
SERVICE COMPUTATION 2022

The Fourteenth International Conferences on Advanced Service Computing

ISBN: 978-1-61208-947-8

April 24 - 28, 2022

Barcelona, Spain

SERVICE COMPUTATION 2022 Editors

Petre Dini, IARIA, USA

 1 / 20

SERVICE COMPUTATION 2022

Forward

The Fourteenth International Conferences on Advanced Service Computing (SERVICE COMPUTATION
2022), held on April 24 - 28, 2022, continued a series of events targeting computation on different
facets.

The ubiquity and pervasiveness of services, as well as their capability to be context-aware with (self-)
adaptive capacities posse challenging tasks for services orchestration, integration, and integration. Some
services might require energy optimization, some might require special QoS guarantee in a Web-
environment, while others a certain level of trust. The advent of Web Services raised the issues of self-
announcement, dynamic service composition, and third party recommenders. Society and business
services rely more and more on a combination of ubiquitous and pervasive services under certain
constraints and with particular environmental limitations that require dynamic computation of
feasibility, deployment and exploitation.

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the SERVICE COMPUTATION 2022
technical program committee, as well as the numerous reviewers. The creation of a high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and effort to contribute to SERVICE COMPUTATION 2022.
We truly believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the SERVICE COMPUTATION 2022 organizing
committee for their help in handling the logistics and for their work that made this professional meeting
a success.

We hope SERVICE COMPUTATION 2022 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the area of
computation. We also hope that Barcelona provided a pleasant environment during the conference and
everyone saved some time to enjoy the historic charm of the city.

SERVICE COMPUTATION 2022 Steering Committee

Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Eugen Borcoci, University "Politehnica" of Bucharest, Romania

 2 / 20

Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Hannover, Germany
Ozgu Can, Ege University, Turkey

SERVICE COMPUTATION 2022 Publicity Chair

Lorena Parra, Universitat Politecnica de Valencia, Spain
Javier Rocher, Universitat Politècnica de València, Spain

 3 / 20

SERVICE COMPUTATION 2022

Committee

SERVICE COMPUTATION 2022 Steering Committee

Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Eugen Borcoci, University "Politehnica" of Bucharest, Romania
Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Hannover, Germany
Ozgu Can, Ege University, Turkey

SERVICE COMPUTATION 2022 Publicity Chairs

Lorena Parra, Universitat Politecnica de Valencia, Spain
Javier Rocher, Universitat Politècnica de València, Spain

SERVICE COMPUTATION 2022 Technical Program Committee

Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Eugen Borcoci, University "Politehnica" of Bucharest, Romania
Uwe Breitenbücher, University of Stuttgart, Germany
Antonio Brogi, University of Pisa, Italy
Isaac Caicedo-Castro, Universidad de Córdoba, Colombia
Ozgu Can, Ege University, Turkey
Rong N. Chang, IBM T.J. Watson Research Center, USA
Dickson Chiu, The University of Hong Kong, Hong Kong
Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil
Erdogan Dogdu, Angelo State University, USA
Monica Dragoicea, University Politehnica of Bucharest, Romania
Xinsong Du, University of Florida, USA
Sebastian Floerecke, University of Passau, Germany
Sören Frey, Daimler TSS GmbH, Germany
Steffen Fries, Siemens Corporate Technology - Munich, Germany
Somchart Fugkeaw, Sirindhorn International Institute of Technology | Thammasat University, Thailand
Katja Gilly, Miguel Hernandez University, Spain
Victor Govindaswamy, Concordia University - Chicago, USA
Maki Habib, The American University in Cairo, Egypt
Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Germany
Bernhard Hollunder, Hochschule Furtwangen University - Furtwangen, Germany
Wladyslaw Homenda, Warsaw University of Technology, Poland
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Wei-Chiang Hong, School of Computer Science and Technology - Jiangsu Normal University, China

 4 / 20

Paul Humphreys, Ulster University, UK
Emilio Insfran, Universitat Politecnica de Valencia, Spain
Maria João Ferreira, Universidade Portucalense, Portugal
Yu Kaneko, Toshiba Corporation, Japan
Hyunsung Kim, Kyungil University, Korea
Alexander Kipp, Robert Bosch GmbH, Germany
Christos Kloukinas, City, University of London, UK
Arne Koschel, Hochschule Hannover - University of Applied Sciences and Arts, Germany
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Wen-Tin Lee, National Kaohsiung Normal University, Taiwan
Mohamed Lehsaini, University of Tlemcen, Algeria
Robin Lichtenthäler, University of Bamberg, Germany
Cho-Chin Lin, National Ilan University, Taiwan
Mark Little, Red Hat, UK
Xiaodong Liu, Edinburgh Napier University, UK
Michele Melchiori, Università degli Studi di Brescia, Italy
Fanchao Meng, University of Virginia, USA
Philippe Merle, Inria, France
Giovanni Meroni, Politecnico di Milano, Italy
Naouel Moha, Université du Québec à Montréal, Canada
Fernando Moreira, Universidade Portucalense, Portugal
Felipe Adrian Moreno Vera, Universidad Nacional de Ingeniería, Peru
Sotiris Moschoyiannis, University of Surrey, UK
Gero Mühl, Universitaet Rostock, Germany
Artur Niewiadomski, Siedlce University of Natural Sciences and Humanities, Poland
Miguel Nuñez del Prado Cortez, Universidad de Ingeniería y Tecnologia (UTEC), Peru
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Ali Ouni, Ecole de Technologie Superieure, Montreal, Canada
Agostino Poggi, Università degli Studi di Parma, Italy
Jan Porekar, SETCCE, Slovenia
Thomas M. Prinz, Friedrich Schiller University Jena, Germany
Joao F. Proenca, University of Porto / University of Lisbon, Portugal
Teresa Proença, Porto University, Portugal
Arunmoezhi Ramachandran, Tableau Software, Palo Alto, USA
José Raúl Romero, University of Córdoba, Spain
Christoph Reich, Hochschule Furtwangen University, Germany
Sashko Ristov, University of Innsbruck, Austria
António Miguel Rosado da Cruz, Politechnic Institute of Viana do Castelo, Portugal
Michele Ruta, Technical University of Bari, Italy
Marek Rychly, Brno University of Technology, Czech Republic
Ulf Schreier, Furtwangen University, Germany
Frank Schulz, SAP Research Karlsruhe, Germany
Wael Sellami, Higher Institute of Computer Sciences of Mahdia - ReDCAD laboratory, Tunisia
T. H. Akila S. Siriweera, University of Aizu, Japan
Jacopo Soldani, University of Pisa, Italy
Masakazu Soshi, Hiroshima City University, Japan
Ermo Täks, Taltech, Estonia
Orazio Tomarchio, University of Catania, Italy

