and inconveniences of ontology modeling.

The benefits of using ontologies come from the dynamics
of the data model, high expressivity and inference support.
Dynamics refers to the fact that the information model is
prone to constant changes (unlike DBs implementations), as
collaboration is the key to building an ontology. High
expressivity indicates that any matter or facts can be
expressed within the ontology (from where the three levels
of expressivity with the OWL). Last, inference allows the
deduction of new knowledge from the existing knowledge by
using axioms and rules.

11

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 16 / 29

On the contrary, the main drawbacks of ontologies are
the novelty of the technology, information retrieval
performance and high technical competences requirement.
Only recently the industry has shown its interest towards this
technology (i.e., Oracle 10g semantic module). Data retrieval
performance for large scale ontologies proves to be a
problematic point, from where the recommendation that for
high number of concepts, relational DBs are preferred for
faster access [15]. The last major inconvenient is that
working with ontologies (as with any new technology)
requires a formal technical preparation. As ontologies aim to
sustain a large collaborative online usage, this sends aback a
good part of its ‘target’ users.

Our proposition is implemented with regards to these
disadvantages. We use a combined data model (DB + OWL),
to assure high expressivity and collaboration, while
providing fast data access.

IV. TIMSYS

TimSys [16] is our proposition for a collaborative,
semantic, online and non-technical software configuration
description platform. Collaborative expresses the fact that its
users play an active role in the evolution of the software KB.
Semantic indicates the usage of ontologies for KB
formalization. Online sends to the standardization of the
software concepts. Last, non-technical underlines that
anyone can contribute to the development of the KB,
regardless his background in working with ontologies.

TimSys is composed of two main modules: (i) the
software and systems KB and (ii) the user interface .

A. The Knowledge Base

The KB contains the totality of available software,
configurations and systems. As mentioned earlier, the data
model is a combination between relational DBs and OWL
ontologies.

OWL is used to implement the software ontology with a
very high granularity. All the details from editor to patch
version are described. Additionally, it allows the dynamic
description of relations between software such as
compatibility or functionalities. Inference rules play a very
important role, as to establish software version dependencies.
Our prototype software ontology contains 902 individuals,
25 classes, 13 object properties and 14 data type properties
with the OWL DL expressivity.

An example of a software concept from the ontology
(Windows Server 2003 R2) is shown in the following table

Table 1 – Software ontology concept example (triple)
Subject Predicate Object

Win2k3SRV_R2

rdf:type Win2k3SRV
hasMajorVersion “5”^^xsd:string
hasVersion “5.2”^^xsd:string
isCompatibleWith Essbase_9.2.1
hasPrevious Win2k3SRV_SP1
hasEditor Microsoft

First, we notice the inclusion of the Win2k3SRV_R2
individual the general Windows2k3SRV class via the rdf:type
property. Then, two string data properties indicate the

version of the software. The object property
isCompatibleWith specifies the list of software with which it
is compatible. The hasPrevious property links this specific
version with the Win2k3 server products timeline. Last, the
hasEditor property links it with the Microsoft concept, which
is obtained by querying the DBPedia SPARQL endpoint [17]
as an already existing concept.

Relational DBs are used for the representation of the
systems and the corresponding software configurations. We
define a configuration as the totality of (interesting) software
installed on a single machine (the OS and the installed
software). A system is defined as a combination of one or
several configurations; which we consequently call a timsys.

The choice of DBs for the implementation comes from
the fact that, unlike the software ontology (where there is a
reduced number of concepts), the number of configurations
and systems may reach billions. In order for the DB model to
be as fast as possible, a mapping of the software ontology
concepts is done such that they are also formalized in the DB
model. This means that the data backend is fully assured by
relational DBs. Any evolution in the ontology model results
in its remapping into the DB model. This permits a constant
availability of the software lists, while new changes to the
software ontology are processed.

B. Evoloving the Ontology - The User Interface

The graphical user interface is the front end of the
TimSys platform. It includes two major different sub
interfaces: (i) access and (ii) management.

The access interface enables the online view of a system
by an unique hash link (e.g.,
http://www.timsys.org/hjJKuyJ8). Using this link, anyone at
anytime can have a look at the configurations and list of
software. This greatly helps the problematic of ambiguity,
duplication and synchronization while offering access to an
opened software KB.

The management administration interface proposes the
creation of new systems or the modification of existent ones,
similarly via an unique link. The interface is build with
regards to non-technical users, thus remaining as simple as
possible. Alongside permitting users to describe their
configurations, it provides the possibility of feedback in the
cases where a required software is not found in the KB.

This is the key aspect towards the evolution of the
software ontology. Whenever a software is not found, the
user fills a three field form with the software editor, name
and version (only the last 2 are compulsory). This feedback
is stored temporarily in the DB, becoming instantly available
to the user and with the destination of ontology integration.
At this point, the KB experts are in charge of updating the
software ontology accordingly. Once the ontology updated
(e.g., once per day), the remapping of the new concepts to
the DBs is made, and the new software becomes
permanently available. We note that the intervention of a KB
expert is always needed for integration.

Summing up, Figure 1 shows the general functioning of
the TimSys platform, with the presented modules and use
cases.

12

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 17 / 29

Figure 1 – TimSys Overall Architecture

The arrows indicate the direction in which the data flows.
We notice that this is both ways for the management
modification interface. Moreover, the ontology is published
online and available to users for direct access of its concepts.

V. CONCLUSIONS

In this paper, we presented a proposition for building an
ontology by involvement of non KB experts. Specifically,
the objective was to develop a software ontology by
integrating a maximum of user feedback. To this end, we
proposed an online platform for describing software
configurations. Consequently, we proposed solutions to
overcome the issues of collaboration, synchronization and
availability when it comes to describing the software
environments, with the use case of DSSs.

The state of the art offered a view over software
configuration modeling approaches and over the semantic
web technologies. With our proposition, TimSys, we have
presented a combined DB/OWL data model and an intuitive
interface for access and management. Thus, we have seen
how non-technical users feedback contributes to the
development of the software ontology.

Nevertheless, the work presented here is at an early stage.
Our future works will detail the aspects of: DB/OWL
mapping with the data model, usage of existing software KB
(more than DPBedia), validation of the ontology and its
publication as a recognized reference. As it is an open source
project, we aim at building an active community around
TimSys, for both technical and non-technical feedback.

REFERENCES

[1] P. Oreizy, “Decentralized software evolution,” in The
International Conference on the Principles of Software
Evolution (IWPSE 1), 1998. Last accessed November
2010. Available: http://www.ics.uci.edu/~peymano/-
papers/iwpse98/

[2] Microsoft. Knowledge base articles for driver
development. Last accessed November 2010.
Available: http://www.microsoft.com/whdc/driver/-
kernel/kb-drv.mspx

[3] T. N. I. A. System. Help desk level competencies. Last
accessed November 2010. Available: http://-
www.nitas.us/docs/-
Help%20Desk%20Level%20Competencies.pdf

[4] M. Brauer and H. Lochmann, “An ontology for
software models and its practical implications for
semantic web reasoning,” in The 5th European
semantic web conference on The semantic web:
research and applications, ESWC’08, 2008.

