
SERVICE COMPUTATION 2019

The Eleventh International Conferences on Advanced Service Computing

ISBN: 978-1-61208-702-3

May 5 - 9, 2019

Venice, Italy

SERVICE COMPUTATION 2019 Editors

Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and
Arts, Germany

 1 / 22

SERVICE COMPUTATION 2019

Forward

The Eleventh International Conferences on Advanced Service Computing (SERVICE
COMPUTATION 2019), held May 5 - 9, 2019 - Venice, Italy, continued a series of events
targeting computation on different facets.

The ubiquity and pervasiveness of services, as well as their capability to be context-aware with
(self-) adaptive capacities posse challenging tasks for services orchestration, integration, and
integration. Some services might require energy optimization, some might require special QoS
guarantee in a Web-environment, while others a certain level of trust. The advent of Web
Services raised the issues of self-announcement, dynamic service composition, and third party
recommenders. Society and business services rely more and more on a combination of
ubiquitous and pervasive services under certain constraints and with particular environmental
limitations that require dynamic computation of feasibility, deployment and exploitation.

The conference had the following tracks:

 Service innovation, evaluation and delivery

 Service quality

 Challenges

 Advanced Analysis of Service Compositions

Similar to the previous edition, this event attracted excellent contributions and active
participation from all over the world. We were very pleased to receive top quality
contributions.

We take here the opportunity to warmly thank all the members of the SERVICE COMPUTATION
2019 technical program committee, as well as the numerous reviewers. The creation of such a
high quality conference program would not have been possible without their involvement. We
also kindly thank all the authors that dedicated much of their time and effort to contribute to
SERVICE COMPUTATION 2019. We truly believe that, thanks to all these efforts, the final
conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the SERVICE
COMPUTATION 2019 organizing committee for their help in handling the logistics and for their
work that made this professional meeting a success.

We hope SERVICE COMPUTATION 2019 was a successful international forum for the exchange
of ideas and results between academia and industry and to promote further progress in the

 2 / 22

area of computation. We also hope that Venice provided a pleasant environment during the
conference and everyone saved some time for exploring this beautiful city.

SERVICE COMPUTATION 2019 Chairs

SERVICE COMPUTATION 2019 Steering Committee

Mihhail Matskin, KTH, Sweden
Bernhard Hollunder, Hochschule Furtwangen University – Furtwangen, Germany
Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Michele Ruta, Technical University of Bari, Italy
Alfred Zimmermann, Reutlingen University, Germany
Aida Omerovic, SINTEF, Norway
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland

SERVICE COMPUTATION 2019 Industry/Research Advisory Committee

Marcelo De Barros, Microsoft, USA
Steffen Fries, Siemens Corporate Technology - Munich, Germany
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Rong N. Chang, IBM T.J. Watson Research Center, USA
Jan Porekar, SETCCE, Slovenia

 3 / 22

SERVICE COMPUTATION 2019

Committee

SERVICE COMPUTATION Steering Committee
Mihhail Matskin, KTH, Sweden
Bernhard Hollunder, Hochschule Furtwangen University – Furtwangen, Germany
Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Michele Ruta, Technical University of Bari, Italy
Alfred Zimmermann, Reutlingen University, Germany
Aida Omerovic, SINTEF, Norway
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland

SERVICE COMPUTATION 2019 Industry/Research Advisory Committee
Marcelo De Barros, Microsoft, USA
Steffen Fries, Siemens Corporate Technology - Munich, Germany
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Rong N. Chang, IBM T.J. Watson Research Center, USA
Jan Porekar, SETCCE, Slovenia

SERVICE COMPUTATION 2019 Technical Program Committee

Antonia Albani, Institute of Information Management | University of St. Gallen, Switzerland
Pelin Angin, Middle East Technical University, Turkey
Irina Astrova, Tallinn University of Technology, Estonia
Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Souvik Barat, Tata Research Development and Design Center, India
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Ali Beklen, HotelRunner, Turkey
Kadda Beghdad Bey, EMP, Algiers, Algeria
Sulabh Bhattarai, Dakota State University, USA
Devis Bianchini, University of Brescia, Italy
Eugen Borcoci, University "Politehnica" of Bucharest, Romania
Juan Boubeta-Puig, University of Cádiz, Spain
Uwe Breitenbücher, University of Stuttgart, Germany
Antonio Brogi, University of Pisa, Italy
Oscar Mauricio Caicedo Rendon, University of Cauca, Brazil
Isaac Caicedo-Castro, University of Córdoba, Colombia
Juan-Carlos Cano, Universidad Politecnica de Valencia, Spain
Wojciech Cellary, Poznan University of Economics, Poland
Stephanie Challita, Inria Lille - Nord Europe, France
Chin-Chen Chang, Feng Chia University, Taiwan
Rong N. Chang, IBM T.J. Watson Research Center, USA
Huaming Chen, University of Wollongong, Australia

 4 / 22

Dickson Chiu, The University of Hong Kong, Hong Kong
Marcelo De Barros, Microsoft, USA
Chiara Di Francescomarino, Fondazione Bruno Kessler (FBK), Italy
Leandro Dias da Silva, Instituto de Computação | Universidade Federal de Alagoas, Brazil
Chen (Cherie) Ding, Ryerson University, Canada
Erdogan Dogdu, TOBB University of Economics and Technology, Turkey
Cédric Eichler, LIFO-INSA Centre Val de Loire, France
José Enrique Armendáriz-Íñigo, Public University of Navarre, Spain
Sören Frey, Daimler TSS GmbH, Germany
Steffen Fries, Siemens Corporate Technology - Munich, Germany
Somchart Fugkeaw, Thai Digital ID Co. Ltd., Thailand
Filippo Gaudenzi, Università Degli Studi di Milano, Italy
Verena Geist, Software Competence Center Hagenberg GmbH, Austria
Katja Gilly, Universidad Miguel Hernández, Spain
Victor Govindaswamy, Concordia University - Chicago, USA
Steven Guan (Sheng-Uei Guan), Jiaotong-Liverpool University, China
Tom Guérout, LAAS-CNRS | Université de Toulouse, France
Maki K. Habib, The American University in Cairo, Egypt
Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Germany
Martin Henkel, Stockholm University, Sweden
Bernhard Hollunder, Hochschule Furtwangen University – Furtwangen, Germany
Wladyslaw Homenda, Warsaw University of Technology, Poland
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Wei-Chiang Hong, School of Education Intelligent Technology - Jiangsu Normal University, China
Sun-Yuan Hsieh, National Cheng Kung University, Taiwan
Marc Hüffmeyer, Furtwangen University, Germany
Marc-Philippe Huget, Polytech Annecy-Chambery-LISTIC | University of Savoie, France
Paul Humphreys, Ulster University, UK
Emilio Insfran, Universitat Politecnica de Valencia, Spain
Hemant Jain, University of Tennessee at Chattanooga, USA
E. E. Jan, IBM Global Technology Services, USA
Maria João Ferreira, Universidade Portucalense, Portugal
Eleanna Kafeza, Athens University of Economics and Business, Greece
Yu Kaneko, Research and Development Center - Toshiba, Japan
Fu-Chien Kao, Da-Yeh University, Taiwan
Marouane Kessentini, University of Michigan - Dearborn, USA
Moahmmad Maifi Hasan Khan, University of Connecticut, USA
Peter Kilpatrick, Queen's University Belfast, UK
Hyunsung Kim, Kyungil University, Korea
Alexander Kipp, Robert Bosch GmbH, Germany
Janusz Klink, Wroclaw University of Science and Technology, Poland
Christos Kloukinas, City University London, UK
Michal Kökörcený, Unicorn College / University of Hradec Králové, Czech Republic
Arne Koschel, Hochschule Hannover - University of Applied Sciences and Arts, Germany
Maria Krotsiani, City University London, UK
Andrew Kusiak, The University of Iowa, USA
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Tian Lan, George Washington University, USA