 5 / 20

Juan Manuel Vara, Universidad Rey Juan Carlos, Spain
Sirje Virkus, Tallinn University, Estonia
Yong Wang, Dakota State University, USA
Hironori Washizaki, Waseda University, Japan
Mandy Weißbach, Martin Luther University of Halle-Wittenberg, Germany
Michael Zapf, Technische Hochschule Nürnberg Georg Simon Ohm, Germany
Sherali Zeadally, University of Kentucky, USA
Wolf Zimmermann, Martin Luther University Halle-Wittenberg, Germany

 6 / 20

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 20

Table of Contents

Towards the Implementation of Workflows in a Microservices Architecture for Insurance Companies - The
Coexistence of Orchestration and Choreography
Arne Koschel, Andreas Hausotter, Robin Buchta, Christin Schulze, Pascal Niemann, and Christopher Rust

1

The Need of Security Inside a Microservices Architecture in the Insurance Industry
Arne Koschel, Andreas Hausotter, Robin Buchta, Pascal Niemann, Christin Schulze, Christopher Rust, and
Alexander Grunewald

6

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 20

Towards the Implementation of Workflows in a Microservices Architecture for
Insurance Companies

The Coexistence of Orchestration and Choreography

Arne Koschel
Andreas Hausotter

Robin Buchta
Hochschule Hannover

University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science

Hannover, Germany
Email: arne.koschel@hs-hannover.de

Christin Schulze
Pascal Niemann
Christopher Rust

Hochschule Hannover
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science
Hannover, Germany

Email: andreas.hausotter@hs-hannover.de

Abstract—To avoid the shortcomings of traditional monolithic
applications, the Microservices Architecture (MSA) style plays an
increasingly important role in providing business services. This
is true even for the more conventional insurance industry with
its highly heterogeneous application landscape and sophisticated
cross-domain business processes. Therefore, the question arises
of how workflows can be implemented to grant the required
flexibility and agility and, on the other hand, to exploit the
potential of the MSA style. In this article, we present two
different approaches – orchestration and choreography. Using an
application scenario from the insurance domain, both concepts
are discussed. We introduce a pattern that outlines the mapping
of a workflow to a choreography.

Keywords—Workflow; Orchestration; Choreography; Insurance
Industry; Microservices Architecture; SOA.

I. INTRODUCTION

Multi-step business processes and business workflows are
typical for insurance companies; see, for example, the ref-
erence architecture for German insurance companies (VAA)
[1]. They are complemented by general regulations, such as
the European GDPR [2], as well as insurance-specific laws
and rules regarding, for example, financial regulations, data
protection, and security [3].

Over time, several technologies from monolithic mainframe
applications, functional decomposition-based software, tradi-
tional Service-Oriented Architectures (SOAs), which often
utilize some kind of Enterprise Service Bus (ESB), Busi-
ness Process and Workflow Management Systems (BPMS,
WfMS) for orchestration, and 3rd party software, such as SAP
software, were and are used together in insurance business
applications, which implement their business processes.

Recently, the MSA style and cloud computing joined the
field. Taking all those typical cornerstones from (over time
grown) insurances into account, the ultimate goal of our
currently ongoing research [4] is to develop a ”Microservice
Reference Architecture for Insurance Companies (RaMicsV)”
jointly with partner companies from the insurance domain.

Placed within our work on RaMicsV is the question: ”how to
implement (insurance) business workflows using potentially
several logical parts from RaMicsV, especially including
microservices”?

While traditionally, for example, in SOAs, such workflows
are mainly implemented using orchestration [5], the MSA
style favors the more decoupled choreography for this purpose
[6] [7]. Since RaMicsV aims to address the combined usage
of more traditional approaches and microservices, the com-
bination of choreography and orchestration naturally comes
to mind. As evolution is a key demand for our business
partners – they can and will not just ”throw away” their
existing application landscape – concepts such as orchestration
and tools such as an ESB, whose use within MSA style
architectures are both clearly disputable, have to be integrated
reasonably well into our approach.

However, since only a few authors (see Section II) look
at the combination of choreography and orchestration and
especially do not take insurance domain specifics into account,
this article contributes initial steps on this way. In particular,
we contribute in the present article our ongoing work and
intermediate results about:

• How to implement insurance company processes through
workflows within a MSA style utilizing an application
scenario.

• Mapping processes for distribution of (micro)services.
• Types and a discussion of pros and cons for workflow

implementations, including:

– Orchestration, which controls the workflow and ex-
plicitly maps the workflow;

– Choreography, which maps the workflow implicitly
and places responsibility and control into the ser-
vices;

– Technical means: For example, implementing an or-
chestration based on a BPMN [8] model is relatively

1Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

 9 / 20

straightforward – but how is this realized with a
choreography?

The remainder of this article is structured as follows: After
discussing related work in Section II, we place our current
work into our initial logical reference architecture from [4] in
Section III. Next, Section IV shows core definitions of orches-
tration and choreography. Section V provides an application
scenario (car insurance coverage) and compares orchestration
and choreography. Resulting from this, we discovered some
typical mapping patterns. As an intermediate result, Section VI
presents one mapping pattern. Finally, Section VII summarizes
our results and concludes with some outlook to future work.

II. RELATED WORK

The basis of our research builds on renowned authors in
the scope of microservices, such as the foundational work
from Newman [7] as well as Fowler and Lewis [9]. Within the
design of our reference architecture, we benefit from various
microservices patterns, for example, as they are discussed by
Krause [10] and Richardson [6].

Directly related work to ours comes from authors, which
deal with workflows in combination with microservices. In
this context, it was important that the authors approach the
combination of orchestration and choreography and not only
examine their opposites.

One of the authors, who use orchestration and choreogra-
phy frequently, is Ruecker [11] [12]. He recommends both
approaches when implementing workflows and evaluates the
right balance. Another author who evaluates the combination
of both approaches is Chen [13]. He deals with the use and
distinction of the two approaches and distinguishes between
different use cases of their usage.

However, both authors do not address the core definitions,
preferring to combine the approaches with other patterns. For
this reason, we have tried to approach a core definition and
present it in this article. We aim to develop patterns for the
implementation of choreography using BPMN in order to
achieve a clear realization with precise implementation rules.
A first pattern is presented in this article as well.

As a further contribution, implementing the approaches is
put into practice using an example business process from
the insurance industry. For this purpose, we have chosen car
insurance, one of the core products for German insurers. The
authors Stadler and Gail [14] provide the basics for the pro-
cess. Car insurance is mandatory for every car in Germany. For
this reason, it is considered particularly important for attracting
new customers. The elaboration refers to the VAA [1] and
describes in detail what car insurance is all about and more.

III. SERVICE-BASED REFERENCE ARCHITECTURE FOR
INSURANCE COMPANIES

This section will present our logical Microservice Reference
Architecture for Insurance Companies (RaMicsV) as initially
started in [4].

RaMicsV defines the setting for the architecture and the
design of a microservices-based application of our industry
partners. The application’s architecture is out of scope, as it
heavily depends on the specific functional requirements.

