
VALID 2020

The Twelfth International Conference on Advances in System Testing and

Validation Lifecycle

ISBN: 978-1-61208-830-3

October 18 -22, 2020

VALID 2020 Editors

Jos van Rooyen, Identify, The Netherlands

Xinli Gu, Futurewei Technology, Inc., USA

 1 / 24

VALID 2020

Forward

The Twelfth International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2020), held on October 18 - 22, 2020, continued a series of events focusing on designing robust
components and systems with testability for various features of behavior and interconnection.

Complex distributed systems with heterogeneous interconnections operating at different
speeds and based on various nano- and micro-technologies raise serious problems of testing,
diagnosing, and debugging. Despite current solutions, virtualization and abstraction for large scale
systems provide less visibility for vulnerability discovery and resolution, and make testing tedious,
sometimes unsuccessful, if not properly thought from the design phase.

The conference on advances in system testing and validation considered the concepts,
methodologies, and solutions dealing with designing robust and available systems. Its target covered
aspects related to debugging and defects, vulnerability discovery, diagnosis, and testing.

The conference provided a forum where researchers were able to present recent research
results and new research problems and directions related to them. The conference sought contributions
presenting novel result and future research in all aspects of robust design methodologies, vulnerability
discovery and resolution, diagnosis, debugging, and testing.

We welcomed technical papers presenting research and practical results, position papers
addressing the pros and cons of specific proposals, such as those being discussed in the standard forums
or in industry consortiums, survey papers addressing the key problems and solutions on any of the
above topics, short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the VALID 2020 technical
program committee as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and efforts to contribute to VALID 2020. We truly believe
that thanks to all these efforts, the final conference program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the VALID 2020 organizing
committee for their help in handling the logistics and for their work that is making this professional
meeting a success. We gratefully appreciate to the technical program committee co-chairs that
contributed to identify the appropriate groups to submit contributions.

We hope the VALID 2020 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in system testing and
validation.

VALID 2020 Steering Committee

Lorena Parra, Universitat Politecnica de Valencia, Spain

 2 / 24

VALID 2020

Committee

VALID 2020 Steering Committee
Lorena Parra Boronat, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario
andUniversitat Politecnica de Valencia, Spain

VALID 2020 Technical Program Committee

Sajid Anwer, Griffith University, Brisbane, Australia
Deepika Badampudi, Blekinge Institute of Technology, Sweden
Sebastien Bardin, CEA LIST, France
Andrea Baruzzo, Interaction Design Solutions / University of Udine, Italy
Davide Basile, ISTI CNR Pisa, Italy
Ateet Bhalla, Independent Consultant, India
Bruno Blaskovic, University of Zagreb, Croatia
Hanifa Boucheneb, École Polytechnique de Montréal, Canada
Laura Brandán Briones, FaMAF | Univ. de Córdoba, Argentina
Mark Burgin, University of California Los Angeles (UCLA), USA
Laura Carnevali, University of Florence, Italy
Arjun Chaudhuri, Duke University, USA
Peter Clarke, Florida International University, USA
Bruce Cockburn, University of Alberta, Canada
Aleksa Damljanovic, Politecnico di Torino, Italy
Hichem Debbi, University of M'sila, Algeria
Giorgio Di Natale, TIMA - CNRS / Université Grenoble-Alpes / Grenoble INP UMR 5159, France
Luigi Dilillo, LIRMM (Laboratoire de Informatique Robotique et Microélectronique de Montpellier),
France
Nikos Foutris, The University of Manchester, UK
Jicheng Fu, University of Central Oklahoma, USA
Gregory Gay, Chalmers and the University of Gothenburg, Sweden
Bidyut Gupta, Southern Illinois University, Carbondale, USA
Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Sebastian Huhn, University of Bremen / DFKI Bremen, Germany
Ahmed Kamel, Concordia College, Moorhead, USA
Basel Katt, Norwegian University of Science and Technology, Norway
Dirk Kuhlmann, Fraunhofer-Institute for System- and Innovation Research (ISI), Germany
Richard Kuhn, National Institute of Standards & Technology, USA
Maurizio Leotta, University of Genova, Italy
Xia Li, The University of Texas at Dallas, USA
Yan-Fu Li, Tsinghua University, China
Chu-Ti Lin, National Chiayi University, Taiwan
Eda Marchetti, ISTI-CNR, Pisa, Italy
Abel Marrero, Bombardier Transportation Signal Germany GmbH, Germany

