IARIA

SERVICE COMPUTATION 2023

The Fifteenth International Conferences on Advanced Service Computing

ISBN: 978-1-68558-043-8

June 26 - 30, 2023

Nice, France

SERVICE COMPUTATION 2023 Editors

Anders Fongen, Norwegian Defence University College, Norway

SERVICE COMPUTATION 2023

Forward

The Fifteenth International Conferences on Advanced Service Computing (SERVICE COMPUTATION
2023), held on June 26 - 30, 2023, continued a series of events targeting computation on different
facets.

The ubiquity and pervasiveness of services, as well as their capability to be context-aware with (self-)
adaptive capacities posse challenging tasks for services orchestration, integration, and integration. Some
services might require energy optimization, some might require special QoS guarantee in a Web-
environment, while others a certain level of trust. The advent of Web Services raised the issues of self-
announcement, dynamic service composition, and third party recommenders. Society and business
services rely more and more on a combination of ubiquitous and pervasive services under certain
constraints and with particular environmental limitations that require dynamic computation of
feasibility, deployment and exploitation.

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the SERVICE COMPUTATION 2023
technical program committee, as well as the numerous reviewers. The creation of a high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and effort to contribute to SERVICE COMPUTATION 2023.
We truly believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the SERVICE COMPUTATION 2023 organizing
committee for their help in handling the logistics and for their work that made this professional meeting
a success.

We hope SERVICE COMPUTATION 2023 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the area of
computation. We also hope that Nice provided a pleasant environment during the conference and
everyone saved some time to enjoy this beautiful city.

SERVICE COMPUTATION 2023 Steering Committee

Paul Humphreys, Ulster Business School/University of Ulster, UK

Arne Koschel, Hochschule Hannover, Germany

Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Eugen Borcoci, University "Politehnica" of Bucharest, Romania

Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Hannover, Germany
Ozgu Can, Ege University, Turkey

SERVICE COMPUTATION 2023 Publicity Chair

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

SERVICE COMPUTATION 2023

Committee
SERVICE COMPUTATION 2023 Steering Committee

Paul Humphreys, Ulster Business School/University of Ulster, UK

Arne Koschel, Hochschule Hannover, Germany

Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland

Eugen Borcoci, University "Politehnica" of Bucharest, Romania

Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Hannover, Germany
Ozgu Can, Ege University, Turkey

SERVICE COMPUTATION 2023 Publicity Chairs

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

SERVICE COMPUTATION 2023 Technical Program Committee

Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil

Eugen Borcoci, University "Politehnica" of Bucharest, Romania

Uwe Breitenblicher, University of Stuttgart, Germany

Antonio Brogi, University of Pisa, Italy

Isaac Caicedo-Castro, Universidad de Cérdoba, Colombia

Ozgu Can, Ege University, Turkey

Rong N. Chang, IBM T.J. Watson Research Center, USA

Dickson Chiu, The University of Hong Kong, Hong Kong

Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil

Erdogan Dogdu, Angelo State University, USA

Monica Dragoicea, University Politehnica of Bucharest, Romania

Xinsong Du, University of Florida, USA

Sebastian Floerecke, University of Passau, Germany

Stefano Forti, University of Pisa, Italy

Séren Frey, Daimler TSS GmbH, Germany

Steffen Fries, Siemens Corporate Technology - Munich, Germany

Somchart Fugkeaw, Sirindhorn International Institute of Technology | Thammasat University, Thailand
Katja Gilly, Miguel Hernandez University, Spain

Victor Govindaswamy, Concordia University - Chicago, USA

Maki Habib, The American University in Cairo, Egypt

Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Germany
Bernhard Hollunder, Hochschule Furtwangen University - Furtwangen, Germany
WIladyslaw Homenda, Warsaw University of Technology, Poland

Tzung-Pei Hong, National University of Kaohsiung, Taiwan

Wei-Chiang Hong, Asia Eastern University of Science and Technology, Taiwan
Paul Humphreys, Ulster University, UK

Emilio Insfran, Universitat Politecnica de Valencia, Spain

Maria Jodo Ferreira, Universidade Portucalense, Portugal

Yu Kaneko, Toshiba Corporation, Japan

Hyunsung Kim, Kyungil University, Korea

Alexander Kipp, Robert Bosch GmbH, Germany

Christos Kloukinas, City, University of London, UK

Arne Koschel, Hochschule Hannover - University of Applied Sciences and Arts, Germany
Kyriakos Kritikos, FORTH-ICS & University of the Aegean, Greece

Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Wen-Tin Lee, National Kaohsiung Normal University, Taiwan

Mohamed Lehsaini, University of Tlemcen, Algeria

Robin Lichtenthaler, University of Bamberg, Germany

Cho-Chin Lin, National llan University, Taiwan

Mark Little, Red Hat, UK

Xiaodong Liu, Edinburgh Napier University, UK

Michele Melchiori, Universita degli Studi di Brescia, Italy

Fanchao Meng, University of Virginia, USA

Philippe Merle, Inria, France

Giovanni Meroni, Politecnico di Milano, Italy

Naouel Moha, Université du Québec a Montréal, Canada

Fernando Moreira, Universidade Portucalense, Portugal

Felipe Adrian Moreno Vera, Universidad Nacional de Ingenieria, Peru

Sotiris Moschoyiannis, University of Surrey, UK

Gero Miihl, Universitaet Rostock, Germany

Artur Niewiadomski, Siedlce University of Natural Sciences and Humanities, Poland
Matthias Olzmann, noventum consulting GmbH - Miinster, Germany

Ali Ouni, Ecole de Technologie Superieure, Montreal, Canada

Agostino Poggi, Universita degli Studi di Parma, Italy

Jan Porekar, SETCCE, Slovenia

Thomas M. Prinz, Friedrich Schiller University Jena, Germany

Joao F. Proenca, University of Porto / University of Lisbon, Portugal

Teresa Proenca, Porto University, Portugal

Arunmoezhi Ramachandran, Tableau Software, Palo Alto, USA

José Raul Romero, University of Cérdoba, Spain

Christoph Reich, Hochschule Furtwangen University, Germany

Sashko Ristov, University of Innsbruck, Austria

Antonio Miguel Rosado da Cruz, Politechnic Institute of Viana do Castelo, Portugal
Michele Ruta, Technical University of Bari, Italy

Marek Rychly, Brno University of Technology, Czech Republic

Ulf Schreier, Furtwangen University, Germany

Frank Schulz, SAP Research Karlsruhe, Germany

Wael Sellami, Higher Institute of Computer Sciences of Mahdia - ReDCAD laboratory, Tunisia
T. H. Akila S. Siriweera, University of Aizu, Japan

Jacopo Soldani, University of Pisa, Italy

Masakazu Soshi, Hiroshima City University, Japan

Ermo Taks, Taltech, Estonia

Orazio Tomarchio, University of Catania, Italy

Juan Manuel Vara, Universidad Rey Juan Carlos, Spain

Sirje Virkus, Tallinn University, Estonia

Yong Wang, Dakota State University, USA

Hironori Washizaki, Waseda University, Japan

Benjamin Weder, University of Stuttgart, Germany

Mandy Weillbach, Martin Luther University of Halle-Wittenberg, Germany
Michael Zapf, Technische Hochschule Niirnberg Georg Simon Ohm, Germany
Sherali Zeadally, University of Kentucky, USA

Wolf Zimmermann, Martin Luther University Halle-Wittenberg, Germany

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the
dissemination of the published material. This allows IARIA to give articles increased visibility via
distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that | represent the authors of this article in
the copyright release matters. If this work has been done as work-for-hire, | have obtained all necessary
clearances to execute a copyright release. | hereby irrevocably transfer exclusive copyright for this
material to IARIA. | give IARIA permission or reproduce the work in any media format such as, but not
limited to, print, digital, or electronic. | give IARIA permission to distribute the materials without
restriction to any institutions or individuals. | give IARIA permission to submit the work for inclusion in
article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or
otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and
any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above
provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any
individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of
manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without
limitation, negligence), pre-contract or other representations (other than fraudulent
misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that
case, copyright to the material remains with the said government. The rightful owners (authors and
government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and
IARIA's partners to further distribute the work.

Table of Contents

Towards Patterns for Choreography of Microservices-based Insurance Processes
Christin Schulze, Alexander Link, Henrik Meyer, Andreas Hausotter, and Arne Koschel

Migration to Microservices: A Comparative Study of Decomposition Strategies and Analysis Metrics
Meryam Chaieb, Khaled Sellami, and Mohamed Aymen Saied

A Review on Digital Wallets and Federated Service for Future of Cloud Services Identity Management
Fatemeh Sod and Christoph Reich

16

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

Towards Patterns for Choreography of Microservices-based Insurance Processes

Alexander Link
Henrik Meyer
Christin Schulze
Hochschule Hannover
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science
Hanover, Germany
Email: andreas.hausotter @hs-hannover.de

Abstract—To avoid the shortcomings of traditional monolithic
applications, the Microservices Architecture (MSA) style plays an
increasingly important role in providing business services. This
is especially true for the insurance industry with its sophisticated
cross-domain business processes. Here, the question arises of how
workflows can be implemented to grant the required flexibility
and agility and, on the other hand, exploit the MSA style’s
potential. There are two competing approaches to workflow
realization, orchestration, and choreography, each with pros and
cons. Though choreography seems to be the method of choice in
MSA, it comes with some challenges. As the workflow is implicit
— it evolves as a sequence of events being sent around - it gets
hard to understand, change, or operate the workflow. To manage
the challenges of the choreography approach, we use BPMN 2.0
choreography diagrams to model the exchange of domain events
between microservices, which represent ‘participants’ in terms of
BPMN. We aim to execute choreography diagrams automatically.
For this, we developed a set of choreography patterns that
represent frequently occurring sequences. We present the pattern
language and discuss two patterns, a One-Way Task pattern,
and a Event-based Gateway — Deadline pattern. This paper is
part of our ongoing research to design a microservices reference
architecture for insurance companies.

Keywords—Workflow; Choreography; BPMN; Patterns; Busi-
ness Processes; Microservice.

I. INTRODUCTION

Business workflows and multistep business processes are
typical for insurance companies; see, for example, the ref-
erence architecture for German insurance companies (VAA)
[1]. They are complemented by general regulations, such as
the European GDPR [2], as well as insurance-specific laws
and rules regarding, for example, financial regulations, data
protection, and security [3].

Recently, the Microservices Architecture (MSA) style
[4] [5] and cloud computing [6] became more and more in-
teresting for insurance companies. Traditionally, several tech-
nologies from monolithic mainframe applications, functional
decomposition-based software, traditional Service-Oriented
Architectures (SOAs), which often utilize some kind of En-
terprise Service Bus (ESB), Business Process and Workflow
Management Systems (BPMS, WfMS) for orchestration, and
3rd party software, such as SAP software, were and are used
together in insurance business applications, which implement
their business processes.

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

Andreas Hausotter
Arne Koschel

Hochschule Hannover
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science
Hanover, Germany
Email: arne.koschel @hs-hannover.de

Taking all those typical cornerstones from (over time grown)
insurances into account, the goal of our currently ongoing
research [7] is to develop a ‘Microservice Reference Architec-
ture for Insurance Companies (RaMicsV)’ jointly with partner
companies from the insurance domain. Within our work, we
also look at the question: ‘how to implement (insurance) busi-
ness workflows with microservices, which potentially utilize
several logical parts from RaMicsV’?

Within the MSA style, the more decoupled choreography
is favored for this purpose [4] [5]. This is in some contrast,
however, for example, to SOAs, where such workflows are
mainly implemented using orchestration [8]. For example, one
of our partner companies utilizes Camunda [9], another one a
Java/Jakarta EE-based workflow tool.