When designing RaMicsV, a wide range of restrictions and
requirements given by the insurance company’s IT manage-
ment must be taken into account. Concerning this contribution,
the most relevant are:

• Coexistence: Legacy applications, SOA, and
microservices-based applications will be operated
parallel for an extended transition period. This means
that RaMicsV must provide approaches for integrating
applications from different architecture paradigms.

• Business processes are critical elements in an insurance
company’s applications landscape. To keep their com-
petitive edge, the enterprise must change their processes
in a flexible and agile manner. RaMicsV must therefore
provide suitable solutions to implement workflows while
ensuring the required flexibility and agility.

Figure 1 depicts the building blocks of RaMicsV, which
comprises layers, components, interfaces, and communication
relationships. Components of the reference architecture are
colored yellow; those out of scope are greyed out.

A component may be assigned to one of the following
responsibility areas:

• Presentation includes components for connecting clients
and external applications such as SOA services.

• Business Logic & Data contains the set of microservices
to provide the desired application-specific behavior.

• Governance consists of components that contribute to
meeting the IT governance requirements of our industrial
partners.

• Integration contains system components to integrate
microservices-based applications into the industrial part-
ner’s application landscape.

• Operations consist of system components to realize uni-
fied monitoring and logging, which encloses all systems
of the application landscape.

• Security consists of components to provide the goals
of information security, i.e., confidentiality, integrity,
availability, privacy, authenticity & trustworthiness, non-
repudiation, accountability and, audibility.

Components communicate via HTTP(S)—using a RESTful
API, or message-based—using a Message-Oriented Middle-
ware (MOM) or the ESB. The ESB is part of the integration
responsibility area, which contains a message broker (see
Figure 1).

In the next section, we will have a detailed look at the
Business Processes component.

IV. ORCHESTRATION AND CHOREOGRAPHY

This section will present the core definitions of orchestra-
tion and choreography. The focus will be on the functional

2Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

 10 / 20

Figure 1. Building Blocks of the Logical Reference Architecture RaMicsV

definitions, without reference to the insurance companies or
a use case. Orchestration and choreography are often used in
combination with other patterns. The coexistence of both is
also possible [11]. The combination with other patterns and
the coexistence of both will be evaluated in future work.

A. Orchestration

Orchestration is an often overloaded term, so Ruecker
equates it with coordination [11], which captures the core
definition well. Orchestration to implement a workflow simply
describes the coordination of process steps. Such steps can
include business services, technical services, or even user
tasks [8]. Coordination is handled by a coordination unit or
orchestrator. It is important to note that this is only a logical
unit, i.e., it can be implemented in a distributed manner [15].

B. Choreography

Choreography follows a different approach. In contrast to
orchestration, there exists no orchestrator [13]. Therefore,
there is no explicit modeling and monitoring of a workflow.
The workflow is implicitly mapped by the sequence of actions
that the services perform. Consequently, the responsibility for
adequately executing and processing the workflow lies with
the services involved in a workflow [12].

Choreography is often combined with other patterns, for
example, event-driven architecture [11]. Within our work here,
we will focus only on the core definition. Consequently, we
only look at the functional realization of a workflow with
choreography, not (yet) focusing on technical details.

V. APPLICATION SCENARIO

This section discusses the creation of a sample process
for our research. Its implementation is discussed based on
orchestration as well as on choreography.

Figure 2. Insurance Application Process in BPMN

A. Process Creation and Development

We need a process at several points for our research within
the RaMicsV context. As such, we have chosen a typical insur-
ance product as an example, namely ’car insurance coverage.’
Thus, we have developed an end-to-end process that extends
from customer consultation to policy issuance. This process is
based on [14] and has been evaluated through interviews with
our project partners so that the theory developed is close to
reality. As can be seen, this process contains only a subset of
the available business process logic. This will be used as the
basis for our research to evaluate the feasibility and identify
challenges to build upon in future work. The process also
refers to the (more generic) VAA use cases: review application,
make application decision, obtain state information, provide
contract relevant data, calculate base premium [1].

In various steps, we occasionally look at part aspects of the
process so that the completeness is large enough to illustrate
the concepts and small enough for it to be done efficiently.

The process starts with the receipt of a proposal from the
customer and ends with sending the insurability result. This is
visualized in Figure 2. Technically, the BPMN representation
was created with Camunda Modeler [16].

After a proposal is received, it is reviewed for completeness.
A case distinction follows. If the proposal is not complete, a
complex event is triggered, which starts a 14-day countdown
and waits for the missing documents to be received from the
customer. The process instance terminates if the documents
are not submitted within the time limit. The other path, used
if the documents are complete, determines insurability.

B. Evaluating Implementation Strategies for an Insurance
Application

The aforementioned process was used to evaluate the two
implementation strategies (within the MSA style), and the
strategies were applied separately. Relatively straight forward,
we implemented the process using orchestration. However,
only initial mapping and implementation approaches could be
formulated for choreography, which somewhat opened a new
field of (applied) research.

3Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

 11 / 20

1) Implementation with Orchestration: As a start, our ex-
ample process was modeled in Camunda Modeler [16] as a
BPMN process, with services being implemented as external
tasks. The communication happens asynchronously by listen-
ing to specific topics, which the services or the orchestrator
sends. The services are created in JavaScript as mocks and
contain only enough logic to trigger the next step.

The implementation consists of the process creation and
the instantiation of individual services with an orchestrator.
Camunda handles process flow and control.

2) Problems with Implementing a Choreography: Com-
pared to orchestration, the choreography has no orchestrator
that realizes elements such as BPMN decisions. In the in-
troduced ”Insurance Application” process (see Figure 2), the
decision ”proposal complete?” would not be taken by the
orchestrator. This responsibility lies within the services that
perform actions in the workflow. The decision must be taken
implicitly by the choreography into the steps of the workflow.

There is a BPMN choreography notation called BPMN 2.0
Choreography, but it is insufficient for implementing tasks
and interactions. It demonstrates the message traffic between
two partitions and illustrates them complementing the BPMN
[17]. So far, the notation only visualizes the choreography.
Accordingly, there are no clear realization and implementation
rules yet. These rules or patterns could better clarify which
aspects and elements of the BPMN are to be converted and
would help automate the transformation. The BPMN elements
must be mapped to the choreography to realize workflows.
For this reason, we decided to develop patterns to map the
choreography better.

We decided to map a BPMN to choreography because it is
an operational requirement of our project partners in the in-
surance domain. Other modeling types, e.g., a UML sequence
diagram, could also realize and represent a choreography.

VI. CHOREOGRAPHY PATTERN

The first pattern we developed to map the BPMN elements
to the choreography is called ”Any problem becomes a ser-
vice” (see Figure 3). At the core of this pattern, each BPMN
element that an orchestrator would adopt, becomes its own new
service. In this case, the new services are technical services
(colored in Figure 3) that do not process any tasks of the
actual workflow but simply support it. Figure 3 does not show
a traditional BPMN. It is simply intended to visualize where
which technical services support the workflow.

