
PATTERNS 2010

The Second International Conferences on Pervasive Patterns and Applications

November 21-26, 2010 - Lisbon, Portugal

ComputationWorld 2010 Editors

Ali Beklen, IBM Turkey, Turkey

Jorge Ejarque, Barcelona Supercomputing Center, Spain

Wolfgang Gentzsch, EU Project DEISA, Board of Directors of OGF, Germany

Teemu Kanstren, VTT, Finland

Arne Koschel, Fachhochschule Hannover, Germany

Yong Woo Lee, University of Seoul, Korea

Li Li, Avaya Labs Research - Basking Ridge, USA

Michal Zemlicka, Charles University - Prague, Czech Republic

 1 / 98

PATTERNS 2010

Foreword

The Second International Conferences on Pervasive Patterns and Applications [PATTERNS 2010],
held between November 21 and 26 in Lisbon, Portugal, targeted the application of advanced patterns,
at-large. In addition to support for patterns and pattern processing, special categories of patterns
covering ubiquity, software, security, communications, discovery and decision were considered. As a
special target, the domain-oriented patterns cover a variety of areas, from investing, dietary, forecast,
to forensic and emotions. It is believed that patterns play an important role on cognition, automation,
and service computation and orchestration areas. Antipatterns come as a normal output as needed
lessons learned.

We take here the opportunity to warmly thank all the members of the PATTERNS 2010 Technical
Program Committee, as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors who dedicated much of their time and efforts to contribute to PATTERNS 2010. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the PATTERNS 2010 organizing
committee for their help in handling the logistics and for their work to make this professional meeting a
success.

We hope that PATTERNS 2010 was a successful international forum for the exchange of ideas
and results between academia and industry and for the promotion of progress in the areas pervasive
patterns and applications.

We are convinced that the participants found the event useful and communications very open.
We also hope the attendees enjoyed the beautiful surroundings of Lisbon, Portugal.

PATTERNS 2010 Chairs:

Eva Blomqvist, STLab ISTC-CNR, Italy
Markus Goldstein, DFKI (German Research Center for Artificial Intelligence GmbH), Germany
Teemu Kanstren, VTT, Finland
Fritz Laux, Reutlingen University, Germany
Herwig Manaert, University of Antwerp, Belgium
Guenter Neumann, DFKI (German Research Center for Artificial Intelligence GmbH), Germany
Juan Pelaez, U.S. Army Research Laboratory, USA
Lei Shu, Osaka University, Japan
Zhenzhen Ye, iBasis, Inc., Burlington, USA
Michal Zemlicka, Charles University - Prague, Czech Republic

 2 / 98

PATTERNS 2010

Committee

PATTERNS Advisory Chairs

Academia
Herwig Manaert, University of Antwerp, Belgium
Michal Zemlicka, Charles University - Prague, Czech Republic
Fritz Laux, Reutlingen University, Germany
Lei Shu, Osaka University, Japan

Research Institutes
Teemu Kanstren, VTT, Finland
Guenter Neumann, DFKI (German Research Center for Artificial Intelligence GmbH), Germany
Juan Pelaez, U.S. Army Research Laboratory, USA
Eva Blomqvist, STLab ISTC-CNR, Italy
Markus Goldstein, DFKI (German Research Center for Artificial Intelligence GmbH), Germany
Zhenzhen Ye, iBasis, Inc., Burlington, USA

PATTERNS 2010 Technical Program Committee

Junia Anacleto, Federal University of Sao Carlos, Brazil
Francesca Arcelli, University of Milano Bicocca, Italy
Li Bai, University of Nottingham, UK
Eva Blomqvist, STLab ISTC-CNR, Italy
Dave Bustard, University of Ulster-Coleraine, UK
Jean-Charles Créput, Universite de Technologie de Belfort Montbeliard (UTBM), France
Angélica de Antonio, Universidad Politécnica de Madrid (UPM), Spain
Alessandra Scotto di Freca, University of Cassino, Italy
Kamil Dimililer, Near East University, Turkey
Petre Dini, Concordia University, Canada / IARIA, USA
Jürgen Ebert, Universität Koblenz-Landau, Germany
Eduardo B. Fernandez, Florida Atlantic University - Boca Raton, USA
Francesco Fontanella, Università degli Studi di Cassino, Italy
Harald Gjermundrod, University of Nicosia, Cyprus
Markus Goldstein, DFKI (German Research Center for Artificial Intelligence GmbH), Germany
Carmine Gravino, University of Salerno - Fisciano, Italy
Yann-Gaël Guéhéneuc, École Polytechnique de Montréal, Canada
Mohamed Farouk Abdel Hady, University of Ulm, Germany
Jon Hall, The Open University, UK
Chih-Cheng Hung, Southern Polytechnic State University, USA
Shareeful Islam, Technische Universität München, Germany
Hermann Kaindl, TU-Wien, Austria
Teemu Kanstren, VTT, Finland

 3 / 98

Christian Kruschitz, University of Klagenfurt, Austria
Richard Laing, The Robert Gordon University, Aberdeen, UK
Fritz Laux, Reutlingen University, Germany
Gyu Myoung Lee, Institut Telecom, Telecom SudParis, France
Haim Levkowitz, University of Massachusetts Lowell, USA
Chendong Li, University of Connecticut, USA
Chung-Horng Lung, Carleton University - Ottawa, Canada
Herwig Manaert, University of Antwerp, Belgium
Cristina Marrocco, University of Cassino, Italy
Paul Marshall, The Open University, UK
Constandinos Mavromoustakis, University of Nicosia, Cyprus
Murali Medidi, Boise State University, USA
Gerrit Meixner, German Research Center for Artificial Intelligence (DFKI)- Kaiserslautern, Germany
Ivan Mistrík, Independent Consultant. Heidelberg, Germany
Guenter Neumann, DFKI (Deutsches Forschungszentrum fuer Kuenstliche Intelligenz GmbH), Germany
Javier Ortega-Garcia, Universidad Autonoma de Madrid, Spain
Christian Percebois, University of Toulouse, IRIT, France
Juan Pelaez, U.S. Army Research Laboratory, USA
Agostino Poggi, Università degli Studi di Parma, Italy
Mar Pujol, Universidad de Alicante, Spain
Caludia Raibulet, University of Milano, Italy
Yonglin Ren, University of Ottawa, Canada
Joel Rodrigues, Instituto de Telecomunicações, University of Beira Interior, Portugal
Lei Shu, Osaka University, Japan
Vladimir Stantchev, Berlin Institute of Technology, Germany
Horia-Nicolai Teodorescu, "Gheorghe Asachi" Technical University of Iasi / Romanian Academy, Romania
Laurent Wendling, University Paris Descartes (Paris V), France
Reuven Yagel, Jerusalem College of Engineering, Israel
Zhenzhen Ye, iBasis, Inc., Burlington, USA
Michal Zemlicka, Charles University - Prague, Czech Republic

 4 / 98

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 98

Table of Contents

A Formal Language of Pattern Compositions
Ian Bayley and Hong Zhu

1

PLOP: A Pattern for Learning Objects for Programming
Luis Alberto Alvarez-Gonzalez, Valeria Henriquez, Erick Araya, and Fabiola Cardenas

7

Pattern Catalog for Capability Diagnostics and Improvement of Service-oriented Enterprise Architectures
Alfred Zimmermann, Eckhard Ammann, and Fritz Laux

13

Towards A Taxonomy of Dynamic Invariants in Software Behaviour
Teemu Kanstren

20

Towards a Common Pattern Language for Ubicomp Application Design
Rene Reiners

28

Detection of Generic Micro-architectures on Models
Cedric Bouhours, Herve Leblanc, Christian Percebois, and Thierry Millan

34

A Benchmark Platform for Design Pattern Detection
Francesca Arcelli Fontana, Marco Zanoni, and Andrea Caracciolo

42

Tissue Classification from CT of Liver Volumetric Dataset Using 3D Relational Features
Wan Nural Jawahir Hj Wan Yussof and Hans Burkhardt

48

Highlighting the Essentials of the Behaviour of Reactive Systems in Test Descriptions Using the Behavioural
Atomic Element
Lars Ebrecht and Karsten Lemmer

53

CUX Patterns Approach: Towards Contextual User Experience Patterns
Marianna Obrist, Daniela Wurhofer, Elke Beck, and Manfred Tscheligi

60

A new pattern template to support the design of security architectures
Santiago Moral-Garcia, Roberto Ortiz, Santiago Moral-Rubio, Belen Vela, Javier Garzas, and Eduardo
Fernandez-Medina

66

A Pattern Collection for Privacy Enhancing Technology
Cornelia Graf, Peter Wolkerstorfer, Arjan Geven, and Manfred Tscheligi

72

Multiple Pattern Matching
Stephen Fulwider and Amar Mukherjee

78

 1 / 2 6 / 98

Definition and Reuse of Analysis Patterns for Real-Time Applications
Hela Marouane, Saoussen Rekhis, Rafik Bouaziz, Claude Duvallet, and Bruno Sadeg

84

Powered by TCPDF (www.tcpdf.org)

 2 / 2 7 / 98

A Formal Language of Pattern Compositions

Ian Bayley and Hong Zhu
Department of Computing and Electronics, Oxford Brookes University

Oxford OX33 1HX, UK. Email: ibayley@brookes.ac.uk, hzhu@brookes.ac.uk

Abstract—In real applications, design patterns are almost
always to be found composed with each other. Correct ap-
plication of patterns therefore relies on precise definition
of these compositions. In this paper, we propose a set of
operators on patterns that can be used in such definitions.
These operators are restriction of a pattern with respect to
a constraint, superposition of two patterns, and a number
of structural manipulations of the pattern’s components. We
also report a case study on the pattern compositions suggested
informally in the Gang of Four book in order to demonstrate
the expressiveness of the operators.

Keywords-Design patterns, Pattern composition, Object ori-
ented design, Formal methods.

I. INTRODUCTION

As codified reusable solutions to recurring design prob-
lems, design patterns play an increasingly important role
in the development of software systems [1], [2]. In the
past few years, many such patterns have been identified,
catalogued [1], [2], formally specified [3]–[6], and included
in software tools [7]–[9]. Although each pattern is specified
separately, they are usually to be found composed with
each other in real applications. It is therefore imperative to
represent pattern compositions precisely and formally so that
the correct usage of composed patterns can be verified and
validated.

However, while many approaches to pattern formalisation
have been proposed, very few authors have investigated
pattern composition formally. In [10], Taibi discussed com-
position but went no further than illustrating it with an
example. In [11], we formally defined a pattern composition
operator. It is universal but not very flexible for practical
uses. In this paper, we revise the work, taking a radically
different approach. Instead of defining a single universal
composition operator, we formally define a set of operators,
with which each sort of composition can be accurately and
precisely expressed.

The remainder of the paper is organised as follows.
Section II reviews the different approaches to pattern for-
malisation to give the background of the paper. Section
III formally defines the set of six operators. Section IV
gives an example to illustrate how compositions can now
be specified. Section V reports a case study in which we
used the operators to realise all the pattern combinations
suggested by the Gang of Four (GoF) book [1]. Section VI

concludes the paper with a discussion of related works and
future work.

II. BACKGROUND

In the past few years, researchers have advanced several
approaches to the formalisation of design patterns. In spite
of the differences in their formalisms, the basic underlying
ideas are quite similar. In particular, valid pattern instances
are usually specified using statements that constrain their
structural features and sometimes their behavioural features
too. The structural constraints are typically assertions that
certain types of components exist and have a certain static
configuration. The behavioural constraints, on the other
hand, detail the temporal order of messages exchanged
between the components that realise the designs.

The various approaches to pattern formalisation differ
in how they represent software systems and in how they
formalise the predicate. For example, Eden’s predicates are
on the source code of object-oriented programs [5] but they
are limited to structural features. Taibi’s approach in [4] is
similar but he takes the further step of adding temporal logic
for behavioural features. In contrast, our predicates are built
up from primitive predicates on UML class and sequence
diagrams [6]. These primitives are induced from GEBNF,
which is an extension of BNF for graphical modelling lan-
guages [12]. Nevertheless, the operators on design patterns
used in this paper are generally applicable and independent
of the particular formalism used. Still, the examples used
to illustrate the operators and our formalism come from our
previous work [6].

As examples, Figures 1 and 2 show the specification
of the Object Adapter and Composite design patterns. The
class diagrams from the GoF book have been reproduced to
enhance readability. The primitive predicates and functions
we use are explained in Table I. All of them are either
induced directly from the GEBFN definition of UML, or
are defined formally in terms of such predicates.

In general, a design pattern P can be defined abstractly
as an ordered pair 〈V, Pr〉, where Pr is a predicate on
the domain of some representation of software systems, and
V is a set of declarations of variables free in Pr. In other
words, Pr specifies the structural and behavioural features
of the pattern and V specifies its components. Let V =
{v1 : T1, · · · , vn : Tn}, where vi are variables that range
over the type Ti of software elements. The semantics of the

1

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 8 / 98

Specification 1: (Object Adapter Pattern)
Components

1) Target,Adapter,Adaptee ∈ classes,
2) requests ⊆ Target.opers,
3) specreqs ⊆ Adaptee.opers

Static Conditions
1) Adapter−−�+ Target, Adapter −→+ Adaptee,
2) CDR(Target)

Dynamic Conditions
1) ∀o ∈ requests · ∃o′ ∈ specreqs · (calls(o, o′))

Figure 1. Specification of Object Adapter Pattern

Specification 2: (Composite)
Components

1) Component, Composite ∈ classes,
2) Leaves ⊆ classes,
3) ops ⊆ Component.opers

Static Conditions
1) ops �= ∅
2) ∀o ∈ ops.isAbstract(o),
3) ∀l ∈ Leaves · (l −−�+ Component

∧ ¬(l
−→+ Component))
4) isInterface(Component)
5) Composite−−�∗ Component
6) Composite
−→+ Component
7) CDR(Component)

Dynamic Conditions
1) any call to Composite causes follow-up calls

∀m ∈ messages · ∃o ∈ ops ·
(toClass(m) = Composite ∧m.sig ≈ o ⇒
∃m′ ∈ messages · calls(m,m′) ∧m′.sig ≈ m.sig)

2) any call to a leaf does not
∀m ∈ messages · ∃o ∈ ops ·
toClass(m) ∈ Leaves ∧m.sig ≈ o ⇒
¬∃m′ ∈ messages . calls(m,m′) ∧m′.sig ≈ m.sig)

Figure 2. Specification of Composite Pattern

specification is a ground predicate in the form.

∃v1 : T1 · · · ∃vn : Tn · (Pr) (1)

In the sequel, we write Spec(P) to denote the predicate
(1) above, V ars(P) for the set of variables declared in V ,
and Pred(P) for the predicate Pr.

We can formally define the conformance of a design
model m to a pattern P , written as m |= P , and reason
about the properties of instances based on the patterns they

Table I
THE FUNCTIONS AND PREDICATES USED IN THE EXAMPLES

ID Meaning

classes The set of class nodes in the class diagram
opers The operations contained in the class node
sig The signature of the message
X −−�+ Y Class X inherits class Y directly or indirectly
X −→+ Y There is an association from class X to Y

directly or indirectly
X �−→+ Y There is an composite or aggregate relation from

X to Y directly or indirectly
isInterface(X) Class X is an interface
CDR(X) No messages are sent to a subclass of X from

outside directly
calls(x, y) Operation x calls operation y
isAbstract(op) Operation op is abstract
toClass(m) The class that message m is sent to
X ≈ Y Operations X and Y share the same name

conform to, but we omit the details here for the sake of
space. Readers are referred to [6] and [12].

III. OPERATORS ON PATTERNS

We now formally define the operators on design patterns.

A. Restriction operator

The restriction operator was first introduced in our previ-
ous work [11], where it is called the specialisation operator.

Definition 1: (Restriction operator)
Let P be given pattern and c be a predicate defined on
the components of P . A restriction of P with constraint c,
written as P [c], is the pattern obtained from P by imposing
the predicate c as an additional condition on the pattern.
Formally,

1) V ars(P [c]) = V ars(P),
2) Pred(P [c]) = (Pred(P) ∧ c). ��
For example, a variant of Composite pattern in which

there is only one leaf, called Composite1 in the sequel,
can be formally defined as follows.

Composite1 = Composite[#Leaves = 1].

Restriction is frequently used in the case study, particu-
larly in the form P [u = v] for pattern P and variables u
and v of the same type. This expression denotes the pattern
obtained from P by unifying u and v to make them the same
element.

The restriction operator does not introduce any new com-
ponents into the structure of a pattern, but the following
operators do.

B. Superposition operator

Definition 2: (Superposition operator)
Let P and Q be two patterns. Assume that the compo-

nent variables of P and Q are disjoint, i.e., V ars(P) ∩
V ars(Q) = ∅. The superposition of P and Q, written P ∗Q,
is a pattern that consists of both pattern P and pattern Q as
is formally defined as follows.

2

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 9 / 98

1) V ars(P ∗Q) = V ars(P) ∪ V ars(Q);
2) Pred(P ∗Q) = Pred(P) ∧ Pred(Q). ��
For example, the superposition of Composite and Adapter

patterns, Composite ∗ Adapter, requires each instance to
contain one part that satisfies the Composite pattern and
another that satisfies the Adapter pattern. These parts may or
may not overlap, but the following expression does enforce
an overlap, requiring that a class in Leaves be the target of
an Adapter.

(Composite ∗Adapter)[Target ∈ Leave]

The requirement that V ars(P) and V ars(Q) be disjoint
is easy to fulfil using renaming. An appropriate notation for
this will be introduced later.

C. Extension operator

Definition 3: (Extension operator)
Let P be a pattern, V be a set of variable declarations that

are disjoint with P ’s component variables (i.e., V ars(P) ∩
V = ∅), and c be a predicate with variables in V ars(P)∪V .
The extension of pattern P with components V and linkage
condition c, written as P#(V • c), is defined as follows.

1) V ars(P#(V • c)) = V ars(P) ∪ V ;
2) Pred(P#(V • c)) = Pred(P) ∧ c. ��

D. Flatten operator

Definition 4: (Flatten Operator)
Let P be a pattern, V ars(P) = {x : P(T), x1 :

T1, · · · , xk : Tk} and Pred(P) = p(x, x1, · · · , xk), and
x′ ∈ V ars(P). The flattening of P on variable x, written
P ⇓ x\x′, is the pattern that has the following property.

1) V ars(P ⇓ x\x′) = {x′ : T, x1 : T1, · · · , xk : Tk};
2) Pred(P ⇓ x\x′) = p′(x′, x1, · · · , xk),

where p′(x′, x1, · · · , xk) = p({x′}, x1, · · · , xk). That is, the
predicate p′ is obtained by replacing all free occurrences of
variable x with expression {x′}. ��

Note that, P(T) denotes the power set of T . For example,
in the specification of Composite pattern, the component
variable Leaves ⊆ classes is a subset of classes. Its type
is P(classes).

For example, the single-leaf variant of Composite pattern
Composite1 can also be defined as follows.

Composite1 = Composite ⇓ Leaves\Leaf
As an immediate consequence of this definition, we have

the following property. For x1 = x2 and x′
1 = x′

2,

(P ⇓ x1\x′
1) ⇓ x2\x′

2 = (P ⇓ x2\x′
2) ⇓ x1\x′

1. (2)

Therefore, we can overload the ⇓ operator to a set of com-
ponent variables. Let X be a subset of P ’s component vari-
ables all of power set type, i.e., X = {x1 : P(T1), · · · , xn :
P(Tn)} ⊆ V ars(P), n ≥ 1 and X ′ = {x′

1, · · · , x′
n} such

that X ′ ∩ V ars(P) = ∅. We write P ⇓ X\X ′ to denote
P ⇓ x1\x′

1 ⇓ · · · ⇓ xn\x′
n.

Note that our pattern specifications are closed formulae,
containing no free variables. Although the names given to
component variables greatly improve readability, they have
no effect on semantics so, in the sequel, we will often omit
new variable names and write simply P ⇓ x to represent
P ⇓ x\x′.

E. Generalisation operator

Definition 5: (Generalisation operator)
Let P be a pattern, x ∈ V ars(P) = {x : T, x1 :

T1, · · · , xk : Tk}. The generalisation of P on variable x,
written P ⇑ x\x′, is defined as follows.

1) V ars(P ⇑ x\x′) = {x′ : P(T), x1 : T1, · · · , xk : Tk},
2) Pred(P ⇑ x\x′) = ∀x ∈ x′ · Pred(P).��
For example, we can define the Composite pattern as a

generalisation of the single-leaf variant Composite1, i.e.,

Composite = Composite1 ⇑ Leaf\Leaves
We will use the same syntactic sugar for ⇑ as we do for ⇓.

We will often omit the new variable name and write P ⇑ x.
Thanks to an analogue of Equation 2, we can and also will
promote the operator ⇑ to sets.

F. Lift operator

The lift operator was first introduced in our previous
work [11]. This time, we decompose the definition of a
pattern slightly differently, into the existentially quantified
class components CV ars(P) and the remainder of the
predicate OPred(P), which includes the declarations of the
operations, existentially quantified at the outermost. Then we
can define lifting as follows.

Definition 6: (Lift Operator)
Let P be a pattern and CV ars(P) = {x1 : T1, · · · , xn :

Tn}, n > 0 and OPred(P) = p(x1, · · · , xn). Let X =
{x1, · · · , xk}, 1 ≤ k < n, be a subset of the variables in the
pattern. The lifting of P with X as the key, written P ↑ X ,
is the pattern defined as follows.

1) CV ars(P ↑ X) = {xs1 : PT1, · · · , xsn : PTn},
2) OPred(P ↑ X) = ∀x1 ∈ xs1 · · · ∀xk ∈ xsk ·∃xk+1 ∈

xsk+1 · · · ∃xn ∈ xsn · p(x1, · · · , xn). ��
Where the key set is singleton, we omit the set brackets for
simplicity, so we write P ↑ x instead of P ↑ {x}.

For example, Figure 3 is the pattern defined by expression
Adapter ↑ Target.

Informally, lifting a pattern P results in a pattern P ′ that
contains a number of instances of pattern P . For example,
Adapter ↑ Target is the pattern that contains a number of
Targets of adapted classes. Each of these has a dependent
Adapter and Adaptee class configured as in the original
Adapter pattern. In other words, the component Target in
the lifted pattern plays a role similar to the primary key in
a relational database.

3

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 10 / 98

Specification 3: (Lifted Object Adapters Pattern)
Components

1) Targets,Adapters,Adaptees ⊆ classes,
Conditions

1) ∀Adaptee ∈ Adaptees · ∃specreqs ∈ Adaptee.opers,
2) ∀Target ∈ Targets · ∃requests ∈ Target.opers,
3) ∀Target ∈ Targets · CDR(Target),
4) ∀Target ∈ Targets ·

∃Adapter ∈ Adapters,Adaptee ∈ Adaptees·
a) Adapter−−� Target,
b) Adapter −→ Adaptee,
c) ∀o ∈ Target.requests ·

∃o′ ∈ Adaptee.specreqs · (calls(o, o′)))

Figure 3. Specification of Lifted Object Adapter Pattern

IV. EXAMPLE

The composition of patterns is often represented graph-
ically with Pattern:Role annotations [13]. An example is
Figure 4, taken from [13] (p131). It is composed from
five patterns: Command, Command Processor, Strategy,
Composite, and Memento. The composition can be easily
expressed as an expression in the operators of this paper.

First though, we must introduce a notation for renaming
the variables in one pattern to make them disjoint from those
in another. Let x ∈ V ars(P) be a component of pattern P
and x′ /∈ V ars(P). The systematic renaming of x to x′ is
written as P [x′ := x]. Obviously, the renaming does not
affect model satisfiability. (Formally, for all models m, we
have m |= P ⇔ m |= P [x′ := x].) Let P [v := x = y] be
syntactic sugar for P [x = y][v := x][v := y], i.e., both x and
y are renamed and equated to v. Similarly, let P [v := x ∈ y]
abbreviate P [x ∈ y][v := x].

Then we can translate each annotation group as a single
restriction, representing the diagram with the following
expression:

(Command ∗ CommandProcessor ∗ Strategy∗
Composite ∗Memento)

[commandProcessor := context]
[command := CPcommand = component ∈ caretakers]
[(composite ∈ caretakers)
∧ (composite ∈ concreteCommands)]

[concreteCommand := composite]
[concreteCommands := leaf ∈ caretakers]
[Logging := strategy]

[ConcreteLoggingStrategies := concreteStrategies]

Note that compositions such as this, representable in a
graphical form with annotations, can always be represented
using the restriction and superposition operators, but not all
the examples in the next section, so the graphical notation is
not expressive enough, nor are the two operators when used
on their own.

V. CASE STUDY

In the GoF book, the documentation for each pattern
concludes with a brief section entitled Related Patterns.

As the title suggests, it compares and contrasts patterns,
but more importantly, it makes suggestions for how other
patterns may be used with the one under discussion. These
suggestions are summarised in a diagram on the back cover.
Our case study is to formalise them all as expressions with
the operators from this paper and predicates specifying the
patterns; the latter can be found in [6]. For example, on page
106 of the GoF book, it is stated that “A Composite is what
the builder often builds”. This can be formally specified as
follows.

(Builder ∗ Composite)[Product = Component].

Figure 5 shows our coverage of these relationships, based
on the aforementioned GoF diagram, with each numbered
relationship summarised in the corresponding row of Table
II. Composite1 is as defined in Section III (any of the
equivalent definitions can be used) and the notation P.x
denotes the variable x in pattern P .

Five new arrows have been added to the diagram and
numbered in bold font. These relationships were discussed
in GoF but omitted from its version of diagram. We were
still able to formalise them because GoF contained the
information we needed to do so. On the other hand, four
arrows from the original diagram have been kept but la-
belled with asterisks in place of numbers. These are the
relationships that do not represent compositions and thus
could not be formalised as expressions. In particular, it is a
specialisation relation that links Composite and Interpreter,
which can be formally proved; see [14]. The relationship
between Decorator and Strategy is a comparison of the two,
not a composition suggestion, so is the relationship between
Strategy and Template Method. That between Iterator and
Visitor, on the other hand, has not been formalised for the
different reason that it is mentioned in GoF only on the
diagram, and not expanded upon in the main text.

The case study has demonstrated that the operators defined
in this paper are expressive to define compositions of design
patterns.

VI. CONCLUSION

In this paper, we proposed a set of operators on design
patterns that enable compositions to be formally defined
with flexibility. We illustrated the operators with examples.
We also reported a case study of the relationships between
design patterns suggested by GoF [1]. It demonstrated
the expressiveness of the operators in the composition of
patterns.

Formal reasoning about both design patterns and their
compositions can be naturally supported by formal deduction
in first-order logic. This activity is well understood, and well
supported by software tools such as theorem provers. In the
case study, we have noticed that some pattern compositions
can be represented in different but equivalent expressions.
For example, we have seen in Section III that Composite1

4

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 11 / 98

Command Processor: command processor
Strategy: context Strategy: strategy

Memento: memento

Client Command
Processor Logging

Command
Concrete
Logging

Strategy B

Concrete
Logging

Strategy A

Memento Concrete
Command A

Concrete
Command B

Composite
Command

Application

Memento: originator

Command: concrete command
Composite: leaf
Memento: caretaker

Command: concrete command
Composite: composite
Memento: caretaker

Strategy: concrete strategy

Command Processor: command
Command: command
Composite: component
Memento: caretaker

Figure 4. Example of pattern composition represented in the form of Pattern:Role annotation

* Defining
grammar

* Defining
traversal

* Changing Skin
versus guts

(25) Sharing
strategies

(24)

(23) Sharing
states

(21) Complex
dependency
management

(22)

(20) Saving
state of iteration

(19)

(18)

(17) Avoiding
hysteresis

(16) Single
instance

(15)
(14)

(13) Often
uses

(12) Single
instance

(11) Configure
factory dynamically

(10) Implement
using

(9) Adding
operations

(8) Sharing
terminal symbols

(7) Composed
using

(6) Adding
operations

(2) Defining
the chain

(4) Sharing
composites

(1) Creating
composites

Composite

Iterator

Builder

Decorator

Strategy

Flyweight

Interpreter

Visitor

Memento
Command

Chain of
Responsibility

Observer

Mediator

Template
Method

Factory
MethodAbstract

Factory

Singleton
Prototype

Bridge ProxyAdapter

(5) Enumerating
children

(3) Adding
responsibilities

to objects

Facade

State

* Defining
algorithm

steps

Figure 5. Case Study on Formalising Relationships between GoF Patterns

5

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 12 / 98

Table II
FORMAL DEFINITIONS OF THE COMPOSITIONAL RELATIONSHIPS BETWEEN PATTERNS

No. Definition of the compositional relationship

1 (Builder ∗ Composite)[Product = Component]
2 (Composite ∗ ChainOfResponsibility)[Handler = Component ∧Operation = Handle ∧multiplicity = 1]
3 (Composite1 ∗Decorator)[Composite1.Component = Decorator.Component∧

Composite1.Operation = Decorator.Operation ∧ ConcreteComponent = Leaf ∧Decorator = Composite1]
4 (Composite ∗ F lyweight)[Leafs = {ConcreteF lyweight,UnsharedConcreteF lyweight}]
5 (Composite ∗ Iterator′)[ConcreteAggregate = Component]
6 (Composite ∗ V isitor)[Element = Component ∧Operation = Accept(v) ∧ ConcreteElements = {Leaf, Composite}]
7 (Composite ∗ Command)[Command = Component ∧ execute = operation ∧ConcreteCommand = Leaf]
8 (Interpreter ∗ F lyweight)[TerminalExpression= F lyweight]
9 (Interpreter ∗ V isitor)[Element = AbstractExpression∧ Interpret = Accept(v)∧

ConcreteElements = {NonTerminalExpression,TerminalExpression}]
10 (AbstractFactory ∗ ((FactoryMethod ↑ Product) ⇑ FactoryMethod))[Creator = AbstractFactory∧

#AnOperations = 1 ∧ createMethods ⊆ FactoryMethods ∧ ConcreteCreators = ConcreteFactories∧
Products = AbstractP roducts ∧AbstractFactory.ConcreteProducts = FactoryMethod.ConcreteProducts]

11 (AbstractFactory ∗ (Prototype ↑ Client))[ConcreteFactories ⊆ Clients∧
CreateProductOperations ⊆ Operations ∧AbstractP roducts ⊆ Prototypes]

12 (AbstractFactory ∗ (Singleton ↑ {Singleton}))[Singletons ⊆ ConcreteFactories]
13 (TemplateMethod ∗ FactoryMethod)[AbstractClass = Creator ∧ TemplateMethod = AnOperation]
14 (AbstractFactory ∗ Facade)[AbstractFactory = Facade]
15 (AbstractFactory ∗Bridge)[AbstractP roducts = {Abstraction, Implementor}]
16 (Facade ∗ Singleton)[Facade = Singleton]
17 (Command ∗Memento)[Originator = Command]
18 (Command ∗ Prototype)[Command = Prototype]
19 (Iterator ∗ FactoryMethod)[Creator = Aggregate ∧ Product = Iterator ∧ ConcreteCreator = ConcreteAggregate∧

ConcreteProduct = ConcreteIterator ∧ AnOperation = CreateIterator]
20 (Memento ∗ Iterator)[ConcreteAggregate = Originator]
21 (Mediator ∗Observer)[ConcreteColleagues = {ConcreteSubject,ConcreteObserver}]
22 (Mediator ∗ Singleton)[ConcreteMediator = Singleton]
23 (F lyweight ∗ State)[F lyweight = State ∧Handle = Operation(extrinsicState)]
24 (State ∗ (Singleton ⇑ Singleton))[Singletons ⊆ ConcreteStates]
25 (Strategy ∗ F lyweight)[Strategy = F lyweight ∧ algorithmInterface = Operation(extrinsicState)]

can be expressed either using the restriction operator or
using the flatten operator, and these two expressions are
equivalent. We are now investigating the algebraic laws that
the operators obey. This will lead us to a calculus of pattern
composition to enable us to reason about the equivalence of
such expressions.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[2] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best
Practices and Design Strategies, 2nd ed. Prentice Hall, 2003.

[3] T. Mikkonen, “Formalizing design patterns,” in Proc. of
ICSE’98. IEEE CS, April 1998, pp. 115–124.

[4] T. Taibi, D. Check, and L. Ngo, “Formal specification of
design patterns-a balanced approach,” Journal of Object Tech-
nology, vol. 2, no. 4, July-August 2003.

[5] E. Gasparis, A. H. Eden, J. Nicholson, and R. Kazman,
“The design navigator: charting Java programs,” in Proc. of
ICSE’08, Companion Volume, 2008, pp. 945–946.

[6] I. Bayley and H. Zhu, “Formal specification of the variants
and behavioural features of design patterns,” Journal of
Systems and Software, vol. 83, no. 2, pp. 209–221, Feb. 2010.

[7] D. Hou and H. J. Hoover, “Using SCL to specify and check
design intent in source code,” IEEE TSE, vol. 32, no. 6, pp.
404–423, June 2006.

[8] N. Nija Shi and R. Olsson, “Reverse engineering of design
patterns from JAVA source code,” in Proc. of ASE’06, Sept.
2006, pp. 123–134.

[9] D. Mapelsden, J. Hosking, and J. Grundy, “Design pattern
modelling and instantiation using dpml,” in Proc. of CRPIT
’02. Australian Computer Society, Inc., 2002, pp. 3–11.

[10] T. Taibi, “Formalising design patterns composition,” Software,
IEE Proceedings, vol. 153, no. 3, pp. 126–153, June 2006.

[11] I. Bayley and H. Zhu, “On the composition of design pat-
terns,” in Proc. of QSIC’08, IEEE CS, pp. 27–36.

[12] H. Zhu, “On the theoretical foundation of meta-modelling
in graphically extended bnf and first order logic,” in Proc.
of TASE 2010. IEEE CS, Aug. 2010, (in press), Available
online at http://cms.brookes.ac.uk/staff/HongZhu/Publications
/TASE2010.pdf

[13] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-
Oriented Software Architecture: On Patterns and Pattern
Languages. John Wiley & Sons Ltd., 2007, vol. 5.

[14] I. Bayley and H. Zhu, “Formalising design patterns in predi-
cate logic,” in Proc. of SEFM’07. IEEE CS, Sept. 2007, pp.
25–36.

6

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 13 / 98

PLOP: A Pattern for Learning Objects for Programming

Luis A. Álvarez-González, Valeria Henríquez N., Erick Araya and Fabiola Cárdenas

Grupo de Investigación en Tecnología de Aprendizaje

Universidad Austral de Chile, Valdivia, Chile

lalvarez@inf.uach.cl, valeria.a.henriquez@gmail.com, earaya@uach.cl, fabiolacardenas@uach.cl

Abstract—This paper shows a Pattern of Interaction to

enhance the construction process of learning objects for

introductory programming languages. All the phases of the

design of the pattern are showed. In the phase of educational

design, some elements of software engineering are included. In

the phase of multimedia design, the information areas are

showed and also the sub-areas for each information area. In

the implementation phase, the class diagrams of the pattern

are showed. Finally, the evaluation and conclusions are

presented.

Keywords-components; learning objects; interacction

patterns; programming languages.

I. INTRODUCTION

At the Universidad Austral de Chile, located in Valdivia,

south of Chile, it is important to incorporate new teaching

methods to enhance learning achievement of their students,

especially in introductory programming courses where it has

been detected a low level of approval
1
, 69% the first,

53% second, the third 55% and 54% in the fourth semester

(courses Info030, Info033, Info043 and Info053 in Figure

1). The data presented clearly demonstrates the need to

develop educational resources to support teaching,

especially for struggling students during their first steps in

programming, as well as support teachers in the production

process of educational material.

Three projects focused in building learning objects

(hereafter LOs) for programming languages were found as

the most important:

 The CodeWitz Project which aims to plan, produce

and evaluate illustrations, animations and visual

support for programming students and lecturers [4].

In the CodeWitz network are participating 29

universities in 21 countries, only the universities of

the network can use the CodeWitz LOs.

 The Project "A Programming System Education

Based on Program Animation", Gakugei

University, Tokyo, Japan, which aims to support

students with problems and help them understand

the performance of different algorithms, with

particular emphasis on implementation and

1
 Information given by the School of Informatics Engineering of

Universidad Austral de Chile, in the period 2006-2008.

changes occurring in the data structures in memory

[6].

 Learning Objects for Introductory Programming

Project, developed at London Metropolitan

University by the staff in the Learning Technology

Research Institute (LTRI) and the Department for

Computing, Communications Technology &

Mathematics, and at Bolton Institute [1].

However, the LOs of these three projects are not

available to any user, neither have a good interaction,

moreover they do not have areas to define problems,

diagrams or metadata, they are written in English and to

build a new one the user must modify an old one. In other

words, there is not a tool to build LO.

Then, how the lecturers can be converted into producers

of LOs? To answer this question we developed a pattern of

interaction and a methodology that allows the creation of

new LOs following a repeatable process that can be used by

any lecturers. With these LOs, it is intended that students

can follow the execution of program at a code level, step by

step in an interactive fashion to be able to learn for

themselves by promoting metacognition, autonomy and

respecting the learning pace, regardless of their location

(available on Internet).

Figure 1. Approval rate in introductory programming courses.

II. A PATTERN OF INTERACTION

A Patterns of Interaction is understood as an effective

solution to a recurring problem, because it promotes the

reuse of good design, shortens development time and

captures the experience of expert designers and

programmers in the development of usable interfaces. They

7

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 14 / 98

condense the experience into a series of guidelines or

recommendations, which can be used by novice developers

to the purpose of acquire the ability to design users

interfaces [3]. To describe the pattern of interaction, the

definition of Welie [8] is used and it is shown in Table 1.

TABLE 1. DESCRIPTION OF THE PATTERNS OF INTERACTION.

Item Description

Name Represent the execution of an algorithm

Author Valeria Henríquez-Norambuena

Problem How to simulate the execution of an algorithm?

Usability Principle Reduce cognitive charge

Context

This pattern can be used in all educative

situations, where you want to understand a running
algorithm

Forces

Representation like debug is easy to understand
for students

Solutions Show diagram, memory, I/O and help areas,

which can represent the algorithm execution.

Consequences Develop LOs using this pattern, allows to create a

mental image about what happens into the

computer when the code is run.

The design of the pattern is based on the methodology of
the University of Guadalajara [2].The stages of this proposal
are: Educational Design, Interaction Design, Functional
Design, Multimedia Design, Implementation and Phase
Labeling and Packaging.

A. Educational Design

The educational design is based on the methodology
developed by the LO Group of the Universidad Autónoma de
Aguascalientes [7]. Lecturers are the creators and developers
of LOs, assistants and students can play the role of
developers, both actors with algorithmic knowledge and
training. Like any methodology that uses patterns, you need
a bank of patterns for your application. It defines the stages
and in each of the activities, artifacts and actors
involved. The process includes four phases: Analysis,
Development, Testing and Implementation. Figure 2 shows
in detail this methodology.

1) Analysis Phase. At this stage, it is important to

identify the competences we want to develop. Based on this,

the author of the content (lecturer), describes in the analysis

document, what are the general requirements of the LO and

obtains the necessary materials. It is essential that the

requirements document is sufficiently clear so that any other

parties can continue the process of creating the LO.

a) Activities: To analyze the problem and to obtain the

necessary materials.

b) Artifacts: Requirements document.

c) Actors: Author (lecturers).
2) Development Phase. The developer selects a pattern

that meets the needs identified in the Requirements
Specification artifact, generated in the previous phase. After
selecting an appropriate standard, we make use of it. This
activity is carried out as joint work between the author and

coach. The pattern is "filled" with the material made by the
author, but contextualisation is provided by the
developer. The collaborative work between the actors
(author and developer) through regular meetings is likely to
decrease the time of the evaluation stage.

a) Activities: To select and to use the pattern.

b) Artifacts: LO and Metadata.

c) Actors: Author (lecturer), developer (programmer).

Figure 2. Educational Design Diagram.

3) Evaluation Phase. This phase assesses the proper
functioning of the LO, i.e. the relevance of content and
design. For this phase a plan which specifies the test cases
and the results expected is produced. On error, the LO will
return to the stage of development to correct the problems
identified.

a) Activities: To design and to implement a test plan.

b) Artifacts: Test plan document, results of the test

plan report.

c) Actors: Evaluator (lecturer).
4) Implantation Phase. After the evaluation phase, the

LO is labeled, packaged and stored. At this stage it is
important to define the standard to be achieved in the
packaging of LO. Then stored in a repository of LO, from
which it can be downloaded and/or performed for the
interaction and subsequent use.

a) Activities: To label, to package and to store the LO.

b) Artifacts: A document specifying details of the

implementation of the LO.

c) Actors: Technical (programmer).

B. Interaction Design

For the construction of the pattern of LOs it was decided
that the areas of pattern information are as follows:

1) Diagram Area: Contains the description of the

problem and the graphical solution using a diagram.

2) Code Area: Contains the solution in a programming

language and simulates the execution of the code. This area

contains the following subareas:

8

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 15 / 98

a) Implementation Area: Solution in a programming

language.

b) Execution Area: Simulation of the potential window

displayed by the user.

c) Memory Area: Simulation of the process that occurs

in the computer's memory.

d) Explanation Area: Explanation of each code

instruction.

e) Control Area: Container buttons.

3) Metadata Area: Contains information related to the

LO.

C. Overview of Pattern Operation

 The program will be run step by step through the
code area, being the student who decides when to
execute the following line of code.

 The program can run automatically and be
interrupted if the student decides so.

 The rewind of the code execution is allowed.

 The line of code will be clearly identified.

 Each instruction is synchronized with the support
area that will display an explanation for the line
running.

 What it is displayed in the memory and execution
areas will depend on the line of code

 A LO developed using the interaction pattern must
cover any basic problem of programming, in any
programming language.

D. Functional Design

To use the pattern, the Adobe Flash CS4 is required. The
implementation requires a standard Web browser with
Adobe Flash Player, which is available in most

browsers. Because the files have .swf extension, a LO can
be executed in any video player.

E. Multimedia Design

For multimedia design of the different components of the
pattern, a model is created. To locate the components, is
considered the usual reasoning to read, that is, from left to
right and from top to bottom. The model contains two
sections of display: the first one, navigation section, which
contains three areas ordered by importance to the student:
diagram area, code area and metadata area. The second one,
located under the navigation section, shows the information
for each area (Diagram, Code and Metadata). Figure 3 shows
the reasoning in the design.

Figure 4 shows the Diagram Area, which consists of two
parts: the left section, an area which describes the problem
to be solved and the right section, an area that contains an
image with a flow diagram to solve the problem. The order
shown allows the student to read the description of the
problem and then imagine a solution in a diagram on the
right side.

Figure 3. Sections Navigations of the pattern.

Figure 4. Diagram area.

Figure 5 shows the Code Area that contains other five

areas described in order of importance:

 Implementation Area, which contains text that
represents the solution in a programming language.

 Explanation Area contains text synchronized with
the Implementation Area that displays information
explaining the statement being executed in the code.

 Execution Area. It may contain text or images that
simulate the inputs and outputs of the
algorithm. This area is the third in importance,
because it gives the student an idea of what should
happen on the screen of the computer when the code
is run.

 Memory Area. Contains animations or images that
simulate the processes occurring in the computer
memory when the code is run. These changes are not
obvious to the student, therefore, lies in fourth place
of importance.

 Control Area. Contains buttons that control the
implementation of LO.

Figure 6 shows the area of metadata. This area contains a
table with information related to the LO. For the
metadata was considered a subset of the fields suggested
by the standard committees of the IEEE Learning
Technologies [5].

9

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 16 / 98

Figure 5. Code area.

Figure 6. Metadata area.

F. Implementation

After the previous stages a LO is built, using Adobe
Flash CS4 tools and the ActionScript 3 programing
language. For the correct operation of the pattern three files

are necessaries (see Figure 7): one with a .fla extension,

which contains the pattern design, and two files with .as

extension: Patron.as that handles the functionality of the

standard and Mensaje.as controls the display of error

messages (for example data entry is required and the user
does not enter any value).

G. Labelling and Packaging

 For the development of the pattern of interaction the
labeling and packaging process was modified to the creation

of a file with.rar extension, that contains the pattern and

also four LO samples (HelloWorld,

HolaNombre, Addition and Selection). The sample
LOs were built during a validation workshop.

Figure 7. Pattern Class Diagram.

III. VALIDATION OF THE METHODOLOGY AND PATTERN

OF INTERACTION

The validation of the proposed methodology and the
pattern of interaction were done through the completion of
two workshops and involved a group of six lecturers and
four assistant students. Most lecturers give classes in
programming at the same university.

A. Validation Workshop

The validation workshop was practical and considered three
stages.

 Exposure of the general aspects, of the motivations
and descriptions of the interaction pattern, including
the educational design.

 Practical activities. Participant lecturers took the role
of each actor, i.e., educational designer, technical
developer and students following a LO. All these
activities were conducted in order to gain a better
understanding of the methodology (educational
design) and the pattern.

 Instrument validation. Implementation of an online
survey to participants of the workshop was
applied. The survey form contains two sections:

10

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 17 / 98

The first seeks to validate the three criteria to be
considered when using the pattern of interaction, that
is, areas of information, multimedia content and the
interaction of LO with the student.
The second refers to the pedagogical design, which
seeks to validate the possible impact of using it in
the development of LO.
This was aimed at validating this project as a
solution to the identified needs.