[5] Nepomuk. Mandriva community case study first
prototype of a social semantic help desk. Last accessed
November 2010. Available: http://-
nepomuk.semanticdesktop.org/xwiki/bin/download/-
Main1/D11-2/-
D11.2_v10_NEPOMUK_1st%20Prototype%20of%20S
ocial%20Semantic%20Helpdesk.pdf

[6] W. H. Inmon, Building the data warehouse, fourth
edition, W. Publishing, Ed. Wiley Publishing, 2005.

[7] P. Avgeriou, N. Guelfi, and N. Medvidovic, “Software
architecture description and uml,” UML MODELING
LANGUAGES AND APPLICATIONS, vol. 3297, pp.
23–32, 2005.

[8] Belarc. The belarc advisor. Last accessed January 2011.
Available: http://www.belarc.com/free_download.html

[9] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data -
the story so far,” International Journal on Semantic
Web and Information Systems (IJSWIS), vol. 5, no. 3,
pp. 1–22, 2009.

[10] T. Gruber, What is an ontology? Academic Press Pub.,
1992.

[11] L. Liu and M. T. Özsu, Encyclopedia of Database
Systems, L. Liu and M. T. Özsu, Eds. Springer-Verlag,
2008. Available: http://tomgruber.org/writing/ontology-
definition-2007.htm

[12] W3C. World Wide Web consortium. W3C. Last
accessed July 2010. Available: http://www.w3.org/

[13] J. Savolainen, “The role of ontology in software
architecture,” in OOPSLA Workshop on How to Use
Ontologies and Modularization to Explicitly Describe
the Concept Model of a Software Systems Architecture,
2003.

[14] V. Nicolicin-Georgescu, V. Benatier, R. Lehn, and
H. Briand, “Ontology-based autonomic computing for
decision support systems management,” in The First
International Conference on Models and Ontology-
based Design of Protocols, Architectures and Services,
MOPAS 2010, pp. 233–236, 2010

[15] N. K. Irina Astrova and A. Kalja, “Storing owl
ontologies in sql relational database,” International
Journal of Electrical, Computer, and Systems
Engineering, vol. 1, no. 4, pp. 242–247, 2007.

[16] This is my System (TimSys). Last accessed January
2011. Available: www.timsys.org

[17] DBpedia. DBpedia SPARQL endpoint. Last accessed
January 2011. Available: http://dbpedia.org/sparql

13

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 18 / 29

Formal Logic Based Configuration Modeling and Verification for Dynamic
Component Systems

Zoltan Theisz
evopro Informatics and Automation Ltd.

Email: zoltan.theisz@evopro.hu

Gabor Batori
Software Engineering Group

Ericsson Hungary
Email: gabor.batori@ericsson.com

Domonkos Asztalos
Software Engineering Group,

Ericsson Hungary
Email: domonkos.asztalos@ericsson.com

Abstract—Reconfigurable networked systems have often
been developed via dynamically deployed software components
that are executing on top of interconnected heterogenous
hardware nodes. The challenges resulting from the complexity
of those systems have been traditionally mitigated by creative
ad-hoc solutions supported by domain specific modeling frame-
works and methodologies. Targeting that deficiency, our paper
shows that by involving a first-order logic based structural
modeling language, Alloy, in the analysis of component de-
ployment we could extend the limits of the generic domain spe-
cific metamodeling methodology developed for Reconfigurable
Ubiquitous Networked Embedded Systems.

Keywords-Alloy specification; formal model semantics; meta-
modeling; dynamic component system

I. INTRODUCTION

Reconfigurable networked component systems provide
a versatile platform for implementing highly distributed
autonomic peer-to-peer applications in domains of both real
sensor networks and autonomic computing [1] environments
such as e.g. intelligent network management that relies on
sensory and effectory facilities of multi-level control loops.
The building and verification of those applications in prac-
tice has turned out to be a rather challenging research topic
that could enormously benefit from the usage of domain
specific modeling approaches. One of the major results
of the Reconfigurable Ubiquitous Networked Embedded
Systems (RUNES) IST project was to establish a reflective
distributed component-based multi-platform middleware ar-
chitecture [2] for heterogeneous networks of computational
nodes, including metamodel-based software development
methodology [3] and graphical development framework. The
RUNES metamodel provides all the relevant concepts soft-
ware architects need to efficiently utilize the computational
resources within a reflective distributed component-based
environment. Due to the inherent complexity of distributed
reconfigurable component systems, we advocate the usage of
Alloy [4], a formal first order logic based language supported
by a fully automated analyzer that has been successfully
used to model various complex systems in a wide range of
application domains for domain specific model verification
purposes. Alloy has been applied in [5] for the analysis of

some critical correctness properties that should be satisfied
by any secure multicast protocol. The idea of using Alloy
for component based system analysis was suggested by
Warren et al. [6]. This paper shows OpenRec, a framework
which comprises a reflective component model and the Alloy
model of OpenRec. This Alloy model served as a basis for
our Alloy component model but our model is more detailed
which enables deeper analysis of the system behavior. More-
over, [7] demonstrates an Alloy model that identifies the var-
ious types of dynamic system reconfigurations. It provides
a good categorization of various problems and solutions
related to dynamic software evolution. Furthermore, Aydal
et al. [8] found Alloy Analyzer one of the best analysis tool
for state-based modeling languages.

Although individual application scenarios can be easily
expressed manually in Alloy we firmly believe that the syn-
ergy between metamodel driven design and first order logic
based practical model verification could result in a more
advantageous unified approach. Our approach, in a nutshell,
semi-automatically generates all the relevant RUNES de-
ployment configuration assets that have also been analyzed
within Alloy. By analyzing a significant subset of frequently
reoccurring configurations the boundary between valid and
invalid component configurations can be thoroughly investi-
gated against proper sets of model-based application and/or
middleware feasibility constraints. The analysis results can
be used to provide input to the runtime adaptive control logic
in order to extend the model-based software development
framework [3] with effective autonomicity.

In this paper, we will describe how a first-order logic
based model of the RUNES middleware has been developed
in Alloy and how it has been integrated into the RUNES
domain specific modeling framework and methodology [3].
In the remainder of the paper, first in Section II, we briefly
overview Alloy, then, we also disseminate in detail how
the RUNES Metamodel has been formalized in it. Next,
Section III explains how the Alloy backed verification step
gets integrated into the general metamodel-based RUNES
application development methodology. Then, Section IV
presents a short introduction into the usage how verification
results can be incorporated into a full scale model-based

14

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 19 / 29

management approach. Next, in Section V, a simplified
real-life sensor application will be showcased in order to
visualize our approach via a tangible example. Finally, in
Section VI we conclude the paper and briefly highlight our
future research plans.

II. RUNES METAMODEL VERIFICATION WITH ALLOY

A. Alloy

Alloy [4] is a textual metamodeling language that is based
on structured first-order relational logic. A particular model
in Alloy contains a number of signature definitions with
fields, facts, functions and predicates. Alloy is supported by
a fully automated constraint solver, called Alloy Analyzer
[9], which can be used to verify model parameters by
searching for either valid or invalid instances of the model.