In the ”Insurance Application” process, a new technical
service named ”decision/result check of completeness” would
take the result of the completeness check and trigger the next
service of the workflow based on the result. Other elements,
such as checking whether information has arrived or the time
limit expired, are also mapped to new technical services.

This first pattern is an ad hoc solution, which can be
used for a quick and simple mapping to the choreography.
Its core drawback is that it might result in many services

Figure 3. Visualization of the ”Any Problem Becomes a Service”–Pattern

being added to the workflow, increasing complexity easily.
However, the technical services within this pattern are not
business capability services and are not included as part of
the service development. They simply provide a way to map
an existing BPMN to a choreography.

Future work of us will present and evaluate additional
patterns. The use of ”smart infrastructure” or the combination
of orchestration and choreography by ”small orchestrators”
may represent possible patterns.

VII. CONCLUSION AND FUTURE WORK

Orchestration and choreography can map and implement
workflows, such as workflow-based business processes, within
software development that follows the MSA style. Several
approaches are used to implement workflows. In principle,
orchestration forms monitoring of the workflow, and choreog-
raphy relies on the ownership of the services. Too much chore-
ography might easily result in chaos. In contrast, too much
orchestration might lead to a monolithic system. Applying
both approaches can be a suitable solution for implementing
workflows based on this assessment.

In future work, we will evaluate which approach should be
used in an MSA style and which advantages or disadvantages
they have. Our objective is to create a criteria catalog of
when which approach or combination is to be preferred.
Moreover, further Choreography Patterns will be presented and
evaluated. We aim to define these patterns so that realizing the
”Insurance Application” process using the most suitable form
of choreography becomes feasible. As already mentioned in
subsection V-A, the process only covers a part of the business
process logic, so the scope of the elements will be enlarged
in future work. Among other things, compensations, more
gateways, and different event types are considered.

REFERENCES

[1] Gesamtverband der Deutschen Versicherungswirtschaft e.V. (General
Association o.t. German Insurance Industry), “VAA Final Edition. Das
Fachliche Komponentenmodell (VAA Final Edition. The Functional
Component Model),” 2001.

[2] European GDPR, “Complete guide to GDPR compliance,” Online.
Available: https://gdpr.eu/ [retrieved: 03, 2022].

4Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

 12 / 20

[3] Bundesanstalt für Finanzdienstleistungsaufsicht (BaFin) - Federal
Financial Supervisory (BaFin), “Versicherungsaufsichtliche
Anforderungen an die IT (VAIT) (Insurance Supervisory Requirements
for IT (VAIT)) vom 03.03.2022,” 2022, Online. Available:
https://www.bafin.de/SharedDocs/Veroeffentlichungen/DE/Meldung/
2022/meldung 2022 03 03 Aktualisierung VAIT.html [retrieved: 03,
2022].

[4] A. Koschel, A. Hausotter, R. Buchta, A. Grunewald, M. Lange, and
P. Niemann, “Towards a Microservice Reference Architecture for In-
surance Companies,” in SERVICE COMPUTATION 2021, 13th Intl.
Conf. on Advanced Service Computing. IARIA, ThinkMind, 2021,
pp. 5–9, Online. Available: https://www.thinkmind.org/articles/service\

computation\ 2021\ 1\ 20\ 10002.pdf [retrieved: 03, 2022].
[5] A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald, “Compo-

nents for a SOA with ESB, BPM, and BRM – Decision Framework and
architectural Details,” Intl. Journal od Advances in Intelligent Systems,
vol. 9, no. 3 & 4, pp. 287–297, 2016.

[6] C. Richardson, Microservices Patterns: With examples in Java. Shelter
Island, New York: Manning Publications, 2018.

[7] S. Newman, Building microservices: designing fine-grained systems.
Sebastopol, California: O’Reilly Media, Inc., 2015.

[8] OMG, Business Process Model and Notation (BPMN), Version 2.0, Ob-
ject Management Group Std., Rev. 2.0, January 2011, Online. Available:
http://www.omg.org/spec/BPMN/2.0 [retrieved: 03, 2022].

[9] M. Fowler and J. Lewis, “Microservices a definition of this new
architectural term,” 2014, Online. Available: https://martinfowler.com/
articles/microservices.html[retrieved: 03, 2022].

[10] L. Krause, Microservices: Patterns and Applications: Designing fine-
grained services by applying patterns. Lucas Krause, 2015.

[11] B. Ruecker, Practical Process Automation - Orchestration and Integra-
tion in Microservices and Cloud Native Architectures. O’Reilly, 2021.

[12] B. Ruecker, “The Microservices Workflow Automation Cheat Sheet,”
Online. Available: https://blog.bernd-ruecker.com/the-microservice-
workflow-automation-cheat-sheet-fc0a80dc25aa [retrieved: 03, 2022].

[13] C. Chen, “Choreography vs orchestration,” Online. Available:
https://medium.com/ingeniouslysimple/choreography-vs-orchestration-
a6f21cfaccae [retrieved: 03, 2022].

[14] M. Stadler and U. Gail, Die Kfz-Versicherung - Grundlagen und Praxis
(The car insurance - basics and practice). Karlsruhe: VVW GmbH,
2015.

[15] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda, “Decentralized
orchestration of composite web services,” in Proc. 13th Intl. World Wide
Web Conf. on Alternate Track Papers & Posters. NY, USA: Association
for Computing Machinery, 2004, p. 134–143.

[16] “Workflow and decision automation platform,” Nov 2021, Online. Avail-
able: https://camunda.com/ [retrieved: 03, 2022].

[17] J. Ladleif and A. von Weltzien, “chor-js – an editor for bpmn chore-
ography diagrams,” Online. Available: https://camunda.com/blog/2021/
01/chor-js-an-editor-for-bpmn-choreography-diagrams/ [retrieved: 03,
2022].

5Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

 13 / 20

The Need of Security Inside a Microservices Architecture in the Insurance Industry

Arne Koschel, Andreas Hausotter, Robin Buchta
Hochschule Hannover

University of Applied Sciences & Arts
Faculty IV, Department of Computer Science

Hannover, Germany
Email: {arne.koschel, andreas.hausotter, robin.buchta}

@hs-hannover.de

Pascal Niemann, Christin Schulze,
Christopher Rust, Alexander Grunewald

Hochschule Hannover
University of Applied Sciences & Arts

Faculty IV, Department of Computer Science
Hannover, Germany

Email: {pascal.niemann, christin.schulze, christopher.rust,
alexander.grunewald}@stud.hs-hannover.de

Abstract—Even for the more traditional insurance industry,
the Microservices Architecture (MSA) style plays an increasingly
important role in provisioning insurance services. However,
insurance businesses must operate legacy applications, enterprise
software, and service-based applications in parallel for a more
extended transition period. The ultimate goal of our ongoing
research is to design a microservice reference architecture in co-
operation with our industry partners from the insurance domain
that provides an approach for the integration of applications
from different architecture paradigms. In Germany, individual
insurance services are classified as part of the critical infras-
tructure. Therefore, German insurance companies must comply
with the Federal Office for Information Security requirements,
which the Federal Supervisory Authority enforces. Additionally,
insurance companies must comply with relevant laws, regulations,
and standards as part of the business’s compliance requirements.
Note: Since Germany is seen as relatively ’tough’ with respect to
privacy and security demands, fullfilling those demands might
well be suitable (if not even ’over-achieving’) for insurances
in other countries as well. The question raises thus, of how
insurance services can be secured in an application landscape
shaped by the MSA style to comply with the architectural and
security requirements depicted above. This article highlights the
specific regulations, laws, and standards the insurance industry
must comply with. We present initial architectural patterns to
address authentication and authorization in an MSA tailored to
the requirements of our insurance industry partners.

