
SERVICE COMPUTATION 2020

The Twelfth International Conferences on Advanced Service Computing

ISBN: 978-1-61208-777-1

October 25 - 29, 2020

SERVICE COMPUTATION 2020 Editors

Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and
Arts, Germany

 1 / 28

SERVICE COMPUTATION 2020

Forward

The Twelfth International Conferences on Advanced Service Computing (SERVICE COMPUTATION 2020),
held on October 25 - 29, 2020, continued a series of events targeting computation on different facets.

The ubiquity and pervasiveness of services, as well as their capability to be context-aware with (self-)
adaptive capacities posse challenging tasks for services orchestration, integration, and integration. Some
services might require energy optimization, some might require special QoS guarantee in a Web-
environment, while others a certain level of trust. The advent of Web Services raised the issues of self-
announcement, dynamic service composition, and third party recommenders. Society and business
services rely more and more on a combination of ubiquitous and pervasive services under certain
constraints and with particular environmental limitations that require dynamic computation of
feasibility, deployment and exploitation.

The conference had the following tracks:

 Service innovation, evaluation and delivery

 Service quality

 Challenges

 Advanced Analysis of Service Compositions

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the SERVICE COMPUTATION 2020
technical program committee, as well as the numerous reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and effort to contribute to SERVICE COMPUTATION 2020.
We truly believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the SERVICE COMPUTATION 2020 organizing
committee for their help in handling the logistics and for their work that made this professional meeting
a success.

We hope SERVICE COMPUTATION 2020 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the area of
computation.

 2 / 28

SERVICE COMPUTATION 2020 Steering Committee

Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Eugen Borcoci, University "Politehnica" of Bucharest, Romania
Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Hannover, Germany

SERVICE COMPUTATION 2020 Publicity Chair

Javier Rocher, Universitat Politecnica de Valencia, Spain

SERVICE COMPUTATION 2020 Industry/Research Advisory Committee

Steffen Fries, Siemens Corporate Technology - Munich, Germany
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Rong N. Chang, IBM T.J. Watson Research Center, USA
Jan Porekar, SETCCE, Slovenia
Bernhard Hollunder, Hochschule Furtwangen University - Furtwangen, Germany

 3 / 28

SERVICE COMPUTATION 2020

Committee

SERVICE COMPUTATION 2020 Steering Committee

Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Eugen Borcoci, University "Politehnica" of Bucharest, Romania
Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Hannover, Germany

SERVICE COMPUTATION 2020 Publicity Chair

Javier Rocher, Universitat Politecnica de Valencia, Spain

SERVICE COMPUTATION 2020 Industry/Research Advisory Committee

Steffen Fries, Siemens Corporate Technology - Munich, Germany
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Rong N. Chang, IBM T.J. Watson Research Center, USA
Jan Porekar, SETCCE, Slovenia
Bernhard Hollunder, Hochschule Furtwangen University - Furtwangen, Germany

SERVICE COMPUTATION 2020 Technical Program Committee

Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Eugen Borcoci, University "Politehnica" of Bucharest, Romania
Uwe Breitenbücher, University of Stuttgart, Germany
Antonio Brogi, University of Pisa, Italy
Isaac Caicedo-Castro, Universidad de Córdoba, Colombia
Wojciech Cellary, Poznan University of Economics, Poland
Rong N. Chang, IBM T.J. Watson Research Center, USA
Dickson Chiu, The University of Hong Kong, Hong Kong
Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil
Erdogan Dogdu, Angelo State University, USA
Sebastian Floerecke, University of Passau, Germany
Sören Frey, Daimler TSS GmbH, Germany
Steffen Fries, Siemens Corporate Technology - Munich, Germany
Somchart Fugkeaw, Thai Digital ID Co. Ltd., Thailand
Katja Gilly, Miguel Hernandez University, Spain
Victor Govindaswamy, Concordia University - Chicago, USA
Maki Habib, The American University in Cairo, Egypt
Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Germany

 4 / 28

Bernhard Hollunder, Hochschule Furtwangen University - Furtwangen, Germany
Wladyslaw Homenda, Warsaw University of Technology, Poland
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Wei-Chiang Hong, School of Computer Science and Technology - Jiangsu Normal University, China
Paul Humphreys, Ulster University, UK
Emilio Insfran, Universitat Politecnica de Valencia, Spain
Maria João Ferreira, Universidade Portucalense, Portugal
Yu Kaneko, Toshiba Corporation, Japan
Hyunsung Kim, Kyungil University, Korea
Alexander Kipp, Robert Bosch GmbH, Germany
Christos Kloukinas, City, University of London, UK
Arne Koschel, Hochschule Hannover - University of Applied Sciences and Arts, Germany
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Wen-Tin Lee,National Kaohsiung Normal University,Taiwan
Mohamed Lehsaini, University of Tlemcen, Algeria
Cho-Chin Lin, National Ilan University, Taiwan
Mark Little, Red Hat, UK
Xiaodong Liu, Edinburgh Napier University, UK
Michele Melchiori, Università degli Studi di Brescia, Italy
Fanchao Meng, University of Virginia, USA
Philippe Merle, Inria, France
Giovanni Meroni, Politecnico di Milano, Italy
Naouel Moha, Université du Québec à Montréal, Canada
Fernando Moreira, Universidade Portucalense, Portugal
Sotiris Moschoyiannis, University of Surrey, UK
Gero Mühl, Universitaet Rostock, Germany
Artur Niewiadomski, Siedlce University of Natural Sciences and Humanities, Poland
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Aida Omerovic, SINTEF, Norway
Ali Ouni, Ecole de Technologie Superieure, Montreal, Canada
Agostino Poggi, Università degli Studi di Parma, Italy
Jan Porekar, SETCCE, Slovenia
Thomas M. Prinz, Friedrich Schiller University Jena, Germany
Arunmoezhi Ramachandran, Tableau Software, Palo Alto, USA
Christoph Reich, Hochschule Furtwangen University, Germany
Wolfgang Reisig, Humboldt University, Berlin, Germany
Sashko Ristov, University of Innsbruck, Austria
José Raúl Romero, University of Córdoba, Spain
António Miguel Rosado da Cruz, Politechnic Institute of Viana do Castelo, Portugal
Michele Ruta, Technical University of Bari, Italy
Marek Rychly, Brno University of Technology, Czech Republic
Ulf Schreier, Furtwangen University, Germany
Frank Schulz, SAP Research Karlsruhe, Germany
Mohamed Sellami, Telecom SudParis, Evry, France
Wael Sellami, Higher Institute of Computer Sciences of Mahdia - ReDCAD laboratory, Tunisia
T. H. Akila S. Siriweera, University of Aizu, Japan
Jacopo Soldani, University of Pisa, Italy
Masakazu Soshi, Hiroshima City University, Japan

 5 / 28

Orazio Tomarchio, University of Catania, Italy
Juan Manuel Vara, Universidad Rey Juan Carlos, Spain
Yong Wang, Dakota State University, USA
Hironori Washizaki, Waseda University, Japan
Mandy Weißbach, Martin Luther University of Halle-Wittenberg, Germany
Michael Zapf, Technische Hochschule Nürnberg Georg Simon Ohm, Germany
Sherali Zeadally, University of Kentucky, USA
Wolf Zimmermann, Martin Luther University Halle-Wittenberg, Germany

 6 / 28

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 28

Table of Contents

Lightweight Offline Access Control for Smart Cars
Gian-Luca Frei, Fedor Gamper, and Annett Laube

1

Keep it in Sync! Consistency Approaches for Microservices - An Insurance Case Study
Arne Koschel, Andreas Hausotter, Moritz Lange, and Sina Gottwald

7

Towards a Tool-based Approach for Microservice Antipatterns Identification
Rafik Tighilt, Manel Abdellatif, Naouel Moha, and Yann-Gael Gueheneuc

15

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 28

Lightweight Offline Access Control for Smart Cars

Gian-Luca Frei

Zühlke Engineering AG
Bern, Switzerland

emails: hello@gianlucafrei.ch
gifr@zuehlke.com

Fedor Gamper

Swiss Federal Railways
Bern, Switzerland

email:
fedorgamper@outlook.com

Prof. Dr. Annett Laube

Bern University of Applied Sciences TI -ICTM
Biel/Bienne, Switzerland

email:
annett.laube@bfh.ch

Abstract—In this paper, a novel access control protocol that offers
appealing features for carsharing is presented. It describes how a
user can authenticate and authorize himself using a smartphone
on an immobilizer in a car. First, it requires no online connection
to open cars. Therefore, it is suitable for applications where the
cars and the users have no network connection. Second, the
protocol is designed for low-bandwidth channels like Bluetooth
Low Energy and transports around 210 bytes per car access.
Third, it enables users to delegate their access rights to other
users. These properties were achieved by using custom public key
certificates and authorization tokens with a public key recovery
mechanism.

Keywords– access control; authentication; authorization; blue-
tooth low energy; carsharing; cryptographic protocol; public-key
cryptography; public-key recovery.

I. INTRODUCTION

Smartphones have become omnipresent devices. At the
same time, the worldwide market for carsharing has grown
exponentially over the last decade [1] [2]. As a result, many
carsharing providers offer their customers the possibility to
open rental cars with smartphones. Often, the security of such
systems is unknown because the vendors keep the system
design secret.

Designing access control solutions is quite easy if the cars
have a stable network connection. The only parts needed are an
authentication mechanism and a server that the car can query to
check if a user is allowed to access it. However, maintaining
a constant network connection is often not possible or not
desirable because of the higher costs involved. Moreover,
developing a protocol whereby all steps can be done with no
network connection would not be meaningful in a world where
most smartphones almost always have an internet connection.
Therefore, we use the following networking model: The users
are most of the time online and need a network connection
for registration and to make bookings. Later, a user receives
a credential that enables him to make use of his access rights
in an offline fashion. This means that if he opens a car, he
needs no network connection, nor does the car need a network
connection. To illustrate this, imagine the car is located in an
underground car park, where no cellular reception is available.
In that case, the carsharing provider cannot communicate with
the car, whereas a user can cross into the offline zone by
entering the underground car park. Most carsharing providers
allow their users to make spontaneous bookings over their
smartphones. This means access control rules can change
quickly. Therefore, the user needs to receive the credentials
to authenticate and authorize himself outside before entering
the underground car park.

The most convenient way to establish communication be-
tween a car and a smartphone is through either Bluetooth

or Near-Field Communication (NFC) [3]–[5]. Bluetooth Low
Energy (BLE) is part of the Bluetooth 4 specification and is
designed to use little electric power [6]. Another advantage of
Bluetooth Low Energy is that no device-pairing is needed. This
makes Bluetooth Low Energy very convenient. NFC is also
very convenient but is not fully supported on Apple devices [7].
This makes BLE a popular choice for real-world applications.
A downside of BLE and NFC are that the transmission speed
is low and often the theoretical bandwidth cannot be reached
in practice. In our tests with Bluetooth LE, we measured a
transmission speed of under 1,000 bytes per second [8]. It
is, therefore, important to keep the sizes of the messages
exchanged between the smartphone and the object as small
as possible because large messages can have direct negative
impacts on usability.

This paper is organized as follows: Section II presents
the current state-of-the-art of access control protocols for
carsharing. Then, in Section III the new protocol is presented.
Section IV discusses possible ways to attack a system that
uses the presented protocol. Finally, Section V concludes the
paper.