However, since co-existence of all approaches is a ‘must
have’ for our insurance partner companies, RaMicsV aims to
address the combined usage of more traditional approaches
and the MSA style, the combination of choreography and
orchestration naturally comes to mind. As evolution is a key
demand for our business partners — they can and will not just
‘throw away’ their existing application landscape — concepts
such as orchestration and tools such as an ESB, whose use
within MSA style architectures are both clearly disputable,
have to be integrated reasonably well into our approach.

We thus started to look at the combination of choreogra-
phy and orchestration, including a look at insurance domain
specifics, in our work from [10]. In the present article, we
will now have a focus on choreography-based approaches for
(insurance) business processes. Particularly, we will examine
an initial set of emerged choreography patterns for this pur-
pose, which we will model using choreography diagrams from
the OMG BPMN 2.0 standard [11]. It should be noted that
our goal is not a general implementation of choreographies,
rather an implementation that orients itself toward real-world
scenarios. Thus, we inspected multiple use cases from the
insurance industry, one of which we will introduce later on.

In particular, we contribute in the present article our ongoing
work and intermediate results about:

o The integration of the choreography within our RaM-
icsV;

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

o BPMN 2.0 choreography diagrams and the utilization of
patterns;

« our pattern language for choreography patterns;

e two particular choreography patterns in depth, namely
the One-Way Pattern and the Event-based Gateway —
Deadline pattern;

« and finally insurance business use cases for those patterns.

The remainder of this article is structured as follows: After
discussing related work in Section II, we briefly look at our
current work within the RaMicsV context in Section III. Next,
Section IV looks at BPMN 2.0 choreography diagrams with
patterns. Section V then contributes our patterns usage and a
pattern language for them, as well as two identified patterns.
Moreover, Section VI looks at a usage of those patterns
within an insurance business use case. Finally, Section VII
summarizes our results and concludes with some outlook to
future work, with more patterns to follow.

II. RELATED WORK

The basis of our research builds on authors in the scope of
microservices, such as the work from Newman [5], as well
as Fowler and Lewis [12]. Within the design of our reference
architecture, we profit from different microservices patterns,
as they are discussed by Krause [13] and Richardson [4].

To model our business processes, we use OMG’s BPMN
2.0 specification. Also, we use as groundwork about business
processes and its development with BPMN the works from
Allweyer [14] [15], Riicker and Freund [16].

For the basics of service composition types, orchestration
and choreography, we chose to rely on Decker’s approach [17].
It is important that we define the choreography in terms of
workflows within a microservices architecture. Quite many
publications discuss the benefits of the choreography as a
composition between (micro-)services. In particular, in several
cases the theoretical benefit is presented or the combination
of different approaches with the choreography is shown, as
discussed by Riicker in his blog [18].

This paper ties in with our previous work on realizing a
choreography [10]. In our last paper, we experimented with
the implementation of a choreography using BPMN. The first
pattern ‘Any Problem becomes a Service’ appeared to be
difficult, since the monolithic BPMN does not support the
message exchange between different microservices.

In Mikalkinas® [19] approach, a BPMN choreography dia-
gram is transformed into a BPMN collaboration diagram and
then executed. After this transformation, the BPMN collabora-
tion diagram is executed by an engine, in this case Camunda
[9]. We intend to bypass this conversion and provide direct
execution of the choreography diagram. Thereby, our goal is
to explore an implementation without an engine, since this
corresponds to an orchestration in the case of Camunda.

Milanovi¢ and Gasevi¢ also try to implement choreography
via BPMN and REWERSE II Rule Markup Language in their
work [20]. They developed a rule-based extension for BPMN

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

to realize choreography, called rBPMN. Ortiz et al. describe a
similar approach [21]: In their work, rules are also defined on
how to react based on which events in a choreography. This
work uses fragments of BPMN. In both approaches (only)
parts of the BPMN are considered, and in each case, only
collaboration diagrams.

Another related approach is Richardson’s SAGA pattern and
the Eventuate Framework [4] [22]. The pattern describes the
splitting of a transaction into several small local transactions.
The local transactions trigger each other by messages/events.
The error handling could become interesting for our further
work. The framework includes two manifestations: Tram and
Local. Eventuate Tram [23] so far only implements an or-
chestrated SAGA, so it does not yet include a choreography.
Eventuate Local [24] provides event sourcing to store events.
It also offers functions to perform transactions, through a
publish/subscribe realization. It maps the technical implemen-
tation of a transaction rather than the communication and
composition between services.

We try to implement a choreography in a more straight
way as a compositional approach between microservices. Our
vision is to use the choreography for the complete communi-
cation and workflow. We define the choreography as a global
approach to processing a workflow without the intervention of
a controlling part. This approach was described by us in our
previous paper [10] and is also defined by Decker [17].

To achieve this goal, we define patterns for BPMN chore-
ography diagrams, which are supposed to be implemented
automatically. To model our BPMN choreography diagrams
we used the framework chor-js developed from Ladleif et
al. [25]. We do not focus on the processes within the (micro-)
services themselves, rather only on the communication be-
tween them and the infrastructure. The use of patterns should
also mitigate to some degree the complexity that can arise
in (extensive) choreography-based workflows. The developed
patterns borrow in structure and approach from Barros et
al. [26].

III. SERVICE-BASED REFERENCE ARCHITECTURE FOR
INSURANCE COMPANIES

This Section presents our logical reference architecture for
microservices in the insurance industry (RaMicsV) as initially
started in [7].

RaMicsV defines the setting for the architecture and the
design of a microservices-based application for our industry
partners. The application’s architecture will only be shown
briefly, as it heavily depends on the specific functional re-
quirements.

When designing RaMicsV, a wide range of restrictions and
requirements given by the insurance company’s IT manage-
ment have to be considered. Regarding this contribution, the
most relevant are:

« Enterprise Service Bus (ESB): The ESB as part of the
SOA must not be questioned. It is part of a successfully

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

__Presentation

Web-APP (SPA)
Mobile App
SOA Enterprise Service

" Security”

Application

Enterprise API
Public API

‘ AP| Gateway

API Provider

Authorization

Authentication &

""" i prowcer ™ Japrprowaer T

__ Integration

..............

; - - [L L Do
i | Enterprise Service ﬂ{ Eusiicss Bree ‘ . |
Wrapper 1l .

Service
Registi

Micro- | |:
service B| | |

A—{ Communications ‘

' Micro-
L. |service A

ce-to-Service

’{ Runtime ‘ ‘ Runtime

‘ ‘ Servi

L &MD

Auditing

Monitoring & Logging

Figure 1. Building Blocks of the Logical Reference Architecture RaMicsV.

operated SOA landscape, which seems suitable for our
industry partners for several years to come. Thus, from
their perspective, the Microservices Architecture (MSA)
style is only suitable as an additional enhancement and
only a partial replacement of parts from their SOA or
other self-developed applications.

Coexistence: Legacy applications, = SOA, and
microservices-based applications will be operated
in parallel for an extended transition period. This means
that RaMicsV must provide approaches for integrating
applications from different architecture paradigms -
looking at it from a high-level perspective, allowing an
"MSA style best-of-breed’ approach at the enterprise
architectural level as well.

Business processes are critical elements in an insurance
company’s application landscape. To keep their compet-
itive edge, the enterprise must change their processes in
a flexible and agile manner. RaMicsV must therefore
provide suitable solutions to implement workflows while
ensuring the required flexibility and agility.

Figure 1 depicts the building blocks of RaMicsV which
comprises layers, components, interfaces, and communication
relationships. Components of the reference architecture are
colored yellow; those out of scope are greyed out.

A component may be assigned to one of the following
responsibility areas:

o Presentation includes components for connecting clients
and external applications such as SOA services.
Business Logic & Data deals with the implementation
of an insurance company’s processes and their mapping
to microservices, using various workflow approaches to
achieve desired application-specific behavior.
Governance consists of components that contribute to
meeting the IT governance requirements of our industrial

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

Security

partners.

Integration contains system components to integrate
microservices-based applications into the industrial part-
ner’s application landscape.

Operations consist of system components to realize uni-
fied monitoring and logging, which encloses all systems
of the application landscape.

Security consists of components to provide the goals of
information security, i.e., confidentiality, integrity, avail-
ability, privacy, authenticity & trustworthiness, nonrepu-
diation, accountability, and auditability.

Components communicate either via HTTP(S) — using a
RESTful API, or message-based — using a Message-Oriented
Middleware (MOM) or the ESB. The ESB is part of the
integration responsibility area, which itself contains a message
broker (see Figure 1).

In the next Section, we will have a look at the choreography
in general and BPMN 2.0 choreography in particular as a lead-
in to this paper’s contribution, located in the responsibility area
Business Logic & Data.

IV. CHOREOGRAPHY

This Section will present the core definition of choreogra-
phy, as described in [10]. We briefly outline the use of BPMN,
specifically the choice of BPMN 2.0 choreography diagrams.

A. Choreography

In a choreographed system, there exists no central coordi-
nator, unlike in orchestration [27]. Decker [17] describes the
definition of a choreography as a global view of how services
cooperate and the interaction between participants. This proves
to be a challenge when modeling and monitoring a workflow,
as the workflow is mapped by the interaction between the
participants. It follows that the responsibility of executing and
processing the workflow is transferred to each participant [28].

While choreography may be combined with other patterns,
like the event-driven architecture [29], we decided not to focus
on technical implementations yet, but will eventually.

B. BPMN 2.0 choreography

BPMN 2.0 choreography is chosen as the modeling lan-
guage, since BPMN is also used by our partners. In the BPMN
specification exist at least three significantly different diagram
types to describe processes:

o Process known as classic BPMN. It visualizes the entire
process.

Collaboration splits a classic process into multiple par-
ticipants (or microservices). Each sub-process in a partic-
ipant can be recognized, but also the message exchange
between the participants.

Choreography which visualizes only the exchange of
messages between participants.

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

In contrast to our previous work [10], we now focus only on
the implementation of BPMN 2.0 choreography diagrams [11],
as they visualize the interaction between microservices. In
these diagrams, a participant represents a microservice. We
aim to execute business processes using a choreographed
MSA. Choreography serves as a global composition pat-
tern [17]. We start with a collaboration diagram to map the
whole process, which we then transform into a choreography
diagram to focus on the communication. The processes within
the participants are out of scope as we focus on the means of
communication.

To automatically implement the choreography with BPMN
2.0 choreography, we develop patterns that map frequently
occurring sequences. It should be a wide selection of things
that must, should or can occur. The pattern language and the
yet-to-be-developed grammar will be used to create a tool that
automatically accepts modeled choreography diagrams and
generates the necessary infrastructure and message exchange.

V. CHOREOGRAPHY PATTERNS

In this Section, we will present a pattern language, as well
as two patterns from our list. The language intends patterns to
be assembled to realize more extensive use cases. The patterns
originate from real-world use cases.

A. PFattern Language

A pattern language is utilized to describe the patterns
uniformly. It consists of the following elements (cf. [6]):

« Identification number (ID) of the pattern.

« Name of the pattern.

o Figures that visualize the pattern. Consisting of BPMN
2.0 choreography diagrams, BPMN collaboration dia-
grams, and UML Sequence diagrams.

o A Description which describes the use, content, and flow
of the pattern.

o Rules and conditions under which the pattern may be
used.

o A list of used BPMN elements from the choreography-
and collaboration diagrams, as named in [11].

o Used Patterns, which this pattern builds upon.

o Synonyms and similar patterns from literature and indus-
try.

o Variations where the core concept of the pattern stays
the same.

o Typical combinations and patterns with high compati-
bility.

o Example Use-Cases from the industry.