 5 / 22

Cho-Chin Lin, National Ilan University, Taiwan
Mark Little, Red Hat, UK
Qing Liu, Data61 - CSIRO, Australia
Xiaodong Liu, Edinburgh Napier University, UK
Luigi Lo Iacono, TH Köln, Germany
Francesco Longo, University of Messina, Italy
Shikharesh Majumdar, Carleton University, Canada
Kurt Maly, Old Dominion University, USA
Zoltan Mann, University of Duisburg-Essen, Germany
Mihhail Matskin, KTH, Sweden
Massimo Mecella, Sapienza Università di Roma, Italy
Viktor Medvedev, Vilnius University - Institute of Mathematics and Informatics, Lithuania
Michele Melchiori, DII - Università degli Studi di Brescia, Italy
Fanchao Meng, University of Delaware, USA
Philippe Merle, Inria Lille - Nord Europe, France
Giovanni Meroni, Politecnico di Milano, Italy
António Miguel Rosado da Cruz, Politechnic Institute of Viana do Castelo, Portugal
Naouel Moha, Université du Québec à Montréal, Canada
Mohamed Mohamed, IBM - Almaden Research Center, USA
Sotiris Moschoyiannis, University of Surrey, UK
Fernando Moreira, Universidade Portucalense, Portugal
Gero Muehl, Universitaet Rostock, Germany
Taiga Nakamura, IBM Research - Almaden Research Center, USA
Joan Navarro, La Salle - Universitat Ramon Llull, Spain
Artur Niewiadomski, Institute of Computer Science - Siedlce University of Natural Sciences and
Humanities, Poland
Matthias Olzmann, noventum consulting, Germany
Aida Omerovic, SINTEF, Norway
Ali Ouni, Ecole de Technologie Superieure, Montreal, Canada
Paulo F. Pires, Federal University of Rio de Janeiro, Brazil
Agostino Poggi, DII - University of Parma, Italy
Jan Porekar, SETCCE, Slovenia
Pasqualina Potena, RISE SICS Västerås, Sweden
Thomas E. Potok, Oak Ridge National Laboratory, USA
Thomas M. Prinz, Friedrich Schiller University Jena, Germany
Lianyong Qi, Nanjing University, China
Neilson Ramalho, Wirecard Technologies GmbH, Munich, Germany
José Raúl Romero, University of Córdoba, Spain
Christoph Reich, Furtwangen University, Germany
Wolfgang Reisig, Humboldt University, Berlin, Germany
Feliz Ribeiro Gouveia, Fernando Pessoa University, Portugal
Sashko Ristov, University of Innsbruck, Austria
Juha Röning, University of Oulu, Finland
Michele Ruta, Technical University of Bari, Italy
Marek Rychly, Brno University of Technology, Czech Republic
Ulf Schreier, Furtwangen University, Germany
Frank Schulz, SAP Research Karlsruhe, Germany
Mohamed Sellami, Telecom SudParis, Evry, France

 6 / 22

Wael Sellami, Higher Institute of Computer Sciences of Mahdia, Tunisia
Martin Serrano, National University of Ireland Galway, Ireland
Kuei-Ping Shih, Tamkang University, Taiwan
Akila Siriweera, University of Aizu, Japan
Andrzej Skulimowski, AGH University of Science and Technology, Poland
Jacopo Soldani, University of Pisa, Italy
Masakazu Soshi, Hiroshima City University, Japan
Abhishek Srivastava, Indian Institute of Technology Indore, India
Young-Joo Suh, POSTECH, Korea
Slawomir Sujecki, Wrocław University of Science and Technology, Poland
Geraldine Texier, IMT Atlantique, France
Orazio Tomarchio, Universita' di Catania, Italy
Alberto Trombetta, University of Insubria, Italy
David Wallom, Oxford e-Research Centre | University of Oxford, UK
Yong Wang, Dakota State University, USA
Hironori Washizaki, Waseda University, Japan
Mandy Weißbach, Martin-Luther-University Halle-Wittenberg, Germany
Jian Yu, Auckland University of Technology, New Zealand
Michael Zapf, Georg Simon Ohm University of Applied Sciences, Germany
Sherali Zeadally, University of Kentucky, USA
Wenbing Zhao, Cleveland State University, USA
Alfred Zimmermann, Reutlingen University, Germany
Wolf Zimmermann, Martin Luther University Halle-Wittenberg, Germany
Christian Zirpins, Karlsruhe University of Applied Sciences, Germany
Albert Zomaya, University of Sydney, Australia

 7 / 22

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 8 / 22

Table of Contents

Consistency for Microservices - A Legacy Insurance Core Application Migration Example
Arne Koschel, Andreas Hausotter, Moritz Lange, and Phillip Howeihe

1

Applying Microservice Principles to Simulation Tools
Richard Pump, Arne Koschel, and Volker Ahlers

6

Towards a Microservices-based Distribution for Situation-aware Adaptive Event Stream Processing
Marc Schaaf

10

Powered by TCPDF (www.tcpdf.org)

 1 / 1 9 / 22

Consistency for Microservices
A Legacy Insurance Core Application Migration Example

Arne Koschel
Andreas Hausotter

Hochschule Hannover
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science
Hannover, Germany

Email: arne.koschel@hs-hannover.de
Email: andreas.hausotter@hs-hannover.de

Moritz Lange
Phillip Howeihe

Hochschule Hannover
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science
Hannover, Germany

Email: moritz.lange@stud.hs-hannover.de
Email: phillip.howeihe@stud.hs-hannover.de

Abstract—In microservice architectures, data is often hold re-
dundantly to create an overall resilient system. Although the
synchronization of this data proposes a significant challenge,
not much research has been done on this topic yet. This paper
shows four general approaches for assuring consistency among
services and demonstrates how to identify the best solution for
a given architecture. For this, a microservice architecture, which
implements the functionality of a mainframe-based legacy system
from the insurance industry, serves as an example.

Keywords–Microservices; Consistency; Insurance Industry.

I. INTRODUCTION

A current trend in software engineering is to divide soft-
ware into lightweight, independently deployable components.
Each component of the system can be implemented using
different technologies because they communicate over stan-
dardized network protocols. This approach to structure the
system is known as the microservice architectural style [1].

Typical goals of a microservice architecture are an overall
resilient system and independent scalable components. To
reach these goals, it is beneficial to decouple the services
as much as possible. Therefore, according to Martin Fowler,
each microservice should have its own data management [1].
Furthermore, services often hold redundant versions of data
records to be able to operate independently. The synchroniza-
tion of these data records however is a significant challenge. In
context of our research we identified four general approaches
for assuring consistency among services. This paper presents
these and demonstrates how to identify the best solution for a
given architecture. A migrated application from the insurance
industry serves as an example.

The Competence Center Information Technology and Man-
agement (CC ITM) is an institute at the University of Applied
Sciences and Arts Hanover. Main objective of the CC ITM is
the transfer of knowledge between university and industry. As
part of ongoing cooperation between the CC ITM and two
regional insurance companies, the research project Potential
and Challenges of Microservices in the Insurance Industry
was carried out. The goal was to examine the suitability of
microservice architectures for the insurance industry. One part
of this project was the migration of a monolithic mainframe-
based core application, namely the Partner Management

System. The resulting microservice architecture holds some
data records redundantly and is hereby a good object for
scientific research in context of consistency assurance.

The remainder of this article is organized as follows: After
discussing related work in Section II, we show the core appli-
cation system and address issues with the monolithic approach
in Section III. Section IV introduces the architecture of the
migrated system. In Section V we evaluate the outcomes with
a focus on consistency aspects. Section VI discusses general
approaches to ensure consistency in microservice architectures
and how these approaches can be applied to get a suitable con-
sistency solution for the Partner Management System.
Section VII summarizes the results and draws a conclusion.

II. RELATED WORK

The basis of our research is the literature of well-known
authors in the field of microservices. Worth mentioning are
the basic works of Martin Fowler and James Lewis [1] as
well as those of Eberhard Wolff [2]. For practical parts of
our research, mainly the elaborations of Sam Newman (see
[3]) were used. Especially for the migration of the legacy
application, the works of Knoche and Hasselbring (see [4])
were consulted. As a study from the year 2019 shows (see [5]),
microservice architectures are barely used in the insurance and
financial services industry in Germany. Therefore, results from
other industries had to be used for our research (for example
[6]).

Although the basic literature is extensive, not much scien-
tific research has been done about synchronizing services. Be-
cause microservices should use independent database schemes
and can even differ in persistence technology, the traditional
mechanisms of replicating databases (see, e.g., Tanenbaum and
Van Steen [7, chap. 7]) cannot be applied as well. Instead, ideas
and patterns from other areas of software engineering had to
be transferred to the context of microservices.

So, in addition to general microservices research, more
fundamental concepts of operating systems (e.g. [8]) and
object-oriented programming (e.g. [9]) were considered by our
research. Furthermore, concepts of general database research
like the SAGA-Pattern [10], which was already applied to
microservices by Chris Richardson [11], were considered as

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 10 / 22

well. Event-based approaches like Event Sourcing, described
by Fowler [12], were also applied to microservices within our
research.