II. STATE-OF-THE-ART

This section gives an overview of the existing work on
carsharing systems. Dmitrienko et al. presented an offline
access control system for free-float car sharing. This protocol
is based on symmetric encryption, secure elements to store pri-
vate credentials and a single carsharing provider that manages
access rights [9]. Dmitrienko et al. also proposed a generic
access control system based on NFC enabled devices which
also supports offline validation and delegation of authorization.
However, this work makes use of some proprietary protocols
[10]. SePCAR is an access control protocol for smart cars.
However, the focus of this protocol is more on user privacy
than on bandwidth efficiency [11]. Mustafa et al. published a
comprehensive requirements analysis for carsharing systems
[12]. There exist also protocols that are not intended for
carsharing but could also be used in this context. Grey is a
research project which has been used to access physical space,
computer logins and web applications based on asymmetric
crypto on smartphones [13]. With Grey, users can pass their
authorizations to other users. Arnosti et al. proposed a general
physical access control system that uses NFC to communicate
with digital and physical resources. However, their protocol
requires a network connection between the resource and a
central server [14]. Groza et al. explored the use of trusted
platform modules along with identity-based signatures for
vehicle access-control [15]. Ouaddah et al. developed an access
control framework for internet of things applications based on
blockchain technology [16]. Similar to public key recovery

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 9 / 28

which is used in the presented protocol is another technique
called implicit certificates. Some IoT-Protocols make use of
this technique, example are developed by Sciancalepore et al.
and Ha et al. [17] [18]. Furthermore, there are many proprietary
solutions mostly from carsharing companies, but no details
are publicly available. Examples are from Zipcar, OTA-Keys,
Continental Cars, and Valeo. To the best of our knowledge no
prior work has focused on low bandwidth protocols for access
control in carsharing. To fill this research gap, we propose a
new lightweight access control protocol for offline cars.

III. PROTOCOL

In this section, the developed access control protocol is
presented.

A. Overview
The protocol is based on the principle of authorization

tokens and a strong authentication mechanism with public
key certificates. Each user has a device containing a unique
private key used for authentication and a public key certificate.
Further, each user has one or multiple authentication tokens,
which are digitally signed messages that link access rights to a
specific user. These tokens are independent of the private key
used for authentication and can be shared between multiple
devices of one user. For example, if a user changes his smart-
phone, then he needs to onboard his new phone to generate a
new private key and get a new public key certificate and then he
can copy his authorization tokens to his new device. The user
can then create an access request on his device. Each access
request is authenticated with the private key and linked to the
user with the public key certificate. Authentication with public
key certificates is a widely used and secure authentication
mechanism and removes many attack points because outsiders
can forge access requests of regular users only with negligible
probability. The most important advantage of an authorization
token is that the car only needs to store a few public keys
as a trust anchor. It uses these saved public keys to check
access requests. This is useful for applications where the car
is offline for a long time or the hardware of the car needs to
be inexpensive.

a) Components and Roles: A user can access a car from
different devices. A user device can be a smartphone, a smart
card, or a computer. To use a new device, the user needs
to introduce it to the system by performing the onboarding
process with it. During device onboarding, a new private key
is generated and an Identity Authority (IA) issues a public
key certificate for the new device. The car needs to have a
computing platform that communicates with the user device,
validates the access requests and controls the immobilizer of
the car. A car owner is a person who has administrative access
to a car and configures its computing platform. There are
two different authority roles. The IA checks the identity of
users and issues public key certificates for new user devices.
The Permission Authority (PA) issues authorization tokens.
The cars can trust multiple authorities. Figure 1 visualizes the
relationships between the different components. One party can
be an IA and PA at the same time; however, the two roles can
also be split between different parties. For instance, in peer-to-
peer sharing, each car owner could trust a car-sharing platform
to check identities and driving licenses but run a PA by himself.
The protocol does not specify a user registration method. We

assume that identity authorities have a way to manage users
and that users can authenticate to identity authorities. The
public key certificates are only used to authenticate a user to
a car.

User User Device Car Platform Car
Immobilizer

controls
1:n

access
request

n:m
controls

1:1

Identity
Authority

Permission
Authority

issues public
key certificate 1:n issues

authorization token
n:m

Figure 1. Components and Roles

b) Basic Description: Each user in the system owns
an asymmetric key pair used for authentication. During the
onboarding process, an Identity Authority signs a public key
certificate for the user. Next, the user receives an authorization
token which is signed by the Permission Authority. To access
a car, the user signs an access request which contains a
description of what he wants to do. This access request
message, together with a certificate and authorization token, is
then sent to the car. The car verifies the access request. If the
car trusts all the involved authorities and the request is valid,
it grants access. The car trusts a set of authorities by storing
their public keys in a local trust store. An authorized user
can delegate a subset of his access rights to another user. For
instance, when a user booked a car, he might not use the car
only by himself but wants that his travel companion is able to
open the car too. To realize token delegation, all authorization
tokens have a flag that indicates whether the authorized user
is allowed to delegate his access rights to another user. To
delegate an access right, an authorized user A signs a new
token for another user B. User B then uses the chain of tokens,
containing his token and the token of A, to claim or further
delegate his access rights.

c) Cryptographic Primitives: The cryptographic primi-
tives used are a cryptographic hash function H(m) and the
Elliptic Curve Digital Signature Algorithm (ECDSA) with
public key recovery. recoverPk(h, s) is a function which
computes a public key pk which is valid for the digest h
and signature s. ECDSA is one of the only digital signature
schemes where this operation is possible [19] [20] [8].

B. Protocol Phases
In this section, we describe the different phases of the

protocol. Generally, if any check fails, the process must be
aborted. Figures 2 to 7 illustrate the different processes.

1) Car Initialization: (Figure 2) During the initialization
process, a car owner CO adds a new car to the system
by setting up the car platform CP . First, the CO sends
the SystemParameters consisting of the digital signature
algorithm and the hash function to the CP . Next, he sends
the set of trusted public keys PKIA, PKPA on the CP .
These public keys are later used to check the authenticity of
public key certificates and authorization tokens. Further, the
CO should check if the clock to the CP is precise enough.
How precise the clock must be can vary between different
systems; however, the divergence should usually not exceed a
few seconds. A precise time source is necessary because the
car needs the current time to check if the access tokens are
valid at the moment of usage.

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 10 / 28

Car Owner CO Car Platform CP

SystemParameters

PKIA, PKPA

Set system parameters

Persist PKIA, PKPA

Figure 2. Car Initialization Sequence Diagram

2) Device Onboarding: (Figure 3) During onboarding, a
user U sets up a new personal device D to later access a car.
The device usually communicates with the authorities over an
internet connection; therefore, minimal message sizes are not
important during this process. The device needs to generate a
new private key. Then it requests a public key certificate from
an IA for the public key which belongs to the private key.
This process needs a mutually authenticated channel between
D and IA. D first generates a key pair (sk, pk) where sk is
the platforms new private key and pk is the corresponding
public key. D then generates a proof of knowledge of sk
by signing H(u, pk) with sk. Then it sends this signature s
together with is username u and public key pk to the IA.
This proof of knowledge is needed to prevent a user from
getting a certificate for a key pair without the knowledge
of the private key. The IA then checks this proof and then
signs sC = signskIA(H(u, pk, v)) where v is the validity
period of the public key certificate and sends the certificate
cert = (u, v, sC) to D. Note that the public key is hashed
into the signed part of the certificate but not contained in the
certificate itself. The public key can later be recovered and
then the authenticity of the certificate can be checked.

User Device D Identity Authority IA

skIA

u← username

sk, pk ← generateKeys()

h← H(u, pk)

s← signsk(h)

u, pk, s

verifypk(H(u, pk), s)

v ← validity period

r ← H(u, pk, v)

sC ← signskIA
(r)

cert = (u, v, sC)

cert

Persist cert

Figure 3. Device Onboarding Sequence Diagram

3) Root Token Issuance: (Figure 4) The result of the root
token issuance process is an authorization token t. This token
allows the user to claim access rights to a car or to delegate
his rights to another user. If a token tn is delegated, all tokens
used t1, ..., tn−2, tn−1 to delegate the last token tn are needed
to check the validity of the last delegated token. This sequence
of tokens t1− tn is called a chain of tokens T . The first token
t1 in such a chain needs to be issued by a PA and is called the
root token. To issue a root token, a PA signs an authorization
token t and sends this token to the device D of the user. How
the PA manages the access rules depends on the application
of the protocol and is not specified. The token t is a signed

message consisting of p, which is a description of the access
rights of the user. It also contains a bit-flag d, which indicates
if the user can delegate his access rights and a signature
sT1 = signskPA

(H(u, p, d)). To keep the protocol flexible, the
content of p is not specified. It should contain a set of cars that
the user may access and a validity timespan. The root token
then is t1 = (p, d, sT1). The PA sends the sequence T1 to the
D of the user. D stores T1 together with C1 = (cert) which is
the sequence of the corresponding public key certificates. Note
that the username u itself is part of the signed hash. However,
it is not part of the token message like the public keys in
certificates. The reason for this is that an authorization token
must always be checked with the corresponding public key
certificate containing the same username. Instead of testing if
both usernames are the same, u can be taken from the public
key certificate and so u can be omitted from the authorization
token.

Device D from User n Permission Authority PA

cert skPA

u = name of permitted user

p = access rights description

d = delegable

h← H(u, p, d)

sT1 ← signskPA
(h)

t1 ← (p, d, sT1)

T1 ← (t1)

T1

C1 ← (cert)

Persist C1, T1

Figure 4. Root Token Issuance Sequence Diagram

4) Token Delegation: (Figure 5) To delegate a token, the
delegating user with username un−1 enters the name of the
receiver un, the description of the rights he wants to delegate
pn and the flag dn, which indicates if the new token can further
be delegated to his device D. D then sign the new token tn
with the private key skn−1 in the same way as in the root token
issuance process, except that in the new sequence of tokens Tn,
tn is appended to the prior sequence of tokens Tn−1. D sends
the new chain of tokens Tn and the prior chain of certificates
Cn−1 to the device of the receiver D′. D′ appends his public
key certificate to the chain of certificates Cn−1. The receiving
user can further delegate his token, if the received token is
delegable, by performing this process again.

Delegate Device D Receiver Device D’

(from user n− 1) (from user n)

skun−1
, Tn−1, Cn−1 certn

hn ← H(un, pn, dn)

sTn ← signskun−1
(hn)

tn ← (pn, dn, sTn)

Tn ← Tn−1‖(tn)

Cn−1, Tn

Cn ← Cn−1‖(certn)
persist Cn, Tn

Figure 5. Token Delegation Sequence Diagram

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 11 / 28

5) Access Request: (Figure 7) To create an access request,
the user needs a list of tokens T = t1, . . . , ti−1, ti and a list
of certificates C. Each ti in T except t1 must be signed by
the public key corresponding to the certificate ci−1. The root
token t1 must be signed by a Permission Authority. Also, the
user of ci and ti must be the same. Figure 6 illustrates a
chain of tokens and the corresponding certificates resulting
from two delegations. The fields in parentheses are hashed
into the signature but are not stored in the message. To
access a car, the user U enters a description of the access
request desc into his device D. This is needed in case a car
allows different accesses or needs additional information. For
instance, the description can specify that the car should open
the trunk only. For this description, together with, the current
time τ and the name of the car r, D creates a signature
s = signsk(H(desc, τ, r)). Finally, τ , the list of tokens T ,
the list of certificates C, the description desc and s are sent to
the car platform CP . CP validates the chain of permissions
according to the validateRequest procedure (Figures 8 and 9)
and if no check fails, it grants accesses to the car according to
the description desc. The authentication mechanism depends
on the hardness to forge the digital signature s. For an attacker,
without the knowledge of the private key sk that belongs to the
public key certificate, it is not realistic to forge a valid signature
s. An attacker could record and try to replay an access request.
To prevent this, the timestamp τ is also included in the signed
part of the request. The car must check if the timestamp
is close to the current time provided by the clock of the
car platform. How small the derivation can be is a trade-off
between susceptibility for timing errors and security.