 3 / 24

Vadim Mutilin, Ivannikov Institute for System Programming of the RAS (ISPRAS), Moscow, Russia
Roy Oberhauser, Aalen University, Germany
Rasha Osman, The Higher Technological Institute, Egypt
Adriano Peron, University of Napoli "Federico II", Italy
Pasqualina Potena, RISE Research Institutes of Sweden AB, Sweden
Claudia Raibulet, University of Milano-Bicocca, Italy
Kristin Yvonne Rozier, Iowa State University, USA
Hiroyuki Sato, University of Tokyo, Japan
Josep Silva, Universitat Politècnica de València, Spain
Maria Spichkova, RMIT University, Australia
Salvador Tamarit, PFS Group, Spain
Bedir Tekinerdogan, Wageningen University, The Netherlands
Spyros Tragoudas, Southern Illinois University, USA
Ana Turlea, University of Bucharest, Romania
Visa Vallivaara, NIST - National Institute of Standards and Technology | VTT - Technical Research Centre
of Finland | University of Oulu, Finland
Jos van Rooyen, Identify - Software Quality Services, Netherlands
Miroslav N. Velev, Aries Design Automation, USA
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Kristian Wiklund, Ericsson AB, Sweden
Dietmar Winkler, Institute for Information Systems Engineering | TU Wien, Austria
Xiaofei Xie, Nanyang Technological University, Singapore
Haibo Yu, Kyushu Sangyo University, Japan
Pavol Zavarsky, Concordia University of Edmonton, Canada

 4 / 24

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 24

Table of Contents

Testing and Validation of Monitoring Technologies to Assess the Performance and Genotyping of Poa pratensis
(C3) Mixed with Other Grass Species (C4)
Pedro V. Mauri, Lorena Parra, Jaime Lloret, Salima Yousfi, and Jose F. Marin

1

Toward an Exact Simulation Interval for Multiprocessor Real-Time Systems Validation
Joumana Lagha, Jean-Luc Bechennec, Sebastien Faucou, and Olivier-H Roux

7

An Overview of Cloud-Native Networks Design and Testing
Zhaobo Zhang and Xinli Gu

14

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 24

Testing and Validation of Monitoring Technologies to Assess the Performance and

Genotyping of Poa pratensis (C3) Mixed with Other Grass Species (C4)

Pedro V. Mauri2, Lorena Parra2, 3, Jaime Lloret3, Salima Yousfi2 and José F. Marín1

1 Area verde MG Projects SL. C/ Oña, 43 28933 Madrid, Spain
2Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Finca “El Encin”, A-2, Km 38,

2, 28800 Alcalá de Henares, Madrid, Spain
3 Instituto de Investigación para la Gestión Integrada de Zonas Costeras Universitat Politècnica de València, Valencia, Spain

Email: pedro.mauri@madrid.org, loparbo@doctor.upv.es, jlloret@dcom.upv.es, salima.yousfi@madrid.org,

jmarin@areaverde.es

Abstract—Precision agriculture is vital to ensure the

sustainability of farming systems. Nonetheless, the selection of

parameters to be monitored can be a difficult decision,

especially when the required equipment has a high cost. In this

paper, we analyze the usability of five variables, including soil

moisture, canopy temperature and three vegetation indexes, in

turfgrass composed of different species. Our objectives are, on

the one hand, determine which parameter or parameters are

more specific for determining the species which compose the

turfgrass. On the other hand, we expect to find correlations

between variables in order to reduce the evaluated parameters

in the turfgrass monitoring. Our results indicated that only the

vegetation indexes are useful for genotyping, to determine the

species that compose the turfgrass. From the vegetation indexes,

the green area was the one which offers the best results. On the

other hand, correlations were found between soil moisture and

canopy temperature, and between the different vegetation

indexes. Thus, we can affirm that it is possible to reduce the

measured variables in turfgrass monitoring. The most

significant advantage is the possibility of avoiding the

monitoring of a vegetation index, for which the calculation

requires a specific device with higher cost.

Keywords-precision agriculture; soil moisture; canopy

temperature; vegetation indexes; correlations; experimental plots.

I. INTRODUCTION

Precision Agriculture (PA) is becoming more and more
popular in the last years due to its benefits for farmers [1]. The
use of technology for crops monitoring, such as Wireless
Sensor Networks (WSN) or Internet of Things (IoT) leads the
farming activity to a higher degree of sustainability and
profitability. Even so, the selection of the needs of our systems
in terms of required data, data periodicity or monitored
variables can be confusing. In the PA, several aspects can be
monitored, such as soil, water, and plants. In a recent work
[2], an evaluation of included parameters in PA concludes that
most of the IoT-based smart irrigation systems are focused on
monitoring the soil, and few of them monitored the plants.