B. Validation Results

 Considering nine responses of ten participants in the
workshops and a score from 1 to 5, according to Likert’s
scale (http://es.wikipedia.org/wiki/Escalas_Likert), being 1
strongly disagree and 5 strongly agree. The survey results of
the interaction pattern can be seen in Table 2., the average
assessment was 4.2 points. It should be noted that the
question N° 2 related to sub-areas of information, look better
evaluated with 4.7 points.

TABLE 2. SURVEY RESULTS OF VALIDATION PATTERN

Nº Questions Score

1 The three areas of information (Diagram, Code and

Metadata) seem sufficient for learning a basic

algorithmic problem?

4,4

2 The subareas (Problem, Solution Diagram, Solution,

Explanation, Implementation, Memory and Control)

seem sufficient for learning a basic algorithmic
problem?

4,7

3 Do you think the use of the PLOP interaction pattern

for the creation of learning objects may help improve

the performance of struggling students in introductory
programming courses?

4,0

4 The interaction with the areas and subareas are

natural for you?

4,0

5 Do you think that the images, text and buttons used

are appropriate?

4,4

6 Do you think the use of the pattern of interaction

could be enhance in terms of productivity, the
creation of learning objects for introductory

programming?

3,9

 Average 4,2

The survey results for the educational design are shown

in Table 3; the average evaluation was 4.05 points.

TABLE 3. SURVEY RESULTS OF EDUCATIONAL DESIGN

Nº Questions Score

1 Do you think that the phases of the methodology are

appropriate to build Learning Objects?

4,0

2 Do you think that the use of this methodology could

improve productivity in developing Learning Objects?

4,1

 Average 4,05

Note that this methodology cannot be compared with
other similar projects [1][4][6], since there are no known
existing projects on patterns applied to learning objects for
programming teaching. In the Codewitz Project [4] most
learning objects are built using the Macromedia Director
(multimedia application authoring platform). To build
another one, usually a previous learning object is used. For
the other projects [1][6] there is not available information

about the building. In other words, none of the previous
projects use patterns.

IV. CONCLUSIONS

Considering that only three projects were found with
similar objectives, a pattern of interaction in Spanish is built.
This pattern considers significant improvements in the areas
of information (content distribution), design (colors, buttons,
etc.) and metadata for LO. The pattern is enhanced and
adapted from the pattern developed by Delgado, Morales,
Gonzalez and Chan. The enhancement is because the
methodology proposed by Osorio, Muñoz and Alvarez was
improved considering software engineering aspects and is
included in the pattern. The adaptation is because the pattern
and methodology is developed for programming languages
learning objects.

The proposed interaction pattern corresponds to a tool for
building LOs to support computer programming, so that
lecturers can improve approval ratings. Given this context,
lecturers are relatively agreeing (Average score 4,2 in Table
2.) that the pattern can serve to build LOs which to improve
their students' learning. However, when asked whether the
subareas are sufficient, the answer is very close to maximum
(4.7 on a scale of 1-5). They also give a good score the areas
of information, as well as images, text and buttons. But, do
not completely agree (3.9) that the proposed pattern can help
to improve the productivity of LOs. Based on this analysis
we can conclude that new support tools for the construction
of LOs are required. These news support tools should be
easier to use, such as frameworks or templates, but keeping
the design, and sub-areas of information.

Moreover, the teaching methodology (Educational
Design) was not sufficiently well evaluated (4,05 in Table
3.), according to the authors, this is due to the absence of
previous patterns which affects the phase II of the teaching
methodology (Development).

Finally, the validation workshop concluded that to
develop a low complexity LO, a lecturer required about three
hours including pedagogical design.

V. ACKNOWLEDGEMENTS

The authors wish to thank the Research and Development
Office of the Universidad Austral de Chile through project
No. S-2007-15 entitled Learning Designs and Classroom
Management, project DID S-2007-02 entitled Algebra
Learning Units using ICT. Additionally wishes to
acknowledge the valuable comments of all members of the
Research Group on Learning Technologies (www.gita.cl).

REFERENCES

[1] Bradley, C. and Boyle, T. (2004). “Student evaluation of the use of

learning objects in introductory programming”. In L. Cantoni & C.

McLoughlin (eds.), proceedings of ED-MEDIA 2004, World
Conference on Educational Multimedia, Hypermedia &

Telecommunications, June 21-26, Lugano, Switzerland, AACE, pp.

999-1006, ISBN 1-880094-53-3.
[2] Delgado J., Morales R., González S., and Chan M., (2007), “Desarrollo

de Objetos de Aprendizaje basado en patrones”. Sistema de

Universidad Virtual, Universidad de Guadalajara. México. Retrieved

11

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 18 / 98

from http://ihm.ccadet.unam.mx/virtualeduca2007/pdf/228-JDV.pdf
[last access:10.04.2010]

[3] Hernández, M., Alvarez. G., and Muñoz. J. “Patrones de Interacción

para el Diseño de Interfaces WEB usables”. Retrieved from

http://hciinterfazbuscador.iespana.es/PatronesInteraccionDiseno.pdf
[last access:10.04.2010].

[4] Kujansuu, E. and Tapio, T. “Codewitz – An International Project for

Better Programming Skills”. In L. Cantoni & C. McLoughlin
(Eds.), Proceedings of World Conference on Educational Multimedia,

Hypermedia and Telecommunications 2004 (pp. 2237-2239).

Chesapeake, VA: AACE. Retrieved from
http://www.editlib.org/p/12334 [last access:10.04.2010].

 [5] Learning Technology Standards Committee of the IEEE. (2002):

“Draft Standard for Learning Object Metadata. IEEE 1484”.12.1-2002.
Online version. Retrieved from :

http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf

[last access:10.04.2010]
[6]. Miyadera, Y., Kurasawa, K., Nakamura, S., Yonezawa, N., and

Yokoyama, S. “A Real-time Monitoring System for Programming

Education using a Generator of Program Animation Systems”
JOURNAL OF COMPUTERS, VOL. 2, NO. 3, MAY 2007. pp. 12-20

[7] Osorio, B., Muñoz, J., and Álvarez, J., (2007). “Metodología para el

desarrollo de objetos de aprendizaje usando patrones”, 2da.
Conferencia Latinoamericana de Objetos de Aprendizaje, Santiago de

Chile (2007). Retrieved from :

http://www.laclo.espol.edu.ec/laclo2007/index.php?option=com_conte
nt&task=view&id=26&Itemid=50&lang=en [last access:10.04.2010]

[8] Welie, M., (2000), “Patterns as Tools for User Interface Design”, Vrije
Universiteit, Department of Computer Science, Amsterdam. The

Netherlands, Retrieved from :

http://www.welie.com/papers/TWG2000.pdf [last access:10.04.2010].

12

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 19 / 98

Pattern Catalog for Capability Diagnostics and
Improvement of Service-oriented Enterprise

Architectures
Alfred Zimmermann, Eckhard Ammann, Fritz Laux
Fakultät Informatik, business informatics research center

Reutlingen University
D-72762 Reutlingen, Germany

Email: {alfred.zimmermann | eckhard.ammann | fritz.laux}@reutlingen-university.de

Abstract—An original pattern catalog for capability diagnos-
tics and optimization for change of service-oriented enterprise
architectures is introduced. The current approaches for assessing
maturity of software architectures were intuitively developed,
having sparse meta model foundation and being rarely validated.
This is a real problem because enterprise and software architects
should know what is a successful path for introducing and
changing service-oriented enterprise architectures.

Our contribution is to extend existing Service Oriented Ar-
chitecture (SOA) maturity models to accord with a sound meta
model approach based on the well understood and standardized
Capability Maturity Model Integration (CMMI), which was
originally used to assess software processes and not architectures.
Our specific architecture capability evaluation approach is the
result of a meta model-based synthesis and conception and was
grounded on the current Open Group Architecture Framework
(TOGAF) standard for enterprise architectures.

Applying the maturity framework in consecutive assessment
workshops with global vendors of service-oriented platforms
provides the base for developing our pattern catalog for capability
diagnostics and for improvement of service-oriented enterprise
architectures.

Index Terms—Pattern catalog; SOA; SOAMMI; CMMI; TO-
GAF; service-oriented enterprise architecture; capability and
maturity diagnostics; assessment; architecture maturity; meta
model integration; maturity framework.

I. INTRODUCTION AND RELATED WORK

Innovation oriented companies have introduced in recent
years service-oriented architectures (SOA) to assist in closing
the business and IT gap by delivering efficiently appropriate
business functionality and integrating legacy systems with
standard application platforms. Our approach of investigating
the SOA ability of standard platforms in commercial use
(see Buckow et al. [4]) assembles elements from convergent
architecture methods and technologies like software related
patterns as in Gamma et al. [11], Buschmann et al. [6],
Fowler [10], and Buckl et al. [3], together with enterprise
architecture management (EAM), SOA, and package based
standard software applications. According to Alexander et al.
[1] a pattern records the architecture decisions taken by many
builders in many places over many years in order to resolve a
particular problem.

The hypothesis of our research [18] is as follows:

1) The Capability Maturity Model Integration (CMMI) [7]
is well known as suitable framework to assess software
processes, nevertheless the meta model of CMMI can be
extended to evaluate capabilities for change of enterprise
and service-oriented architectures.

2) The idea of software patterns could be applied consis-
tently for both capability diagnostics and for improve-
ment of architecture areas starting from solid evaluation
results of enterprise and service-oriented architectures.

The Open Group Architecture Framework (TOGAF) [17] as
the current standard for enterprise architecture provides the
basic blueprint and structure for our architecture domains:

• Architecture Strategy and Management,
• Business Architecture,
• Information Architecture,
• Application Architecture,
• Technology Architecture,
• Service & Operation Architecture, and
• Architecture Realization.

The Architecture Capability Maturity Model (ACMM) [2]
framework, which is included in TOGAF, was originally
developed by the US Department of Commerce. The main
scope of ACMM is the evaluation of enterprise architectures
in internal enterprise architecture assessments. The goal of
ACMM assessments is to enhance enterprise architectures
by identifying quantitatively weak areas and to follow an
improvement path for the identified gaps of the assessed
architecture. The ACMM framework consists of six maturity
levels and nine specific architecture elements ranked for each
maturity level - deviant from CMMI.

The SOA Maturity Model of Inaganti/Aravamudan [12] con-
siders the following multidimensional aspects of a SOA: scope
of SOA adoption, SOA maturity level to express architecture
capabilities, SOA expansion stages, SOA return on investment,
and SOA cost effectiveness and feasibility. The scope of
SOA adoption in an enterprise is differentiated by following
levels: intra department or ad hoc adoption, inter departmental
adoption on business unit level, cross business unit adoption,
and the enterprise level, including the SOA adoption within

13

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 20 / 98

the entire supply chain. The SOA maturity levels are defined
related, but different to CMMI using five ascending levels
to add enhanced architectural capabilities: level 1 for initial
services, level 2 for architected services, level 3 for business
services, level 4 for measured business services, and level 5
for optimized business services. In a two-dimensional view -
SOA scope and SOA maturity level - proper expansion stages
for the systematic introduction of SOA in an enterprise are
distinguished: fundamental SOA in a local department view,
networked SOA with architected services on business unit
level, and process enabled SOA on the enterprise level or
in conjunction with suppliers. The SOA return on investment
(ROI) increases gradually with increased maturity levels and
matured SOA adoption. Shaded areas in the maturity model
represent additionally no-go areas specifically the non-cost
effective and the infeasible areas of SOA adoption.

The SOA Maturity Model from Sonic [16] distinguishes
five maturity levels of a SOA, and associates them in analogy
to a simplified metamodel of CMMI with key goals and key
practices. Key goals and key practices are the reference points
in the SOA maturity assessment.

The SOA Maturity Model of ORACLE [15] characterizes in
a loose correlation with CMMI five different maturity levels -
opportunistic, systematic, enterprise, measured, industrialized
and associates them with strategic goals and tactical plans for
implementing SOA. Additionally following capabilities of a
SOA are referenced with each maturity level: Infrastructure,
Architecture, Information & Analytics, Operations, Project
Execution, Finance & Portfolios, People & Organization, and
Governance.

Service-oriented architecture (SOA) is the computing
paradigm that utilizes services as fundamental flexible and
interoperable building blocks for both structuring the business
and for developing applications. SOA promotes a business
oriented architecture style, based on best of breed technology
of context agnostic business services that are delivered by
applications in a business focused granularity. A basic po-
sitioning into fundamental SOA concepts, technologies and
case studies is offered by Erl [8] and for SOA-aspects on
Enterprise Application Integration in the book of Krafzig et
al. [13]. To provide agile composition of services within a
worldwide environment and to enable flexible integration of
published and discovered components, SOA uses a set of
XML-based standards like WSDL, SOAP, UDDI and others. A
main innovation introduced by SOA is that business processes
are not only modeled but consistently used within a Model
Driven Architecture (MDA) [14] approach to generate new and
agile orchestrations or compositions of web services based on
process diagrams. Early definitions of SOA were technology
focused and the differences between SOA and web services
were often blurred. SOA Technologies emerged due to the
expansion of the Internet technology during the last years and
produced an abundance set of specifications and standards
developed by open standard organizations like W3C, OMG,
OASIS, and The Open Group.

In the following Section II we provide our model synthesis

for SOA Maturity Model Integration (SOAMMI) by assem-
bling and shifting basic maturity model elements into our
conceptual model for architecture maturity diagnostics. Based
on the meta model of SOAMMI, Section III presents examples
from our pattern catalog, which we have developed to assist
in diagnostics and optimization of service-oriented enterprise
architectures. Section IV states our conclusions and validation
results from assessments and presents some ideas for future
work.

II. SOA ARCHITECTURE MATURITY FRAMEWORK
(SOAMMI)

The aim of the SOAMMI was developed to provide a
holistic framework to assess service-oriented enterprise archi-
tectures. The development process consisted of two interwoven
phases. First, CMMI [7] was transformed from an assessment
framework for software processes into a specific framework
[18] to diagnose systematically the maturity of enterprise and
software architectures.

Second, our maturity assessment approach was conducted
by SOA applicators having experience in specific business
domains and analyzing SOA vendor products for heteroge-
neous environments of legacy and standard applications. For
the analysis we used assessment criteria, maturity domains,
architecture capabilities, and level rankings from state of art
SOA maturity models as described in [2] [12] [16] [15]. In
addition specific architecture elements from [17] and [9] were
selected to develop our architecture maturity model .

The SOAMMI architecture maturity framework introduces
new architecture areas and organizes them within extended
architecture domains, which are mainly based on TOGAF. Our
intention was to leave most parts of the original CMMI meta
model untouched and to extend the CMMI logic carefully.

The meta model of SOAMMI in Figure 1 has similarities
with the CMMI meta model and defines additional specific
elements, which are defined in the next sections for our
architecture evaluation purpose. The extension uses maturity
levels to measure the architecture maturity of vendor products
in respect of requirements from customer oriented domain
models:

• Maturity Level 1: Initial
– Vendor service architecture is not performed or is

incomplete or with no or initial coverage only
– Architecture is unpredictable and poorly controlled
– Initial service architecture methods and knowledge

transfer about services and architectures
• Maturity Level 2: Managed

– Vendor service architecture is managed, having
medium completeness and coverage

– Vendor supports learning about architectures and
corrective actions are taken when necessary

– Vendor service architecture is institutionalized within
own products

• Maturity Level 3: Defined

14

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 21 / 98

Fig. 1. SOAMMI Meta Model

– Vendor service architecture is defined, having large,
increasing completeness and coverage

– Customer service architecture is agile tailored from
standard vendor architecture

– Vendor supports service strategy, architecture gover-
nance, methods and tools

• Maturity Level 4: Quantitatively Managed
– Architecture artifacts and benefits are measured at

vendor and customer side
– Architecture is based on measured parameters from

monitored business services
– Causes of special variations are addressed

• Maturity Level 5: Optimizing
– Defects are prevented at customer and vendor side
– Innovations are added based on a vendor / client

mutual roadmap
– Change is expected, not feared and improvements are

proactive.
Architecture domains were derived mainly from TOGAF [17],
where they are used as specific architecture subtypes and
corresponding phases of the ADM (Architecture Development
Method). The top level structure of SOAMMI is organized by
the following orthogonal architecture domains: Architecture
Strategy and Management, Business Architecture, Information
Architecture, Application Architecture, Technology Architec-
ture, Service & Operation Architecture, and Architecture Re-
alization.

Architecture areas are correspondent parts of process areas
from CMMI. We have defined 22 specific architecture areas
of SOAMMI in Figure 2 - fitting our architecture diagnostic
scope, but different from CMMI - and structure them ac-
cording to standard architecture maturity levels in line with
the mentioned architecture domains. Each of the 22 delimited
architecture areas are accurately described by a name and a

short identification, and later on supplemented by a detailed
description.

The following example of a standardized form shows in de-
tail two specific architecture areas of the Business Architecture
Domain, which were structured similarly to process areas of
CMMI:

A. Architecture Area: BPS Business Products & Services

Purpose: Structure, design, model, and represent business
products and associated business services, which are necessary
to support modeled products.

Maturity Level: 3
Specific Goals (SG) and Specific Practices (SP):

• SG 1: Model Business Products as Origin of Business
Processes

– SP 1.1 Structure business products within product
lines

– SP 1.2 Design business products by defining product
structures and product rules

– SP 1.3 Model and represent business products
• SG 2: Model Business Services associated with Business

Products
– SP 2.1 Structure business services according product

types
– SP 2.2 Design business services by defining service

structures and service levels
– SP 2.3 Model and represent business services

B. Architecture Area: BPR Business Processes & Rules

Purpose: Structure, design, model, and represent business
value chains and business processes to support modeled
products and services.

15

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 22 / 98

Fig. 2. SOAMMI Architecture Areas and Maturity Levels

Maturity Level: 2
Specific Goals (SG) and Specific Practices (SP):

• SG 1: Model Business Value Chains as Root of Business
Processes

– SP 1.1 Identify business value for business opera-
tions

– SP 1.2 Structure value chains
– SP 1.3 Optimize business considering customer

channels and supplier networks

• SG 2: Model and Optimize Business Processes

– SP 2.1 Identify business activities for business pro-
cesses: system activities, user interaction activities,
manual activities

– SP 2.2 Structure business processes for business roles
and organizational units

– SP 2.3 Define business workflows and business pro-
cess rules

– SP 2.4 Model and represent business processes

• SG 3: Model and Represent Business Control Information

– SP 3.1 Identify and represent control information for
product monitoring

– SP 3.2 Identify and represent control information for
process monitoring

The sketched Architecture Area BPS Business Products &
Services was mapped as a premium architecture discipline to
the higher Maturity Level 3 on top of the basic Architecture
Area BPR Business Processes & Rules, which was allocated
with the basic Architecture Maturity Level 2.

III. ENTERPRISE ARCHITECTURE PATTERNS

Our patterns for enterprise and service-oriented architec-
tures consist of a set of methods which use best practices for
diagnosing malfunctions and improving enterprise and infor-
mation systems architectures. We have derived the methods
from the structures of the metamodel of SOAMMI presented
in Section II. Patterns, as described originally by Alexander
et al. [1] are collections of best practices which are based on
representing compactly core causalities for problem solving
starting with a description of a recurring problem directing us
to a standardized solution. Additionally to the core causalities
for problem solving each pattern approach has added important
but divergent extensions resulting in specific canonical forms
for describing these patterns like in [11] [6] [10] [3].

Our pattern catalog for diagnostics and improvement of
enterprise and service-oriented architectures organizes the
collection of patterns according to the SOAMMI metamodel
structures:

• Architecture Domains
• Architecture Areas
• Problem Descriptions associated with Specific Goals, and
• Solution Elements of the patterns connected to relate

Specific Practices.

Linking solution elements to specific practices of the
SOAMI Framework enables concrete solutions for diagnostics
and improvement of service-oriented enterprise architectures.
This diagnostic and improvement knowledge is no design
knowledge, it is rather a procedural knowledge based on stan-
dards, best practices, and assessment experience for software

16

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 23 / 98

and enterprise architectures. It is therefore both concrete and
specific for setting the status of service-oriented enterprise
architectures, and helping to establish an improvement path
for change.

Patterns of our catalog show what to assess. Our pat-
terns aim to represent diagnostic and improvement procedural
knowledge to support cooperative assessment and improve-
ment work of many people over many years in cyclic assess-
ments of service-oriented enterprise architectures.

Associated with this pattern catalog we have set up an as-
sessment process showing how to assess architecture capabil-
ities. This process is based on a questionnaire for assessment
workshops providing concrete questions and answer types,
and helping to direct and standardize the related assessment
process.

Additionally, we have included process methods for work-
shops, result evaluations, improvement path information for
technology vendors and for application organizations, as well
as change support and innovation monitoring instruments.

Based on the two Architecture Area examples from Section
II- BPS Business Products & Services Architecture and BPR
Business Process & Rules - we are deriving exemplarily the
related subset of architecture patterns from the mentioned
Specific Goals:

1) Model Business Products as Origin of Business Pro-
cesses

2) Model Business Services associated with Business Prod-
ucts

3) Model Business Value Chains as Root of Business
Processes

4) Model and Optimize Business Processes
5) Model and Represent Business Control Information.
We have chosen the reduced canonical form consisting of a

succinct representation of the core causalities of our diagnostic
and improvement patterns denominating consciously only the
problem and the solution part as basic elements of our diagnos-
tic and improvement patterns for service-oriented enterprise
architectures. This basic canonical form of our currently
used patterns is extendable by additional parts like contexts,
examples, explanations, linked patterns, and others. We note
that our diagnostic and improvement patterns are basically
process patterns for enterprise architecture management and
are therefore not fine granular classical design patterns. The
following examples show a concrete extract from our set of
38 diagnostic and improvement patterns.

A. Example Pattern 1: Model Business Products as Origin of
Business Processes

Problem: How can we structure, design, model, and
represent business products as an origin for modelling
business processes?

Solution:
• Structure business products within product lines
• Design business products by defining product structures

and product rules

• Model and represent business products

B. Example Pattern 2: Model Business Services associated
with Business Products

Problem: How can we structure, model, and represent
business services needed to support business products?

Solution:
• Structure business services according product types
• Design business services by defining service structures

and service levels
• Model and represent business services

C. Example Pattern 3: Model Business Value Chains as Root
of Business Processes

Problem: How can we structure, optimize and represent
value chains as roots for business process modelling?

Solution:
• Identify business value for business operations
• Structure value chains
• Optimize business considering customer channels and

supplier networks

D. Example Pattern 4: Model and Optimize Business Pro-
cesses

Problem: How can we structure, optimize and model
business processes, related workflows, and business process
rules?

Solution:
• Identify business activities for business processes: system

activities, user interaction activities, manual activities
• Structure business processes for business roles and orga-

nizational units
• Define business workflows and business process rules
• Model and represent business processes

E. Example Pattern 5: Model and Represent Business Control
Information

Problem: How can we model and represent business
monitoring and control information?

Solution:
• Identify and represent control information for product

monitoring
• Identify and represent control information for process

monitoring.
The basic causality of our architecture pattern allows us

to navigate in two directions: from the problem statement
to the solution and backwards from the expected solution
to the problem. From this navigation possibilities follow two
important problem solving strategies for:

• Diagnostic: for verifying suggested solutions and defining
the problem (from pattern solution to the pattern problem
statement)

17

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 24 / 98

• Improvement: for identifying suitable solution elements
for a given problem (from the pattern problem statement
to the solution statements).

We have identified and distinguish a set of 38 Patterns in
the context of 7 Architecture Domains and 22 Architecture
Areas. The full list of patterns and its catalog structure
follow the SOAMMI Framework [18]. From each mentioned
7 architecture domains we are sketching typical examples
for enterprise patterns from our pattern catalog suited for
architecture diagnostics and improvements:

1) Architecture Domain: Architecture Strategy and Man-
agement
• Architecture Area: GOV Architecture Governance

– Manage and control architectures of information
systems

– Support architecture governance
2) Architecture Domain: Business Architecture

• Architecture Area: BPR Business Processes & Rules
– Model business value chains as root of business

processes
– Model and optimize business processes
– Model and represent business control information

3) Architecture Domain: Information Architecture
• Architecture Area: BIA Business Information

Alignment
– Determine alignment of business and information

architecture
4) Architecture Domain: Application Architecture

• Architecture Area: SDO System Domains
– Define and model a system domain map

5) Architecture Domain: Technology Architecture
• Architecture Area: PFS Platform Services

– Identify and model platform services from basic
infrastructure

– Determine fitness of vendor platform services
6) Architecture Domain: Service & Operation Architecture

• Architecture Area: SDT Service Design & Transi-
tion
– Identify and model services to support informa-

tion systems and enable transition of services for
support by service providers

– Ensure service management offering for SOA
7) Architecture Domain: Architecture Realization

• Architecture Area: ASC Architecture Standards &
Compliance
– Manage and control architecture standards and

ensure compliance of architectures with standards
– Support architecture standards, methods, and

tools.
The practical benefits of our pattern catalog in the reduced

canonical form is documented by the successful use as guide-
line for questionnaire design for two major capability as-
sessments of service-oriented vendor technology architectures.

Architecture assessments need to address the key challenges
for companies during the built-up and management of service-
oriented architectures in heterogeneous IT environments. As-
sessments of the SOA ability of standard software packages
can be viewed additionally as a mean to engage with vendors
on all relevant challenges of SOA in practical use.

Therefore, we did not design our assessment in form of a
survey that could be filled out remotely, but rather focused on
a discussion format where answers should include artifacts,
cases, best practices, etc. As most questions have different
relevance and meaning for different companies, our assessment
is not intended to serve as a vendor ranking of any kind.
These goals imply that a pragmatic simplification of SOAMMI
is required, that needs to be enriched with specific user
requirements from companies using SOA in heterogeneous
environments.

Following these ideas, the basic structure of our question-
naire [5] was taken from SOAMMI architecture areas with one
or more questions per specific goal respectively the problem
statement in our diagnostic and improvement patterns. User
requirements have been consolidated and mapped against spe-
cific goals. Wherever no user requirements could be mapped,
specific practices or solution elements in our patterns have
been used to generate questions on the level of specific goals.
Through this procedure each specific goal could be related to
at least one concrete question.

The assessment process takes about 3 months in total to
complete for each software technology provider. The first
step is a Pre-Workshop (2-3 hours) to make sure, that the
vendor can identify the appropriate experts for the assessment
workshop itself. Then the actual Assessment Workshop (4-
6 hours) is held a few weeks later, so that the vendor has
enough time to identify the experts that should participate
and prepare answers. The SOA Innovation Lab (a consortium
of SOA applicators, consulting companies, system integrators,
and academic consultants) then prepares the summary of the
findings and presents these to the vendor (1-2 hours). Finally, a
series of follow up workshop for specific questions (3-4 hours
each) is arranged with the vendor.

IV. CONCLUSION

A pattern catalog for diagnosing capabilities and improve-
ment of organizational maturity of enterprise and service
oriented architectures has been introduced. In this paper we
have motivated the necessity to extend existing SOA maturity
models to accord to a clear meta model approach due to
the well understood and verified CMMI model. Based on the
related work to CMMI, which is an assessment and improve-
ment model for software processes, we have transformed and
developed suitable models for the evaluation of SOA capability
and maturity. Our specific architecture evaluation approach
from the SOAMMI framework was founded on the current
TOGAF standard for enterprise architectures. SOAMMI - The
SOA Maturity Model Integration is the result of a meta model
based conception and synthesis to provide a sound basis for
practical evaluations of service oriented standard platforms in

18

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 25 / 98

heterogeneous environments. Additionally a SOAMMI dash-
board was developed to support practical assessment pro-
cesses, which were aligned both with the SCAMPI process
for CMMI and with empirical questionnaire and interview
methods. The presented SOAMMI framework was validated
in consecutive assessment workshops with two global vendors
of service-oriented platforms and has provided transparent
results for subsequent changes on service oriented product
architectures and related processes. Our empirical validation
and optimization of the presented maturity framework for
its future usage is an ongoing process, which has to be
synchronized with future cyclic evaluations of SOA platforms
and their growing number of services. Extended validations of
customers of service oriented technologies are planned for the
next phase of our framework research and development. An
idea towards a framework for individual enterprises is to gener-
ically extend the architecture areas to provide distinct views for
architecture maturity diagnostics of vendor architectures and
to support diagnostics for customers’ and suppliers’ abilities
to handle service-oriented application architectures. Future
work additionally has to consider conceptual work on both
static and dynamic architecture complexity, and in connecting
architecture diagnostic procedures with prognostic processes
on architecture maturity with simulations of enterprise and
software architectures.

REFERENCES

[1] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-
King, I., Angel, S. (1977): A Pattern Language, Oxford University Press
New York

[2] ACMM (2007): Architecture Capability Maturity Model - The
Open Group. URL: http://www.opengroup.org/architecture/togaf9-
doc/arch/chap51.html

[3] Buckl, S., Ernst, A.M., Lankes, J., Matthes, F. (2008): Enterprise
Architecture Management Pattern Catalog. Technical Report TB 0801,
sebis Technische Universität München

[4] Buckow, H., Groß, H.-J., Piller, G., Prott, K., Willkomm, J., Zimmer-
mann, A. (2010): Method for Service-Oriented EAM with Standard
Platforms in Heterogeneous IT Landscapes. Proceedings of the 2nd Eu-
ropean Workshop on Patterns for Enterprise Architecture Management
(PEAM2010) Workshop at the Software Engineering 2010 Conference
in Paderborn, February, 22 - 23, 2010

[5] Buckow, H., Groß, H.-J., Piller, G., Prott, K., Willkomm, J., Zimmer-
mann, A. (2010): Analysing the SOA ability of Standard Software
Packages with a dedicated Architecture Maturity Framework. (accepted
paper) EMISA 2010 - Entwicklungsmethoden für Informationssysteme
und deren Anwendung, Karlsruhe, FZI Forschungszentrum Informatik,
October, 7 - 8, 2010

[6] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.
(1996): Pattern-oriented Software Architecture. Wiley

[7] CMMI (2006): CMMI for Development. Version 1.2, Carnegie Mellon
University, Software Engineering Institute.
URL: http://www.sei.cmu.edu/reports/06tr008.pdf

[8] Erl, T. (2005): Service Oriented Architecture. Prentice Hall
[9] essential (2009): The Essential Architecture Project.

URL: http://www.enterprise-architecture.org/
[10] Fowler, M. ed. (2003): Patterns of Enterprise Application Architecture.

Addison Wesley
[11] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994): Design Patterns.

Addison Wesley
[12] Inaganti, S., Aravamudan, S. (2007): SOA Maturity Model. BP Trends,

April 2007. URL: http://www.bptrends.com/publicationfiles/04-07-ART-
The%20SOA%20MaturityModel-Inagantifinal.pdf

[13] Krafzig, D., Banke, K., Slama, D. (2005): Enterprise SOA. Prentice Hall

[14] MDA (2003): Model Driven Architecture (MDA) Guide OMG 1.0.1.
URL: http://www.omg.org/cgi-bin/doc?omg/03-06-01

[15] ORACLE SOA Maturity Cheat Sheet (2009)
URL: http://www.scribd.com/doc/2890015/oraclesoamaturitymodelcheatsheet

[16] Sonic (2005): SOA Maturity Model. Sonic Software Corporation, Am-
berPoint Inc., Systinet Corporation.
URL: http://soa.omg.org/Uploaded%20Docs/SOA/SOA Maturity.pdf

[17] TOGAF (2009): TOGAF The Open Group Architecture Framework.
Version 9.
URL: http://www.opengroup.org/architecture/togaf9-doc/arch/

[18] Zimmermann, A. (2009): SOAMMI - SOA Maturity Integration Model
- Conceptual Framework. Research Study from Sabbatical at Daimler
AG with SOA Innovation Lab, July 2009

19

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 26 / 98

Towards A Taxonomy of Dynamic Invariants in Software Behaviour

Teemu Kanstrén
VTT Technical Research Centre of Finland

Kaitoväylä 1, 90570 Oulu, Finland
teemu.kanstren@vtt.fi

Abstract— The use of dynamic invariants to describe software
behaviour has gained increasing popularity and various tools
and techniques for mining and using these invariants have
been published. Typically, these invariants are used to support
various software engineering tasks, such as testing and debug-
ging, which require one to understand and be able to reason
about the system behaviour in terms of these invariants. How-
ever, the existing works are generally focused on a specific set
of invariants for a specific purpose. In many cases it is also
useful to view these in a wider context to enable a wider under-
standing of the invariants and to provide more extensive sup-
port across different domains. This paper presents work to-
wards a general taxonomy describing the properties of dynam-
ic invariants based on a review of existing work in their use,
providing a basis for a wider adoption of different invariant
features in different domains.

Keywords-dynamic invariants; taxonomy; software behaviour

I. INTRODUCTION

Dynamic invariants are used to describe invariant proper-
ties of software behavior in terms of dynamic analysis. Dy-
namic analysis uses as basis information captured as obser-
vations from a (finite) set of program executions, such as test
executions [1]. In line with these definitions, a dynamic
invariant is defined here as a property that holds at a certain
point or points in a program execution [2]. Recently the use
of such dynamic invariants has become an increasingly pop-
ular technique in supporting different software engineering
tasks (e.g., [3,4,5]).

Examples of dynamic invariants include data-flow con-
straints (e.g., x always greater than 0) [2], control-flow con-
straints (e.g., request always followed by a reply) [6],
or their combinations (e.g., x is always greater than 0 when
request is followed by a reply) [7]. Invariants defined
in terms of dynamic analysis can also be referred to as likely
invariants as they are based on observations made from a set
of program executions, which typically do not cover the
entire program behavior state-space [2].

Dynamic invariants can be mined with automated tools
or specified manually for further processing with automated
tools. The idea of documenting and using invariants to rea-
son about program behavior at run-time can be seen to be as
old as programming itself [8,9]. Using invariants expressed
in first-order logic to capture formal constrains on program
behavior was introduced as early as 1960's [8] by the pio-
neering work of Floyd [10] and Hoare [11].

Dynamic invariants can be used in a variety of software
engineering tasks and domains, such as helping in program

comprehension [2,12], behavior enforcement [13], test gen-
eration and oracle automation [5], or debugging [14]. Thus,
when explicitly defined, a set of invariants forms a basis for
building automated support for many different purposes.

There exist a number of tools to support the use of dy-
namic invariants in different tasks [2,5,12]. Many of these
tools use a specific set of invariants for a specific domain.
When applying dynamic invariants in different domains, it is
useful to also consider them in a wider context. Also, when a
set of invariants needs to be provided, either as manually
defined input for a tool to use as a basis for automated
processing, or as output by an automated specification min-
ing tool, being able to generally reason about them is needed
for their effective use.

This paper describes a taxonomy for dynamic invariants.
The taxonomy describes a set of common properties for
invariants describing the dynamic properties of software
behavior. As a basis, a set of invariants and their use have
been reviewed from existing works. The study is structured
to describe how the invariants are specified and used, what
kind of invariant patterns over software behavior they cap-
ture, in which scope of behavior they apply, and what infor-
mation about the system behavior is needed to be able to
express and evaluate them.

The goal of this paper is to provide a starting point for a
`road map' of the work accomplished so far on dynamic
invariants, to provide help software engineers identify open
research questions and new branches of discoveries, and to
facilitate the use of dynamic invariants by a systematic defi-
nition of their different properties.

This paper is structured as follows. Section II describes
the overall approach taken to create the taxonomy. Section
III presents the taxonomy, its axes, and the individual cate-
gories. Finally, section IV provides discussion followed by
concluding remarks.

II. TAXONOMY BUILDING APPROACH

Following guidelines from [15] for performing reviews,
the works selected in this paper have been chosen where they
describe or use some form of invariants over dynamic soft-
ware behavior. This includes how these invariants are (ma-
nually) defined, and how automated specification mining
approaches are used to produce them. For the sake of space
and focus, this selection is focused on the originality of the
work (in terms of adding to the taxonomy), its excellence
(study process), and observed impacts (citation). Papers that
take specific approaches to use and define invariants are also
considered to provide a wider view. This approach is in-

20

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 27 / 98

spired and follows the taxonomy building approaches taken
by Ducasse et al. [16] and Kagdi et al. [17].

The information presented in the taxonomy is based on
information from publicly available works such as research
papers, PhD theses and technical reports. Different publica-
tion databases were used as a basis for the search of related
work. The focus of this paper is on properties related to inva-
riants over dynamic behavior of software and thus the selec-
tion is focused on invariants over software runtime behavior.
Work in the more static formal methods domain is reviewed
when referenced from the works on dynamic behavior analy-
sis but otherwise is not considered more deeply. An adapted
version of Binder's ``fishbone'' diagram [18] is used to de-
scribe the different aspects of the taxonomy.

In building the taxonomy, an initial version of the main
axes and their classes was defined based on the seminal work
of Ernst et al. [2] on defining dynamic invariants in terms of
the program data-flow. This was then refined based on re-
view of other works and how these contributed to evolving
the taxonomy and its different properties. This resulted in a
more advanced and more fully structured version of the
taxonomy. This was presented to experts in the field (identi-
fied in the acknowledgements section). After this, additional
refinement was done based on the comments received.

III. TAXONOMY

This section describes the taxonomy that is the core con-
tribution of this paper. The presentation starts with showing
the main axes of the taxonomy, and proceeds to describe
each axis in more detail in the following subsections.

A. Axes of the taxonomy
The main facets of the taxonomy of dynamic invariant

properties of software behavior as discussed in this paper are
presented in

Figure 1. This taxonomy is divided in six main facets,
which are further divided to three process related ones and
three facets describing information about the invariants
themselves. The process-based facets describe various as-
pects of working with the invariants and include invariant
specification, extraction, and usage. The invariant informa-
tion facets are defining the invariants and include measure-
ments, behavioral patterns, and scope. These six facets will
be briefly presented here and discussed in more detail in the
following subsections.

The generic flow of using invariants is presented in Fig-
ure 2. To make use of invariants, a set of invariants describ-
ing the aspects of interest in the software behaviour needs to
be defined. This can be done either manually or with the use
of an automated mining tool. In case a mining tool is used, a
set of invariant templates describing a potential set of useful
invariants is needed (e.g., [2]). An extensive basis for provid-
ing such templates this is provided by the invariant informa-
tion properties of the taxonomy. The same applies for ma-
nual specification, as the properties of invariant information
enable effectively reasoning about possible invariants. Ana-
lyzing software behaviour is typically based on large sets of
observations (trace data), automated tools to help project the
specified invariants over the captured observations is needed.

This is again based on a similar tools and invariant templates
as when using automated mining tools in the specification
phase. For this reason, the specification and extraction phas-
es are described in terms of shared properties in the follow-
ing subsections of the taxonomy. However, from the process
perspective, it should be noted that typically two phases of
the process follow where a step of invariant specification is
done and another step of extraction is done in order to form a
basis for the final step of invariant usage, where these two
are compared against each other.

Figure 1. The taxonomy: Main facets.

Figure 2. The taxonomy: Flow of elements.

Invariant information includes the measurements that de-
scribe the actual data that one needs to observe in order to
build or evaluate an invariant, the behavioral patterns that the
invariants describe over the measurements, and the scope of
program behaviour when the invariant is expected to hold.

B. Specification and Extraction
The different aspects of invariant specification and ex-

traction are illustrated in Figure 3. As mentioned before,
these two phases share many properties and are thus de-
scribed here in terms of common properties.

Figure 3. Invariant specification.

Different approaches to obtain the information for speci-
fying the invariants include fully (automatically) reverse
engineering these from observing program behaviour [2],
describing them manually based on specifications or design-
er knowledge [19,5], or taking a hybrid approach where the
reverse-engineered information is manually augmented with
information from specifications [20]. When extracting a set
of invariants based on dynamic analysis, the set of observed
program executions is defined by what is available (e.g.,
test suite) and what is the goal of the analysis (e.g., analysis
of a subset of the entire test suite) [1].

21

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 28 / 98

The type of specification is closely related to the source
of the information used for the specification. Natural lan-
guage documents such as requirements specifications can
be manually analysed to find a set of relevant invariants [20].
Additional designer knowledge gained when working on
the system provides insights into its invariant behaviour,
allowing them to design additional invariants to describe the
implementation [19]. Source code and program execution are
more suited for automated analysis. As source code is main-
ly useful in terms of static analysis, it can be used mainly as
an additional input for dynamic analysis such as providing
interface definitions [21,20]. From these sources, one needs
to capture a set of suitable invariants describing the relevant
properties of dynamic behaviour in the software. Experi-
ments have shown that combining both types of sources
gives the best results, where both provide useful invariants
not identified by the other approach [22].

When the invariants have been defined, they need to be
expressed in order to allow the user to process them effec-
tively. Domain specific languages (DSL) can be used to
describe the invariants specifically for a chosen domain, such
as in form of test oracles for web-applications [5]. Tem-
plates and patterns can be created to express a chosen set of
invariants generally over different programs and used for
automated invariant mining [2,14]. Programming languag-
es provide powerful constructs that can be used to describe
invariants as they allow for full specification of all properties
expressable in a full programming language [19].

C. Invariant Usage
The usage domain of an invariant refers to the context

and goal to which it is applied. This describes both the usage
domains describing what the invariants are used for and
usage types describing if they are applied in an operational
system or separately from it. The invariant usage aspects of
the taxonomy are illustrated in Figure 4.

In offline use, the invariants are used separately from the
execution of the analysed program. In online use the usage
of the invariants is linked to the executing program. Beha-
viour enforcing techniques guide the online operation of the
observed system. Static analysis is focused on automated
analysis of given static artifacts and thus mainly operate
offline. Besides these two, the other domains make equal use
of both online and offline approaches. Since this paper is
focusing on dynamic analysis, static analysis is not consi-
dered further here other than to note that dynamic invariants
can also be used as input for it [23].

Behaviour specification is the basic relevant concept for
any application of invariants described in this paper, as the
invariants need to be specified before they can be used. In
itself, this does not constitute as a usage domain but rather as
a basis for the other approaches. From the specification pers-
pective, these invariants can also be used as the basis for
application of many formal methods such as model checking
and other forms of static analysis [6,24]. For example, a
data-flow invariant can specify that a return value should
always be greater than zero [24], or that the value returned
by get() should always match the last given parameter of
set() [25]. Similarly, control-flow related invariants can be

used to define constraints such as always closing opened
database connections [26].

A specific area in the domain of behaviour specification
is the automated mining of specifications based on dynamic
invariants. Various tools that work with dynamic invariants
are in fact aimed at automatically mining specifications in
terms of invariants for the user to process
[2,4,7,12,14,26,27,28,29,30]. In this sense, dynamic inva-
riants are also used to assist in the process of specifying the
software itself. However, the taxonomy described in this
paper takes no stand on how the invariants are obtained. The
taxonomy is intended to support the process of using and
creating the invariants, whether through automated mining
techniques or by manual specification. In both case, a syste-
matic description provided by the taxonomy should help in
creating and using them.

Behaviour analysis supports either automated or manual
analysis of software runtime behaviour. A set of specified
invariants are given and used in each case to analyse how the
system behaves. This information is presented to the human
user for analysis. Failure cause location can be supported by
analyzing how the invariants change over time and reporting
any significant changes before a failure is observed [4,14]
and by comparing the invariants observed over both failing
and non-failing program executions [4]. Software evolution
tasks can be supported by presenting any changes over given
invariants when changes are made to a program to make the
impacts of changes more explicit [2,31], such as changed
interaction sequences and input-output transformation [31].
Another example in this domain is suggesting refactoring
based on invariants holding over values (e.g., parameter
always constant) that can be used to simplify the program
[32].

Figure 4. Invariant usage.

Further, in security assurance, observing a set of core in-
variants over specific variables, such as kernel data struc-
tures or session state variables can be used to identify poten-
tial security attacks when the expected invariants are violated
[28,33]. Additionally, the invariants can support tasks such
as program comprehension by providing a documentation
that describes the software behaviour in terms of its impor-
tant (invariant) behaviour [2].

Behaviour enforcing mechanisms analyse the behaviour
of the observed software based on a given set of invariants
similar to the domain of behaviour analysis. However, they
additionally take automated action to modify the behaviour
based on differences observed with regards to the given
(expected) invariants. For example, automatic adaptation
mechanisms can use invariants to choose a new state for the

22

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 29 / 98

software based on which specified invariants hold at differ-
ent points in time [13]. Invariants can also be used to ensure
that failure states specified in terms of invariants are avoided
by modifying runtime behaviour that is observed to be out-
side the given set of invariants (the expected behaviour) to fit
inside the expected invariants [34,35].

Software test automation is basically a comparison of
the expected behaviour of the software to its actual beha-
viour. This comparison is done by a test oracle that needs a
representation of the expected behaviour of the software in
terms of input-output transitions. As this needs to be de-
scribed in terms of invariant behaviour, dynamic invariants
can be used to encode this information as a basis for the test
evaluation, where test results are expected to conform to
these invariants [5,14,36,37].

When the invariants describe meaningful (important)
properties of the software behaviour, they also make good
candidates for evaluating which parts of the software beha-
viour should be covered in testing. Invariants can then be
used to assess test coverage in terms of invariants covered by
the test suite [9,38]. This can further be improved by auto-
matically generating test inputs that aim to increase the set of
covered invariants [37,39].

Component upgrade checking is a special type of test au-
tomation. In this context it is important to verify that an
update of a component works with the rest of the system.
Invariants can be used to describe how the component be-
haves with the other components, and to assess the relations
of the invariants of the different components against each
other. These invariants can describe, for example, the inputs
and outputs of the different components in terms of control-
and data-flow [25,31]. The comparison is then an evaluation
of these invariants over the different versions.