Certificate 1
u1

(pk1)
v1
sC1

User 1
Certificate 2

u2
(pk2)
v2
sC2

User 2
Certificate 3

u3
(pk2)
v3
sC3

User 3

Token 1
(u1)
p1
d1
sT1

Token 2
(u2)
p2
d2
sT2

Token 3
(u3)
p3
d3
sT3

Request
(r)
τ

desc
sreq

C

T

signs signs

signs

PA

signs

Figure 6. Access Request Example

C. Analysis of the Access Request Size
In this section, the size of the access request message is

analyzed. This size is very important because the channel
between the user device and car platform often has a low
bandwidth.

a) Security Parameter: When implementing an applica-
tion of this protocol, a security parameter S has to be chosen.
This parameter is a way to define how difficult it should be
for an attacker to break the cryptographic primitives of the
application. More precisely: A polynomial bound attacker is
expected to break the primitives in O(2S) computing steps.
Nowadays a security parameter of about 112 is recommended
to protect secrets for about 10 years [21] [22]. However, this

User Device D from User n Car Platform CP

un, skn, T, C PKIA, PKPA

r ← car name

τ ← currentT ime()

desc← additional information

sreq ← signskn (H(r, τ, desc))

req = (τ, T, C, desc, sreq)

req

validateRequest(req)

carAccess(desc)

Figure 7. Access Request Sequence Diagram

validateRequest(τ, T, C, desc, sreq, PKIA, PKPA)

n← length(C)

// Authentication Check

check currentT ime() is near τ
r ← car name
h← H(r, τ, desc)

// cun means the username of the nth certificate

signatureCheck(h, sreq, cn, c
u
n, PKIA)

// Check if the access description is within the claimed access privileges

// tpn means the privileges of the nth token

Check desc is within tpn
Check context of tpn

// Check the root token

// tsi means the signature of the ith token

h← H(cu1 , t
p
1, t

d
1)

pkPA ← recoverPk(h, ts1)

Check pkPA ∈ PKPA

// Check the chain of tokens

for i← 2, 3, ..., n

h← H(cui , t
p
i , t

d
i)

signatureCheck(h, tsi , ci−1, c
u
i−1, PKIA)

// tpn means the privileges of the nth token

Check tpi are within tpi−1

Check tui = cui

Check tdi−1 = 1

Figure 8. Validate Request Procedure

protocol only provides authentication and authorization. It does
not provide confidentiality. The keys used to sign the messages
are only valid for a specific time and should then be renewed.
An attacker is not interested in breaking old keys. Therefore,
a smaller security parameter is also possible when all keys
(especially the authority keys) are regularly replaced by freshly
generated keys. To achieve a security level of S a 2S bit curve
must be used (for instance a 256 bit curve for 128 bit security).

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 12 / 28

signatureCheck(h, s, cert, u, PKIA)

pk ← recoverPk(h, s)

r ← H(u, pk, certv)

pkIA ← recoverPk(r, certs)

Check pkIA ∈ PKIA

Check currentT ime() within certv

Figure 9. Signature Check Procedure

An ECDSA signature then has a size of 4S plus two bits for the
recovery parameter, which are negligible for our calculations.

b) Size of an Access Request: An access request con-
sists of at least one certificate and one token, each containing
one digital signature. Additionally, we have one signature for
the access request message itself. For each delegation, we need
to add one certificate and one token. Let s = 4S be the size
of a digital signature. The total size of the access request is
therefore s + a + (d + 1)(2s + b) where d is the number
of delegations. a is the size of the fields in the request (τ ,
desc), and b is the size of the fields in the certificate and token
(username, validity, privileges). Because a and b are relatively
small, we assume them to be a ≈ 20 bytes and b ≈ 40 bytes.
Table I shows the calculated access request message sizes.

TABLE I. CALCULATED SIZE OF THE ACCESS REQUEST

for S=100

No delegation: 3s+ a+ b ≈ 3s+ 60B ≈ 210 bytes

One delegation: 5s+ a+ 2b ≈ 5s+ 100B ≈ 350 bytes

Per additional delegation: 2s+ b ≈ 2s+ 50B ≈ 140 bytes

D. Proof of Concept

To test the efficiency of protocol, we created a prototype
which consists of a mobile application and a Raspberry Pi 3b+
running a Node.js application [23]. An iPhone X was used to
transmit an access request over Bluetooth Low Energy (BLE)
to the raspberry witch was simulating the car. It took in average
495 ms to transmit and compute an access request message
with no delegations. This was measured in an environment
with no other BLE devices nearby and 15 cm distance be-
tween the devices. With one delegation, the transmission and
computation time increased to in average 566 ms and with
two delegations to in average 732 ms. This value could be
minimized by improving the computational performance of the
prototype [8].

IV. ANALYSIS OF ATTACK VECTORS

This section discusses different vectors an adversary could
use to attack a system using this protocol and how the protocol
protects against such attacks.

a) Denial of Service: Communication channels over the
air are in general vulnerable to a denial of service attacks.
Therefore, an attacker could prevent an authorized user from
accessing a car. For applications where availability is impor-
tant, it is better to use a low range technology such as NFC
instead of Bluetooth.

b) Man-in-the-middle: An attacker can capture a mes-
sage in transit and forward it to the car, but since all part of the
access request are authenticated he cannot alter it. However,
if an attacker captures the request messages, it could have a
privacy impact. For applications where privacy is important,
it is recommended to encrypt the access requests in such a
way that only the targeted car can decrypt it. Another type of
attack would be when an attacker tries to extend the range of
the communication channel between the user and the car. He
could trick the user to unintentionally open a car. To prevent
this, the user device should only send access requests when
the user confirms that he is near the car.

c) Clock-Synchronization: If the time source of the car
is not correct, a user with a valid token could access the car
outside the validity timespan of the token. Also, the validity
of the authentication certificates could be circumvented. It is
therefore important that only the car owner can adjust the
time source of the car. Depending on the application a small
derivation of a few seconds can be unproblematic, but longer
differences should be prevented.

d) Replay Attacks: An attacker can copy a transmitted
access request and replay it later. However, the time stamp τ in
the access request prevents the car from accepting the replayed
access request because it compares τ to the current time.

e) Abuse of the Car: A malicious user who has access
to a car could use it in an unintended way. For example a
customer could try to manipulate the car’s computing platform.
To prevent this, the computing platform should be physically
protected against such and similar manipulations, or at least
able to detect it. Also, a user could rent a car and not return
it on time. Such and similar attacks should be regulated in the
general business terms of the carsharing provider.

f) Attacks on the Authentication Mechanism: An at-
tacker could try to circumvent the authentication mechanism
of the access request and impersonate another user. To do this,
the attacker would need to forge a valid public key certificate
of a trusted IA or forge a valid signature in the access request.
Both types of attack are prevented by the difficulty of forging
a digital signature.

g) Attacks on the Authorization Mechanism: An at-
tacker which is a registered user could also try to circumvent
the authorization mechanism by trying to forge a valid chain
of authorization tokens. To do this, the attacker would need to
forge either the signature of one authorization token or forge
a public key certificate.

h) Attacks on the Devices of Other Users: An attacker
could try to steal the private key of another user’s device or
make another user’s device to sign a token or access request by
installing malware on the victim’s device. To prevent this, the
users’ device must be secured against such attacks. To make
this attack more difficult, the private key should be stored on a
trusted platform module with a key activation function, which
most modern devices provide.

i) Attacks on the Identity Authorities: An attacker
could try to attack an IA directly. An attacker that intruded
into an authority could either steal the private key or make
the authority to sign a public key certificate. The attacker
then could impersonate any other user. Once the intrusion is
detected, all car owners would need to remove the public key of
the corrupted authority on all cars that trusted that authority.

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 13 / 28

To prevent such an attack, the IA must be secured against
different cyberattacks to make such an attack unprofitable for
an attacker.

j) Attacks on the Permission Authorities: Like the at-
tack on the identity authorities, an attacker could also steal the
private key of a PA. He then could issue arbitrary root tokens
and could access all cars that trust the corrupted authority.
However, to use the car, the attacker also needs to authenticate
himself and therefore needs a public key certificate. This means
that such an attack would only be interesting for an already
registered user or in combination with another attack. Similar
to the attack on the identity authorities, the PA must be secured
against different cyber attacks.

To sum up, attacks on the authorities are the most promis-
ing attacks. As a result, these authorities must be well secured
to mitigate such threats. Splitting up the privileges of the
authorities also minimizes the impact of a successful attack.

V. CONCLUSION

The presented protocol enables carsharing providers to
use a secure access control mechanism over Bluetooth Low
Energy or Near-Field Communication. It is based on well-
known security mechanisms but uses the less-known technique
of public key recovery to reduce the size of the messages. The
security mechanism of the protocol is based on the principle
of public-key certificates and digitally-signed authorization
tokens. Both mechanisms are well known and used for a wide
variety of applications. The main novelty of our approach
is the use of public-key recovery, to drastically reduce the
message sizes of the custom certificates. The custom public
key certificates we developed, have a size of only about 100
Bytes for a 256-bit key. Compared to traditional X.509 [24] or
GPG [25] certificates for the same ECDSA key, this is about
5 to 10 times smaller. The networking model of this protocol
assumes that only the car and the smartphone can communicate
with each other during the access phase. A consequence of this
model is that the revocation of an access right is not possible. If
a carsharing service allows a user to open a car in places where
no network connection is possible, it gives up the possibility
to communicate with the car. Thus, the car cannot ask if the
user’s access rights have been revoked.

To the best of our knowledge, it is the first access control
protocol that makes use of this technique. As a result, it has
powerful and interesting properties, which makes it suitable
for carsharing-applications. Nevertheless, the protocol could
also be used in other domains such as building door systems.
The developed prototype proves that the protocol runs fast on
today’s smartphones and is very convenient for the users.

REFERENCES

[1] S. Le Vine, A. Zolfaghari, and J. Polak, “Carsharing: evolution, chal-
lenges and opportunities,” Scientific advisory group report, vol. 22,
2014, pp. 218–229.

[2] S. Shaheen, E. Martin, and B. Apaar, “Peer-to-peer (p2p) carsharing:
Understanding early markets, social dynamics, and behavioral impacts,”
2018.

[3] S. International Organization for Standardization, Geneva, “Iso/iec
18092:2013,” Tech. Rep., [retrieved: March, 2020]. [Online]. Available:
https://www.iso.org/standard/56692.html

[4] R. Want, “Near field communication,” IEEE Pervasive Computing,
no. 3, 2011, pp. 4–7.

[5] K. Finkenzeller, RFID handbook: fundamentals and applications in
contactless smart cards, radio frequency identification and near-field
communication. John Wiley & Sons, 2010.

[6] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of
bluetooth low energy: An emerging low-power wireless technology,”
Sensors, vol. 12, no. 9, 2012, pp. 11 734–11 753.

[7] Apple. Core nfc documentation. [retrieved: March, 2020]. [Online].
Available: https://developer.apple.com/documentation/corenfc

[8] G.-L. Frei and F. Gamper, “Design and implementation of a digital ac-
cess control protocol,” B.S. thesis, Bern University of Applied Science,
2019.

[9] A. Dmitrienko and C. Plappert, “Secure free-floating car sharing for
offline cars,” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy. ACM, 2017, pp. 349–360.

[10] A. Dmitrienko, A.-R. Sadeghi, S. Tamrakar, and C. Wachsmann,
“Smarttokens: Delegable access control with nfc-enabled smartphones,”
in Trust and Trustworthy Computing, S. Katzenbeisser, E. Weippl, L. J.
Camp, M. Volkamer, M. Reiter, and X. Zhang, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 219–238.

[11] I. Symeonidis, A. Aly, M. A. Mustafa, B. Mennink, S. Dhooghe, and
B. Preneel, “Sepcar: A secure and privacy-enhancing protocol for car
access provision,” in Computer Security – ESORICS 2017, S. N. Foley,
D. Gollmann, and E. Snekkenes, Eds. Cham: Springer International
Publishing, 2017, pp. 475–493.

[12] I. Symeonidis, M. A. Mustafa, and B. Preneel, “Keyless car sharing
system: A security and privacy analysis,” in 2016 IEEE International
Smart Cities Conference (ISC2). IEEE, 2016, pp. 1–7.

[13] L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter, J. Rouse, and
P. Rutenbar, “Device-enabled authorization in the grey system,” in
Information Security, J. Zhou, J. Lopez, R. H. Deng, and F. Bao, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 431–445.

[14] C. Arnosti, D. Gruntz, and M. Hauri, “Secure physical access with
nfc-enabled smartphones,” in Proceedings of the 13th International
Conference on Advances in Mobile Computing and Multimedia, ser.
MoMM 2015. New York, NY, USA: ACM, 2015, pp. 140–148.

[15] B. Groza, L. Popa, and P.-S. Murvay, “Carina-car sharing with identity
based access control re-enforced by tpm,” in International Conference
on Computer Safety, Reliability, and Security. Springer, 2019, pp.
210–222.