Keywords—Security; Authorization; Authentication; Insurance
Industry; Microservices Architecture.

I. INTRODUCTION

Information Technology (IT)-Security is absolutely a ’must
have’ for insurance companies, especially for customer data,
self-written and 3rd party applications, and their IT infras-
tructure in general. General regulations, such as the Euro-
pean General Data Protective Regulation (GDPR) [1], are
applied to insurance as well as insurance specific laws and
rules regarding security and other regulations (cf. [2] and
[3]), for example, data protection and secured IT commu-
nication infrastructure. This article mainly focuses on se-
curing insurance business applications (cf. [4]). Over time,
several technologies from monolithic mainframe applications,
functional decomposition-based software, traditional Service-
Oriented Architecture (SOA), and 3rd party enterprise soft-
ware, such as SAP systems, were and are used together in
insurance business applications.

Recently, the MSA style (cf. [5], [6]) and cloud computing
joined the field. The ultimate goal of our currently ongoing
research [7] is to develop a ”Microservice Reference Architec-
ture for Insurance Companies (RaMicsV)” jointly with partner
companies from the insurance domain, which is taking all
those typical cornerstones from (overtime grown) insurances
into account. Placed within our work on RaMicsV is the
question: ”how to help secure (insurance) business applications
using potentially several logical parts from RaMicsV, mainly
including microservices combined with other typical insurance
applications technologies”?

Only a few authors (see Section II) look at such technology
combinations, and especially they do not take (German) insur-
ance domain specifics into account. Thus, the present article
constitutes an initial step in that direction.

In particular, we contribute here our ongoing work and
intermediate results regarding:

• An introduction to IT-Security Regulations in Germany
for insurance companies, including:

– A brief explanation of when an institution is consid-
ered critical infrastructure and the resulting conse-
quences.

– Functions and regulations of the Federal Office of
Information Security (BSI) and the Federal Financial
Supervisory (BaFin) in this context.

• Evaluate existing patterns for achieving protection goals
and weigh their pros and cons.

• To take a brief look at service- and edge-level authenti-
cation.

• To take a deeper look at service- and edge-level autho-
rization.

• Consider the pattern concerning the requirements of the
insurance industry with SOA and an Enterprise Service
Bus (ESB).

The remainder of this article is structured as follows: After
discussing related work in Section II, we place our current
work into our initial logical reference architecture from [7]
in Section III. Next, Section IV looks at requirements for
German insurance companies, and Section V examines known
authorization and authentication patterns and their potential
application within our work. Finally, Section VI summarizes
the results, draws a conclusion, and looks at future work.

6Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

 14 / 20

II. RELATED WORK

Our research is based on literature of well-known authors
in microservices, especially Chris Richardson (Microservices
Pattern) [5]. His book describes fundamental statements for
the advantages and disadvantages of the edge-level security
pattern and the service-level security pattern.

We adopted our definition of components for authorization
and authentication from the National Institute of Standards and
Technology (NIST) [8] and the patterns described in Section
V originate from [9].

Regarding legal regulations and specifications, we use,
among others, the Act on Federal Office for Information
Security (BSIG) [10]. Here the part for critical infrastructures
and, correspondingly, the Regulation for the Determination of
Critical Infrastructures according to the BSI Act (BSI-KritisV)
[11] is used to reinforce the relevance of our reference archi-
tecture. In addition, this is supplemented with the insurance
regulatory requirements for IT (VAIT) [2] from the BaFin, as
this is the responsible authority of the insurance industry.

In our previous work [7], we presented the logical microser-
vice reference architecture that we created in the German
insurance domain with our partners by logical and technical
details in the area of logging and monitoring components.
So far, components in the area of security have not been
considered within this reference architecture, which is now
started in the present article.

Additionally, in [12], we dealt with the consistency of
microservices, among other things. Here, compliance aspects
were described, which arose during the service design using
Domain Driven Design. The requirements specific to German
insurance companies were briefly mentioned. Based on this,
the legal constraints and controlling constitutions are described
in more detail.

To the authors’ knowledge, this is the first work to address
the legal regulations for German insurance companies in the
context of a reference architecture for microservices with a
focus on patterns for security and, in particular, authentication
and authorization. In addition, we address the requirement of
this reference architecture for microservices to work together
or side by side with an ESB (see III).

III. REFERENCE ARCHITECTURE FOR INSURANCE
COMPANIES

This Section will present our logical reference architecture
for microservices in the insurance industry (RaMicsV).

RaMicsV defines the setting for the architecture and the
design of a microservices-based application for our industry
partners. The application’s architecture is out of scope, as it
heavily depends on the specific functional requirements.

When designing RaMicsV, a wide range of restrictions and
requirements given by the insurance company’s IT manage-
ment have to be taken into account. Concerning this contribu-
tion, the most relevant are:

• ESB: The ESB as part of the SOA must not be questioned.
It is part of a succesfully operated SOA landscape, which
seems suitable for our industry partners for several years
to come. Thus, from their perspective, the MSA style
is only suitable as an additional enhancement and only
a partial replacement of parts from their SOA or other
self-developed applications.

• Coexistence: Legacy applications, SOA, and
microservices-based applications will be operated
in parallel for quite a extended transition period (several
years to come). This means that RaMicsV has to provide
approaches for integrating applications from different
architectural paradigms – looking at it from a high-level
perspective, allowing an ’MSA style best-of-breed’
approach at the enterprise architectural level as well.

Figure 1 depicts the building blocks of RaMicsV, which
comprises layers, components, interfaces, and communication
relationships. Components of the reference architecture are
colored yellow; those out of scope are greyed out.

A component may be assigned to one of the following
responsibility areas:

• Presentation includes components for connecting clients
and external applications such as SOA services.

• Business Logic & Data contains the set of microservices
to provide the desired application-specific behavior.

• Governance consists of components that contribute to
meeting the IT governance requirements of our industrial
partners.

• Integration contains system components to integrate
microservices-based applications into the industrial part-
ner’s application landscape.

• Operations consist of system components to realize uni-
fied monitoring and logging, which encloses all systems
of the application landscape.