D. Measurements
In order to apply dynamic invariants one needs to collect

the required information to either assess that they hold or to
infer (mine) them, depending on the intended usage domain.
In any case, one needs to be able to define and collect the
required information from the observed system. The process
of extracting this information is referred to here as informa-
tion extraction, similar to [40]. This aspect of the taxonomy
is shown in Figure 5.

The information type of the measurements can be clas-
sified to two different types of static and contextual informa-
tion [27]. Static information in a dynamic setting is infor-
mation that is always the same for a given point of observa-
tion. For example, during a specific point of execution, a
message passed can always be the same type of a message
(e.g., method call named publishData()) and is thus static
over different executions of this point. Contextual informa-
tion described dynamic information that changes over the
program executions over a single point depending on the
context (e.g., test case) of the observed information. For
example, the time of observation, parameter values, and the
thread of execution for a given message all can change over
different executions of the same program point [27,41]. The
set of observations can also be grouped ("sliced") according
to their contextual information, such as process (thread) id to

produce a set of invariants over the scope represented by that
slice [12,27,41]. In this case, the scope identifier becomes
the basic measure (e.g., thread id [29] or constant parameter
value [27]).

Figure 5. Measurements for invariants.

The term base measure is used here to refer to a type of
measurement information that describes some basic value of
program behaviour as it is observed. For dataflow variables
this includes the data values with basic data types such as
Boolean values, integers, and text strings (character se-
quences) stored in different variable and parameter values
[2]. In the scope of object oriented programs the runtime
type of an object can also be used as a base measure [14].

From the control-flow perspective the base measures are
the messages passed between different elements of the con-
trol-flow. For example, method invocations between compo-
nents (such as classes or services) [7,31] or invocations on
graphical user interface (GUI) operators [5,36].

A specific case of control-flow is error handling flows
identified by some error status. Error scenarios can be clas-
sified to generic errors and application specific errors [5].
Generic errors can be related to properties shared by differ-
ent applications such as database access errors and user-
interface (e.g., HTML or DOM tree for a web-application[5])
error codes. When represented in a uniform way (e.g., by
programming language exception mechanisms[37]), these
can be generally observed and described in the system beha-
viour (e.g., by an automated tool supporting a given domain).
For example, all Java exceptions can be taken to describe a
message that denotes erroneous behaviour being observed
[37]. Application specific errors need to be described sepa-
rately for each application in terms of application specific
invariants. For example, one may expect a given error re-
sponse to a message outside a given set of input [20].

A derived measure is something that is not directly ob-
served in the system behaviour, but the value of which is
rather derived from one or more base measures. To produce
derived measures for data-flow, the base measures for a
system can be grouped based on invariant scopes [2]. For
example, the values of variable x before and after a program
point can be considered separately as variables x1 and x2, to
describe a pattern saying x1>x2. These produce scoped

23

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 30 / 98

base measures. The different scopes are discussed in sub-
section F.

A specific case of this is software control-flow proper-
ties that can be described in terms events and states. From
the control-flow point of view, an event can be described as
an identifiable, instantaneous action in the observed software
behaviour, such as passing a message or committing a trans-
action [29]. Similarly, a state can be described as values of
properties that hold over time, such as over interactions be-
tween components. This information can be, for example,
held in interaction parameters or inside components internal
state variables [33]. A related property is branching, which
defines how several different paths of events and states can
be taken in the software behaviour. This can be described in
terms of invariants when observing which paths are taken
and which ones are not [4,42].

Two properties related to both data- and control-flow
measures are those describing their occurrence and statistical
properties. Derived measures related to occurrence describe
how data- or control-flow measures are expected to occur in
a given scope. Of these, absence defines an expectation that
the measure does not exist in the defined scope [6]. Exis-
tence denotes that the measure exists in a scope, and
bounded existence that the measure exists N time in a
scope, where N denotes either exact, minimum or maximum
number [6]. Universal defines an expectation that the meas-
ure applies to the whole scope [6]. Concurrent dependence
is related to observed fork and join points in execution [43].
A fork expects one measure to be followed by several meas-
ures of a given type and a join expects several measures of a
given type to be followed by a single specific measure [43].
Periodicity describes a measure repeating over a given cycle
(scope) [43].

Statistical properties describe additional information for
other base- or derived-measures. Support and confidence are
two values commonly used together. Support defines the
number of times a measure is observed in behaviour [26,44].
Confidence can be used with the same definition [2] but also
as a definition of how often another measure is observed in
relation to support, meaning how often a precondition is
followed by a post-condition [27,44].

Probability defines the threshold for a measure to be ob-
served in a given scope. This can be used in different ways.
A measure with low probability (support percentage) can be
excluded from analysis to address anomalies [2,12,29]. Dif-
ferent approaches are used for this depending on the target
invariants, from low level (1% or less) [2] to 20% [12]. The
probability can also refer to probabilities of a measurement
value inside a range of allowed values [13]. Deviations from
the expected values are typically given a probability, which
can then define the significance of the deviation [13,14,33].
This threshold can be used for different purposes such as
identifying probable failure causes [14], security attacks
[33], and to decide new states for automated adaptation [13].

Significance defines the importance of an invariant vi-
olation or of the measured variable. Different approaches to
significance can be taken where the latter observed violations
are given higher priority as they are seen to be closer to a
failure [14], or earlier violations as they are expected to have

more impact on latter behaviour [34]. When a variable is
observed as having no correlation with other variables it can
be considered irrelevant [32]. A generic derived measure
used for these is the number of measurements. Dominance is
a measure used to remove overlapping patterns where one
includes the other as a sub-pattern [30].

E. Behavioral Patterns
A dynamic invariant in software behaviour basically de-

scribes a pattern over the observed behaviour. This aspect of
the taxonomy is shown in Figure 6. Control-flow related pat-
terns describe ordering of events or states in the observed
system [6]. Data-flow related patterns describe the data-flow
of the observed software, such as what values a given varia-
ble takes during the software execution [2].

Figure 6. Behavioral patterns.

Together these can be combined to represent the com-
plete behaviour of the software in terms of the control-flow
combined with the data-flow. A basic way to describe these
combinations is in terms of conditional dependence; a con-
trol-flow event can only be followed by one of many
(branches) depending on a given condition [43]. A natural
way to express these conditions is then in terms of invariants
related to the data-flow in the context of that control-flow.
For ex-ample, event P1 can be followed by event P2 when
x<0 and by P3 when x>=0. Together these are referred to
here as behavioral invariants, where the constraints for a
given control-flow pattern are defined in terms of its data-
flow invariants. For example, a stack allowing three pop
operations after having three push operations performed on it
[30]. These can be further combined to form a more com-
plete model such as an extended finite state machine, where
states represent the control-flow and the transitions between
states are defined in terms of data-flow [20,34].

Each pattern can further be related to describing different
types of behaviour, which can be generally classified as
exceptional (error) or normal (correct) behaviour of the
observed system [5]. For example, a transaction may com-
plete or fail due to its parameters and environment state. As
described in subsection D, different base measures related to
errors can be used to identify them.

Control flow patterns basically describe the sequential
dependencies between a programs events and states [43]. In

24

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 31 / 98

the following discussion the term ``event'' is used to refer to
both events and states.

Alteration describes two or more events being grouped
together and always appearing as an alternating sequence
such as ABABAB [30,41]. Specialized cases can also be de-
fined such as events in the alternating sequence repeating
multiple times, AB*C, where B is repeated 1-N times be-
tween A and C [30], or a cutoff in the end of the sequence
(ABABA) [12].

Precedence describes a specific event P always occur-
ring before another specific event Q [6]. This can also be
referred to as a precondition [24] and is a specific case of
chain precedence, which defines that a sequence of events
(Q1,Q2,Q3,…) is always preceded by another sequence of
events (P1,P2,P3,…) [6].

The opposite of precedence is response, which defines
that event P is always followed by event Q. This is again a
specific case of chain response, which defines that a se-
quence of events (P1,P2,P3,…) is always followed by
another sequence of events (Q1,Q2,Q3,…) [6].

Specific cases of alteration are the patterns related to
concurrency. These can be classified to two main patterns
of mutual exclusion and synchronization [29]. Mutual ex-
clusion occurs when no two measures are observed at the
same time. Synchronization has two specific cases, where
two measures are always observed together (overlapping) or
where one starts as another ends.

Data flow patterns describe properties and relations
over variable values during program execution. The assigns
pattern defines that in a defined scope, values of specific
variables are assigned to (modified) [24]. This can also be
described in terms of values that are not modified [2]. Value
change is an evolutionary pattern that describes how a value
changes over time in a given context. This pattern defines a
reference value for the expected value distribution of the
observed variable in the given scope. For example, the ex-
pectation can be that change in value is always small (within
a given threshold such as change<5) [14]. A specific case
can be a variable that is never set [2].

A value range describes a variable always having a
range of values in a given scope [2,14]. Examples include
value always being constant, one of a set of possible values
(e.g., one of 1,2,4) and a value between given boundaries
(e.g., 1<x<4) [2]. Common constants such as zero or one
can also be considered a specific case in itself [2,14]. Addi-
tionally, the maximum and minimum can be considered [14].
Optimizing for performance a subset can also be selected
such as looking for positive (x>0) or negative values (x<0)
[14]. Another example is that the contents of a character
string are expected to be a human readable character with a
given probability distribution in how often each character is
expected to be observed [33].

These can be seen as a special subset of the value rela-
tion pattern. A value relation describes how one variable is
related to another [2,25]. These can be basic mathematical
operations (e.g., x<y or x=y+1), or more complex mathe-
matical functions [2]. Relations can also be described in
terms of the relation of one variable to several others [25].

One example of this is the relation of program output to all
of its (several) inputs [25]. In the case of larger sets of values
(e.g., arrays), the same relations can be described internally
between the elements of the set [2]. Additionally, a set of
specific relations can be considered such as one set reversing
another or matching a subset of a bigger set [2]. Additional-
ly, a single value (e.g., a given variable or a constant) can be
described to always be included in a given set [2].

F. Invariant Scope
The scope of an invariant defines where this invariant is

expected to hold. The scope element of the taxonomy is
shown in Figure 7. In the following descriptions, the term
event is used to refer to both control-flow events and states
and data-flow measures.

Figure 7. Invariant scope.

An invariant may define that it should hold after a given
event [6]. Additionally, another event may be defined as the
end condition in which case the invariant should hold after
the observed start event until the observed end event (after-
until) [6]. This is similar to the scope between, which de-
fines two events in between which the invariant pattern
should hold [6]. However, the difference is that this only
holds once both the start and end events have been observed,
and after-until holds from the first observation of the start
event.

As opposed to the after scope, an invariant pattern can al-
so be defined to only hold before a given event is observed
[6]. A global invariant pattern should hold for all observed
behaviour during the program execution [6]. Considering
only the first N (head) or the last N (tail) observations of a
set can also define a meaningful scope [2]. For example, the
relations between the last 2 observations can define how a
value in a set increments [2].

The scope can also be defined in combination with a spe-
cific slice of the program behaviour, such as a thread [41,27]
or a specific web application session [33]. In this case the
scope becomes a combination of the context slice and one of
the other scope definitions discussed above.

IV. DISCUSSION

The taxonomy and its classes presented above are based
on the existing work in the literature. In this sense it limits
itself to discuss properties only relevant to those in the cho-
sen works. Additionally, it is possible to use and explore
other possible relations. For example, many of the described
control-flow patterns also apply to data flow patterns. For
example, a value may be defined to precede another value
(relating to the precedence control-flow pattern). Similarly,
the set of data-flow patterns can be considered to apply in the
context of control-flow. For example, the range of possible

25

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 32 / 98

control-flow options following one control-flow event can be
in a given range of possible defined control-flow events or
states (related to value-range data-flow pattern).

The discussion in this paper is from the generic view-
point of using dynamic invariants. One important aspect to
consider is how representative the available invariants are in
describing the relevant properties of software behaviour.
When defined manually by an expert, the invariants can be
expected to describe relevant and important properties.
However, even in these cases important invariants can be
missing and in many cases no invariants are defined at all. In
these cases, automated inference techniques can be used to
assist in finding invariants. Both of these cases have been
shown to be valid as also discussed in section III.B. Improv-
ing the means to help manually define invariants and to au-
tomatically mine for relevant ones thus is an interesting
research question. Potential approaches to investigate include
using a set of chosen invariants known to be interesting in
the given domain, using combined information from static
analysis, relying on statistical values to report the more inter-
esting ones, and providing more advanced support for com-
bining both the manual and automated approaches as also
discussed in section III.B.

Discussion on the statistical properties of different pat-
terns and measures highlight differences in the applied ap-
proaches. For example, in many cases the invariant patterns
that have only low support level (i.e., there are few cases) are
only reported. In the extraction phase, this can be useful in
removing patterns observed merely due to chance that may
be incorrect in themselves due to interleaving of concurrent
behavior, or completely irrelevant in the general context [2].
On the other hand, sometimes all observed behavior is im-
portant regardless of their probability. This can be, for ex-
ample, behavior that is only rarely observed in the observed
executions but is still equally important for the overall sys-
tem behaviour (e.g., error handling or corner cases) [20].

Use of invariants in different domains as discussed here
is not limited to those aspects discussed. In fact, many sys-
tems use invariants for various purposes but these are not
always called invariants. For example, in test automation the
test oracle practically always needs to be described in terms
of an invariant, where the input is expected to produce a
given output (the relation of input to output should be inva-
riant). In this sense, defining invariants as discussed here can
be beneficial in a wider context of how people think about
the behaviour of programs. However, presenting a meaning-
ful language to describe the invariants and use them in dif-
ferent contexts is required for adopting them as a concept
more widely as many are not used to thinking in these terms.

Understanding and using invariants generally requires
specific considerations for specific usage purposes. For ex-
ample, one may refactor code based on suggestion from
invariant analysis [32] but this also needs to consider the part
where the human user needs to read the code and understand
it. If the refactoring reduces this understanding by hiding
information, this refactoring may be more harmful for the
overall software maintenance. Similar needs for understand-
ing the invariants in general need to be considered.

V. CONCLUSIONS AND FUTURE WORK

Today, dynamic invariants are used for many points in
software design and analysis. The invariants for different
system are as different as their behaviour, but this paper has
collected a set of common properties from existing works
and presented a taxonomy describing these common proper-
ties. This should help give a more common understanding of
dynamic invariants in software behaviour and help in using
them in different domains.

The presented taxonomy is based on six main facets,
three related to processes of using the invariants and three
related to the information describing the invariants them-
selves. The main focus was on describing the properties of
the invariants themselves, and thus on the parts describing
the invariant information in the context of the process.

The main contribution of this paper is presenting the un-
derpinning of a classification overview for understanding the
space of dynamic invariants. This provides a basis for more
thorough reasoning about invariants, building tool support
and identifying future research questions. Some specific
questions identified include possibilities of providing more
focused domain specific invariants on top of the taxonomy
and providing more extensive tool support for using the
invariants according to the taxonomy presented, as existing
tools only consider parts of it.

Topics for future work include further exploring the dif-
ferent aspects of dynamic invariants and their relations to
each other, such as scopes, patterns and measurements. Simi-
larly, a deeper investigation of their relation to other formali-
zations of software behavior, such as those used in the for-
mal methods community is seen as interesting. Applications
of the taxonomy along with the further investigations are
also needed for practical validation and evolution.

ACKNOWLEDGMENT

The author wishes to thank Ali Mesbah and Arie van
Deursen for their helpful comments on this paper and on the
taxonomy.

REFERENCES

[1] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R.
Koschke, "A Systematic Survey of Program Comprehension through
Dynamic Analysis," IEEE Transactions on Software Eng., 2009.

[2] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
"Dynamically Discovering Likely Program Invariants to Support
Program Evolution," IEEE Transactions on Software Eng., vol. 27,
no. 2, pp. 99-123, Feb. 2001.

[3] M. Boshernitsan, R. Doong, and A. Savoia, "From Daikon to Agitator:
Lessons and Challenges in Building a Commercial Tool for Developer
Testing," in Int'l. Symposium on Software Testing and Analysis, 2006,
pp. 169-179.

[4] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani,
"HOLMES: Effective Statistical Debugging via Efficient Path
Profiling," in 31st International Conference on Software Engineering,
2009, pp. 34-44.

[5] A. Mesbah and A. van Deursen, "Invariant-Based Testing of Ajax
User Interfaces," in 31st International Conference on Software
Engineering, 2009.

[6] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, "Patterns in Property
Specifications for Finite-State Verification," in 21st International

26

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 33 / 98

Conference on Software Engineering, 1999, pp. 411-420.
[7] D. Lorenzoli, L. Mariani, and M. Pezzè, "Automatic Generation of

Software Behavioral Models," in 30th International Conference on
Software Engineering, 2008, pp. 501-510.

[8] L. A. Clarke and D. S. Rosenblum, "A Historical Perspective on
Runtime Assertion Checking in Software Development," ACM
SIGSOFT Software Engineering Notes, vol. 31, no. 3, pp. 25-37,
2006.

[9] D. Schuler, V. Dallmeier, and A. Zeller, "Efficient Mutation Testing
by Checking Invariant Violations," in 18th Int'l. Symposium on
Software Testing and Analysis, 2009, pp. 69-80.

[10] R. Floyd, "Assessing Meaning to Programs," in Symposium on
Applied Mathematics, American Mathematical Society, 1967, pp. 19-
32.

[11] C.A.R. Hoare, "An Axiomatic Basis for Computer Programming,"
Communications of the ACM, vol. 12, no. 10, pp. 576-580, 1969.

[12] D. Lo and S. Khoo, "SMArTIC: Towards Building an Accurate,
Robust and Scalable Specification Miner," in 14th Int'l. Symposium on
Foundations of Software Engineering, 2006.

[13] L. Lin and M. D. Ernst, "Improving the Adaptability of Multi-Mode
Systems via Program Steering," in Int'l. Symposium on Software
Testing and Analysis, 2004.

[14] S. Hangal and M. Lam, "Tracking Down Software Bugs Using
Automatic Anomaly Detection," in 24th International Conference on
Software Engineering, 2002.

[15] B. Kitchenham, "Guidelines for Performing Systematic Literature
Reviews in Software Engineering," Keele University, Keele, Staffs,
EBSE Technical Report 2007.

[16] S. Ducasse and D. Pollet, "Software Architecture Reconstruction: A
Process-Oriented Taxonomy," IEEE Transactions on Software Eng.,
vol. 35, no. 4, pp. 573-591, 2009.

[17] H. Kagdi, M. L. Collard, and J. I. Maletic, "A Survey and Taxonomy
of Approaches for Mining Software Repositories in the Context of
Software Evolution," Journal of Software Maintenance and Evolution,
vol. 19, no. 2, pp. 77-131, 2007.

[18] R. V. Binder, "Design for Testability in Object-Oriented Systems,"
Communications of the ACM, vol. 37, no. 9, pp. 87-101, September
1994.

[19] Bertrand Meyer, "Applying Design by Contract," Computer, vol. 25,
no. 10, pp. 40-51, 1992.

[20] T. Kanstrén, A Framework for Observation-Based Modelling in
Model-Based Testing. Oulu, Finland: VTT, 2010.

[21] Johannes Henkel and Amer Diwan, "Discovering Algebraic
Specifications from Java Classes," in 17th European Conference on
Object-Oriented Programming, 2003.

[22] Nadia Polikarpova, Ilinca Ciupa, and Bertrand Meyer, "A
Comparative Study of Programmer-Written and Automatically
Written Contracts," in 18th Int'l. Symposium on Software Testing and
Analysis, 2009.

[23] Jeremy W. Nimmer and Michael D. Ernst, "Invariant Inference for
Static Checking: An Empirical Evaluation," ACM SIGSOFT Software
Engineering Notes, vol. 27, no. 6, 2002.

[24] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. Leino, and E. Poll, "An Overview of JML Tools and
Applications," International Journal in Software Tools for Technology
Transfer, vol. 7, pp. 212-232, 2004.

[25] S. McCamant and M. Ernst, "Early Identification of Incompatibilities
in Multi-Component Upgrades," in 18th European Conference on
Object-Oriented Programming, 2004, pp. 440-464.

[26] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and W.
Schulte, "MSeqGen: Object-Oriented Unit-Test Generation via
Mining Source Code," in 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on

Foundations of Software Engineering, 2009.
[27] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, "Perracotta:

Mining Temporal API Rules from Imperfect Traces," in 28th
International Conference on Software Engineering, 2006.

[28] A. Baliga, V. Ganapathy, and L. Iftode, "Automatic Inference and
Enforcement of Kernel Data Structure Invariants," in Annual
Computer Security Applications Conference, 2008, pp. 77-86.

[29] J. E. Cook and Z. Du, "Discovering Thread Interactions in a
Concurrent System," Journal of Systems and Software, vol. 77, no. 3,
pp. 285-297, Sept. 2005.

[30] M. Gabel and Z. Su, "Javert: Fully Automatic Mining of Temporal
Properties from Dynamic Traces," in 16th Int'l. Symposium on
Foundations of Software Engineering, 2008.

[31] L. Mariani, S. Papagiannakis, and M. Pezzé, "Compatibility and
Regression Testing of COTS-Component-Based Software," in 29th
International Conference on Software Engineering, 2007.

[32] Y. Kataoka, M. Ernst, W. Griswold, and D. Notkin, "Automated
Support for Program Refactoring Using Invariants," in International
Conference on Software Maintenance, 2001, pp. 736-743.

[33] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, "Swaddler: An
Approach for the Anomaly-Based Detection of State Violations in
Web Applications," in 10th Int'l. Symposium on Recent Advances in
Intrusion Detection, 2007.

[34] D. Lorenzoli, L. Mariani, and M. Pezze, "Towards Self-Protecting
Enterprise Applications," in Int'l. Symposium on Software Reliability,
2007, pp. 39-48.

[35] J. H. Perkins, G. Sullivan, W. Wong, Y. Zibin, M. D. Ernst, M.
Rinard, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin,
C. Pacheco, f. Sherwood, and S. Sidiroglou, "Automatically Patching
Errors in Deployed Software," in ACM SIGOPS 22nd Symposium on
Operating System Principles, 2009.

[36] A. M. Memon, "An Event-Flow Model of GUI-based Applications for
Testing," Journal of Software Testing, Verification and Reliability,
vol. 17, pp. 137-157, 2007.

[37] C. Pacheso and M. D. Ernst, "Eclat: Automatic Generation and
Classification of Test Inputs," in European Conf. on Object-Oriented
Programming, 2005, pp. 504-527.

[38] M. Harder, J. Mellen, and M. D. Ernst, "Improving Test Suites via
Operational Abstraction," in International Conference on Sofware
Engineering, 2003, pp. 60-71.

[39] T. Xie and D. Notkin, "Tool-Assisted Unit-Test Generation and
Selection Based on Operational Abstractions," Journal of Automated
Software Engineering, vol. 13, no. 3, pp. 345-371, July 2006.

[40] C. Ackermann, M. Lindvall, and R. Cleaveland, "Recovering Views
of Inter-System Interaction Behaviors," in 16th Working Conference
on Reverse Engineering, 2009, pp. 53-61.

[41] J. E. Cook and A. L. Wolf, "Discovering Models of Software
Processes from Event-Based Data," ACM Transactions on Software
Engineering and Methodology, vol. 7, pp. 215-249, 1998.

[42] N. Kuzmina, J. Paul, R. Gamboa, and J. Caldwell, "Extending
Dynamic Constraint Detection with Disjunctive Constraints," in Int'l.
Workshop on Dynamic Analysis, 2008.

[43] J. E. Cook and A. L. Wolf, "Event-Based Detection of Concurrency,"
in 6th Int'l. Symposium on Foundations of Software Engineering,
1998, pp. 35-45.

[44] D. Lo, L. Mariani, and M. Pezze, "Automatic Steering of Behavioral
Model Inference," , 2009, p. 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering.

27

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 34 / 98

Towards a Common Pattern Language for Ubicomp Application Design
- A Classification Scheme for Ubiquitous Computing Environments -

René Reiners
Fraunhofer FIT

Schloss Birlinghoven
53754 Sankt Augustin

rene.reiners@fit.fraunhofer.de

Abstract—The idea of Ubiquitous Computing was first for-
malized and described by Mark Weiser in the early 90’s.
Since then, it has been followed by many research groups
and extended in many ways. There are many ideas, concepts,
prototypes and products implementing ubiquitous computing
scenarios. However, the manifold of approaches also brings
along a large variety of denominations for eventually similar
concepts. Our work seeks for the creation of a dynamic pattern
language gathering design knowledge for ubiquitous computing
applications and the underlying concepts. The intention is to
support researchers and application designers in the domain
to avoid the repetition of design errors and provide design
knowledge about successful approaches. In order to get closer
to that aim, our first step is to present a classification scheme
applicable to existing and future approaches that is needed
in order to collect, structure and compare application design
approaches as design patterns.

Keywords- ubiquitous computing; pervasive computing; appli-
cation design; classification; pattern language

I. INTRODUCTION

The research field of ubiquitous computing, also referred
to as ”ubicomp”, was founded by Mark Weiser who pre-
sented the concept’s idea in his work ”The Computer of
the 21st Century” [1]. Smart devices that are equipped with
sensors or that are capable of providing information silently
integrate into the environment. The communication between
different entities should ideally take place in a wireless
manner. This way, a number of smart devices together shape
a ubiquitous computing environment.

The current situation where a personal computer drags
all the attention towards itself should completely be avoided
such that users are able to concentrate on the tasks they wish
to perform instead of caring of the interaction. Computations
can be performed inside the smart devices themselves or
performed on machines inside the room. Connection and
tasks management must not be the user’s concern.

Weiser compares his idea to the ancient art of writing.
Nowadays, we consume and provide information by simply
reading or writing it - we are making use of this technique
although we do not mandatorily need to know how to
produce ink or paper, for example.

The concept of working with technology without having
to know much about the details of the underlying infras-
tructure is the core idea of ubiquitous computing. Working
also means using or even living in ubiquitous computing
environments.

Currently, devices that can be used in a very ”ubiquitous”
way are entering the market; mainly these are netbooks and
smartphones. This class of devices are first candidates to
make ubiquitous computing widely available since there is
a still growing increase in sales numbers as stated by Gartner
[2]. With a high degree of connectivity and new generations
of different kinds of sensors, new applications and ways of
interaction become possible that were still visionary some
years ago.

A. Functionality Everywhere

When talking about different service networks and the
provisioning of services, there is also the need for looking
beyond the personal (and limited) scope of mobile devices.
Following the concepts of Pervasive Computing, the Internet
of Things (IoT) or Cloud Computing, there are far more
possibilities to offer services, since:

• The concept of Pervasive Computing allows the inte-
gration of computing power into real world objects,
devices and environments [3].

• Labeling and therewith the IoT concept gives the pos-
sibility to uniquely identify and address real world
objects [4]. Thus, the possibility of potentially unlim-
ited labeling holds chances and challenges for many
different kinds of applications as outlined by [5].

• In case that resources are too weak or cannot fulfill
the requirements of task, these tasks are outsourced
into the Cloud and thus virtually extend the devices’
resources and transform them into gateways accessing
more powerful functionalities [6].

• The growing network infrastructure allows communica-
tion between devices and thus the exchange of informa-
tion or the consumption of services. An overview of the
mobile phones and network infrastructure generations
can be found online at [7].

28

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 35 / 98

Services that are deployed together with real world objects
and which are accessible via any kind of network are called
smart services for the rest of this document.

B. Realizations

The above concepts and visions are partially already a
reality. Amazon or Google, for example, provide access to
their processing powers by introducing the Amazon Elastic
Compute Cloud [8] or the Google App Engine [9].

Additionally, a combination of using GPS data together
with permanent network access by mobile providers are used
in projects like Layars [10] or Wikitude [11]. These mobile
approaches make use of the mobile device’s position and
access databases over the mobile network in order to present
additional information about objects next to the current
position. These approaches are based on the Magic Lens
approach first introduced by Bier et al. [12].

Later work incorporates mobile projectors to augment
physical objects like paper maps and project information
directly onto the object [13].

Further ideas than only receiving information are appli-
cable which is for example already realized by the UbiLens
project at Fraunhofer FIT [14]. In this project, smart services
attached to different kinds of real world objects can be
consumed, ranging from information retrieval over triggering
actions up to the combination of different services and de-
vices. An online available example shows how different real
world objects are recognized by a server in the background
receiving the camera image from the mobile phone. After
identification of the object, different services can be selected
on the mobile phone according to the purpose of the real
world object [15].

II. PROBLEM AND APPROACH

A manifold of research approaches explore ways to offe
ubiquitous functionality in public and private environments.
Since each approach concentrates on different scenarios,
uses different hardware and calls its components differently,
it is hard to find similarities within existing implementations.

We see the danger of the repetition of design failures,
unused chances of extending successful designs and missed
chances to learn from realized approaches. These dangers
may result in loss of design time and even money.

We consider a dynamic pattern language extracting and
structuring results from different approaches as a possible
solution to that problem. The pattern language will help new
application designers in the field to more easily find working
design approaches and modify them to their needs. This
will also support the knowledge management within research
communities and enterprises. Domain novices can pick up
expert knowledge gathered from experience and formulated
in the pattern language.

The rest of the paper is structured as follows: Section
III provides an overview of different pattern languages used

in different domains. In the preceding section (cf. section
IV), we discuss features that are, from our point of view,
missing in the current approaches of pattern languages. In
section V, the idea of the common classification scheme is
shaped addressing one of the problems discussed. The last
section gives an overview of the planned next steps towards
the intended pattern language and its intended new features
(cf. section VI).

III. PATTERN LANGUAGES

There is a variety of application domains and the popu-
larity of gathering knowledge in pattern languages that are
more or less technically formulated.

In the domain of HCI design patterns, Borchers,
Schümmer and Stephan Lukosch follow the basic structure
of Alexandrian design patterns (cf. [16]) by making use of
natural language in order to describe solutions to specific
design problems [17], [18]. In their approach, they structure
a pattern into the following parts which are often similarly
adapted in other pattern languages:

A name, sensitizing picture, the intent summarizing the
pattern’s solution in one sentence, the context in which the
problem occurs and the solution is described, a problem
description containing the most important aspects, a scenario
putting the pattern’s problem into an illustrating example
context in order to increase understandability, symptoms
helping the reading to find out about conflicting forces
within the context, a solution to the conflicting forces prob-
lem, dynamics naming actors and components involved in
the pattern, rationale providing explanations for a pattern’s
success and applicability, checks that pose questions that
try to help the reader to figure out whether the pattern
representing a template solution was well adapted to the
current design problem, danger spots showing potential new
problems that may occur when applying the pattern.

So they can be regarded as warning features trying to
avoid the blind application of a pattern. The closing sections
of a pattern are named known uses representing the second
part of a pattern’s ”proof” by presenting approaches in
which the pattern is successfully applied and related patterns
linking to relevant alternatives, patterns that are important
for other stakeholders or patterns that go into more detail of
a possible solution.

Pattern languages are also to be found in different appli-
cation domains reaching from technical software design in
object-oriented programming (cf. [19]) to interface design
up to organizational patterns in business structures.

Rising and Manns, for example, present ways to re-
structure existing organizational structures and to introduce
new ideas into an existing system. Their pattern language
Fearless Change relies on social structures and requires
practices that establish trust in new goals [20].

The Organizational Patterns language concentrates on
team interaction in software projects as described by [21].

29

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 36 / 98

Another example is the TELL project that present patterns
for computer-supported learning [22].

Teachers are supported in questions about group-based
learning with collaboration technology find advice in the
Pedagogical Patterns Project as described by [23] and in
the domain of business process management, the approach
by [24] represents an attempt to describe socio-technical
systems following strict business processes. The pattern
language developed is called Workflow Patterns.

The domain of user interface design is also served by
the pattern languages Web Usability Features ([25]), Web
Patterns [26] and for example the Amsterdam Pattern Col-
lection [27]. Tidwell presents a very comprehensive pattern
language for computer-mediated interaction in the context
of non-web-based applications [28].

In many different fields where knowledge and experience
can be captured interlinked, pattern languages have proven
to be a useful approach.

IV. MISSING FEATURES

Current pattern language approaches provide a good struc-
tural basis for capturing design knowledge for specific appli-
cation domains mostly explored by a small group. However,
concerning the idea of covering design guidelines from many
different projects and groups, we consider more features for
a pattern language extending the current concepts as needed.
These features are described in the following.

A. Lacking Application Domain Independence

Current pattern language approaches are mostly bound to
one specific application domain and a small set of involved
group. From the given circumstances and denominations,
patterns are created and arranged in a pattern language.

The intended pattern language is intended to cover many
different research groups and commercial projects, where
different ideas and approaches are implemented and evalu-
ated.

Many approaches are situated in the field of ubiquitous
computing but the naming of components, techniques and
concepts differs widely. A comparable classification and
naming scheme is needed in order to be able to generalize
concepts and interconnect common knowledge as well as to
search within existing work results.

This is, in our opinion, a needed requirement to be able
to integrate different approaches in different application
domains.

B. Lacking Extensibility and Openness of Knowledge

Even after extracting knowledge about a certain aspect
of ubiquitous computing interaction design, it is hard to
discuss results from existing and new approaches. Once
published, they remain within the documents and need to be
refined or discussed besides the actual publication in follow-
up research, forums or conferences.

That makes the reuse and refinement of results a very
hard task. At the moment, there are only limited ways to
extend and discuss research results. Openness is only given
in a passive way; the results can be read but not actively be
extended or discussed.

C. Lacking of Recommendation

Considering patterns about applied concepts and tech-
niques within the domain, there is no direct connection
between them. The exchange of knowledge about combi-
nations that were implemented and worked out well and
those which did not is not given. Recommendations for
proven combinations of concepts are missing and therefore
hindering the reuse and extension of concepts.

Again, time-to-market and time-to-research-results can be
shortened by providing suggestions for good combinations
of smaller units of solutions from different approaches.

D. Lacking of Knowledge about ”Bad Practices”

In publications, often results reveal information about
working concepts that were successfully implemented. Only
initial studies about a certain problem domain concretely
outline deficits in order to justify and motivate intended
research.

However, in a domain that is actively being explored,
failures or methods that were not accepted are not always
clearly described or even mentioned. In our opinion, this is
often the case in research about interaction techniques and
metaphors. Here, authors mainly describe working solutions
and drawbacks are omitted.

We consider the inclusion of bad practices that are not
trivial and were revealed unexpectedly in experiments and
implementation a very important feature to be integrated into
the pattern structure.

V. A CLASSIFICATION SCHEME FOR UBIQUITOUS
COMPUTING ENVIRONMENTS

As a first step towards a pattern language of application
designs, a common denomination for similar approaches is
needed. Once different approaches can be described by a
common vocabulary, the inherent design knowledge can be
compared more easily, discussed and transferred to different
application scenarios.

In ubiquitous computing environments, there are different
objects providing functionality and interoperating among
each other, the environmental infrastructure and the user.
Different kinds of functionality is identified and abstracted
to a semantic level therefore called smart service (cf. Section
V-B). Real world objects that are augmented with smart
services are referred to as smart objects (cf. Section V-A).
Smart objects augmented with an arbitrary number of smart
services together build a smart environment within an appli-
cation domain (cf. Section V-D) .

The definitions given in this work will constitute the
foundation of the intended pattern language approach and

30

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 37 / 98

cover already existing applications that are found within
current research and projects but will also be use to describe
future ideas and approaches.

A. Smart Objects

In the scope of this work, a smart object can be any kind
of device of object that provides functionalities augmenting
its original purpose. This could be the provision of infor-
mation related to the object or something more abstract it
stands for. For example, a standard paper timetable in train
stations could provide the same information that is printed
on it in a virtual way. Furthermore, it could also stand for
advanced routing in such a way that travelers use it to decide
for a route from the current station to their destination.
This routing could also be offered as a computer-supported
services like it can be found on current websites driven by
public transportation companies.

The idea is now to be able to attach any kind of service to
a standard object or device which ideally are related to the
object’s original purpose or more abstract concepts it stands
for.

Thus, in the scope of this work, any kind of object
potentially provides an arbitrary number of smart services
that provide information or extended functionalities. Conse-
quently, every object that is augmented this way is referred
to as a smart object.

Fig. 1 illustrates this concept showing arbitrary function-
ality, i.e., smart services, being connected to a real world
object.

B. Smart Services

Smart services are virtually attached to physical objects
or devices and therefore augmenting them with virtual
functionalities. The functionality they provide could be
informative or offer more sophisticated applications. Ideally,
the services are related to the object’s original purpose but
theoretically, they could offer anything developers have in
mind.

However, the applicability and user’s understanding would
definitely suffer from such implementations since they would
not really convey a coherent meaning like in the timetable
example given in Section V-A.

Currently, the derived classification scheme covers three
different kind of smart services. They can

• provide information (provider)
• provide ways of interaction (connector)
• process input (consumer)
Each kind of smart service optionally possesses a special

attribute which is called the takeaway - attribute. This
optional specialization of a service enables the user to take
the offered functionality with her so that it still available later
and when she is not necessarily close to the smart object.
A service which does not posses the takeaway-attribute can
only be used within direct contact with the smart object.

Figure 1. A standard real world object can be augmented by an arbitrary
number of different kinds of smart services. The functionality can be freely
defined.

In order to illustrate the classification scheme, one small
example per kind of service is given in the following.
Additionally, a possible implementation and usage of the
takeaway-attribute is explained.

(i) Providers are implemented as services that offer certain
information about a special location like point of interest
(POIs). The Wikitude project is one example of an appli-
cation that provides information bound to certain buildings
or locations. Google Goggles (cf. [29]) also applies this
approach by connecting information to buildings.

(ii) Connectors enable the user to control an offered
service. One example is a public display, that offers a smart
service allowing users to remotely control the display. That
way, the user’s input is processed and directly fed into an
application lying behind the service. Also, the timetable
scenario mentioned in Section V-A can be implemented in
an interactive way such that the user influences parameters
like price, travel duration or comfort class when planning
his connection.

(iii) Consumer services do not necessarily provide sophis-
ticated feedback to the user or provide a direct result. They
are moreover be regarded as triggers for certain processes
or applications. Examples for this are push-services that for
examples upload just-taken pictures to an online community
account like Facebook.

Another example is represented by macros like those used
in the home automation sector. A service called ”turn on the
lights” is then used as a trigger. This way, the user’s input is
consumed and a whole system, the home automation system
in this case, takes over.

C. The Optional Takeaway-Attribute

As an optional add-on, the takeaway attribute comes into
play. In the context of the timetable example providing
information about connections, this means that the train

31

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 38 / 98

arrival and departure times can be taken away by the user
and therefore are also be available when she is not standing
next to the timetable. That way, information can be collected
and consumed later and repeatedly.

For connectors, it makes sense to use an application
connected to an interactive service also at a later time. The
can make a train booking at home but have the virtual service
still available for tracking the booking process or eventual
changes. So users are able to connect a real world object to a
virtual pendant offering similar or extended functionalities.

Consuming services can also offer the takeaway-attribute.
In the example of home automation, the user is then able to
turn on the lights while she is still outside and does not first
have to search for the service in the dark.

Fig. 2 shows some examples of service-augmented real
world objects, optionally with the take-away attribute. In
the example, an ordinary timetable at a train station is
augmented with service finding the train connection from
the current location to the desired destination. This service
posses the takeaway-attribute since it could also be used
again at a different location even if the user is not near the
real world object.

The TV screen as an ambient display offers the service
to provide video content that can be played on the screen
but also played back on te the user’s mobile device. Another
service combined with ambient speakers offered is the play-
back of user-provided content that is only available when
she is present at the screen. Remote control is not allowed
here.

In the case of the coffee-machine, the takeaway attribute
is not given since this services of filling a cup or retrieving
information about the coffee status is only available when a
user is directly interacting with it due to security reasons.

These examples show that the takeaway-attribute needs to
be used carefully in order to provide meaningful services.
Services that provide physical feedback like printouts (e.g.,
tickets) or products (e.g., coffee from an augmented coffee
machine) need to ensure that the user is directly available.

D. Smart Environments

A setup with arbitrary kinds of services attached to an
arbitrary number of real world objects, is referred to as
smart environment. Different classes of smart environments
are possible. Based on the purpose of the services (enter-
tainment, technical support, maintenance) or the location
of the environment and the level of publicity or privacy,
respectively. Examples for these kinds of environments are
public spaces like train stations, official buildings, airports
or sights in a city. More private or security related situation
can be found at home or in office spaces.

Applications like Wikitude (cf. [11]) or Layars (cf. [10])
already turn public spaces into a kind of ”informational
smart environment” by displaying additional information
about a location the user is close to.

Figure 2. In this example, services with the takeaway-attribute are
connected to a metro plan and a TV screens. The coffee-machine and
speakers providing playback services but only allow direct interaction.

VI. FUTURE WORK

The long-term intention of our work is to develop a pattern
language for application design in ubiquitous computing
environments. As a first requirement for the creation and
extension of such a structure we consider a common vo-
cabulary as a necessary requirement for comparing differ-
ent approaches and to extract knowledge from them. The
extraction will be presented in form of design patterns,
similar to approaches presented by Schümmer and Lukosch,
Borchers and Gamma et al. (cf. [18][17][19]). The latter
work addresses the technical part of application design in
terms of how a technical problem can be solved by applying
software patterns. The former patterns are formulated against
specific application domains, i.e., CSCW and HCI, that
primarily describe design knowledge of applications on a
conceptual level. Technical suggestions play a minor role.
Like Borchers, Schümmer and Lukosch, the patterns for
ubicomp application design are intended to be arranged in a
pattern language and therefore interconnecting patterns. The
deeper readers follow the structure, the more details of the
application design are described.

New features like decision nodes separate different kinds
of interactions depending on the usage scenario. Recommen-
dation mechanisms will help to find successful combinations
of patterns. Finally, the pattern language is intended to be
open to new patterns that can be integrated.

The design patterns will range from the discovery of
smart services, over the interaction until user preferences
and privacy and security patterns.

VII. CONCLUSION

This work presents first conceptual steps in the progress
of finding a classification scheme that is able to map

32

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 39 / 98

denominations from existing and future approaches to a
generally applicable vocabulary needed for the formulation
of design patterns in the domain of ubicomp application
design. Next, existing approaches in the domain of mobile
applications in ubicomp environments will be analyzed and
the presented scheme will be mapped to these approaches.
After translating the approaches to the abstract vocabulary,
patterns of successfully implemented concepts supported by
published evaluations will be derived and discussed within
the community. From the initial set of patterns, the other
requirements described in section (II) will be addressed.

In a later step, new domains and ideally a large set of
domains are to be analyzed. The results will either support
the generality of the developed pattern language and its
new features or confute the approach. From our point of
view, the assembly of patterns in a pattern language will
support the gathering, structuring and extraction of design
knowledge from current and future approaches and make
them comparable and thus facilitate discussion, reuse and
modification throughout application scenarios.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific
American, vol. 265, no. 3, pp. 94–104, 1991.

[2] “Gartner newsroom - press release, may 19th, 2010,” 2010,
http://www.gartner.com/it/page.jsp?id=1372013.

[3] U. Hansmann, L. Merk, and M. S. Nicklous, Pervasive
Computing - The Mobile World. Berlin: Springer-Verlag
Berlin and Heidelberg GmbH & Co. K, 2001.

[4] H. Chaouchi, The Internet of Things: Connecting Objects.
ohn Wiley & Sons, 2010.

[5] C. Floerkemeier, M. Langheinrich, E. Fleisch, and F. Mattern,
The Internet of Things: First International Conference, IOT
2008, Zurich, Switzerland, March 26-28, 2008, Proceedings,
1st ed. Springer-Verlag Gmbh, 2008.

[6] J. Rhoton, Cloud Computing Explained: Implementation
Handbook for Enterprises, 2nd ed. Recursive Press, 2010.

[7] C. M. S. Ltd., “Telecoms market research,” website, 2008,
http://www.telecomsmarketresearch.com/resources/Mobile
Phone Market.shtml.

[8] “Amazon elastic compute cloud,” 2010, http://aws.amazon.
com/ec2.

[9] “Google app engine,” 2010, http://code.google.com/intl/
appengine/appengine.

[10] “The layars project,” 2010, http://layars.com.

[11] “The wikitude project,” 2010, http://wikitude.org.

[12] E. A. Bier, K. Fishkin, K. Pier, and M. C. Stone, “Toolglass
and magic lenses: the seethrough interface,” Proceedings of
SIGGRAPH, vol. 93pp, pp. 73–80, 1993.

[13] J. Schöning, M. Rohs, and S. Kratz, “Map Torchlight: A Mo-
bile Augmented Reality Camera Projector Unit,” Information
Systems, 2009.

[14] V. N. Wibowo, “The UbiLens Approach - Visualisation of
and Interaction with Real World Objects through a Moble
Phone’s Camera ,” master thesis, Fraunhofer FIT, 2010.

[15] “Gartner newsroom - press release may 19th, 2010,” 2010,
http://www.youtube.com/watch?v=IY1FmKhfAao.

[16] C. Alexander, A Pattern Language: Towns, Buildings, Con-
struction. New York, New York, USA: Oxford University
Press, 1977.

[17] J. Borchers, A Pattern Approach to Interaction Design, 1st ed.
John Wiley & Sons, 2001.

[18] T. Schümmer and S. Lukosch, Patterns for Computer-
Mediated Interaction. Chistester, West Sussex, England:
John Wiley & Sons, 2007.

[19] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design
Patterns. Elements of Reusable Object-Oriented Software,
1st ed. Amsterdam: Addison-Wesley Longman, 1995.

[20] L. Rising and M. L. Manns, Fearless Change: Patterns for
Introducing New Ideas: Introducing Patterns into Organiza-
tions, 2005th ed. Amsterdam: Addison-Wesley Longman,
2005.