[16] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “Fairaccess: a new
blockchain-based access control framework for the internet of things,”
Security and Communication Networks, vol. 9, no. 18, 2016, pp. 5943–
5964.

[17] S. Sciancalepore, A. Capossele, G. Piro, G. Boggia, and G. Bianchi,
“Key management protocol with implicit certificates for iot systems,”
in Proceedings of the 2015 Workshop on IoT challenges in Mobile and
Industrial Systems. ACM, 2015, pp. 37–42.

[18] D. A. Ha, K. T. Nguyen, and J. K. Zao, “Efficient authentication
of resource-constrained iot devices based on ecqv implicit certificates
and datagram transport layer security protocol,” in Proceedings of the
Seventh Symposium on Information and Communication Technology.
ACM, 2016, pp. 173–179.

[19] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International journal of information secu-
rity, vol. 1, no. 1, 2001, pp. 36–63.

[20] C. Research, “Standards for efficient cryptography, SEC 1: Elliptic
curve cryptography,” September 2000, version 1.0.

[21] E. Barker and Q. Dang, “Nist special publication 800-57 part 1, revision
4,” NIST, Tech. Rep, 2016.

[22] N. Smart et al., “Algorithms, key size and protocols report (2018),”
ECRYPT—CSA, H2020-ICT-2014—Project, vol. 645421, 2018.

[23] G.-L. Frei and F. Gamper. Loac-protocol prototype. [retrieved:
March, 2020]. [Online]. Available: https://github.com/gianlucafrei/
LOACProtocol (2019)

[24] Microsoft. X.509 public key certificates. [retrieved: March, 2020].
[Online]. Available: https://docs.microsoft.com/en-us/windows/desktop/
seccertenroll/about-x-509-public-key-certificates

[25] GnuPG. The gnu privacy guard. [retrieved: March, 2020]. [Online].
Available: https://www.gnupg.org/index.html

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 14 / 28

Keep it in Sync! Consistency Approaches for Microservices
An Insurance Case Study

Arne Koschel
Andreas Hausotter

Hochschule Hannover
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science
Hannover, Germany

Email: arne.koschel@hs-hannover.de
Email: andreas.hausotter@hs-hannover.de

Moritz Lange
Sina Gottwald

Hochschule Hannover
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science
Hannover, Germany

Email: moritz.lange@stud.hs-hannover.de
Email: sina.gottwald@stud.hs-hannover.de

Abstract—Microservices is an architectural style for complex
application systems, promising some crucial benefits, e.g. better
maintainability, flexible scalability, and fault tolerance. For this
reason microservices has attracted attention in the software
development departments of different industry sectors, such as e-
commerce and streaming services. On the other hand, businesses
have to face great challenges, which hamper the adoption of
the architectural style. For instance, data are often persisted
redundantly to provide fault tolerance. But the synchronization
of those data for the sake of consistency is a major challenge.
Our paper presents a case study from the insurance industry
which focusses consistency issues when migrating a monolithic
core application towards microservices. Based on the Domain
Driven Design (DDD) methodology, we derive bounded contexts
and a set of microservices assigned to these contexts. We discuss
four different approaches to ensure consistency and propose a
best practice to identify the most appropriate approach for a given
scenario. Design and implementation details and compliance
issues are presented as well.

Keywords–Microservices; Consistency; Domain Driven Design
(DDD); Insurance Industry.

I. INTRODUCTION

A current trend in software engineering is to divide soft-
ware into lightweight, independently deployable components.
Each component can be implemented using different tech-
nologies because they communicate over standardized network
protocols. This approach to structure the system is known as
the microservice architectural style [1].

As a study from 2019 (see [2]) shows, the microservice
architecture style is already established in many industries
such as e-commerce. However, this is not the case for the
insurance and financial services industry. Therefore, as part
of ongoing cooperation between the Competence Center In-
formation Technology and Management (CC ITM) and two
regional insurance companies, the research project Potential
and Challenges of Microservices in the Insurance Industry
was carried out. The goal was to examine the suitability
of microservice architectures for the insurance industry. The
CC ITM is an institute at the University of Applied Sciences
and Arts Hanover. Main objective of the CC ITM is the
transfer of knowledge between university and industry. The
cooperating insurance companies currently both operate a

service-oriented architecture (SOA). Over time, however, it has
become apparent that this architectural style is not suitable for
some parts of the system and a finer subdivision (microser-
vices) would be advantageous. A specific example for such a
part of the system is the Partner Management System,
which was transferred into a microservice architecture in the
context of our research.

This paper presents a case study based on our research
project. The case study focuses on consistency issues when
implementing a microservice architecture. Therefore it de-
scribes how the monolithic architecture of the Partner
Management System was divided into several microser-
vices, which problems occur regarding the data consistency
across the microservices and presents different approaches
to solve these issues. Implementation details and insurance
specific topics such as special compliance requirements are
presented as well.

We organize the remainder of this article as follows: After
discussing related work in Section II, we present the domain
and requirements of the Partner Management System
in Section III. Afterwards, Section IV shows how we split the
system into microservices, discusses compliance aspects and
describes the benefits the new architecture offers. Section V
provides details about technical aspects of this architecture.
In Section VI we evaluate the outcomes with a focus on
consistency aspects. Section VII discusses general approaches
to ensure consistency in microservice architectures and how
these approaches can be applied to get a suitable consis-
tency solution for the Partner Management System.
Section VIII summarizes the results and draws a conclusion.

II. RELATED WORK

Our research is based on the literature of well-known
authors in the field of microservices, especially the ground
works of Fowler and Lewis [1] as well as of Wolff [3]. For
the practical parts of our research, mainly the elaborations
of Newman (see [4]) were used. Moreover, we found valu-
able ideas (also) w.r.t consistency in the patterns work from
Richardson [5]. Additional helpful microservices migration
patterns are, for example, presented in [6] and some as well
in [7]. Especially for the migration of the legacy application,

7Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 15 / 28

the contribution of Knoche and Hasselbring (see [8]) was
consulted. As a study from 2019 shows (see [2]), microservice
architectures are barely found in the insurance and financial
services industry in Germany. Therefore, results from other
industries had to be used for our research (for example [9]).

Although the basic literature is extensive, not too much
scientific research has been done about synchronizing ser-
vices. Because microservices should use independent database
schemes and can even differ in persistence technology, the
traditional mechanisms of replicating databases (see, e.g.,
Tanenbaum and Van Steen [10, chap. 7]) cannot be applied as
well. Instead, ideas and patterns from other areas of software
engineering had to be transferred to the context of microser-
vices.

So, in addition to general microservices research, more
fundamental concepts of operating systems (e.g., [11]) and
object-oriented programming (e.g., [12]) were considered by
our research. Furthermore, ideas of general database research
like the SAGA-Pattern [13], which was already applied to
microservices by Chris Richardson [5], were considered as
well. Event-based approaches like event sourcing, described
by Fowler [14], were also applied to microservices within our
research.

From a microservices design perspective, domain-driven
design (DDD) from Evans [15], is currently considered to be a
best practice to find suitable so called bounded contexts, which
can form a functional basis for microservices. Going further
than many microservices-based systems, we put a special
emphasis on compliance aspects, when designing the bounded
contexts. Since insurance companies are highly supervised by
the government (in Germany: Federal Financial Supervisory
Authority (BaFin)), several compliance rules apply for them,
for example “Supervisory Requirements for IT in Insurance
Undertakings (in German: VAIT [16])”.

Previous work has already evaluated the outcomes of the
research project mentioned in the introduction (see [17]). How-
ever, the project and the evaluation only partially discussed
the issues of consistency. In particular, it missed a fair bit of
implementation details. Not discussed in [17] by us at all, are
the aforementioned compliance aspects for our microservice
design. For this reason, we have focused on those topics after
the completion of the initial project, for example, with thesis
work, that dealt with the issue of consistency in context of
the project results as well a another work, which dealt with
compliance aspects during service design.

In total, the present article is as such a significantly ex-
tended and updated version of our previous work, especially in
the details for service boundaries, service compliance aspects,
system architecture, and example implementation details [18].

III. DOMAIN AND REQUIREMENTS OF THE PARTNER
MANAGEMENT SYSTEM

As mentioned in the introduction, one part of our research
was migrating a system for managing partners of an insurance
company - the Partner Management System. In this
context, partners are defined as natural or legal persons who are
in relation to the insurance company (e.g., clients, appraisers,
lawyers or other insurance companies). Additional to personal
information, a partner may also have information on communi-
cation, bank details, business relations and relations with other
partners.

Figure 1. Simplified Model of the Overall Domain.

For introducing the overall domain, figure 1 shows a
simplified model according to which the SOA service currently
used by the partner companies was modelled. The presented
model is strongly based on the reference architecture for
German insurance companies (VAA) [19], which describes the
monolithic way to implement the Partner Management
System.

At its core, the system is a simple CRUD (Create, Read,
Update, Delete) application that manages the entity Partner
and its properties, even though the implementation as a single
SOA service seems suitable at first glance.

Since the Partner Management System is a funda-
mental service of an insurance company, many other parts of
the overall system are interested in the managed data. However,
not all consumers of the Partner Management System
are interested in the same subset of the data. Furthermore,
some consumers should not have access to some data for
security reasons. For example, the service that collects the
monthly premiums does not need access to a client’s birth
date or profession. These conditions result in a complex
implementation of access rights and varying levels of stress for
different parts of the Partner Management System. An
efficient scaling is not possible. The Partner Management
System is an atomic deployment unit that scales as a whole
and fails as a whole.

Especially the inefficient scaling is critical in the case of
partner companies, since the SOA service is implemented as a
mainframe-based application that can only be scaled at great
expense. Therefore, the partners use the low occupancy during
the night to slowly persist all new datasets collected during the
day so as not to overburden the mainframe-based application.
However, in practice this approach makes crashes at night
extremely critical as the entire system does not work all night
and only few people are available to fix the problem.

8Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 16 / 28

The major issues of the current implementation of the
Partner Management System are obviously a relatively
poor flexibility, scalability and fault tolerance. In addition, the
access rights management is so complex that a legally com-
pliant implementation is difficult. This makes a microservices
approach attractive for this use case.

IV. ANALYSIS OF THE MICROSERVICE
ARCHITECTURE

In order to overcome the aforementioned limitations of the
current Partner Management System, we designed a
microservices-based approach. This section explains how the
system has been split into independent services and presents
the resulting benefits.

A. Dividing the Domain with DDD Strategic Design
In the context of our research, we used the principles

of strategic design (see [15, Part IV]) as part of domain-
driven design (DDD) to split the domain. Figure 2 shows the
decomposition of the analysis model presented in the previous
section.

Figure 2. Bounded Contexts in the Microservice Architecture

It can be seen that the domain has been split into four
bounded contexts. Bounded contexts are the central concept
of strategic design. Vaughn Vernon (see [20]) describes it
as an environment in which a specific language (ubiquitous
language) is spoken and certain concepts are defined. Therfore,
a bounded context is a conceptual boundary within which a
particular domain model is applicable. In relation to Figure 2,
this is shown by the fact that there are several separate
models of the Partner, one for each bounded context. Every
bounded context has a slightly different understanding of the
entity Partner. For example, while for one context the

Partner is a contractor, for another he is a bank account
holder. In order to determine the presented contexts, we heav-
ily discussed the domain and its processes with developers,
architects and insurance domain experts. One technique that
was used for this is event storming.

After we found the bounded contexts according to strategic
design principles, the contexts were mapped to microservices.
Leading microservices experts such as Chris Richardson [5] or
Martin Fowler and James Lewis [1] recommend defining the
microservices along the bounded contexts. This means that
each bounded context should be implemented by one or more
microservices. As figure 2 shows, in the case of the Partner
Management System, a bijective mapping from bounded
contexts to microservices was chosen. The system was
divided into partner-service, contract-service,
comm-sevice and account-service.

B. Compliance Aspects for Dividing the System
In addition to the better manageability of the business com-

plexity as well as the more efficient scalability gained through
the cut, the finer subdivision of the Partner Management
System is also advantageous from a compliance point of
view. This section describes the special requirements that
insurance companies in Germany have to comply with and
how these can be implemented by the designed microservice
architecture.