Previous work has already evaluated the outcomes of the
research project mentioned in the introduction (see [13]).
However, the project and the evaluation based on it did not
discuss the issue of consistency in detail. For this reason,
our research focused on this topic after the completion of the
project. In addition, a bachelor thesis written by one of the
project members further dealt with the issue of consistency
assurance in context of the project results (see [14]).

This paper gives an overview of existing research and
summarizes it in a single document. To the best knowledge
of the authors, this is the first summarizing scientific work on
this topic.

III. CORE APPLICATION: PARTNER MANAGEMENT
SYSTEM

As mentioned in the introduction, one part of the research
project was to design a system for managing partners of an
insurance company - the Partner Management System.
In this context, partners are defined as natural or legal persons
who are in a relation with the insurance company (e.g.,
clients, appraisers, lawyers or other insurance companies).
Additionally, to general information about the person, a partner
may also have information on communication, bank details,
business relations and relations with other partners. Figure
1 shows the domain model and additional information about
the service design, which is covered in the next section. This
section focuses on the domain model, which was developed
in cooperation with the insurance companies and is strongly
based on the reference architecture for German insurance
companies (VAA) [15].

Figure 1. Domain model of the system.

At its core, the system is a simple CRUD application
that manages the entity Partner and its properties. Usually,
this functionality is implemented in a single SOA service.

Modularization through SOA services provides significant ben-
efits to the overall system (e.g., scalability and resilience),
but the Partner Management System is still an atomic
deployment unit that scales as a whole and fails as a whole.
Since this system is a fundamental service of an insurance
company, different parts of it are subject to varying levels of
stress. Especially at night, the load profile differs. While only
minor changes are made to existing datasets during the day,
low occupancy during the night is used to slowly persist all
new datasets collected on the day so as not to overburden
the mainframe-based application. However, in practice this
approach makes crashes at night extremely critical as the
entire system does not work all night and only few people are
available to fix the problem. The major issue of the existing
implementation of the Partner Management System is
obviously the poor flexibility, scalability and fault tolerance.
This makes a microservices approach attractive for this use
case.

IV. MICROSERVICE ARCHITECTURE: PARTNER
MANAGEMENT SYSTEM

Figure 2 shows the architecture developed in close coop-
eration with the insurance companies, which subdivides the
application into four independent services. Such a separa-
tion allows parts of the system to be scaled independently.
Such a separation allows parts of the system to be scaled
independently. For example, when the insurance company
collects monthly premiums from its customers, this results in
an increased load on the system that can be responded to by
the scaling of the account-service.

To determine the separation into services, the original
domain was divided into subdomains (as shown in Figure
1) and then the specific requirements (e.g., resilience) of
each subdomain were analyzed. In order to make good use
of the microservice architecture, the subdomains must be as
independent as possible. That means there must be use cases
where a subdomain can be used without any other. To achieve
this independence, the architecture keeps certain parts of the
partner (PartnerCoreData) redundant in all domains. This
corresponds to the creation of bounded contexts, as described
by Evans [16].

Figure 2. Infrastructure of the system.

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 11 / 22

Based on the technical specifications of the companies
involved, the resulting subdomains were implemented as REST
web services (see Figure 2) in Java using the Spring frame-
work. As mentioned, each service should have its own data
management, here realized as dedicated PostgreSQL databases.
The PartnerCoreData is kept in sync across all services
using REST calls of the partner-service. Parts of the
Netflix OSS stack were used for the system infrastructure:
Netflix Eureka (eureka-service) as a service discovery
and Netflix Zuul (zuul-service) as an API gateway. Zuul
also provides the web frontend of the application, which was
realized as a single-page application using AngularJS. The
ELK stack (Elasticsearch, Logstash and Kibana) was set up
for monitoring and logging. All shown components of the
architecture are deployed in separate Docker containers and
connected by a virtual network using Docker Compose. In
combination with the stateless architecture of the services, it
is possible to run any number of instances of each service in
a separate Docker container.

V. CHALLENGES OF THE MICROSERVICE ARCHITECTURE

Looking at the architecture described in sections III and
IV, it looks like the microservice architecture can solve the
problems of the current implementation. In particular, the
scalability and fault tolerance of individual parts of the system
are a crucial advantage over the current solution. The system
can adapt to the changing load during the day, eliminating the
need for risky nightly batch jobs. With the benefits of finer
granularity however, there are also many new challenges that
need to be mastered. One major challenge, for example, is
the distributed monitoring and logging, which is handled by
the ELK stack. As already mentioned, another key challenge
of the developed microservice architecture is the consistency
assurance across the services. More specifically, the synchro-
nization of the PartnerCoreData, which serves as an example
for the application of our research results.

As mentioned briefly in Section IV, the synchroniza-
tion is realized by REST calls of the partner-service.
Whenever a PartnerCoreData record is created, deleted or
changed, the partner-service distributes this information
to the other services in a synchronous way. This means
that the partner-service is responsible for ensuring
the consistency of the overall system. Furthermore, the de-
velopment team of the partner-service is responsible
for the data model of the PartnerCoreData, because it is
part of their bounded context. This approach is known as
Customer/Supplier Development (described by Evans [16]) in
the context of domain-driven design.

This ensures that services are as independent of each other
as possible. Even if, e.g., the partner-service is unavail-
able, the other services can still resolve foreign key relation-
ships to partner data, because they keep a redundant copy of it.
Moreover, the system reduces service-to-service calls, because
other services don’t need to call the partner-service on
every operation. This ensures loose coupling of services, which
is a key aspect of microservice architectures [1].

Since the synchronization of the PartnerCoreData is a
critical part of the application, its implementation must be
closer discussed. Since the goal of the first phase of the
project was building the architecture in general, a synchronous
solution was chosen for simplicity. This has several drawbacks:

• Fault tolerance. If the partner-service crashes
during synchronization, some services might not
be notified about the changes. Conversely, if
another service can not be contacted by the
partner-service, it will also not be notified. This
is due to the transient communication.

• Synchronicity. After a change of PartnerCoreData, a
thread of the partner-service is in a blocked
state until all other services have been notified.
Because multiple network calls are necessary for
the synchronization, the general performance of the
partner-service is affected. Since microservices
should be lightweight, a large number of network calls
and busy threads are a serious problem.

• Extensibility. Since the extension of a microser-
vice architecture is a common occurrence, exten-
sibility is a major aspect. In the current imple-
mentation, the partner-service holds a static
list of services that need to be notified upon a
change of PartnerCoreData. If a new service is
added to the system, which is interested in Partner-
CoreData, the partner-service must be rede-
ployed. Additionally, the bigger the number of ser-
vices to notify gets, the more the performance of the
partner-service is impaired.

As part of our research, further alternative solutions were
explored, which will be discussed in the next sections.

VI. CONSISTENCY ASSURANCE IN THE PARTNER
MANAGEMENT SYSTEM

In order to find a suitable solution for the specific problem
of synchronizing PartnerCoreData, the general approaches
have to be examined.

A. General approaches
The central research question to identify general ap-

proaches for consistency assurance is how a change in master
data can be distributed to other interested services without
breaking general microservices patterns like loose coupling
and decentral data management. Especially the latter makes
this a major challenge: Because the data stores and schemes
should be separated, the standard mechanisms of synchronizing
databases cannot be used here.

Based on our research, there are four possible solutions for
synchronizing redundant data in microservices:

• Synchronous distribution. One approach is that the
owner of the data distributes every change to all
interested services. As discussed in Section V, the
developed microservices architecture already follows
this approach. To provide loose coupling however, the
addresses of services to notify should not be contained
in the master service’s code. A better solution is to
hold those addresses in configuration files, or even
better, establish a standard interface where services
can register themselves at runtime. For example, an
existing service registry (e.g. Netflix Eureka) can be
used to store this information. This approach roughly
corresponds to the Observer-Pattern of object orien-
tated software development.

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 12 / 22

As already discussed, notifying a large number of
interested services might cause significant load of the
service containing the master data. This can become
a disadvantage. The distribution takes place in a syn-
chronous fashion however, directly after the change
of data itself. This means that this solution provides a
high degree of consistency among services.

• Polling. One other solution might be to relocate the
responsibility of aligning the redundant data to the
interested services themselves. A straight forward ap-
proach here is to periodically ask for new data using an
interface provided by the service containing the master
data. Based on timestamps, multiple data updates can
be transferred in one go. The size of the inconsistency
window can be controlled by each interested service
independently via the length of the polling interval.
However, despite being consistent in the end, the time
frame in which the data sets might differ is a lot larger
than the one when using a synchronous solution. This
model of consistency is known as eventual consistency
(see [17]).