B. Applying Alloy for component system verification

The RUNES reflective component middleware has been
created as one of the most important software assets resulting
from the RUNES IST project. In general, it consists of
a component-based middleware that follows the currently
popular loosely-coupled paradigm of Service Oriented Ar-
chitecture [10]. The middleware is fully reflective, its API is
rigorously specified in various programming languages [11],
its elements are conceptually backed by multi-layer meta-
models and finally a metamodel driven, domain specific ap-
plication development methodology provides the guidelines
for its most effective application. All in all, the RUNES ap-
plication development is highly streamlined and it is carried
out mostly following strict model-based design principles
within a semi-automatic metamodeling environment. Al-
though the development techniques and the guiding process
have been streamlined, the verification and the validation
of the resulting modeling assets such as the application
models and the incorporated executable action semantics
have to be carried out manually or semi-automatically [12].
Model based test generation proved to be very effective
in some scenarios, though testing cannot replace, even in
industrial setups, the verification and/or validation efforts.
Our industry experience has also proved quite frequently
that modeling tasks are highly creative, thought intensive
activities which result in complex artifacts of great vari-
ability. Therefore, the verification and validation of model-
based solutions is a considerable challenge. Fortunately, in
reconfigurable sensor applications, the complexity of the
resulting system is slightly limited because the variability
of the system mainly originates only from the flexibility of
the underlying component model of the middleware, thus a
more formal way of verifying applications is within practical
reach. From the wide spectrum of verification paradigms
first-order logic is considered as one of the most rigorous
approaches. It has turned out that in our scenarios mostly the
independently acting sub-configurations of tightly coupled
components have usually caused the majority of the most

Figure 1. Kernel part of the metamodel

serious malfunctions; therefore, our aim had been mainly
directed towards their automatic elimination and avoidance
in the runtime deployment. The generic design principles of
Alloy [4] facilitates both easy meta-language creation that
complies with metamodel driven domain specific language
building concepts and formal verification of models. In
the following, we will formalize the semantics - from the
verification point of view - of our middleware metamodel in
Alloy in full accordance with the principle of the semantic
anchoring approach reported in [13].

C. Functional metamodel

The RUNES Metamodel specifies the formal metamodel
that represents the relevant elements of the RUNES mid-
dleware architecture [2]. Figure 1 illustrates the kernel part
of the metamodel, which defines the basic concepts of
Interfaces, Receptacles, Components and Bindings including
their relations and cardinalities. Combined with the associ-
ated OCL expressions the RUNES Metamodel establishes a
model-based application development environment in GME
[14], which enables rapid RUNES application development.
In order to be able to verify the proper configuration
sequence of a particular modeled application scenario the
RUNES Metamodel has to be semantically anchored to
a precise structural and behavioral formalism in Alloy.
Therefore, the following paragraphs will show how the
various metamodeling concepts have been reformulated in
Alloy so that application models could be verified against
configuration constraints.

In general, the functional specification of any RUNES
application must be organized around Components and
Bindings. The Components represent the encapsulated units
of functionality and deployment. The interactions amongst
them take place exclusively via explicitly defined Interfaces
and Receptacles. The dynamic behavior of the components
are automatically generated from Message Sequence Charts
(MSC) and the results are formalized via concurrent Finite
State Machines (FSM) [15]. Therefore, a generic RUNES
Component is defined as a signature whose fields consist
of at most one state machine and a set of Interfaces and
Receptacles, respectively.

15

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 20 / 29

abstract sig Comp{
state_machine:set StateMachine,
provided: set Interface,
required: set Receptacle,

}{
lone state_machine

}

Both the Interface and the Receptacle inherit the common
characteristics of an Interaction Point, which is defined by a
set of related operation signatures and associated data types.
The Interface represents the "provided", the Receptacle the
"required" end of a component-to-component connection,
respectively.

abstract sig Signature{}
abstract sig InteractionPoint {

signatures: set Signature
}
sig Interface extends InteractionPoint{}
sig Receptacle extends InteractionPoint{}

Bindings ensure that connections between Interfaces and
Receptacles are set up consistently, according to their proper
definitions. Hence, a Binding is defined as a signature that
contains fields for one Interface and one Receptacle and one
non-identical, component correct mapping that connects the
previously mentioned two items.

abstract sig Binding{
mapping:Comp -> Comp,
interface: one Interface,
receptacle: one Receptacle

}{
one mapping
no (mapping & iden)
receptacle in (Comp.∼(mapping)).required
interface in (Comp.mapping).provided

}

The Receptacle must always represent a requirement
which is a ’subset’ of the operations (signatures) provided
by the Interface it intends to be bound to via the Binding.
That fact has to be made explicit in Alloy to allow only
correct Bindings in the model.

all b:Binding| b.receptacle.signatures in b.interface.signatures

D. Deployment metamodel

Figure 2 shows those relevant deployment concepts of
the RUNES Metamodel that determine the runtime aspects
of a RUNES component application. The key element of the
metamodel is the Capsule that represents the generic middle-
ware container, which on the one hand provides direct access
to all the functionalities of the runtime API [11], on the other
hand it manages a robust fault recovery and redundancy
facility. Deploying a component into a capsule in generic
terms means that it must be ensured that adequate resources
are available for loading in the component in a particular
instance of time. The deployed components and bindings
might change in time, hence their temporal representation
must take into account the explicit definition of Time, too.
The Capsule also possesses a distributed, peer-to-peer, fully
reflective meta-data repository that can be used for both
application and middleware specific purposes. A Capsule in
Alloy is defined as a signature having fields representing the
temporal evolution of deployed components, bindings and
a middleware related resource pool plus the time invariant
capsule topology information.

open util/ordering[Time] as TO
sig Time{}
abstract sig Capsule {

Figure 2. Deployment part of the RUNES Metamodel

comps: DeployedComp -> Time,
bindings: DeployedBinding -> Time,
comp_capacity: Int -> Time,
neighbours: some Capsule

}{
all t:Time|int[comp_capacity.t] >= #(comps.t)
all t:Time|comp_capacity.t >= Int[0]

}

A deployed component incorporates all the necessary
information that stores the active process aspect of the com-
ponent’s functionality including explicit definition of state
transitions in time. In other words, the deployed component
can be considered as a dynamic instance of a component
in accordance with its "ModelProxy" declaration in GME
depicted in Figure 2. The temporal aspect of the state
transitions are defined by the fire and the current_state fields
of the DeployedComp signature.

sig DeployedComp{
deploy: one Comp,
fire: Transition -> Time,
current_state: State -> Time

}{
deploy in FunctionalConf.comps
all t:Time|lone fire.t
all t:Time|lone current_state.t

}

A deployed binding does not declare time explicitly,
however, it contains a mapping field between the two
participating deployed components, hence, it is also time
dependent. The compatibility of the deployed binding is
checked based on the functional definition of the connection.

sig DeployedBinding{
mapping: DeployedComp -> DeployedComp,
deploy: one Binding

}{
one mapping
(DeployedComp.∼mapping).deploy =
Comp.∼(deploy.mapping)

(DeployedComp.mapping).deploy = Comp.(deploy.mapping)
}

Our main goal of applying Alloy has been oriented
towards configuration verification, thus we must represent
a deployed RUNES application in Alloy as a collection of
capsules which register the temporal evolution of each of
the components and the bindings. Alloy’s trace statements
help us verify the time evolution of the application against
feasibility constraints and the successful runs can also be
visualized for human inspection, too.

sig DeploymentConf{
capsules: some Capsule

}

The RUNES middleware API supports a set of component
management operations such as [un]loading, [un]binding

16

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 21 / 29

and migrating components. The operations require time
to execute their functionality, they usually modify only
local states of the distributed application and keep the rest
unchanged. In Alloy, we serialize the potentially concurrent
atomic API operations in such a way that one and only one
of them can be carried out in one particular instance of time.
Due to size constraints only the definition of the migrate
operation is presented here in detail. The other operations
have been defined applying similar specification techniques.