TABLE I. Protection Level of Personal Data according to [21]

Protection
Level Personal data... Example Degree of

Damage

A
...which have been
made freely available
by the persons
concerned.

Data visible in the
telephone book or on
social media platforms.

minor

B
...whose improper
handling is not
expected to cause
particular harm, but
which has not been
made freely accessible
by the person
concerned.

Restricted public files
or social media not
freely accessible.

minor

C
...whose improper
handling could damage
the person concerned
in his social position or
economic
circumstances
(”reputation”).

Income, property tax,
administrative offences.

manageable

D
...whose improper
handling could
significantly affect the
social position or
economic
circumstances of the
person concerned
(”existence”).

Prison sentences,
criminal offences,
employment
evaluations, health data,
seizures or social data.

substantial

E
...whose improper
handling could impair
the health, life or
freedom of the person
concerned.

Data on persons who
may be victims of a
criminal offence,
information on witness
protection program.

major

German insurance companies are supervised by the Federal
Financial Supervisory Authority (BaFin) who published the
“Supervisory Requirements for IT in Insurance Undertakings”
[16]. These include instructions to comply with the basic
principles of information security (confidentiality, integrity,

9Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 17 / 28

availability) since insurance companies are considered as a
critical infrastructure in Germany. This means that they are
essential for society and economy and therefore more worthy
of protection. Since 2018 the General Data Protection Reg-
ulation (GDPR) is enforceable for processing personal data
as well. This also means that companies need to ensure data
protection and privacy.

The microservice architecture divides the overall system
into multiple independent components. Therefore, it allows to
implement different protection levels for every microservice.
This perfectly fits with the well known security engineer-
ing principle of compartmentalization [22]. In case of the
Partner Management System, it allows us to meet the
legal requirements according to [21], which are shown in
Table I, more easily. It can be distinguished between more
sensitive data requiring a higher security level like contract or
bank details and data that is more uncritical like the name and
telephone number of a person.

The microservice architecture of the Partner
Management System only processes data belonging
to protection levels A to C. Data like the address, telephone
number and bank details of a person aren’t as critical as, e.g.,
health data. Since the processed data in our system would
cause less damage to the person affected if protection of the
data would fail, there is no need to implement a protection
level as strong as it should be for more critical data. But in
general, due to the division in microservices we are able to
map each service to the appropriate protection level.

V. DESIGN AND IMPLEMENTATION OF THE
MICROSERVICE ARCHITECTURE

After the previous section presented the functional design
of the microservice architecture, this section shows the tech-
nical design and some implementation insights.

A. The Technical Microservice Architecture

Taking the bounded contexts found as input, the next step
is the overall technical design of the microservice architecture.

Based on the technical specifications of the insurance
companies involved, the resulting microservices are designed
to be implemented as REST web services (see figure 3)
in Java using the Spring framework. As mentioned before,
each microservice should have its own data management,
realized here as dedicated PostgreSQL databases. Instances of
a microservice share a database (cluster). partnerId and
name are kept in sync across all microservices using REST
calls of the partner-service.

Parts of the Netflix OSS stack are used for the system
infrastructure: Netflix Eureka as a service discovery and Netflix
Zuul as an API gateway. Zuul also provides the web fron-
tend of the application, which is realized as a single-page
application using AngularJS. The ELK stack (Elasticsearch,
Logstash and Kibana) is set up for monitoring and logging.
All shown components of the architecture are deployed in
separate Docker containers and connected by a virtual network
using Docker Compose. In combination with the stateless
architecture of the microservices, it is possible to run any
number of instances of each microservice.

B. Integrating Services into the Microservice Architecture
Given the technical architecture of the overall

microservices-based system, we now provide deeper technical
details of particular microservices. Therefore, this section
provides code snippets to show how services are integrated
into the microservice architecture and how fault-tolerant calls
between services are implemented.

1 @EnableEurekaClient
2 @SpringBootApplication
3 public class Application {
4 public static void main(String[] args) {
5 SpringApplication
6 .run(Application.class, args);
7 }
8 }

Listing 1. Registration with Eureka Service Registry

To integrate a microservice into the microservice architec-
ture from figure 3, it only needs to be registered with Eureka
under a specific name. As a result, the API gateway (and any
other microservice) can find instances of the microservice at
runtime and use the provided REST endpoints. Fortunately, as
listing 1 shows, Spring (Cloud Netflix) provides an easy way
to register a microservice with Eureka.

As the listing shows, the class with the main method needs
to be annotated with @EnableEurekaClient. In addition
(not shown in the listing), the address of Eureka and the name
under which the microservice should be registered must be
stored in the application.properties file. As a result,
the instance of the microservice now registers with Eureka
when starting up. Note: In practice, there will usually be a
federation of Eureka instances to ensure their availability.

C. Implementing Network Calls
Since network calls (to other microservices) can fail, it is

useful to implement a fault tolerance mechanism. In our case,

Figure 3. Technical Design of the Microservice Architecture

10Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 18 / 28

we used the Retry library from Spring. Just like the Eureka
integration it is available via a simple annotation.

1 NaturalPerson createNP(NaturalPerson p){
2 NaturalPerson savedInDB = repository.save(p);
3 distribNP(p);
4 log.info("A natural person was created.");
5 return saved;
6 }
7

8 @Retryable(value={Exception.class}, maxAttempts=5)
9 void distribNP(NaturalPerson p) throws Exception{

10 //network call
11 dataDistributionService.update(savedInDB);
12 }
13

14 @Recover
15 void recover(Exception e, NaturalPerson p){
16 //Rollback transaction to ensure
17 //consistency and notify somebody
18 //that something went terribly wrong.
19 }

Listing 2. Network Call with Retries

Listing 2 shows simplified parts of the implementation of
the partner-service. Every time a new person is created,
the change must be propagated to the other services via a
synchronous network call. Since the successful execution of
this call is a critical factor for consistency in the system,
it makes sense to secure this call with a fault tolerance
mechanism. The @Retryable annotation ensures that the
annotated method is called several times if an exception occurs
during execution. Listing 2 shows an implementation of five
attempts to send the data to the other microservices. If an
exception also occurs after the fifth time, the method annotated
with @Recover is called instead.

D. Design of the microservices
This section presents the internal architecture of the mi-

croservices. The services are implemented in Java using the
Spring Framework. Parts of the partner-service serve
as an example to show the general architecture of the services.

Figure 4 shows the architecture of the
partner-service. It follows a layered architectural
style. Each layer will be explained in the following.

E. Routing Layer
The routing layer is the one that inter-

acts with the consumers of the service. With
the annotation @RestController on the
NaturalPersonController, the Spring Framework
creates an instance of the class and delegates incoming
HTTP requests to its methods. Each of the methods in the
NaturalPersonController is responsible for a REST
endpoint. The functional scope of the controller is limited to
the CRUD operations and an interface to search for natural
persons based on certain properties.

In addition to the NaturalPersonController,
there is also a LegalPersonController and a
PartnerRelationsController to provide the
remaining functionality of the partner-service.
Since the routing layer responds to incoming HTTP requests,
it is responsible for encoding and decoding objects. In our

Figure 4. Architecture of the Partner-service

implementation, the objects are serialized as JSON. The layer
is also responsible for catching exceptions from the business
logic layer and translating them into HTTP status codes.
In summary, the routing layer is an HTTP facade for the
business logic.

F. Business Logic Layer
Classes in the business logic layer are provided with

the annotation @Service. As a result, they are managed
by the Spring Framework and can be used in other
contexts using Spring’s dependency injection mechanism.
For example, the NaturalPersonController gets
an instance of the NaturalPersonService injected
to communicate with the business logic layer. As the
name suggests, the business logic layer implements the
business logic. In our implementation, the business logic is
limited to some input validation and the communication
with the persistence layer. Another responsibility of
the layer is to log domain events. In our case, this is
done with the SLF4J logging framework provided by
Spring. In addition to the NaturalPersonService,
there is also a LegalPersonService and a
PartnerRelationsService to provide the remaining
functionality of the partner-service.

G. Persistence Layer
The responsibility of the persistence layer is to commit

run-time-objects to the database and convert persistent data to
run-time-objects. Again, the dependency injection mechanism
of Spring is used to give the layer above access to the
functionality. The persistence layer is implemented using
Spring Data JPA and is therefore limited to the definition of
an interface with the annotation @Repository. Managed
entity classes must be annotated with @Entity. For the
search functionality described above and the possibility

11Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 19 / 28

to sort search results, the repository is extended with
another two interfaces from Spring Data JPA. For clarity,
the methods of the persistence layer are not shown in
figure 4. The exact description of Spring Data JPA can be
found in the documentation of the Spring Framework.
In addition to the NaturalPersonRepository,
there is also a LegalPersonRepository and a
PartnerRelationsRepository. Each repository
is responsible for a specific database table.

VI. CHALLENGES OF THE MICROSERVICE ARCHITECTURE

Looking at the architecture described in section IV, it looks
like the microservice architecture can solve the problems of
the currently implemented monolithic system. In particular, the
scalability and fault tolerance of individual parts of the system
are a crucial advantage compared to the current implemen-
tation. The system can adapt to the changing load during the
day, eliminating the need for risky nightly batch jobs. With the
benefits of finer granularity however, there are also many new
challenges that need to be mastered. One major challenge, for
example, is the distributed monitoring and logging, which is
handled by the ELK stack. As already mentioned, another key
challenge is the consistency assurance across the services. This
means the synchronization of the partnerId and name,
which serves as an example for the application of our research
results.

As mentioned briefly in Section IV, the synchronization is
realized by REST calls of the partner-service. When-
ever a partnerId or name record is created, deleted or
changed, the partner-service distributes this information
to the other services in a synchronous way. This means
that the partner-service is responsible for ensuring the
consistency of the overall system. Furthermore, the devel-
opment team of the partner-service is responsible for
not corrupting the other contexts by changing the data model
of Partner. This approach is known as Customer/Supplier
pattern (described by Evans [15]) in the context of DDD. If it
is likely that the data model changes, an anticorruption layer
should be considered.

Even if, e.g., the partner-service is unavailable, the
other services can still resolve foreign key relationships to
partner data, because they keep a redundant copy. Moreover,
the system reduces service-to-service calls, because other
services don’t need to call the partner-service on every
operation. This ensures loose coupling of services, which is a
key aspect of microservice architectures [1].

The synchronization of partnerId and name is a critical
part of the application, which is why its implementation needs
to be closer discussed. Since the goal of the first phase of the
project was building the architecture in general, a synchronous
solution was chosen for simplicity. This has several drawbacks:

• Fault tolerance. If the partner-service crashes
during synchronization, some services might not be
notified about the changes. Conversely, if another
service is not available for the partner-service,
it will not be notified as well. This is due to the
transient characteristic of REST calls.

• Synchronicity. After a change of partnerId or
name, a thread of the partner-service is in
a blocked state until all other services have been

notified. Because multiple network calls are necessary
for the synchronization, the response time of the
partner-service is affected. Since microservices
should be lightweight, a large number of network calls
and busy threads are a serious problem.

• Extensibility. Extensibility is a key benefit of the
microservices approach. In the current implementa-
tion, the partner-service holds a static list of
services that need to be notified upon a change of
partnerId or name. If a new service is added
to the system, which is interested in partner data,
the partner-service must be redeployed. Ad-
ditionally, the bigger the number of services to
notify gets, the more the response time of the
partner-service is impaired.

As part of our research, further alternative solutions were
explored, which will be discussed in the next sections.

VII. CONSISTENCY ASSURANCE IN THE PARTNER
MANAGEMENT SYSTEM

In order to find a suitable solution for the specific prob-
lem of synchronizing partnerId and name, the general
approaches have to be examined.

A. General approaches
The central research question is how a change of master

data can be propagated to other interested services without
breaking general microservices patterns like loose coupling
and decentral data management. Especially the latter makes
this a major challenge: Because the data stores and schemas
should be separated, the standard mechanisms of synchronizing
databases cannot be used here.