• Publish-Subscribe. To completely decouple the ser-
vice containing the master data from the other ser-
vices, message-oriented middleware can be used. On
every data change, an event is broadcasted on a mes-
saging topic following the publish-subscribe-pattern.
Interested services subscribe to this topic, receive
events and update their own data accordingly. Multiple
topics might be established for different entities. If
the messaging system is persistent, it even makes
the architecture robust against services failures. This
approach suits the resilient and lightweight nature of
microservices. It must be noted however that it also
falls in the category of eventual consistent solutions
- until the message is delivered and processed, the
system is in an inconsistent state.

• Event Sourcing. Instead of storing the current appli-
cation state, for some use cases it might be beneficial
to store all state transitions and accumulate those to
the current state when needed. This approach can
also be used to solve the problem of distributing
data changes. Upon changes in master data, events
are published. Unlike the publish-subscribe solution
however, the history of all events is persistent in a
central, append-only event storage. All services can
access it and even generate their own local databases
from it, each fitting their respective bounded context.
This solution provides a high degree of consistency:
Each data change can be seen immediately by all other
components of the system. It must be noted that a
central data store, which microservices try to avoid,
is introduced. This weakens the loose coupling and
might be a scalability issue - the append-only nature
of the data storage enables high performance though.

If none of the consistency trade-offs above is bearable, this
can be an indicator that the determined subdomains are not
optimal. In some cases, subdomains are coupled so tightly that
keeping data redundantly is not feasible. In this case, it should
be discussed if the services can be merged. Furthermore, if
this issue occurs in several parts of the architecture, it should

be evaluated if a microservices approach is the right choice
for this domain.

B. Approaches for synchronizing PartnerCoreData
The discussion in the previous section has shown that some

approaches tend to guarantee a stronger level of consistency
then others. This means that before all non-functional require-
ments can be considered as decision criteria, the required
consistency degree of the underlying business processes must
be examined. This can be done by first specifying the possible
inconsistent states and then combining them with typical use
cases of the system.

In case of the Partner Management System, only
the PartnerCoreData, containing the name and id of every
Partner, is saved in a redundant fashion. Combining these
with the CRUD-operations, the following inconsistent states
are possible:

• A new Partner might not yet be present in the whole
system.

• Name or Id might not be up-to-date.
• A deleted Partner might not yet be deleted every-

where.

As part of our research, we combined these inconsis-
tent states with typical use cases and business processes in
which the Partner Management System is involved,
like sending a letter via mail or a conclusion of an insurance
contract.

The result of this examination is that the partner man-
agement of insurance companies is surprisingly robust against
inconsistent states. This is mainly due to the reason that the
business processes itself are already subject to inconsistency:
If a customer changes its name for example, the inconsistency
window of the real world is much larger than the technical one
(the customer e. g. might not notify the insurance company
until several days have passed). The postal service or bank
already needs to cope with the fact that the name might
be inconsistent. The discussion of other potential situations
brought similar results. This makes sense because the business
processes of insurance companies originated in a time without
IT, which means that they are already designed resilient against
delays and errors caused by humans. Cases where the customer
notices the delay (e.g., a wrong name on a letter) are rare and
justifiable.

In summary, the combination of the inconsistent states
and the use cases of the Partner Management System
revealed, that a solution which promotes a weaker consis-
tency model can be used - no approach has to be excluded
beforehand. So, the choice of a synchronization model is only
influenced by the non-functional requirements. The analysis
of the partner domain showed that the main non-functional
requirements are lose coupling, high scalability and easy
monitoring. Especially because of loose coupling, the publish-
subscribe pattern is the most viable solution.

VII. CONCLUSION AND FUTURE WORK

Synchronizing redundant data across services is a key
challenge of microservice architectures. However, our research
showed that the solutions can be reduced to four general
approaches. For choosing a suitable solution for a given

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 13 / 22

architecture, the underlying domain needs to be analyzed:
Possible inconsistent states need to be combined with typical
use cases. As the example of the Partner Management
System shows, this combination can reveal that domains
might be much more resilient against inconsistencies as one
would first assume.

The next steps will be to work out a specific design of the
publish-subscribe approach for the Partner Management
System. Furthermore, the complete implementation must
be done, and the system must be tested under real-world
conditions.

To demonstrate the procedure we have developed for
finding a suitable consistency assurance solution, the example
of the Partner Management System is sufficient. To
further underpin our findings however, they need to be applied
to more complex examples.

REFERENCES
[1] M. Fowler and J. Lewis, “Microservices a definition of this new ar-

chitectural term,” https://martinfowler.com/articles/microservices.html,
March 2014, [retrieved: 04, 2019].

[2] E. Wolff, Microservices: Flexible Software Architecture. Addison-
Wesley Professional, 2016.

[3] S. Newman, Building microservices: designing fine-grained systems.
O’Reilly Media, Inc., 2015.

[4] H. Knoche and W. Hasselbring, “Using microservices for legacy soft-
ware modernization,” IEEE Software, vol. 35, no. 3, 2018, pp. 44–49.

[5] ——, “Drivers and barriers for microservice adoption–a survey among
professionals in germany,” Enterprise Modelling and Information Sys-
tems Architectures (EMISAJ), vol. 14, 2019, p. 10.

[6] W. Hasselbring and G. Steinacker, “Microservice architectures for scala-
bility, agility and reliability in e-commerce,” in 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). IEEE,
2017, pp. 243–246.

[7] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Pearson New
International Edition - Principles and Paradigms. Harlow: Pearson
Education Limited, 2013.

[8] A. S. Tanenbaum, Modern Operating Systems. New Jersey: Pearson
Prentice Hall, 2009.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns -
Elements of Reusable Object-Oriented Software. Amsterdam: Pearson
Education, 1994.

[10] H. Garcia-Molina and K. Salem, “Sagas,” vol. 16, no. 3. ACM, 1987.
[11] C. Richardson, Microservices Patterns: With examples in Java. Man-

ning Publications, 2018.
[12] M. Fowler, “Event Sourcing,” https://martinfowler.com/eaaDev/Event

Sourcing.html, December 2005, [retrieved: 04, 2019].
[13] M. Lange, A. Hausotter, and A. Koschel, “Microservices in

Higher Education - Migrating a Legacy Insurance Core Appli-
cation,” in 2nd International Conference on Microservices (Mi-
croservices 2019), Dortmund, Germany, 2019, https://microservices.fh-
dortmund.de/papers/Microservices 2019 paper 8.pdf [retrieved: 04,
2019].

[14] P. Howeihe, “Transactions and consistency assurance in microservice
architectures using an example scenario from the insurance industry,”
bachelor thesis at Univ. of Applied Sciences and Arts Hanover, 2018.

[15] GDV, “The application architecture of the insurance industry - applica-
tions and principles,” 1999.

[16] E. J. Evans, Domain-driven Design - Tackling Complexity in the Heart
of Software. Boston: Addison-Wesley Professional, 2004.

[17] W. Vogels, “Eventually Consistent,” Commun. ACM, vol. 52,
no. 1, Jan. 2009, pp. 40–44. [Online]. Available:
http://doi.acm.org/10.1145/1435417.1435432

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 14 / 22

Applying Microservice Principles to Simulation Tools

Richard Pump Arne Koschel
Department of Computer Science

University of Applied Sciences and Arts
Hannover, Germany

Email: {richard.pump | arne.koschel | volker.ahlers}@hs-hannover.de

Volker Ahlers

Abstract—The usage of microservices promises a lot of bene-
fits concerning scalability and maintainability, rewriting large
monoliths is however not always possible. Especially in scientific
projects, pure microservice architectures are not feasible in every
project. We propose the utilization of microservice principles for
the construction of microsimulations for urban transport. We
present a prototypical architecture for the connection of MATSim
and AnyLogic, two widely used simulation tools in the context
of urban transport simulation. The proposed system combines
the two tools into a singular tool supporting civil engineers in
decision making on innovative urban transport concepts.

Keywords–Microservices; Simulation; Urban Logistics

I. INTRODUCTION

Urban transport and logistics are evolving fields of re-
search. Modern concepts ranging from crowd-sourced delivery
platforms like Foodora, to drone based delivery are changing
the transport of goods. At the same time, services like Uber
shift personal transport away from public transport solutions
towards crowd-sourced ride sharing. A modern civil engineer
not only has to keep an overview over the ever evolving
modern concepts, but also know their advantages and disad-
vantages, as well as their impact on different factors like CO2-
emissions and noise pollution.