Component migration is carried out between two cap-
sules by moving an already deployed component between
two consecutive points of time. First the preconditions are
checked if it is a real migration between two different
capsules and there are enough resources available in the
receiving capsule. Then, local states of the two respected
capsules are to be updated and, finally, three constraints are
to be satisfied so that the rest of the application state remains
unchanged.

pred migrate(c_src,c_dst:Capsule,d:DeployedComp,t,t’:Time){
c_src != c_dst
#(c_dst.comps.t) < int[c_dst.comp_capacity.t]
c_dst.comps.t’ = c_dst.comps.t+d
c_src.comps.t’ = c_src.comps.t-d
all capsule:Capsule|capsule.bindings.t’=capsule.bindings.t
all capsule:Capsule-c_src-c_dst| capsule.comps.t’=capsule.comps.t
all capsule:Capsule| capsule.comp_capacity.t’ = capsule.comp_capacity.t

}

Above all those previous definitions, the RUNES Meta-
model also enforces a couple of RUNES specific restrictions
over the possible component configurations in order to
safeguard that only semantically correct component recon-
figurations are permitted. In the metamodel (see Figure 1
and Figure 2) those rules are expressed either via cardinality
constraints or via OCL expressions. Therefore, the Alloy
formalism must incorporate the corresponding definitions,
too. Here only the most important elements of that constraint
set are summarized.

• A Binding or a Component must be contained within
at most one single Capsule

no disj capsule1,capsule2:Capsule|
some (capsule1.bindings) & (capsule2.bindings)

no disj capsule1,capsule2:Capsule|
some (capsule1.comps) & (capsule2.comps)

• Two Bindings of the same type must not be deployed
if they share the same Receptacle.

no disj b1, b2:DeployedBinding| (b1.deploy = b2.deploy)
and (b1.mapping.DeployedComp = b1.mapping.DeployedComp)

• There must not be such a Binding within a Capsule that
has a connected Component which is not deployed in
any of the Capsules

no deployedBinding:DeployedBinding|some t:Time|
deployedBinding in Capsule.bindings.t and
(deployedBinding.mapping.DeployedComp not in Capsule.comps.t
or deployedBinding.mapping[DeployedComp] not in Capsule.comps.t)

E. Behavior metamodel

The internal dynamics of the components’ functional
behavior is modeled in Alloy by an explicitly specified Finite
State Machine (FSM) that takes into account all changes of
the internal state of vital components, the conditionality of
state transitions and the necessary action semantics required
when a new state has been entered. Our FSM definition in

Alloy mirrors the formal mathematical model following the
generic principle of semantic anchoring [13].

abstract sig State{}
abstract sig Transition{

trans: State -> State
}{

one trans
}
abstract sig StartState extends State{}
abstract sig StartTransition extends Transition{}
pred transition[d:DeployedComp,t,t’:Time]{

(d.fire.t).trans.State = d.current_state.t
(d.fire.t).trans[State] = d.current_state.t’

}
abstract sig StateMachine{

states: some State,
startState: one StartState,
transitions: some Transition,
startTransition: one StartTransition,

}{
no (states & startState)
no (transitions & startTransition)

}
fact Traces{

...
all t:Time-TO/last[],d:DeployedComp|let t’=TO/next[t]|
some d.fire.t => (transition[d,t,t’])

all t:Time|some DeployedComp.fire.t
}

To round up the section, Figure 3 depicts a concrete model
that instantiates the above introduced RUNES Metamodel
in Alloy. It shows a snapshot from a dynamicly evolving
component configuration of a sensor network scenario where
the components have been deployed over a cross shaped
capsule topology - indicated by green arrows - within which
the resource pools are also capacity limited. The mapping
of the components and bindings onto the capsules in a
particular instance of time is visualized by the brown and
red arrows respectively.

Figure 3. Scenario analysis snapshot

III. PROCESS

The RUNES application development process has a well
defined five-layer architecture [3] that guides the application
developer through the Scenario, the Application Modeling,
the Platform, the Code Repository and the Running Sys-
tem stages. The presented Alloy based model verification
approach builds on a first-order logic based formalism,
which extends the RUNES development process. As Figure
4 shows, the extension has been realized by two additional
model transformations that turn RUNES Component Models
and corresponding RUNES Deployment Models into con-
figuration scenarios that can be verified within the Alloy

17

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 22 / 29

Figure 4. Software Development Process extended with Alloy verification

Analyzer. The model transformations produce configuration
scenarios which contain both structural and behavioral spec-
ifications of the application. However, only those parts of
the FSM action semantics are kept from the total dynamic
behavior which directly relate to the internal control logic
of the scenario. These parts precisely specify when and with
which parameters the application invokes the runtime APIs
provided by the RUNES middleware.

The verification of a particular scenario investigates the
evolution of the application from the point of view of
the component reconfigurations enabled by the RUNES
middleware which are mainly restricted by the resource
availability within the capsules along the time. The results
of the verification provide input to the runtime autonomic
control mechanisms that manage pre-calculated adaptive
component reconfiguration. The approach is usually iterative
and the convergence criteria are decided on a case-by-case
basis.

IV. METAMODEL-DRIVEN COMPONENT MANAGEMENT

Metamodel-driven component management is an interest-
ing new way of generalizing policy-based network manage-
ment [16] in such a way that the information model used
by the network management infrastructure mirrors those
software assets of the component based system that are
produced by the model translators. In effect, the model
based system design is kept intact and extended by elab-
orated action semantics. From the point of view of model-
based application control, the most important element in the
RUNES runtime architecture is the Deployment Tool, which
establishes a soft real-time synchronization loop between the
GME model repository and the running component appli-
cation. The schematics of the Deployment Tool based re-
configurability is shown in Figure 4. The Deployment Tool,
a protocol independent abstraction of GANA’s Decision
Making Element [17], first deploys the initial component

configuration of the application then it constantly readapts
the component configuration by listening to both applica-
tion and middleware notifications and by continuously re-
evaluating the configuration in hand. The core of the control
logic is based on the verification results from previous
Alloy analyzes. Moreover, it visualizes the actual compo-
nent configuration of the system in a metamodel compliant
view within GME and also takes indirect corrective actions
by modifying the resource availability of the capsules via
RUNES middleware API invocations. Currently, the control
logic is not automatically generated from a batch of Alloy
verifications; however our aim is to adopt the GANA [17]
control meta-model and to populate it via an automatic
model transformation directly from the instantiated RUNES
metamodel in the Alloy verification phase. With the control
logic properly established, the Deployment Tool is capable
to function both as a re-active or a pro-active component
reconfigurator as reported in [3], [18].