Based on our research, there are four possible solutions for
synchronizing redundant data in microservices:

• Synchronous Distribution. One approach is that the
owner of the data distributes every change to all
interested services. As discussed in section VI, our mi-
croservice architecture already follows this approach.
To provide loose coupling however, the addresses of
services to be notified should not be contained in the
master service’s code. A better solution is to hold
those addresses in configuration files, or even better,
establish a standard interface where services can reg-
ister themselves at runtime. For example, an existing
service registry (e.g., Netflix Eureka) can be used to
store the information which service is interested in
which data. This approach roughly corresponds to the
Observer-Pattern of object-oriented software develop-
ment, where the subject registers at the observer to get
synchronously notified when changes are made.
As already discussed, notifying a large number of
interested services might cause significant load of the
service containing the master data. This can become
a disadvantage. The distribution takes place in a syn-
chronous fashion however, directly after the change
of data itself. This means that this solution provides a
high degree of consistency among services as long as
the requests don’t fail.

• Polling. Another solution is to relocate the responsi-
bility of synchronizing the redundant data to the inter-
ested services themselves. A straightforward approach

12Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 20 / 28

is to periodically ask for new data using an interface
provided by the service containing the master data.
Based on timestamps, multiple data updates can be
transferred in one go. The size of the inconsistency
window can be controlled by each interested service
independently via the length of the polling interval.
However, despite being consistent in the end, the time
frame in which the data sets might differ is a lot larger
than the one when using a synchronous solution. This
model of consistency is known as eventual consistency
(see [23]).

• Publish-Subscribe. To completely decouple the ser-
vice containing the master data from the other ser-
vices, a message queuing approach can be utilized.
On every data change, an event is broadcasted on
a messaging topic following the Publish-Subscribe-
Pattern. Interested services subscribe to this topic,
receive events and update their own data accordingly.
Multiple topics might be established for different
entities. If the messaging system is persistent, it even
makes the architecture robust against service fail-
ures. This approach is suitable for the resilient and
lightweight nature of microservices. It must be noted,
however, that it also falls in the category of eventual
consistent solutions - until the message is delivered
and processed, the system is in an inconsistent state.
For example, the SAGA-Pattern uses this approach to
distribute information about changes.

• Event Sourcing. Instead of storing the current appli-
cation state, for some use cases it might be beneficial
to store all state transitions and accumulate those to
the current state when needed. This approach can
also be used to solve the problem of distributing
data changes. Upon changes in master data, events
are published. Unlike the Publish-Subscribe solution
however, the history of all events is persisted in a
central, append-only event storage. All services can
access it and even generate their own local databases
from it, each fitting their respective bounded context.
This solution provides a high degree of consistency:
Each data change can be seen immediately by all other
components of the system. It must be noted that a
central data store, which microservices try to avoid,
is introduced. This weakens the loose coupling and
might be a scalability issue - the append-only nature
of the data storage enables high performance though.

If none of the consistency trade-offs above is bearable, this
might be an indicator that the determined bounded contexts are
not optimal. In some cases, contexts are coupled so tightly that
keeping data redundantly is not feasible. In this case, it should
be discussed if the contexts and therefore also services can be
merged. Furthermore, if this issue occurs in several parts of
the architecture, it should be evaluated whether a microservices
approach is the right choice for this domain.

B. Best practice for synchronizing partner data
The discussion in the previous section has shown that some

approaches tend to guarantee a stronger level of consistency
than others. This means that before all non-functional require-
ments can be considered as decision criteria, the required
consistency degree of the underlying business processes must

Figure 5. Partner Management System: Publish Subscribe Solution

be examined. This can be done by first specifying the possible
inconsistent states and then combining them with typical use
cases of the system.

In case of the Partner Management System, only
the partner data, containing the partnerId and name of
every partner, is saved in a redundant fashion. Combining these
with the CRUD-operations, the following inconsistent states
are possible:

• A new Partner might not yet be present in the
whole system.

• partnerId or name might not be up-to-date.
• A deleted Partner might not yet be deleted every-

where.

We combined these inconsistent states with typical
use cases and business processes in which the Partner
Management System is involved, like sending a letter via
mail or a conclusion of an insurance contract.

The result of this examination is that the partner man-
agement of insurance companies is surprisingly robust against
inconsistent states. This is mainly due to the reason that the
business processes itself are already subject to inconsistency:
If a customer changes his or her name, for example, the
inconsistency window of the real world is much larger than
the technical one (the customer, e. g., might not notify the
insurance company until several days have passed). The postal
service or bank already needs to cope with the fact that the
name might be inconsistent. The discussion of other potential
situations brought similar results. This makes sense because
the business processes of insurance companies originated in a
time without IT, which means that they are already designed
resilient against delays and errors caused by humans. Cases
where the customer notices the delay (e.g., a wrong name on
a letter) are rare and justifiable.

13Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 21 / 28

The combination of the inconsistent states and the use
cases of the Partner Management System revealed that
a solution which promotes a weaker consistency model is
acceptable – no approach has to be excluded beforehand. So,
the choice of a synchronization model is only influenced by
the non-functional requirements.

The analysis of the partner domain showed that the main
non-functional requirements are loose coupling, high scalabil-
ity and easy monitoring. Especially because of loose coupling,
the Publish-Subscribe-Pattern is the most viable solution.

Figure 5 shows how the Publish-Subscribe solution can
be used to synchronize partnerId and name. On every
change of the partner data, an event is broadcasted by the
partner-service. The other services subscribe to this
topic and receive those events and update their own data
accordingly. Technically, the topic could be implemented by,
for example, RabbitMQ and a standardized messaging protocol
like AMQP.

VIII. CONCLUSION AND FUTURE WORK

This paper has presented a microservice case study
from the insurance industry. The challenges of the existing
Partner Management System were identified and dis-
cussed. The paper gave insights into the design process of
the new microservice architecture, presented implementation
details and discussed further (insurance-specific) topics such
as special compliance requirements. In addition, the new
challenges arising from the microservice architecture were
discussed and the implementation, which was initially de-
veloped during our research project, was critically reviewed
with regard to consistency. The general solutions for the
synchronization of data in distributed systems were pointed out
and a (more suitable) alternative to the current implementation
was determined.

The next steps will be to complete the implementa-
tion of the publish-subscribe approach for the Partner
Management System with the described technologies.
Prior to take the system into operation, it must be compre-
hensively tested under real-world conditions. In our recent
research a test strategy tailored to the requirements of the
industry partner was designed and implemented. This strategy
comprises several steps, i.e. interface tests, web interface tests,
load and performance tests, which are performed within so-
called ’layers’. These layers represent different test environ-
ments, up to an infrastructure which is similar to the production
environment. To exploit the potential of the strategy it is
reasonable to integrate the tests into a CI/CD (continuous
integration / continuous delivery) pipeline as part of the
pipeline’s test stage. After completing the implementation
of the Partner Management System, the tests of the
system will be performed based on the test strategy.

To demonstrate the approach for finding a suitable con-
sistency assurance solution, the example of the Partner
Management System is sufficient. To further underpin our
findings, however, they need to be applied to more complex
examples.

REFERENCES

[1] M. Fowler and J. Lewis, “Microservices a definition of this new ar-
chitectural term,” https://martinfowler.com/articles/microservices.html,
March 2014, [retrieved: 05, 2020].

[2] H. Knoche and W. Hasselbring, “Drivers and barriers for microservice
adoption–a survey among professionals in germany,” Enterprise Mod-
elling and Information Systems Architectures (EMISAJ), vol. 14, 2019,
p. 10.

[3] E. Wolff, Microservices: Flexible Software Architecture. Addison-
Wesley Professional, 2016.

[4] S. Newman, Building microservices: designing fine-grained systems.
O’Reilly Media, Inc., 2015.

[5] C. Richardson, Microservices Patterns: With examples in Java. Man-
ning Publications, 2018.

[6] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn,
“Microservices migration patterns,” Software: Practice and Experience,
vol. 48, no. 11, 2018, pp. 2019–2042.

[7] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architec-
ture Enables DevOps: Migration to a Cloud-Native Architecture,” IEEE
Software, vol. 33, no. 3, 2016, pp. 42–52.

[8] H. Knoche and W. Hasselbring, “Using microservices for legacy soft-
ware modernization,” IEEE Software, vol. 35, no. 3, 2018, pp. 44–49.

[9] W. Hasselbring and G. Steinacker, “Microservice architectures for scala-
bility, agility and reliability in e-commerce,” in 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). IEEE,
2017, pp. 243–246.

[10] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Pearson New
International Edition - Principles and Paradigms. Harlow: Pearson
Education Limited, 2013.

[11] A. S. Tanenbaum, Modern Operating Systems. New Jersey: Pearson
Prentice Hall, 2009.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns -
Elements of Reusable Object-Oriented Software. Amsterdam: Pearson
Education, 1994.

[13] H. Garcia-Molina and K. Salem, “Sagas,” vol. 16, no. 3. ACM, 1987.
[14] M. Fowler, “Event Sourcing,” https://martinfowler.com/eaaDev/Event

Sourcing.html, December 2005, [retrieved: 05, 2020].
[15] E. J. Evans, Domain-driven Design - Tackling Complexity in the Heart

of Software. Boston: Addison-Wesley Professional, 2004.
[16] “Versicherungsaufsichtliche Anforderungen an

die IT (VAIT) (2019) vom 20.03.2019,”
https://www.bafin.de/SharedDocs/Downloads/DE/Rundschreiben/
dl rs 1810 vait va.html, March 2019, [retrieved: 05, 2020].

[17] M. Lange, A. Hausotter, and A. Koschel, “Microservices
in Higher Education - Migrating a Legacy Insurance Core
Application,” in 2nd International Conference on Microservices
(Microservices 2019), Dortmund, Germany, 2019, https://www.conf-
micro.services/2019/papers/Microservices 2019 paper 8.pdf,
[retrieved: 05, 2020].

[18] A. Koschel, A. Hausotter, M. Lange, and P. Howeihe, “Consistency for
Microservices - A Legacy Insurance Core Application Migration Exam-
ple,” in SERVICE COMPUTATION 2019, The Eleventh International
Conference on Advanced Service Computing, Venice, Italy, 2019,
https://www.thinkmind.org/index.php?view=article&articleid=service c
omputation 2019 1 10 18001, [retrieved: 05, 2020].

[19] GDV, “The application architecture of the insurance industry – appli-
cations and principles,” 1999.

[20] V. Vernon, Implementing domain-driven design. Addison-Wesley,
2013.

[21] “Schutzstufenkonzept des LfD Niedersachsen,”
https://www.lfd.niedersachsen.de/technik und organisation/schutzstufen/
schutzstufen-56140.html, October 2018, [retrieved: 05, 2020].

[22] A. Roland, “Secrecy, technology, and war: Greek fire and the defense
of byzantium, 678-1204,” Technology and Culture, vol. 33, no. 4, 1992,
pp. 655–679.

[23] W. Vogels, “Eventually Consistent,” Commun. ACM, vol. 52,
no. 1, Jan. 2009, pp. 40–44. [Online]. Available:
http://doi.acm.org/10.1145/1435417.1435432, [retrieved: 05, 2020]

14Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 22 / 28

Towards a Tool-based Approach for Microservice Antipatterns Identification

Rafik Tighilt
Université du Québéc à Montréal

Montréal, Québec, Canada
Email: tighilt.rafik@gmail.com

Naouel Moha
Université du Québéc à Montréal

Montréal, Québec, Canada
Email: moha.naouel@uqam.ca

Manel Abdellatif
Polytechnique Montréal

Montréal, Québec, Canada
Email: manel.abdellatif@polymtl.ca

Yann-Gaël Guéhéneuc
Concordia University

Montréal, Québec, Canada
Email: yann-gael.gueheneuc@concordia.ca

Abstract—Microservice architecture has become popular in the
last few years because it allows the development of indepen-
dent, reusable, and fine-grained services. However, a lack of
understanding of its core concepts and the absence of reference
or consensual definitions of its related concepts may lead to
poorly designed solutions called antipatterns. The presence of
microservice antipatterns may hinder the future maintenance and
evolution of microservice-based systems. Assessing the quality
of design of such systems through the detection of microservice
antipatterns may ease their maintenance and evolution. Several
research works studied patterns and antipatterns in the context of
microservice-based systems. However, the automatic identification
of these patterns and antipatterns is still at its infancy. We
searched for re-engineering tools used to identify antipatterns in
microservice-based systems in both academia and industry. The
results of our search showed that there is no fully-automated
identification approach in the literature. In this paper, we aim
to reduce this gap by (1) introducing generic, comprehensive,
and consensual definitions of antipatterns in microservice-based
systems, and (2) presenting our approach to automatically identify
these antipatterns. Currently, this work is still in progress and
this paper aims to present the approach and the metamodel used
for future implementation.