To support civil engineers, the University of Applied Sci-
ences and Arts Hannover is working in cooperation with the
Leibniz University Hannover, the City of Hannover and the
Technical University Braunschweig to create a decision and
support tool for urban logistics [1]. The support tool allows
the simulation of novel ideas for urban transport, comparing
the impact of different ideas and visualizing the results ade-
quately for easy comprehension. This helps decision makers
to test their ideas against the real world without committing
significant resources.

The tool combines two simulation frameworks with data
storage and a unified front end, improving the usability of
complex software. To combine the simulation frameworks,
we decided to use a microservice-based approach. Using mi-
croservice principles allows us to develop parts of the system
independently, which conforms to the project’s organizational
structures. With multiple partners building the system in dif-
ferent physical locations, independence becomes paramount.
However, a conventional application of microservices, ’split-
ting the monolith’ as it is often called, is not possible, since the
main goal of the project is the development of new software
using existing frameworks, instead of building a new system.

This paper will present our current work on the design
of the tool. In Section II we will present a short overview
of works relevant to this paper. Section III gives a short

overview of the goals and requirements of the decision support
tool and a rough system sketch is shown in Section IV.
The Sections V and VI contain the main contents of the
paper, showing microsimulkations and discussion advantages
and disadvantages of the presented approach. The paper ends
with a conclusion in Section VII.

II. RELATED WORK

The usage of microservices is a widely discussed topic in
current research. Sam Newman provides a thorough overview
over the microservice paradigms, as well as their advantages
in [2]. While giving general recommendations the work does
not follow our specific use-case of combining two simulation
tools. As we lack the time and resources, splitting up existing
applications isn’t feasible within the boundaries of the project.
Our work differs by combining microservices with production
monoliths into a conglomerate design, splitting where sensible
and feasible but purposefully keeping monoliths where not,
as opposed to replacing the entire application design with
microservices.

In [3], Nicola Dragoni et al. provide a comprehensive
overview about microservices, as well as some definitions.
The article however focuses on the conceptual ideas behind
microservices, instead of a single application. A history of
issues is presented concerning past issues, current issues and
issues most likely appearing in the future. In the conclusion,
the authors provide an opinion, viewing microservices as
evolutionary rather than revolutionary, which our application
of microservice principles shares. We intend to apply microser-
vice paradigms only on parts of our architecture, providing a
next step in designing simulation tools, rather than completely
revolutionizing simulation architecture.

The term microsimulation used in this paper differs from
the microsimulation models described by Merz [4] and others.
Microsimulation models are based on microinformation and
model only small parts of the system to be simulated, while not
defining an architectural pattern used in the development for
those models. While the simulation scenarios described in our
paper might fall into the category of microsimulation models,
the modeling process and simulation-theoretic backgrounds are
out of scope.

Lastly, we use the simulation frameworks MATSim and
Anylogic. Horni, Nagel and Axhausen present MATSim in [5].
They describe an open source, Java-based simulation tool for
agent-based transport simulation. The MATSim architecture is
modular to allow for flexible extension of simulation mod-
els but does not utilize microservices. AnyLogic is mainly
presented in the works of Grigoryev [6] and Borshchev [7].

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 15 / 22

Figure 1. Rough system sketch of the decision support tool, showing the
four major components.

AnyLogic is a proprietary, closed source, Java-based general
purpose simulation tool. Again, microservices are not used in
the simulation design.

Overall there are no works known to the authors that apply
microservices to simulations.

III. REQUIREMENTS

The overall goal of the system is providing relevant in-
formation about novel logistic concepts to city planners. A
city planner must be able to evaluate the impact of a logistic
concept on his city, town or village.

The first step to make a decision is gathering information.
The decision support and information system therefore has to
inform the user about the different novel logistic concepts.
Every concept has to be presented in an easily comprehensible
way, e.g., by a short video. Not only concepts have to be
presented, but also information about the city areas that can
be used to evaluate the impact of the concept.

After informing the user about concept and city area, the
software is to provide a configuration utility, allowing the user
to modify parameters of the concept or the city area. The user
should be able to save his configuration, as well as to load and
edit old configurations, before starting the simulation.

The last step in using the information system is to evaluate
the simulation results. The system has to present relevant
information about the logistic concept stemming from the
simulation in an easy to comprehend way. Also, comparisons
with other simulated scenarios must be possible.

Not all of the information available within the tool is
public, therefore an access control has to be implemented. The
access control allows fine grained configuration of function and
information access.

Furthermore the two simulation frameworks AnyLogic and
MATSim have to be utilized to build the decision support tool.
The project development team has experience in utilizing the
two tools and switching to another framework is too costly.

IV. ROUGH SYSTEM SKETCH

Building upon the aforementioned requirements, the rough
system sketch helps to recognize the architecture as a whole
and is rather abstract. Figure 1 shows the four major compo-
nents of the software.

The component ANYLOGIC is responsible for microscopic
traffic simulation, modeling individual behavior using the

simulation framework AnyLogic. For example, within the
component ANYLOGIC, acceptance profiles for novel logistic
solutions are simulated, giving a realistic representation of the
individual person using logistics. Also, a precise modeling of
the novel concept parts is achieved, e.g., the differently cooled
compartments of e-grocery delivery vans are simulated. While
giving a detailed view on the microscopic level of logistics,
macroscopic events are not within scope of the ANYLOGIC
component.

For the simulation of macroscopic events, the component
MATSIM is used. Based on the equivalently named multi-
agent transport simulation-framework, the component is re-
sponsible for the simulation of an entire city. For performance
reasons, it models just the general movement of agents within
the city, instead of concrete agent decisions. This allows the
user to evaluate the impact of concepts on traffic flow and
vice versa. Combining the MATSIM component with the
ANYLOGIC component creates a holistic simulation for novel
logistic concepts, modeling microscopic individual behavior
and macroscopic events.

With results and analysis generated, results have to be
presented within a graphical user interface, easily accessible
from many locations. The component WEBAPP provides the
graphical interface to access functions of the system, configure
and run simulations, and compare the impacts of different
novel logistic concepts. In contrast to the other two compo-
nents, no external frameworks dictate architectural decisions,
therefore the WEBAPP will be the only pure microservice-
component.

The last component will be the bonding layer, which is a
purely technical component, bridging the monolithic frame-
works with the microservice-oriented WEBAPP. It is not a
component in the traditional sense, since it does not group
parts of the software which are responsible for a single piece
of the domain logic. Also, the bonding layer contains elements
that interact with the different simulation frameworks.

Generally, to evaluate a certain novel logistic concept, the
user will select the concept within the WEBAPP, configure a
simulation using one or both of the simulation frameworks,
simulate her ideas and use the WEBAPP to evaluate the
simulation results. The user can only choose between pre-
defined logistic concepts.

In the following section, we will further explain the bond-
ing layer.

V. THE BONDING LAYER

Utilizing two monolithic simulation frameworks results in
problems when employing microservices. A completely clean,
monotheistic architecture would require a reconstruction of
the frameworks, which isn’t feasible. We therefore propose
to employ microservice ideas in the utilization of the tools,
effectively encapsulating the rigidity of the frameworks within
a flexible shell. This creates a flexible bonding layer, enabling
rapid development.

Figure 2 shows the microservice-like approach to simu-
lation using an external framework. Instead of developing a
single, holistic simulation, we propose the development of
small, interchangeable microsimulations. The microsimulation
only implements the specifics of the logistic concept to be sim-
ulated and uses core functionalities or other microsimulations
to further increase model accuracy.

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 16 / 22

Figure 2. Microsimulations using Anylogic.

A. Microsimulations in AnyLogic
Traditional simulation software is often created by building

a simulation framework that encompasses the technical aspects
of the simulation. For example the Framework OMNet++,
presented by Varga and Hornig in [8], provides an event-based
simulation for networks in general. Further functionality is than
added on top in the form of modules or add-ons to model spe-
cific types of scenarios. To model Internet traffic in OMNet++,
an external library called INET is often used, which provides
modeling of network stacks, switches, Ethernet cables, etc.
The add-ons often model different domains, but no singular
scenario. In our architecture we propose to build another layer
on top of the simulation framework and the add-ons, with each
module containing a specific, highly configurable scenario that
is to be simulated.