[21] J. O. Coplien and N. B. Harrison, Organizational Patterns of
Agile Software Development, illustrated ed. Prentice Hall
International, 2004.

[22] F. L. National Centre and Literacy, “The Tell Project.”
[Online]. Available: http://www.tell.praesa.org/

[23] J. Eckstein and J. Bergin, “The Pedagogical Patterns Project,”
1999. [Online]. Available: http://www.pedagogicalpatterns.
org/

[24] C. Hentrich, “Six patterns for process-driven architectures,”
in Proceedings of the 9th Conference on Pattern Languages
of Programs (EuroPLoP 2004), 2004.

[25] I. Graham, A Pattern Language for Web Usability. Amster-
dam: Addison-Wesley Longman, 2003.

[26] D. Schwabe and G. Rossi, “The object-oriented hypermedia
design model,” Communications of the ACM, vol. 38,
no. 8, pp. 45–46, August 1995. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=208344.208354

[27] M. van Welie, “The Amsterdam Pattern
Collection,” 2010. [Online]. Available: http:
//visiblearea.com/cgi-bin/twiki/view/Patterns/Amsterdam\
Collection\ of\ Interaction\ Design\ Patterns

[28] J. Tidwell, Designing Interfaces, 1st ed. O’Reilly Media,
2005.

[29] “Google goggles,” 2010, http://googlegoggles.com.

33

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 40 / 98

Detection of Generic Micro-architectures on Models

Cédric Bouhours, Hervé Leblanc, Christian Percebois, Thierry Millan

IRIT – MACAO team – University of Paul Sabatier

118 Route de Narbonne

31062 TOULOUSE CEDEX 9 FRANCE

{bouhours, leblanc, percebois, millan}@irit.fr

Abstract— Existing pattern detection methods generally use

code information obtained during reengineering process.

However, none of these methods exclusively works with design

information. In this paper, we propose a novel pattern

detection method based on structural properties of UML

models. This technique allows the detection of any kind of

generic micro-architecture, like design patterns or spoiled

patterns. Since a generic architecture is context-free, the

structure of the searched fragments depends on the use

context. So, our technique uses a structural concordance

paradigm to identify all possible instantiations of a generic

micro-architecture. To increase the precision of the detection,

authorized, prohibited, and optional relations can be directly

precised into the micro-architecture model.

Keywords- Pattern detection. Graph isomorphism. UML Model.

I. INTRODUCTION

Various works aim at identifying fragments representing
correct, incorrect or incomplete instantiations of design
patterns, in order to help the comprehension of existing
designs and to provide a base for possible improvements [1].
To identify characteristic fragments, it is necessary to parse
models, to ensure that the execution time of the algorithm is
adapted to consequent models and to recognize a form that is
approximate or to supplement. This approximation is very
problematic, because it introduces uncertainties into the
research. In the case of design patterns, the designer adapts
the pattern to his problem, obliging the detection methods to
be able to detect every possible form [2]. To render possible
these detections, some tools use source code to identify
complete or distorted versions of design patterns [3]. The
information extracted from the source code augments the
precision of fragment intent and so the pattern detection.

However, during model-driven processes, the
identification of patterns concerns the designer in order to
target specific model fragments. For example, spoiled
patterns allow the detection of fragments substitutable with
design patterns before a coding stage [4]. Thus, we have
conceived a detection method based on UML structural
properties of UML models. Thanks to this method, we are
able to identify instantiations of generic micro-architectures,
like design patterns or spoiled patterns. The first intent of
our detection method concerns the detection of spoiled
pattern, which we present in Section 2. Section 3 presents
the model representation we use to formalize our detection
technique, and takes a stand on our work in relation to
existing graph matching problems. The remainder of the
paper is composed by the techniques used to compute the
detection (Section 4), and some validation tests in Section 5.

The paper ends with a discussion of related works and a
conclusion, in Sections 6 and 7. The main contributions of
this paper are the specification and the implementation of a
generic UML graph matching method able to detect pattern
instantiations whatever their form.

II. SPOILED PATTERN DETECTION

Choosing a good design pattern and ensuring the correct
integration of the chosen pattern are non trivial for a designer
who wants to use them. To help designers, we propose
design inspection in order to detect “bad smells in design”
and models reworking through use of design patterns. The
automatic detection and the explanation of the
misconceptions are performed thanks to spoiled patterns [4].

If we consider that a design pattern is the optimal
reusable micro-architecture for a type of problem, then for
each design problem that is solvable with a design pattern,
the optimal solution is the instantiation of the design pattern.
Moreover, if we consider an alternative solution as a valid
solution but with a different architecture compared to the
optimal solution, then, an alternative solution is an
inadequate solution for a given problem, and is substitutable
with the instantiation of the concerned pattern. A spoiled
Composite pattern is given in Fig. 1.

Figure 1. A spoiled pattern (development of the composition on Composite)

Each spoiled pattern has a name that describes the
misconception: here the development of the composition link
on the composite participant of the pattern. So, there is not a
maximal factorization of the composition which implies
addition or removal of a leaf or a composite need code
modification.

Structurally, a spoiled pattern is represented at the same
level of granularity as a design pattern allowing us to identify
them as design patterns. An alternative fragment is a model
fragment such as its structural properties match with the
structural properties of a spoiled pattern and whose intent
conforms to the corresponding pattern. Then, after the
detection, an alternative fragment can be considered as
potential. The validation of its intent is assumed by the

Component

Leaf Composite

*

*

34

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 41 / 98

designer of the user model. More details on these concepts,
especially the collect, the catalog, the use in a tooled design
review activity, and the refactorings can be found in [12].

The static UML model in Fig. 2 represents a basic
architecture for a file system management. Authors of this
model are interested in the presentation of some object
concepts: inheritance between classes (a uniform protocol
for every FileSystemElement is encapsulated by a
corresponding abstract class) and management of reference
and delegation (there are composition links between
container and components).

Nevertheless, this model contains a misconception.
Although there is a uniform protocol owned by the class
FileSystemElement, the composite links management along a
hierarchical structure is duplicated. Indeed, the Directory
class manages independently links on Files and Directories.
{Directory, File, FileSystemElement} is an exact
instantiation of the Composite spoiled pattern. It is easy for
the designer to see that this fragment has the same intent as
the Composite pattern and to consider it as a bad smell in
design. Furthermore, when the authors have implemented
this model, they realized that there were defects. They
adapted their code to correct them, without changing the
design model. Therefore, the fragment must be substituted
with the instantiation of the composite pattern on the user
model or context.

Figure 2. A File System Management Design

During a process development, it is more interesting to
detect bad smells in design before the coding stage. Indeed,
the model correction is easier and uses less time if the code is
not already written. So, we have conceived a detection
technique working with design information, and without
information issued from reverse engineering process. The
existing techniques use code information issued from their
own reversion methods.

As a spoiled pattern has the same abstraction level as a
design pattern, we consider that they are both “pattern” and
so “generic micro-architecture”. Our detection technique is
able to detect generic micro-architecture, and so, the
remainder of this paper uses “pattern” term to mean “design
pattern”, “spoiled pattern” or “generic micro-architecture”.
For the sake of clarity, we use the Composite design pattern
as an example.

III. GRAPH REPRESENTATION

We consider models described in UML 1.5 [5] according
to the XMI standard [6]. With this meta-model, models can
be represented by directed graphs. A graph consists of typed
nodes representing the classes and the relations between
them. Arrows are used to indicate the direction of the
relations between classes. In our case, we are interested by
classes, associations, and generalizations only. There is a
gap between the visualization and the internal representation
of a UML model.

Fig. 3 illustrates these two representations in UML 1.5
for a design pattern: in a class diagram and in a graph
conforms to XMI format. In this example, the design pattern
is a simple directed graph, with the vertices C, L and Co,
respectively Component, Leaf and Composite. There are
also sets of vertices {A}, {AE}, {G} and {S}, respectively
Association, AssociationEnd, Generalization and
Specialization of the UML meta-model.

We have separated the vertices in two different subsets:

Vc containing all the classes of the model, and Vm containing
all the meta-classes allowing the connections of the classes.
The vertices of the set {AE}, for AssociationEnd, come from
the meta-model and are used to connect Classifier to
Association. These vertices are tagged by AssociationEnd
meta-class attributes in order to characterize the extremity of
associations. For example, for the vertex Co, the adjacent
vertices are AE, G and S only, excluding A which is
accessible from AE only.

Figure 3. A UML model and its directed graph representation

As we consider UML models as graphs, we can
formulate our patterns identification problem as a problem of
sub-graphs or directed sub-graphs identification in a graph.
There are two main approaches in this domain. The first one
is known as exact graph matching, which consists in finding
exactly a given subgraph in a graph [7]. The second

C

Co L

S G G S A

AE
COMPOSITE-0..1

AE

NONE-0..*

Component

Leaf

*

Composite

Directory

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

*

-root

-subdirectory

*

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

35

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 42 / 98

approach consists in identifying all the sub-graphs looking
like more or less a given graph [1] and is called inexact
graph matching.

Exact graph matching algorithms require the examination
of all possible sub-graphs that have the same number of
nodes and arrows with the source graph, which means a NP-
complete problem [7]. For our problem, exact pattern
matching algorithms are inefficient. As a pattern is a
generative base of a family of specific designs, we do not
exactly search the generic micro-architecture, but one of its
instantiations, which are not known in advance.

Inexact graph matching algorithms are very useful when
an isomorphism between two graphs cannot be found or is
too strict for research. They find the best correspondence
between two graphs. For example, some algorithms
calculate the distance between two graphs, expressed for
instance in number of modifications to transform a graph to
the compared graph [1]. In the context of pattern detection,
such algorithms are more interesting, because they are able
to detect sub-graphs structurally close to the pattern.
However, it is not sufficient, because a given design pattern
may have several forms depending on the instantiation
context.

Since we cannot use exact or inexact pattern matching,
we have defined a detection method working by structural
concordances. Thanks to structural properties allowing the
structural detection of pattern, this technique is able to detect
pattern instantiations, whatever their form, and taking into
consideration authorized, prohibited or optional relations
between classes, as described in section 3.3.

IV. SPECIFICATION OF THE DETECTION

A pattern is described with a set of structural properties
allowing its structural description, and thus the detection of
its instantiation in a model. We have decomposed the
remarkable properties into two subsets: the local properties
that characterize individually each class and the global
properties which characterize the classes against each other
depending on their inter-relations. This separation allows us
to constitute different filters during the detection, through
use of structural similarity comparisons. The result of the
search is a set of fragments identified in the model analyzed.

A. Structural Concordance

The structural properties of a pattern enable us to detect
fragments in models. Compared to graphs, they enable us to
detect sub-graphs families, because they describe the patterns
as well as the fragments they can generate. Our detection
method uses the local and global structural properties to
check the structural concordance of the fragments with the
patterns.

Definition 1 presents in a formal way a model m. As
seen previously, it is a directed graph with two sets of

vertices Vc and Vm, respectively representing the model
classes and the instances of meta-classes describing the
relations between the classes.

 (1)

Like for a model, we formally define a pattern in
definition 2.

Each pattern has a unique reference participant which we

note reference_dp. It represents a particular vertex of Vcdp

that we detail in part B. This vertex is chosen by an oracle
according to its structural complexity and its responsibilities
on the problem to solve.

 (2)

Thus, we have two directed graphs where we search for
combinations of occurrences of the first in the second. In
order to avoid a combinatorial explosion of the research
possibilities, and thus to limit the problem complexity, we do
a first filtering of the sets of the vertices having the adequate
local properties.

The first step consists in searching for all the vertices of

graph m in accordance with the predicate 5 local_SPC. This
predicate, meaning “structural properties concordance”,

allows to check if a vertex c of the graph m has, at least, the

same adjacent vertices as a vertex p of dp. Thus, if c is

local_SPC with p, the class corresponding to c has, at least,
the same local structural properties as the participant of the

pattern corresponding to the vertex p. The comparison
between the adjacent vertices is done with an equivalence
relation comparing the type and the attributes of the adjacent
vertices, as definition 3 shows it, with a constraints
relaxation presented in part 3.3.

 (3)

By extension, we obtain the definition 4.

 (4)

36

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 43 / 98

As the adjacent vertices of a vertex of Vc belong to Vm

and as all the vertices Vm are strongly typed, the vertices of

Vc can be filtered thanks to their local properties, as
predicate 5 shows it.

 (5)

In order to illustrate the predicate local_SPC, we search
Composite design patterns in the model of Fig. 4, whose
local properties of each participant are illustrated in Fig. 5.

The result of the application of the predicate local_SPC is
illustrated in Table 1. For more legibility, the models are
represented in UML.

Figure 4. A model example

Figure 5. Local structural properties of the Composite design pattern

TABLE I. RESULT OF THE PREDICATE LOCAL_SPC ON THE MODEL

 Class

local_SPC R T U V W X Y Z

Composite OK OK

Component OK OK

Leaf OK OK OK OK OK

The classes marked in Table 1 validate predicate

local_SPC with the corresponding participant. It is possible
to notice that the classes have the same adjacent vertices as
their participants, except for classes Y, W and Z which have
more. For example, we can note that the class Y has three

daughters. It is partly thanks to the fact that a vertex of Vc
can have more adjacencies, that we can detect all the various
possible pattern instantiations. Moreover, we can notice that
class W and class Z validate the predicate on two different
participants from the pattern, Leaf and Composite. Indeed,
the local properties of Leaf are included in those of
Composite. Without the global properties, we cannot
differentiate the Composite classes from the Leaf classes yet.

After comparing all the vertices of Vcdp with all those of

Vcm, i.e. all the participants of the pattern with all the classes
of the model to analyze, we obtain a set of vertices having
their adjacent vertices at least identical to those of the
participants of the pattern. This first predicate is used as

filter on the sets of the vertices of m.

Predicate 6 global_SPC allows to check the concordance

of the global properties, i.e. if a subgraph sf of m is

isomorphic to dp.

 (6)

A sub-fragment global_SPC with dp has, by definition,
the same number of vertices as the pattern. Although the
instantiation of the pattern causes the multiplication of some
vertices, all the combinations, such as each class represents a
distinct participant, remain isomorphic with the pattern. Fig.
6 illustrates this isomorphism of the sub-fragments of the
model presented in Fig. 4.

Figure 6. Sub-fragments of Fig.4 isomorphic with the pattern of Fig. 3

In the model of Fig. 4, according to the vertices

identified as being local_SPC with the vertices of the
pattern, we can build only three sub-fragments in conformity

with global_SPC. For example, the combination class U,
class W and class Y, is not a sub-fragment, because even if
there is the same number of vertices as in the pattern and

each vertex is local_SPC with a vertex different from the
pattern, there is no isomorphism between this combination
and the pattern.

Thus, the predicate global_SPC enables us to eliminate
class W and class Z from the Leaf responsibilities, since it is
not possible to build a combination of classes in conformity

with the predicate global_SPC with one of these classes to
the responsibilities of Leaf.

Now, we have to build the complete fragments, i.e. to
couple the sub-fragments which share the same vertices. A

complete fragment cf is a subgraph of m including at least
an isomorphic sub-fragment with the pattern and such as any
graph induced by a combination of vertices referring once
each participant of the pattern remains isomorphic with the

pattern. Moreover, only one vertex of cf, that we name

reference_class, is local_SPC with reference_sp, the
reference vertex of the pattern. In the case of Fig. 6, if we

Class X

Class U Class Z

*Class Y

Class WClass T

*

Class Y

Class V

Class W

*

Component

Leaf

*

Composite

Component

Leaf

*

Composite

Component

Leaf

*

Composite

Class X

Class U Class Z Class Y

Class V Class WClass T

*

*

Class R

37

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 44 / 98

consider that Composite is the reference participant, we can
regroup the sub-fragments {ClassY, ClassT, ClassW} and
{ClassY, ClassV, ClassW} to form a complete fragment.

Thus, the predicate 7 complete_fragment allows to

check if a fragment cf is a set of sub-fragments, each one

isomorphic with dp.

 (7)

The application 8 participant associates to each vertex of

the fragment cf, a vertex of the pattern such as it is in local
concordance and which it is connected in the same way to
the reference participant.

In proceeding like that, we can build fragments
representing all the possible instantiations of the pattern.
Indeed, even if it is not possible to anticipate which form has
a complete fragment, it is sure, whatever its form, that it is
composed of isomorphic sub-fragments to the pattern, since
all the possible complete fragments will always have their
classes connected in the same way to the respective
participants of the pattern.

Fig. 7 presents two fragments with isomorphic sub-
fragments to a pattern.

Figure 7. Two fragments with isomorphism sub-fragments to the

Composite design pattern

The sub-fragments of the left fragment are {Composite,
Component1, Leaf} and {Composite, Component2, Leaf}.
Those of the right fragment are {Composite, Component1,
Leaf1}, {Composite, Component2, Leaf1}, {Composite,
Component1, Leaf2} and {Composite, Component2, Leaf2}.
Thus, it is possible to notice that the two fragments presented
are two different instantiations, but recognized as complete
fragments.

A particular case is presented in Fig. 8.

Figure 8. A particular case of a complete fragment

The two sub-fragments of this model are isomorphic to
the Composite pattern: {Composite1, Component, Leaf},
{Composite2, Component, Leaf}. However, if we analyze
this case, we can wonder whether, except its structure, it
constitutes a true complete fragment. Indeed, the composite
participant are not linked between them. Thus, we propose
that Fig. 8 presents two distinct fragments {Composite1,
Component, Leaf} and {Composite2, Component, Leaf}.
We do not authorize a fragment to have two classes having
the Composite responsibilities. We named this additional
characteristic the “reference participant”, necessary to the
representation of the results of detection and the limitation of
the matching complexity.

B. Reference Participant

Each participant of a pattern has not the same importance
in the intent aimed by the pattern. The fact that a design
pattern is the best solution resides in its structural
organization, obligatory support with any collaboration
between objects. For the Composite pattern, take into
consideration the UML models presented in Fig. 9 and try to
answer the question: can these models be still regarded as
instantiations of the Composite pattern?

Figure 9. The Composite pattern without Composite and without Leaf

If we remove all the occurrences of the Leaf participant
of the pattern, we do not loose the intent of the pattern, even
if we lose the possibility of adding terminal elements in the
hierarchical tree of composition. But, if we remove all the
occurrences of the Composite participant, no more
composition is possible. Indeed, it is Composite which
completely manages the responsibilities for the composition
of the objects, first intent of the pattern. Thus, this
participant plays a dominant role in the pattern.

The reference participant depends on the pattern
concerned. This participant is manually chosen with the
heuristic evaluating its essentiality with the number of
structural properties of each class.

Component *

Composite

Component

Leaf

Component

Leaf

*

Composite 1
<<reference>>

*

Composite 2
<<reference>>

Component 1

Composite
<<reference>>Leaf

**

Component 2 Component 1

Composite
<<reference>>Leaf 1

**

Component 2

Leaf 2

(8)

38

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 45 / 98

C. Authorized, Prohibited or Optional Relations

Any class not having the responsibilities of the reference
participant can be found multiplied in the fragment, whereas
those marked reference are separate in different fragments.
But what does occur if a class of the fragment is connected
of more than another way that envisaged? Fig. 10 illustrates
this case on a fragment.

Figure 10. A model fragment with one supplementary relationship

If we apply the method introduced previously, the
fragment is detected, because it respects strictly the structural
properties of the Composite pattern. However, the additional
inheritance modifies the responsibilities of the classes
concerned. A Leaf inheriting a Composite does not have a
meaning in the hierarchical composition of objects, since a
terminal object cannot be a specialized non-terminal object.
Thus, we discriminate any fragment having connections
invalidating the intent of a pattern.

To recognize which relations of the fragment are
discriminating, we documented the pattern with information
indicating which connections are optional, obligatory or
prohibited. This documentation is done thanks to a UML
profile allowing us to add specific information on
relationships. Fig. 11 illustrates the Composite profiled
pattern.

Figure 11. A graphical representation of the profiled pattern

Reported to the graph, we supplement the description of
the pattern with a graph of the prohibited relations,
comparable to the “Negative Conditions Application” (NAC)
of graphs grammars [8]. If a connection appears in the graph
of the pattern, it must obligatorily be present in the fragment;
if it appears in the graph of the relations prohibited, it must
absolutely miss in the fragment. If a connection is present in
the fragment, but absent from the two other graphs, it is
regarded as optional and neutral for detection. Thanks to this
complement, we can now, besides detecting all possible
forms of instantiation of the pattern, refuse certain forms
which we suppose bad for the intent of the fragment.

D. Genericity of the Detection

Our generic detection algorithm is decomposed into three

steps (local_SPC, closure form the reference participant,

global_SPC). At the end of each step, a set of characteristic
classes is selected from the set resulting from the preceding
step. The first step consists in classifying all classifiers of
the model to analyze according to local structural properties
of each participant of the pattern. The second step consists
in computing potential fragments according to the paths
between the reference participant and the others participants
of the pattern. The third step consists in verifying the global
conformance on the potential fragments and to pinpoint
complete fragments. Then the structure of the algorithm is
flexible and does not depends on the structure of the pattern
to retrieve. The genericity of our approach is provided by an
automatic queries generator using profiled patterns. So, to
detect a new pattern, it is sufficient to profile it and to
generate its query [12].

We chose OCL to encode our detection queries. OCL is
a language of constraints used to add semantics into UML
models [9]. The Neptune platform was developed by our
team within the European Neptune project [10]. The OCL
interpreter proposed by the platform implements the standard
OCL 2.0 [9] and two extensions of OCL [11]. The second
relates to the queries which can return a result of any type of
the meta-model, which introduces the concept of view. We
use this capacity to carry out our search for complete
fragments in a model. Moreover, thanks to the navigational
property of OCL, the generation of the queries consists in
navigating in the meta-model of the pattern to detect. In
following the three steps of the algorithm and in considering
the pattern as a graph, the generator analyzes all the possible
paths between each vertex and transforms them in an OCL
query.

V. VALIDATION

In order to validate the detection algorithm we have
sought models of real projects. We would like recall here
that we search model fragments at design level without any
information from the code. Unfortunately, we did not find
industrial projects with exploitable models for our needs; the
percentages of association links on inheritance links are too
low. So, we have used the code of free projects to obtain
reversed models. To do so, we used the Java reverse module
of ArgoUML.

The problem with code reversion relates to associations
between classes. It is very difficult for reverse softwares to
know which variable must be regarded as attribute,
association, composition, etc. However, the module of
ArgoUML makes it possible to impose that all the attributes
are transformed into associations. To take into consideration
the parameterized genericity of the latest versions of Java,
we have added in the ArgoUML module the capacity to
convert these types into (1..n) associations. Thanks to this
modification, we consider that the reversed models have a
good abstraction level.

In order to make sure of the validity of our detection
algorithm, we sought fragments corresponding to
characteristic architectures. Fig. 12 presents the fragments
that we have searched in nine models (ArgoUML, JUnit,
JFreeChart, JabRef, Jena, AWT, JHotDraw, JRefactory, and
Neptune). We can notice that these fragments are the Bridge

Component

Leaf

*

Composite
<<reference>>

Component

Leaf Composite

*

39

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 46 / 98

pattern and its alternatives. In order to precise the detection,
we have searched the same fragments twice: first, with
information about authorized and prohibited relations, and
second without any complementary information. For these
examples, all supplementary relations between classes are
prohibited.

Figure 12. The searched fragments

To validate the queries generated for these micro-
architectures, we have executed them directly on the models
allowing the generation of the queries. All queries are able
to detect the model which has permitted their generation. So,
we can say that we detect, at least, the minimal micro-
architecture with exact instantiation.

The results obtained at the end of the detection show that
all possible instantiations have been identified in the models,
and no more. You can see the OCL queries generated
corresponding to each pattern of Fig. 12 on [20]. It is
interesting to notice that all fragments are identified twice:
{SuperA, A, B, SuperB}, and {SuperB, B, A, SuperA}. The
result is correct; each structure pattern is symmetric.
Moreover, the researches with information about authorized
and prohibited relations have retrieved fewer fragments than
with the fragment without complementary information.

VI. RELATED WORKS

We present three generic detection techniques used in a
similar context. The first two concern approached
identifications of design patterns for re-documentation, and
the third concerns exact identification of design problems
solvable by design patterns.

Patterns identification by comparison of similarities. [1]
proposes an algorithm for approximate pattern matching
based on comparisons of similarities. This algorithm
generates, from two graphs encoded by a matrix, an
adjacency matrix representing the closeness of these two
graphs. Matrix representations of relationships between
artifact developments are used to compute effective
approximations. Another way to represent UML models is
to consider their visual forms as multi-graphs. Each type of
relationship is represented by a different graph. A designer
can choose on what information the similarity search is
based (associations, generalizations, method specializations,
method invocations, etc.). Thus, for a model and a pattern,
the average of weighted matrices results for each significant
input matrix (associations, generalizations, methods, etc.) is
computable. The weighting is determined by the designer

according to the importance it wishes to provide the various
relationships of a static UML model. This weighted average
is then the likeness of a fragment from a design pattern.

Patterns detection by fuzzy evaluation of UML models.
Fujaba (From UML to Java And Back Again) is a tool that
can generate Java code from a UML model and impact code
changes on this model [13] [14]. A component of automatic
detection of design patterns has been added. This
component uses Abstract Syntax Graphs (ASG) [15] to
describe a model by eliminating most syntactic variants and
formatting problems. Design patterns are decomposed into
sub-patterns implemented as rules of graph transformation.
However, if some sub-patterns are generic, eg. all possible
ways to assign a value to an attribute in a method, the
detection algorithm cannot detect patterns whose shape is not
really the sub-assembly patterns provided. To overcome this
limit, fuzzy evaluation mechanisms have been proposed by
S. Wenzel [2]. They can detect patterns used differently
than what is recommended, as well as incomplete patterns.
To detect patterns in UML, it is necessary to describe a
combination of roles in the UML sense. A role corresponds
to a meta-class, which can be attached to OCL constraints
[9]. Constraints can describe the complex arrangements of
certain patterns and clarify the internal organization of each
role. Using this mode of representation, it is possible to
detect design patterns in the same manner as a "cast of
theater" [2]. The detection assigns a role in the pattern to
some model elements. Each assignment is quantified by a
value (0 to 100%) representing how the element can play the
role. To get 100%, elements must have the same type as the
role and respect each of the constraints described in the
pattern. After the detection, the candidate fragments are
presented to the designer. Implemented in a component of
Fujaba, this technique detects target fragments "similar" to
contextualization’s design patterns.

Problems detection by constraint propagation. El-
Boussaidi and Mili [16] proposes to detect fragments
consistent with the meta-model of the problem of a pattern,
and replace fragments by instantiation of the corresponding
patterns. This detection technique reformulates the problem
of homomorphism of graphs proposed by M. Rudolf [17].
A CSP is defined by a finite set of variables in a domain, and
a finite set of constraints specifying how values can be
assigned to variables [18]. CSPs are generally used to solve
efficiently backtracking algorithms. When a value is
assigned to a variable, all the constraints of this variable are
propagated to other variables. To construct a CSP dedicated
to pattern matching, it is necessary to work with two graphs,
one to search (the source graph) and one in which research is
conducted (the target graph) [17]. Each vertex and each
arrow of the source graph are associated with distinct
variables. The domain of variable vertices and arrows
correspond respectively to the set of vertices and arrows of
the target graph. The constraints construction is done on the
parameters compared to validate the research. H. Mili and
G. El-Boussaidi [19] defines design patterns as a triple (MP,
MS, T) where MP is the problem solved by the pattern, MS
is the solution to the problem, and T is the transformation
that converts MP to MS. MP and MS are respectively the

SuperA

A
<<reference>>

SuperB

B

SuperA

A
<<reference>>

SuperB

B

SuperA
<<reference>>

A

SuperB

B

40

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 47 / 98

meta-models of the problem and solution. When a designer
discovers a fragment of his model conforms to the meta-
model of the problem, he has only to apply the
transformation rules for modifying the fragment.

TABLE II. SUMMARY OF APPROACHES

 [1] [14] [16] us

Do not perform preprocessing on the model

to analyse
 OK OK

Do not use information from the code OK

Perform detection by successive steps OK OK OK

Limit the execution time OK OK

Limit the number of fragments identified OK OK

Do not degrade the consensus of the pattern OK OK OK

Detect all possible instantiations OK OK OK

Table 2 summarizes the specifics of our problem with the

related works. The last column refers to our approach. We
guarantee a technique for early detection, even on large
models. It is not pertinent to test all the meta-classes of the
model to analyze, and it is better to make a quick filter to
restrict the number of comparisons. Then we work directly
and without pretreatment with the patterns encoded as
models. Moreover, a spoiled pattern constitute a base
generating a family of possible instantiations, and we
identify accurately all the fragments of the same family.

VII. CONCLUSION

We have presented a complete method to detect generic
micro-architectures on models. Then, a major issue of our
work is the fact that we have reasoned at design level
uniquely. That implies to use information present in models
only and to define a re-documentation technique for retrieve
patterns in a model. We have used standards dedicated to
model engineering: UML profile and OCL queries. From a
profiled model representing the structure of a pattern, we
deduce automatically the OCL query that permit to retrieve
all authorized instantiations of this pattern in a design model.

The detection is the core part of a tooling design review
activity [4]. We have implemented this activity into satellite
software of the Neptune platform and we named it Triton
[12]. As a code review permits to detect inconsistencies, no
respect of coding rules, and bad smells in code before a
production running, the design review permits to detect
model fragments bad conceived and to refactor thanks to
design patterns before a coding stage. The results of our
queries are not too strict and not fuzzy; each detected
fragment can be precisely built from a canonical form and by
successive addition of participants. Therefore, we think that
our detection method can be reused by the query part of any
transformation model language.

However, the detection is based on structural properties
only. For now, we have a catalog of spoiled structural
design patterns. Dynamic views would be taking into
consideration to detect behavioral design patterns and to
precise some structural patterns by the detection of message
exchange motifs.

REFERENCES

[1] N. Tsantalis and S. T. Halkidis, “Design Pattern Detection Using
Similarity Scoring”, in: IEEE Transactions on Software Engineering,
IEEE Press, volume 32, number 11, pages 896-909, 2006.

[2] S. Wenzel, “Automatic detection of incomplete instances of
structural patterns in UML class diagrams”, in: Nordic Journal of
Computing, Publishing Association Nordic Journal of Computing,
volume 12, number 4, pages 379-394, 2005.

[3] H. Albin-Amiot, P. Cointe, Y.-G. Guéhéneuc, and N. Jussien,
“Instantiating and Detecting Design Patterns: Putting Bits and Pieces
Together”, in: proceedings of the 16th conference on Automated
Software Engineering (ASE), IEEE Computer Society Press, pages
166-173, 2001.

[4] C. Bouhours, H. Leblanc, and C. Percebois, “Bad smells in design
and design patterns”, in: Journal of Object Technology, ETH Swiss
Federal Institute of Technology, volume 8, number 3, pages 43-63,
2009.

[5] Object Management Group., “Unified Modeling Language”,
http://www.omg.org/spec/UML/1.5/PDF/index.htm, 2010.

[6] Object Management Group., “XML Metadata Interchange”,
http://www.omg.org/technology/xml/index.htm, 2007.

[7] J. R. Ullmann, “An Algorithm for Subgraph Isomorphism”, in:
journal of the ACM (JACM), ACM, volume 23, number 1, pages 31-
42, 1976.

[8] A. Habel, R. Heckel, and G. Taentzer, “Graph grammars with
negative application conditions”, in: Fundamenta Informaticae
Journal, IOS Press, volume 26, number 3-4, pages 287-313, 1996.

[9] Object Management Group., “Object Constraint Language”,
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf, 2006.

[10] Neptune consortium, “Method, Checking and Document generation
for UML applications”, http://neptune.irit.fr/images/files/Neptune
Book/407719ps.pdf, 2003.

[11] T. Millan, L. Sabatier, T. T. Le Thi, P. Bazex, and C. Percebois,
“An OCL extension for checking and transforming UML Models”,
in: proceedings of the 8th International Conference on Software
Engineering, Parallel and Distributed Systems (SEPADS), WSEAS
Press, pages 144-150, 2009.

[12] C. Bouhours, “Detection, Explications et Restructuration de défauts
de conception : les patrons abîmés”, PhD, IRIT, 2010.

[13] FUJABA, From UML to Java and Back Again, http://wwwcs.uni-
paderborn.de/cs/fujaba/projects/ reengineering/index.html, 2005.

[14] S. Wenzel, “Detection of Incomplete Patterns Using FUJABA
Principles”, in: proceedings of the 3rd International Fujaba Days
2005 : MDD in Practice, pages 33-40, 2005.

[15] J. Niere, W. Schäfer, J.P. Wadsack, L. Wendehals, and J. Welsh,
“Towards pattern-based design recovery”, in: proceedings of the 24th
International Conference on Software Engineering (ICSE), ACM
Press, pages 338-348, 2002.

[16] G. El-Boussaidi and H. Mili, “Detecting Patterns of Poor Design
Solutions Using Constraint Propagation”, in: proceedings of the 11th
international conference on Model Driven Engineering Languages
and Systems (MoDELS), Springer-Verlag, volume 5301, pages 189-
203, 2008.

[17] M. Rudolf, “Utilizing Constraint Satisfaction Techniques for
Efficient Graph Pattern Matching”, in: selected papers from the 6th
International Workshop on Theory and Application of Graph
Transformations (TAGT), Springer-Verlag, pages 238-251, 2000.

[18] F. Bacchus and P. Van Beek, “On the Conversion between Non-
Binary and Binary Constraint Satisfaction Problems”, in: proceedings
of the 15th National Conference on Artificial Intelligence (AAAI) and
of the 10th Conference on Innovative Applications of Artificial
Intelligence (IAAI), AAAI Press, pages 311-318, 1998.

[19] H. Mili and G. El-Boussaidi, “Representing and Applying Design
Patterns: What Is the Problem?”, in: proceedings of the 8th
international conference on Model Driven Engineering Languages
and Systems (MoDELS), pages 186-200, 2005.

[20] http://www.irit.fr/~Cedric.Bouhours/Examples/

41

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 48 / 98

A Benchmark Platform for Design Pattern Detection

Francesca Arcelli Fontana, Marco Zanoni, Andrea Caracciolo
Dipartimento di Informatica, Sistemistica e Comunicazione

University of Milano Bicocca
Milano, Italy

Email: {arcelli,marco.zanoni}@disco.unimib.it, a.caracciolo1@campus.unimib.it

Abstract—Design patterns detection is a useful activity in
reverse engineering to gain knowledge on the design issues of an
existing system, on its software architecture and design quality,
improving in this way the comprehension of the system and
hence its maintainability and evolution. Several tools have been
developed, but they usually provide different results analyzing
the same systems. Some works have been proposed in the
literature to compare these results, but a standard widely
accepted benchmark is not yet available. In this work we
propose our benchmark platform for design patterns detection,
based on a community driven evaluation.

Keywords-design pattern detection; benchmark

I. INTRODUCTION

Design pattern detection (DPD) is a topic which received
a great interest during the last years. Finding design patterns
(DPs) [1] in a software system can give very useful hints on
the comprehension of a software system and on what kind
of problems have been addressed during the development
of the system itself. Moreover, they are very important
during the re-documentation process, in particular when the
documentation is very poor, incomplete or not up-to-date.

Several DPD approaches and tools have been developed
both for forward and reverse engineering aims and involving
different techniques for the detection such as fuzzy logic,
constraints solving techniques, theorem provers, template
matching methods and classification techniques (i.e., [2],
[3], [4], [5], [6], [7], [8], [9], [10]). In spite of the many
approaches proposed, the results obtained are often quite
unsatisfactory and different from one tool to the other.

Many tools find many false positive instances but other
correct instances are not found. One common problem in
DPD is the so called variant problem: DPs can be im-
plemented in several ways, often very different from one
another. The main variants for each pattern are described
in the catalog of [1], others are applied when the context
of application requires it. These variations cause the failure
of most pattern instances recognition using rigid detection
approaches, which are based only on canonical pattern
instances.

Hence the comparison of the results provided by the
different tools is very important, in order to be able to
evaluate the best approach and technique. Some works that

have been proposed respect to the comparison of DPD tools
are described in the next section.

We analyzed and faced the problem related to the different
results provided by the DPD tools, since we are developing a
tool called MARPLE (Metrics and Architecture Reconstruc-
tion plug-in for Eclipse) [11] whose main aims are related to
DPD and software architecture reconstruction. The Marple
DPD module is characterized by the following steps:

• the detection of sub components or micro structures,
which give useful hints on the DP detection, with the
aim of mitigating the variant problem;

• the detection of the largest possible set of DP can-
didates performed by a module called Joiner, whose
results are characterized by very high recall values;

• the refining of the previous results through data mining
techniques, in particular through a step of clustering
and a step of supervised classification.

The aim of this work is to introduce and describe a
benchmark platform to be used to compare DPD tools. We
propose some mechanisms to obtain safer results and to
make them available to the DPD community in an easy way.
Our approach is characterized by:

• a general model for design pattern representation;
• a way of comparing results coming from different tools;
• the possibility to evaluate instances and discuss about

their correctness.
The adoption by the DPD community of a benchmark

can improve the cooperation among the researchers and the
reuse of tools written by other instead of the development
of new ones.

II. RELATED WORK

As we observed before, undertaken a comparison among
design pattern detection tools is certainly a difficult task. Few
benchmark proposals for the evaluation of design pattern
detection tools have been presented in the literature. In
[12], we describe our first proposal for a benchmark, that
we extend and finalize in this paper. In [13], the authors
present their work in progress towards creating a benchmark,
called DEEBEE (DEsign pattern Evaluation Benchmark
Environment), for evaluating and comparing design pattern
detection tools. Currently, the benchmark database contains
the results of three DP tools.

42

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 49 / 98

In [14], it has been defined P-MARt, a repository of
pattern-like micro-architectures, with the purpose to serve as
baseline to assess the precision and recall of pattern identifi-
cation tools. The repository contains the analysis of specific
version of some different open source projects. While in
[15] the authors compare different design patterns detection
tools and they propose a novel approach based on data
fusion, build on the synergy of proven techniques, without
requiring any re-implementation of what is already available.
In [16], the authors develop DPDX, a rich common exchange
format for DPD tools, to overcome limitations due to the
different output format. DPDX provides the basis for an
open federation of tools that perform comparison, fusion,
visualization, and-or validation of DPD results.

In our work we aim to provide an online tool to support
the comparison of DPD results, with the benefit of having a
flexible underlying model and a collaborative environment.
In future work we will experiment the correctness and
completeness of our approach exchanging data with the
above cited platforms and models.

III. DP REPRESENTATION

In order to work on design pattern instances we need a
way to represent them in some kind of data structure. In
[12], we presented a model for the representation of DP
definitions and instances. That model now stands behind all
the elaboration made by the benchmark platform.

The model specifies that a design pattern can be defined
from the structural point of view using the roles it contains
and the cardinality relationship between couple of roles.
A design pattern is defined as a tree whose nodes are
called Levels; each Level has to contain at least one of the
roles of the pattern and it can contain other nested Levels,
recursively. In Figure 1 it is possible to see the tree structure
of the LevelDef class (representing the level definition), and
the RoleDef s it owns; finally, DpDef defines that a design
pattern definition is a tree having as root one LevelDef.

LevelDef

id : Integer

RoleDef

id : Integer
name : String

DpDef

id : Integer
name : String

roles
part_of [1..*]

children
parent_level

root

Figure 1. DP Definition UML class diagram

When two roles are contained in the same level, they are
in a one-to-one relationship; instead when a role is in a
nested Level it means that for each instance of the roles in
the parent level, there can be many sets of roles of the child
level. The most common case is when a pattern defines that a
class must extend another class. In most cases we identify a
single instance of that pattern as the parent class connected
with all the children classes. Instances are modeled as in
Figure 2; the model is simply an extension of the definition,
as it models the instantiation of the concepts contained
in the definition: a RoleAssociation is the realization of a
RoleDef, a LevelInstance is the realization of a LevelDef,
and so on. The only complex detail is the splitting of Level
and LevelInstance; the explanation is that each LevelDef is
instantiated as a LevelInstance when the RoleAssociations
are filled, but to define a child Level we need to specify
which particular parent instance it belongs to.

LevelDef

id : Integer

RoleDef

id : Integer
name : String

DpDef

id : Integer
name : String

RoleAssociation

id : Integer
className : String
package : String
filePath : String

LevelInstance

id : Integer

Level

id : Integer

DPInstance

id : Integer
name : String

roles

part_of
 [1..*]

children

parent_level

level [1..*]

part_of

 [1..*]

is_in

 [0..*]

definition
 [0..*]

definition

root

root

Figure 2. Model UML class diagram

A. XML format

The XML format for specifying design pattern instance is
modeled according to the representation model, so it follows
the same concepts. The XML Schema Definition, which the

43

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 50 / 98

submitted XML file must comply to, is available at [17];
moreover, the list of the pattern definitions the tool can
support is also available at [18].

In order to have more chances of being able to compare
results coming from different tools, currently users cannot
supply their own pattern definitions. When the platform will
be more tested and filled with data, we will add this func-
tionality. Meanwhile we accept and encourage suggestions
coming from the users about new definitions or mistakes in
the current ones.

In the following we report an XML file example that
represents an instance of an Abstract Factory design pattern.

Listing 1. Example of Abstract Factory instance
<a n a l y s i s
xmlns=” h t t p : / /www. e s s e r e . d i s c o . unimib . i t /DPBWeb”
x m l n s : x s i =” h t t p : / /www. w3 . o rg / 2 0 0 1 / XMLSchema−

i n s t a n c e ”
x s i : s c h e m a L o c a t i o n =” h t t p : / /www. e s s e r e . d i s c o . unimib

. i t : 8 0 8 0 /DPBWeb / r e s o u r c e s / DpAna lys i s . xsd ”>
<p a t t e r n name=” A b s t r a c t F a c t o r y ”>
<p a t t e r n I n s t a n c e>

<r o l e name=” A b s t r a c t F a c t o r y ”
package =” org . foo . b a r ”
c l a s s =” Abs t r a c tF a c t o r yC l a s sNa me ”
f i l e P a t h =” org / foo / b a r / a1 . j a v a ” />

< l e v e l>
< l e v e l I n s t a n c e>

<r o l e name=” Conc r e t e F a c t o r y ”
package =” org . foo . b a r ”
c l a s s =” Concre t eFac t o r yCl a s sName ”
f i l e P a t h =” org / foo / b a r / b1 . j a v a ” />

< / l e v e l I n s t a n c e>
</ l e v e l>
< l e v e l>

< l e v e l I n s t a n c e>
<r o l e name=” A b s t r a c t P r oduc t ”

package =” org . foo . b a r . baz ”
c l a s s =” Abs t r a c tP r oduc tC l a s sName ”
f i l e P a t h =” org / foo / b a r / baz / c1 . j a v a ” />

< l e v e l>
< l e v e l I n s t a n c e>

< r o l e name=” Conc r e t e P roduc t ”
package=” org . foo . b a r . baz ”
c l a s s =” Concre t eProduc tC l as sName1 ”
f i l e P a t h =” org / foo / b a r / baz / d1 . j a v a ” />

</ l e v e l I n s t a n c e>
< l e v e l I n s t a n c e>

< r o l e name=” Conc r e t e P roduc t ”
package=” org . foo . b a r . baz ”
c l a s s =” Concre t eProduc tC l as sName2 ”
f i l e P a t h =” org / foo / b a r / baz / d2 . j a v a ” />

</ l e v e l I n s t a n c e>
< / l e v e l>

< / l e v e l I n s t a n c e>
</ l e v e l>
< l e v e l>

< l e v e l I n s t a n c e>
<r o l e name=” C l i e n t ”

package =” org / foo / b a r / baz ”
c l a s s =” Cl i en tC las sName ”
f i l e P a t h =” org / foo / b a r / baz / e1 . j a v a ” />

< / l e v e l I n s t a n c e>
</ l e v e l>

< / p a t t e r n I n s t a n c e>
< / p a t t e r n>
< / a n a l y s i s>

The file refers to the roles Abstract Factory, Concrete
Factory, Abstract Product, Concrete Product, each associ-
ated to a class name and to a package name, and organized
following the Abstract Factory definition.

IV. DPD PLATFORM

The platform is available at [19] and it is subdivided in:

• the documentation section contains some references
and guides to use the platform; in addiction the home
page briefly introduces the system functionalities and
provides a step by step tutorial;

• the search section lets the user to find the results of a
particular analysis, according to different parameters;

• the compare section allows to compare the instances
found by different tools on the same input project;

• the browse section provides a tree-like view of the
contents of the platform.

Through these different kinds of exploration the user
can obtain the detailed view of each pattern instance, that
includes two different types of graphic visualization and a
simple forum for the evaluation of the instance by the users.

All the above functionalities are visible to all users; if a
user wants to load new pattern instances into the platform
he must be registered, log into the platform, and submit the
XML file containing the instances and some metadata, as
shown in Figure 3. In our platform an analysis consists of
the combination of the set of the instances, its description,
the choice of the DPD tool and the analyzed project.