Keywords–Microservices; Antipatterns; Identification.

I. INTRODUCTION

A microservice is defined as a small service, with a single
responsibility, running on its own process, and communicating
through lightweight mechanisms [1], such as representational
state transfer application programming interfaces (REST APIs)
and message brokers. Each microservice in a microservice-
based system fulfills a single business function, manages its
own data, runs on its own process, is managed by a single
team, and is not tied to the system itself for its evolution or
deployment. Microservices are built around business require-
ments, deployed by a fully automated deployment machinery
with a minimum centralized management [2] and are loosely
coupled.

Several major actors of the software industry have adopted
microservice-based systems, such as Netflix and Amazon. The
popularity of this architecture still grows, mainly due to its
dynamic and distributed nature, which offers greater agility and
operational efficiency and reduces the complexity of handling
applications scalability and deployment cycles wrt. monolithic
applications [2]. Software maintenance is one of the most
important fields in the software industry, whether in expenses
or in resources [3].

However, like any other architectural style, microservice-
based systems also face challenges with maintainability and
evolution due to “poor” solutions to recurring design and
implementation problems, called antipatterns [4]. These an-
tipatterns can degrade the overall quality of design and quality
of service of the microservices themselves and the system as
a whole [5].

The nature of microservice systems makes them very
dynamic (multi-language, multi-operating environments, etc.)
[2]. This makes the identification of antipatterns difficult,
especially because there is a lack of automated approaches
in the literature to help fulfil this task.

We contribute to the maintenance and evolution of
microservice-based systems with generic, comprehensive, and
consensual definitions of antipatterns in microservice-based
systems and an automatic tool-based approach for the iden-
tification of antipatterns in these systems. Our automatic tool-
based approach relies on a meta-model we established and
described in this paper. The meta-model covers the needed
information to apply our heuristics and identification rules yet
can be extended for future work.

However, we must overcome some challenges introduced
by microservice-based systems.

1) Microservices are, by definition, independent [2].
Microservice-based systems are deployed on multiple
providers using different tools and configurations.

2) Microservices can be built using different pro-
gramming languages [1]. This makes the identifi-
cation process more challenging compared to single-
language systems.

Thus, for the first step of our work and to validate our
approach, we only consider systems built with the Java pro-
gramming language and using Docker as container technology
as they are among the most popular tools to build microservice-
based systems.

The remainder of this paper is structured as follows.
Section II describes previous work related to microservices
antipatterns cataloguing and identification. Section III out-
lines our methodology for antipatterns identification. It also
introduces our catalogue of microservice antipatterns and the
metrics and hints to identify these antipatterns. Section IV
presents some limitations that we identified in our approach.
Finally, Section V concludes this paper and presents the future
work.

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 23 / 28

II. RELATED WORK

In their study, Pahl and Jamdi [6] aim to identify, tax-
onomically classify and systematically compare the existing
research body on microservices and their application in the
cloud. They conducted a systematic mapping study of 21 works
on microservice design published between 2014 and 2016.
They defined a characterization framework and used it to study
and classify the works. Their study reports a lack of research
tools supporting microservice-based systems and conclude
that microservice research is still in a formative stage. The
study results in a discussion of the microservice architectural
style concerns, positioning it within a continuous development
context and moving it closer to cloud and container technology.

In his overview and vision paper, Zimmerman [7] reviews
popular introductions to microservices to identify microser-
vices tenets. It then compares two microservices definitions
and contrasts them with SOA principles and patterns. this
paper compiles practitioner questions and derives research
topics from the differences between SOA and microservices
architectural style. The author conclude his paper with the
opinion that microservices are one special implementation of
the SOA paradigm.

Garriga [8] defines a preliminary analysis framework in the
form of a taxonomy of concepts including the whole microser-
vices lifecycle, as well as organizational aspects. The author
claims that this framework is necessary to enable effective ex-
ploration, understanding, assessing, comparing, and selecting
microservice-based models, languages, techniques, platforms,
and tools. He then analyzed state of the art approaches related
to microservices using this taxonomy to provide a holistic
perspective of available solutions. Additionnaly, the paper
identified open challenges for future research from the results
of litterature analysis.

Soldani et al. [9] identified and compared benefits and
limitations of microservices by studying the industrial grey
literature. They also studied the design and development
practices of microservices to bridge academia and indus-
try in terms of research focus. Marquez and Astudillo [10]
provided (1) a catalog of microservice architectural patterns
from academia and industry, (2) a correlation between quality
attributes and these patterns, (3) a list of technologies used to
build microservice-based systems with these patterns and (4)
a comparative analysis of SOA and microservice architectural
patterns. They did that to determine whether architectural
patterns are used in the development of microservice-based
systems. This work extended their previous work with Osses
[11].

Taibi et al. [12] introduced a catalog and taxonomy of
the most common microservices anti-patterns to identify com-
mon problems resulting from the migration of monolithic
applications to microservice-based systems. Their catalog is
based on the experience of 27 interviewed practitioners. The
authors identified a taxonomny of 20 anti-patterns including
organizational and technical anti-patterns and estimated their
level of harmfulness through a survey. They conclude that
splitting a monolith is the most critical issue.

Borges and Khan [13] selected 5 well known anti-patterns
in microservice-based systems and proposed an algorithm to
automatically detect them. The authors claim that their solution
can avoid common mistakes when deploying microservices-
based projects and can help project managers to get an

overview of the system as a whole. They tested their algorithm
on a well known open source microservice-based project and
revealed possible improvements.

Microservice antipatterns have been discussed in the liter-
ature, but very little work has been done in the field of their
automatic identification. To the best of our knowledge, only
Borges and Khan [13] proposed an algorithm to automatically
identify antipatterns in microservice-based systems. However,
they only identify 5 antipatterns. Our approach do not focus
on the same antipatterns eventhough we may share some.

III. STUDY DESIGN

This section presents the design of our study. First, we
explain the approach we used to construct our research.
Then, we detail the metamodel used to automatically identify
antipatterns in microservice-based systems. Finally, we list the
detection rules for each antipattern.

A. Approach
This section presents our approach to fulfill our objectives.

First, we reviewed the literature and studied 67 open-source
projects to build a catalogue of microservice antipatterns. Sec-
ond, we study each antipattern to provide a concise description
and extract hints of its presence in microservice-based systems
using source-code, configuration files, deployment files and
git repositories. The catalogue and the description of the
microservice antipatterns have been presented in our previous
work [14]. Finally, we build an automated tool-based approach
for the identification of microservice antipatterns.

1) Step 1: Catalogue of Microservice Antipatterns:
a) Literature review: To build our catalog, we reviewed

the literature following the procedures proposed by Kitchen-
ham et al. [15] for performing systematic literature reviews. We
excluded papers not written in English and papers not related
to microservices antipatterns. We obtained a total of 27 papers
describing microservice antipatterns.

We grouped antipatterns having similar definitions under a
single name and excluded antipatterns that are only related to
the organizational structure of the company or too specific and
that cannot be generalized (e.g., the Frankenstein antipattern
that is related to switching from waterfall to agile develop-
ment).

b) Open-source systems review: After reviewing the
literature, we manually analyzed 67 open source systems [16]
to assess the concrete presence of the identified antipatterns in
these microservice-based systems. Table I shows examples of
identified antipatterns inside microservice-based systems.

After reviewing the litterature and the open source
microservice-based systems, we obtained a total of 16 anti-
patterns described below.

1) Wrong Cuts: This antipattern consists of microser-
vices organized around technical layers (Business
layer, Presentation layer, Data layer) instead of func-
tional capabilities, which causes strong coupling of
the microservices and impedes the delivery of new
business functions.

2) Cyclic Dependencies: This antipattern occurs when
multiple services are co-dependent circularly and,
thus, no longer independent, which goes against the
very definition of microservices.

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 24 / 28

TABLE I. EXAMPLES OF IDENTIFIED ANTIPATTERNS IN MICROSERVICE-BASED SYSTEMS

System name Identified antipatterns

ACME Air Manual Configuration, Shared Persistence, Hardcoded Endpoints, No Healthcheck

Cinema microservice Manual Configuration, Hardcoded Endpoints, No Healthcheck

Delivery system Hardcoded endpoints, Local logging, Insufficient monitoring, No Healthcheck

E-commerce microservices sample Manual Configuration, Hardcoded Endpoints, No API gateway, Local Logging

Microservices demo Hardcoded Endpoints, No API Gateway, No API versioning

Beer Catalog Hardcoded Endpoints, Shared Libraries, Multiple Service Instances Per Host

Springboot microservices example Manual Configuration, Hardcoded Endpoints, No Healthcheck

3) Mega Service: This antipattern appears when a
microservice serves multiple business functions. A
microservice should be manageable by a single team
and bounded to a single business function.

4) Nano Service: This antipattern results from a too
fine-grained decomposition of a system in which mul-
tiple microservices work together to fulfill a single
business function.

5) Shared Libraries: This antipattern consists of li-
braries and files (ex. binaries) used by multiple mi-
croservices, which breaks the microservices indepen-
dence as they rely on a single source to fulfill their
business function.

6) Hardcoded endpoints: This antipattern relates to
URLs, IP addresses, ports and other endpoints being
hardcoded in the microservice source code including
configuration files. This may interfere with the load
balancing and the deployment of the microservices.

7) Manual Configuration: This antipattern happens
with configurations that must be manually pushed to
each microservice of a system. Microservice systems
evolve rapidly and their management should be au-
tomated, including their configuration.

8) No Continuous Integration (CI) / Continuous
Delivery (CD): Continuous integration and delivery
are important for microservices to automate repeti-
tive steps during testing and deployment. Not using
CI/CD undermines microservices, which encourages
automation wherever possible.

9) No API Gateway: This antipattern occurs when
consumer applications (front ends, mobile applica-
tions, etc.) communicate directly with microservices.
Each application must know how the whole system
is decomposed and must then manage endpoints and
URLs for each microservice.

10) Timeouts: This antipattern happens when timeout
values are set and hardcoded in HTTP requests, which
leads to spurious timeouts or unnecessary delays.

11) Multiple Service Instances Per Host: This an-
tipattern happens when multiple microservices are
deployed on a single host, which prevents their inde-
pendent scaling and may cause technological conflicts
inside the host.

12) Shared Persistence: This antipattern happens when
multiple microservices share a single database: they
no longer own their data and cannot use the most
suitable database technology for it.

13) No API Versioning: This antipattern happens when
no information is available about a microservice
version, which can break changes and force backward
compatibility when deploying updates.

14) No Health Check: This antipattern occurs when
microservices are not periodically health checked.
Unavailable microservices may not be noticed and
cause timeouts and errors.

15) Local Logging: This antipattern occurs when mi-
croservices have their own logging mechanism, which
prevents the aggregation and analyses of their logs
and may slow down the monitoring and recovery of
a system.

16) Insufficient Monitoring: This antipattern relates to
microservice systems performances/failures, which
are not tracked and cannot help maintain the functions
of the systems.

2) Step 2: Detection of the Microservice Antipatterns: We
present an approach to detect the antipatterns catalogued in
Section III-A1. Figure 1 shows that our approach takes as
input a microservice-based project or a list of microservices
(both either as Git repositories or local source code folders).
Then, from each microservice, it extracts the relevant files
by excluding binaries (e.g., .jar, .exe, .bin files) and vendor
files (e.g., node modules, composer vendor etc.). Then, our
approach splits the extracted files into four categories based
on their extension, content, and programming language:

1) Code: These are source-code files of the microser-
vice. We split these files into programming files (Java,
PHP, Go, etc.), configuration files (XML, JSON,
YAML, etc.), markup files (HTML, CSS, EJS, etc.),
and data files (CSV, GitAttributes, Properties, etc.).