• Security consists of components to provide the goals
of information security, i.e., confidentiality, integrity,
availability, privacy, authenticity & trustworthiness, non-
repudiation, accountability, and audibility.

Components communicate via HTTP—using a RESTful
API, or message-based—using a Message-Oriented Middle-
ware (MOM) or the ESB. The ESB is part of the integration
responsibility area, which contains a message broker (see
Figure 1).

In addition to data transformation and message routing
and delivery, an ESB also implements security policies. For
example, WS02 ESB supports Web Services (WS)-Security
and WS-Policy specifications [13]. Beyond that, the WSO2
Identity Server can be used to generate an OAuth Base Security
Token that microservices may employ to authenticate and
authorize client applications and API clients. This corresponds
to the edge- level authentication & authorization depicted in
Section V.

In the next sections, we will look at the security responsi-
bility area.

7Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

 15 / 20

Fig. 1. Building Blocks of the Logical Reference Architecture RaMicsV

IV. REQUIREMENTS FOR GERMAN INSURANCE
COMPANIES

Security is a fundamental aspect of any architecture and
should never be neglected, mainly when there is a legislative
framework where specific regulations exist. In Germany, insur-
ance companies, which are regarded as critical infrastructure,
are obligated to comply with the requirements of the BSIG,
which the BaFin enforces. This consideration has been deter-
mined by the Federal Office for Information Security. Note: In
our work we did not look at regulations and legal requirements
in other countries, but, as stated above, German regulations are
seen as ’somewhat tough’ already.

A. Federal Office for Information Security and Critical Infras-
tructures

The BSI is a federal agency in Germanys responsible for
security standards inside federal authoritie ando is a central
reporting point for security incidents. Companies that are
running critical infrastructures are obligated to report to the
BSI. The Council of the European Union defined that a critical
infrastructure ”... is essential for the maintenance of vital
societal functions, health, safety, security, economic or social
well-being of people, and the disruption or destruction of
which would have a significant impact in a Member State
...” [14]. Therefore, in Germany, an ordinance (BSI-KritisV
[11]) from 2016 defines which infrastructures are critical. It
could easily have dramatic consequences for the economy,
state, and society if an infrastructure from one of the seven
mentioned sectors (energy, water, food, information technol-
ogy and telecommunications, health, finance and insurance,
transport, and traffic) were attacked. Under Section 7 (1)
no. 1 to 5, examples are given of critical financial and
insurance services, which are of corresponding importance.
Some examples mentioned are payment transactions or, among
other things, insurance services and social security benefits.
However, either a system or a part of it must be assigned
to column B (System category) of Annex 6 Part 3 and, at

the same time, exceed the corresponding threshold value in
column D of the specific metric to be considered critical infras-
tructure. A general example would be a contract administration
system in which the number of life insurance claims per year
exceeds 500,000. Therefore, some systems from our partners
are considered critical infrastructure and are liable to other
requirements.

Because of the BSIG from 2009 [10], under section 8a
”Security regarding the information technology of critical
infrastructures,” institutions with critical infrastructures are
obligated to a security standard. They need to provide each
two years evidence to the BSI that they took precautionary
measures to achieve the protective goals of IT-Security. Specif-
ically mentioned are availability, integrity, authenticity, and
confidentiality. In addition, precautions are described here as
reasonable if the effort required to secure the protection goals
is in proportion to the consequences of the failure. Moreover,
the BSI has published a document [15] that specifies the
requirements imposed by Section 8a (1) BSIG.

Section 8a (2) of the BSIG states that it is possible to
establish an industry-specific security standard that meets
the requirements. The Federal Office of Civil Protection and
Disaster Assistance and the corresponding regulatory authority
will determine whether this standard is appropriate. Thus,
there has to be a Federal Office that determines whether the
company is complying with the requirements.

B. Federal Financial Supervisory Authority

The BaFin is responsible for the supervision of banks and
financial and insurance providers. They published VAIT [2] in
the year 2018. This publication gives the general conditions
and specifications for IT risk and security management. There
is a reference to the BSI-KritisV, and it has a entire section
dedicated to critical infrastructures. All aspects, from detection
over definition to implementation of security measurements,
are essential. The goal is to secure the protective objectives
of IT-Security, which are named in IV-A, and to minimize
all risk factors inside the critical infrastructure. Therefore,
German insurance companies must provide evidence through
audits, certificates, or examinations every two years to fulfill
their obligations. That is why every aspect of security needs
to be addressed while or even better before implementing new
systems.

C. Further Motivation for the Commitment to Confidentiality

There is a wide range of security aspects that need to
be addressed. At this point, we would like to refer to a
document published by the BSI entitled ”Supervision of crit-
ical infrastructures in finance and insurance” [3]. This briefly
discusses the legal requirements for critical infrastructures and
the introduction of these requirements in 2019. It states that
most of the deficiencies and shortcomings did not pose a
direct threat to maintaining the operation of the infrastructures
concerned. Nevertheless, according to ISO/IEC 27002, eight
percent of the deficiencies were attributable to access control.

8Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

 16 / 20

Additionally, in 2021 on the Open Web Application Security
Project (OWASP) Top Ten 2021, first place is ”Broken Access
Control,” and seventh place is ”Identification and Authen-
tication Failures” [16]. Compared to 2017,” Broken access
control“ came up from place 5 [17]. This shows that the impor-
tance of authorization and authentication continues to increase.
As a result, it is increasingly important to find mechanisms
that protect system boundaries with a low potential for error
by business logic development teams.

Concerning Sections IV-A and IV-B, the four security
properties that are explicitly named are listed below:

• Confidentiality includes read access by authorized sub-
jects only.

• Integrity describes writing access by authorized subjects
only.

• Availability implies access by authorized subjects at any
time.

• Authenticity verifies the identity of the sender.

Through conversations with our partners, the focus of this
paper will first be on different patterns of the service-level
authorization aspect as part of the confidentiality and partly
the integrity protection goal. Since authorization can be close
to authentication in terms of implementation, it will also be in-
cluded in the following section concerning the implementation
location.

V. AUTHORIZATION AND AUTHENTICATION PATTERNS

In distributed systems, authentication and authorization can
be completed at different locations. While there is typically
one place where authentication and authorization is performed
in monolithic systems, there are various system locations
where authentication and authorization might occur in dis-
tributed systems. This Section, thus, looks at well-known
patterns for authentication and authorization for microservices.

Authentication and authorization have a crucial difference
in the choice of location. Scalability is the critical factor
in positioning authentication, as there is no business reason
to prefer edge-level or service-level. Authentication needs
a database to check credentials and calculate any security
token; domain knowledge is not necessary [5]. In the case of
authorization, on the other hand, it is not only scalability that
is important but also how access is controlled. If role-based
access control (RBAC) is the only requirement, decisions can
be made without domain knowledge, e.g., by roles per URL
path. In this case, edge-level authorization is usable. When a
more explicit authorization is required, an access control list
(ACL) is called. In this case, Domain information is needed,
and service-level authorization is practical.