Tool: DPD Tool 4.5

Project: JHotDraw 5.1

Svn base URI :

Svn revision:

XML file:

Created: 06/24/2010
mm/dd/yyyy

Short description
Long description:

Upload

Upload Project Analysis

Uploaded Analyses

Tool Project description
DPD Tool 4.5 J HotDraw 5.1 regular scan with all DPs enabeled View
DPD Tool 4.5 J Refactory 2.6.24 regular scan with all DPs enabeled View
DPD Tool 4.5 J Unit 3.7 regular scan with all DPs enabeled View
DPD Tool 4.5 Lexi 0.1.1 alpha regular scan with all DPs enabeled View
DPD Tool 4.5 MapperXML 1.9.7 regular scan with all DPs enabeled View
DPD Tool 4.5 Nutch 0.4 regular scan with all DPs enabeled View
DPD Tool 4.5 PMD 1.8 regular scan with all DPs enabeled View
DPD Tool 4.5 QuickUML 2001 regular scan with all DPs enabeled View
WOP 1.3 J HotDraw 5.1 regular scan with all DPs enabeled View
WOP 1.3 J Unit 3.7 regular scan with all DPs enabeled View
WOP 1.3 MapperXML 1.9.7 regular scan with all DPs enabeled View
WOP 1.3 Lexi 0.1.1 alpha regular scan with all DPs enabeled View
WOP 1.3 Nutch 0.4 regular scan with all DPs enabeled View
WOP 1.3 QuickUML 2001 regular scan with all DPs enabeled View

Back to panel

http://essere.disco.unimib.it/svn/DPB/J HotDraw%20v5.1/src/
7

Figure 3. Example of analysis loading

44

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 51 / 98

A. Search

The user can search a pattern instance according to the
chosen programming language, project, detection tool, and
design pattern. An example of a search section is shown in
Figure 4. In the user interface, whenever the user chooses
a filter, the page shows the available further filters. In each
selection list it is possible to choose more than one value,
to make the search more flexible and personalized.

Search

C
C#
C++
Java
Perl
PHP
Python
Visual Basic

-> JHotDraw 5.1
JRefactory 2.6.24
JUnit 3.7
Lexi 0.1.1 alpha
MapperXML 1.9.7
Netbeans 1.0.x
Nutch 0.4
PMD 1.8
QuickUML 2001

-> DPD Tool 4.5
WOP 1.3

-> Abstract Factory
Adapter
Bridge
Composite
Decorator
Factory Method
Observer
Prototype
Proxy
Singleton
State
Strategy

Votes: 0
Stars: ***

Search

J HotDraw 5.1 MapperXML 1.9.7
 Composite Template Method Composite Template Method

 T F T F T F T F
DPD Tool 4.5

38 - - 0 1 X X X X
42 X X X X - - 0 0

WOP 1.3
46 1 1 - - X X X X
56 X X X X 1 0 0 0

Figure 4. Example of a pattern instance search result

Figure 4 shows an example of search parameters and
results, in the case the user looks for the analysis of project
written in the Java language, on the “JHotDraw 5.1” and
“MapperXML 1.9.7” projects, analyzed by the “DPDTool
4.5” and “WOP 1.3” tools and filtered on the “Composite”
and “Template Method” design patterns.

The table (see Figure 4) shows the results with the tools
and their analysis on the rows and the projects with the
patterns on the columns. Each cell is the combination of an
analysis of a tool and a pattern belonging to a project, and it
contains the number of instances considered correct and the
number of the ones considered incorrect, respectively under
the column label “T” and “F”.

The bias value that allows the platform to choose if an
instance is correct or not is specified by the two combo
boxes named “Votes” and “Stars”. The details of this topic
are explained in Section IV-D.

There is a special case regarding the cell values: for
example, when an analysis does not contain instances of
a particular design pattern in a particular project, the corre-
sponding cells are rendered as “X” in light grey.

B. Comparison

The user can compare the results produced by two dif-
ferent analysis, obtained by two different tools, on the same
project and for the same single chosen pattern definition.
The comparison results (see Figure 5) are shown in a table
where the two instance sets, found by the two analysis, are
shown one on the rows and the other on the columns. The
cells of the table contain values indicating the similarity of
the corresponding couple of instances. The similarity is cur-
rently evaluated through a very simple algorithm described
below. The background color of each cell is proportional to
its percentage value, according to the selected color scheme
(red:0% to green:100% or white:0% to blue:100%).

25% 2% 94% 26%
59% 84% 84% 9%

49% 77% 17% 20%
50% 81% 83% 13%

Figure 5. Example of a result comparison

Figure 5 shows an example of comparison: the user selects
to compare the instances of the Composite pattern found on
project “QuickUML 2001” by:

• the “DPD Tool 4.5” tool in the analysis named “regular
scan with all DPs enabled”;

• the “WOP 1.3” tool in the analysis named “regular scan
with all DPs enabled”.

The table shows that each tool found four instances, and
that for example the instances #1911 and #526 are very
similar, with a score of 94%, and instances #1911 and #515
are very different, having a score of only 2%. The numbers
in bold are the highest value of the rows: in fact the last
option selected is to highlight the highest value of each row;
it is also possible to do the same on the columns. This option
simplifies the task of finding the instances that are more
similar in order to understand if they are really the same.

45

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 52 / 98

The view can be also filtered removing all the rows or
columns having all the values less or equal to the one
specified, in order to simplify the table and to include only
meaningful results.

1) Comparison algorithm: In the current version of the
benchmark platform we implemented a comparison algo-
rithm we developed as a proof of concept. The algorithm
tries to express the similarity of two instances giving more
weight to the parent roles and less to the children roles, and
produces a number between 0 (total difference) and 1 (total
equivalence). The actual version of the algorithm is very
simple and any suggestions and contribution coming from
the DPD community, in order to populate the platform with
other comparison algorithms, is welcome.

Our algorithm gives a descending score to each level depth
in the pattern definition: for example in a definition with only
a parent level and a child level, the parent level depth takes
a score of 2 and the child level depth takes a score of 1;
with three level depths the first one (the root) would take
weight 3, and so on. Then each level in the definition takes
the score of the depth it belongs to, and an overall score is
calculated as the sum of the score of all levels.

Finally a weight is assigned to each level dividing the
level score by the overall score. In this way the sum of all
the weights is 1.

When the weights are set, the algorithm compares a
couple of instances starting from the root and recursively
distributing the weight of each level on its level instances;
we consider that two level instances are equal if their sets
of role association are equal.

For example: let us say a level weights 1/2 and the two
levels to compare contain the first one instance and the
second two instances; in addition the instance in the first
level is equal to one of the two in the second one level.
Their direct comparison value is 1/2, because we have only
one match out of two, that is the maximum of the number
of the instances in each level. Then the overall score of the
comparison is 1/2∗1/2, because we have to weight the local
score with the global weight.

The overall score of the comparison is the sum of all the
local scores.

C. Browse

The Browse section offers a tree view of the content of the
platform. Basically it allows the user to find all the analysis
made by a tool on a project: the user can choose as entry
point both the available projects or tools. Whenever the users
clicks on one of them, the page shows the analysis available
in combination with the other.

For example, clicking on the name of the analysis, the
platform shows the analysis details page containing the list
of the found DP instances, grouped by design pattern.

D. Evaluation

The evaluation phase allows the user to analyze the
reported instance. The instance can be graphically viewed
in two ways: in the first way using a graph representation of
the tree representing the instance (it requires java working
in the browser), and in the second way using nested boxes
(see Figure 6) to represent the nested structure of the tree
representing the pattern instance.

AbstractHandle

by andrea @ 23/06/10 (16:18) Hide

Abstract Class

Concrete Class

-

Uploaded by: admin
Project: J HotDraw 5.1
Tool: DPD Tool 4.5

Source code: - Choose a file -

View layout: Nested Boxes

Evaluations

Could be correct but it lacks the concrete class(es)

[Post a comment

1 points

Figure 6. Example of the visualization of an instance

The rest of the evaluation phase is concerned with the
discussion forum about the found instance. This forum is
dedicated to the evaluation of the correctness of the found
instance:

• it allows to express a score (the “Stars”) in the range
1-5, where 1 means the instance is fully incorrect, and
5 means it is correct; it is also possible to insert a
comment to argument the evaluation;

• it lets other users to express an agreement or disagree-
ment (the “Votes”) with previous evaluations.

The overall scoring is used as a parameter in the search
page (see Figure 4) to have an immediate idea about the
overall correctness of a found instance.

In fact, during the search phase, the user can specify
the minimum number of stars a pattern instance must have
in order to be considered a correct instance. In addition,
the user can specify the absolute number of agreements
(or disagreements) each evaluation must have to be safely
included in the overall stars computation. The overall stars
number of an instance is computed as the average star
number weighted with the agreement balance (the difference
between the number of agreements and disagreements), con-
sidering only the evaluations having the minimum number
of absolute agreements. Currently, the platform allows the
users to choose the number of stars in the range 1-5, and
the number of agreements (called “Votes” in the platform)
from 0 to 20.

46

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 53 / 98

We believe that this community driven system of classi-
fying found instances provides good common datasets, for
the test of new tools and the enhancement of the existing
ones.

Moreover, in the evaluation phase it is possible to inspect
directly the source code, selecting the file to inspect from the
combo box under the graphical representation of the pattern.

V. CONCLUSION

In this paper we presented a platform helping the design
pattern detection community having a way to compare the
results produced by the tools and the techniques that have
been proposed in the literature.

Our final intent is not only the tool “competition” but
also the creation of a container for design pattern instances
that, through the users’ voting, will allow us to build a
large and “community validated” dataset for tool testing and
benchmarking.

For all these reasons we are convinced that this kind of
platform can be really valuable in our research area because
it allows the real sharing of information and knowledge
among all research groups interested in design patterns for
both reverse and forward engineering.

In future work we are interested in integrating different
comparison algorithms, maybe suggested and discussed with
the DPD community, in order to let the users to choose the
algorithm they think is the more appropriate; in addition,
we need to refine and tune the platform settings. We are
also investigating the possibility to expose some kind of web
services in order to let registered users to make their tool able
to automate the loading of their analysis into the platform.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[2] A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi, “Design
pattern recovery through visual language parsing and source
code analysis,” Journal of Systems and Software, vol. 82,
no. 7, pp. 1177 – 1193, 2009.

[3] H. Huang, S. Zhang, J. Cao, and Y. Duan, “A practical pattern
recovery approach based on both structural and behavioral
analysis,” Journal of Systems and Software, vol. 75, no. 1-
2, pp. 69 – 87, 2005, software Engineering Education and
Training.

[4] M. von Detten, M. Meyer, and D. Travkin, “Reverse engineer-
ing with the reclipse tool suite,” in ICSE ’10: Proceedings of
the 32nd ACM/IEEE International Conference on Software
Engineering. New York, NY, USA: ACM, 2010, pp. 299–
300.

[5] R. A. Olsson and N. Shi, “Reverse engineering of design
patterns from java source code,” in ASE ’06: Proceedings of
the 21st IEEE/ACM International Conference on Automated
Software Engineering. Washington, DC, USA: IEEE Com-
puter Society, 2006, pp. 123–134.

[6] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis, “Design pattern detection using similarity scoring,”
IEEE Transactions on Software Engineering, vol. 32, no. 11,
pp. 896–909, 2006.

[7] Y.-G. Guéhéneuc, “Ptidej: Promoting patterns with patterns,”
in Proceedings of the 1st ECOOP workshop on Building a
System using Patterns, M. E. Fayad, Ed. Springer Verlag,
July 2005, 9 pages.

[8] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and
J. Welsh, “Towards pattern-based design recovery,” in ICSE
’02: Proceedings of the 24th International Conference on
Software Engineering. New York, NY, USA: ACM, 2002,
pp. 338–348.

[9] J. Dietrich and C. Elgar, “Towards a web of patterns,” Web
Semantics: Science, Services and Agents on the World Wide
Web, vol. 5, no. 2, pp. 108 – 116, 2007, software Engineering
and the Semantic Web.

[10] Y.-G. Gueheneuc and G. Antoniol, “DeMIMA: A multi-
layered approach for design pattern identification,” IEEE
Transactions on Software Engineering, vol. 34, pp. 667–684,
2008.

[11] F. Arcelli, C. Tosi, M. Zanoni, and S. Maggioni, “The
marple project - a tool for design pattern detection and
software architecture reconstruction,” in Proceedings of the
International Workshop on Advanced Software Development
Tools and Techniques (WASDeTT 2008), Paphos, Cyprus, July
2008.

[12] F. Arcelli, C. Tosi, and M. Zanoni, “A benchmark proposal for
design pattern detection,” in FAMOOSr 2008: Proceedings of
2nd Workshop on FAMIX and Moose in Reengineering, 2008.

[13] L. Fulop, R. Ferenc, and T. Gyimothy, “Towards a benchmark
for evaluating design pattern miner tools,” in Software Mainte-
nance and Reengineering, 2008. CSMR 2008. 12th European
Conference on, 1-4 2008, pp. 143 –152.

[14] Y.-G. Guhneuc, “Pmart: Pattern-like micro architecture repos-
itory,” in Proceedings of the 1st EuroPLoP Focus Group on
Pattern Repositories, M. Weiss, A. Birukou, and P. Giorgini,
Eds., July 2007.

[15] G. Kniesel and A. Binun, “Standing on the shoulders of giants
- a data fusion approach to design pattern detection,” in ICPC.
IEEE Computer Society, 2009, pp. 208–217.

[16] G. Kniesel, A. Binun, P. Hegedűs, L. J. Fülöp, N. Tsantalis,
A. Chatzigeorgiou, and Y.-G. Guéhéneuc, “A common ex-
change format for design pattern detection tools,” in CSMR
2010, March 2010.

[17] ESSeRE, “Design pattern analysis schema definition,” Web
Site, 2010, http://essere.disco.unimib.it:8080/DPBWeb/faces/
resources/DpAnalysis.xsd.

[18] ——, “Design pattern definitions documentation,” Web Site,
2010, http://essere.disco.unimib.it:8080/DPBWeb/faces/Doc
DpDef.jsp.

[19] ——, “Design pattern benchmark platform,” Web Site, 2010,
http://essere.disco.unimib.it/DPB/.

47

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 54 / 98

Tissue Classification from CT of Liver Volumetric Dataset
Using 3D Relational Features

Wan Nural Jawahir Hj Wan Yussof
Chair for Pattern Recognition and Image Processing

Albert-Ludwigs-Universität Freiburg
Freiburg im Breisgau, Germany

yussof@informatik.uni-freiburg.de

Hans Burkhardt
Chair for Pattern Recognition and Image Processing

Albert-Ludwigs-Universität Freiburg
Freiburg im Breisgau, Germany

Hans.Burkhardt@informatik.uni-freiburg.de

Abstract—This paper proposes an extension of two di-
mensional relational features into three dimensions. In two
dimensions, the relational features are extracted using a non-
linear kernel function. This function is applied to the values of
the points of two circles. To extract 3D relational features, we
represent the points on the two spheres. We aim at classifying
the tissue from Computed Tomography (CT) of liver datasets
into three classes; normal, abnormal and others(i.e., kidneys,
blood vessel, etc.). For this task, 100 known points from 6
CT datasets were used for training using the Support Vector
Machine (SVM) classifier and 150 points from 10 CT datasets
were used for validation. The results presented in this paper
show that the relational features are promising.

Keywords-invariant features, relational kernels, Computed
Tomography (CT);

I. INTRODUCTION

Image data contains meaningful information that has to
be automatically extracted using computers or electronic
devices. Such image information are called image features.
Depending upon the particular task, the extracted features
capture morphological properties, color properties, or certain
textural properties of the image.

Based on the collection of texture definitions in [6],
formulated by different vision researchers, it is difficult to
express the true meaning of texture. However, the utilization
of texture features is of increasing interest in many domains,
including in the medical domain. Major categories of texture
can be grouped into three subfields: texture segmentation,
texture classification and texture synthesis. Texture segmen-
tation works on partitioning the differently textured regions
in an image. Taking advantage of structural content from
a small digital sample image, one can construct a large
image. This process is called texture synthesis. In texture
classification, the goal is to assign an unknown sample image
to one of the known texture classes. We attract the attention
of the reader to [6], as these categories have already been
discussed in detail by the authors.

This paper deals with the classification problem and
presents a method for distinguishing normal tissue from
abnormal tissue based on three dimensional textures using
CT data recordings of liver datasets. The organization of

this paper is as follows: In Section 2, we will review the
role of texture features used in medical image processing. In
Section 3, we describe the proposed texture feature. Section
4 presents and discusses the results and finally we give the
conclusion in Section 5.

II. TEXTURE FEATURES IN MEDICAL APPLICATIONS

Texture features have been applied in many medical
image analysis and computer vision problems [1][2][11].
In general, the applications involve the automatic feature
extraction from the image. The features are then used for a
variety of medical tasks such as classification, segmentation,
registration and medical images indexing and retrieval.

Kovalev et al. [11] proposed an extended co-occurrence
descriptor for three dimensional texture analysis of MRI
datasets. The method is based on extended multi-sort co-
occurrence matrices that combine intensity, gradient and
anisotropy image features. They have demonstrated that
their method is an efficient tool in various MRI image
analysis tasks such as classification of brain datasets and
segmentation of diffuse brain lesions.

For the registration task, Jarc et al. [1] extracted Laws
texture coefficients and used them for computing registration
criterion functions. The purpose of their work is to ana-
lyze the importance of texture information for registration
of a digitaly reconstructed radiograph (DRR) and medical
electronic portal image (EPI). They computed a registration
criterion function directly from the intensity values, i.e.,
gray-values, for comparison to their proposed feature based
approach. Three observations have been done; the accuracy
of registration, the distinctiveness of local extrema and the
distinctiveness of a global extrema of the criterion functions.
These parameters are essential to achieve a correct image
alignment. From the given image modalities, a more robust
and correct registration can be expected using texture based
instead of using intensity based criterion functions.

Manduca et al. [2] used texture features for the predic-
tion of breast cancer from mammographic images. They
extracted five textural features. For each image, a total of
1,050 Markovian texture features, 112 run length features,

48

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 55 / 98

250 Laws features and 30 Wavelet features were extracted
from the central area of the breast where the thickness is
nearly uniform and is referred as constant thickness region
(CTR). A total of 41 Fourier features were calculated within
the CTR-box. The CTR-box was obtained from the largest
rectangular box that can be inscribed within the breast
region. For the evaluation they used 381 datasets for training
and 387 datasets for validation. The results consistently show
that texture features at low spatial frequencies provided the
strongest predictors of future breast cancer risk.

Tesar et al. [4] proposed a texture-based segmentation of
organs for disease diagnostic. They proposed the extension
of 2D Haralick texture features to 3D. For this work, they
calculated a separate co-occurrence matrix for each voxel
in the 3D image. The co-occurrence matrix is calculated
from all voxels in a small rectangular window around the
voxel. This makes it possible to segment given a 3D image
as opposed to calculating the feature for the pre-segmented
regions of an image. Consequently, such features can be used
to search for very small regions with different texture proper-
ties (like tumors). A set of abdomen CT images was used for
evaluation of the proposed approach. They used a Gaussian
Mixture Model for the segmentation and for learning the
parameters of the mixture models from the training dataset,
an expectation-maximization (EM) approach was used.

In medical retrieval applications, Glatard et al. [9] used
a bank of Gabor filters, one of the most popular texture
features for medical image indexing and retrieval with a
database of a cardiac magnetic resonance images. Each filter
was tuned to a specific orientation and spatial frequency.
Gabor filters with an angular spacing of 30◦ (corresponding
to the orientations 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦) and a
frequency spacing of one octave (corresponding to the
frequencies

√
2, 2
√
2, ..., N4

√
2 cycles per image, N being

the size of the image) were calculated. 42 Gabor filters were
used for image indexing and 16 Gabor filters were used for
segmentation assisted retrieval.

We discovered from the literature review that texture
features are an important property in many medical applica-
tions. However, among texture features, relational features
have not received much attention in this field. In this paper,
our intention is to expose the potential of the proposed
texture features to the researchers who are enthusiastic in
medical image analysis.

III. RELATIONAL INVARIANT FEATURES

In this work, we focus on the classification of liver
tissue from datasets based on extended relational features.
These features have been successfully used in the SIMBA
(Search IMages By Appearance) system1. The advantage of
using this method is that it is insensitive to image noise
and also invariant to a group of image transformations

1http://simba.informatik.uni-freiburg.de/

Figure 1. CT scans showing the low-density metastases in the upper
right lobe of the liver. These tissues are labeled as 2 (abnormal). The
blood vessels which are labeled as 3 (others) also appear as if they have
been enhanced with contrast media and are brighter than 1 (normal) liver
tissues. Image on the right is the result after noise filtering using anisotropic
diffusion from raw data on the left.

(e.g.,translation and rotation). Using a slice-by-slice two-
dimensional approach is still possible but it suffers from the
drawback of some important information loss. To benefit
from all information in 3D space, we extend the relational
features to three dimensions. Note that, since CT data nor-
mally comes with low resolution and high noise, our method
does not directly work on a raw volume data. We filtered
the data using 3D anisotropic diffusion (see Figure 1).

A. Invariant Features

In two dimensions, a gray value image, X are represented
as X(x, y), (0 ≤ x < M, 0 ≤ y < N) with X(x, y) be the
gray-value at pixel coordinate (x, y) and MxN is the image
domain. Let G be the transformation group of translation
and rotation with elements g ∈ G acting on the images.
The transformed images are gX . An invariant feature must
satisfy F (gX) = F (X),∀g ∈ G. Integrating f(gX) over the
transformation group G constructs such invariant features as
follows:

I(X) =
1

|G|

∫
G
f(gX)dg (1)

Eq. 1 becomes

IF(X) =
1

2πMN

∫ M

x=0

∫ N

y=0

∫ 2π

θ=0

f(g(x, y, θ)X)dθdxdy

(2)

when applying the integration over all possible rotations and
translations (Haar integral over the Euclidean motion). In
discrete form the Eq. 2 is defined as:

IF(X) ≈ 1

qMN

M−1∑
x=0

N−1∑
y=0

q−1∑
j=0

f(g(x, y, θ = j
2π

q
)X) (3)

where IF is approximated by choosing x and y to be integers
and by varying θ in a discrete manner producing q samples.
Interpolation is used to solve the problem of points that do
not lie on the image grid.

49

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 56 / 98

As can be observed, Eq. 3 can be computed locally by
applying the kernel function f , on the neighborhood of each
pixel in the image for all possible values of θ.

IFlocal(x, y) =
1

q

q−1∑
j=0

(f(g(x, y, θ = j
2π

q
)X)). (4)

The summation over the angle θ can be replaced with
histogramming [8].

IFlocal(x, y) = hist(f(g(x, y, θ = j
2π

q
)X)), j = 0, ..., q − 1.

(5)

In this way, local information can be preserved and thus
increasing the discrimination capabilities of features.

B. Relational Features

The relational features are calculated similar to Local
Binary Pattern (LBP) texture features [10]. LBP thresholds
the neighborhood with the gray value of its center pixel and
represents the result as a binary pattern (0 and 1). Applying
this to all pixels in a circular neighborhood of the center
pixel, the binary pattern is then transformed into a unique
number as follows:

LBP =

n−1∑
i=0

s(vi − vc)2i,where (6)

s(x) =

{
1 x ≥ 0,

0 x < 0
(7)

where vi and vc are the gray values at a neighboring pixel
and at the center pixel, respectively. The number of the pixels
in the circular neighborhood is denoted by n. The drawback
of LBP is that the discontinuity of the LBP operator (the s
function), since it maps to 0 or 1 which makes them sensitive
to noise. A small disturbance in the image may cause a big
deviation of the feature.

Using the following form

f(X) = rel(X(x1, y1)−X(x2, y2)) (8)

we construct an invariant feature by applying Eq. 8 onto
Eq. 4. Schael [5] has introduced a ramp function that extends
the step function in Eq. 7 giving values in the range of [0, 1]
as follows:

rel(η) =

1 if η < −ε
ε−η
2ε if −ε ≤ η ≤ ε
0 if ε < η

(9)

where ε is a threshold parameter. Using a ramp function, it
is now more robust to image noise. Note that, if ε is set to
zero, then the rel function will reduce to the simple LBP
operator s.

(𝑥₁,𝑦₁)

(𝑥₂,𝑦₂)

(𝑥,𝑦)

𝜙

Figure 2. Calculation of a set of relational features in two dimensions.
A feature is formed by applying the relational function to the gray-value
difference of the pixels lying on the specific distance and phase to the
reference point (i.e. center of the circles)

As opposed to LBP, 2D relational features use two circular
sets. Let (x, y) be the coordinates of central pixel in two-
dimension, taking into consideration a phase shift, φ, the
coordinates (x1, y1) and (x2, y2) in Eq. 8 are given by:

(x1, y1) = (x+ r1 cos(θ), y + r1 sin(θ)) (10)
(x2, y2) = (x+ r2 cos(θ + φ), y + r2 sin(θ + φ)) (11)

where r1 and r2 are the radii of the first and second
circle, respectively. Local information at different scales and
orientations can be captured with different combinations of
r1, r2 and φ. The calculation of two dimensional relational
features is illustrated in Figure 2

C. Extension Relational Features to Three Dimension

In this paper, we present an extension of relational features
to three dimensions. The relational function in Eq. 8 for three
dimensions is very straightforward and is given by:

f(X) = rel(X(x1, y1, z1)−X(x2, y2, z2)) (12)

We have seen that LBP and 2D relational features use
circular sets to represent the neighborhood of a central pixel.
To extent relational features to three dimensions, a logical
way is to represent neighbors in unit sphere. Thus for a
central voxel with the coordinates (x, y, z), the coordinates
of (x1, y1, z1) and (x2, y2, z2) are given by:

(x1, y1, z1) = (x+ r1 cos(θ) sin(ψ),

y + r1 sin(θ) sin(ψ), z + r1 cos(ψ))
(13)

(x2, y2, z2) = (x+ r2 cos(θ + φ1) sin(ψ + φ2),

y + r2 sin(θ + φ1) sin(ψ + φ2), z + r2 cos(ψ + φ2))
(14)

where φ1 and φ2 denote the phase shifts, between the
corresponding points (x1, y1, z1) and (x2, y2, z2).

Given n set of parameters with i = 0, . . . , n,
we define our three dimensional relational features,
R(x, y, z, r1, r2, φ1, φ2, q), calculated on a local point
(x, y, z) as follows:

RFi = [R(x, y, z, r1, r2, φ1, φ2, q)]i

RFi = rel(X(x1, y1, z1)−X(x2, y2, z2))
(15)

50

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 57 / 98

Three dimensional invariant features in Eq. 4 becomes

IFlocal(i)|(x,y,z) = hist(fi(x, y, z, θ, ψ)X)), (16)

where θ is an azimuthal coordinate running from 0 to 2π
(longitude) and ψ is a polar coordinate running from 0 to π
(colatitude). We end up with one dimensional feature vector
with t bins.

IV. RESULTS

For the evaluation of our three dimensional relational
features, 100 training points from 6 CT datasets and 150
test points from 10 CT datasets were used for the classifi-
cation task. These points are labeled as 1 (normal tissue),
2 (abnormal tissue) and 3 (others, i.e., blood vessels, kid-
neys that could not be removed during segmentation). The
Support Vector Machine (SVM) classifier2 was used for the
classification task. Three tests were conducted in this work.
As SVM kernel, we used the radial basis function (RBF)
kernel for the classification task with a pair of parameters
(C, γ). Here, C denotes the cost value that penalizes misclas-
sifications and γ is the width-parameter in the RBF kernel.

We used four sets of parameters, (r1 = 0, r2 = 5, φ1 =
0), (r1 = 2, r2 = 3, φ1 = π/4), (r1 = 3, r2 = 6, φ1 = π/2)
and (r1 = 4, r2 = 8, φ1 = π), each with q = 20. For all
tests, we set φ2 = 0. This means only on longitude direction
a phase shift was applied. The rel threshold, ε = 0.196
was used. At each point, we obtained 20 ∗ 4 = 80 features.
Histogram relational features (hRF) were divided into 20
bins. The length of feature vector was reduced to 20.

For the first test, we set C = 1000 and γ = 0.02. hRF
attains an accuracy of 86.67% for this test. Table I shows
the confusion matrix with the true positive (TP) and false
positive (FP) of the first test. 71 out of 79 are correctly
classified as class 1 given 89.87% of TP and 7 out of
71 tissues from class 2 and 3 are incorrectly identified as
class 1 given 9.859% of FP. The TP and FP for class 2
are 93.1% and 7.438%, respectively. However, the TP for
class 3 is quite low (76.19%) since this class consists of
several different tissues, which might have different tissue
structures. Only 3.704% of tissues from class 1 and 2 are
wrongly classified as class 3.

Table I
CONFUSION MATRIX AND TRUE POSITIVE (TP) AND FALSE POSITIVE

(FP) FOR THE THREE CATEGORY CLASSIFICATION TASK

% 1 2 3 TP FP
1 71 6 2 71/79 (89.87%) 7/71 (9.859%)
2 0 27 2 27/29 (93.1%) 9/121 (7.438%)
3 7 3 32 32/42 (69.05%) 4/108 (3.704%)

total : 130/150 (86.67%) 20/150 (13.33%)

In the second and third tests, we compared the result of
hRF with relational features that were computed by averag-
ing. We refer to the features as aRF. We also compared the

2http://lmb/lmbsoft/libsvmtl/svmtl.en.html

Figure 3. Comparison of the proposed texture features with 3D GLCM
and 3D Gabor wavelets for the accuracy of different tissue classes.

results with the gray-level co-occurrence matrix (GLCM)
texture features [7] and Gabor wavelets [3]. We used the
same SVM kernel as the first test for the classification. The
GLCMs and Gabor wavelets used in this study were also
extracted in 3D space.

Eight Haralick statistic measurements to describe the 3D
GLCM were calculated using a window size of 5x5x5
in 13 directions((0◦, 45◦), (0◦, 90◦), (0◦, 135◦), (45◦, 45◦),
(45◦, 90◦), (45◦, 135◦), (90◦, 45◦), (90◦, 90◦),(90◦, 135◦),
(135◦, 45◦), (135◦, 90◦), (135◦, 135◦) and (−, 0◦)) for con-
trast, homogeneity, angular second moment, entropy, maxi-
mum probability, energy and correlation measurements. 3D
Gabor wavelets used in this study follow the formula given
in [3]. A set of Gabor wavelets of different frequencies fi
and orientations (θj , φk) was calculated with the following
representation:

{ψfi,θj ,φk(x,y,z), fi = 0.5/(
√
2)i, θj = jπ/J, φk = kπ/K}

(17)
A window size of 25x25x25 was used to produce Gabor
filters and convolved with the same size of sub-image with
point being evaluated was located at the center of the sub-
image. The mean of convolution result was used to represent
Gabor feature. Since a set of Gabor wavelets {ψfi,θj ,φk

}
was used, IxJxK length of feature vector were obtained
with i = 0, ..., I − 1, j = 0, ..., J − 1 and k = 0, ...,K − 1.
We set I = J = K = 3. This produced a total of 27 Gabor
features (GF).

We performed the second test for comparison of classifica-
tion accuracy for every class. On average, hRF outperforms
GLCM by 26.67% and GF by 24%. aRF attains an accuracy
of 80.67% in which hRF is better than aRF by 10%. See
the graph in Figure 3 for comparison. It can be seen from
the graph, the accuracy of GLCM and GF for class 1 and
class 3 are worse than relational features. For class 2, aRF
is the worst among all. However, hRF obtains the highest
accuracy for all classes.

In the third test, we have computed the accuracy of

51

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 58 / 98

Figure 4. The accuracy of 3D relational features, 3D GLCM and 3D
Gabor wavelets using different γ with C = 1000.

Figure 5. The accuracy of 3D relational features, 3D GLCM and 3D
Gabor wavelets using different cost values, C with γ = 0.01.

all features using different pair of parameters (C, γ) for
the RBF kernel. The result presented in Figure 4 was
obtained by setting γ = {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}
and C = 1000. In Figure 5, γ was set with 0.01 and
C = {200, 500, 1000, 2000, 5000, 10000, 20000}. The re-
sults from both figures show that the relational features
outperform GLCM and GF on the task. As predicted, hRF
shows higher classification accuracy than aRF for all pair
of parameters (C, γ) used in this test.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an extension of relational fea-
tures to three dimensions. The purpose of this extension is to
extract texture features from CT volumetric dataset to benefit
from the full 3D information. The results from our study
showed that the relational features achieved higher accuracy
than the GLCMs and Gabor wavelets texture features in clas-
sifying different types of liver tissue from CT datasets. This
indicated that, 3D relational features, especially hRF are
promising for many medical applications that exploit texture
features. For future work, we will consider nearby points to
progress in the accuracy of liver tissue classification.

ACKNOWLEDGMENT

We would like to thank all the five anonymous reviewers
for their helpful comments. We also immensely grateful
to our colleague, Thorsten Schmidt for his comments and
suggestions on an earlier version of this paper. The work has
been partially sponsored by KPT/UMT under SLAI scheme.

REFERENCES

[1] A. Jarc, P. Rogelj and S. Kovacic, Texture Feature Based Image
Registration Biomedical Imaging: From Nano to Macro, 2007.
ISBI 2007. 4th IEEE International Symposium on , vol., no.,
pp.17-20, 12-15 April 2007.

[2] A. Manduc, M. J. Carston, J. J. Heine, C. G. Scott,
V. S. Pankratz, K. R. Brandt, T. A. Sellers, C. M. Vachon and
J. R. Cerhan, Texture Features from Mammographic Images
and Risk of Breast Cancer, Cancer Epidemiol Biomarkers Prev
2009, vol. 18(3), pp. 837–845, 2009.

[3] L. Shen and L. Bai, 3D Gabor wavelets for evaluating SPM
normalization algorithm, Medical Image Analysis, vol. 12,
pp. 375–383, 2008.

[4] L. Tesar, D. Smutek, A. Shimizu and H. Kobatake, 3D Exten-
sion of Haralick Texture Features for Medical Image Analysis

[5] M. Schael, Invariant grey scale features for texture analysis
based on group averaging with relational kernel function.,
Internal Report 01/01, University of Freiburg, 2001.

[6] M. Tuceryan and A. K. Jain, Texture Analysis, The Handbook
of Pattern Recognition and Computer Vision (2nd. Eds.) by
C. H. Chen, L. F. Pau and P. S. P. Wang (eds.), pp. 207–248,
World Scientific Publishing Co., 1998.

[7] R. M. Haralick, K. Shanmugam and I. Dinstein, Textural Fea-
tures for Image Classification, IEEE Transactions on Systems,
Man, and Cybernatics SMC(6), pp. 610–621, 1973.

[8] S. Siggelkow, M. Schael and H. Burkhardt, SIMBA - Search
IMages By Appearance, DAGM, LNCS 2191, pp. 9–16, 2001.

[9] T. Glatard, J. Montagnat and I. E. Magnin, Texture based
medical image indexing and retrieval: application to cardiac
imaging, Proceedings of the 6th ACM SIGMM international
workshop on Multimedia information retrieval, pp. 135–142,
2004.

[10] T. Ojala, M. Pietikäinen and T. Mäenpää, Gray scale and rota-
tion invariant texture classification with local binary patterns.
In Proceedings of the 6th European Conference on Computer
Vision, pp. 404–420, 2000.

[11] V. A. Kovalev, F. Kruggel, H. J. Gertz and D. Y. von Cramon,
Three-dimensional Texture Analysis of MRI Brain Datasets,
IEEE Transactions on Medical Imaging, vol. 20(5), pp. 424–
433, 2001.

52

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 59 / 98

Highlighting the Essentials of the Behaviour of Reactive Systems
in Test Descriptions Using the Behavioural Atomic Element

Lars Ebrecht
German Aerospace Center (DLR)

Institute of Transportation Systems
Braunschweig, Germany

lars.ebrecht@dlr.de

Karsten Lemmer
German Aerospace Center (DLR)

Institute of Transportation Systems
Braunschweig, Germany
karsten.lemmer@dlr.de

Abstract - The work described in this paper depicts an
approach on how to close the lack of structure for test
specifications, test descriptions and test data representations.
On the example of a test data representation with the
eXtensible Markup Language (XML), it will be shown how to
form the structure using the behavioral atomic element and
two testing patterns, i.e., for test stimuli and test reactions. The
patterns are described using Petri net semantics. The
scalability and flexibility of the approach, i.e., enabling the
consideration of domain specific information, will also be
shown on the example of the testing format. The pros and cons
for using non-black box information in test descriptions and
reference black box behavior specification for reactive systems,
like actions, tasks and processes as well as system states in
addition to the interface events, will be discussed in this paper
at the end. The main achievement is a scalable, platform- and
implementation-independent Test description using the meta-
model described by the patterns.

Keywords - Reactive systems; Validation and Verification,
Real-time behaviour Pattern; Test Pattern; Validation Pattern;
Test specification

I. INTRODUCTION

Black box test specifications mostly consist of stimuli
and reactions mixed and alternated in any order according to
the functional requirements to be covered. In some cases test
steps are sporadically inserted in order to indicate actions,
processes or changes inside the system under test (SUT),
e.g., here a safety-critical distributed reactive system - a train
control unit. Concerning the test creation and evaluation the
practice shows that it is very useful to add this information.
These non-black test steps enable a better understanding of
certain situations as well as figuring out specific system
features and functionalities. Consequently, no order or any
order concerning the use and mixture of stimuli, reactions,
internal processes and system states of a reactive system is
fixed by the application of the behavioral atomic element as
generic pattern for the behavior of reactive systems and
black box tests. Further it will be shown that the behavioral
atomic element does not restrict the test description too
much. It creates moreover a scalable and concerning the
consideration of domain specific information, flexible as
well as consistent and transparent the behavior description

for reactive systems. The introduction and demonstration of
the approach is done on the example of a test description for
a train control onboard unit.

A. Context of the work and application example

The test description that is used as application example in
this paper, addresses the European Train Control System
(ETCS). ETCS comprises two main safety-critical
distributed real-time components, i.e., the ETCS onboard
unit (OBU) located on each train and the Radio Block Center
(RBC) on the trackside. The RBC mainly supervises the
location of the trains for a certain area of a track in order to
provide movement authorities to the trains in that area. The
OBU uses the information got from the RBC mainly to
supervise the train movement, i.e., the maximum allowed
speed and distance allowed to travel. All the functional
requirements telling how and when to do what are specified
in the European wide standardized System Requirement
Specification (SRS) (Subset-026 [5]). In order to check if an
OBU fits the SRS, i.e., the behavior, all the interaction and
way of exchanging information via different physical
interfaces with the track, the functional requirements have
been analyzed and assigned to features and test cases. The
test cases have been selected, parameterized and combined to
form virtual train trips, called test sequences, in order to
emulate the start of mission, train movement with certain
specific conditions as well as the end of the virtual trip.
Thus, the technical conformity and interoperability of the
OBU will be checked against SRS (Subset-076 [6]).

The conformity and interoperability tests of Subset-076
are used in independent laboratories like the Railway
Simulation and Testing laboratory (RailSiTe® [14]). Only
giving some rough figures to the modular and distributed test
environment, the RailSiTe contains different modules for the
simulation of train dynamics and track properties as well as
different physical black box hardware interfaces, i.e., high
frequency signals, digital I/O, TTL, GSM-modem-serial-
connection, camera and robot for a touch screen display
acting as man machine interface of the OBU [1].

Concerning the tests applied in this test environment
there is a separation of the logical and functional behavior on
the one hand and the physical interface behavior, i.e., the
signal generation and emulation, on the other hand. The test

53

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 60 / 98

and reference description represent the logical and functional
behavior that are used by different interface modules to
encode the information and to build the physical signal in
order to stimulate the SUT, i.e., the OBU. The emulated train
dynamics, i.e., the acceleration and braking, are logically and
mathematically described in the test and reference behavior
description.

B. Structure of the paper

This paper is structured as follows. Section II depicts
related work and the differentiation of the approach descri-
bed in this paper to other present approaches for the test
specification and behavioral description for reactive systems.
The following Section III introduces the atomic element for
the behavior of reactive systems and the two testing patterns,
i.e., for test stimuli and test reactions that are described using
Petri net semantics [13]. Section IV represents the main
section of the paper introducing the structure of the test
description and test data representation with the eXtensible
Markup Language (XML) [8] followed by the demonstration
of scalability and flexibility concerning the consideration of
domain specific information. The last Section V will discuss
and conclude the presented approach and results.

II. RELATED WORK

There exist various ways and standards for modeling and
describing the behavior as well as tests for reactive systems.
Beside the continuous signals in the electrical engineering or
control theory domain, there are several standards coming
from the software engineering domain, e.g., the Unified
Modeling Language (UML), the System Modeling Language
(SysML), the UML Testing Profile (UTP), the Testing and
Test Control Notation (TTCN-3). The approach presented in
the following does not touch continuous signals in the way
they are described by Matlab / Simulink, LabView or similar
tools or approaches.

The presented approach is more related to the formal
mathematical and software engineering domain. In this
domain the main standards are listed above. The UML [3]
and SysML [2] specify how to describe systems and
processes within a user-friendly representation in form of
different diagrams with certain associated graphical symbols
and elements. Both do not include a clear and formal concept
for the behavioral description of reactive systems. More or
less activities, operations, message exchanges and states are
spread over the Activity, the Sequence and the State diagram
without any concrete order and relationship specific for the
reactive system behavior.

The UML Testing Profile (UTP) enables the description
of black box tests [11]. You can describe test contexts, test
configurations and test components. For the behavioral part
of a test description the UTP offer test cases, test case
parameters, stimuli, observations and test data as well as test
routines and test procedures [11]. However, there is no
comparable approach of a Meta model like it is defined by
the behavioral atomic element. There are pre- and end-
conditions of operations and invariant system properties
without any concrete mapping to figure out the relation to the

behavior of a reactive system as well as having an atomic
element.

The Testing and Test Control Notation (TTCN-3) of the
European Telecommunications Standards Institute (ETSI) is
an additional standard for the black box test description. It
mainly focuses on the implementation, execution and
evaluation of black box tests [4][12]. The semantics of flow
graphs, especially the flow graph frame that consists of start
node, basic node and an end node [4], are not consequently
used as generic basic concept for the behavioral description
of reactive systems like it will be shown in the following
with the atomic element.

III. THE BEHAVIOURAL ATOMIC ELEMENT AND RELATED

TEST PATTERN

In the following, the behavior of a reactive system is
understood and described by the behavioral atomic element
[10]. The element comprises the system configuration, i.e.,
system states (S_i), in- and out-going events (e.g., periodical,
synchronous and asynchronous events) (E_j), sequential and
parallel activities, operations or processes (A_k, AS_k).

In the middle of Figure 1. the pattern of the atomic
element is depicted using the Petri net semantics [13]. The
Petri net representation indicates the activity A_k as
transition encapsulated by at least one in-coming event E_i,
potential out-going events E_o as well as the starting state
S_s and end state S_e of the functionality. The events and
states are shown as places. The “b” represent a condition that
enable the specification of further trigger conditions, e.g.,
temporal conditions, for the activation of the activity A_k.
This is called the compact representation of the atomic
element.

Figure 1. Basic Patterns describing the atomic behaviour of reactive

systems, test stimuli and test reactions

Figure 1. shows a second detailed and unfolded
representation of the atomic element that depicts the activity
AS_k as place. In comparison to the compact representation
the unfolded one highlights the activity. So, the activity is
indicated as a meta-state, i.e., the system configuration might
change or might be in-between two stable system states also
having the possibility of further investigations concerning
the description of in-coming and out-going events. Thus, the
unfolded representation of the atomic element emphasizes
the system activity enormously. The whole configuration
enforces the understanding of the system behavior by

54

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 61 / 98

relating events together with states and the activity to a
specific functionality.

The consideration of system states, events and activities
improve the transparency and understandability of the
system behavior. Even if this seems to be like a grey box
test, this is not the case due to the fact testing the SUT via
the black box interfaces and without referring to internal
interfaces or structures like sub-classes or modules. On the
very left side of Figure 1. the pattern describing the events
stimulating the SUT (E_s) is shown in comparison to the
pattern of managing reactions (E_r) coming from the SUT on
the very right side of Figure 1.

Time is considered as a global discrete variable in
addition to system states, event occurrences and process
durations. Of course concerning non discrete real-time you
will have to consider the WKS-Sampling-Theorem as well as
accuracy aspects like jitter with proper tolerance borders and
intervals.

A. Test scenario defined by the atomic element and the
testing and validation patterns

For a better understanding one very easy scenario
demonstrates the use and interaction of the three patterns
mentioned before concerning a common situation, i.e.,
testing a SUT with a certain test environment (TE) (see
Figure 2.). In the middle there is a UML [3] sequence
diagram showing the TE and the SUT. From the TE the
stimulation E_s is triggered stimulating the SUT in the sense
of a certain in-coming event E_i. After the reception of this
event the operation A is started maybe emitting the result or
confirmation or response with an outgoing event(s) E_o that
is taken into account as reaction E_r from the SUT. In the
background the Petri net representation is shown separated in
TE side on the left and the SUT side on the right.

Figure 2. Test scenario: Test environment (TE) stimulating the system

under test (SUT) in order to check function A

IV. APPLICATION OF THE ATOMIC ELEMENT TO THE TEST

DESCRIPTION

In the previous section, the behavioral atomic element
has been described that define the functional behavior of a
reactive system as well as the other two test and validation

patterns for the stimulation of a SUT as well as for receiving
reactions from a SUT, here a train control unit (OBU). Now,
it will be demonstrated how these patterns are used to form a
test description and reference behavior on the example of a
test data representation by an XML-schema [7]. The XML-
schema defines the structure of an XML [8] file assigned
acting as instance of that schema.

In the first subsection, the overall structure and content
will be roughly depicted. The second subsection shows the
application of the behavioral atomic element in detail. The
last two subsections explain how the patterns enable a
scalable and customizable use of the test description.