B. One-Way Task

Now that the pattern language has been introduced, we start
with the most atomic pattern, the One-Way Task.

e ID: BPMNChorO1
o Name: One-Way Task
o Figures: See Figure 2, Figure 3, and Figure 4.

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

Message

(" Participant A

O—p Task

Participant B

—O

8

Figure 2. One-Way Task Choreography.

< [~
g
.% Send Message
£
@©
o
|
| Message
om \/
: &—C
®
2
(5]
2
g Message
Received
Figure 3. One-Way Task Collaboration.
Participant A Participant B

D send_Message(Message)

]

X.__________

Figure 4. One-Way Task UML Sequence.

Description: Participant A wants to deliver a message to
Participant B. The initiator (A) sends the message to the
receiver (B).

Rules: None.

Used BPMN Elements: startEvent (none), messageS-
tartEvent, participant (pool), Message originating from
the initiator, endEvent (none).

Used Patterns: None, this pattern is atomic and depicts
the minimum amount of interaction.

Synonyms: Fire-and-Forget, One-Way Notification
Variations: None.

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

o Typical combinations: Due to the atomic properties of
this pattern, it may be combined with every other pattern.

o Use-Case: Sending an E-Mail or push-notification. For a
longer scenario, see Section VI

This concludes the One-Way Task as the minimal way of
communication, next we will introduce Event-based Gateway
— Deadline pattern.

C. Event-based Gateway — Deadline

The Event-based Gateway — Deadline pattern describes a
more complex, yet often occurring, scenario where the flow
of a process is determined by a temporal aspect.

e ID: BPMNChorl1

o Name: Event-based Gateway — Deadline

o Figures: See Figure 5, Figure 6, and Figure 7.

o Description: An answer only has a limited time frame
to be received. Participant B receives a message from
Participant A. Participant B has to answer within a given
timeframe (N-Time) or else another workflow will be
triggered. Participant A has the timing responsibility.

o Rules: Participant B has to initiate the answering mes-
sage. A Two-Way communication is required.

o Used BPMN Elements: startEvent (none), messageS-
tartEvent, participant (pool), Message, originating from
the initiator, messageStartEvent, timerStartEvent, endE-
vent (none).

o Used Patterns: This pattern is based upon the Sequence
Flow — Two Participants pattern (to be published) with
the restriction that the receiving participant has to answer
in the given timeframe.

o Synonyms: Asynchronous Request-Response

o Variations: None.

o Typical combinations: This pattern may be inserted
into any request-response workflow when a timing-based
component is needed.

o Use-Case: Setting a Deadline for paying an invoice. If
the time is over, a reminder may be sent. For a longer
scenario, see Section VI.

VI. PATTERN SCENARIOS IN INSURANCE COMPANIES

To realize the pattern language of the two introduced
patterns in Section V completely, this Section evaluates use
cases of the patterns from the insurance industry.

We consider a typical process where a new insurance ap-
plication is managed. The process New Insurance Application
adopted from Freund and Riicker [16], but can also be taken
directly from the insurance business model of our partners
in the insurance industry, thus mapping a real-world use case.
Due to the size of the process, it is only briefly described below
and the parts containing the patterns are further explained.

In the process, a customer submits a new insurance appli-
cation. If the request is rejected, this information is noted in
the backend and the customer is informed. If the request is
accepted, a policy is created. After creation, the policy is sent

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

Message 1

(" Particimant A)
P

M

articipant A

O—

Task 1

P,

~—

(" Darticinant A)
P

articipant B

articipant A

O._

Task 2

P

——

articipant B

<

Message 2

Figure 5. Event-based Gateway — Deadline Choreography.

< ~N~
€ = N Time
©
% Send Message
= Message
n“f Received
A
|)
|

| Message 1 | Message 2

' |

I
a ~~
= [~
©
2
8 ™ P| Send M ge
©
o

Message
Received

Figure 6. Event-based Gateway — Deadline Collaboration.

Participant A

Participant B

send_Message
(Message 1)

T
'
[
1
'
1

-

send_Message
(Message 2)

Figure 7. Event-based Gateway — Deadline UML Sequence.

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

Payment Request Policy

. .
. .

~

Policy Service rAplecatlon Service

First Payment

. Send Policy
Invocation

Consumer Consumer

. J

Policy Timeout

Payment

4

C corcimar)
Cc

Policy Issued

onsumer

Send Payment

Policy Service

Figure 8. New Insurance Application Process — Cutout.

Policy Successful

and the customer is requested to submit the first payment. If
the payment is not made within 60 days, the request, and the
policy are invalid. If the customer pays in time, the insurance
is valid.

The parallel flow represents the examples of the use cases
in the insurance industry. In this example, both use cases are
separated by a parallel gateway, as shown in the Figure 8. The
parallel gateway has not yet been introduced as a pattern; in
this implementation, it visualizes the (almost) parallel flow of
the two messages. In one path, the One-Way Task pattern is
represented, by sending the policy to the customer. In the other
path, the Event-based Gateway — Deadline pattern is utilized
by the sending and receiving of the payment request.

In the right path (see Figure 8), the One-Way Task pattern is
implemented. The application service sends the policy to the
client. After sending, the task is completed and the path ends.

The Event-based Gateway — Deadline pattern is shown in
the left path. The policy service sends the first payment request
to the client. Then a timer is started. If the customer pays
within 60 days, the policy, and the process are successful. If
the customer does not pay within 60 days, a timeout occurs
and the policy becomes invalid.

As shown with the payment request and the incoming
payment in Figure 8, the Event-based Gateway — Deadline
pattern contains the One-Way Task pattern. It shows that this
fundamental pattern is the basis of the minimal communication
for the choreography.

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

VII. CONCLUSION AND FUTURE WORK

The effective modeling and implementation of business
processes is of crucial importance for an insurance company.
Coming from BPMN notation, there needs to be a concise way
of realizing the modeled process in the MSA style using the
choreography. In this article, we presented the beginning of our
choreography pattern language as the first steps towards a clear
realization approach with precise implementation rules to map
from BPMN diagrams to the distribution of microservices. For
realizing a pattern language, a grammar will be developed and
evaluated in in future work.

Several more patterns are needed to cover a broader range
of different business use cases in the insurance industry. We
also plan to evaluate all theoretical patterns with our insurance
industry partners to ensure practical use. In future work, we
will thus present additional patterns and grammar, including
usage examples for them. We will also aim to refine our
choreography pattern language and evaluate its additional
benefit through a concrete implementation.

REFERENCES

[1

—

Gesamtverband der Deutschen Versicherungswirtschaft e.V. - General
Association o.t. German Insurance Industry, “VAA Final Edition. Das
Fachliche Komponentenmodell (VAA Final Edition. The Functional
Component Model),” 2001.

European GDPR, “Complete guide to GDPR compliance,” Online.
Available: https://gdpr.eu/ [retrieved: 04, 2023].

Bundesanstalt fiir Finanzdienstleistungsaufsicht (BaFin) - Federal
Financial Supervisory (BaFin), “Versicherungsaufsichtliche
Anforderungen an die IT (VAIT) (Insurance Supervisory Requirements
for IT (VAIT)) vom 03.03.2023,” 2023, Online. Available:
https://www.bafin.de/SharedDocs/Veroeffentlichungen/DE/Meldung/
2023/meldung_2023_03_03_Aktualisierung_VAIT.html [retrieved: 04,
2023].

C. Richardson, Microservices Patterns: With examples in Java.
Island, New York: Manning Publications, 2018.

[5]1 S. Newman, Building microservices: designing fine-grained systems.
Sebastopol, California: O’Reilly Media, Inc., 2015.

C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns Fundamentals to Design, Build, and Manage Cloud
Applications. Springer Vienna, 2014.

A. Koschel, A. Hausotter, R. Buchta, A. Grunewald, M. Lange, and
P. Niemann, “Towards a Microservice Reference Architecture for In-
surance Companies,” in SERVICE COMPUTATION 2021, 13th Intl.
Conf. on Advanced Service Computing. IARIA, ThinkMind, 2021,
pp. 5-9, Online. Available: https://www.thinkmind.org/articles/service_
computation_2021_1_20_10002.pdf [retrieved: 04, 2023].

A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald, “Compo-
nents for a SOA with ESB, BPM, and BRM - Decision Framework and
architectural Details,” Intl. Journal od Advances in Intelligent Systems,
vol. 9, no. 3 & 4, pp. 287-297, 2016.

[91 “Workflow and decision automation platform,” Nov 2021, Online. Avail-
able: https://camunda.com/ [retrieved: 04, 2023].

A. Koschel, A. Hausotter, R. Buchta, C. Schulze, P. Niemann,
and C. Rust, “Towards the Implementation of Workflows in a
Microservices Architecture for Insurance Companies — The Coex-
istence of Orchestration and Choreography,” in SERVICE COM-
PUTATION 2023, 14th Intl. Conf. on Advanced Service Com-
puting. TIARIA, ThinkMind, 2023, pp. 1-5, Online. Avail-
able: https://www.thinkmind.org/index.php?view=article&articleid=
service_computation_2023_1_10_10002 [retrieved: 04, 2023].

OMG, Business Process Model and Notation (BPMN), Version 2.0, Ob-
ject Management Group Std., Rev. 2.0, January 2011, Online. Available:
http://www.omg.org/spec/BPMN/2.0 [retrieved: 04, 2023].

[2

—

[3

=

[4 Shelter

=

[6

=

[7

—

[8

[t}

(10]

[11]

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

[12] M. Fowler and J. Lewis, “Microservices a definition of this new
architectural term,” 2014, Online. Available: https:/martinfowler.com/
articles/microservices.html [retrieved: 04, 2023].

[13] L. Krause, Microservices: Patterns and Applications: Designing fine-
grained services by applying patterns. Lucas Krause, 2015.

[14] T. Allweyer, Kollaborationen,Choreographien und Konversationen in
BPMN 2.0 - Erweiterte Konzepte zur Modellierung iibergreifender
Geschdftsprozesse - Collaborations, Choreographies and Conversations
in BPMN 2.0 - Advanced Concepts for Modeling Comprehensive Busi-
ness Processes. Fachhochschule Kaiserslautern, 2009.

[15] T. Allweyer, Geschdftsprozessmanagement: Strategie, Entwurf, Im-
plementierung, Controlling. - Business process management: strategy,
design, implementation, controlling. W31 GmbH, 2005.

[16] B. Riicker and J. Freund, Praxishandbuch BPMN 2.0 - Practice Hand-
book BPMN 2.0. Carl Hanser Verlag Miinchen Wien, 2014.

[17] G. Decker, O. Kopp, and A. Barros, An Introduction to Service Chore-
ographies, vol. 50, no 2 ed. Information Technology, 2008.

[18] B. Riicker, “The Microservices Workflow Automation
Cheat Sheet,” 2018, Online. Available: https://blog.bernd-
ruecker.com/the-microservice- workflow-automation-cheat-sheet-
fc0a80dc25aalretrieved: 04, 2023].

[19] D. Mikalkinas, Situation-aware Modelling and Execution of Choreog-
raphy. Stuttgart University, 2015.

[20] M. Milanovi¢ and D. Gasevi¢, “Modeling service choreographies with
rule-enhanced business processes,” in 2010 14th IEEE International
Enterprise Distributed Object Computing Conference, 2010, pp. 194—
203.

[21] J. Ortiz, V. Torres, and P. Valderas, “A catalogue of adap-
tation rules to support local changes in microservice composi-
tions implemented as choreographies of bpmn fragments,” 2023,
Online. Available:https://riunet.upv.es/bitstream/handle/10251/181551/
CatalogueOfAdaptationRules.pdf?sequence=1 [retrieved: 05, 2023].