2) Environment: If available, these files store environ-
ment variables for the microservices. Usually in key
value pairs.

3) Deployment: These are deployment scripts for the
microservices (Dockerfiles, docker-compose, etc.).
We do not consider configuration files in this cate-
gory. We only save files directly related to deploy-
ment (Docker files, Docker-compose, etc.).

4) Configuration: These are configuration files for the
microservice (JSON files, XML files, etc.). Source
code files that only contain configuration are also
added to this category. That means that a source code
file “xxx-config.java” will be considered in both the
source code category and the configuration category.

From each category, we can extract some information to build

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 25 / 28

Figure 1. Antipatterns Identification Process Architecture

our model of the microservices, which contains information
needed to apply our detection heuristics to identify antipat-
terns.

B. Metamodel Definition
This section describes the meta-model that we use to en-

capsulate the needed information to identify antipatterns. The
metamodel is divided in 13 components, each one containing
some information related to the systems and the microservices.
The components are as follow:

1) System: This component holds information about the
system itself.

• isGitRepository: True if the provided system to ana-
lyze is a git repository.

• importedAt: The timestamp when the analysis was
performed.

2) GitRepository: If the provided system is in a Git repos-
itory, this component stores information about it.

• url: Repository URL.
• owner: The owner of the Git repository.
• nbContributors: The number of different developers

that contributed to the repository.
• nbCommits: The number of commits to the reposi-

tory.
• branch: Current branch of the repository.
• buildStatus: If available, the build status of the repos-

itory.

3) Microservice: This component stores information about
a single microservice.

• languages: List of programming languages used in a
microservice.

• loc: The number of lines of code for a microservice.

4) Dependency: This component holds information about
a single dependency.

• name: Dependency name.
• source: The source from where the dependency is

installed.
• category: The dependency category (e.g., ORM, Log-

ging, Monitoring, etc.).
• type: The type of the dependency (binary, framework,

library, etc.).

5) Deploy: This component contains generic deployment
information.

• area: If available, the area of the deployment (devel-
opment, staging, production, etc.).

• instructions: List of deployment instructions (e.g.,
Dockerfile commands).

6) Config: This component contains configuration informa-
tion.

• type: The configuration file type.
• path: The path of the configuration file.
• values: Actual configuration key/value pairs.

7) Env: If available, this component contains environment
variables information.

• type: The environment file type.
• values: Actual environment variables key/value pairs.

8) Code: This component holds information about a given
source code file.

• languages: List of programming languages of the
current file.

• mainLanguage: Main programming language used in
the file.

• loc: Lines of code of the file.

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 26 / 28

9) Image: If available, this component holds information
about container images of the system.

• name: Image name.
• type: If available, the image type (e.g., database

system, monitoring,etc.).

10)Server: This component is related to deployment server
information.

• address: Server address.
• port: Deployment port number.

11)HTTP: This component stores information about HTTP
requests.

• sourceFile: File from where the HTTP request was
performed.

• endpointURL: HTTP requests destination endpoint.
• port: HTTP requests port.
• type: The type of the HTTP request.
• parameters: HTTP requests parameters.

12) Database: This component stores information about
database queries.

• dbQuery: The database query string.
• queryType: The type of the database query.
• dbName: Database name.
• dbLocation: Database location address.
• dbUsername: If available, the database user name.
• dbPassword: If available, the database user password.

13) Import: This component stores information about im-
ported packages in the source code.

• package: The imported package.
• path: The imported path.
• fileType: Imported file type.

Figure 2 illustrates the relations between each component
of our metamodel.

C. Detection rules
We now describe the detection rules of our approach for

each antipattern.
1) Wrong Cuts: Microservices have one file type in the

source code and connect to multiple microservices having also
one file type. An example would be a microservice containing
only presentation related code connecting to a microservice
containing only business logic code. We rely on the files
extensions, contents, and programming languages to identify
this antipattern.

2) Cyclic dependencies: Microservices performing API
call to other microservices circularly. We detect this antipattern
using the API calls, endpoints, and dependencies extracted in
our model.

3) Mega Service: Such a microservice has more lines of
code, connects to multiple databases, has a high fan in and
fan out, and has a lot of dependencies compared to other
microservices.

4) Nano Service: Such a microservice has less lines of
code, connects to zero or one database, has a low fan in and
fan out, and has no or a few dependencies compared to other
microservices.

5) Shared Libraries: Multiple microservice source files,
dependency binaries, and libraries are shared between multiple
microservices.

6) Hardcoded Endpoints: REST API calls inside microser-
vices source code, deployment files, configuration files, or en-
vironment files contain hard-coded IP addresses, port numbers,
and URLs. There is no service discovery present in the system.

7) Manual Configuration: Microservices have their own
configuration files. No configuration management tools are
present in the dependencies of the system and no microservice
is responsible of configuration management.

8) No CI/CD: Configuration files and version control
repositories do not contain continuous integration/delivery-
related information. We rely on an extensible list of CI/CD
tools to perform our analysis.

9) No API Gateway: Microservice source code does not
contain signatures of common API gateway implementations
(e.g., Netflix Zuul). No frameworks or related tools are present
in the dependencies of the microservice. API calls are direct
calls to microservices.

10) Timeouts: Timeout values are present in REST API
calls. No signatures of common circuit breaker implementa-
tions (e.g., Hystrix) are present in the source code. No circuit
breaker is present in the dependencies of the microservice.

11) Multiple Service Instances Per Host: We analyze and
compare deployment scripts of all microservices to find the
ones that share the same hosts.

12) Shared persistence: We extract the databases used by
the microservices and then assess if any database is used by
more than one microservice.

13)No API Versioning: Endpoints and URLs do not contain
version numbers. No version information present in the headers
when performing HTTP requests.

14) No health check: No “healthcheck” or “health” end-
point in microservices. No common implementation of health
checks present in the source code (e.g., Springboot actuator).

15) Local Logging: No distributed logging present in
the dependencies. No common logging microservice. Each
microservice has its own log file paths.

16) Insufficient Monitoring: No monitoring framework or
library in the microservices dependencies (e.g., Prometheus).

IV. APPROACH LIMITATIONS

In this section, we discuss the limitations of our approach
and the measures that we took to reduce them.

A. Internal limitations
Although we intensively reviewed the literature to find the

most common antipatterns in microservice-based systems, they
are potentially other antipatterns that we did not include in our
study. Yet, with the antipatterns described in our catalogue, we
aim to establish a foundation for future work. Other researchers
should perform similar reviews to confirm/infirm ours.

The detection rules we established to identify antipatterns
are subject to our interpretation of antipatterns. Mega service
for example is subjective, and can be discussed. However,
we tried to minimize this limitation by considering every
microservice as a part of the system instead of a stand-alone
application. This way, we can say that a Mega service is
relative to the system.

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

 27 / 28

Figure 2. Relations between all metamodel components

B. External limitations
Microservice-based systems are volatile. They can be

built using multiple technologies and deployed to multiple
providers. Even though we tried to identify the most common
technologies in the field of microservices, we might have
omitted some. We will minimize this limitation by building
a tool that can be extended by providing more parsers and
deployment environments.

We rely on lists of dependencies and frameworks to identify
some antipatterns. We pre-define these lists by taking the most
widely used technologies in that area, but we do not pretend
to have exhaustive lists. However, we will build the system in
a way these lists can be extended easily to cover more tools
and frameworks.

Even though configuration files are widely written in JSON,
XML, or YAML file formats, they can also be written in the
programming language itself. This may lead us to misconsider
a file and not include it in the configuration category. We
reduce this limitation by not only relying on the file extension,
but also on the file name and its content to do the classification.

V. CONCLUSION AND FUTURE WORK

We describe in this paper our automated approach for the
identification of antipatterns in microservice-based systems.
We provide a list of previously identified antipatterns from the
literature. We detail the meta-model we use in our approach
and we finally define the heuristics and detection rules for each
of the identified antipatterns.

We believe that our approach is robust enough to identify
the described antipatterns yet still extensible and flexible to
evolve with the evolution of programming languages and
antipatterns themselves.

Future work includes first implementing our detection rules
to identify antipatterns in Java microservices to validate and re-
fine our approach. We will validate our approach by manually
analysing the microservice-based systems and calculate preci-
sion and recall for each of the identified antipatterns. Then,
we want to extend our approach to consider multi-language
microservice-based systems. Finally, we aim to empirically
study the effect of these antipatterns on the quality of systems.

REFERENCES
[1] “Microservices: a definition of this new architectural term,” 2019, URL:

https://martinfowler.com/articles/microservices.html [retrieved: August,
2020].

[2] S. Newman, Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, Inc., Feb. 2015, ISBN: 978-1491950357.

[3] M. Hanna, “Maintenance burden begging for remedy,” Software Mag-
azine, vol. 13, pp. 53–53, Apr. 1993.

[4] D. Taibi and V. Lenarduzzi, “On the Definition of Microservice Bad
Smells,” IEEE Software, vol. 35, pp. 56–62, May 2018.

[5] F. Palma, “Detection of SOA Antipatterns,” in Service-Oriented Com-
puting - ICSOC 2012 Workshops. Springer Berlin Heidelberg, Jan.
2013, pp. 412–418.

[6] C. Pahl and P. Jamshidi, “Microservices: A Systematic Mapping Study,”
in Proceedings of the 6th International Conference on Cloud Computing
and Services Science. SCITEPRESS - Science and and Technology
Publications, Apr. 2016, pp. 137–146.

[7] O. Zimmermann, “Microservices tenets: : Agile approach to service
development and deployment,” Computer Science - Research and De-
velopment, vol. 21, pp. 301–310, Nov. 2016.

[8] M. Garriga, “Towards a Taxonomy of Microservices Architectures,” in
Software Engineering and Formal Methods. Springer International
Publishing, Feb. 2018, pp. 203–218.

[9] J. Soldani, D. A. Tamburri, and W.-J. V. D. Heuvel, “The pains and
gains of microservices: A Systematic grey literature review,” Journal
of Systems and Software, vol. 146, pp. 215–232, Dec. 2018.

[10] G. Marquez and H. Astudillo, “Actual Use of Architectural Patterns in
Microservices-Based Open Source Projects,” in 2018 25th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, Dec. 2018, pp.
31–40.

[11] F. Osses, G. Marquez, and H. Astudillo, “Exploration of academic
and industrial evidence about architectural tactics and patterns in
microservices,” in Proceedings of the 40th International Conference on
Software Engineering Companion Proceeedings - ICSE. ACM Press,
May 2018, pp. 256–257.

[12] D. Taibi, V. Lenarduzzi, and C. Pahl, Microservices Anti-patterns: A
Taxonomy. Springer International Publishing, Jan. 2020, chapter 5,
pp. 111–128, in Microservices: Science and Engineering, ISBN: 978-
3-030-31646-4.

[13] R. Borges and T. Khan, “Algorithm for detecting antipatterns in mi-
croservices projects,” in Joint Proceedings of the Inforte Summer School
on Software Maintenance and Evolution. CEUR-WS, Sep. 2019, pp.
21–29.

[14] R. Tighilt, M. Abdellatif, N. Moha, H. Mili, G. E. Boussaidi, J. Privat,
and Y.-G. Guéhéneuc, “On the Study of Microservices Antipatterns: a
Catalog Proposal,” in Proceedings of the 25th European Conference on
Pattern Languages of Programs, 2020, p. To appear.

[15] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele University, vol. 33, pp. 1–26, Jul. 2004.

[16] M. I. Rahman, S. Panichella, and D. Taibi, “A curated Dataset of
Microservices-Based Systems,” in Joint Proceedings of the Inforte
Summer School on Software Maintenance and Evolution. CEUR-WS,
Sep. 2019, pp. 1–9.

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

Powered by TCPDF (www.tcpdf.org)

 28 / 28

http://www.tcpdf.org