A. Overview and structure of the test description format

The highest level of the overall structure includes four
elements (General, StartingConditions, StepList and
EndConditions). The element General contains the ID of the
test sequence, a title, description, a substructure for the test
sequence release and modification history table beside a link
to a set of features and test cases. Out of the set of test cases
some will be selected, instantiated and concatenated with
others in a test sequence. Accordingly specific starting
conditions will be fixed and stored in the StartingConditions
element. As shown in Figure 3. this item comprise two
generic and two domain specific sub-elements. The Sub-
element Variable and Set allow defining variables and sets of
variables with concrete values, intervals or enumerations in
order to describe the system state and system variables.
M_MODE and Location represent customized entries for the
mode of an ETCS onboard unit (OBU), e.g., no power,
standby, full supervision, shunting, etc., and the other
comprises several variables defining the train location, i.e.,
the orientation of the train and travelled distance in relation
to certain waypoint in the track. There exist further
application domain specific entries in the starting that are not
mentioned here.

The EndConditions element is similar to the
StartingConditions element and describes accordingly the
system state reached at the end of a test sequence. Between
the starting and end conditions there is the StepList element
located. This element takes the main role in the overall
structure. As displayed in the Figure 3. it contains a list of
steps that can be one of three following kinds, i.e., a state, an
action event or an action. Besides, each step has a unique
step ID and can be grouped, e.g., in the case of test case
associations or sequential or parallel ordered steps. In
Subsection IV.D it will be explained more in detail how the
group element can be used to describe conditions and
relationships over different steps for domain specific aspects
and dependencies. Last but not least you can define variables
in the SignatureVariableList that interconnect steps in order
to exchange data among different steps.

The three kinds of the step as main element mentioned
before are used to describe the behavior as defined by the
atomic element. For each step it has to be chosen if the step
describe a system state or an action event, i.e., a stimulus to
be triggered by a test environment or a reaction coming from
the SUT, or an action that is assumed to be active in the
SUT. In the following section it will be explained how these

55

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 62 / 98

three different elements will be connected in order to satisfy the behavioral atomic element.

Figure 3. Overal structure of the test data representation defined by an XML-Schema [7]

B. Details of the test data description according to the
behavioural atomic element

The beginning of a function should be a system state. As
depicted in Figure 4. a state is defined by several variables
contained in the VariableList substructure or by sets of
variables in the Set element similar to the starting and end
conditions described before. Furthermore a state has an
identifier (ID), a name and a textual annotation.

A State is followed by an action event, i.e., one or more
in-coming events stimulating the SUT. Action events are
divided in in-coming, i.e. stimuli (E_i) and out-going events,
i.e., reactions (E_o). All action events are described by an
ID, a name, the event direction and interface, a description
and related data (see Figure 4.). The Data sub-element
comprises two alternatives, a reference to another action
event and a set of elements composed of the action event
trigger, duration, delay, function name and a function
parameter list. The first alternative is used for the case if a
step specifies for instance an optional packet that should be
included in an event together with other packets, which are
specified by other steps. In this case it is possible to include
this packet together with the other ones in one action event
whereby the data are only included in one step and the other
refer to this action event. The second alternative represents

the usual case where an event is triggered by, e.g., the
location of the train, the time elapsed from the beginning of
the simulation, an other action event or a set of variables
defining a certain system state. The Duration and the Delay
element contain a variable type describing the time for the
generation and transmission and possible delays related to
the trigger point. The function-name is used to determine
runtime commands or routines of the test environment using
all the variables and its values contained in the element
ParameterList.

The last of the three main elements, the Action, depicts
an action or task of the SUT. It is similar to the ActionEvent
element. It has an ID, name and description and contains a
substructure for the related data. Except from the
ActionTrigger element the Data element is equal to the one
of the action event. In comparison to the action event the
action is triggered by one or more in-coming events that have
to be received before.

Due to the fact that you want to violate the specified rules
and conditions of a behavior in some cases testing a SUT, it
is not forbidden to mix the three main elements also against
the behavioral atomic element what represent an abnormal
situation. You can ever check and identify these violations
applying checks to the test and reference behavior descrip-

56

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 63 / 98

tion finding deviations in relation to the behavioral atomic element in order to check if you wanted to do so or not.

Figure 4. The atomic element builds the generic structure for a test and reference behaviour description

C. Scalability of the behaviuor description

The application of the atomic element enables on the
higher abstract level as well as on the lower detailed level the
possibility to combine test sequences with matching starting
and end conditions [9], this not very astonishing, but also for
concrete functionalities according to matching of post and
pre states (compare with Figure 1.). So, small functional
units can be consistently combined, i.e., an action belonging
to a certain functionality including its trigger event(s) as well

as the starting and end state. Test cases only containing
starting and end conditions and black box message passing in
between having a lack of building sup-units for smaller
function inside bigger ones like the atomic element cramping
events and an action by system states. Thus, there is the same
consistent approach for test sequences over test cases until
the steps included in a test case.

57

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 64 / 98

D. Differentiation of the atomic element considering
domain and user specific relations and dependencies

The most popular group for test steps is the association to
a test case. Black box stimuli and reactions are related to test
cases and these for itself to features in order to manage the
system complexity in principle. Beside the step order like
sequential, parallel or strict execution or occurrence defined
in the Control element (refer to Figure 5.), there is the need
to specify domain and user specific relationships and
dependencies. In the context of testing an OBU there is the
need to describe a logical order for a certain type of events,
i.e., Balise messages. One Balise message contains one up to

eight Balise telegrams emitted by a passive discrete device
that is in principle comparable with RFID tags only that
additionally Balises include some more safety mechanisms
in order to avoid copying telegrams. A Balise message has to
be consistent, that means that the telegrams have to receive
in the right and continuous order and completely, i.e., all of
the telegrams. This association is described by the Special-
Groups element. This element comprises an ID, name, group
order, parent group for hierarchical dependencies and the
group instance, in case that there more than one group
occurrences.

Figure 5. Vertical differentiation of the test steps

V. CONCLUSION

The contribution introduced the behavioral atomic
element described as Petri net acting as pattern for a Meta
model and forming a test data representation and reference
behavior description. Beside, two other testing and validation
patterns complete the scenario testing a reactive system with
a certain test environment on a logical abstract level. Mostly,
test descriptions and specification consider more or less

mainly test stimuli and reactions of a system under test. The
presented approach does not only depict the application of
the atomic element to a test data representation, it also
figures out how this reference behavior description can cope
with domain specific requirements and dependencies as well
as enabling a scalable, consistent and transparent reference
behavior description highlighting the essentials of the
behavior of a reactive system, i.e., system states, in-coming
events or trigger events, actions or operations and out-going

58

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 65 / 98

responses. Thus, the consistency and transparency of the test
specification for any reactive system is improved by the
definition of proper behavioral units and functions with the
help of the behavioral atomic element. The presented XML
format defined in the Schema is currently used to automate
the test execution and evaluation in the rail simulation and
testing laboratory RailSiTe®.

ACKNOWLEDGEMENT

Many thanks to the group rail technology, especially to C.
Preuk and C. Torens for the feedback and review comments.

REFERENCES
[1] C. Torens and L. Ebrecht, Remote Test: A Framework for Testing

Distributed Systems, Proc. International Conference on Software
Engineering Advances (ICSEA2010), Aug. 2010.

[2] Object Management Group, „OMG Systems Modelling Language“,
Ver. 1.2, June 2010, www.omgsysml.org/#Specification (23.08.10).

[3] Object Management Group, „Unified Modelling Language“, Super-
structure Specification, Ver. 2.3, May 2010, www.omg.org-
/spec/UML/2.3/ (23.08.10).

[4] ETSI, ES 201 873-1, „Testing and Test Control Notation - Part 1:
TTCN-3 Core Language,“ Ver. 4.2.1, May 2010, webapp.etsi.org-
/workprogram/Report_WorkItem.asp?WKI_ID=29256 (23.08.10).

[5] ERA, „ERTMS/ETCS – Class 1, System Requirement Specification
Subset-026 (SRS)“, Version 2.3.0d, 21 Apr. 2009.

[6] ERA, ERTMS/ETCS – Class 1, „Technical Specification for Inter-
operability: Subset-076-6-3 (Test Sequences)“, Version 2.3.1, 19 Oct.
2009.

[7] XML Schema, W3C, http://www.w3.org/XML/Schema (23.08.10).

[8] T. Bray et al., W3C, XML, www.w3.org/TR/2008/REC-xml-200811-
26, 26 November 2008 (23.08.10).

[9] L. Ebrecht, M. Meyer zu Hoerste and K. Lemmer, “The Basic
Concept for the Formal Test Description - Horizontal Composition
and Vertical Differentiation of the Atomic Element,” Proc. Formal
Methods for Automation and Safety in Railway and Automotive
Systems (Forms/Format), GZVB, Jan. 2007, pp. 447–457. ISBN 13:
978-3-937655-09-3.

[10] L. Ebrecht and K. Lemmer, “Konsistente Verknuepfung von
Aktivitaets-, Sequenz- und Zustandsdiagrammen - Darstellungsunab-
haengige und formale Semantik zur Verhaltensbeschreibung von
Echtzeit-Systemen,” Proc. Mobilitaet und Echtzeit - PEARL.
Informatik Aktuell. Springer, Dec. 2007, pp. 49–58. ISBN 978-3-540-
74836-6.

[11] Object Management Group. (July 2005). UML Testing Profile, Ver.
1.0-05-07-07, www.omg.org/technology/documents/formal/test_pro-
file.htm (23.08.10).

[12] J. Grabowski. TTCN-3 - A new Test Specification Language for
Black-Box Testing of Distributed Systems. In: Pro-ceedings of the
17th International Conference and Exposition on Testing Computer
Software (TCS 2000), Washington D.C., www.swe.informatik.uni-
goettingen.de/publications/JG/Grabowski.pdf, Jun 2000 (23.08.10).

[13] Billington, Jonathan ; Reisig, Wolfgang: Application and Theory of
Petri Nets, Springer, 1996, ISBN 3-540-61363-3

[14] RailSiTe DLR homepage, www.dlr.de/fs/en/desktopdefault.aspx/-
tabid-1235/1688_read-3254/ (23.08.10)

59

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 66 / 98

CUX Patterns Approach: Towards Contextual User Experience Patterns

Marianna Obrist, Daniela Wurhofer, Elke Beck & Manfred Tscheligi

Christian Doppler Laboratory for ”Contextual Interfaces”
HCI & Usability Unit, ICT&S Center

University of Salzburg
Salzburg, Austria

Email: {firstname.lastname}@sbg.ac.at

Abstract—User experience (UX) is highly influenced and
even changed by the context in which it occurs. So far, both
concepts “user experience” and “context” have been discussed
a lot to various extent and in different dimensions. Within
this paper, we aim to bring these two important areas closer
together by using patterns. We introduce the contextual user
experience patterns (CUX patterns) approach. Precisely, we
argue for using patterns to describe knowledge on how to
influence the users’ experience in a positive way by taking
context parameters during the interaction with a system into
account. To do so, we provide a detailed description of how to
structure CUX patterns, referring to the context ”car” as one
of the two main application areas, which is investigated in our
recently established laboratory on contextual interfaces.

Keywords-user experience; context; contextual user experi-
ence; patterns approach; patterns structure; contextual inter-
faces; car application area

I. INTRODUCTION AND MOTIVATION

In the field of Human-Computer Interaction (HCI) and re-
lated fields, it is increasingly recognized that apart from stan-
dard usability and ergonomic principles, the much broader
concept of user experience (UX) needs to be considered
intensively to design next generation interaction innovations
[1]. This includes aspects such as fun, enjoyment, emotion,
sociability, and other factors.

Moreover, there is an observable trend in HCI towards
novel and alternative forms of interaction, moving away
from traditional desktop computing to computing in various
contexts with various interfaces. One general form of novel
interfaces are so-called “contextual interfaces” (see [2][3]),
which are designed according to the needs and behaviors
of people in specific contextual situations and have the
potential to be conceptually as well as technically adapted
to the characteristics of the specific context. Thus, an in-
depth understanding of the particular context is needed for
designing contextual interfaces.

In addition to knowledge on the context, there is a need
for insights into how a user perceives an interaction with a
system. Thereby, evoking a positive feeling within the user
through the usage of the system increases the potential for
re-usage of the system. We thus claim that enabling the user
a positive experience by considering the context parameters

during an interaction is one important ingredient for the
success of contextual interfaces. However, as far as we are
aware, there are no such insights and best practices available
yet for contextual interfaces.

So far, both concepts “UX” and “context” have been
discussed a lot to various extent and in different dimensions.
We aim to bring both concepts together to reach a more
comprehensive understanding of contextual UX [3], which
opens up different roads for research and challenges for
the HCI community in all design and development phases.
In particular, we bridge the two concepts by using the
patterns approach. Patterns exist in many areas, ranging
from architectural patterns (e.g., [4]) to patterns for human-
robot interaction (e.g., [5]). However, despite the growing
importance of contextual interfaces as well as UX, the
patterns approach has not been applied yet for contextual UX
design. Within this paper, we introduce “Contextual User
Experience Patterns” (in short, CUX patterns). We propose
a pattern structure and describe each part, but without giving
a detailed description of CUX patterns themselves.

Building on our previous work on UX patterns for audio-
visual networked applications [6], we again use the patterns
approach for describing knowledge on how to influence the
users’ experience in a positive way when interacting with
a contextual interface. CUX patterns represent a pattern
collection for documenting and collecting best practices
in the area of contextual user interfaces. Thus, developers
and designers can be supported in producing high-quality
user-centered applications. This research represents a main
element of a recently started Christian Doppler Labora-
tory (CDL) on “contextual interfaces” at the University of
Salzburg, Austria.

The present paper is organized as follows: Section II
explains the background of our research on contextual
interfaces and section III summarizes related work on (HCI)
patterns, as well as clarifies the potential of patterns for
contextual user experience. In section IV, the main idea
of CUX patterns, and their structure are described and
summarized in the final section.

60

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 67 / 98

II. RESEARCH CONTEXT AND BACKGROUND

Within this section, we shortly explain the background of
our research on contextual interfaces (basic research within
our laboratory) and our understanding of UX factors and
context parameters.

A. Laboratory on Contextual Interfaces

The overall goal of the laboratory on “contextual in-
terfaces” is to further strengthen existing research and in
particular to gain new insights into the multidimensional
aspects of contextual interaction. Contextual interaction can
be considered as situated human-computer/machine inter-
action, which is dependent on a multitude of factors. We
investigate contextual interaction from a constructional and
methodological viewpoint to develop a deeper understanding
of optimal contextual user experiences and their influences.

Figure 1. Basic Contextual Research Parts of our Christian Doppler
Laboratory (CDL): Bridging User Experience (UX) Factors and Context
Factors by doing Basic Research Activities on Methods and Tools.

The planned work is divided into two parts (see Figure
1). On the one hand, UX factors and context factors are
investigated, and on the other hand, methods and tools
to study contextual interfaces are addressed. Thus, these
basic research parts will deliver a foundation for the second
research part which addresses two specific application areas,
namely car and factory. Both parts are related to each
other and aim to increase the knowledge on contextual user
experience. One main outcome of this research project (for
the next seven years) are more generalizable UX patterns for
contextual interfaces, i.e. CUX patterns. First of all, deeper
insights on the main elements are needed and are shortly
introduced in the following section.

B. Understanding User Experience and Context

The concept of seeing technology in terms of experience
was originally introduced by McCarthy and Wright [7] and
further extended by several attempts, models, definitions etc.
(e.g. [8][9]). In our previous research we already investigated
UX in different application areas (i.e. human-robot interac-
tion and audiovisual networked applications) and identified
a set of relevant UX factors to understand the aspects that

make an experience more successful and valuable to users
and contribute to positive contextual user experiences.

A small selection of these UX factors, which we conceive
as relevant for the context car and factory, is provided below:

• Emotions (e.g., What emotions does the interaction
with a system provoke?)

• Fun/Enjoyment (e.g., Do people enjoy interacting with
a system?)

• Co-Experience (e.g., How do other people influence the
experience?)

• Trust (e.g., To what extent do people trust a system?)
• Feeling of Security (e.g., How save do people feel?)
• Comfort (e.g., What is perceived as comfortable?)
• etc. (e.g., motivation, added value, engagement, etc.)

Based on empirical insights, the factors listed above will
be further extended.

Moreover, in HCI, several definitions of context have been
proposed during the last years. One of the most complete
definitions of context, which we use as a starting point
in our research, is provided by Dey [10]: “Context is any
information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an
application, including the user and applications themselves”.
Overall, a common understanding of context is not fully
developed up to now. Especially the influence and potential
of context parameters for designing interaction innovations
is poorly conceived and underpins the need for empirically
grounded research. However, some relevant context parame-
ters can already be extracted from [11] and are summarized
as follows:

• Physical context (e.g., spatial location)
• Task context (e.g., task types, interruptions)
• Social context (e.g., presence of other people, culture)
• Temporal context (e.g., duration, time of day, week, and

year)
• Technical and information context (e.g., other systems

and services)

Overall, the focus on contextual user experience is not
completely new in the history of patterns. The first who
emphasized a focus on the human perspective was Alexander
[4]. He argues that it is important to investigate how people
experience architectural constructs, and to take the user’s
experience into account when constructing new buildings.
Other authors (e.g., [12], [13], [14], [15] and [16]) also argue
to consider human activity and experience and thus underpin
the relevance of this topic.

The advancement of our approach is the strong combina-
tion of the two concepts “UX” and “context”. Furthermore,
our approach bases on empirical evidence from the two
context application areas car and factory (see section IV-B).

61

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 68 / 98

III. RELATED WORK

Within this section, we will provide more insights on the
idea of patterns and their application in the area of HCI
as well as their potential for addressing contextual user
experience.

A. The Idea of Patterns

Patterns exist in many areas. The concept of patterns
was first described by Alexander [4] who developed more
than 250 patterns showing best practices and thinking in
architecture. Later, computer scientists captured the idea of
patterns and successfully applied it to common problems
in software engineering [17]. Over the past years, the area
of HCI also adopted the idea of patterns for conveying
principles and best practices of good interface design (e.g.,
[18][19][20][21][22]).

The concept of interaction design patterns is known under
different names such as interaction (design) patterns, user in-
terface (UI) patterns, usability patterns, web design patterns,
workflow patterns or, less precisely, HCI patterns. In general,
these patterns share a lot of similarities and all provide
solutions to common usability problems in interaction and
interface design. For a detailed review on patterns in HCI
we refer to Dearden and Finlay [23].

As the wide usage of patterns shows, patterns have proven
to be an effective tool for designing usable systems. The idea
of “reusable” solutions for recurring problems is important
for both novice and experienced designers.

B. Characteristics of Patterns

Already in 1977, the main characteristics of patterns were
pointed out by Alexander [4], stating that “each pattern
describes a problem which occurs over and over again in
our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution
a million times over”. Newer definitions of patterns define
them as “structured textual and graphical descriptions of
a proven solution to a recurring problem” [24], as “tools
for capturing useful design solutions and generalizing them
to address similar problems” [12], as “devices for re-use,
generalisation and design” [25], or simply as “descriptions of
best practices within a given domain” [20]. These definitions
illustrate one of the main characteristics of patterns – the
characteristic of reusability.

Another characteristic of patterns is their context, i.e. the
physical and social environment the pattern is embedded
in. Furthermore, patterns represent a systematic approach
to design which can be beneficial for a wide audience of
practitioners [26] and thus can be considered as an “effec-
tive knowledge management tool” [16]. Patterns provide a
collective vocabulary [27] or lingua franca [28] and thus
facilitate communication between different stakeholders.

C. Special Application Areas of Patterns in HCI

Patterns are adopted in a variety of application fields.
Recently, Zimmerman [29] used design patterns for de-
scribing how to apply the product attachment theory to the
interaction design of a product. Kahn et al. [5] used patterns
in the area of Human-Robot Interaction for explaining how
to achieve sociality in Human-Robot Interaction. Patterns
have been adopted for supporting innovative game design
[30], for describing best practices in ubiquitous computing
applications [31] and in the design of social interfaces [32],
as well as for teaching HCI principles [33].

According to Zimmerman [29], patterns can also be used
as a method for analyzing user research. This is illustrated,
for instance, by Martin et al. [34] and Crabtree et al. [35],
who use patterns for organizing and presenting ethnographic
material. A recently published book targets the design of
social interfaces [32]. Principles and patterns for social
software are introduced by giving practical design solutions
for improving the interfaces of social websites. In our
recent research, we also successfully explored the patterns
approach for audiovisual networked media (social media
applications) by introducing UX patterns (see [36][37]).

D. User Experience Patterns

Designing for a good UX is an increasingly important
topic in academia and industry (see [38][39]). In our previ-
ous research, we developed 30 UX patterns for audiovisual
networked applications [37] based on a huge range of
collected empirical data, which was further categorized into
main UX problem areas. These areas cover the main UX is-
sues in audiovisual networked applications. As advancement
of this research, we intend to extend the application areas
beyond audiovisual applications towards the application area
car and factory. Thereby, we additionally want to strengthen
the importance of context factors (the influence of contextual
parameters) on the UX.

The multifaceted adoption of patterns illustrates their flex-
ibility as well as their potential for storing and representing
knowledge. We are convinced that the patterns approach can
be further strengthened by putting a strong emphasis on the
context and relevant context parameters for an application
area, linked with relevant UX factors.

IV. THE POTENTIAL OF PATTERNS FOR CONTEXTUAL
USER EXPERIENCE

Within this section, we provide a structured overview
on the details of our CUX patterns approach, including a
definition as well as our strategy for structuring the patterns
(see CUX Patterns Structure). Therefore, we selected the
application area “car” as a case example to clarify our
approach.

62

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 69 / 98

A. Details on the CUX Patterns Approach

Best practices for designers and developers are needed to
guide the development of contextual interfaces which, for
instance, support user’s trust and feeling of comfort. We
suggest to transform such best practices into CUX patterns
for contextual interfaces. In the following, we focus on “car”
as an application area. We suggest the following initial list
of UX demands (exemplary problem areas), which does not
strive for completeness, and needs to be extended based on
empirical insights:

• Trust: How to increase the user’s trust in the car when
interacting with in-car interfaces?

• Comfort: How to give the user a feeling of comfort
when using in-car interfaces?

• Personal and social benefit: How to raise the personal
and social benefit of using in-car interfaces?

• Feeling of Control: How to raise the users’ feeling of
control when using in-car interfaces?

For these UX problems, the CUX patterns for the applica-
tion area car should provide proven solutions. One problem
area can comprise more than one pattern, depending on
how many different best practices exist for the problem
addressed. The patterns subsumed under each problem area
should address a more specific problem (which can be sub-
sumed under the corresponding problem area) and provide
detailed solutions for this problem.

In general, CUX patterns provide solutions on how to im-
prove a user’s experience when interacting with a contextual
interface in a specific application area. More specifically,
CUX patterns are characterized by combining two aspects,
i.e. (a) the application area of the patterns including the
most relevant context parameters and (b) the specific (re-
curring) UX problem (demand) which the pattern intends
to solve. Thus, CUX patterns can provide useful support
during the design and development phase of an application.
They especially provide guidance in the initial steps of an
experience-centered design approach, where the designer
does not yet have a clear picture on the potential users and
their expectations, that influence their experience with a new
system. Thus, it is relevant to consider CUX patterns quite
from the beginning as an additional pool for inspiration.

B. CUX Patterns Structure

As a starting point for developing the CUX patterns we
build on the structure of Van Welie [16] and Borchers [38]
and extend it in particular regarding UX factors and context
parameters. Context is currently limited to the characteristics
of the usage context for which the pattern can be applied,
but does not link the context/context parameters back to
the UX factors relevant for the particular application area.
In the following, the suggested structure is described and
illustrated by the exemplary pattern ”Feeling of Security”
for the application area car.

• Name/UX Factors: The name of a pattern is essential.
It should describe the main idea of the pattern in
one or a few words; it should be both descriptive
and unique so that it helps in identifying and refer-
ring to the pattern. In other words, patterns should
be easy to remember and communicate. Moreover,
the naming strategy should be consistent across all
patterns collected, also supporting better memorization
and easier communication (about patterns). Finally, the
user experience factors that are addressed by the pattern
should be included along with the name in combination
with the relevant context parameters. An example for a
CUX pattern name in the application area car can be:
“Feeling of Security”.

• Problem: The problem states the major issue the pattern
addresses, formulated as a question based on the experi-
ences made by the users. Problems in CUX patterns are
formulated from the users’ perspective and are related
to the usage of the system. An example for a CUX
pattern problem in the application area car can be:
“How to raise the users’ feeling of security when using
the speed control?”.

• Forces: The forces further elaborate the problem state-
ment. They depend on the application area and can
describe various trade-offs, constraints, or concerns
related to the use of the pattern. Examples for CUX
pattern forces in the application area car can be: “The
user wants to see the status of the speed; the user wants
to change the speed, etc.”.

• Context Parameters: The context section of a pattern
should describe when it is appropriate to apply a partic-
ular pattern, giving information about the characteristics
of the context of use, including the context parameters
listed above for which the pattern can be applied. An
example for a CUX pattern context parameter in the
application area car can be: “Use this pattern when
you want to support the users’ feeling of security while
driving”. The context parameter, in this case the task
context (see II-B), is applied for specifically addressing
the UX factor “Feeling of Security”.

• Solution: A solution must be described precisely and
must not impose new problems. However, a solution
describes only the core of the solution and the de-
signer has the freedom to implement it in many ways.
Other patterns might be needed to solve sub-problems;
patterns relevant to the solution should be referenced,
too. An example for a CUX pattern solution in the
application area car can be: “Support users to better
estimate speed risks by using persuasive interfaces”.

• Examples: The example should show how the pattern
has been used successfully in a system, i.e. refer
to commonly known implementations of the pattern.
Whether an example is commonly known or not can be
difficult to determine, but this must be seen in relation

63

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 70 / 98

to the intended target audience for the patterns as well.
Examples for real-life systems are preferably used, so
that the validity of the pattern is enforced. Examples
for an applied CUX pattern are not available yet.

Having the same structure for the whole pattern collection
makes it easy for people to use them. As patterns represent
possible solutions, which can be extended dynamically, they
are never complete; when new solutions appear, they can be
easily integrated into the given structure. This is in particular
relevant for contextual interfaces, as the influence of context
parameters on UX is a relatively new area of research.

V. CONCLUSION AND FUTURE WORK

Within the CHI community, several experts commented on
the pattern approach (see [38], most recently [39]). It was
pointed out that patterns can facilitate the communication
among all stakeholders and are more than just a sort of poetic
form of guidelines. Pattern languages are intended to be meta
languages used to generate project-specific languages that
are grounded in the social and cultural particularities of a
given design domain.

Moreover, it can be stated that patterns are important as
they provide a common vocabulary [28], they are structured
around the problems the designers face, and they provide
solution statements [40]. These pattern characteristics can re-
duce time and effort for designing new projects considerably
[16] and support a better communication among different
stakeholders. In sum, capturing useful design solutions and
generalizing them to address similar problems [12] is one
of the big advantages of patterns, in part because the
documentation and use of best practices improves the quality
of design.

Within this paper, we especially build on patterns to
introduce the “Contextual User Experience Patterns” (CUX
patterns) approach. Thereby, we bring together the two rele-
vant and increasingly important concepts of UX and context.
UX is highly influenced and even changed by the context in
which it occurs. So far, both concepts have been discussed
a lot to various extent and in different dimensions, however,
there is no guidance on how to design for a good UX for
relevant application areas addressed in our research (car and
factory). Thus, the introduced CUX patterns approach takes
the discussion a step further by highlighting the potential of
the patterns approach for describing knowledge on how to
influence the users’ experience in a positive way by taking
context parameters during the interaction with a system into
account.

Based on this theoretical argumentation, we describe
the structure for CUX patterns, referring mainly to the
application area car. This paper builds the starting point for
our research within the recently established laboratory on
contextual interfaces and will be further elaborated based on
insights gained by ongoing and future empirical research.

ACKNOWLEDGMENT

The financial support by the Federal Ministry of Economy,
Family and Youth and the National Foundation for Research,
Technology and Development is gratefully acknowledged
(Christian Doppler Laboratory for “Contextual Interfaces”).

REFERENCES

[1] J. H. Westerink, M. Ouwerkerk, T. J. Overbeek, W. F. Pasveer,
and B. d. Ruyter, Probing Experience: From Assessment of
User Emotions and Behaviour to Development of Products
(Philips Research Book Series). Springer Publishing Com-
pany, Incorporated, 2008.

[2] A. Weiss, W. Reitberger, F. Pöhr, F. Förster, R. Buchner,
and M. Tscheligi, ““Contextual interfaces” – Bridging the
gap of fundamental research and industrial application,” in
USAB2010: 6th Symposium of the WG HCI&UE of the Aus-
trian Computer Society. Springer, 2010, currently Submitted.

[3] M. Obrist, M. Tscheligi, B. de Ruyter, and A. Schmidt,
“Contextual user experience: How to reflect it in interaction
designs?” in CHI EA’10: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems. ACM, 2010,
accepted for Publication.

[4] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern
Language: Towns, Buildings, Construction (Center for Envi-
ronmental Structure Series). Oxford University Press, 1977.

[5] P. H. Kahn, N. G. Freier, T. Kanda, H. Ishiguro, J. H. Ruckert,
R. L. Severson, and S. K. Kane, “Design patterns for sociality
in human-robot interaction,” in HRI ’08: Proceedings of the
3rd ACM/IEEE international conference on Human robot
interaction. New York, NY, USA: ACM, 2008, pp. 97–104.

[6] D. Wurhofer, M. Obrist, E. Beck, and M. Tscheligi, “Introduc-
ing a comprehensive quality criteria framework for validating
patterns,” in 2009 Computation World: Future Computing,
Service Computation, Cognitive, Adaptive, Content, Patterns.
IEEE Computer Society, 2009, pp. 242–247.

[7] J. McCarthy and P. Wright, “Technology as experience,”
Interactions, vol. 11, no. 5, pp. 42–43, 2004.

[8] M. Hassenzahl and N. Tractinsky, “User experience - a
research agenda,” Behavior and Information Technology,
vol. 25, no. 2, pp. 91–97, 2006.

[9] E. L.-C. Law, V. Roto, M. Hassenzahl, A. P. Vermeeren, and
J. Kort, “Understanding, scoping and defining user experi-
ence: a survey approach,” in CHI ’09: Proceedings of the
27th international conference on Human factors in computing
systems. New York, NY, USA: ACM, 2009, pp. 719–728.

[10] A. K. Dey, “Understanding and using context,” Personal and
Ubiquitous Computing, vol. 5, pp. 4–7, 2001.

[11] S. Jumisko-Pyykkö and T. Vainio, “Framing the context of
use for mobile hci,” International Journal of Mobile-Human-
Computer-Interaction (IJMHCI), vol. 1, no. 2, 2010.

[12] A. Cooper, R. Reimann, and D. Cronin, About Face 3: The
Essentials of Interaction Design. Indianapolis: Wiley, 2007.

64

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 71 / 98

[13] J. Coplien, “Organizational patterns: Beyond technology to
people,” in ICEIS (1), 2004, pp. IS–15.

[14] T. Coram and J. Lee, “Experiences - a pattern language
for user interface design,” Website, 1998, available online at
http://www.maplefish.com/todd/papers/experiences; retrieved
at August 21st 2009.

[15] K. Kohler, S. Niebuhr, and M. Hassenzahl, “Stay on the
ball! an interaction pattern approach to the engineering of
motivation,” in INTERACT (1), 2007, pp. 519–522.

[16] M. van Welie and G. van der Veer, “Pattern languages in
interaction design,” in Proceedings of IFIP INTERACT03:
Human-Computer Interaction. IFIP Technical Committee
No 13 on Human-Computer Interaction, 2003, p. 527.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[18] E. Bayle, R. Bellamy, G. Casaday, T. Erickson, S. Fincher,
B. Grinter, B. Gross, D. Lehder, H. Marmolin, B. Moore,
C. Potts, G. Skousen, and J. Thomas, “Putting it all together:
towards a pattern language for interaction design: A chi 97
workshop,” SIGCHI Bull., vol. 30, no. 1, pp. 17–23, 1998.

[19] T. Erickson, “The Interaction Design Patterns Page,” Web-
site, 2005, available online at http://www.visi.com/ snow-
fall/InteractionPatterns.html; retrieved at July 30th 2009.

[20] J. Tidwell, Designing Interfaces : Patterns for Effective In-
teraction Design. O’Reilly Media, Inc., 2005.

[21] M. Van Welie, “A Pattern Library for Interaction Design,”
Website, 2005, available online at http://www.welie.com; re-
trieved at July 30th 2009.

[22] D. K. V. Duyne, J. Landay, and J. I. Hong, The Design
of Sites: Patterns, Principles, and Processes for Crafting a
Customer-Centered Web Experience. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

[23] A. Dearden and J. Finlay, “Pattern languages in hci: A critical
review,” Human-Computer Interaction, vol. 1, pp. 49–102,
2006.

[24] J. Borchers, A Pattern Approach to Interaction Design.
Chichester, England: John Wiley & Sons, 2001.

[25] D. Martin, M. Rouncefield, and I. Sommerville, “Applying
patterns of cooperative interaction to work (re)design: e-
government and planning,” in CHI ’02: Proceedings of the
SIGCHI conference on Human factors in computing systems.
New York, NY, USA: ACM, 2002, pp. 235–242.

[26] M. W. Steenson, “Feature problems before patterns: a dif-
ferent look at christopher alexander and pattern languages,”
interactions, vol. 16, no. 2, pp. 20–23, 2009.

[27] J. Vlissides, “Patterns: The Top Ten Miscon-
ceptions,” Website, 1997, available online at
http://www.research.ibm.com/designpatterns/pubs/top10misc.html;
retrieved at July 30th 2009.

[28] T. Erickson, “Lingua francas for design: sacred places and
pattern languages,” in DIS ’00: Proceedings of the 3rd con-
ference on Designing interactive systems. New York, NY,
USA: ACM, 2000, pp. 357–368.

[29] J. Zimmerman, “Designing for the self: making products that
help people become the person they desire to be,” in CHI ’09:
Proceedings of the 27th international conference on Human
factors in computing systems. New York, NY, USA: ACM,
2009, pp. 395–404.

[30] K. McGee, “Patterns and computer game design innovation,”
in IE ’07: Proceedings of the 4th Australasian conference on
Interactive entertainment. Melbourne, Australia, Australia:
RMIT University, 2007, pp. 1–8.

[31] E. S. Chung, J. I. Hong, J. Lin, M. K. Prabaker, J. A.
Landay, and A. L. Liu, “Development and evaluation of
emerging design patterns for ubiquitous computing,” in DIS
’04: Proceedings of the 5th conference on Designing interac-
tive systems. New York, NY, USA: ACM, 2004, pp. 233–242.

[32] C. Crumlish and E. Malone, Designing Social Interfaces.
O’Reilly, 2009.

[33] P. Kotzé, K. Renaud, and J. v. Biljon, “Don’t do this - pitfalls
in using anti-patterns in teaching human-computer interaction
principles,” Comput. Educ., vol. 50, no. 3, pp. 979–1008,
2008.

[34] D. Martin, T. Rodden, M. Rouncefield, I. Sommerville, and
S. Viller, “Finding patterns in the fieldwork,” in ECSCW’01:
Proceedings of the seventh conference on European Confer-
ence on Computer Supported Cooperative Work. Norwell,
MA, USA: Kluwer Academic Publishers, 2001, pp. 39–58.

[35] A. Crabtree, T. Hemmings, and T. Rodden, “Pattern-based
support for interactive design in domestic settings,” in DIS
’02: Proceedings of the 4th conference on Designing interac-
tive systems. New York, NY, USA: ACM, 2002, pp. 265–276.

[36] D. Wurhofer, M. Obrist, E. Beck, and M. Tscheligi, “In-
troducing a comprehensive quality criteria framework for
validating patterns by means of a case study,” Invited article
for IARIA: International Journal on Advances in Software,
2010, to Appear.

[37] M. Obrist, D. Wurhofer, E. Beck, A. Karahasanovic, and
M. Tscheligi, “User Experience (UX) Patterns for Audio-
Visual Networked Applications: Inspirations for Design,” in
Proceedings of NordiCHI 2010. ACM, 2010.

[38] J. O. Borchers and J. C. Thomas, “Patterns: what’s in it for
hci?” in CHI ’01: CHI ’01 extended abstracts on Human
factors in computing systems. New York, NY, USA: ACM,
2001, pp. 225–226.

[39] A. F. Blackwell and S. Fincher, “Pux: patterns of user
experience,” interactions, vol. 17, no. 2, pp. 27–31, 2010.

[40] S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen,
J. Thomas, and P. J. Molina, “Perspectives on hci patterns:
concepts and tools,” in CHI ’03: CHI ’03 extended abstracts
on Human factors in computing systems. New York, NY,
USA: ACM, 2003, pp. 1044–1045.

65

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 72 / 98

Abstract—The vast majority of current security patterns are

oriented towards the production of security mechanisms, such as

secure access systems or secure authentication systems. This type

of patterns may be extremely useful for those security engineers

who work on the production of this kind of mechanisms for large

companies (Oracle, Microsoft, IBM, Google, Cisco, etc.), but they

cannot be applied by a wide sector of security engineers who

work in the development of security architectures. This is owing

to the fact that these patterns do not consider aspects of the real

complex system in which they will be installed. In order to

complement security patterns and make them more applicable to

security architecture design environments, in this paper we will

propose a new description template of security patterns. The

solution provided by this new template is oriented towards the

architecture and technologies that should be used to design

security architectures in real complex systems.

Keywords: information security engineering; security

architectures; security technologies; security patterns; real

environments.

I. INTRODUCTION

Organizations currently require to guarantee availability,

integrity and confidentiality of their assets [16]. In view of the

fact that the realization of this task should consider the

constant evolution of the organization’s setting [27], we should

specifically consider the variation between people,

technologies, risks, processes, volumes of information,

business strategies, etc. Therefore, there is a need to adapt the

organization to all these changes in order to attain the

objective of guaranteeing the fundamental security properties

for its assets [20]. It is not easy for an organization to evaluate

its level of risk and adapt itself to permanent changes. It is

therefore vital for it to seek support from a security

architecture [3] in order to mitigate the impact of these

changes and thus minimize the risks associated with each of

them.

The concept of security architecture can be defined as the

practice of applying a structured, coordinated, rigorous method

with the intention of discovering an organization’s structure,

bearing in mind human resources, business processes and

technologies, i.e., all the elements that are involved in the

organization to provide its systems with security and thus

ensure the safety of its assets [19]. Security architectures are

installed with the intention of minimizing the risks associated

with the use of information technologies as well as optimizing

an organization’s business processes and strategies. If this

objective is to be achieved, it is necessary to establish a set of

technological infrastructure controls with which to identify the

security mechanisms that are needed to define the system’s

security.

The security mechanisms used in security architectures are

artifacts which have been designed to detect problems, prevent

risks or make immediate corrections in order to avoid any

undesirable events which may make security vulnerable [26].

After carrying out a systematic review of the literature

related to security patterns, we have found out that the vast

majority of patterns which are currently in use are focused on

supporting the construction of new security mechanisms [9,

24, 28]. These patterns are a useful support for those engineers

who work on developing security mechanisms which are the

basic elements of an architecture [22, 7]. However, it is

difficult to apply most of them to those work environments that

are focused on the analysis and design of security

architectures, since they do not consider the details of

installing the solution in real complex systems [9, 28, 18]. We

understand a real complex system to be all those elements that

A New Pattern Template to Support the Design

of Security Architectures

Santiago Moral-García
1
, Roberto Ortiz

2
, Santiago Moral-Rubio

3
, Belén Vela

1
, Javier Garzás

1, 5
,

Eduardo Fernández-Medina
4

(1) Kybele Group. Dep. of Computer Languages and Systems II. University Rey Juan Carlos,

Madrid (Spain).

{santiago.moral, belen.vela, javier.garzas} @urjc.es

(2) S21secLabs. SOC. Group S21sec Gestión S.A, Madrid (Spain).

 r.ortizpl@gmail.com

(3) Dep. Logical Security. BBVA, Madrid (Spain).

santiago.moral@grupobbva.es

(4) GSyA Research Group. Dep. of Information Technologies and Systems.

University of Castilla-La Mancha, Ciudad Real (Spain).

eduardo.fdezmedina@uclm.es

(5) Kybele Consulting, Madrid (Spain).

 javier.garzas@kybeleconsulting.com

66

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 73 / 98

are involved in an organization, i.e., human resources, business

processes and technologies.

We have therefore detected the need to discover structured

solutions in the form of patterns, or the evolution of existing

security patterns, to support information security engineers in

the analysis and later design of security architectures which are

used in an organization’s real complex systems.

If security patterns are to be applicable to the sector of

security engineers who design secure architectures in real

systems, and confidentiality, integrity and availability of the

organization’s information assets are to be ensured, then it is

necessary to resolve a series of lacks which have been

detected. These solutions are shown as follows:

 Detailing the information assets, which the deployment
of the pattern attempts to ensure, and the level of
criticality of these assets.

 Detailing what an organization is protecting with the
installation of the pattern.

 Including the deployment details in a real
environment, bearing in mind the architecture and
technologies that should be used to develop the
solution in a satisfactory manner.

 Carrying out a qualitative analysis of the most
important technological aspects with regard to the
proposed solution (memory consumed, processing
capacity, etc.).

 Bearing in mind different countries’ rules and
regulations with regard to the information assets that
they wish to conserve. It may be that a solution which
is legal in one country is not legal in another.

The lacks detected in current security patterns have led us to

the belief that it is necessary to define a new description

template of security patterns with which to resolve these

limitations. This new template is characterized by the fact that

it includes all the aspects which are necessary for a simple and

reusable definition of security architectures. The definition of

this template provides a step by step description of the

architecture’s design, and is linked to the necessary security

requirements in relation to the criticality of the assets to be

protected, known incidents, the systems involved in the

solution, the necessary volumetric, and other variables

associated with the environment such as the complexity of

deployment, the use and maintenance of the solution, the

regulations of the country in which the solution will be

installed, and associated costs.

The remainder of this paper is organized as follows. Section

II provides a description of the goodness of security patterns

and shows related works in order to represent these patterns.

Section III presents a new description template of security

patterns. Section IV states our general conclusions with regard

to the approach, and puts forward our future work.

II. SECURITY PATTERNS

A security pattern describes a recurrent security problem

which arises in a specific context, and provides a well tested

generic scheme as a solution to that problem [12]. One of the

main advantages of patterns is that they combine experience in

the design of information system [10], thus making them more

efficient. Patterns are a literary format with which to capture

the knowledge and experience of security experts, resulting in

a structured document in the form of a template to which the

security experts’ knowledge is transferred [21].

The first authors to propose security patterns were Yoder

and Barcalow in 1997 [29]. The number of security patterns

which have been published has increased considerably since

then [22, 11, 30].

A great heterogeneity exists between the different

descriptions found in each of the security patterns published

[21, 15, 2, 13, 17]. This is because the authors who describe

the security patterns that have been discovered have

historically used different description templates to represent

them. The most frequently used templates are those proposed

by the Gang of Four [14], which have been adapted to describe

security patterns, the template proposed by Buschmann et al.

[4], the template proposed in the SERENITY project [23], and

that proposed by Alexander [1]. Apart from these, other

templates for the description of patterns have also been

published, but their use is not massively extended yet. One

example of these is that proposed in [25], in which the security

patterns are represented as events calculus. Recent years have

seen the proposal of other types of more specific security

patterns, such as attack patterns [8] or misuse patterns [13].

As shown in [17], although the various authors who describe

security patterns do not use a standardized description

template, the majority of the description templates of these

patterns have the following trio of elements in common: the

context in which the pattern has been discovered; the security

problem that is attempted to be resolved within the context put

forward; and the forces that affect the solution. The solution is

conditioned by the associated forces, and these are expressed

through UML diagrams which model this solution [13].

In order to resolve the lacks detected in current security

patterns and thus support information security engineers when

analyzing and designing organizations’ security architectures,

we propose a new description template of security patterns.

The template proposed below is intended to be an easy-to-use

guideline which will allow both experts and non-experts in

security to access a structured and methodical document with

which to resolve security problems in the real complex systems

of the organizations in which they work.

III. A NEW DESCRIPTION TEMPLATE OF SECURITY

PATTERNS

In this section, we shall set out the new description template

of security patterns, explaining its characteristics and the

contribution that it will make to the scientific community in the

field of security. We shall then go on enumerating and

detailing each of the description elements of the proposed

template.

A security pattern focused on the development of security

architectures describes a valid generic path that assists security

engineers in making analysis and designing decisions when

67

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 74 / 98

confronting the development of a secure architecture, which

will resolve a real security deficiency in an information

system. In order to obtain the maximum applicability within an

organization, the proposed solution is oriented towards the

architecture and technology that must be used in that

organization to guarantee the security of the information assets

associated with the deficiencies that we intend to resolve.

The new template will be described with the description

elements from the description template proposed by

Buschmann et al. [4] and the template proposed in the

SERENITY project, used in [5], together with new description

elements which are necessary to provide security experts and

non-experts with a template to support the design of security

architectures.

One of the main contributions of this approach is that the

proposed solution provides security engineers with three

complementary levels or viewpoints: platform independent

level, platform specific level and product dependent level.

This solution model manages to separate the implementation

of the system’s functionality specification over a platform in a

specific technology. This allows differentiating the

functionality that the system must satisfy and the technologies

that could be implemented to develop the solution. Security

engineers can also visualize the evolution of the solution from

abstract models to real implementations in the complete

system.

Figure 1 (below) shows a graphical representation of the

solution levels.