[22] C. Richardson, “Eventuate Framework,” 2021, Online. Available: https:
/leventuate.io/[retrieved: 04, 2023].

[23] ——, “Eventuate Tram,” 2021, Online. Available: https://eventuate.io/
abouteventuatetram.html[retrieved: 04, 2023].
[24] ——, “Eventuate Local,” 2023, Online. Available: https://github.com/

eventuate-local/eventuate-local[retrieved: 04, 2023].

[25] J. Ladleif, A. von Weltzien, and M. Weske, “chor-js: A modeling
framework for bpmn 2.0 choreography diagrams,” 2019.

[26] A. Barros, M. Dumas, and H. AHM, “Service interaction
patterns,” 2005, pp- 302-318, Online. Available:http:
/Iwww.workflowpatterns.com/documentation/documents/
serviceinteraction_BPMOS.pdf [retrieved: 05, 2023].

[27] C. Chen, “Choreography vs orchestration,” Online. Available:
https://medium.com/ingeniouslysimple/choreography- vs-orchestration-
a6f21cfaccae [retrieved: 04, 2023].

[28] B. Riicker, “The Microservices Workflow Automation Cheat Sheet,”
Online. Available: https://blog.bernd-ruecker.com/the-microservice-
workflow-automation-cheat-sheet-fc0a80dc25aa [retrieved: 04, 2023].

[29] ——, Practical Process Automation - Orchestration and Integration in
Microservices and Cloud Native Architectures. O’Reilly, 2021.

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

Migration to Microservices: A Comparative Study of Decomposition Strategies and

Analysis Metrics

Meryam Chaieb
Laval University
Quebec, QC, Canada
meryam.chaieb.1 @ulaval.ca

Abstract—The microservice architectural style has gained
widespread popularity among developers due to its ability
to provide numerous benefits, such as scalability, reusability
and easy maintainability. However, transforming a monolithic
application into a microservices-based architecture can be a
complex and an expensive process. To address this challenge,
we propose a novel method that leverages clustering to
identify potential microservices from a monolithic application.
QOur approach uses a density-based clustering algorithm
that considers the static analysis, structural and semantic
relationships between the classes to establish a functionally
coherent class partitioning. To evaluate our approach, we
analyzed its hyperparameter sensitivity and compared it to two
other well known clustering algorithms using various metrics
on a Java applications. Our approach showed promising results,
demonstrating its effectiveness and stability.

Keywords-microservices architecture; static analysis; clustering;
decomposition.

I. INTRODUCTION

The monolithic architectures is one of the most widely
utilized architectures for software design. In the realm of
software architecture, the monolithic architecture stands as a
prominent approach where an application is built as a single,
indivisible unit. It encompasses all essential functionalities
and components within a unified codebase, thereby present-
ing a tightly coupled system. This architectural style often
involves a centralized database, user interface, and business
logic, rendering it self-contained and independent of external
services. An exemplar of monolithic architecture, that we will
use later in our evaluation process, can be observed in the
context of the DayTrader [1] application, a virtual stock trading
platform. In this monolithic setup, all trading functionalities,
user management, and financial calculations are contained
within a single application. While this approach simplifies
development and deployment and despite being used since
the early days of software systems, it can pose challenges
when it comes to scalability, maintaining code integrity, and
accommodating changes or updates in individual components
[2]-[4].

Many methods have arisen throughout time to solve these
issues, such as migrating to new technologies, managing
independent services, and deploying more powerful servers.
Despite the availability of these solutions, monolithic ar-
chitectures are still limited by inherent drawbacks such as

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

Khaled Sellami
Laval University
Quebec, QC, Canada
khaled.sellami.1 @ulaval.ca

Mohamed Aymen Saied
Laval University
Quebec, QC, Canada
mohamed-aymen.saied @ift.ulaval.ca

their large, complex, and often inefficient nature, which may
hinder their ability to support advanced and more sophisticated
technologies [5]-[10].

Microservices architecture, in the other side, is gaining in
popularity and is projected to play a large role in developing
scalable, easy to maintain software products by focusing on
tightly defined, separated services inside a distributed system.
The microservice architecture emerges as a contemporary
approach where an application is built as a collection of
small, independent services. These services are designed to
be modular, self-contained, and focused on specific business
functionalities. Unlike the monolithic architecture, microser-
vices operate as autonomous units that communicate with
each other through well-defined APIs. This architectural style
enables teams to develop, deploy, and scale individual ser-
vices independently, fostering flexibility and maintainability.
A noteworthy example of the microservice architecture can be
found in the Netflix streaming platform. In this setup, various
microservices handle distinct tasks such as user authentication,
content recommendation, billing, and media streaming. Each
microservice can be developed, tested, deployed, and scaled
independently, allowing Netflix to rapidly innovate, adapt to
changing demands, and deliver a seamless streaming experi-
ence to its vast user base [11]. The transition from a monolithic
design to a more durable and robust microservice architecture
is based on the idea of finding contextually and functionally
relevant modules and encapsulating them in a single service,
while ensuring strong cohesion and low coupling between
them. As Rosati pointed out in their research on the migration
cost [12], transforming a mature monolithic software into
microservices architecture may demand substantial investment
in terms of time and cost. These difficulties have prompted
academics to devise automatic decomposition methods that
might ease the migration process.

The task of transitioning a monolithic application into a
microservices architecture is treated as a clustering problem
in the context of our project. Our suggested method entails
a multi-step procedure that employs static examination of the
source code and density-based clustering algorithm to divide
the classes into multiple potential microservices that may be
evaluated further. We conducted an in-depth review utilizing
a variety of metrics to measure the efficacy and efficiency of
our method.

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

The main contributions of our work are as follows:

1) The proposed approach combines density-based clus-
tering and static analysis techniques to leverage the
advantages of both methods. It considers the structural
and semantic dependencies among classes in a given
monolithic application.

2) A comparison between the resulting decomposition of
the proposed algorithm and those of commonly used
clustering algorithms in the field.

This paper is structured as follows: Section II details the pro-
posed methodology, including the clustering algorithms used.
In Section III, we discuss the findings of this effort and respond
to different research questions. Section IV presents the related
work in the field of monolithic migration to microservices.
Section ?? outlines the threats to validity that were considered
during the study. Finally, Section V, concludes the work and
discuss future research directions.

II. PROPOSED APPROACH

The task of extracting microservices from a monolithic
software is approached as a clustering problem, with the
application’s source code as input. Figure 1 outlines the phases
involved in our research. Our primary goal in this effort is to
achieve granularity at the class level.

Our technique begins with the extraction of semantic and
structural information via static analysis of the source code.
Then, it evaluates all potential combinations while selecting
only one option from each semantic and structural prepro-
cessing component. We feed these representations to each
one of the clustering algorithms, resulting in three distinct
decompositions that will be analyzed and compared .

A. Representation of the Monolithic Application

The monolithic application is represented as a set of Object
Oriented Programming classes denoted as Cj;=(cy,...,cz),
where Z represents the total number of classes. In this con-
text, our approach aims to partition the original monolithic
application into a set of K microservices M=(my,..,m). Each
microservice, m;=(Cq,...,Cp), represents a subset of the original
classes. We aim to optimize the migration process, where each
microservice is expected to be cohesive and loosely coupled,
resulting in a more maintainable and scalable architecture.
The initial step, presented in the diagram in Figure 1, focuses
on representing the monolithic application and extracting the
necessary information to build the microservices. To do this,
we begin by creating an encoding scheme for the monolith’s
classes to capture their structural and semantic links.

1) Structural encoding: Abstract Syntax Trees (ASTs) can
be created after the source code has been parsed using a static
analysis tool, such as ”Understand” [9]. These ASTs are used
to extract call relationships between classes in a form of an
interaction graph. As described in task 2.1 of the diagram
presented in Figure 1 the structural information can be encoded
using three different options:

o Call;,, Call,,:: Each class is represented as the sum of

incoming and outgoing calls. Our strategy seeks to group

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

classes that interact frequently within the same cluster
in order to reduce coupling while promoting greater
cohesion within the resulting microservices.

« Call frequencies: This option tries to build more coherent
clusters by encoding classes in greater depth. We analyse
the call frequencies between each pair of classes to cap-
ture a more nuanced understanding of class connections.

e Codependent calls: We consider call frequencies of
classes that interacts with both classes to encode each pair
of classes. To aid in understanding this concept, we will
go through the example in Figure 2 . We have 4 classes:
A, B, C, and D. The objective is to encode the pair of
classes A and B. Class A is invoked five times by class
B, three times by C, and once by D. In addition, class B
is invoked twice by C and once by D. The encoding of
the pair of classes A and B is the sum of incoming calls
to A from the codependent classes C and D.

The idea behind this technique is that classes that are
frequently called together are usually used to handle the
same functionality.

2) Semantic encoding: Assume we are dealing with mono-
lithic software projects that were created in accordance with
industry norms, the names of classes, methods, and variables
are chosen based on functional principles in such projects, and
thorough annotations are included to indicate their intended
use. By including semantic information into the encoding
process, we can determine the essential links between classes
and the functionality they provide, facilitating the ability to
combine them into coherent microservices.

As a result, the semantic information of each class is com-
posed of a collection of terms that are used in different parts
such as comments, method names, and variable names. To
preprocess these words, we separate them using CamelCase,
filter out stop words and normalise them using stemming.

As seen in task 2.2 in Figure 1, the processed semantic
information will be represented in two options:

o Terms frequencies: It involves incorporating the frequen-
cies of terms found within the vocabulary of the appli-
cation. By doing so, we can ensure that the terms with
higher frequencies are more closely related to the domain
of the class.

e Term Frequency-Inverse Document Frequency: TF-IDF
can improve class clustering in a variety of ways, it
considers not only the frequency of a word in a class, but
also the inverse document frequency to assess how unique
a term is to a class in comparison to the vocabulary. Thus,
unique terms that are exclusive to a class will have a larger
weight and will be more informative.

B. Clustering algorithms

The objective is to extract microservices by encoding classes
structurally and semantically using different combinations of
options. To achieve this, we experimented with the Boosted
Mean Shift Clustering (BMSC) [13] algorithm, along with
other well-known clustering algorithms such as Density-Based

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

Task 1.1 Stuctural Analysis

— . . i Call G cal
Generate AST | Abstract Syntax|——»| ~ Build Call Graph > Dependecies

matx g | callincal ot

source code

Task 1.2 Semantic Analysis

Extact Preprocess and

ents var Word:
> | commenisvariables, | | o genersteword fords »
parameter and Word vectors req requencies
requencies
method names maix

Tems frequencies | —»-

Callfrequencies

Task 2 Preprocessing

Task 2.1 Structural metrcs preprocessing

Task 3 Clustering

CoDependent calls

» BMSC

3, Combined metrics > DBSCAN
>

*.
®
L

> MeansShift

TFIDF

Task2.2

preprocessing

Figure 1: Overview of the Microservices Extraction Process.

class B 2

Ij
class C { 1
class D

class C

class A

class D

Figure 2: Illustrative example of Codependent calls metric.

Spatial Clustering of Applications with Noise (DBSCAN) [14]
and Mean Shift [15].

1) DBSCAN algorithm: DBSCAN is a clustering technique
to detect clusters and noise. The user must specify two
hyperparameters, Eps and MinPts. The method uses these
parameters to arrange densely related points into a single
cluster. One major benefit of DBSCAN is that based on the
data and the provided hyperparameters, the number of clusters
can be arbitrary detected, leading in more accurate clusters
[16].

Hyperparameters :

e Eps (¢) : Refers to the radius of the neighbourhood

surrounding the cluster’s central point.

e MinPts : This is the bare minimum of points required to

build a cluster.