For example, the microsimulation e-Grocery only imple-
ments the necessary supply chain for on-line grocery shopping.
It uses the framework AnyLogic and its add-ons that provide
GIS-support, agent-based simulation, database access, etc.
Figure 3 shows the implemented agents for the simulation.

Each agent represents a different step of the digital or the
conventional grocery shopping process. Following the classic
agent-based simulation design, the agents all have specific be-
havior and interactions with other agents. The whole simulated
process is a result of emergent behavior.

The CUSTOMER-agent models the customer in the e-
grocery process. Depending on certain factors like age and
income, the agent decides to either buy her groceries via the
online store or the conventional local grocery store. If the
online store is used, the agent places an order to the store
and awaits delivery.

The STORE agent represents a local grocery store that
provides a certain inventory and is opened during a specific
time frame, depending on the store type. For the e-grocery
model, a rather high abstraction for the shopping process
is adequate, CUSTOMERS arrive via CAR and spend a pre-
defined amount of time in the STORE before returning to their
HOUSEHOLD.

The DISTRIBUTION CENTER however is part of the e-
grocery concept. It receives orders from the CUSTOMERS and

Figure 3. E-Grocery microsimulation using AnyLogic.

sorts the orders into delivery trips for the DELIVERY VANS to
execute. Specific aspects of grocery delivery are considered
during the trip planning phase. For example, if the order
contains refrigerated goods the delivery window specified by
the customer needs to be hit by the van, otherwise the goods
might spoil. After planning trips, the DISTRIBUTION CENTER
sends out the DELIVERY VANS to distribute the ordered goods.

The DELIVERY VAN is a simulation of a delivery van built
for grocery delivery, containing multiple different temperature
zones that can store different kinds of groceries and perish-
ables. It receives a delivery plan from the DISTRIBUTION
CENTER, is loaded with the ordered goods and proceeds to
traverse a GIS map (provided by AnyLogic), stopping at the
HOUSEHOLDS to deliver the cargo.

Each agent is very simple in implementation and the whole
microsimulation can be replaced by another version within a
month. Furthermore the agents are highly configurable. For
example, the CUSTOMER follows a pre-defined schedule for
daily activities, which can be configured by the user, changing
delivery windows, ordered goods and traffic.

Overall we implement small specific scenarios for urban lo-
gistic in independent AnyLogic simulations, called microsim-
ulations. Keeping scope small allows for rapid development
and independent deployment.

B. Macroscopic Simulation
With AnyLogic-based simulations relatively small in scope,

macroscopic events need to simulated by another framework.
We use MATSim for this purpose. The aforementioned mi-
crosimulation allows evaluation of economical factors and
provides a basis for the more abstract complete city model
simulated by MATSim.

Figure 4 shows the general workflow of simulations using
MATSim. To simulate traffic, MATSim creates a population
of agents and optimizes each agent’s day plan cost using a
genetic algorithm, changing modes of transportation between
activities. Optimization of agent plans ends after a pre-defined,

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 17 / 22

Figure 4. General Workflow using MATSim.

user-controllable amount of iterations. The simulation creates
an output in form of reports, showing traffic flows, emissions
and road utilization to be displayed by the WEBAPP.

VI. DISCUSSION

The usage of microservices often implies a completely new
architecture and replacing the old system piece by piece with
a microservice-conforming re-implementation. Microservices
provide extreme advantages at scale and rapid development
of new components. However, the necessary organizational
structures for microservices cannot always be implemented and
rewriting software is not always possible.

In our current research project, we can not rewrite ex-
tensive simulation frameworks to allow rapid implementation
of new simulations. We therefore provided an adaptation of
microservice principles to simulations, creating small scale
microsimulations. This approach has a couple of advantages
and disadvantages.

First, the usage of microsimulation relies on monolithic
simulation frameworks. By modeling only small parts of the
scenario, a rich framework is necessary to provide extensive
functionalities like routing services, message channels and
logging. A loose coupling between simulated scenario and
framework is difficult to achieve. API changes to the frame-
works also impact all microsimulations.

This approach also only works for simulations with a low
degree of complexity. Very complex simulation models can
rarely be written by a very small team in a reasonable time
frame, without producing a complex to change system.

On the other hand, the usage of microsimulations allows
rapid technical development of new simulations, reducing
overall development time. The development of a simulation
model often consists of a long phase gathering data about real
life behavior and structure before beginning implementation.
Reducing the necessary time for technical development frees
up time for more detailed research, increasing simulation
accuracy.

Furthermore, keeping simulation scenarios small allows
for single person simulation development. Implementation of
functionalities is reduced extremely if a rich framework can be
used. By only modeling a single concept and using parameters
for configuration scenarios, the necessary code base to be
implemented by the developer is very small. This is a big
advantage in research projects where the software is to be used
as a tool in the project context.

VII. CONCLUSION

In this paper, we first presented our requirements for a web-
application for city planners. The web tool aims to support
city planners and decision makers in their evaluation of novel
logistic concepts in regards to the impact of novel concepts on
emissions, traffic flow and road utilization.

To achieve this goal, we presented a design for the decision
support tool that incorporates two different simulation frame-
works. The frameworks are combined using a bonding layer
that bridges the microservice-paradigms and the organizational
challenges in rewriting foreign software. The bonding layer
applies the concept of small independent components to the
simulations themselves by constraining the simulations to a
single logistic concept, relying on the frameworks and other
microsimulations to model more holistic views.

We also discussed advantages and disadvantages of the
microsimulations. Most importantly, dependencies on simula-
tion frameworks prevent microsimulations from adhering to a
pure microservice approach. The impact of this disadvantage
is however dependent on the software itself. In projects where
software is produced as a prototype and not subject to further
development and maintenance, the changes to used libraries
do not impact the development process, as older versions of
the library can easily be used. therefore, in a research project
this trade-off might be considered, as some advantages from
the microservice paradigm are immensely useful in small scale
experimental work.

In further work, we plan to explore the applicability of
microsimulations to the cloud context, as well as further
evaluation of the proposed architecture.

ACKNOWLEDGMENT

This work was supported by the Federal Ministry of
Education and Research of Germany (project USEfUL, grant
no. 03SF0547). We would like to thank our colleagues from
the Faculties for engineering and business information systems,
as well as the colleagues from the other institutions and the
City of Hannover.

REFERENCES
[1] Urbane Logistik Hannover (urban logistics Hannover). Retrieved April

2019. [Online]. Available: https://www.hannover.de/Urbane-Logistik-
Hannover

[2] S. Newman, Building microservices: designing fine-grained systems.
O’Reilly, 2015.

[3] N. Dragoni et al., “Microservices: yesterday, today, and tomorrow,” in
Present and Ulterior Software Engineering. Springer, 2017, pp. 195–
216.

[4] J. Merz, “Microsimulation as an instrument to evaluate economic and
social programmes,” MPRA Paper 7236, 1993.

[5] A. Horni, K. Nagel, and K. W. Axhausen, The multi-agent transport
simulation MATSim. Ubiquity Press London, 2016.

[6] I. Grigoryev, AnyLogic 6 in three days: a quick course in simulation
modeling. AnyLogic North America, 2012.

[7] A. Borshchev, The big book of simulation modeling: multimethod
modeling with AnyLogic 6. AnyLogic North America Chicago, 2013.

[8] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proceedings of the 1st international conference on
Simulation tools and techniques for communications, networks and
systems & workshops. ICST, 2008, p. 60.

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 18 / 22

Towards a Microservices-based Distribution for Situation-aware Adaptive Event

Stream Processing

Marc Schaaf

University of Applied Sciences Northwestern Switzerland,
Riggenbachstr. 16, 4600 Olten, Switzerland

Email: marc.schaaf@fhnw.ch

Abstract—This paper presents the central concepts for a
microservices-based distribution of event stream processing
pipelines as they are part of our situation-aware event stream
processing system. For this, we outline changes to our specifi-
cation language for a clear separation of the stream processing
specification from the actual stream processing engine. Based on
this separation, we then discuss our mapping approach for the
assignment of the pipelines to stream processing nodes.

Keywords–Event Stream Processing; Microservices; Service-
oriented Architecture

I. INTRODUCTION

Event Stream Processing (ESP) applications play an impor-
tant role in modern information systems due to their capability
to rapidly analyze huge amounts of information and to quickly
react based on the results. They follow the approach to produce
notifications based on state changes (e.g., stock value changes)
represented by events, which actively trigger further processing
tasks. They contrast to the typical store and process approaches
where data is gathered and processed later in a batch process-
ing fashion, which typically involves a higher latency. ESP
applications can achieve scalability even for huge amounts of
streaming event data by partitioning incoming data streams and
assigning them to multiple machines for parallel processing.
Due to those properties, ESP based analytical systems are
likely to have a further increasing relevance in future business
systems. Also, it is likely that future ESP applications will
have to handle even larger amounts of data while taking on
increasingly complex processing tasks to allow for near real-
time analytics to take place.