This Section does not discuss technical authentication and
authorization solutions but highlights the authentication and
authorization positioning and the resulting properties for the
system’s performance and development. For both authentica-
tion and authorization, two fundamentally different approaches
are possible. At the edge-level, the required components are

frequently located in an API Gateway, whereas at the service-
level, the components are located in each service. In the
following Section, we first discuss edge-level authentication.

A. Edge-level Authentication

If there is an API Gateway, it may be used for authentication
decisions. This is a quick-to-develop but hard-to-scale solu-
tion. Using an API Gateway has the following properties [5]:

• Domain logic development teams have very little involve-
ment with authentication.

• API Gateway development teams have to deal with more
complexity.

• Only one team is responsible for the authentication. This
lowers the risk of security vulnerability.

• Faster development by lower complexity.
• Poor scalability due to a single point of control.
• Risk of too strong coupling of API Gateway and mi-

croservices, independent deployment is usually impossi-
ble.

B. Service-level Authentication

An alternative to the API Gateway implementation is the
authentication at the service-level. This solution is slow and
expensive to develop but scales well. The service-level authen-
tication has the following properties [5]:

• Domain logic development teams have to deal with more
complexity.

• Higher risk for security vulnerabilities due to multiple
development teams.

• Slower development due to higher complexity in any
microservice.

• Higher scalability, which stresses one of the most essen-
tial properties of an MSA.

• If there is only RBAC and a role, e.g., an admin has his
microservice, the user database is small. Authorization
errors have a more minor impact because a regular user
can not log in.

The difference between authentication at the edge- and
service-level should have become clearer now: Both ap-
proaches provide the authentication basis for the protection
goals of confidentiality and integrity, which are described in
Section IV.

In the next Section, edge-level and service-level authoriza-
tion will be discussed.

C. Edge-level Authorization

With edge-level authorization, all the logic resides in the
API Gateway. This brings the following characteristics:

• Easy implementation and maintenance.
• May create problems when scaling.
• Complex systems can be challenging to design.
• Back-end microservices must only be accessible via the

API Gateway.

9Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

 17 / 20

Fig. 2. Fundamental points of ACM [8].

• Risk of too strong coupling of API Gateway and
microservices—no independent deployment is possible.

This is a suitable solution for a lightweight MSA with few
roles. Next, we will look at service-level authorization, which
is increasingly attractive for more complex systems [9].

D. Service-Level Authorization

Like authentication, authorization can also be implemented
at the service-level. An additional component is added to each
microservice for authorization, authentication, or both. In this
context, the following terms are important (Figure 2) [8]:

• Policy Enforcement Point (PEP) enforces the authoriza-
tion decision.

• Policy Decision Point (PDP) computes the authorization
decision.

• Policy Administration Point (PAP) comprises an inter-
face to administrate the policies.

• Policy Information Point (PIP) provides additional infor-
mation for the PDP to make authorization decisions [8].

As shown in Figure 2, the PEP and PDP together form the
authorization.

The subsequent patterns are where PEP and PDP reside
in the microservices environment. PAP and PIP are only
mentioned for completeness. At first, we consider the general
properties change compared to edge-level:

• Responsibility moves from the API development team to
the microservices development team.

• Complex microservices environments are possible.
• Implementation and maintenance are more complex be-

cause changes affect each microservice.

1) Decentralized pattern: The decentralized pattern is the
solution to create a microservice that is wholly controlled by
the development team. All software and data components for
making authorization decisions reside inside the microservice.

This is optimal for scaling, but it requires a lot of effort to
implement and maintain since any change in the authoriza-
tion process requires changes in each microservice. Another
challenge is propagating policy or attribute changes to all
microservices. This is a complex pattern in the context of
the required ESB (Section III). On the other hand, there are
scenarios where this pattern may be suitable, e.g., if there is
a microservice with a high number of requests [9].

2) Centralized pattern with single PDP: With the central-
ized single PDP pattern, the PEP is located within each mi-
croservice, and the PDP resides in a different central location.
This implies that every request to the microservice will result
in a network call to the PDP. Thus, if a very low response
time is required, this is not a suitable solution. Also, if high
scalability is needed, a single-point-of-decision is associated
with limitations.

However, in the case of a central PDP, all microservices
are independent of changes within the PDP. Moreover, thus
approach could be faster to be implemented in cooperation
with a required ESB (Section III), because then, the PEP
resides in each microservice, and the PDP is provided by the
ESB [9].

3) Centralized pattern with embedded PDP: In the central-
ized pattern with embedded PDP, the data and attributes are
centralized, but the PDP is part of each microservice. Unlike
the decentralized pattern (V-D1), the PDP is not part of the
code but is embedded using a microservices library. So, the
PDP is part of the microservice for quick decisions, but the
development team doesn’t have a lot of development work.

For interoperation with the required ESB (Section III), this
pattern combines the advantages of a decentralized pattern
and a quick implementation. The ESB could be used for
data and attribute sharing. All other components could make
fast decisions through the microservices [9]. Concerning the
protection goals described in Section IV, the authorization
enforces confidentiality and integrity.

E. Summary

Insurance companies are running large and complex systems
with many different services and fine-grained access control.
For this reason, edge-level authorization is suitable only in
specific scenarios, for example, if RBAC can be used for a
given microservice.

The application landscape of our partners of the insurance
industry comprises an ESB as part in the reference architecture
(Section III). Therefore, each pattern has its use case as we
explained above. The decentralized pattern (V-D1) is recom-
mended when performance is the most crucial requirement.
The centralized pattern with a single PDP (V-D2) is suitable
if performance is less critical and RBAC is needed. The
centralized pattern with embedded PDP (V-D3) brings together
the advantages of the previously mentioned patterns and is,
therefore, from our point of view the most promising one.

10Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

 18 / 20

VI. CONCLUSION AND FUTURE WORK

The security aspect is indispensable in any realization or
evolution of application architecture. Especially in Germany,
insurance companies have to fulfill legal requirements accord-
ing to the BSIG if general framework conditions are met
and the resulting status of critical infrastructure is achieved.
Every two years, proof must be provided to the BSI that
the corresponding security standard is met. The BaFin is
responsible for the regulation of this proof. Our partners from
the insurance industry, thus, should still be compliant with
those requirements if adding a critical (defined based on BSI-
KritisV) system part based on RaMicsV.

For better guidance on authorization patterns from a confi-
dentiality perspective, authentication has also been included,
as the two security properties are usually close in terms of
implementation. Relevant points regarding the implementation
at the service-level and edge-level have been included. The
paper’s main focus was on the different patterns of service-
level authorization, which were considered and evaluated in
the context of our partners within the insurance industry.