The fact of measuring basically a single, or a limited
number of parameters might be problematic. This is because
the characteristics of soil such as Soil Moisture (SM), chiefly
if it is measured in a unique location and close to the surface,
can suffer abrupt changes. As the measurement of isolated
parameters might drive the system into wrong actions, it is
essential to combine several parameters in order to take the
correct action. Nonetheless, it prompts us to another problem,
the proper selection of parameters to be monitored. It is

essential to monitor plant and soil parameters, given the fact
that plant parameters are more stable in time than soil
parameters [3]. Different parameters offer us different sort of
information, which can be useful in order to take the most
appropriate measure, i.e. when to irrigate, the required amount
of water, required fertilizer, identification of plant diseases.

The dilemma of using different types of devices and
techniques when we are monitoring the performance of crops
(or gardens) is the high cost of some devices and the required
time to gather data manually. In addition, the data processing
and analyses may require more time than the value of obtained
information if we include several parameters. Therefore, it is
necessary to evaluate, test, and validate the real value of the
information provided by different commonly used devices in
the monitoring of plants, soils, and agriculture. This
evaluation is critical to allow us to minimize the number of
monitored parameters without reducing the conclusions based
on the gathered information and the value of gathered data.

One of the activities which clearly demonstrate the
possible benefits of reducing the number of monitored
variables is public gardening. In gardening, we have one of
the highest requirements of water and PA must help to reduce
the irrigation [4] and evaluate the performance of different
species to find a combination that requires less irrigation [5].

The aim of this paper is to evaluate, test, and validate
which of the monitored parameters in experimental plots of
turfgrass offers more valuable information. The objective of
monitoring those parameters is two-fold. First, we use the
monitored parameters to evaluate the performance of 4 grass
combinations, including C3 and C4 plants (different in the
water management). Furthermore, we expect to use gathered
data to identify the grass combination, also known as
genotyping. Therefore, we are going to gather data of 5
variables, including three vegetation indexes, the Canopy
Temperature (CT), and the SM. With these data, a series of
statistical analyses will be performed to try to evaluate the
performance of each grass combination and to genotype the
combinations. In addition, we also expect to find a correlation
between different pairs of variables in order to reduce the
number of parameters that must be monitored in the future.

The remainder of this paper is structured as follows. The
presentation and analysis of the related work are presented in
Section 2. Section 3 describes the materials and methods that
have been used for this experiment. The results are detailed
and discussed in Section 4. Finally, Section 5 outlines the
main conclusions of this work.

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 7 / 24

II. RELATED WORK

In this section, we describe several papers which analyze

the correlation of parameters monitored in PA and the use of

parameters for genotyping and monitoring crops and gardens.

First of all, the different vegetation indexes and their use

are described. We have selected three vegetation indexes

which are the most used vegetation indexes is the Normalized

Difference Vegetation Index (NDVI). The NDVI is widely

used for monitoring plant vigour in different crops. In a

previous work, Marin et al. [5] have used the NDVI

compared with RGB information, Green Area (GA) and the

Greener Area (GGA), to compare the performance of grass

combinations. They conclude that NDVI, GA and GGA can

be used in the grass as an indicator of biomass and to estimate

the resistance of the plant combinations to water restriction.

However, the NDVI, GA, and GGA are not only used for

grass monitoring but also crop assessment. In particular, its

use is extended in cereal crops [6]-[8]. In [6], Fernandez-

Gallego et al. used the aforementioned indexes for grain yield

estimation in wheat as a low-cost option, compared with

other existing methods. They conclude that the change in

canopy colour from green to yellow is the most useful

indicator for grain yield estimation. Yousfi et al. in [7] used

NDVI, GA, Canopy Temperature Depression, and Stable

Carbon Isotope Composition to determine the wheat grain

yield under different irrigation and fertigation conditions.

Their results pointed out the relevance of different indexes to

estimate wheat harvest. In addition, the GA and the Stable

Carbon Isotope Composition were the unique methods that

offer a correlation with harvest in all the evaluated scenarios.

In [8], Buchaillot et al. performed a similar study, including

a Soil Plant Analysis Development (SPAD) sensor in maize

fields. For the calculation of indexes, images captured with a

drone and with a regular camera were used and correlated.

Their results highlight the relevance of the evaluated indexes

and the SPAD in grain yield estimation. It is important to note

that, although some indexes might be attained with remote

sensing, some of the included parameters cannot be measured

with existing sensors. Therefore, the correlation or estimation

of variables is crucial to reduce the number of sensors and

simplify the infrastructure of WSN or IoT systems.

Another vital parameter, which is not monitored in most

of the IoT proposals for irrigation is the CT [2]. The CT has

a high relevance when drought-tolerant crop cultivars and the

irrigation are being monitored. In [9], Zhang et al. gather data

of the CT jointly with RGB and thermal images with a drone

to evaluate the water stress of the crops. Their results indicate

the importance of combining the CT with other technologies

as the image gathered with the drone for a proper assessment

of maize in water stress conditions. The use of CT for

irrigation is discussed by Kumar et al. in [10]. In their

experiments, the authors kept wheat plants under different

degrees of water stress, CT and SM were monitored. Their

results clearly indicate that using both variables in an

algorithm for triggering irrigation events save up to 20% of

water for irrigation. The CT measurement can be easily

included in IoT systems or WSN with thermal cameras or

infrared thermometers.