An example for such a scenario is the detection and tracing
of solar energy production drops caused by clouds shading
solar panels as they pass by [1]. The scenario requires a
processing system to handle large amounts of streaming data
to (1) detect a possible cloud (a possible situation), to (2)
verify the possible situation and (3) to track the changes of
the situation as the cloud moves or changes its size or shape.
For the initial detection of a potential situation, a processing
system needs to analyze the energy production of all monitored
solar panel installations. However, for the second part, the
verification of a potential cloud, only a situation specific subset
of the monitoring data is needed. In the same way, the later
tracking of the situation only requires a situation specific
subset, which may change over time.

In order to handle such large numbers of events, a pro-
cessing system needs to be capable of distributing the pro-
cessing across several machines. A common mechanism for

the distribution is to partition the overall data stream [2].
When a processing system partitions the incoming data streams
in order to achieve scalability, such a partitioning will be
suitable for the first part of the processing, the detection of a
potential situation as the partitioning is situation independent.
For the later processing part where a situation specific subset
of the incoming data streams is required, a general stream
partitioning scheme based on for example the processing
system load, is not suitable as it does not incorporate the needs
of currently analyzed situations. Here, a dynamic adaptation
mechanism is needed that takes the investigated situations state
into account.

While we presented the general high level architecture
of our processing system in [3], this paper discusses two
contributions, first the partial re-design of our specification
language to become independent of the Drools Rule Engine
and second the the assignment of the actual stream processing
as a set of microservices to allow for the scalable distributed
deployment of the stream processing pipelines.

The remainder of this paper is structured as follows: The
next section discusses the related work followed by a presen-
tation of the processing model. Section III and IV present the
basics of our specification language for situation-aware event
stream processing and outline the made changes. Section V
presents the architecture and the mapping of stream processing
pipelines to a microservice-based architecture.

II. RELATED WORK

Various systems for distributing a processing system in
order to provide the needed scalability exist like Aurora* and
Borealis [4][5]. Aurora*, for example, starts with a very crude
data stream partitioning in the beginning and tries to optimize
its processing system over time based on gathered resource
usage statistics [6]. Furthermore, various approaches have been
proposed, which employ adaptive optimizations to handle load
fluctuations by utilizing the dynamic resource availability of
cloud computing offerings like [7][8][9] in order to scale on
demand.

In general, the discussed systems are capable of setting up
distributed stream processing based on given queries and to op-
timize the system to provide the required processing capacity
and response times. However, the systems have no mechanisms
to adapt deployed stream queries based on detected situations
and situation changes as they have no knowledge of the overall
analytical task that deployed a given stream query.

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 19 / 22

On the other hand, there are systems aimed specifically
at providing the surroundings for distributed processing but
without providing processing languages like for example,
Apache Storm [10] or Apache Spark Streaming [11]. Such
systems could act as a potential basis for implementing our
situation-aware adaptive processing model. However, they do
not follow the microservice model we aim to explore with
our architecture. For the realization of a reactive microservice
like architecture as we aim for with our approach, lower
level frameworks exist like for example Eclipse Vert.X [12]
or Akka [13]. For our processing system architecture, we
utilize Vert.X due to its integrated event bus functionality and
define a mapping of our processing model to the available
functionalities.

III. PROCESSING MODEL AND LANGUAGE

We approach the initially outlined problem by defining
a situation-aware adaptive stream processing model together
with a matching scenario definition language to allow the
definition of such processing scenarios for a scenario in-
dependent processing system [3][14][15][16]. The designed
model defines situation-aware adaptive processing in three
main phases (Figure 1):

• Phase 1: In the Possible Situation Indication phase,
possible situations are detected in a large set of stream-
ing data, were the focus lies on the rapid processing
of large amounts of data, explicitly accepting the
generation of false positives and duplicate notifications
over precise calculations.

• Phase 2: The Focused Situation Processing Initializa-
tion phase determines whether an indicated possible
situation needs to be investigated or if it can be
ignored, for example because the situation was already
under investigation. If a potential situation needs to be
investigated, a new situation specific focused process-
ing is started.

• Phase 3: In the Focused Situation Processing phase,
possible situations are first verified and then an in-
depth investigation of the situation including the adap-
tation of the processing setup based on interim results
is possible.

For these three phases, event stream processing takes place
during the Phases 1 and 3.

Based on our processing model, we defined the Scenario
Processing Template Language (SPTL), which allows the
specification of processing templates based on the concepts of
the processing model in an implementation independent way.

IV. SPECIFICATION LANGUAGE

A Scenario Processing Template contains all scenario-
specific information to parameterize a processing system for

Phase 1:
Situation Indication

Phase 2:
Situation Indication

Phase 3: Focused
Situation Processing

Event Stream Processing Event Stream Processing

SPTL Template

Figure 1. Three main phases of the Processing Model

name "ScenarioName"

PossibleSituationIndication {
// [...] Specifications for Processing Phase 1

}

FocusedSituationProcessingInitialization {
// [...] Specifications for Processing Phase 2

}

FocusedSituationProcessing {
// [...] Specifications for Processing Phase 3

}

Figure 2. Structure of a processing template in the SPTL

a scenario (e.g., How to detect a train delay and how to
determine its impact). The template is divided into a preamble
and three blocks which resemble the three major phases
defined in the processing model as outlined in the listing in
Figure 2.

Each block contains the specifications required for the
setup and execution of the corresponding phase. Within
the here discussed processing model, scenario specific event
stream processing takes place during the Phases 1 and 3. Thus,
the definitions of these two phases each contain the definition
on how the scenario specific event stream processing has to be
done. In the old version of the SPTL, the specification needed
to be given as a Stream Processing Builder statement. This
statement contained a mixture of several languages (Drools
[17], MVEL [18], SPARQL [19]) in order to build/generate the
actual event stream processing rules in the Drools Language.

A. Language Changes
One of the main limitations of this first version of the SPTL

lies in its tight link to the Drools Rule engine, as well as
in the complexity resulting from the combination of several
languages. The tight link originates in the definition of the the
actual stream processing statements which needed to be given
based on the Drools Rule Language as shown in the listing in
Figure 4.

In order to decouple the SPTL from the Drools Rule
language and to further ease the stream processing specifica-
tions, the SPTL was extended with its own stream processing
specification language. The new language is build around the
concept of a stream processing pipeline as shown in the listing
inf Figure 5.

The first statement $$focusArea.delay specifies the source
of the events together with the type of the event ”DelayEvent”,
the second statement ”filter(...)” defines a filtering condition
followed by the last statement, which specifies a small function
that shall be called for every event to allow a modification
of the stream processing context ”context(...)”. The functions
are separated from each other by ”=>” which indicates the
forwarding of the event stream to the next processing step.

As the new stream processing specifications are indepen-
dent of the actual stream processing engine used to execute
them, alternative mappings of the language to a processing
system implementation can now be defined aside from the
Drools based mapping. As such we are investigating a mapping
the processing pipelines to a microservice-based architecture
based on the Vert.x tool-kit.

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 20 / 22

Processing
Context

Deplyable Stream Procesing Pipelines

Filter
(delay > 120)

Modify Context
(add event)

inbound stream
receiver

Filter
(delay > 120)

Modify Context
(add event)

inbound stream
receiver

Filter
(delay > 120)

Modify Context
(add event)

inbound stream
receiver

lookup available serice nodes

One MS instance per
Executor node One MS instance per

Executor node One MS instance per
Executor node One MS instance per

Executor node

announce

<<service>>
Stream Processing

Executor Node

assign Pipelines

Processing Context
Managing Nodes announce

<<service>>
Processing Context
Management Node

assign Context Manager
 and link to Pipelines

Discovery
DB

SPTL template
interpretation

background knowledge

<<service>>
DataStream

SubscriptionManager

<<service>>
Background

Knowledge Manager

<<service>>
Task Scheduler

<<service>>
Possible Situation

Indication Processing
Manager

<<service>>
Focused Situation

Processing Manager

Vert.X Event Bus

1

2

3

4

Figure 3. Overview of the stream processing pipeline assignment

IterationStreamProcessingBuilder {
foreach $$focusArea as $$train {
rule [DROOLS_TEMPLATE]

when
$a : DelayEvent() from entry-point "$${{train?

delay}}"
then
CONTEXT.addToSet("$$trainEvents", $a);

end
[/DROOLS_TEMPLATE] publishes no stream manipulates

context;
}

};

Figure 4. Stream Processing Builder definition in the old SPTL version

IterationStreamProcessing {
$$focusArea.delay : DelayEvent
=> filter(e.delay > 120)
=> context([M] $$trainEvents.add(e) [/M]);

}

Figure 5. Stream Processing definition in the extended version of the SPTL

V. PROCESSING SYSTEM ARCHITECTURE

The overall processing system was subdivided into several
components each with distinct functionality as discussed in
[3]. For the communication between the components interfaces
were defined, which, depending on the needed communication,
are implemented as synchronous service-based interactions or
asynchronous message based interactions.