V. SIMPLIFIED SCENARIO EXAMPLE

In this section, a simplified example will demonstrate
how Alloy helps the model verification. For the sake of
easy comprehension, here, only a simplified configuration
example has been chosen, which incorporates merely two
capsules and 8 deployed components. Although this logic
based approach, in general, is rather resource intensive, real-
istic scenarios by a magnitude larger in size are still possible
to be analyzed successfully in this manner. Nevertheless,
large reconfiguration setups must be optimized individually;
therefore our current approach is, in virtue, semi-automatic.

In Figure 5, the Alloy representation of the functional
configuration of the component system is depicted.

Figure 5. Functional configuration of the example system

The functional view of the investigated system contains
five different component types, namely, the network related
three components (NetworkDriver, CommA and CommB)
and the two application specific components (Publish and
FireDet). CommA and CommB implement two different
communication paradigms relying on the functionality of
the common NetworkDriver component through Binding1
and Binding2. The Publish component’s main functionality
is to broadcast different sensory measurement data towards
the processing end points. The FireDet component is the
control component which reconfigures the other components

18

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 23 / 29

whenever it has detected fire situation. The main goal of the
reconfiguration is to keep the sensor system in operation
even in case of extreme fire conditions. The reconfiguration
is carried out by migrating the application functionalities
to other capsules, which are located in the neighborhood.
By decreasing the generic capacity parameter of the current
capsule other capsules will not be able to immediately push
back newly migrated components. Both the NetworkDriver
and the FireDet components possess proper state machines
which are represented by the diamonds in Figure 5.

Figure 6. NetworkDriver component state machine

Figure 6 shows the state machine of the NetworkDriver
component. The black ellipse shows the start state, while
the white rectangle represents the transition from the start
state to another state, which is called state_commA in this
particular case. Via the transition from state_commA to
state_commB, through a temporal state_toB1, the unbinding
of component CommA from NetworkDriver and the binding
of component CommB to NetworkDriver take place. This
state change clearly represents the reconfiguration of the
communication paradigm.

Figures 7–10 show an Alloy trace sequence. The resulting
model is projected over Time in such a way that the
relations rooted in Time are represented through a sequence
of models. More precisely, one Time instance is connected
to one particular Model snapshot.

Figure 7. Component binding step

Figure 7 presents the first step of the sequence. When
SM1_startTrans is activated the circle with the Bind tag
points to the deployed binding B0. The deployed component
D0 and D5 will be bound in the following step (see Figure
8).

In Figure 8 the first reconfiguration of the system can be
seen. The FireDet component’s state machine is activated,

Figure 8. Component reconfiguration (unload) step

hence the migration of the application functionality has been
started. Since the Publish component has been deployed to
the neighboring capsule, the FireDet component, instead of
migrating the marked component, is going to unload the
Publish component from the second capsule. Furthermore,
it will decrease the capacity of the capsule.

Figure 9. Component unbinding step

In Figure 9, the reconfiguration of the NetworkDriver
component from CommA to CommB has started. In Figure
10, the second migration attempt is demonstrated. In this
case, component CommA is migrating to the first capsule
because this required functionality has not been deployed to
that capsule so far.

Figure 10. Component reconfiguration (migration) step

This simplified example indicates the way how a particu-
lar verification session takes place using the Alloy Analyzer.
It helps generate configuration sequences which comply with
application constraints. The current verification approach
mainly focuses on the problem domain of component re-
configurability; thus, it assists the run-time control logic by

19

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 24 / 29

identifying situations with serious capacity limitations of the
deployed capsules.

VI. CONCLUSION

This paper presents a new way of combining domain spe-
cific metamodeling techniques with first-order logic based
metamodel verification so that model building could fa-
cilitate later run-time control mechanisms of the modeled
system. We have introduced the semantical foundations of
our approach and detailed its applicability in the case of re-
configurable component based sensor networks. A simplified
example has been disseminated to illustrate the benefits of
the approach. Our current work is to combine the RUNES
meta-model and the GANA meta-model and to automate
the generation of the adaptive control logic, based on the
verification of the model based component configurations, to
manage the deployed system. We are aware of the scalability
issues of our approach, so further studies will be carried out
in this regard. Moreover, the results of these studies will get
incorporated, as best practices guidelines, into model trans-
lators that are supposed to produce the majority of the Alloy
specifications. Ultimately, our aim is to create a generic
framework which iteratively and interactively modifies and
verifies the component model of sensor application scenarios
and continuously indicates the most probable correct run-
time configuration sequences thereof.

REFERENCES

[1] “An architectural blueprint for autonomic computing.” Auto-
nomic Computing, IBM White Paper, June 2005.

[2] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachari-
adis, “The runes middleware: A reconfigurable component-
based approach to networked embedded systems,” Proc. of the
16th Annual IEEE International Symposium on Personal In-
door and Mobile Radio Communications (PIMRC’05), Berlin,
Germany, September 2005.

[3] G. Batori, Z. Theisz, and D. Asztalos, “Domain specific mod-
eling methodology for reconfigurable networked systems,”
ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2007), 2007.

[4] D. Jackson, Software Abstractions: Logic, Language, and
Analysis. The MIT Press, London, England, 2006.

[5] M. Taghdiri and D. Jackson, “A lightweight formal analysis
of a multicast key man-agement scheme,” Formal Techniques
for Networked and Distributed Systems (FORTE 2003), vol.
2767 of LNCS., pp. 240–256, 2003.

[6] I. Warren, J. Sun, S. Krishnamohan, and T. Weerasinghe, “An
automated formal approach to managing dynamic reconfigu-
ration,” 21st IEEE International Conference on Automated
Software Engineering (ASE 2006), Tokyo, Japan, pp. 37–46,
September 2006.

[7] D. Walsh, F. Bordeleau, and B. Selic, “A domain model
for dynamic system reconfiguration,” ACM/IEEE 8th Interna-
tional Conference on Model Driven Engineering Languages
and Systems (MoDELS 2005), vol. 3713/2005, pp. 553–567,
October 2005.

[8] E. G. Aydal, M. Utting, and J. Woodcock, “A comparison of
state-based modelling tools for model validation,” Tools 2008,
June 2008.

[9] D. Jackson, “Alloy analyzer,” http://alloy.mit.edu/, 2008.

[10] T. Erl, “Soa principles of service design,” Prentice Hall, 2007.

[11] G. Batori, Z. Theisz, and D. Asztalos, “Robust reconfigurable
erlang component system,” Erlang User Conference, Stock-
holm, Sweden, 2005.

[12] G.Batori and D. Asztalos, “Using ttcn-3 for testing platform
independent models,” TestCom 2005, Lecture Notes in Com-
puter Science (LNCS) 3502, May 2005.

[13] K. Chen, J. Sztipanovits, S. Abdelwahed, and E. Jackson,
“Semantic anchoring with model transformations,” European
Conference on Model Driven Architecture -Foundations and
Applications (ECMDA-FA), Nuremberg, Germany, November
2005.

[14] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi,
“The generic modeling environment,” In Proceedings of
WISP’2001, Budapest, Hungary, pp. 255–277, May 2001.

[15] I. H. Krueger and R. Mathew, “Component synthesis from
service specifications,” In Proceedings of the Scenarios:
Models, Transformations and Tools International Workshop,
Dagstuhl Castle, Germany, Lecture Notes in Computer Sci-
ence, Vol. 3466, pp. 255–277, September 2003.