To build clusters, DBSCAN begins by picking an arbitrary
Core point, then it collects data points within a distance equal
to Eps. A cluster is produced if the total number of points
acquired is more than or equal to MinPts. To enlarge the
original cluster, this procedure is repeated for each cluster
point. During this step, the algorithm creates the first cluster.
The procedure is then repeated after removing all of the points
that composed it from the database. When no further clusters
can be produced with the provided hyparameters, the algorithm
stops. The rest of the points are labelled as Noise.

However, this algorithm is highly sensitive to its hyper-

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

parameters, leading to significant variation in microservices’
quality. Moreover, DBSCAN-based approaches may not work
well with datasets with varying densities or non-globular
shapes.

2) Mean Shift: The Mean Shift method does not need any
assumptions about the underlying distribution of the data.
It can automatically detect non-linearly formed clusters and
compute the number of clusters [15].

It begins by arbitrary identifying a region of interest and
calculate its center of density. The mean shift vector is then
generated and the center of the area is shifted along the vector
until it corresponds with the centre of mass.

Although the Mean Shift method has shown excellent re-

sults, the research in [13] demonstrates that BMSC outper-
formed Mean Shift in a similar clustering problem with more
stable clustering.
Given the difficulties involved with clustering algorithms spe-
cially when there is no obvious separation between clusters,
we decided to investigate alternatives to standard techniques.
We picked the BMSC technique since it has showed higher
performance in similar clustering tasks.

3) BMSC algorithm: BMSC algorithm is a hybrid cluster-
ing technique that combines Mean Shift and DBSCAN. It is a
density-based clustering method that overcomes some of the
limitations of both approaches and can find clusters of any
form and size with varied densities without the need for a
predetermined number of clusters [13].

The BMSC first applies the Mean Shift algorithm to gener-
ate a set of initial centers that will be the input to the DBSCAN
algorithm. BMSC selects a sample of the data that captures
the skeleton of the clusters in order to properly identify the
data’s underlying structure.

Algorithm 1 outlines the steps involved in applying the
BMSC algorithm. The first step is to divide the data uniformly
into cells of a grid. Then, the Mean Shift algorithm is applied
independently to the data in each cell. This produces a list
of intermediate mode points (iModes). Next, it disperse the
data of the cells using a specific mechanism that involves
each grid cell interacting with a limited number of cells in
its neighborhood. The BMSC paper [13] presents various

10

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

Algorithm 1 Boosted Mean Shift Clustering

Require: X, width, height, Eps.
Ensure: the final clustering results cl__ final.
1: Initialize Grid(X,width,height)
> Distribute X over G = width X height cells.

2: iModes +
3: counter < 1
4: while counter! = 3 do
5: for j < 1 to G do
6: newiModes < MeanShift(cell Data;)
7 iModes.Append(newiModes)
> collect the iModes of each cell of the Grid

8: end for
9: ConfidenceAssignement(Semantic _similarity)
> Assign confidence values to classes in each cell
10:
11: for j + 1 to G do
12: CollectedData — CollectNeighborhoodData(j,
neighborhood _ structure) U cell Data;
13: cellData; < WeightedSampling(CollectedData)
> update cell Data;
14: end for
15: cl_iModes, numberOfClusters <— DBSCAN (iModes _similarity,
Eps)

> cl_iModes is the clustering results of the iModes
16: if numberOfClusters == lastnumberOfClusters then
17: counter++

18: else
19: counter <— 1
20: end if

21: end while
22: cl_final < DataAssignement(X,cl iModes)

neighborhood structures, which are depicted in Figure 3. In
our work, we adopt the linear (5) neighborhood structure.

(a) Linear 5 (b) Linear 9 (c) Compact 9 (d) Compact 13

Figure 3: Potential neighbourhood structures.

The subsequent phase involves calculating the distances
between all data points in the parent cell and those in its
neighboring cells, relative to the iModes using a semantic
similarity metric that assesses the confidence level of each
relationship. The second stage of the BMSC algorithm utilizes
the list of iModes to run DBSCAN. The latter is applied
to identify clusters of densely packed iModes, which in turn
generates clusters of the original data points.

In our particular scenario, we utilize an aggregation function
to transform the iModes into a format similar to that of the
legacy application’s classes. We represent each group center by
summing the structural encodings of its classes, thus capturing
the structural aspect of the mode point. Additionally, we
compute the semantic part of the vector by summing the term
frequencies of words used in those specific classes.

For the purpose of extracting reliable microservices, we
adopt a novel approach inspired from the work of Sellami
and al [17] where instead of directly inputting the encoders
of iModes into the DBSCAN algorithm, we provide the

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

connections or links between each pair of iModes. To achieve
this, we employ the iModes similarity measure that capture the
structural and semantic relationships. This approach aims to
produce microservices that are consistent from implementation
and use cases perspectives. The similarity is calculated as
follows :

e iModes Similarity (MS) : The weighted sum of two

similarity metrics, as provided by equation 1.

MS(mi,mj) = aSimg,(my, m;) + BSimsem (ms, m;) (1)

With : a, 5 € [0,1], « + B = 1.

Each one of the similarities is computed as follow:

o Structural similarity (Sim..) : This allows us to eval-
uate their similarity from a functional perspective. It’s
computed using equation 2

(W + %) 1 feallin(m;) # Oandcallin (m;) # 0
I feallin(m;) = Oandcallin (m;) # 0 (2)

I feallin(m;) # Oandcallin (my) = 0

1
2

simge, (Mg, my) =

With:

e call(m; , m;): The number of calls of m; by m;,

e call;,(m;): The number of incoming calls in m;.

o Semantic Similarity (Simg.,,) : Is represented by the
cosine similarity between their respective vectors. This
is useful for measuring the similarity between different
iModes and identifying possible relationships at the do-
main level [18].

Finally, we employ DBSCAN algorithm on the iModes

similarity metric. The process is iterated until production of
the same number of clusters for three consecutive iterations.

1. EVALUATION

To help better understand the evaluation, Table I summa-
rizes the characteristics of the monolithic application used to
evaluate different aspects of our approach.

TABLE I: CHARACTERISTICS OF MONOLITHIC APPLICA-
TION

SLOC # of classes
18,224 118

Project Version
DayTrader 1.4

A. Research Questions

The goal of our experimental investigation is to address
these research questions (RQs):
RQ1: What is the most effective and promising option among
the various choices in our approach?
RQ2: How does the stability and robustness of BMSC algo-
rithms compare to that of Mean Shift and DBSCAN?

B. Evaluation metrics

We used a set of metrics specified in [19] to analyse various
aspects of the extracted microservices without relying on the
ground truth microservices:

 Structural Modularity (SM): Determined by measuring

the structural cohesiveness of classes inside a partition
and the coupling between partitions.
The higher SM value, the better the decomposition.

11

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

o ICP: Depicts the percentage of calls that occur between
two divisions.
The lower the ICP value, the better the recommendation.

o Interface Number (IFN): It counts the number of
interfaces present in a microservice. An interface is
defined as a class within a microservice that is invoked
by a class within another microservice.
The lower the IFN value, the better the recommendation.

o Non-Extreme Distribution (NED): It assesses the
distribution of classes within microservices and aims to
ensure that a microservice is non-extreme. According
to [19], a microservice is considered non-extreme if it
contains a number of classes within the range of [5, 20].
The lower the NED value, the better the recommendation.

C. Evaluation and Results for RQ1

1) Evaluation protocol: The objective is to compare the
quality of the findings from different possible combinations
of structural and semantic information in order to identify the
most effective strategy for each algorithm using DayTrader
application. We assigne abbreviations as follows:

e Option 1 : Call,,,Call,,; + Terms frequencies.

« Option 2 : Call,,,Call,,; + TFIDF

¢ Option 3 : Call Frequencies + Terms frequencies.
e Option 4 : Call Frequencies + TFIDF.

e Option 5 : Codependant calls + Terms frequencies.
o Option 6 : Codependant calls + TFIDF.

Hyperparameters were fixed according to the literature:

« Bandwidth :Is set using the estimate bandwidth function
from scikit-learn, which estimates the value of the band-
width based on the provided data.

e MinPts : Is set to 5 because a cluster is considered not
extreme if its size ranges from 5 to 20 [19] for DBSCAN
alone and set to its default value (MinPts = 1) for BMSC
algorithm [13].

o Eps : Is set using a k-distance graph technique.

2) Results: According to the results presented in Table II,
option 6 is deemed the most suitable for the Mean Shift
algorithm when considering the SM metric and shows a per-
formance that is comparable to the best results obtained when
evaluating other metrics. For DBSCAN, presented in Table III,
option 6 has shown better results in terms of IFN, ICP, and
NED, with a SM value that is close to the maximum. Both
DBSCAN and Mean Shift algorithms presented varied results,
while BMSC had very similar results for all options and all
metrics. Furthermore, BMSC was able to detect a more stable
number of microservices compared to the other algorithms,
which often formed one large cluster or unique classes that
did not meet the research goals. In contrast, the resultant
microservices from BMSC were balanced and stable across
different approaches, with the largest microservice containing
a maximum of 17 classes as presented in Table IV.

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

TABLE II: EVALUATION RESULTS OF DAYTRADER APPLI-
CATION USING MEAN SHIFT ALGORITHM

Metrics Option I Option 2 Option 3 Option 4 Option 5 Option 6
SM 0.8526 0.7853 0.7944 0.8614 0.8575 0.8742
IFN 1.235 1.8 1.277 1.0454 1.0 1.214
ICP 1.0 0.9 1.0 1.0 1.0 1.0
NED 1.0 0.9 1.0 1.0 1.0 1.0
microservices 17 10 18 22 21 14
size of the largest micro 98 102 97 92 97 104

TABLE III: EVALUATION RESULTS OF DAYTRADER APPLI-
CATION USING DBSCAN ALGORITHM

Metrics Option I Option 2 Option 3 Option 4 Option 5 Option 6
SM 0.120 0.1085 0.2702 0.2718 0.2487 0.1116
IFN 0.120 0.1085 0.2702 0.2718 0.2487 0.1116
ICP 0.3244 0.1426 0.1591 0.2859 0.3482 0.0079
NED 0.5 0.666 1.0 0.5 0.5 0.333
microservices 2 3 2 2 2 3
size of the largest micro 108 86 116 113 113 104

Option 6 is the optimal approach for all three clus-
tering algorithms. It uses co-dependent calls metric as
structural information and TF-IDF vector as semantic
information. Consequently, our work will continue to
focus on this strategy.

D. Evaluation and Results for RQ2

1) Evaluation protocol: The purpose is to examine the sen-
sitivity to the hyperparameters of BMSC algorithm compared
to that of DBSCAN and Mean Shift individually. For each
hyperparameter, we firstly specified the range of potential
values. The other hyperparameters were then fixed, and the
algorithm was performed for each possible value, recording
the extracted microservices. The outcomes were then reviewed
using multiple metrics, and the metric values were plotted at
each step. We focused on the DayTrader monolithic project
for our investigation since it is a well-established benchmark
for this topic.

« Bandwidth : using the estimate bandwidth function from
the scikit-learn we estimate the maximum value of the
kernel bandwidth, and then we varied the values of the
hyperparameter from O to this estimated value.

o Eps: We varied the Epsilon values from 0 to 1 with a
step equal to 0.05.

2) Results: Figure 4 showcases an evaluation of five differ-
ent techniques, represented as subfigures. The Y-axes in each
subfigure indicate the metric scale, while the X-axis displays
the boxplot results for each technique arranged in the following
order:

1) BMSC _eps: BMSC results varying its epsilon hyperpa-

rameter.