However, in our initial architecture the stream processing
itself was defined as one opaque component for the Phase 1

and as a second similar component for the Phase 3 processing
with no further subdivision into smaller services. This initial
design decision was caused by the use of one instance of the
Drools Rule Engine for each of those components and the
tight coupling of the SPTL to Drools. With the changes of the
language as discussed in Section IV-A, the stream processing
can now be subdivided into smaller sub-components based
on the notion of defining a potentially distributed processing
pipeline.

A. Mapping of Stream Processing Pipelines to a Microservice-
oriented Architecture

For the processing system, such a processing pipeline
consists of several separate stream processing statements where
each statement takes a stream as input and potentially generates
a stream as a result. Alternatively, a stream processing state-
ment can also modify a so called processing context which
is a shared data store in the context of the current situation’s
stream processing. Such pipeline definitions are the result of
the interpretation of an SPTL template (Figure 3 Part 1).

In our microservices-oriented architecture, we map such
pipelines to multiple small services where in the most fine
grained form any stream processing operation could be pro-
vided by a separate service (Figure 3 Part 2). The services
itself can then be distributed across several processing nodes
in order to implement a distributed stream processing.

For the communication between the different microservices
that form a processing pipeline the event bus mechanism
provided by Vert.x will be used as it can act as a distributed
peer-to-peer messaging system.

In order to deploy such a pipeline, we define a scheduler
service. This scheduler has an overview over all available
worker nodes which can execute stream processing tasks

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

 21 / 22

(Figure 3 Part 3). This scheduler service is used by the two
processing managers to assign their processing pipelines which
they generated based on the given SPTL template. To allow
the scheduler to find the available worker nodes, each node
publishes itself as a service to a service registry, where the
scheduler can thus find all available processing nodes.

Further services are provided that offer supporting facilities
like an Event Stream Subscription Manager Service, allowing
the pipeline nodes to request the needed event streams (Figure
3 Part 4). Moreover for the Phase 3 Stream processing, every
situation specific processing requires a processing context that
is shared between all stream processing pipelines associated
with this situation. This processing context is again provided
by a separate service assigned by the scheduler service (Figure
3 Part 2).

VI. CONCLUSION AND OUTLOOK

The paper outlines an extension of our service-based ar-
chitecture towards the use of microservices for the distribution
of the actual stream processing. The distribution is based on
processing pipelines which we introduced by adapting the
scenario template specification language. In our approach, the
stream processing is realized by multiple microservices which
together form a concrete stream processing pipeline potentially
distributed across multiple machines. The actual distribution
decision will be made by a scheduler service which oversees
the available resources through their service registrations.

Currently, our model and architecture does not define
any mechanisms for handling component failures during pro-
cessing. We plan to add such a functionality in the form
of an overseer service which monitors deployed pipelines,
detects service failures and re-deploys the failed services. This
however also requires an extension of the processing model
itself so that a partial rollback of inconsistent processing state
becomes possible, thus allowing the processing to resume in
a defined state after a failure.

While the discussed language changes are already im-
plemented, future work is the realization of the proposed
microservice-based distribution as part of our prototype, thus,
allowing for a detailed evaluation of the approach. In particular
an evaluation of the performance of the Vert.x event bus in a
distributed setup needs to be conducted as the later processing
system will use this as its communication backbone and will
thus rely on its performance.

ACKNOWLEDGMENTS

Parts of the here presented work were done as part of the
Eurostars Project E!7377 as well as Project 18014 funded by
the Hasler Stiftung.

REFERENCES
[1] G. Wilke, M. Schaaf, E. Bunn, T. Mikkola, R. Ryter, H. Wache, and

S. G. Grivas, “Intelligent dynamic load management based on solar
panel monitoring,” in Proceedings of the 3rd Conference on Smart Grids
and Green IT Systems, 2014, pp. 76–81.

[2] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm,
“A Catalog of Stream Processing Optimizations,” ACM Comput.
Surv., vol. 46, no. 4, mar 2014, pp. 46–1. [Online]. Available:
{http://doi.acm.org/10.1145/2528412}

[3] M. Schaaf, “A service based architecture for situation-aware adaptive
eventstream processing,” in The Tenth International Conference on
Advanced Service Computing, Barcelona, Spain, February, 2018, pp.
40–44.

[4] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang,
W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik, “The Design of the Borealis Stream Processing Engine,”
in In CIDR, 2005, pp. 277–289.

[5] Y. Xing, S. Zdonik, and J.-H. Hwang, “Dynamic Load Distribution in
the Borealis Stream Processor,” in Proceedings of the 21st International
Conference on Data Engineering, ser. ICDE ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 791–802.

[6] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. Zdonik, “Scalable distributed
stream processing,” in In CIDR, vol. 3, 2003, pp. 257–268.

[7] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez,
“StreamCloud: A Large Scale Data Streaming System,” in Distributed
Computing Systems (ICDCS), 2010 IEEE 30th International Confer-
ence on, june 2010, pp. 126–137.

[8] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu, “Elastic
scaling of data parallel operators in stream processing,” in Parallel Dis-
tributed Processing, 2009. IPDPS 2009. IEEE International Symposium
on, may 2009, pp. 1–12.

[9] W. Kleiminger, E. Kalyvianaki, and P. Pietzuch, “Balancing load
in stream processing with the cloud,” in Proceedings of the
2011 IEEE 27th International Conference on Data Engineering
Workshops, ser. ICDEW ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 16–21. [Online]. Available: {http:
//dx.doi.org/10.1109/ICDEW.2011.5767653}

[10] “Apache Storm,” Online: https://storm.apache.org/, retrieved:
March/04/19.

[11] “Apache Spark Streaming,” Online: https://spark.apache.org/streaming/,
retrieved: March/13/19.

[12] “Vert.X Homepage,” Online: https://vertx.io/, retrieved: March/13/19.
[13] “Akka Homepage,” Online: https://akka.io/, retrieved: March/13/19.
[14] M. Schaaf, “Event processing with dynamically changing focus: Doc-

toral consortium paper,” in RCIS, ser. IEEE 7th International Confer-
ence on Research Challenges in Information Science, RCIS 2013, Paris,
France, May 29-31, 2013, R. Wieringa, S. Nurcan, C. Rolland, and J.-L.
Cavarero, Eds. IEEE, 2013, pp. 1–6.

[15] M. Schaaf, G. Wilke, T. Mikkola, E. Bunn, I. Hela, H. Wache, and S. G.
Grivas, “Towards a timely root cause analysis for complex situations in
large scale telecommunications networks,” Procedia Computer Science,
vol. 60, 2015, pp. 160–169, knowledge-Based and Intelligent Infor-
mation & Engineering Systems 19th Annual Conference, KES-2015,
Singapore, September 2015 Proceedings.

[16] M. Schaaf, “Situation aware adaptive event stream processing. a pro-
cessing model and scenario definition language,” Ph.D. dissertation,
Technical University Clausthal, 2017, verlag Dr. Hut, ISBN: 978-3-
8439-3376-6.

[17] “Drools Business Rules Management System,” Online:
http://www.drools.org/, retrieved: March/13/19.

[18] “MVEL Language Guide for 2.0,” Online:
http://mvel.documentnode.com/, retrieved: March/13/19.

[19] T. W. S. W. Group, “SPARQL 1.1 Overview,” Tech. Rep., March
2013, retrieved: 13.01.18. [Online]. Available: https://www.w3.org/TR/
2013/REC-sparql11-overview-20130321/

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

Powered by TCPDF (www.tcpdf.org)

 22 / 22

http://www.tcpdf.org