Platform

Independent Level

Platform Specific

Level

Product Dependent

Level

W
H

O
?

A
S

S
E

T
S

SM1 SM2 SMN

SM – Security Mechanism
AC – Architectural Component
TP – Technological Product

W
H

O
?

A
S

S
E

T
S

AC1 AC2 ACN

W
H

O
?

A
S

S
E

T
S

TP1 TP2 TPN

Figure 1. Abstraction levels of the solution.

As the figure above shows, all security systems must

consider which information assets they intend to protect and

who will have access to them.

We shall now provide a short description of each of the

abstraction levels shown in Figure 1, and how the

transformations through which to move from one level to the

following should be carried out, illustrating the new elements

needed to be incorporated or considered.

Platform Independent Level: this level provides a

description of the security functionalities that the system

should have, independently of its technological characteristics

and implementation details. More specifically, a conceptual

description of the security mechanisms that should be

incorporated into the system is provided, along with the type

of relationship that exists among them. The elements that

should appear at this level are security patterns which are

oriented towards the development of security mechanisms. A

good guideline which can be used as a basis for discovering

the type of patterns that are necessary is the guideline

developed by Schumacher et al. in [22].

Platform Specific Level: the solution should be defined at

this level, detailing the architecture or platform to which it will

be applied. It is also necessary to set out how the necessary

security mechanisms should be situated, through the

presentation of an optimum security architecture with which to

resolve the problem, independently of the technology used to

protect the organization’s systems. Given that security

problems have repercussions on specific technological

architectures, the same platform independent model can be

instantiated N times, since it corresponds with different

technological architectures. The security mechanisms

described at the independent level become architectural

components at this level.

Product Dependent Level: it is necessary to install the

platform specific model into a specific architecture at this

level, to implement it with technological products that are

already available. Each of the architectural components can,

therefore, be transformed into N technological products. The

technological products must be valid products made by known

manufacturers in the security industry. The final solution may

vary significantly depending on the technologies used. This

level should be independent of the information system’s

technological conditions. This view of the solution is very

practical since it shows the user the different technologies that

already exist on the market and that are oriented towards

resolving the given problem.

This manner of structuring the solution provides a clear

example of the steps that must be followed to implement the

pattern, signifying that both experts and non-experts can

understand the solution and know how to deploy it in a real

system.

A further implicit property of this description template is its

associated decision path. This element is of great assistance

when selecting the most appropriate pattern with which to

resolve a determined problem. The following five levels have

been proposed in the decision path in order to classify the

patterns that are associated with a discovered security

deficiency:

68

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 75 / 98

1) What is the state of the information, programs or

configurations that need to be protected? The possible states

are the following:

a) Stored: These are found in a data base.

b) Transit: Through a transfer to another company or

service. There is a movement of information.

c) Access: The information is being accessed.

2) Who accesses the information that we wish to protect?

The people who can access the information are:

a) The organization’s internal users.

b) External users or customers.

c) Computing staff during their work. This type of user is

special since he can access data, applications and systems

without using the security mechanisms which have been

designed in the applications utilized by the final users.

3) How is the information accessed? or What is the means

of access? In short, the information can be accessed in the

following manners:

a) Directly: By accessing the data directly without any

limitations on the use that is made of them.

b) Through an application: By applying business logic to

the use, through which the information is shown.

4) Where is the information accessed from? It is basically

accessed from two places:

a) Within the organization, i.e., all the technological

spheres that are governed by the same security policies.

b) Outside the organization: where it is not possible to

ensure the fulfillment of the same security policies that appear

in the organization in which the assets are located.

5) Who manages the means used to access the information

that needs to be protected?

a) The person responsible for security who will use the

pattern and will be legally authorized to manage the systems’

security.

b) Any other person who does not belong to the

organization or does not have legal authorization to manage

the system’s security.

This decision path can be used to verify what type of

problem, in general terms, will be resolved with the pattern

discovered, i.e., two security patterns that respond identically

to the same path resolve problems of the same nature, and

could thus be alternatives to the same problem.

With regard to the elements described in the template, it is

also necessary to emphasize that they do not describe the

security vulnerabilities that may affect the information system

in which the solution is installed. This is owing to the fact that

new vulnerabilities frequently appear and the pattern must be

constantly modified. We consider that the technologies

themselves should be updated each time a new vulnerability is

encountered, and that in this case it should be the manufacturer

who updates them, or the security administrator who

incorporates new rules into the security technologies used, if

the impact of these vulnerabilities is to be minimized. This

new template of security patterns therefore considers that

vulnerabilities appear in all technologies on a permanent basis,

and this concept forms a part of the pattern’s considerations.

The greater a technology’s exposure to public networks, the

higher its level of weakness. All security architectures will

therefore be designed by bearing in mind that critical

vulnerabilities repeatedly appear in all technologies.

 The template proposed for the description of security

patterns focused on the design of security architectures will be

shown as follows. We must emphasize that this template is

used to evolve existing security patterns, since it maintains the

same base structure as their description, and it is only

necessary to add the new elements that are proposed. The

template that is proposed consists of the following elements:

A. Name

The pattern’s name should represent the problem that it is

attempting to resolve. This name must also be unique within

the sphere of this type of patterns.

B. Context

The context provides a generic description of the setting,

both at user level and system level, and includes the conditions

under which the described pattern should be applied.

C. Problem

This describes the situation which has led to the necessity to

apply a series of security mechanisms in order to obtain an

optimum solution, and it basically details the reasons for the

problem. It should also indicate the following questions:

 Which assets need to be protected? Information,
programs and/or configurations.

 What are we protecting ourselves from? Information
leaks, massive attacks, etc.

 Which security properties do we intend to conserve?
Confidentiality, integrity, availability, auditability
and/or non-repudiation.

D. Known incidents

It consists of a description of real cases of known security

incidents, in relation to the problem posed that the

implementation of the pattern intends to resolve. These

incidents can be easily located on the Internet on specialized

sites [6], which collect this type of events and specify when

they occurred, how they occurred and what their impact was.

E. Decision Path

This element should describe all general levels of the state

of the assets that need to be protected (previously described).

This will make it possible to determine which pattern should

be used to resolve a specific security problem. The objective

of this descriptive element is to be able to develop a

methodology based on security patterns, on the basis that the

pattern’s definition itself develops its own path in the decision

tree.

F. Solution

This element describes the solution in accordance with the

scenario and the problem being considered. This solution must

be expressed at three different abstraction levels, as previously

69

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 76 / 98

shown. It is first necessary to set out the solution for a platform

independent level, showing the security mechanisms that must

be used and the relationship that exists among them. This first

level is then transformed into a second level, called platform

specific level, which refers to the technological architecture

proposed to resolve the given problem. The second level is

finally transformed into a third level, called product dependent

level, which shows a proposal for the technologies that can be

used to implement the solution proposed by the described

pattern. These technologies must be considered trustworthy by

the Security Engineering sector.

Once these three levels have been developed, the solution

should be complemented with a UML sequence diagram that is

oriented towards the product dependent level, and that shows

and describes in detail what the sequence of optimum

processes to carry out the solution is.

G. Considerations

It is necessary to carry out a qualitative analysis of the

solution in relation to the critical parameters found in the real

complex system: a) storage; b) memory consumed; c)

frequency with which the systems, technologies and

applications are patched up; d) process capacity; e) complexity

for final user; f) complexity for security/systems administrator;

g) complexity of log management; h) broadband consumed; i)

complexity for massive use of solution; j) cost of installing

solution; and k) solution fulfillment guarantees. It is necessary

to decide whether each of these aspects is qualitatively altered

in a Null (0), Low (1), Medium (2) or High (3) manner when

deploying the solution in a real information system.

These decisions will assist in the evaluation of whether or

not the implementation of the solution is appropriate for the

organization’s current situation. This is particularly true when

considering the cost parameters and fulfillment conditions

since excessive costs and an inability to ensure the fulfillment

of the solution might be the main cause of any solution being

rejected.

H. Rules and Regulations

If the adoption of a predefined solution in the form of a

pattern in a real environment is desired, it is necessary to

consider the regulations of the country in which the solution is

intended to be installed, with regard to the information

activities that need to be protected. We must also bear in mind

the rules associated with these regulations which must be

fulfilled by the proposed solution for it to be correct both

juridical and legally. For example, Argentina does not permit

the movement of information related to people who reside in

that country and a solution which does not fulfill this

regulation could not, therefore, be installed.

I. Benefits

A short description of a solution’s goodness with regard to

the sphere and specific context in which the pattern is

developed.

J. Consequences

This element describes the consequences of adopting a

pattern as a solution in a real information system. An analysis

of the risks that the organization runs if it does not adopt this

solution must also be carried out. To do this, it is necessary to

describe the following consequences:

 Negative consequences of adopting the solution.

 Consequences of not adopting the solution.

K. Alternatives

The majority of security deficiencies can be resolved in

different ways, and this section should therefore describe other

solutions that can be used to resolve the considered problem.

These alternatives may differ from the pattern described at the

technological level, at the architectural level or even in the

security mechanisms used to guarantee the information assets

that are at risk.

IV. CONCLUSION

In this paper we have presented a new description template

of security patterns. To do this, we have provided a brief

introduction to security patterns and their related works which

put forward pattern description templates. We have then set

out the reasons why security patterns focused on designing

security architectures are necessary.

 Existing security patterns are currently focused on

supporting security engineers in the construction of security

mechanisms. This type of patterns can rarely be applied by

those security engineers who are dedicated to the analysis and

later design of security architectures in real systems. This

limited applicability results from the fact that current patterns:

a) do not contemplate the impact of the systems involved in

the solution; b) do not define the assets that must be protected;

c) do not classify these assets according to their criticality; d)

do not consider the restrictions involved in applying them in

the different countries where we may wish to install the

solution; e) do not consider the complexity of deployment, use

and maintenance of the solution by the engineers in charge of

them; f) do not define the reason why it is necessary to protect

the assets; g) do not consider the impact of parameters on the

system in which the solution will be installed; and h) do not

put forward a real use case to provide both experts and non-

experts in security with an example with which they can

compare their problem. All of the aforementioned reasons led

us to the belief that it was necessary to state a new description

template of security patterns oriented towards resolving the

need to obtain structured, valid and reusable solutions with

which to support information security engineers in the analysis

and design of security architectures in real complex systems.

We are currently working on the description of new security

patterns focused on designing security architectures. We are

also attempting to refine existing security patterns to make

them applicable to the design of security architectures. Finally,

we are defining a use methodology for this security patterns to

allow both experts and non-experts in security to apply

70

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 77 / 98

security to their systems in an easy, rapid and optimum

manner.

ACKNOWLEDGEMENTS

This research has been carried out within the framework of

the following projects: MODEL-CAOS (TIN2008-

03582/TIN), ESPIA (TIN2007-67078) financed by the

Spanish Ministry of Education and Science, QUASIMODO

(PAC08-0157-0668), SISTEMAS (PII2I09-0150-3135) and

SEGMENT (HITO-09-138) financed by the “Viceconsejería

de Ciencia y Tecnología de la Junta de Comunidades de

Castilla-La Mancha” and the FEDER and BUSINESS

(PET2008-0136) financed by the "Ministerio de Ciencia e

Innovación (CDTI)” (Spain), and IDONEO (PAC08-0160-

6141), financed by the “Consejería de Ciencia y Tecnología de

la Junta de Comunidades de Castilla-La Mancha”.

REFERENCES

[1] C. Alexander, S. Ishikawa, and M. Silverstein "A Pattern Language:

Towns, Buildings, Constructions" Oxford University Press, 1977.

[2] Z. Anwar, W. Yurcik, R. E. Johnson, M. Hafiz, and R. H. Campbell

"Multiple design patterns for voice over IP (VoIP) security" in

Performance, Computing, and Communications Conference, 2006.

IPCCC 2006. 25th IEEE International, 2006.

[3] A. Barth, C. Jackson, and C. Reis "The Security Architecture of the

Chromium Browser" Technical Report 2008.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.

"Pattern-oriented software architecture: A system of patterns" Wiley,

1996.

[5] A. Cuevas, P. El Khoury, L. Gomez, and A. Laube "Security Patterns

for Capturing Encryption-Based Access Control to Sensor Data" in

SECURWARE '08. Second International Conference on Emerging

Security Information, Systems and Technologies, 2008, pp. 62-67.

[6] "DATALOSS db - Open Security Fundation", http://datalossdb.org/,

2010

[7] E. Fernandez "Security Patterns and Secure Systems Design" in

Dependable Computing, 2007, pp. 233-234.

[8] E. Fernandez, J. Pelaez, and M. Larrondo-Petrie "Attack Patterns: A

New Forensic and Design Tool" in Advances in Digital Forensics III,

2007, pp. 345-357.

[9] E. Fernandez, H. Washizaki, N. Yoshioka, A. Kubo, and Y.

Fukazawa "Classifying Security Patterns" in Progress in WWW

Research and Development, 2008, pp. 342-347.

[10] E. B. Fernández "Security patterns and secure systems design" ACM

Southeast Regional Conference 2007.

[11] E. B. Fernandez and J. L. Ortega-Arjona "The Secure Pipes and

Filters Pattern" in DEXA '09. 20th International Workshop on

Database and Expert Systems Application, 2009, pp. 181-185.

[12] E. B. Fernandez, J. C. Pelaez, and M. M. Larrondo-Petrie "Security

Patterns for Voice over IP Networks" in ICCGI 2007. International

Multi-Conference on Computing in the Global Information

Technology, 2007, pp. 33-33.

[13] E. B. Fernandez, N. Yoshioka, and H. Washizaki "Modeling Misuse

Patterns" in ARES '09. International Conference on Availability,

Reliability and Security, 2009, pp. 566-571.

[14] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides "Design

Patterns: Elements of Reusable Object Oriented Software" Addison

Wesley, 1995.

[15] J. Garzás and M. Piattini "Object Oriented Microarchitectural Design

Knowledge" IEEE Software, pp. 28-33, 2005.

[16] D. M. Kienzle, M. C. Elder, D. Tyree, and J. Edwards-Hewitt

"Security patterns repository, version 1.0" 2006.

[17] S. Moral-Garcia, R. Ortiz, B. Vela, J. Garzás, and E. Fernández-

Medina "Patrones de Seguridad: ¿Homogéneos, validados y útiles?"

in RECSI XI Tarragona, Spain, submit accepted.

[18] R. Ortiz, S. Moral-García, S. Moral-Rubio, B. Vela, J. Garzás, and E.

Fernández-Medina "Applicability of Security Patterns" The 5th

International Symposium on Information Security (IS'10 - OTM'10),

2010 - submit accepted.

[19] "OSA - Open Security Architecture",

http://www.opensecurityarchitecture.org/cms/index.php, 2010

[20] D. G. Rosado, C. Gutiérrez, E. Fernández-Medina, and M. Piattini

"Security patterns and requirements for internet-based applications"

Internet Research: Electronic Networking Applications and Policy,

2006.

[21] M. Schumacher "B. Example Security Patterns and Annotations" in

Security Engineering with Patterns, 2003, pp. 171-178.

[22] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.

Buschmann, and P. Sommerlad "Security Patterns: Integrating

Security and Systems Engineering" Wiley, 2006.

[23] "Serenity Project - System Engineering for Security &

Dependability", www.serenity-project.org, 2010

[24] M. Solinas, E. B. Fernandez, and L. Antonelli "Embedding Security

Patterns into a Domain Model" in DEXA '09. 20th International

Workshop on Database and Expert Systems Application, 2009, pp.

176-180.

[25] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos "Towards

security monitoring patterns" in Proceedings of the 2007 ACM

symposium on Applied computing Seoul, Korea: ACM, 2007.

[26] W. Stallings "Network security essentials: applications and

standards", Prentice Hall, 2007.

[27] C. Steel, R. Nagappan, and R. Lai "Core Security Patterns: Best

Practices and Strategies for J2EE, Web Services, and Identity

Management", Prentice Hall ed., 2005.

[28] H. Washizaki, E. B. Fernandez, K. Maruyama, A. Kubo, and N.

Yoshioka "Improving the Classification of Security Patterns" in

DEXA '09. 20th International Workshop on Database and Expert

Systems Application, 2009, pp. 165-170.

[29] J. Yoder and J. Barcalow "Architectural Patterns for Enabling

Application Security" Fourth Conference on Patterns Languages of

Programs (PLoP'97), 1997.

[30] K. Yskout, T. Heyman, R. Scandariato, and W. Joosen " An

inventory of security patterns" Katholieke Universiteit Leuven,

Department of Computer Science 2006.

71

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 78 / 98

A Pattern Collection for Privacy Enhancing Technology

Cornelia Graf1, Peter Wolkerstorfer1, Arjan Geven1, Manfred Tscheligi1,2

(1) CURE
Center for Usability Research & Engineering

 Modecenterstraße 17 / 2
1110 Vienna

+43.1.743 54 51
{last name}@cure.at

(2) ICT&S Center
University of Salzburg

Sigmund-Haffner Gasse 18
5020 Salzburg

+43.662.8044.4811
manfred.tscheligi@sbg.ac.at

Abstract— Patterns are a useful approach to describe, organize
and present solutions and best practices for design problems.
Although much work can be found concerning either patterns
or privacy, work focusing on patterns for Privacy Enhancing
Technologies (PET) is very rare. This paper describes the
development of User Interfaces Patterns for PET and the
benefit of using them. We used different proven approaches
and guidelines and merged them for creating efficient and
useable patterns for PETs. Anyhow, some of our patterns were
not tested much with end-users, so further tests will be
necessary to prove worth of the patterns. Nevertheless we
maintain that our patterns will support the development of
PET UIs. In this paper, we provide a short overview of the
whole pattern collection and present two patterns in detail.

Keywords- patterns; privacy; user interfaces desing; privacy
enhancing technologies; pattern development; pattern approach.

I. INTRODUCTION

Patterns provide solutions that have been successfully
used for many years for specific problems. This paper
describes the development of patterns for different User
Interfaces (UI) for PETs and presents two of them more
detailed. In current literature, patterns for PETs are very rare;
approaches concerning patterns for privacy enhancing
technologies are presented by [6], [10], [15], [16], [17] and
[18].

The usage of PETs for privacy protection is a very
important aspect for users’ online life. Therefore, the lack of
patterns concerning UIs for PETs is a big deficiency, for
developers and designers as well as end-users. To help
designers and programmers when dealing with the creation
of UIs for privacy enhancing technologies we developed
twelve patterns for PETs.

In the following Section, we will give an overview about
the current research in the field of privacy patterns. Section
III presents the development of our patterns approach and
gives an overview of the PET patterns. In Section IV, we
describe two of them in detail. In the last Section, we will
discuss our approaches and give an overview about our
future research.

II. RELATED WORK

In literature, much work can be found concerning either
privacy or patterns but our literature research showed a lack
of work concerning patterns for PETs.

Goldberg [3], [4] and Goldberg et al. [5] presented an
overview about currently existing privacy enhancing
technologies and gave an outlook of future PETs.
Schumacher [17] presented two patterns, one deals with
protection against cookies and the other one with
pseudonymous mailing.

Schümmer [18] pointed out another privacy pattern
approach, which covers the filtering of personal information
in collaborative systems. These patterns address how to
protect personal data from transmission to others and how to
filter information received from others.

Other research concentrated on privacy protection and
anonymity. Hafiz [6] presented a collection of privacy design
patterns, which addresses anonymity solutions for various
domains. Romanosky [15] developed three patterns, which
describe how users can protect their privacy in web-based
activities.

Another topic concerns patterns, which are related to
privacy policies. Sadicoff [16] introduced a pattern
especially for affording user awareness for privacy policies
of network sites. The approach of Lobato [10] dealt with the
development of user-friendly privacy policies.

In this paper, we present some patterns we created to
support designers and developers when working on the
development of UIs for PETs.

III. PET PATTERNS

Since the observing of privacy should be one main goal
in users’ online behavior, it is necessary to provide PETs for
supporting them. Our current work deals with the
development of different user interfaces for privacy
enhancing technologies. As patterns provide useful and
proven approaches for design problems we decided to use
them for the development of our PET UIs. However, while
we looked for patterns and proven approaches we concluded
that only few patterns for privacy enhancing technologies are
available and that they were not adaptive for our
requirements. Hence, we decided to work not only on UIs for
PETs but furthermore on development of patterns for
assisting future PET developers.

The main requirement was to develop PET-UIs, which
present the complex techniques of PETs in an
understandable way to end-users. Another important
requirement was to support users to protect their privacy in
an active way. To achieve this we worked on solutions to

72

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 79 / 98

make users aware of privacy related topics in web, like
private data are requested, and so on. The online life of users
can include many different use-cases of the Web; to cover all
this use-cases with PETs it was necessary to develop several
patterns for different tasks, i.e., support when creating a
password, displaying if the privacy policy of a website
matches with the preferred privacy settings and so on.
Furthermore, we developed basic approaches for supporting
users’ privacy-behavior in the Web in privacy related way,
i.e., information about visible private data in collaborative
workspaces.

Our pattern approach should support the usage of best
practice solutions for defined PET problems. Furthermore,
they shall assist designers and developers as a guideline
when creating UIs. This shall guarantee usable and
consistent UIs in PET software. It should also enable
capturing sharing and structuring of PET development
knowledge inside the project team.

A. Pattern Development

Since we did not find feasible patterns for the needs of
our UIs, we developed patterns by ourselves. A crucial factor
when developing patterns is that each pattern must be
consistent with the other patterns. The reason for this need
for consistency is that a pattern describes not only a solution
for a special problem but furthermore a solution for a special
problem in a domain [8]. This means all patterns must veer
toward the same purpose; - in our case, all patterns have to
support the creation of user interfaces for PETs.
Additionally, patterns are not allowed to contradict other
patterns in the same domain. To create patterns, which
complement one another in a meaningful way, we created
our patterns during an iterative design process, which starts
with the definition of the problem each pattern shall solve.

As a next step, we looked for approaches in literature and
if guidelines on how to handle this problem already exist.
We also integrated the knowledge, the experience and results
which we gather in a predecessor project into the PET
Patterns (e.g., [12]). This knowledge contains e.g., the
observation that users try to get rid of intrusive privacy
warnings by changing to more “generous” privacy
preference settings.

Another point of interest were different guidelines of the
European Union (EU) which describe privacy related
concerns or approaches for supporting user perception of
information ([2] e.g., Art. 25, Art. 7a, Art. 29 “Working
Party”) – these guidelines are commonly known as
“European Data Protection Directive (DPD)”.

Finally yet importantly, we looked for already proven
approaches for our defined problems and adapted or merged
them to create useable solutions. The most important
approaches for the development of our patterns were:

- The multi-layered presentation approach, which is

presented in Art. 29 Working Party [2]. This article
recommends providing information in a multi-layered
format under which each layer should offer
individuals the information needed to understand their
position and make decisions.

- Dynamic tooltips, which are based on the idea of
motion design [7]. In motion design motion graphic
are used for supporting the interactive system.

- An adaption of the “nutrition label for privacy”
presented by Kelley [9]. Kelley adapted the nutrition
label from the food domain and used it for displaying
privacy policies to user.

- In addition, we also applied to the approach of Patrick
[11], which lists four categories of human factors
requirements for privacy interface design.

During the development, we combine guidelines and
already proven approaches from the HCI. This grants already
proven methods for the presented PET patterns.

For example, we used the multi-layered presentation
approach and merged it with dynamic tooltips to inform
users that private information is required. The “Dynamic
Privacy Policy Display” which bases on this approach will
be presented in Subsection IV.A.

Furthermore, we customized the “nutrition label for
privacy” for a policy matching display. This display shall
show users if and how much their preferred privacy settings
matches with the policy of a website.

Experts first evaluated the outcomes of this merging
through heuristic evaluation methods. Within this evaluation,
they reviewed the outcomes based on classical usability
principles. If this expert based analysis supports the design of
the patterns we started with the next step – the end-user
testing, otherwise we reworked the patterns. The goal of the
end-user testing is, to look if the presented UI solutions of
our patterns are understandable for end-users.

The end-user testing was done in several steps. If any
problems were uncovered, we adjusted the pattern. This end-
user testing is not completed yet, it will be continued in the
further design of the patterns.

The goal of the patterns is to present complex technical
PET mechanisms in an understandable way for users. The
patterns will help designers and developers to create usable
and supportive interfaces for PETs. For better usability of the
patterns for designers and programmers we grouped the
patterns, this shall provide a more efficient search for
patterns for a special problem.

We classified our patterns through affinity diagramming
[1] to grant designers and developers an efficient way to look
through the patterns for solutions for PET concerning
problems. The idea of grouping patterns can be also found at
e.g., Welie [20] and Tidwell [19].

We didn’t have categories in the beginning of the affinity
diagramming; instead we analyzed the content and theme of
each pattern and put related/similar patterns next to each
other. In the end, we get three groups, which we named after
the topic the patterns addresses.

Group 1: “PET Interaction” contains patterns, which

are related to workflows and interaction paradigms.
Group 2: “PET patterns for privacy policies”

includes patterns concerning the displaying of
privacy policies.

73

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 80 / 98

Group 3: “PET Visualization” is related to the
depiction of privacy information and to icons,
which shall support a better visualization.

B. Patterns Structure

We based our patterns on the structure used by Welie
[20] and extended it by a star rating, which illustrates the
number of end-user testing we did with the pattern. Each
Pattern consists of the following elements:

Title: The Name of the Pattern
Rating: A 0 to 5 star rating. It shows how much end-user
tests were done.

- Zero stars mean that there weren’t any end-user
tests done with it.

- One star mean that low level HCI knowledge is
included (in form of usability principles)

- Two stars mean that at least the user-feedback of
two users was integrated.

- Three stars mean that more than two preliminary
user evaluations have been done.

- Four stars means that a pattern is in a draft state
and only misses a final iteration round.

In Section IV, we will present two patterns with 4-
stars rating.

- Five stars mean that much end-user testing was
done and the results prove the content of the
pattern; such patterns can be seen as final.

Problem: Summarizes and outlines the existing problem.
Solution: Brief description of the solution.
Use when: This group outlines the situation the pattern is
best applied in.
How: More detailed insight into the solution
Why: Presents why the solution is needed and how to the
user benefits from it.
Related Patterns: Refers to other patterns similar to the
presented one.

From our point of view, this structure displays patterns in

a plain way even for persons who never worked with
patterns before and the appending of the star rating provides
a first glance impression of how much end-user testing was
done.

C. Overview of PET-Patterns

We developed twelve patterns for PET. Although all
patterns are related to privacy, they can be clustered into
different subgroups as described above.

In the following, we will give an overview of the three
groups and the patterns related to them.

1) PET Intercation
The patterns in this group are related to workflows and

interaction paradigms in PETs. This group has to offer
elements, which can and shall be used in PETs to inform
user about different topics concerning the approval of his

data in the web. Patterns for following topics are attributed to
PET Interactions:

a) Secure Passwords (****)
Secure passwords are a main concern for personal

privacy protection.
This approach should help users to create and choose

secure passwords by giving appropriate and dynamic
feedback.

b) Informed Consent (****)
Users should fully understand what will happen if they

release personal data in the web.
This UI solution should be used every time when the user

needs to disclose personal data.
c) Privacy Aware Wording ()

Users shall clearly understand the content and the terms
of privacy policies. This approach should be used every time
when a privacy policy will be displayed to a user.

d) Credential Selection (**)
This pattern should be used to make it easy for a user to

select the appropriate credential and to inform him which
data will the recipient have after the transmission.

2) PET Patterns for Privacy Policies
The patterns in this group are related to workflows and

interaction paradigms in PETs. This group has to offer
elements, which can and shall be used in PETs to inform
user about different topics concerning the approval of his
data in the web.

Following patterns can be found in this group:
a) Privacy Policy Display (***)

The goal of this display is to provide the user information
about why what information by whom is requested.

It should be used whenever personal data are required
from the user.

b) Dynamic Privacy Policy Display (****)
This pattern is presented in Section IV.
Display a tooltip to the user when his attention is

required for privacy matters, e.g., person data are requested
by a website.

c) Policy Matching Display (**)
Provide the user a possibility to compare each privacy

policy with his preferred privacy settings. This approach
should be used when a user contacts a service side or when
the entry of personal data is required.

3) PET Visualization
PET Visualization offers suggestions on how to display

privacy-related topics like “who sees which data” to the user.
The patterns in this group shall help designers to present

this “who sees which data”-topic in an understandable way
to users.

This group contains following patterns:
a) Privacy Icons (*)

Icons are able to speak for themselves, so icons are a
great solution to aid written text. These icons should be used

74

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 81 / 98

for PET software to support the user when he reads privacy
information.

b) Icons for Privacy Policies ()
Icons are able to speak for themselves, so icons are a

great solution to support a user when he reads a privacy
policy. These icons should be used together with privacy
policies.

c) Privacy Awareness Panel in Collaborative
Workspace (****)

This pattern is presented in Section IV.
The developed privacy panel shall users make aware of

data (like IP or location) which are visible to others in a
collaborative workspace. It should be used by collaborative
workspace providers to help user protecting their privacy.

In the previous Section, we presented our patterns

collection. The offered patterns cover various aspects of
users’ life. Through expert evaluation and previously done
end-user tests, the patterns prove their worth for PET
development. Furthermore, the multi-stage user tests showed
that our solutions are understood by end-users. Therefore, we
were able to fulfill our main requirement, an understandable
presentation of the complex techniques of PETs to end-users.
The second requirement was making users aware of privacy
related topics. This requirement is integrated in different
patterns, like “Secure Password” or “Policy Matching
Display”.

IV. PRESENTATION OF SELECTED PATTERNS

In the following Section, we will explain two selected
patterns. First the “Dynamic Privacy Policy Display”, which
shall attract users’ attention when needed, e.g., when private
data are required; the second deals with an information panel
for private data displaying in collaborative workspaces, it is
called “Privacy Awareness Panel in Collaborative
Workspaces”.

We decided to present these two patterns because both
are currently rated with four stars. This means that the
patterns are still in draft state but only the final iteration
round with end-users is missing. We think that these two
patterns are good examples for the PET-Patterns we
developed.

The presented patterns shall support user when login,
reading and working on the web.
In accordance with Article 25 EU Directive 95/46/EC [2]
individuals need to be informed about which of their data are
processed, who is processing them and why. Therefore, it is
necessary to inform users in an understandable way about
what happened to their data and suggest possible
consequences to them.

A. Dynamic Privacy Policy Display (****)

Problem

Users need to be well informed about possible
consequences when releasing personal data upon certain
actions such as login, registration, payments, etc. Art. 25
requires that data subjects are at least informed about what

personal data are processed, by whom (i.e., the identity of the
controller), and for what purposes [2].

Solution

The multi-layered presentation approach by the Article
29 Working Party [2] can be implemented by dynamical
information “tooltips” informing the user about the nature of
the data disclosed and possible consequences. The dynamic
information need to be adapted to the context of the website
it is used in. It should only include relevant security and
privacy information and have a unique standard layout
making it easy to recognize.

Figure 1: Prototype for Dynamic Display of Information

Figure 1 shows a prototype for dynamic display of

information. When the mouse is moved nearby the interface,
the privacy disclaimer in the top appears on the login-
interface. This prototype was used for usability tests in
Austria. To reduce the bias of the language it was designed
in German.

Use when

Dynamic privacy policy displays can be applied to small
interfaces (e.g., login) or when the credential selection
contains information that needs the user's attention.

How

The information should be provided to the user where it
is needed. Therefore the tooltip should appear on demand
(i.e., need of information). This could be for example in a
login dialog as soon as the user navigates the mouse into the
concerning part of the interface (cf. Figure 1). The tooltip
should then be made visible to the user and contain all
necessary information for making an informed decision.

Why

Because of peripheral viewing, the user is able to
recognize visual change (i.e., motion) even when on the
border of the field of view. The user will recognize each
visual change and might automatically connect it to danger.
Hence, he will immediately notice the visual change and
direct the attention to it. Using this approach, it is
increasingly unlikely that the user might oversee the privacy
indications.

75

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 82 / 98

Motion design is a known research area in the field of
usability; thereby motion graphics are used as functional
elements in interactive systems. According to Jacob [7], it
decreases the cognitive load and creates user inputs – but
only when applied correctly. Tooltips instead of pop-ups
create a sense of seriousness (e.g., windows tooltips),
whereas pop-ups are nowadays connected with error
messages or unwanted advertisements. The physical
connection between the tooltip and the Login dialog displays
a certain attachment (i.e., that the tooltip is connected to the
login dialog).

Research we did on the displaying of privacy preferences
has shown that users recognize dynamic privacy policy
display interfaces much better than static privacy policy
displays. So 100% of our participants indicated to having
recognized the dynamic box (visible in Figure 1), on the
other hand, only 43% noticed a static display.

Related Patterns

- Privacy Policy Display

B. Privacy Awareness Panel in Collaborative Workspaces
(****)

Problem

The problem with users’ awareness for privacy in
collaborative workspaces, e.g., forums or wikis, is twofold.
First, the users can contribute under self-chosen nicknames
instead of using their real names, which leads to a higher
perceived anonymity of the users. However, providers of
collaborative workspaces have more information about a
user’s real identity (e.g., IP address). Secondly, in
collaborative workspaces, users disclose information –
personal and non-personal – to an unknown audience. They
have no idea how many and what kind of people can access
their contributions. Both harm the person’s privacy, even if
the person is unaware of this.

Solution

In a so-called privacy-awareness panel, the audience is
made transparent to the user, i.e., who can access his/her
contribution (all internet users, registered users …). It is also
pointed out that providers have additional information about
the user. Hence, the privacy-awareness panel helps users to
better understand their level of anonymity and private sphere
within the collaborative workspace and based on this they
can make better-informed decisions whether they want to
disclose personal information in their contributions.

Use when

The approach should be used with every collaborative
workspace.

How

First, it should be made clear to users which persons will
be able to access their contributions. Second, users should
know that providers get additional information about them
for instance their IP addresses, browser versions, location

information etc. and thus that they are not completely
anonymous in the forum, wiki or other collaborative
workspaces.

Further information about the Privacy Awareness Panel
can be found in Poetzsch et al. [13].

Why

To allow users to make better informed decision whether
they want to disclose personal data in their contributions to
collaborative workspaces.

Related Patterns

- Privacy Options in Social Networks
- Selective Access Control in Forum Software
- Privacy Enhanced Group Scheduling

In the preceding Section, we presented two selected PET

patterns from our collection.
The first presented pattern should be used every time

when it is necessary to catch user’s attention, e.g., when a
user might oversee the privacy indications.

The second one, the privacy awareness panel, should be
applied in every collaborative workspace to inform users
which of their private data are visible to whom e.g., the
provider.

Through implementation of these approaches, users will
be better informed about what will happen to their private
data and therefore be able to make informed decisions when
dealing with their private data in web.

We advise that these approaches should be used every
time to support users in making privacy aware decisions,
although the patterns misses the final iteration round they
prove their value during tests with end-users.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the development of UI
patterns for privacy enhancing technologies. Furthermore,
we have given an overview of the developed PET patterns
and presented two of them in detail.

All the patterns in our collection have the same goal,
helping designers and developers of PETs creating useable
and understandable interfaces for end-users.

The merging of best practice solutions from HCI and
different guidelines permitted us creating patterns for PETs
with already proven solutions. Furthermore, the iterative
development approves permanently improvements of the
patterns. In a first step, experts evaluated each pattern and
detected usability problems were remodeled.

Through end-user tests, we are able to identify user’s
problems of the different patterns and can therefore fix the
uncovered usability problems in further version of the
pattern. Furthermore, the patterns were rated with a star
rating, which shows how much end-user testing has been
done with each pattern. End-user testing has already been
carried out with most of the pattern; only two have not yet
been evaluated with end users. Four patterns are currently
rated with four stars, so there is just the final iteration
missing. However, for all patterns of our collection further
user evaluations will be necessary.

76

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 83 / 98

Yet, results of end-user tests we made till now showed
that we are able to fulfill our main requirement, the
development of an understandable presentation of PETs for
end-users. Anyhow, we maintain that the usage of our
pattern collection for development of UIs for PETs will
support users when dealing with private data in the web.

Future research will contain further usability testing of
our presented patterns and based on the results of the tests a
reworking and expansion of the UIs and patterns will be
needed. The knowledge we gather from these evaluations
will be continuously integrated into our existing patterns but
it will also be necessary to create new patterns for new
requirements.

The complete pattern collection can be found at [14].

ACKNOWLEDGMENT

Thanks to our PrimeLife partners for support, help and
input while creating the patterns.

The research leading to these results has received funding
from the European Community's Seventh Framework
Programme (FP7/2007-2013) under grant agreement n°
216483.

REFERENCES
[1] H. Beyer. and K. Holtzblatt, “Contextual design: Defining customer-

centered systems”. San Francisco, CA: Morgan Kaufmann, 1998.

[2] European Parliament, “Directive 95/46/EC of the European
Parliament” , 1995. available at: http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:
EN:HTML; Last accessed : 2010-08-09

[3] I. Goldberg. “Privacy-enhancing Technologies for the Internet, II:
Five Years Later”. In Workshop on Privacy Enhancing Technologies
2002, Lecture Notes in Computer Science 2482, pp. 1–12.

[4] I. Goldberg, “Privacy Enhancing Technologies for the Internet III:
Ten Years Later”. In Acquisti A., Gritzalis S., Lambrinoudakis C., di
Vimercati S. D. C. (eds.) Digital Privacy: Theory, Technologies, and
Practices, Chapter 1. Auerbach, 2007.

[5] I. Goldberg, D. Wagner, and E. A. Brewer, “Privacy Enhancing
Technologies for the Internet”. In COMPCON '97, pp. 103–109,
February 1997.

[6] M. Hafiz, “A collection of privacy design patterns”. In Proc.of the
2006 Conference on Pattern Languages of Programs. PLoP '06. pp. 1-
13.

[7] F. Jacob, “Ästhetik und UX: Das Potential von Serious Motion
Graphics“, Xtopia 2008.

[8] D. Khazanchi, J.Murphy, and S. Petter , “Guidelines for evaluating
patterns in the IS domain”. MWAIS 2008 Proc., Paper 24.
http://aisel.aisnet.org/mwais2008/24; Last accessed : 2010-08-09

[9] P. G. Kelley, J. Bresee, L. F. Cranorand and R.W. Reeder, “A
"nutrition label" for privacy”. In Proc.of the 5th Symposium on
Usable Privacy and Security (SOUPS '09). pp. 1-12.

[10] L. L. Lobato and E. B. Fernandez, “Patterns to Support the
Development of Privacy Policies”. First International Workshop on
Organizational Security Aspects 2009 , pp.744-749

[11] A.S. Patrick and S. Kenny, “From Privacy Legislation to Interface
Design: Implementing Information Privacy in Human-Computer
Interaction”. Privacy Enhancing Technologies Workshop (PET 2003),
Dresden/Germany, 2003, pp 107-124.

[12] J.S. Pettersson, S. Fischer-Hübner, N. Danielsson, J. Nilsson, M.
Bergmann, S. Clauß, Th. Kriegelstein, and H. Krasemann, “Making
PRIME usable”. In Proc. of the 2005 Symposium on Usable Privacy
and Security (SOUPS '05), vol. 93. pp. 53-64.

[13] S. Pötzsch, P.Wolkerstorfer and C. Graf. Privacy-Awareness
Information for Web Forums: Results from an Empirical Study.
NordiCHI 2010, 16.–20. October 2010, Reykjavik.

[14] PrimeLife Project, http://www.primelife.eu; Last accessed : 2010-08-
09

[15] S. Romanosky, A. Acquisti, J. Hong, L. F. Cranor, and B. Friedman,
“Privacy patterns for online interactions”. In Proc.of the 2006
Conference on Pattern Languages of Programs (PLoP '06). pp. 1-9.

[16] M. Sadicoff , M.M. Larrando-Petrie, and E.B. Fernandez, “Privacy
aware network-client pattern”. In Proc. of the 12th Conference on
Patterns Language of Programming (PLoP’05), 2005. Available at:
http://hillside.net/plop/2005/proceedings/PLoP2005_msadicoff0_0.pd
f. Last accessed: 2010-08-09

[17] M. Schumacher, “Security patterns and security standards - with
selected security patterns for anonymity and privacy”. In Proc. of the
European Conference on Patterns Language of Programming
(EuroPLoP'02), 2002.
http://citeseer.ist.psu.edu/schumacher03security.html. Last accessed :
2010-08-09

[18] T. Schümmer, "The Public Privacy -- Patterns for Filtering Personal
Information in Collaborative Systems," In Proc. of the Conference on
Human Factors in Computing Systems (CHI ‘04) 2004. Available at:
http://www.pi6.fernuni-hagen.de/publ/CHI2004.pdf; Last accessed:
2010-08-09

[19] J. Tidwell, “Designing interfaces.” - Sebastopol, Calif. [u.a.] :
O'Reilly 2005.

[20] M.v. Welie, “Patterns in Interaction Design”. Available at:
http://www.welie.com/patterns/index.php; Last accessed : 2010-08-09

77

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 84 / 98

Multiple Pattern Matching

Stephen Fulwider and Amar Mukherjee
College of Engineering and Computer Science

University of Central Florida
Orlando, FL USA

Email: {stephen,amar}@cs.ucf.edu

Abstract—In this paper, we consider certain generalizations
of string matching problems. The multiple pattern matching
problem is that of finding all occurrences of a set of patterns
in a fixed text. This is a well studied problem, and several
popular Unix utilities (grep, agrep, and nrgrep, to name a few)
implement a host of algorithms to solve this problem. In this
paper, we present both exact and approximate multiple pattern
matching, using a uniform paradigm that generalizes the Shift-
AND method of Baeza-Yates and Gonnet. Our algorithm is able
to achieve better performance in certain searching scenarios
when compared with the Unix utilities agrep and nrgrep,
and should be considered being added to the grep family of
searching algorithms.

Keywords-string matching, approximate string matching,
multiple approximate string matching.

I. INTRODUCTION

In this paper, we consider certain generalizations of string
matching problems. The most well known exact string
matching algorithms are the Knuth-Morris-Pratt algorithm
[1] and the Boyer-Moore algorithm [2]. A generalization to
multiple pattern matching using keyword trees was proposed
by Aho-Corasick [3]. Baeza-Yates and Gonnet [4] proposed
a very fast and practical exact pattern matching algorithm in
which the length of the pattern n does not exceed the length
of a typical integer word (typically 32) in a computer so that
bit shift and logical AND operations can be assumed to take
a constant amount of time. The worst case time complexity
is O(m) where m is the length of the text and the algorithm
takes O(n) storage. They also proposed a generalization
of the algorithm to handle arbitrary patterns with errors,
called approximate string matching. Based on this and
other independent ideas, Wu and Manber [5], [6] developed
a whole suite of fast algorithms that can handle exact
multiple patterns and approximate matches, patterns with
unlimited wild card characters, patterns expressed by regular
expressions and patterns with arbitrary cost for different edit
operations (replacement, insertion and deletion operations).
More recently, Külekci [7] developed a competitive exact
multi-pattern matching algorithm for fixed length patterns by
exploiting bit-parallelism. Additionally, many approximate
string matching algorithms for multiple patterns have been
developed which use a wide range of techniques and vary
in performance based on the size and type of input [8], [9],
[10]. Many different approximate string matching algorithms

have been proposed in the literature including the class of
algorithms called the sequence alignment algorithms using
dynamic programming formulations. Interested readers are
referred to the book by Dan Gusfield [11] and a recent
research monograph by Adjeroh, Bell and Mukherjee [12].

An earlier version of this paper due to a regrettable
oversight did not mention the following reference [5] which
essentially presents the same approach we describe here.
Our implementation has some advantages to their approach
which will be described in Section III and IV.

We formulate the problem discussed in this paper as
follows: The input to the problem is a set of patterns
P = {P1, P2, . . . , Ps} of size n =

∑
|Pi| and a text T

of size m, both over a finite alphabet Σ. We will consider a
generalization of the approximate string matching problem.
The output is all substrings (a set of consecutive characters
in T) and subsequences (a set of not necessarily consecutive
characters in T) that are close to the set of patterns P under
some similarity measures. We adopt the edit distance or the
Levenshtein distance as the similarity measure. In particular,
we want to find all patterns in T such that the number of
edit operations do not exceed {k1, k2, . . . , ks} from patterns
{P1, P2, . . . , Ps}, respectively. A string Pi, (1 ≤ i ≤ s),
is said to be at an edit distance ki to a subsequence Q
in T if we can transform Pi to Q with a sequence of
ki insertions of single characters in arbitrary places in Pi,
deletions of single characters in Pi, or replacements of a
character in Pi by a character in Q. If all edit operations
are replacements, it is equivalent to the so-called Hamming
distance or mismatch measure. The quantity ki is typically
a small positive integer (0 ≤ ki ≤ c) where c is a constant.
If all ki’s are integer 0, the problem is reduced to the exact
multiple pattern matching problem. Most approximate string
matching algorithms reported in the literature assume ki to
be constant for all patterns.