2) DBSCAN eps: DBSCAN results varying its epsilon

hyperparameter.

3) BMSC band: BMSC results varying its bandwidth hy-

perparameter.

4) MeanShift band: Mean shift results varying its band-

width hyperparameter.

Each subfigure in Figure 4 is dedicated to a specific evalu-
ation metric, allowing for a thorough comparative analysis of
various aspects of the techniques to derive insights regarding

12

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

TABLE IV: EVALUATION RESULTS OF DAYTRADER APPLI-
CATION USING BMSC ALGORITHM

Metrics Option I Option 2 Option 3 Option 4 Option 5 Option 6
SM 0.3696 0.3435 0.3887 0.4697 0.40545 0.4052
IFN 1.0344 1.250 1.0370 0.9677 1.0769 1.318
ICP 0.6500 0.591 0.618 0.6432 0.6257 0.639
NED 0.7241 0.6666 0.7037 0.7419 0.6538 0.636
microservices 29 24 27 31 26 22
size of the largest micro 13 13 13 13 16 17

their stability. The subfigures are arranged in the following
order: SM, IFN, ICP, and NED, with each focusing on the
evaluation of the corresponding metric for each technique. The
last subfigure provides the results for the number of generated
microservices per technique, represented as “# microservices”.
By carefully examining these evaluation metrics, we can gain a
comprehensive understanding of the performance and stability
of the techniques.

Upon analyzing Figure 4, it becomes clear that BMSC ex-
hibits greater sensitivity compared to DBSCAN in relation to
the epsilon hyperparameter (BMSC eps vs. DBSCAN eps),
as well as greater sensitivity compared to Mean Shift in
relation to the bandwidth hyperparameter (BMSC band vs.
Mean shift band) across all evaluated metrics.

In the analysis of Figure 4, several noteworthy observations
can be made. Firstly, despite DBSCAN outperforming BMSC
in terms of the structural modularity (SM) and interface
number (IFN) metrics, it results in a significantly high number
of microservices. With an average of 115 microservices for an
application containing only 118 classes, this outcome does not
align with our migration goals. This discrepancy suggests that
DBSCAN may be suffering from the “boulders and grains”
problem, generating microservices that are either too small or
too large. Such an outcome fails to address the limitations
of the monolithic application and does not contribute to the
desired loosely coupled microservices architecture.

On the other hand, Mean Shift exhibits better performance
in terms of the number of generated microservices. Its mean
number of microservices is comparable to that of BMSC,
indicating a more balanced decomposition approach with fewer
than 20 microservices on average. This suggests that Mean
Shift provides a more suitable solution for achieving the
desired granularity in the migration process of monolithic
applications.

Furthermore, the analysis reveals that BMSC demonstrates
greater sensitivity when varying the epsilon hyperparameter
compared to the bandwidth hyperparameter (BMSC band
vs. BMSC eps), as evident from the boxplots in the final
subfigure. This sensitivity is also apparent in the boxplot
variation of the non-extreme distribution (NED) subfigure,
where the variation in epsilon results in up to a 60%
change. This discrepancy can be attributed to the fact
that varying the bandwidth can generate different modes
that are connected using DBSCAN, whereas varying the
epsilon hyperparameter directly affects the final number of
microservices, as indicated by the comparison of variations
in the number of microservices.

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

In contrast to the findings in [13], our analysis sug-
gests that for our case, BMSC is more susceptible to
the selection of its hyperparameters, specifically the
epsilon parameter, compared to DBSCAN and Mean
Shift when used independently. However, BMSC demon-
strates greater consistency in the resulting decomposi-
tions across hyperparameter variations.

IV. RELATED WORK

The first component of a decomposition approach is con-
cerned with the type of input and how it is handled. The
methods suggested by MSExtractor [20], Bunch [21], and [22]
, for example, take as input the source code of a monolithic
system and apply various static analysis techniques to it. The
approach called HierDecomp [17], employes in addition the
semantic similarity generated from the code text analysis.
Other approaches, such as Mono2Micro [19], FoSCI [23], and
COGCN [24], are based on the study of monolithic system use
cases and execution traces. Sellami and al [25] combine both
static and dynamic analysis in order to cover the individual
disadvantages of each of the analysis approaches. There are,
on the otehr hand, systems that employ different inputs, such
as MEM [26], which analyses the git commit history of
monolithic programs.

Most methods utilize clustering algorithms, such as [22]
which feeds vectors derived from code embedding into an
Affinity propagation clustering process [27]. The similarity
metrics computed by an agglomerative single-linkage cluster-
ing method [28] are used by Mono2Micro [19]. Based on the
graph it developed, MEM [26] provides its own clustering
mechanism. Based on the similarity metrics, HierDecomp
[17] and HyDecomp [25] employ a DBSCAN [16] density
based clustering algorithm which ends by having a hierarchical
microservices decomposition recommendation. Some methods
suggest search algorithms to accomplish their goal. MSEx-
tractor [29] uses the non-dominated sorting genetic algorithm
(NSGA-II) [30] whereas FoSCI [23] employs both NSGA-II
and hierarchical clustering. A community discovery method is
used by Service Cutter to provide a decomposition.

However, many existing approaches encounter the chal-
lenge known as the “boulders and grains” problem, which
arises when microservice decompositions lean towards being
excessively large or overly small. Both situations introduce
drawbacks in terms of system architecture and management.
When a microservice decomposition becomes too large, it
can lead to heightened complexity and diminished modular-
ity. Large microservices that encompass numerous classes or
functionalities become cumbersome to maintain, understand,
and update. Furthermore, even minor changes to a component
within a large microservice may necessitate redeploying the
entire service, impeding agility and scalability.

Conversely, when a microservice decomposition is excessively
small, it can result in an abundance of services and un-
necessary network communication overhead. Microservices
consisting of only a few classes can lead to an excessively
fragmented architecture, resulting in increased latencies and

13

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

SM

NED # microservices

07

= :

05

ER=

T

=
-

=

— 0

BMSCeps DBSCANeps BUSCband Meanshift band BMSCeps DBSCAN.eps BUSCband Meanshift band BMSCeps DBSCAN eps

BMSC_band Meanshit band BMSCeps DESCAN.eps BMSCband Meanshift band BMSCeps DBSCANeps BMSCband Meanshift band

Figure 4: Evaluation metrics for different hyperparameters values when extracting microservices from the project DayTrader.

added complexity in managing the interactions among numer-
ous small services.

Assessing whether a microservice decomposition is too large
or too small requires careful evaluation. Qualitative factors
such as complexity, cohesion, and adherence to the Single
Responsibility Principle offer valuable insights into the size
of a microservice. Additionally, quantitative metrics can be
employed to measure microservice size, such as counting
the number of classes or lines of code it encompasses. For
example, "Mono2micro” paper [19] suggests a guideline for
microservice size, recommending that an optimal microservice
consists of 5 to 20 classes. This quantitative threshold aims to
strike a balance, ensuring that microservices remain manage-
able and cohesive without succumbing to excessive granularity
or complexity.

V. CoNCLUSION AND FUTURE WORK

In conclusion, this paper has presented a comparative study
of different strategies for decomposing monolithic applica-
tions into microservices. Our proposed approach, utilizing the
BMSC algorithm, effectively groups semantically and struc-
turally similar classes to extract potential microservices. No-
tably, our approach demonstrates promising results by solely
utilizing select characteristics of the monolithic application’s
source code as input, distinguishing it from approaches that
require additional data sources.

Through extensive evaluation using various performance
metrics, we have compared our approach with two well-
established algorithms in the field. The experimental results
highlight the superior cohesion within microservices, reduced
interactions between microservices, and overall improved sta-
bility achieved by our method. However, it should be noted
that the sensitivity to the epsilon hyperparameter remains a
limitation, posing challenges in its selection.

Looking ahead, our future work will focus on developing
more refined metrics to evaluate the extracted microservices
and conducting comparative analyses against existing decom-
position techniques. We also aim to explore different similarity
metrics and investigate alternative types of interactions be-
tween classes beyond direct method calls. To further enhance
the granularity of our approach, we intend to extend it to
consider methods or functions of the monolithic application
as a basis for decomposition, going beyond class-level gran-

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

ularity. Additionally, we recognize that static analysis alone
may not provide a comprehensive understanding of application
functionalities and interactions during runtime. Therefore, we
propose exploring hybrid solutions that incorporate dynamic
analysis of the source code to enrich the decomposition
process.

By addressing these avenues for future research, we aim
to advance the field of microservice decomposition and con-
tribute to the development of effective and scalable approaches
for migrating monolithic applications to microservices archi-
tectures.

REFERENCES

[1] “sample.daytrader7,” 2023-04-24. [retrieved: May, 2023].

] F. Tapia, M. . Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis,
“From monolithic systems to microservices: A comparative study of
performance,” Applied Sciences, vol. 10, 2020.

O. Benomar, H. Abdeen, H. Sahraoui, P. Poulin, and M. A. Saied, “De-
tection of software evolution phases based on development activities,” in
2015 IEEE 23rd International Conference on Program Comprehension,
pp. 15-24, IEEE, 2015.

L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “A kuber-
netes controller for managing the availability of elastic microservice
based stateful applications,” Journal of Systems and Software, vol. 175,
p. 110924, 2021.

V. Velepucha and P. Flores, “Monoliths to microservices - migration
problems and challenges: A sms,” in 2021 Second International Con-
ference on Information Systems and Software Technologies (ICI2ST),
pp. 135-142, 2021.

L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Deploy-
ing microservice based applications with kubernetes: Experiments and
lessons learned,” in 2018 IEEE 11th international conference on cloud
computing (CLOUD), pp. 970-973, IEEE, 2018.

M. A. Saied, H. Sahraoui, E. Batot, M. Famelis, and P.-O. Talbot,
“Towards the automated recovery of complex temporal api-usage pat-
terns,” in Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1435-1442, 2018.

S. Huppe, M. A. Saied, and H. Sahraoui, “Mining complex temporal
api usage patterns: an evolutionary approach,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C), pp. 274-276, IEEE, 2017.

M. A. Saied, O. Benomar, and H. Sahraoui, “Visualization based api
usage patterns refining,” in 2015 IEEE 3rd Working Conference on
Software Visualization (VISSOFT), pp. 155-159, IEEE, 2015.

L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Microservice
based architecture: Towards high-availability for stateful applications
with kubernetes,” in 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security (QRS), pp. 176-185, IEEE,
2019.

G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs. mi-
croservice architecture: A performance and scalability evaluation,” IEEE
Access, vol. 10, pp. 20357-20374, 2022.

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

14

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

Copyright (c) IARIA, 2023.

P. Rosati, F. Fowley, C. Pahl, D. Taibi, and T. Lynn, “Right scaling for
right pricing: A case study on total cost of ownership measurement for
cloud migration,” vol. 1073, pp. 190-214, Springer Verlag, 2019.

Y. Ren, U. Kamath, C. Domeniconi, and G. Zhang, “Boosted mean
shift clustering,” in Machine Learning and Knowledge Discovery in
Databases (T. Calders, F. Esposito, E. Hllermeier, and R. Meo, eds.),
vol. 8725, pp. 646-661, Springer Berlin Heidelberg, 2014.

H. V. Singh, A. Girdhar, and S. Dahiya, “A literature survey based
on DBSCAN algorithms,” in 2022 6th International Conference on
Intelligent Computing and Control Systems (ICICCS), pp. 751-758,
2019.

K. G. Derpanis, “Mean shift clustering.”

D. Deng, “Dbscan clustering algorithm based on density,” 2020 7th In-
ternational Forum on Electrical Engineering and Automation (IFEEA),
pp. 949-953, 2020.