Finally, the advantages and disadvantages of the individual
patterns were weighed up. The pattern of choice, depends on
the requirements for scalability and performance. In the con-
text of (grown) insurance and microservices, implementation
at the service-level seems the most appropriate. Furthermore,
the centralized pattern with the single or the embedded policy
decision point comes in closer selection due to the use of
the required ESB within RaMicsV. Thus, an important part
of the protection goal confidentiality was addressed. Still, it
also took another step closer to answering the initially asked
question: ”how to help secure (insurance) business applications
using potentially several logical parts from RaMicsV, mainly
including microservices combined with other typical insurance
applications technologies”?

Within this publication, some guidelines for selecting pat-
terns regarding authorization and authentication of critical
infrastructure have been started and will be continued within
our future work. In addition, our future work also deals
with the approach of validity and consistency of embedded
policies. To continue to remain oriented towards the protection
goals, a prominent topic, service-to-service authentication, will
be addressed in more detail in future work as well. Here,
the available options for implementing authentication will be
considered inside RaMicsV, and the respective advantages
and disadvantages will be weighed against each other. Fur-
thermore, relevant and current aspects of the broad subject’s
availability and integrity will then be evaluated one by one,
to address later emerging security aspects of the MSA, such
as deployment options and resulting security domains. The
exact order is made in consultation with our partners from the
insurance industry, depending on current topics or preferences.

Initial prototypes and proof of concepts have been devel-
oped and implemented for the reference architecture and were
described in previous publications [12] and [7]. While similar

work has not yet been done for the security domain from this
publication, the effort required to implement parts or all of
the reference architecture in a commercial system depends on
the existing SOA, specific functional requirements, and the
number of critical systems components to be implemented.

REFERENCES

[1] The European Parliament and the Council of the European Union,
“Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation
- GDPR)),” [Online]. Available from: https://eur-lex.europa.eu/eli/reg/
2016/679/oj/eng. [accessed: 2022-04-15].

[2] Bundesanstalt für Finanzdienstleistungsaufsicht (BaFin) - Federal
Financial Supervisory (BaFin), “Versicherungsaufsichtliche
Anforderungen an die IT (VAIT) (Insurance Supervisory
Requirements for IT (VAIT)),” [Online]. Available from:
https://www.bafin.de/SharedDocs/Downloads/EN/Rundschreiben/
dl rs 1810 vait va en.pdf? blob=publicationFile&v=5. [accessed:
2022-04-15].

[3] Bundesamt für Sicherheit in der Informationstechnik (BSI) - Federal
Office of Information Security (BSI), “Aufsicht über Kritische
Infrastrukturen im Finanz- und Versicherungswesen (Supervision
of Critical Infrastructures in the Finance and Insurance Industry),”
[Online]. Available from: https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/KRITIS/Nachweispruefungen im Finanz-und
Versicherungswesen.pdf? blob=publicationFile&v=3. [accessed:
2022-04-15].

[4] Gesamtverband der Deutschen Versicherungswirtschaft e.V. (General
Association o.t. German Insurance Industry)), “VAA Final Edition. Das
Fachliche Komponentenmodell (VAA Final Edition. The Functional
Component Model),” 2001.

[5] C. Richardson, Microservices Patterns: With examples in Java. Shelter
Island, New York: Manning Publications, 2018.

[6] S. Newman, Building microservices: designing fine-grained systems.
Sebastopol, California: O’Reilly Media, Inc., 2015.

[7] A. Koschel, A. Hausotter, R. Buchta, A. Grunewald, M. Lange, and
P. Niemann, “Towards a Microservice Reference Architecture for Insur-
ance Companies,” in SERVICE COMPUTATION 2021, 13th Intl. Conf.
on Advanced Service Computing, Online, 2021.

[8] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M.
Cogdell, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone, “Guide
to attribute based access control (abac) definition and considerations
(draft),” NIST special publication, vol. 800, no. 162, pp. 1–54, 2013.

[9] A. Barabanov and D. Makrushin, “Authentication and authorization in
microservice-based systems: survey of architecture patterns,” CoRR, vol.
abs/2009.02114, 2020, [Online]. Available from: https://arxiv.org/abs/
2009.02114. [accessed: 2022-04-15].

[10] Bundesamt für Sicherheit in der Informationstechnik (BSI)
- Federal Office of Information Security (BSI), “Act on
the Federal Office for Information Security (BSI Act -
BSIG) - courtesys translation -,” [Online]. Available from:
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/BSI/BSI
Act BSIG.pdf? blob=publicationFile&v=4. [accessed: 2022-04-15].

[11] Bundesamt für Sicherheit in der Informationstechnik (BSI) - Federal Of-
fice of Information Security (BSI), “Verordnung zur Bestimmung Kritis-
cher Infrastrukturen nach dem BSI-Gesetz (BSI-Kritisverordnung - BSI-
KritisV) (Regulation for the Determination of Critical Infrastructures
according to the BSI Act (BSI-Kritisverordnung - BSI-KritisV)),” [On-
line]. Available from: https://www.gesetze-im-internet.de/bsi-kritisv/
BJNR095800016.html. [accessed: 2022-04-15].

[12] A. Koschel, A. Hausotter, M. Lange, and S. Gottwald, “Keep it in Sync!
Consistency Approaches for Microservices - An Insurance Case Study,”
in SERVICE COMPUTATION 2020, The Twelfth International Confer-
ence on Advanced Service Computing, Nice, France, 2020, [Online].
Available: http://www.thinkmind.org/index.php?view=article&articleid=
service computation 2020 1 20 10016. [accessed: 2022-04-15].

[13] WSO2, “WS02 Enterprise Service Bus Documentation: Securing APIs,”
[Online]. Available: https://docs.wso2.com/display/ESB481/Securing+
APIs. [accessed: 2022-04-15].

11Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

 19 / 20

[14] The Council of the European Union, “COUNCIL DIRECTIVE
2008/114/EC,” [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32008L0114. [accessed: 2022-
04-15].

[15] Bundesamt für Sicherheit in der Informationstechnik (BSI) - Federal
Office of Information Security (BSI), “Konkretisierung der Anforderun-
gen an die gemäß § 8a Absatz 1 BSIG umzusetzenden Maßnahmen
(Specification of the requirements for the measures to be implemented
in accordance with Section 8a (1) BSIG),” [Online]. Available from:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/KRITIS/
Konkretisierung Anforderungen Massnahmen KRITIS.pdf. [accessed:
2022-04-15].

[16] CWE Content Team, “Weaknesses in OWASP Top Ten (2021),” 2022,
[Online]. Available: https://cwe.mitre.org/data/definitions/1344.html.
[accessed: 2022-04-15].

[17] OWASP, “Welcome to the OWASP Top 10 - 2021,” 2022, [Online].
Available: https://owasp.org/Top10/. [accessed: 2022-04-15].

12Copyright (c) IARIA, 2022. ISBN: 978-1-61208-947-8

SERVICE COMPUTATION 2022 : The Fourteenth International Conference on Advanced Service Computing

Powered by TCPDF (www.tcpdf.org)

 20 / 20

http://www.tcpdf.org