We develop the exact and approximate algorithms and all
their generalizations using a uniform paradigm that gener-
alizes the Shift-AND method of Baeza-Yates and Gonnet.
In this respect, it is the same approach used by Wu and
Manber [5], but we allow ki to be different for different
patterns. We also use a simplified formulation of the problem
using only six recurrence expressions and provide formal
proofs of correctness of all the algorithms presented. We

78

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 85 / 98

Table I
COMPLETE M MATRIX FOR P = {abc, axa, bc} AND T = εbaxabcx

T ε b a x a b c x
P 0 1 2 3 4 5 6 7
a 1 0 0 1 0 1 0 0 0
b 2 0 0 0 0 0 1 0 0
c 3 0 0 0 0 0 0 1 0
a 4 0 0 1 0 1 0 0 0
x 5 0 0 0 1 0 0 0 0
a 6 0 0 0 0 1 0 0 0
b 7 0 1 0 0 0 1 0 0
c 8 0 0 0 0 0 0 1 0

show that such an approach leads to very fast and practical
performance exceeding the performance of the best algo-
rithms available in the Unix utilities. We use the Baeza-Yates
paradigm of using a binary valued matrix M in which a
few simple operations allow us to extend the algorithm to
multiple pattern matching, both in the exact and approximate
case.

Exact and approximate string matching algorithms find
applications in database search, data mining, text process-
ing and editing, lexical analysis of computer programs,
data compression and cryptography. In recent years, string
matching and sequence alignment algorithms have been
used extensively in the study of comparative genomics,
proteomics, disease identification, drug design and molecular
evolution theory. The remainder of the paper is organized as
follows: Section II lays out the exact multiple pattern match-
ing algorithm, Section III gives its approximate matching
counterpart, Section IV gives our experimental results, and
we make our conclusions in Section V.

II. EXACT MULTIPLE PATTERN MATCHING

This section is included for the sake of completeness and
to set up our notations. We also include a formal proof of
correctness.

Let P = {P1, P2, . . . , Ps} be a set of patterns of size
n =

∑
|Pi| and T be the text of size m preceded by a

character ε which does not occur in any pattern. Define P =
P1P2 · · ·Ps to be the concatenated patterns and M to be an
n×(m+1) binary valued matrix with i running from 1 to n
and j running from 0 to m. Entry M(i, j) is 1 iff characters
indexed by r through i of P exactly match the characters
indexed by i − r + 1 of T ending at the character indexed
by j, where r is the starting index of the pattern containing
the character indexed by i.

The complete M matrix for P = {abc, axa, bc} and T =
εbaxabcx is shown in Table I.

Notice that M(5, 3) is 1, indicating that ax of the second
pattern (r = 4, i = 5) matches the last 2 characters of T
ending at position 3, ax. Anywhere a 1 exists at the end of
a pattern indicates an occurrence of that pattern being found
in the text (for example, M(6, 4), M(3, 6), and M(8, 6)).

Table II
COLUMN 5 TO COLUMN 6 OF M WITH INTERMEDIATE STEPS SHOWN

Column 5 Shift-Or(5) U(c) Column 6
0 1 0 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 0 0
0 0 0 0
1 1 0 0
0 1 1 1

Hence, computing the s rows ending each pattern solves the
exact multiple pattern matching problem.

The algorithm first constructs an n-length binary vector
U(x) for each character x of the alphabet. U(x) is set to 1
for the positions in P where character x appears. From the
example above, U(a) = 10010100.

The algorithm also constructs S and F , n-length binary
vectors giving the start and end indices of all the patterns,
respectively. Formally, S(i) is 1 iff a pattern from P begins
at i in P . Similarly, F (i) is 1 iff a pattern from P ends
at i in P . From the example above, S = 10010010 and
F = 00100101.

Define Shift-Or(j− 1) as the vector derived by shifting
the vector for column j − 1 down by one position and
setting all on bits in S to 1. The previous bit in position
n disappears. In other words, shift column j− 1 down by 1
and perform a bitwise OR with S.

A. Algorithm

M is constructed by a very simple algorithm. Initialize
column 0 to all 0. Column j ≥ 1 is obtained by taking the
bitwise AND of Shift-Or(j − 1) with the U vector for
character T (j). If we let M(j) denote the jth column of
M , then M(j) = Shift-Or(j − 1) AND U(T (j)). Table
II shows one iteration of the algorithm from column 5 to
column 6.

Once column j has been obtained, it can be checked for
any found matches with the aid of the F vector. Let Z be
the bitwise AND of M(j) with F . All locations where Z
is 1 indicate found matches, and can be extracted efficiently
using the following bit trick. Given a binary number X > 0,
in order to find the lowest order bit of X which is turned
on, simply perform the bitwise AND of X with ∼ (X −
1), where ∼ is the bitwise complement. This will give the
number 2a, where a is the index of the lowest order bit
turned on. Finally, this value can be subtracted from X and
this process repeated until X = 0, meaning all matching
locations have been found.

Notice that at any given time the algorithm only ever
needs the previous column of M in memory when com-
puting the next, so this algorithm is efficient in terms of
memory. The number of bit operations is Θ(mn). However,

79

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 86 / 98

when n is less than the size of a single computer word,
each operation can be done very efficiently as single-word
operations. Even when n is larger than a single computer
word, each operation can be done as just a few single-word
operations. Hence, for reasonably sized sets of patterns, this
algorithm is efficient in both time and space regardless of
the size of the text.

B. Proof of Correctness of Exact Multiple Pattern Matching
Algorithm

We prove correctness of the algorithm described by in-
duction on the columns of M . Column 0 of M is computed
correctly, since it is set to all 0, and it corresponds to
character ε which does not occur in any pattern in P . Assume
that all columns j−1 < m are computed correctly. We will
prove that column j is computed correctly.

Recall that M(j) = Shift-Or(j− 1) AND U(T (j)). By
assumption, M(j − 1) is computed correctly. Thus Shift-
Or(j−1) is correct from column j−1. Namely, this vector
will contain a 1 only in locations which match up until the
(j−1)− th character of T with some prefix of a pattern Pi

or in locations which are the first character of some pattern.
Note that because we only shift down by one, it is only
possible for the last character of one pattern to interfere
with the first character of another pattern. However, the first
character of each pattern will always be set to 1 by the
definition of Shift-Or, so no actual interference will take
place.

Now this value is bitwise ANDed with U(T (j)), meaning
only those locations which match with the current character
will stay on. Thus, all previous matches that continue to
match will stay 1, and any previous match that no longer
matches will become 0, and any previous mismatch will stay
0. Therefore, M(j) is correctly computed, and the algorithm
correctly computes all columns of M .

III. APPROXIMATE MULTIPLE PATTERN MATCHING

We now address the l-edits problem of finding all approx-
imate matches to a set P of patterns with at most l edit
operations (replacements, insertions, or deletions). Recall
that r is the starting index of the pattern containing character
P (i). Define M l(i, j) as a natural extension of M(i, j),
where M l(i, j) is 1 iff P [r . . . i] can be converted to some
suffix of T [1 . . . j] with no more than l edit operations. The
exact multiple pattern matching problem is a special case of
this problem where l = 0.

The complete M matrices for P = {abc, wxz, qrs} with
k values {2,2,2} and T = εabdwxyzqt are shown in Table
III.

Notice that M1(5, 4) is 1, indicating that wx of the second
pattern (r = 4, i = 5) matches a suffix of T ending at
position 4 with at most 1 edit operation, in this case the suffix
being w and the edit operation being to delete P (5) = x
from P . M1(6, 7) is 1, indicating that an occurrence of wxz

Table III
COMPLETE M MATRICES FOR P = {abc, wxz, qrs} WITH k VALUES

{2,2,2} AND T = εabdwxyzqt

M0

T ε a b d w x y z q t
P 0 1 2 3 4 5 6 7 8 9
a 1 0 1 0 0 0 0 0 0 0 0
b 2 0 0 1 0 0 0 0 0 0 0
c 3 0 0 0 0 0 0 0 0 0 0
w 4 0 0 0 0 1 0 0 0 0 0
x 5 0 0 0 0 0 1 0 0 0 0
z 6 0 0 0 0 0 0 0 0 0 0
q 7 0 0 0 0 0 0 0 0 1 0
r 8 0 0 0 0 0 0 0 0 0 0
s 9 0 0 0 0 0 0 0 0 0 0

M1

T ε a b d w x y z q t
P 0 1 2 3 4 5 6 7 8 9
a 1 1 1 1 1 1 1 1 1 1 1
b 2 0 1 1 1 0 0 0 0 0 0
c 3 0 0 1 1 0 0 0 0 0 0
w 4 1 1 1 1 1 1 1 1 1 1
x 5 0 0 0 0 1 1 1 0 0 0
z 6 0 0 0 0 0 1 1 1 0 0
q 7 1 1 1 1 1 1 1 1 1 1
r 8 0 0 0 0 0 0 0 0 1 1
s 9 0 0 0 0 0 0 0 0 0 0

M2

T ε a b d w x y z q t
P 0 1 2 3 4 5 6 7 8 9
a 1 1 1 1 1 1 1 1 1 1 1
b 2 1 1 1 1 1 1 1 1 1 1
c 3 0 1 1 1 1 0 0 0 0 0
w 4 1 1 1 1 1 1 1 1 1 1
x 5 1 1 1 1 1 1 1 1 1 1
z 6 0 0 0 0 1 1 1 1 1 0
q 7 1 1 1 1 1 1 1 1 1 1
r 8 1 1 1 1 1 1 1 1 1 1
s 9 0 0 0 0 0 0 0 0 1 1

is found in the text ending at position 7. Here, the suffix of
T is wxyz, and the edit operation is to insert T (6) = y into
the pattern between x and z. Anywhere a 1 exists at the end
of a pattern in M l indicates an occurrence of that pattern
being found in the text with at most l edit operations.

Formally, in order to compute M l(j) (for l ≥ 1), the
following six recurrences may be used, an improvement to
the seven recurrences given in [5]. Simply take the bit-wise
OR of the following expressions, where A ⇓ x denotes
shifting column A down by x bits and discarding any bits
which shift past bit n:

1) M l−1(j)
2) Shift-Or(M l(j − 1)) AND U(T (j))
3) M l−1(j − 1) ⇓ 1
4) M l−1(j − 1)
5) M l−1(j) ⇓ 1
6) (S ⇓ l) AND U(T (j))
Essentially this says that P [r . . . i] will match a suffix of

T [1 . . . j], with at most l edit operations, iff at least one of
the following conditions hold:

80

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 87 / 98

1) P [r . . . i] matches a suffix of T [1 . . . j], with at most
l − 1 edit operations

2) P [r . . . i − 1] matches a suffix of T [1 . . . j − 1], with
at most l edit operations, and P [i] = T [j]

3) P [r . . . i − 1] matches a suffix of T [1 . . . j − 1], with
at most l − 1 edit operations, and P [i] is replaced by
T [j]

4) P [r . . . i] matches a suffix of T [1 . . . j − 1], with at
most l− 1 edit operations, and T [j] is inserted into P
after character P [i]

5) P [r . . . i − 1] matches a suffix of T [1 . . . j], with at
most l−1 edit operations, and P [i] is deleted from P

6) P [r . . . l] may be deleted and P [i] = T [j]
There is only one exception to this recurrence, which

occurs when computing M1. For M1, you must also OR this
result with the binary vector S to allow the first character
to be replaced or deleted.

As in the exact case, we must take care to show that this
recurrence does not cause any interference between patterns.
The second, third, and fifth expressions all cause the current
column to be shifted down by 1. But for all l ≥ 1, M l(j) is
1 for all on positions in the S vector. Since shifting down by
1 can only cause the last character of some pattern to shift
into the first character of the next pattern, then any 1 shifted
into the first position of a pattern would have been set to 1
by the S vector. The other possible shift occurs in the sixth
expression, where S is shifted down by l bits. The only way
for this shift to overlap with other patterns is when l ≥ |Pi|
for some i. In this case, the shift by l bits overlaps into bit
b = l−|Pi|+ 1 of Pi+1. But since |Pi| ≥ 1, then b ≤ l, and
so this bit will be on for Pi+1 since these b characters of P
may freely be deleted. In fact, it is possible for the shift by
l to overlap with patterns past Pi+1, but the same argument
holds for why this overlap does not cause interference for
all subsequent patterns. Thus, bit shifting does not cause
interference between the patterns.

A. Algorithm

After establishing the recurrence for approximate pattern
matching, the algorithm for computing all approximate
matches from a set P of patterns to a text T follows
quite naturally. The only substantial change from the exact
matching case is that instead of a single F vector, we now
have a set of F vectors. Let K = max{k1, k2, . . . , ks}.
Then compute F0, F1, . . . , FK , where Fj(i) is 1 iff pattern
p from P ends at i in P and j ≤ kp.

There are several ways to organize computation of the M
matrix, but it makes the most sense to compute each column
j for all M l before computing any column j+1 for any M l.
Of course, each column will be computed in increasing order
of l from 0 to K. Each column of M0 is computed using
the recurrence given in the exact case, and each column of
M l for l ≥ 1 is computed using the recurrence given for the
approximate case.

Once column j is computed for all M l, all matches can
be obtained with the aid of the F vectors. Let Zl be the
bitwise AND of M l(j) with Fl, and Z be the bitwise OR
of Z0, Z1, . . . , ZK . All locations where Z is 1 indicate found
approximate matches, and can be extracted efficiently using
the same bit trick described for the exact matching case. In
this way we allow each pattern to have a unique number of
edit operations allowed, which is a new contribution by our
algorithm.

B. Proof of Correctness of Approximate Multiple Pattern
Matching Algorithm

The proof follows by induction on M l. M0 is the exact
case and so is correct from before. M1 only allows one char-
acter to be edited. The first character can be a replacement by
the special case for M1. Otherwise, the first expression lets
M1 stay a match if M0 was a match. The second expression
allows 1-edits to continue to be 1-edits when P [i] = T [j].
The third expression allows character P [i] to be replaced by
character T [j] after an exact match. The fourth expression
allows a single character to be inserted into the pattern after
an exact match. The fifth and sixth expressions allow a single
character to be deleted from the pattern after an exact match
or a single character to be deleted from the beginning of the
pattern if P [r+ 1] = T [j], respectively. This list handles all
the ways a pattern can be a 1-edit from the text, and so M1

is correctly computed.
Now assume that for some l − 1, M2 through M l−1 are

computed correctly. We prove that M l is computed correctly.
When computing M l, the possible events are that (l − 1)-
edits continue to be l-edits, l-edits match at the next pair of
characters and may be kept as l-edits, or P [i] is replaced,
T [j] is inserted after P [i], or P [i] is deleted. The first two
cases are handled exactly by the first and second expressions
of the recurrence, respectively. The next three cases are
handled by the last four expressions, allowing for (l − 1)-
edits to continue to be l-edits by replacement, insertion of a
character into a pattern, or deletion of a character (or set of
initial characters) from a pattern, respectively. Since M l−1

is assumed to have been computed correctly, this correctly
computes M l.

Similar to the exact case, the number of bit operations
is Θ(mnK), and the memory usage is O(nK). However,
when K is a small constant and n is the size of only a few
computer words, this algorithm is very practical.

IV. EXPERIMENTAL RESULTS

We have developed the algorithms described in this paper
and written C code to implement the ideas presented. In this
section we give some timing results, comparing our method
with the current methods which are used in practice.

Our exact matching algorithm is competitive with fgrep
(invoked using the grep -F command), the standard Unix
utility for doing exact pattern matching on a set of patterns.

81

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 88 / 98

Table IV
TIMES COMPARING PATS TO FGREP

Text File Text Size Pattern File Time
PATS .25s

English Text1 12MB 10 4–6
length words fgrep .321s

PATS 1.92s
English Text2 115MB 30 common

English words fgrep 2.83s
PATS 2.1s

Random Text 100MB 30 common
English words fgrep 2.5s

PATS 3.6s
Genome3 215MB 6 common motifs

(short strings) fgrep 3.8s

fgrep implements the Aho-Corasick algorithm, a linear time
algorithm for searching for a set of patterns in a given text.
Table IV shows our timing results comparing our exact
matching algorithm, PATS, to fgrep. Our results show a
modest improvement over fgrep in certain searching sce-
narios, especially when n is small and many patterns can be
expressed as just a few computer words. Of course, when
the number of patterns gets too large (and hence n starts
to grow to more than just a few computer words), fgrep
becomes faster and would be the preferred method.

Where our algorithm shows its true usefulness is when
doing approximate pattern matching against a set of patterns.
The Unix utility agrep written by Manber and Wu [6] is
known to be one of the fastest for doing approximate pat-
tern matching. Another popular utility for fast approximate
pattern matching is nrgrep, written by Navarro0 [13]. Our
method does not always match the times of these methods
when searching against a single pattern, but when looking
for approximate matches against a set of patterns we can beat
these current methods, sometimes by very large margins in
appropriate search settings. This is largely due to the fact
that existing tools for multiple pattern matching must be
re-run for each approximate match, where our algorithm
is able to do multiple pattern approximate matching in a
single pass. Table V shows our timing results comparing
our approximate matching algorithm, APATS, to agrep and
nrgrep.

We also ran our algorithm against 2 sets of English texts,
one small text1 and one large text2, varying k over all values
from 0 to 8. The results are shown in Fig. 1 and Fig. 2.

As seen, when k = 0, agrep and nrgrep both exceed

0We thank Dr. Navarro deeply for his personal communication and
providing source code for our testing

1War and Peace from Project Gutenberg
2Selected works by Jane Austen, William Blake, Thornton W. Burgess,

Sarah Cone Bryant, Lewis Carroll, G. K. Chesterton, Maria Edgeworth,
King James Bible, Herman Melville, John Milton, William Shakespeare,
and Walt Whitman from Project Gutenberg

3Chromosome 1 of Celera Genome from NCBI
4Chromosomes 1–6 of Human Genome from NCBI

Table V
TIMES COMPARING APATS TO AGREP AND NRGREP

Text File Text Size Pattern File k Time
APATS .29s

English Text1 12MB 30 common
English words 1 agrep 1.4s

nrgrep 1.4s
APATS 2s

English Text2 115MB 100 common
English words 2 agrep 153s

nrgrep 177s
APATS 1.15s

Random Text 100MB 100 common
English words 2 agrep 78s

nrgrep 104s
APATS 82s

Genome4 1.3GB 12 common motifs
(short strings) 1 agrep 144s

nrgrep 297s

Figure 1. 12MB text searching for 30 common English words

the performance of APATS. This is due to these algorithms
being tailored to perform special exact pattern matching
algorithms for the k = 0 case. However, for k ≥ 1, APATS
shows excellent performance, doing far better than both
agrep and nrgrep for all values tested. Testing was limited
to 8 due to limitations of the agrep software.

Our implementation can be downloaded at http://www.cs.
ucf.edu/∼stephen/pats-apats.

V. CONCLUSIONS

We have developed a very fast utility for exact and
approximate pattern matching on a set of patterns. It is our
hope that this algorithm would be added to the grep family
of pattern matching algorithms and used in cases where it is
expected to perform better than the current implementations,
especially in cases where approximate pattern matching is

82

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 89 / 98

Figure 2. 115MB text searching for 20 English words of length 9–12

desired against a reasonably sized set of patterns. Another
advantage of our algorithm is that it is very simple, both
in concept and implementation. The run-times presented in
this paper could no doubt be improved with a focus on op-
timizing implementation details. We have only implemented
the algorithms exactly as they are presented.

REFERENCES

[1] D. E. Knuth, Jr, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM Journal on Computing, vol. 6, no. 2, pp. 323–
350, 1977.

[2] R. S. Boyer and J. S. Moore, “A fast string searching
algorithm,” Commun. ACM, vol. 20, no. 10, pp. 762–772,
1977.

[3] A. V. Aho and M. J. Corasick, “Efficient string matching: an
aid to bibliographic search,” Commun. ACM, vol. 18, no. 6,
pp. 333–340, 1975.

[4] R. A. Baeza-Yates and G. H. Gonnet, “A new approach to
text searching,” SIGIR Forum, vol. 23, no. SI, pp. 168–175,
1989.

[5] S. Wu and U. Manber, “Fast text searching: allowing errors,”
Commun. ACM, vol. 35, no. 10, pp. 83–91, 1992.

[6] ——, “Agrep - a fast approximate pattern-matching tool,” in
In Proc. of USENIX Technical Conference, 1992, pp. 153–
162.

[7] M. Kulekci, “Tara: An algorithm for fast searching of multiple
patterns on text files,” Computer and information sciences,
2007. iscis 2007. 22nd international symposium on computer
and information sciences, pp. 1–6, 2007.

[8] R. Baeza-Yates and G. Navarro, “New and faster filters
for multiple approximate string matching,” Random Struct.
Algorithms, vol. 20, no. 1, pp. 23–49, 2002.

[9] K. Fredriksson and G. Navarro, “Average-optimal single and
multiple approximate string matching,” ACM Journal of Ex-
perimental Algorithmics, vol. 9, 2004.

[10] H. Hyyrö, K. Fredriksson, and G. Navarro, “Increased bit-
parallelism for approximate and multiple string matching,”
ACM Journal of Experimental Algorithmics, vol. 10, 2005.

[11] D. Gusfield, Algorithms on strings, trees, and sequences:
computer science and computational biology. New York,
NY, USA: Cambridge University Press, 1997.

[12] D. Adjeroh, T. Bell, and A. Mukherjee, The Burrows-Wheeler
Transform:: Data Compression, Suffix Arrays, and Pattern
Matching, 1st ed. Springer, July 2008.

[13] G. Navarro, “Nr-grep: A fast and flexible pattern matching
tool,” Software Practice and Experience (SPE, vol. 31, p.
2001, 2000.

83

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 90 / 98

Definition and Reuse of Analysis Patterns for Real-Time Applications

 Hela Marouane, Saoussen Rekhis,

Rafik Bouaziz
 Sfax University, BP 1088, 3018, Sfax, Tunisia

hela_marouane@yahoo.fr
{saoussen.rekhis, Raf.bouaziz}@fsegs.rnu.tn

Claude Duvallet, Bruno Sadeg
LITIS, UFR des Sciences et Techniques, BP 540,

 76 058, Le Havre Cedex, France
{claude.duvallet, bruno.sadeg}@univ-lehavre.fr

Abstract— The analysis patterns improve the quality of
products and the performance of development process. They
have proven to be an effective means for capturing expert’s
knowledge and reducing the costs and the time of
development. In this paper, we are interested in defining
analysis patterns to model both the functional and non-
functional requirements of Real-Time (RT) applications. The
motivation behind the definition of these patterns is to
facilitate the modeling of RT applications that must meet not
only the accuracy of results, but also the time constraints
related to the validity of data and the deadline of transactions.
The proposed RT analysis patterns are illustrated through the
modeling of two RT applications examples: the road traffic
control and the medical control applications. These patterns
are supported by a CASE toolset that both helps in RT
analysis patterns representation and guides the patterns reuse.

Keywords— Real-Time applications; analysis patterns;
functional and non functional requirements.

I. INTRODUCTION

Nowadays, Real-Time (RT) systems cover many sectors
of activity: control of production lines, control of patients at
home and medical assistance operations, control of road
traffic, and so on. Generally, RT applications have common
functionalities. Firstly, they acquire data from the
environment by sensors. Then, they analyze the acquired
data and provide results within the time constraints. Finally,
they send orders to the environment via actuators. The
design of these applications can be facilitated using
reusable components that improve software quality and
capture RT domain knowledge and design expertise.

There are different kinds of reusable components that
can be applied in different levels of abstraction (analysis,
design and implementation) such as software components,
framework and patterns. Among these techniques, patterns
have been the most widely used since they can be applied
in different steps of the software development cycle. In
order to benefit from the reuse at the first phase of
development, several works [2] [3] [8] are interested in
defining analysis patterns that provide facilities to model
functional requirements of RT systems. The specification of
functional requirements helps to understand the
modularization of the structure of RT systems and to
address the system's inputs, outputs, and their behavioral
interrelationships. In addition, it is useful as a basis for RT
systems design, test and documentation since the design of
a developed system is evaluated from the functional point

of view [7]. Nevertheless, requirements analysis must not
exclude the modeling of non -functional aspects that define
the general qualities of the intended product such as
security, reliability, scalability, etc. That is, the concept of
quality is also fundamental to software engineering, and the
modeling of non-functional characteristics must be taken
into consideration for early specification of restrictions and
external constraints that RT systems must meet. Thereby,
we interest in this paper to define RT analysis patterns that
capture both functional and Non-Functional Requirements
(NFRs) knowledge. In fact, to model the NFRs, UML
profiles [15] [16] and the NFR Framework [1] expressed by
Softgoals Interdependency Graph (SIG) can be used. The
representation of NFRs with SIG makes their understanding
easier. Moreover, the SIG is easy to adapt according to the
systems evolution by adding softgoals and solutions
through AND-decomposition and OR-decomposition. It is
also easy to incorporate non-functional properties with
functional requirements. For this reason, we adopt the NFR
Framework [1] to model NFRs and we adopt UML use case
diagram to represent the functional requirements of RT
applications.

The remainder of this paper is organized as follows.
Section 2 provides an overview of proposed analysis
patterns that deal with the modeling of functional
requirements of RT systems. Section 3 describes the
definition of three analysis patterns to model the
functionalities as well as the non-functional characteristics
of RT applications. Section 4 illustrates the reuse of the
proposed analysis patterns through the modeling of two
examples of RT applications using our developed CASE
toolset. Finally, we conclude in Section 5.

II. RELATED WORK

The term analysis pattern has been coined by Martin
Fowler [4] for patterns which capture requirements in an
application domain in order to allow reuse across
applications. In this section, we present works on analysis
patterns intended for the modeling of RT systems
requirements. Among these works, there are the analysis
patterns defined by Konard for the modeling of embedded
systems [2] and “AMR” (Autonomous Mobile Robot)
analysis pattern [3] used to model robot software.

The analysis patterns proposed by Konard [2] tend to
have an inclination to focus primarily on either the
structural or behavioral phase of object analysis. Therefore,

84

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 91 / 98

they can be classified accordingly as structural object
analysis patterns or behavioral object analysis patterns. In
the following, we describe briefly two commonly used
object analysis structural patterns, found in automotive
embedded systems development: “Actuator-Sensor” and
“User-Interface” patterns. (i) The analysis pattern
“Actuator-Sensor” specifies basic types of sensors and
actuators in embedded systems. It differentiates between
four types of sensors and actuators: real, boolean, integer
and complex. (ii) The analysis pattern “User-Interface”
specifies the interaction between the user and the system
through indicators (i.e., a type of actuators) and controls
(i.e., a type of sensors).

The analysis patterns “AMR” (Autonomous Mobile
Robot) [3] aim to develop and to facilitate the reuse of
knowledge of robots software. Each pattern is described
using both structural model and RT behavior model. The
classes presented in structural model are classified
accordingly to their RT behaviors as passive class, active
class, event class, or implementation dependence class.

The examples of analysis patterns presented in this
section focus on modeling the structural and behavioral
aspects of embedded systems [2] and robot software [3],
using UML class and sequence diagrams. The patterns
proposed by Konard [2] represent also the functionalities of
embedded systems using UML use case diagram. In fact,
the representation of functional aspects shows clearly why
RT systems are needed. But, the description of
functionalities is not useful without the necessary non-
functional characteristics such as dependability, reliability
and security [9]. We must take into account the definition
of these characteristics for the improvement of RT system
quality and longevity [9]. Also, the quality of software
system can only be achieved by considering non functional
requirements as early as possible. If the NFRs are not
considered at the early stage of the software development
process (i.e., analysis phase), it may be difficult and
expensive to address them in final product and it can lead
the failure of the development.

III. RT ANALYSIS PATTERNS DEFINITION

In this section, we define three analysis patterns to
model both the functional and non functional requirements
of RT applications. The first pattern aims to model the data
acquisition from the environment using sensors. The
second pattern allows to model the control of data acquired
from environment. While the third pattern deals with the
representation of corrective actions when a violation is
found.

In order to simplify the understanding of proposed
analysis patterns, we describe these patterns using the
following four elements: name, context, intention and
solution. The solution shows how to model the RT
applications requirements using UML and Softgoals
Interdependency Graph [1]. The NFRs represented by
Softgoals are associated with four use case diagram

elements: actor, use case, actor-use case association and the
system boundary. For example, in Figure 1, Dependability
NFR is represented as Dependability [Transmission
System] softgoal (denoted by a light cloud icon) that is
related to the association between ‘Sensor’ actor and
‘Receive data from the environment’ use case. NFR
softgoals are named using Type[Topic] nomenclature
where Type represents a specific NFR concept e.g.
Dependability, Security and Topic represents the context of
the NFR [10]. The leaf-nodes of the graph represent
alternative solutions for the operationalization of the NFR
softgoals. They are denoted by dark clouds in the graph.
Their corresponding degrees of contribution, indicating
how well these solutions achieve NFR softgoals, are
represented by the following signs: (MAKE (++), HELP
(+), HURT (-), or BREAK (--)) [10].

A. The “Data Acquisition” analysis pattern

• Name: “Data Acquisition”.
• Context: this pattern is applicable in all RT applications
which manipulate important volumes of data during the
data acquisition phase.
• Intention: this pattern describes the functions as well as
the quality that RT systems must have when acquiring data
from the environment.
• Solution: Figure 1 shows the “Data Acquisition” analysis
pattern that describes the interaction between the system
and sensors. The sensors i.e., radar, camera, acquire data
from the environment. Then these data are stored in RT
databases. In distributed RT applications, data are
transmitted to the databases of different sites with
minimum time and cost of communication.

This pattern describes also the Softgoals
Interdependency Graph for achieving NFR dependability.
This graph represents a comprehensive set of software
quality attributes related to dependability of data
transmission system. This latter must be operable and able
to perform its required function at any instant during its
specified operating time. The dependability can be further
achieved by ensuring data security and data transmission
reliability.

- Security [Data]: the transmitted data from sensors to
RT system must be secured against unauthorized accesses.
A RT system may be useless if it does not satisfy security
property. The NFR security is composed of availability,
integrity and confidentiality. Availability means guarding
against the interruption of service [11]. It can be achieved
by replicating data. Integrity means guarding against
unauthorized updates or other tampering. Confidentiality
means guarding against unauthorized disclosure, i.e.,
release of relevant data [11]. To ensure integrity property,
the transmitted data must be complete and accurate. The
accuracy is the ability of a measure (e.g. speed, altitude,
temperature, etc.) to match the actual value of the quantity
being measured.

85

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 92 / 98

This constraint is ensured by the use of firewall that can
block unauthorized accesses, by electronic signature based
on encryption technology using public key and private key
to authenticate the sender, or by using Message
Authentication Code (MAC). The electronic signature can
be also used to achieve confidentiality.

- Reliability [Transmission]: the transmission of data
must be accomplished with minimum errors and time. In
fact, the rapidity of data transmission is crucial in the RT
applications since they must fulfill temporal constraints. It
aims to ensure the respect of the validity of acquired data. If
this quality is not satisfied, the data will not be fresh and
therefore, lose their validity. Lasers, optical fiber and
infrared are solutions to accelerate sensor data transmission.
Besides, the degraded transmission mode which still
corresponds to the specification is acceptable in RT system.
This means that the imprecision of transmitted data is
tolerable provided that they are received in time and they
do not exceed the tolerable deviation. Fault-tolerance can
be also applied by means of: (i) the watchdog timer, which
is a device that triggers a system reset if the system does
not respond due to some fault condition, (ii) and integrated
system, which corresponds to a runtime equipment or
software support for both real-time and fault tolerance.

B. The analysis pattern “Control of the environment”

• Name: “Control of the environment”.
• Context: this pattern is applicable in all RT applications
which manipulate important volumes of data during the
control phase.

• Intention: this pattern is used to model how control
system monitors the acquired data and detects failures in
RT applications.
• Solution: Figure 2 describes the shared and the varying
functions of control system as well as their non functional
characteristics. The variability is expressed through the
generalisation and <<extend>> relationships. The
generalisation relationship specifies different problems that
can be detected in RT systems. Whereas the extension
relationship specifies that the control of the environment
functionality can be extended by the detection of errors
related to data or actions. In fact, the control system can
detect the non freshness of data if a measure’s value is used
out of time interval during which it is considered valid. The
control system can also detect an anomaly if boundary
constraints are not fulfilled, i.e., a measure’s value is not
between the minimum value and the maximum value
defined by the user. For example, in freeway traffic
management system, if the road segment density exceeds
the limit, then the control system reports an anomaly. In
addition, the control system can detect that the Quality of
Data is not fulfilled (QoD) [12] if the maximum data error,
defined to allow imprecise RT data, is exceeded. Note that
the maximum data error is the upper bound of the
difference between the value stored in the database and the
new value acquired from sensor. Besides, the control
system can detect an error if the deadline of an action is
missed.

Figure 1. “Data Acquisition” analysis pattern

86

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 93 / 98

When monitoring the environment, the control system
must operate correctly. Thereby, it must fulfill the
dependability property that is defined as the ability of the
system to deliver specified services to the end users [13].
The dependability includes safety and reliability
characteristics.
- Safety [Control system]: the control system must be
protected against unauthorized accesses and must be
available at all times. Availability means that the control
system must be accessible at any time. For example, in case
of failure, it must have a backup system. Confidentiality
means that the control should be made by authorized
members. This authorization is assigned by an
authentication procedure. If the controller is a person, the
authentication is ensured by password, biometrics or digital
signature methods. Biometric can be implemented either by
finger print verification or by voice or by face recognition.
Digital signature is based on the technique of encryption
with public key that is used to verify the signature and
private key that is used to sign. Nevertheless, if the
controller is a system, the authentication is ensured by
electronic signature. Thus, only authorized controllers can
exchange data and messages.
- Reliability [Control system]: The reliability is the
ability of a system to consistently perform its intended
or required function in time. Thereby, the control system
must report the identified errors in a minimum time. In
order to ensure the rapidity of response time, using parallel
architectures is an effective solution.

Besides, the reliability may be achieved with fault
prevention by using different versions for the same
processing.

C. The “Sending orders” analysis pattern

• Name: “Sending orders”.
• Context: this pattern is used in RT applications when the
control system reports an error that is occurred in the
environment.
• Intention: this pattern aims to model the different
recovery actions that are activated by actuators.
• Solution: Figure 3 illustrates the “Sending orders” pattern
that describes the functional and non-functional
requirements of actuator system. It allows to express
variability since it shows different kinds of actions that can
be triggered when the control system reports an error to the
actuators. Indeed, actuators can trigger actions to achieve. It
can also report alert messages such as voice messages,
visual messages or alarms.
The non functional characteristics of actuator system are
the same than those explained in the “control of
environment” pattern.

IV. RT ANALYSIS PATTERNS REUSE

We have developed a toolset, called AP-RT (Analysis
Pattern for RT applications), that deals with patterns
representation and guides analysis patterns reuse. AP-RT
allows the user to apply the proposed patterns in order to

Figure 2. “Control of the environment” analysis pattern

87

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 94 / 98

facilitate the modeling of functional and non-functional
requirements of specific RT applications. As illustrated in
Figure 4, the pattern can be created within AP-RT tool by
means of the menu bar shown in the left of the figure. In
addition to presenting patterns, AP-RT assists the designer
in instantiating an analysis pattern selected and adapted via
the menu bar shown in the top of Figure 4. After creating
an initial application model that instantiates a pattern, the
designer can continue developing the application model by
adding, updating and removing various model elements
using the AP-RT tool. Note that the tool does not allow the
remove of pattern elements that are shared between all RT
applications (i.e., pattern fundamental elements).

In the following, we describe the instantiation of
defined analysis patterns using AP-RT tool. We illustrate
the reuse of “Data Acquisition” pattern through the
modeling of a road traffic control system. Also, we reuse
the “Data Acquisition” and “Control of the environment”
patterns in order to model a medical control application.

A. Example of a road traffic control system modeling

The road traffic management systems have become an
important task intended to improve safety and provide a
better level of service to motorists. We focus on modeling
the acquisition data subsystem of a road traffic control
application [6] and we explain how this design issue can be
facilitated by the reuse of the “data acquisition” pattern.
Current road state is obtained from the essential sources:
radars, inductance loop detectors and supervision cameras.

This system uses radars to measure vehicle velocity and to
acquire vehicle crossing time of red light. It uses also
inductance loops to measure traffic density (i.e., number of
vehicles in a road segment). The supervision cameras are
used to supplement and to confirm the data received
through the vehicle detector stations and to provide
information on local conditions which affect the traffic
flow. The road traffic management system analyses the
acquired data by the Central Computer System and informs
drivers in real time about the state of circulation using
variable message signs.

In order to ensure the security of data transmission, the
road traffic control system maintains the confidentiality and
the data integrity characteristics using electronic signature.
In addition, the system maintains the rapidity through data
compressing and laser technology. The data compressing is
also used to minimize the overloaded transmission.

Figure 4 shows how to adapt the “Data Acquisition”
pattern to model this system. The “Sensor” actor is
instantiated by “Radar”, “Inductance loop” and “Camera”.
Then, the “Receive data from the environment” use case is
instantiated by the corresponding road traffic system
functions which are: (i) “Receive vehicles speeds and
crossing times” use case associated to the “Radar” actor,
(ii) “Receive road segment density” use case associated to
“Inductance loop” actor and (iii) “Receive image of
vehicles” use case associated to the ”Camera” actor.

 Figure 3. “Sending orders” analysis pattern

88

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 95 / 98

The operationalizing softgoals, associated to road traffic
control system, are: “Electronic signature”, “Laser” and
“Compression data”. These desirable leaf-node solutions are
labelled with (√) sign. Whereas, the proprieties that do not
have Operationalizing Softgoals are labelled with () sign.

B. Example of a medical telesurveillance system modeling

Telemedicine for patient in residence, called
“Televigilance”, concerns elderly persons, people with
cardiac pathologies and persons in convalescence after
hospitalisation, all needing a close medical supervision. The
MEDIVILLE system [5] for telesurveillance of patients at
home allows a more reactive medicalisation remotely
released by urgency units (diagnosis, intervention).

This system is composed of three main components: (1)
a terminal placed on the patient, continuously recording his
physiological data, (2) an in-door reception base-station,
processing physiological signals to detect emergency
situation and create an alarm, which is retransmitted to the
(3) third component corresponding to a remote medical
monitoring server hosted in the televigilance centre
exploiting all these data to decide any intervention. The
patient’s terminal is coupled to actimetry and pulse sensors,
indicating respectively the attitude of the patient
(vertical/horizontal positions, activity) and his heart rate
(pulse measurement). The base station continuously
receives the emission signals from the patient’s terminal
through a VHF radio link. On the other side the base station
is connected to the remote server of the Surveillance centre
through an IP channel using a VPN (Virtual Private
Network) protocol.

During normal operation, the local home system is solicited
at regular intervals (every 30 seconds) by the remote server
in order to transmit the totality of recent sensors data. In an
alarm case, the local system communicates with the central
server and transmits, simultaneously to the alarm, the latest
available data.

The MEDIVILLE system ensures a good quality of
service. Firstly, an original noise reduction algorithm
implemented in the microcontrollers aims to reduce the
variations of pulse measurement and then to improve data
accuracy. Secondly, the access to stored information is
allowed only for authorised users: patient agent, practitioner
agent and server manager. Thirdly, the importance and
complexity of the functions taken over by this server
strongly require a reliable system. The system contains a
sufficient capacity and redundancy in order to cater for
these conditions. Finally, the WS-DSAC (Web Servers –
Differentiated Services Admission Control) [14] mechanism
is used to accelerate response time. This mechanism is
based on the balancing of imposed load among a certain
number of computers to improve performance and on the
use of admission control mechanisms to allow differentiated
allocation of resources for specific service classes [14].

Reuse of the “Data acquisition” pattern: Figure 5
shows the reuse of the pattern “Data acquisition” to model
the medical telesurveillance system.

The “Actimetry_Sensor” and “Pulse_Sensor” represent
the instances of “Sensor” actor. These sensors are associated
respectively to the following use cases: “Receive the
attitude of the patient” and “Receive the pulse
measurement”.

Figure 4. Data acquisition analysis model of Road traffic control system.

89

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 96 / 98

 These functional requirements constitute the instances of
the general use case “Receive data from the environment”.
Furthermore, “VPN protocol” and “Noise reducing
processing” constitute the operationalizing softgoals of the
non functional requirements fulfilled by data transmission
of MEDIVILLE system, which are: confidentiality and
accuracy.

Reuse of the “Control of the environment” pattern:
Figure 6 represents the control of patient information
analysis model reusing the pattern “Control of the
environment”. In fact, the “Controller” and “Control the
environment” pattern’s elements are instantiated
respectively by “Medical surveillance team” actor of
MEDIVILLE system and “Control the patients at home” use
case. Moreover, the in-door base station of MEDIVILLE
system can detect patient’s falls and heart problems.
Thereby, “Control the patients at home” use case can be
extended by “detect falls” and “detect heart problems” use
cases. These latter correspond to the instantiation of the
pattern’s use case “detect the non-compliance of boundary
constraints”.

 Figure 6 represents the non-functional requirements
that are fulfilled by the control system of the medical
telesurveillance application. Confidentiality, rapidity of
response time and reliability represent components of the
quality of services offered by the MEDIVILLE system.
These properties are ensured respectively by (i) “password”
Operationalizing Softgoal, that allows to ensure the
authentication of the medical surveillance members,

(ii) “WS-DSAC mechanism”, that allows to perform
admission control and load-balancing on a distributed
platform, (iii) and “replication of processors”, that allows to
prevent fault and then to ensure reliability of the system.

V. CONCLUSION

The main objectives of our work, described in this paper,
are the definition of three analysis patterns and their reuse in
RT applications. The first pattern represents the functional
aspects of data acquisition system as well as the non-
functional aspects of RT data transmission system. The
second pattern shows the different kinds of anomalies that
can be identified when time constraints related to the
validity of data and deadline of transactions are not fulfilled.
These anomalies are represented respectively by the use
case “Detect the non freshness of data” and the use case
“Detect the non-compliance of deadline of actions. The
third pattern describes the different recovery actions that are
activated by actuators. These patterns aim to facilitate the
specification of RT applications analysis models and to
improve their quality since they capture both past
experience and best practices of RT systems designers.

Our future works include: (1) the definition of analysis
patterns composition techniques in order to create a generic
model that describes the common and the difference
functions between RT applications, (2) the integration of the
analysis patterns in the context of model driven architecture
in order to add more assistance when defining the
relationship between the proposed RT analysis and design
patterns.

Figure 5. Data acquisition analysis model of medical telesurveillance system

90

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

 97 / 98

This could bring new benefits and impulse for both the
knowledge capturing techniques and the software
development process quality.

REFERENCES
[1] Chung L. and Supakkul S., Representing NFRs and FRs: A goal-

oriented and use case driven approach. Software Engineering Research
and Applications (SERA2004), LNCS, 3647(29-41), 2005.

[2] Konard S.J., Cheng B H.C. and Campbell L. A., "Object Analysis
Patterns for Embedded Systems", IEEE Transactions on Software
Engineering, Vol. 30, No. 12, December 2004.

[3] Jawawi D., Deris S. and Mamat R., Software Reuse for Mobile Robot
Applications Through Analysis Patterns, The International Arab
Journal of Information Technology, Vol. 4, No. 3, 2007.

[4] Fowler M., Analysis Patterns – Reusable Object Models, Addison-
Wesley, 1997.

[5] Baldinger J.L., Boudy J., Dorizzi B., Levrey J.P., Andreao R., Perpère
C., Delavault F., Rocaries F., Dietrich C. and Lacombe A., Tele-
surveillance System for Patient at Home: The MEDIVILLE System,
Book chapter in Computers Helping People with Special Needs,
Springer Berlin, LNCS 3118, 2004.

[6] Fasel W., On-line traffic surveillance. Strasse and Verkehr revue, ISSN
0039-2189, vol 89, N°4, pp. 31-35, 2003.

[7] Stone R. and Wood K., Development of a Functional Basis for Design.
Journal of Mechanical Design, 122(4): 359-370, 2000.

[8] Esfahani N., Mirian-Hosseinabadi S.H. and Rafati K., A Real-Time
Analysis Process Patterns, Book chapter in Advances in Computer
Science and Engineering, Springer-Verlag, CCIS 6, pp: 177-181, 2008.

[9] Chung L. and Sampaio J.C., On Non-Functional Requirements in
Software Engineering, Book chapter in Conceptual Modeling:
Foundations and Applications, Springer-Verlag, LNCS 5600, pp. 363–
379, 2009.

[10] Chung L. and Supakkul S., Capturing and Reusing Functional and

Non-functional Requirements Knowledge: A Goal-Object Pattern
Approach, Proceedings of IEEE International Conference on
Information Reuse and Integration, 10.1109/IRI.2006.252471, pp.
539 – 544, 2006.

[11] Tonu S.A., Incorporating Non-Functional Requirements with UML
Models, Phd thesis presented to the University of Waterloo, Ontario-
Canada, 2006.

[12] Amirijoo M., Hansson J., and Son S. H., Specification and
management of QoS in real-time databases supporting imprecise
computations. IEEE Transactions on Computers, 55(3), 2006.

[13] J. Laprie, “Dependable Computing and Fault-Tolerant Systems”,
Depndability: Basic Concepts and Terminology in Eng-lish, French,
German, Italian and Japanese. Vol 5. Springer-Verlag, 1992.

[14] Serra A., Gaïti D., Barroso G. and Boudy J., Assuring QoS
Differentiation and Load Balancing on Web Servers Clusters,
Proceedings of the IEEE Conference on Control Applications, pp.
885 – 890, Toronto, Canada, August 28-31, 2005.

[15] OMG, UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms V 1.1, April 2008.

[16] Zhu L. and Gorton I., UML Profiles for Design Decisions and Non-
Functional Requirements, International Conference on Software
Engineering, Proceedings of the Second Workshop on SHAring and
Reusing architectural Knowledge Architecture, Rationale, and
Design Intent, page 8, ISBN 0-7695-2951-8, 2007.

Figure 6. Data control analysis model of medical telesurveillance system

91

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

Powered by TCPDF (www.tcpdf.org)

 98 / 98

http://www.tcpdf.org