[16] L. Lymberopoulos, E. Lupu, and M. Sloman, “An adaptive
policy-based framework for network services management,”
Journal of Network and Systems Management, vol. 11 , Issue
3, pp. 277 – 303, 2003.

[17] A. Prakash, Z. Theisz, and R. Chaparadza, “Formal methods
for modeling, refining and verifying autonomic components
of computer networks,” Advances in Autonomic Computing:
Formal Engineering Methods for Nature-Inspired Computing
Systems, Springer Transactions on Computational Science
(TCS), Expected Publication: Winter 2010 (accepted).

[18] G. Batori, Z. Theisz, and D. Asztalos, “Configuration aware
distributed system design in erlang,” Erlang User Conference,
Stockholm, Sweden, 2006.

20

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 25 / 29

Towards Semantic Interoperability of Graphical Domain Specific Modeling
Languages for Telecommunications Service Design

Vanea Chiprianov, Yvon Kermarrec
Institut Telecom, Telecom Bretagne
Universit́e euroṕeenne de Bretagne

UMR CNRS 3192 Lab-STICC
Technopole Brest Iroise, CS 83818 29238

Brest Cedex 3, France
Vanea.Chiprianov@telecom-bretagne.eu

Siegfried Rouvrais
Institut Telecom, Telecom Bretagne
Universit́e euroṕeenne de Bretagne

Technopole Brest Iroise, CS 83818 29238
Brest Cedex 3, France

Yvon.Kermarrec@telecom-bretagne.eu
Siegfried.Rouvrais@telecom-bretagne.eu

Abstract—High competition pressures Telecommunications
service providers to reduce their concept-to-market time. To
manage more easily service complexity among several actors in
the design process and to ensure a more flexible maintainability,
service decomposition into stakeholder dedicated views is now
largely investigated by companies. However, there is still a lack
of tools to fully support and implement this approach in various
domains, especially Telecommunications. Consequently, in this
position paper, we defend using a Domain Specific Modeling
Language for each viewpoint. We also regroup them into a
family of modeling languages, relying on a meta-modeling
approach. To ensure better interaction and coherence between
the various viewpoints, we focus on some interoperability issues
early at design time. To adequately and systematically manage
interoperability between distinct graphical models, interoper-
ability between their meta-models should be established as
well. For this we rely on model transformations between meta-
models. However, most often model transformations address
only the syntactic level. To increase the formality of languages
and of their interoperability, semantics must be taken into
consideration as well. Therefore, we propose lifting the meta-
models into ontologies, enriching and matching them into
shared ontologies. This allows for semi-automatic generation
of model transformations from shared ontologies.

Keywords-Interoperability, DSML, ontology, semantics.

I. TELECOMMUNICATIONS SERVICE DESIGN

Every time we call, send text or videos with smartphones,
talk using a Skypec©-like program or share documents using
a secure connection, we are end-users of Telecommuni-
cations services (e.g., call, voice over IP, Virtual Private
Network (VPN)). These services are delivered by service
providers, more and more by operators. They use telecom-
munications, next generation or computer networks. Tradi-
tionally, before a service offers acceptable quality of service
and can be launched to a market, it has to pass through
several phases (e.g., from design, to implementation, test
and deployment). These phases tend to be long and not
sufficiently adapted to the current competitive market. More
and more companies like Googlec© and Skypec© appear on
the service provider market, offering shorter time delivery

for innovative services. Consequently, traditional providers
are pressured to reduce their concept-to-market time for new
services while still maintaining a high level of quality to
guarantee a smooth integration with their infrastructure.

A. Viewpoints

To support the increasing complexity of new services
and reduce their concept-to-market time, the International
Telecommunications Union has introduced the Intelligent
Network Conceptual Model (INCM) [1], as ”a framework
for the design and description of the Intelligent Network
architecture”. It consists of four ”planes”, or views, each
refining the service definition from the upper-level plane.
More recent proposals, like Enhanced Telecom Operations
Map [2] for Telecom, or more general ones, like TOGAF [3]
for enterprise architecture, also advocate reducing complex-
ity through division into several layers or views. For greater
designer usability, a Domain Specific Modeling Language
(DSML) may be defined for each view.

A Domain Specific Language(DSL) is ”a language that
offers, through appropriate notations and abstractions, ex-
pressive power focused on, and usually restricted to, a
particular problem domain” [4]. AModeling Languageis, ”a
graphical language for visualizing, specifying, constructing,
and documenting the artifacts of a software-intensive sys-
tem” [5]. A Domain Specific Modeling Language(DSML)
is therefore taken in this position paper to be a graphical
language that offers, through appropriate notations and ab-
stractions, expressive power focused on a particular problem
domain, to visualize, specify, construct and document the
artifacts of a software-intensive system.

A frequent approach to developing DSMLs is the Meta-
Modeling approach [6], which defines a DSML as a set of:

• Concrete syntax: a human-centric representation of the
syntax domain, which defines the symbols used to represent
the concepts in the language;

• Abstract syntax: a computer-centric representation of the
syntax domain;

21

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 26 / 29

• Semantic domain: the meaning of the language constructs;
• Display mapping: links the abstract to the concrete syntax;
• Semantic mapping: links abstract syntax to semantic domain.

The concrete and abstract syntaxes are usually defined as
Meta-models (MMs). MMs play the same role for DSMLs
as grammars for programming languages.

The display and semantic mappings can be defined as
Model Transformations (MTs) [7]. A MT is the automatic
generation of a target model from a source model, according
to a set of transformation rules. A transformation rule is a
description of how constructs in the source language can be
transformed into constructs in the target language.

The semantic domain is the hardest to define. It may
be defined through a semantic mapping towards the precise
semantics of an existing programming language [7] so that
tools can work on it. Dynamic semantics may be described
through operational, denotational or axiomatic frameworks
[8] and static semantics through ontologies.

B. Interoperability Issues

To ensure better interaction and coherence between var-
ious modeling viewpoints, we focus on interoperability
(interop.) issues at design time. One DSML per design view
favors in depth control of designers on a particular domain.
However, having DSMLs for several views introduces in-
terop. issues between the models designed, in an ideal top-
down approach, with adjacent view DSMLs. Therefore, in
what follows, we address the issue of ensuring semantic
interop. between the models defined with two different
DSMLs, which we instantiate to Telecommunications.

II. ON INTEROPERABILITY OFMODELING LANGUAGES

There are numerous definitions for interop. in literature,
depending on the domain. For our purposes, and following
[9], we consider interoperability to be the ability of two or
more tools to exchange modelsso as to use them in order
to operate effectively together. Considering this definition,
to operate together, tools for adjacent view DSMLs need to
exchange models. Considering that models are conformant
with MMs, and that, in a meta-modeling approach, MMs
define (the syntax of) DSMLs (Sect. I-A), the issue of tools
exchanging models written in different DSMLs becomes
an interop. issue between DSMLs. So, to ensure interop.
between models, one must address interop. between DSMLs.