K. Sellami, M. A. Saied, and A. Ouni, “A hierarchical dbscan method
for extracting microservices from monolithic applications,” in The
International Conference on Evaluation and Assessment in Software
Engineering 2022, pp. 201-210, 2022.

A. Mishra and S. K. Vishwakarma, “Analysis of tf-idf model and its
variant for document retrieval,” 2015 International Conference on Com-
putational Intelligence and Communication Networks (CICN), pp. 772—
776, 2015.

A. K. Kalia, X. Jin, K. Rahul, S. Saurabh, V. Maja, and B. Debasish,
“Mono2micro: A practical and effective tool for decomposing mono-
lithic java applications to microservices,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2021.

K. Sellami, A. Ouni, M. A. Saied, S. Bouktif, and M. W. Mkaouer, “Im-
proving microservices extraction using evolutionary search,” Information
and Software Technology, vol. 151, p. 106996, 2022.

ISBN: 978-1-68558-043-8

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

B. S. Mitchell and S. Mancoridis, “On the evaluation of the bunch
search-based software modularization algorithm,” Soft Computing,
vol. 12, no. 1, pp. 77-93, 2008-01-01.

O. Al-Debagy and P. Martinek, “A microservice decomposition method
through using distributed representation of source code,” Scalable Com-
puting, vol. 22, pp. 39-52, 2021.

W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service
candidate identification from monolithic systems based on execution
traces,” IEEE Transactions on Software Engineering, vol. 47, no. 5,
pp. 987-1007, 2021.

U. Desai, S. Bandyopadhyay, and S. Tamilselvam, “Graph neural network
to dilute outliers for refactoring monolith application.”

K. Sellami, M. A. Saied, A. Ouni, and R. Abdalkareem, “Combining
static and dynamic analysis to decompose monolithic application into
microservices,” in Service-Oriented Computing (J. Troya, B. Medjahed,
M. Piattini, L. Yao, P. Fernandez, and A. Ruiz-Cortés, eds.), (Cham),
pp. 203-218, Springer Nature Switzerland, 2022.

G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices
from monolithic software architectures,” in 2017 IEEE International
Conference on Web Services (ICWS), pp. 524-531, 2017.

B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, pp. 972-976, 2007-02-16.

R. Sibson, “Slink: An optimally efficient algorithm for the single-link
cluster method,” Comput. J., vol. 16, pp. 30-34, 1973.

1. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied, “Towards automated
microservices extraction using muti-objective evolutionary search,” in
International Conference on Service-Oriented Computing, pp. 58—63,
Springer, 2019.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Trans. Evol. Comput.,
vol. 6, pp. 182-197, 2002.

15

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

A Review on Digital Wallets and Federated Service
for Future of Cloud Services Identity Management

Fatemeh Stodt and Christoph Reich
Institute for Data Science, Cloud Computing, and IT Security; Furtwangen University,
Robert-Gerwig-Platz 1, 78120 Furtwangen, Germany
{Fatemeh.Stodt, Christoph.Reich} @hs-furtwangen.de

Abstract—In today’s technology-driven era, managing digital
identities has become a critical concern due to the widespread
use of online services and digital devices. This has led to a
fragmented landscape of digital identities, burdening individuals
with multiple usernames, passwords, and authentication methods.
To address this challenge, digital wallets have emerged as
a promising solution. These wallets empower users to store,
manage, and utilize their digital assets, including personal data,
payment information, and credentials. Additionally, federated
services have gained prominence, enabling users to access multi-
ple services using a single digital identity. Gaia-X is an example of
such a service, aiming to establish a secure and trustworthy data
infrastructure. This paper examines digital identity management,
focusing on the application of digital wallets and federated
services. It explores the categorization of identities needed for
different cloud services, considering their unique requirements
and characteristics. Furthermore, it discusses the future require-
ments for digital wallets and federated identity management in
the cloud, along with the associated challenges and benefits. The
paper also introduces a categorization scheme for cloud services
based on security and privacy requirements, demonstrating how
different identity types can be mapped to each category.

Index Terms—Digital wallet, Identity management, Federated
service, Cloud

I. INTRODUCTION

The management of digital identities has become a critical
concern in today’s digital age [1]. With the increase of online
services and the widespread use of digital devices, individuals
are constantly required to provide personal information to
access different platforms, services, and applications [2]. This
has led to a fragmented landscape of digital identities, where
users have to manage multiple usernames, passwords, and
authentication methods, which can be both cumbersome and
insecure [3].

Digital wallets have emerged as a promising solution to
tackle the challenge of managing digital identities [4]. These
software applications enable users to conveniently store, man-
age, and utilize various digital assets, such as personal data,
payment information, and credentials.

In addition, Gaia-X, a groundbreaking project [5], exempli-
fies the importance of federated services and the significant
benefits they offer. Gaia-X is designed to provide users with
a robust and secure data infrastructure, empowering them
with unprecedented control over their personal information
[6]. By adopting Gaia-X’s unified digital wallet, users can

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

conveniently access multiple platforms and services with a
single digital identity, streamlining the management of their
digital presence while bolstering security and privacy. This
usercentric approach not only enhances individual control but
also promotes innovation and competition within the digital
landscape, reinforcing the advantages of Gaia-X’s federated
service model.

In the contemporary digital landscape, the significance of
effective digital identity management cannot be emphasised
enough. Fortunately, emerging solutions such as digital wallets
and federated services provide promising avenues to address
this intricate challenge. This paper aims to delve into the
concept of digital identity management and shed light on its
applications, specifically within the realm of digital wallets and
federated services. Additionally, we will explore the utilisation
of digital wallets for accessing cloud services, offering insights
into their benefits and potential challenges.

The structure of this paper is as follows: Section II pro-
vides background information on digital wallets and federated
services. Section III discusses the requirements for identity
management in wallets to access the cloud. Section IV cate-
gorises cloud access based on identity group levels. Finally,
in Section V, we draw a conclusion.

II. BACKGROUND (STATE OF THE ART)

This section provides an overview of two key components:
Digital Wallets and Federated Services, which play pivotal
roles in ensuring secure and efficient digital experiences.

A. Digital Wallet

The digitisation of transactions has accelerated, particularly
in response to the pandemic, resulting in an increased reliance
on electronic services. Users now engage in various activities,
such as tax declarations, accessing vaccination and test cer-
tificates, and interacting with public administrations, through
digital platforms [7]. To access these services, users must
authenticate themselves and provide electronic identification
(eID) to secure personalised services and data. This authen-
tication process is facilitated by identity management (IdM)
systems, which ensure reliable and secure user authentication.

Digital wallets have emerged as a crucial component in
managing identities in the digital identity domain. A digital
wallet is a secure and encrypted storage solution that allows
users to store and manage their digital identities, credentials,

16

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

and other relevant information [8]. It acts as a central repos-
itory where users can securely store their authentication data,
such as usernames, passwords, and digital certificates [9].

Digital wallets offer several advantages in identity manage-
ment [10]. They provide convenience by allowing users to
have a single repository for all their identities across different
services and platforms. Users can store and manage multiple
sets of credentials within their digital wallet, eliminating the
need to remember separate usernames and passwords for
each service provider. This simplifies the user experience and
reduces the cognitive burden of managing multiple identities
[11].

Various models of identity management systems have
emerged over the years. The isolated model, where each
service provider has its own identity provider (IdP), was the
earliest and most prevalent [12]. However, this model requires
users to register separately with each service provider, result-
ing in the burden of managing multiple credentials. To address
this, the central identity model was introduced, outsourcing
the IdP functionality to a central entity that multiple service
providers can utilise [13]. Users only need to register once
with the central IdP and can then access various services with
the same set of credentials.

While the central identity model improves usability, it raises
concerns about the central IdP becoming a single point of
failure and potential privacy breaches. To overcome these
challenges, the federated IdM model was introduced, establish-
ing trust relationships among multiple IdPs [14]. This model
allows users registered with one IdP to authenticate themselves
to service providers served by other IdPs within a circle of
trust. An example is the European eIDAS interoperability
framework [15], which enables cross-border authentication
processes by federating national IdM systems of EU Member
States.

Another approach is the user-centric IdM model, where
identity data is stored in the user’s domain, such as on a
smartcard or a smartphone with a hardware-based security
element [16]. Users retain control over their identity data,
enhancing privacy. National IdM solutions utilising smart-
cards, such as the Austrian Citizen Card and the German eID,
exemplify this model. During authentication, the necessary
identity information is retrieved from the user’s domain and
forwarded to the requesting service provider.

Recent advancements include the concept of Self-Sovereign
Identity (SSI), where users have sole control over their cre-
dentials [17] [10]. SSI reduces reliance on central authorities
by utilising distributed ledgers among multiple 1dPs within a
circle of trust for registering new credentials. Initiatives like
the European Self-Sovereign Identity Framework (ESSIF) [18]
and Veramo [19] embody this model. These developments
reflect a trend towards user-controlled identity data and have
attracted attention from policymakers, as evident in the Eu-
ropean Commission’s proposal for a new European Digital
Identity.

The OpenWallet Foundation (OWF) has emerged as a new
opportunity in the realm of digital wallets [20]. Established

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

under the umbrella of the Linux Foundation Europe, OWF
aims to develop open-source software that facilitates interop-
erability across a broad spectrum of wallet applications [21].
These applications encompass various use cases, including
payments, identity verification, and the secure storage of
validated credentials.

B. Federated Services

The concept of a federated catalogue plays a vital role in
identity management by facilitating the discovery and access
to various services through a centralised repository [6]. In a
federated catalogue model, multiple catalogues collaborate and
share information about available services, creating a unified
and comprehensive resource for users [22]. This collaborative
approach allows users to search, browse, and access services
from different providers using a single interface, streamlining
the process of service discovery.

Inter-catalogue synchronisation is a critical aspect of fed-
erated catalogues. It ensures that information about services,
including their availability, descriptions, and attributes, re-
mains up-to-date and consistent across different catalogues.
Through inter-catalogue synchronisation mechanisms, updates
and changes made in one catalogue can be propagated and
reflected in others, maintaining data integrity and ensuring
accurate and real-time information for users. This synchro-
nisation process enables a seamless user experience, where
users can rely on the federated catalogue to provide reliable
and consistent information about services.

The integration of wallets with federated catalogues intro-
duces an additional layer of functionality and convenience to
identity management [23]. Wallets, which store and manage
users’ digital identities and associated credentials, can interact
with federated catalogues to enhance the service discovery and
access process. When a user accesses the federated catalogue
through their wallet, the wallet can authenticate the user and
provide relevant identity information to the catalogue. This
interaction enables personalised service recommendations, tai-
lored search results, and seamless authentication and authori-
sation processes, ultimately enhancing the user experience and
security.

Federated services and federated catalogues are closely in-
tertwined concepts in identity management. Federated services
rely on federated catalogues to provide a centralised and
comprehensive view of available services, allowing users to
discover and access services using a single digital identity. The
collaboration between service providers and catalogues within
a federated model streamlines identity management processes,
as the catalogue acts as a trusted intermediary, enabling au-
thentication, authorisation, and seamless information exchange
between users and service providers [24].

III. REQUIREMENTS FOR IDENTITY WALLETS FOR
FUTURE CLOUDS

As cloud computing continues to shape the digital land-
scape, effective identity management becomes paramount to
ensure secure and seamless access to cloud services. In this

17

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

section, we delve into the categorisation of identities required
for different cloud services, discuss their unique requirements
and characteristics, explore the future requirements for digi-
tal wallets and federated identity management in the cloud,
identify potential challenges in implementing identity wallets
for future clouds, and highlight the potential benefits of using
digital wallets for identity management in the cloud.