Because interop. is a complex problem, there are numer-
ous proposals of decomposing it into levels. One particu-
larly suitable for our approach is the C4IF (Connection,
Communication, Consolidation, Collaboration Interoperabil-
ity Framework) [9]. This is due to its mapping between
Information Systems (IS) Communication and Linguistics.
Linguistics and the Meta-Modeling approach (Sect. I-A)
share concepts (e.g., syntax, semantics), thus establishing
the connection with C4IF. The C4IF defines four levels:

1) Connection: the ability of ISs toexchange signals.

2) Communicationrefers to the ability of ISs toexchange
data. Syntacticcommunication includes data in commonly
accepted data syntax/schemas.

3) Consolidation refers to the ability of ISs tounderstand
data. The focus is on data meaning (i.e.,semantics).

4) Collaboration refers to the ability of ISs toact together.
These levels of interop. are usually defined in such a manner
so as to ensure a (strict) linearity [9] between them - to reach
an upper level of interop., all the previous levels must have
been successfully addressed.

In order to ensure interop. between two DSMLs we ideally
have to ensure all four levels of the C4IF. The ISs of C4IF,
in our case, are the tools associated to DSMLs, and the
data they exchange, are thus the models. We consider the
C4IF connection level as being implemented by existing
communication and signaling media in computers.

The mapping proposed in [9] assigns the Communica-
tion interop. level of ISs Communication to Syntax of
Linguistics. So, communication,syntactic interop., between
DSML tools, is the level of interop. between the syntaxes
of DSMLs. Approaches to ensure syntactic interop. between
different DSMLs have been proposed, like combining MMs
[10]: extension, merge, embedding, weaving or hybrid ap-
proaches. However, we strongly recognize that the most
flexible way to describe relations between two MMs, is
through MTs. Using MTs, one can describe the similarity
relations between two MMs and capture the intersection be-
tween the concepts of their respective DSMLs. Nevertheless,
MMs describe only the syntaxes of DSMLs. So MTs, or
other combination approaches between MMs, can describe
interop. only at a syntactic level.

The mapping proposed in [9] assigns the Consolida-
tion interop. level of ISs Communication to Semantics of
Linguistics. So, consolidation,semantic interop., between
DSML tools, is the level of interop. between the semantics
of DSMLs. We focus in what follows on semantic interop..
We do not yet address collaboration, as we consider, in
conformance with their (strict) linearity property, that this
level must be ensured first.

III. T OWARDS SEMANTIC INTEROPERABILITY THROUGH

ONTOLOGIES

Formal semantic description is significant for the design,
reasoning and standardization of programming languages,
ensuring their final unambiguous execution or interpretation.
It is usually classified into static and dynamic. The frame-
works for formal dynamic semantics are usually classified
[8] as operational, denotational, or axiomatic. In surveying
them, [8] concludes that ”compared to the amount of effort
that has been made to the research of various semantic
frameworks over more than forty years, their actual appli-
cations are definitely frustrating”. Therefore, even if there
are approaches using formal semantics to address interop.
in a family of DSLs [11], we do not tackle dynamic

22

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 27 / 29

semantics here. We restrict at static semantics and further
investigate ontologies to describe it. Even if ontologies in
a broader sense can also define ”dynamic” concepts such
as Process, State, Event, they are typically used to describe
static concepts, and that is how we use them. We restrict here
to using ontologies for static semantics and don’t investigate
using ontologies for dynamic semantics.

A. On the use of Ontologies with Meta-models

The common thread in defining ontology [12] is that it
is a formal descriptionof a domain, intended forsharing
among different applications, and expressed in a language
that can be used for reasoning.

To date, to the best of our knowledge, there is no common
agreement on the relationship between MMs and ontologies
in the scientific community. While many agree that MMs and
ontologies share many and ”deep” characteristics, there are
also numerous highlighted differences, and some consider
that MMs and ontologies are complementary [13]. Mostly,
ontologies have been used with MMs for:

• Model checking: using automated reasoning techniques for
validation of models in formalized languages.

• Model enrichment: expressing the semantics of modeling
concepts whose syntax is defined by a MM.

• Semi-automatic identification of mappings between MMs:
discovering mappings between MMs.

B. Ensuring Semantic Interoperability between Static Se-
mantics of Modeling Languages

We propose to use ontologies for: describing the static se-
mantics of DSMLs (i.e., model enrichment) and discovering
a common reference ontology (i.e., semi-automatic identi-
fication of mappings between MMs). A common ontology
will ensure semantic interop. and coherence between two
adjacent view DSMLs. It can be discovered by determining
the mapping between two ontologies, each describing the
semantics of one DSML. For this, we promote this approach:

1) Lift. It transforms each MM into an ontology. We im-
plement it through a MT between the meta-MM describing
the modeling technical space (e.g., Ecore1) and the meta-
MM describing the ontology space (e.g., OWL DL2). OWL
DL is particularly suited for our approach, as its definition
is already given in the form of a MM.

2) Enrich. The lifted MMs are enriched by applying
patterns. Finding correspondences between relationshipsof
different MMs can be addressed this way. Patterns similar to
that of ”Association Class Introduction” [14] can be used.
A new class is introduced in the ontology similarly to an
association class in UML, thus transforming relationships
from MMs into concepts in ontologies. We implement it
through an endogenous MT, with input and output the meta-
MM describing the ontology space.

1http://www.eclipse.org/modeling/emf, accessed 24th November 2010
2http://www.omg.org/spec/ODM/1.0/, accessed 24th November2010

3) Align. In the ontology technical space we apply
ontology-specific techniques [15] (e.g., alignment) on the
lifted and enriched MMs of two adjacent views, thus discov-
ering their intersection. Because the lifted and enriched MMs
describe semantics of DSMLs, the discoveredshared ontolo-
gies represent in fact the semantics of the MTs between
the original MMs. Rediscovering these shared ontologies
each time the (lifted and enriched) MMs describing static
semantics of DSMLs evolve, is what we mean by ensuring
(static) semantic interop. between two DSMLs.

4) Generate. MTs which have as input and/or as output
other MTs are called Higher Order model Transformations
(HOTs). We use shared ontologies as input for HOTs be-
tween the meta-MM describing the ontology technical space
and the meta-MM describing the MT space (e.g., QVT3),
which generate MTs between the original MMs.

Consequently, we can automatically generate and evolve
MTs for a family of DSMLs, through their connections with
shared ontologies, thus ensuring their syntactic and static
semantic interop.. The whole process can be automatized
and thus enables a high rate of reuse and faster iterations on
evolving MMs.

C. Related Work

Kappel et al. [14] propose a process which semi-
automatically lifts MMs into ontologies, refactors, enriches,
and then applies ontology matching on them. However, un-
like our approach, they do not use the discovered matchings
to generate MTs. On a more technical point, they implement
the lifting step by specifying a weaving model from which
they generate ATL code, while we use MTs in QVT.

Hoss and Carver [16] propose connecting MMs with
ontologies to assist in software evolution. While they con-
nect MMs with generic ontologies, using what could be
called an alignment strategy, we lift MMs into ontologies,
using a generative strategy. Also, they have to create model
weavings every time new (versions of) MMs are introduced.
In our approach, MTs defined between meta-MMs (cf. e.g.
Sect. IV) are sufficient for handling any MMs.