Categorising identities according to their usage in different
cloud services provides a comprehensive understanding of the
diverse identity landscape. These identities can be broadly
classified into user identities, service identities, and device
identities. User identities represent individuals accessing cloud
services, service identities are associated with specific cloud
services or applications, and device identities pertain to the
authentication and authorisation of devices interacting with
cloud resources. Each identity category has distinct require-
ments and characteristics that must be considered to ensure
effective identity management.

R1: Secure storage of identity-related data: In the context
of cloud services, it is crucial to securely store identity and
identity-related information. This requirement ensures that
sensitive data associated with user identities, service identi-
ties, and device identities is stored in a protected manner,
safeguarding the integrity and confidentiality of the data.

R2: Effective management of identity-related data: Man-
aging identity-related data in the cloud encompasses various
functionalities. These include the ability to select, remove, and
review identity data stored within the cloud environment, as
well as the capability to choose which identity data should be
shared outside the cloud. Such management ensures that users
have control over their stored information, promoting privacy
and data control.

R3: Secure sharing of identity-related data: Enabling the
secure sharing of stored identity-related data outside the cloud
is a critical requirement for cloud-based identity management.
This involves establishing secure communication channels
and protocols for sharing identity data with trusted entities,
ensuring that data integrity and confidentiality are maintained
during the sharing process.

R4: Secure storage of cryptographic material: As the
cloud environment handles digital identities, it becomes essen-
tial to securely store cryptographic material related to digital
identity. This requirement focuses on the need to protect
cryptographic elements, such as keys and certificates, ensuring
their confidentiality and preventing unauthorised access.

RS5: Combining identity data before sharing: In the
cloud context, the requirement to combine identity data be-
fore sharing aligns with the concept of selective disclosure.
Users should have the ability to selectively share identity
data, combining relevant information based on specific sharing
requirements. This ensures privacy and controlled sharing of
identity-related data.

The use of digital wallets for identity management in the
cloud offers a range of benefits. Digital wallets enhance user
convenience by providing a centralized platform for managing
identities across multiple cloud services. They bolster security

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

TABLE I
COMPARISON BETWEEN DIFFERENT DIGITAL WALLET BASED ON IDM
AND WALLET REQUIREMENTS

B!

Reference | IdM

—!
8%

Environment

W

[17] SSI Local

[23] Federated Local

[9] Centralized Local

[15] as a Service | Remote

[16] User-centric | Local

[13] Centralized Remote or Local

[10] SSI Remote or Local

ANENENENENENENENEY
ANENENENENENENRNES
ANENENENENENENRNES
NN NN YN zE
ANENE N ENENENENES

[20], [21] SSI Remote or Local

through secure authentication mechanisms, robust encryption
of identity data, and efficient access control. Moreover, digital
wallets empower users by giving them control over their
personal information and the ability to selectively share it
with trusted entities. The integration of digital wallets with
federated identity management further streamlines identity
management processes, enabling seamless access to cloud
resources and promoting interoperability.

In this context, Table I provides a comprehensive compar-
ison between different digital wallets based on their identity
management (IdM) capabilities and wallet requirements. This
table serves as a valuable reference for understanding the
strengths and features of various digital wallet solutions in
relation to identity management. It highlights key factors such
as authentication mechanisms, encryption techniques, access
control capabilities, and user control features. By referring
to Table 1, readers can gain insights into the specific char-
acteristics and functionalities of each digital wallet, aiding
in the selection of an appropriate solution for their identity
management needs.

IV. ACCESS MANAGEMENT AND CATEGORISING
IDENTITIES FOR CLOUD SERVICES

In the realm of cloud computing, it is crucial to consider
the security and privacy requirements of different types of
cloud services. In this section, we introduce a categorisation
scheme that classifies cloud services based on their security
and privacy requirements. We then explore how different types
of identities can be mapped to each category, considering
their respective security and privacy features. Furthermore, we
provide practical examples to illustrate how this categorisation
scheme can guide the selection of the appropriate identity type
for a given cloud service.

The categorisation scheme for cloud services is designed
to capture the varying degrees of security and privacy re-
quirements across different service types. We propose a three-
tier categorisation: low-security services, moderate-security
services, and high-security services as shown in Figure 1.
Low-security services typically involve non-sensitive data and
require minimal protection measures. Examples include pub-
licly accessible websites or public information repositories.
Moderate-security services handle moderately sensitive data,
such as personal information or internal organisational docu-
ments. High-security services, on the other hand, handle highly

18

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

Simple User Identities Low-Security Services

Mapping

Stronger Identities Moderate-Security Services

Stronger

orond
Massing

Robust Identities High-Security Services

Robust
Identities

Non-sensitive data,
minimal protection

Moderately sengltlve data, Digital Wallet Iertlfy by
stronger protection digital wallet

Legend:

Low-Security Services
Moderate-Security Services
High-Security Services

Highly sensitive data,
stringent protection

Fig. 1. Categorization of Cloud Services and Identity Types

sensitive data, such as financial records or health information,
and demand stringent security measures.

Mapping different types of identities to each category is
vital to align the level of security and privacy features with
the corresponding cloud service. For low-security services,
simple user identities, such as usernames and passwords, may
be sufficient for authentication and access control. However,
moderate-security services may require stronger authentication
mechanisms, such as two-factor authentication or biometrics,
to enhance security. High-security services necessitate even
more robust identity types, such as digital certificates or
hardware tokens, to ensure the highest level of protection and
privacy for sensitive data.

To illustrate the practical application of this categorisation
scheme, let us consider an example. Suppose a cloud ser-
vice involves a public-facing web application that provides
access to general information about a company. Based on the
categorisation scheme, this service would fall under the low-
security category. Consequently, a simple user identity, such as
a username and password, would be sufficient to authenticate
users and manage access to the service. However, if the
same company offers a cloud-based Customer Relationship
Management (CRM) system that handles customer data, the
service would be classified as a moderate-security service.
In this case, a stronger identity type, such as two-factor
authentication or biometrics, would be necessary to ensure the
security and privacy of customer information.

V. CONCLUSION

In conclusion, digital wallets and federated services offer
significant advantages in digital identity management. Digital
wallets provide a secure and convenient way for users to store

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

and manage their digital assets, simplifying the management
of digital identities while enhancing security and privacy. The
emergence of different identity management models, including
federated and user-centric approaches, along with advance-
ments like Self-Sovereign Identity (SSI), empower users with
greater control over their credentials. Projects like Gaia-X
exemplify the aim to give users increased control over their
personal information and foster innovation in the digital realm.

Moving forward, future research should focus on integrating
emerging technologies such as blockchain and decentralised
identity systems to further enhance the security and privacy of
digital wallets and federated services. Additionally, exploring
the usability and user experience aspects of these solutions can
drive their adoption and acceptance among users. Continued
efforts in research and development will contribute to address-
ing the complex challenges of digital identity management and
ensure its importance in today’s digital era.

ACKNOWLEDGEMENT

This research was funded by the Federal Ministry of Educa-
tion and Research (BMBF) under reference number COSMIC-
X 02J21D144, and supervised by Projekttriger Karlsruhe
(PTKA).

REFERENCES

[1]1 P.J. Windley, Digital Identity: Unmasking identity management archi-
tecture (IMA). ” O’Reilly Media, Inc.”, 2005.

[2] A. Rashid and A. Chaturvedi, “Cloud computing characteristics and
services: a brief review,” International Journal of Computer Sciences
and Engineering, vol. 7, no. 2, pp. 421-426, 2019.

[3] S. Rajamanickam, S. Vollala, R. Amin, and N. Ramasubramanian,
“Insider attack protection: Lightweight password-based authentication
techniques using ecc,” IEEE Systems Journal, vol. 14, no. 2, pp. 1972—
1983, 2019.

19

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

[4]

[5]

[6

=

[8]

[9

—

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

[23

[utrt

[24]

D. R. Malik, D. A. Kataria, and D. N. Nandal, “Analysis of digital
wallets for sustainability: A comparative analysis between retailers and
customers,” International Journal of Management, vol. 11, no. 7, 2020.
A. Braud, G. Fromentoux, B. Radier, and O. Le Grand, “The road
to european digital sovereignty with gaia-x and idsa,” IEEE network,
vol. 35, no. 2, pp. 4-5, 2021.

B. Otto, “A federated infrastructure for european data spaces,” Commu-
nications of the ACM, vol. 65, no. 4, pp. 44-45, 2022.

M. M. Alam, A. E. Awawdeh, and A. I. B. Muhamad, “Using e-wallet for
business process development: Challenges and prospects in malaysia,”
Business Process Management Journal, vol. 27, no. 4, pp. 1142-1162,
2021.

M. A. Hassan and Z. Shukur, “Device identity-based user authentication
on electronic payment system for secure e-wallet apps,” Electronics,
vol. 11, no. 1, p. 4, 2022.

S. Gajek, H. Lohr, A.-R. Sadeghi, and M. Winandy, “Truwallet: trust-
worthy and migratable wallet-based web authentication,” in Proceedings
of the 2009 ACM workshop on Scalable trusted computing, 2009, pp.
19-28.

J. Sedlmeir, R. Smethurst, A. Rieger, and G. Fridgen, “Digital identities
and verifiable credentials,” Business & Information Systems Engineering,
vol. 63, no. 5, pp. 603-613, 2021.

R. Dhamija and L. Dusseault, “The seven flaws of identity management:
Usability and security challenges,” IEEE Security & Privacy, vol. 6,
no. 2, pp. 24-29, 2008.

B. Zwattendorfer, T. Zefferer, and K. Stranacher, “An overview of cloud
identity management-models.” WEBIST (1), pp. 82-92, 2014.

B. Pfitzmann and M. Waidner, “Privacy in browser-based attribute
exchange,” in Proceedings of the 2002 ACM workshop on Privacy in
the Electronic Society, 2002, pp. 52-62.

N. Selvanathan, D. Jayakody, and V. Damjanovic-Behrendt, “Federated
identity management and interoperability for heterogeneous cloud plat-
form ecosystems,” in Proceedings of the 14th international conference
on availability, reliability and security, 2019, pp. 1-7.

C. Cuijpers and J. Schroers, “eidas as guideline for the development of
a pan european eid framework in futureid,” 2014.

S.-H. Kim, S.-R. Cho, and S.-H. Jin, “Context-aware service system
architecture based on identity interchange layer,” in 2008 10th Inter-
national Conference on Advanced Communication Technology, vol. 2.
IEEE, 2008, pp. 1482-1486.

A. Abraham, C. Schinnerl, and S. More, “Ssi strong authentication using
a mobile-phone based identity wallet reaching a high level of assurance.”
in SECRYPT, 2021, pp. 137-148.

D. Du Seuil, “European self sovereign identity framework,” 2019.
“Veramo,” https://veramo.io/, 2023, accessed: Jun 27, 2023.

T. South and R. Mahari, “Justice in a vaccum?” 2023.

A. Kudra, “Self-sovereign identity (ssi) in deutschland: Pro-
jekte mit strahlkraft fiir die globale community,” Datenschutz und
Datensicherheit-DuD, vol. 46, no. 1, pp. 22-26, 2022.

M. Gaedke, J. Meinecke, and M. Nussbaumer, “A modeling approach
to federated identity and access management,” in Special interest tracks
and posters of the 14th international conference on World Wide Web,
2005, pp. 1156-1157.

V. Siska, V. Karagiannis, and M. Drobics, “Building a dataspace:
Technical overview,” 2023.

K. Bernsmed, M. G. Jaatun, P. H. Meland, and A. Undheim, “Security
slas for federated cloud services,” in 2011 Sixth International Conference
on Availability, Reliability and Security. 1EEE, 2011, pp. 202-209.

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

20

http://www.tcpdf.org