IV. T ELECOMMUNICATIONS CASE STUDY

Figure 1 exemplifies the proposed approach on two MMs
for the adjacent planes/views Global Functional Plane (GFP)
and Distributed Functional Plane (DFP) of INCM (i.e.,
MMGFP andMMDFP). Each MM describes a DSML for
VPN at GFP [17] and respectively DFP.

Each MM is lifted into an ontology (e.g.,OGFP and
ODFP) by means of a MT (i.e.,MTEcore2OWLDL). This
MT is sufficient for lifting any MM into an ontology, as it
transforms concepts from Ecore, the language (meta-MM)
in which MMs are written, into concepts from OWL DL,
the language in which ontologies are written. To write this

3http://www.omg.org/spec/QVT/1.0/, accessed 24th November2010

23

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

 28 / 29

MM
GFP

MMDFP

O
GFP

O
DFP

O
GFP
+

O
DFP
+

MT
Ecore2OWLDL

MT
OWLDL2OWLDL

MTOWLDL2QVT O
GFP,DFP

MTGFP,DFP

Lift Enrich

Align

Align

Generate

1: 2:

3:

3:

4:

Figure 1. Syntactic and semantic interop. through MTs and ontologies.

MT, we build on the mapping provided by [14], updating it
to the new versions of Ecore and OWL DL.

On each lifted MM (e.g.,OGFP and ODFP), patterns
for refactoring, checking andenrichingare applied through
a MT (i.e., MTOWLDL2OWLDL). Similarly to lifting, this
MT is sufficient for the enrichment of all lifted MMs.

The enriched ontologies (e.g.,O+

GFP and O
+

DFP) are
aligned, resulting a shared ontology (e.g.,OGFP,DFP).

With the shared ontology as input,MTOWLDL2QV T gen-
eratesthe MT between the initial MMs (e.g.,MTGFP,DFP).
Similarly to lifting and enrichment, this MT is sufficient for
the generation of all MTs between the initial MMs.

Currently, we are writing MTs in QVT Relations. For
ontology matching, evaluations [18] suggest ASMOV [19]
as a good mature candidate tool.

V. D ISCUSSION

For Telecommunications, we defend that to manage inter-
operability between distinct graphical models in a viewpoint
approach, interoperability between their meta-models should
be established as well. For this we propose using model
transformations between meta-models and lifting the meta-
models into ontologies. As formulated in this paper, using a
meta-modeling approach combined with ontologies has the
advantage of co-evolving syntactic and semantic bridges that
ensure interoperability between DSMLs. However, this co-
evolution depends greatly on the shared ontology between
views. If this would be poor or even empty, the interoper-
ability bridge would be narrow. Consequently, in order for
the proposed approach to be effective one should first make
sure that the vocabularies for different viewpoints have a fair
amount of concepts in common. This supports the idea that
such an approach would be beneficial especially in the case
of families of modeling languages.

REFERENCES

[1] Study Group XVIII, Principles of Intelligent Network Ar-
chitecture. ITU-T Recommendation Q.1201, International
Telecommunication Union Std., 1992.

[2] TMF Forum, Enhanced Telecom Operations Map (eTOM),
GB921, Release 8.0, TMF Forum Std., November 2008.

[3] The Open Group’s Architecture Forum,TOGAF Version 9
Enterprise Edition, Std.

[4] A. Deursen, P. Klint, and J. Visser, “Domain-specific lan-
guages: an annotated bibliography,”SIGPLAN Not., vol. 35,
no. 6, pp. 26–36, 2000.

[5] G. Booch, J. Rumbaugh, and I. Jacobson,Unified Modeling
Language User Guide. Reading, MA, USA: Addison-Wesley
Professional, 2005.

[6] T. Clark, A. Evans, S. Kent, and P. Sammut, “The MMF
approach to engineering object-oriented design languages,”
in Wksh. on Language Descriptions, Tools and Applications
(LDTA), 2001.

[7] I. Kurtev, J. Bezivin, F. Jouault, and P. Valduriez, “Model-
based DSL frameworks,” inOOPSLA ’06, 2006, pp. 602–616.

[8] Y. Zhang and B. Xu, “A survey of semantic description
frameworks for programming languages,”ACM SIGPLAN
Notices, vol. 39, no. 3, pp. 14–30, March 2004.

[9] V. Peristeras and K. Tarabanis, “The Connection, Communi-
cation, Consolidation, Collaboration Interoperability Frame-
work (C4IF) For Information Systems Interoperability,”Intl.
Jour. of Interoperability in Business Information Systems,
vol. 1, no. 1, pp. 61–72, 2006.

[10] A. Vallecillo, “On the combination of domain specific model-
ing languages,” inProc. of the 6th European Conf. on Mod-
elling Foundations and Applications (ECMFA), ser. LNCS,
vol. 6138, Paris, France, 2010.

[11] I. Ober, A. Abou Dib, L. F́eraud, and C. Percebois, “Towards
Interoperability in Component Based Development with a
Family of DSLs,” inProc. of the 2nd Europ. conf. on Software
Architecture (ECSA), Paphos, Cyprus, 2008, pp. 148–163.

[12] C. Welty, “Ontology research,”AI Magazine, vol. 24, no. 3,
pp. 11–12, 2003.

[13] M.-N. Terrasse, M. Savonnet, E. Leclercq, T. Grison, and
G. Becker, “Do we need metamodels AND ontologies for
engineering platforms?” inProc. of the Intl Wksh on Global
integrated Model Management (GaMMa). New York, NY,
USA: ACM, 2006, pp. 21–28.

[14] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter,
W. Retschitzegger, and M. Wimmer, “Lifting metamodels to
ontologies - a step to the semantic integration of modeling
languages,” inProc. of the ACM/IEEE 9th Intl Conf. on
Model Driven Engineering Languages and Systems (MoD-
ELS/UML), 2006, pp. 528–542.

[15] N. Choi, I. Song, and H. Han, “A survey on ontology
mapping,”ACM Sigmod, vol. 35, no. 3, p. 41, 2006.

[16] A. Hoss and D. Carver, “Towards Combining Ontologies and
Model Weaving for the Evolution of Requirements Models,”
in Innovations for Req. Analysis. From Stakeholders’ Needs
to Formal Designs, ser. LNCS, 2008, vol. 5320, pp. 85–102.

[17] V. Chiprianov, Y. Kermarrec, and P. Alff, “A Model-Driven
Approach for Telecommunications Network Services Defini-
tion,” in Proc. of the 15th Open European Summer School
and IFIP TC6. 6 Wksh on The Internet of the Future, ser.
LNCS, 2009, pp. 199–207.

[18] J. Euzenat, A. Ferrara, C. Meilicke, J. Pane, F. Scharffe,
P. Shvaiko, H. Stuckenschmidt, O. Svab-Zamazal, V. Svatek,
and C. Trojahn dos Santos, “First results of the Ontology
Alignment Evaluation Initiative 2010,” inProc. of the 5th
Intl. Wksh. on Ontology Matching (OM), with the 9th Intl.
Semantic Web Conf. (ISWC), Shanghai, China, 2010.

[19] Y. R. Jean-Mary, E. P. Shironoshita, and M. R. Kabuka, “On-
tology matching with semantic verification,”Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 7,
no. 3, pp. 235 – 251, 2009.

24

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-130-4

Powered by TCPDF (www.tcpdf.org)

 29 / 29

http://www.tcpdf.org