The measurement of CT in turfgrass is less standard but

we can find some examples where the CT is monitored. In

[11], Culpepper et al. developed an experiment combining

different types of grasses and exposing them to different

irrigation levels. The CT was useful to identify the plants kept

with or without irrigation, but only in specific periods of the

experiment. Meanwhile, the NDVI was not useful for

differentiating the two scenarios. Another example can be

found in Hong et al. [12]. The authors maintain Agrostis

stolonifera under different regimes (100 to 15% of

evapotranspiration) and images were captured using a

thermal camera mounted over a drone. The CT has a high

correlation with the irrigation regimes (-0.65 to 0.82) in

different moments. Nevertheless, in general terms, other

variables such as NDVI presented higher correlations.

As far as we know, the use and evaluation of NDVI, GA,

GGA, CT, and SM to assess water stress or its correlation is

not performed with Poa pratensis mixed with other C3. It is

essential to evaluate if a reduction in the monitored

parameters can be applied, to simplify the required sensor in

the future deployment of WSN and IoT systems.

III. MATERIAL AND METHODS

In this section, the equipment and process used to gather
the data, software employed to analyze it, and the details of
the mixed plant species are portrayed.

A. Experimental plots

A total of 3 grass combinations, which include C3 and C4
species, have been tested in the research facilities of IMIDRA
during 8 months. The mixtures of C3 and C4 grasses are kept
in experimental plots of 4.5m2 (1m per 3.5m). As a C3 grass,
the Poa pratensis represents 75% of the planted seeds. As a C4
(25% of the plot) we include three different species combined
individually with the C4 (Cynodon dactylon (PC), Buchloe
dactyloides (PB), and Zoysia japonica (PZ)). Each one of the
selected combinations is repeated six times in individual plots.
In addition, the most used grasses combination in ornamental
gardening is tested to serve as a control. This Control is
composed of Festuca arundinacea (70%), Lolium perenne
(15%), and Poa pratensis (15%).

Thus, a total of 22 plots are included in the experiment. All
the plots have the same environmental conditions of soil and
irrigation. The irrigation was automatically calculated by the
Rain Bird [13]. In Figure 1, we can see a representation of the
3 combinations. The presence of pluviometers used to check
the uniformity of irrigation can be seen in some of the plots.

Figure 1. Experimental plots from up to down Control, Poa pratensis

mixed with Cynodon dactylon, Zoysia japonica, and Buchloe dactyloides.

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 8 / 24

B. Data gathering

During the experimental period, which had a duration of 6
weeks, data was gathered in each plot one per week, from
October to November. The data gathered include different
types of variables related to the soil (soil moisture) and plant
(canopy temperature and vegetation indexes).

To gather these data, different devices have been used. For
the SM, the Time-Domain Reflectometry (TDR) 350
FieldScout was selected [14]. One measure is taken in each
plot. Regarding the CT, a Fluke 561 was used [15]. This
device allows us to collect the mean temperature of each plot.

Finally, for the lectures of the electromagnetic spectrum of
the plant to regions are considered, the visible and the infrared.
Two instruments were used, the first of them was a SONY
DSC-W120, selected to obtain pictures of each plot. With this
camera, we gather information about the visible spectrum.
Meanwhile, the Handheld Crop Sensor GreenSeeker [16] was
used to measure the information related to the red and infrared
region. The GreenSeeker allows us having a mean value of the
NDVI of the entire plot. The information gathered with the
camera and the GreenSeeker were obtained, placing both
instruments at 1.5m from the soil.

C. Data processing

Once the data were gathered, different processes are
carried out. The first of them was to analyze the images with
specific software, the BreedPix. It is open-source software,
mainly used for cereal crops. With this software, we can
obtain information about the GA and GGA contained in the
picture. The GA contains the portion of the picture with pixels
from yellow to bluish-green. On the other hand, the GGA
excludes the yellowish-green tones.

Thus, for each plot, we have five variables (soil moisture
(SM), canopy temperature (CT), NDVI, GA, and GGA). The
variables were included in statistical software to analyze the
relationship between variables and to analyze the performance
of different grass species. The used software for data
processing was the Statgraphics Centurion. Two different

statistical tests were carried out. First, the ANalysis Of
Variance (ANOVA) is performed to compare the mean and
variances of included variables for each grass combination. To
determine the existence of similitudes or differences between
the evaluated grass combinations, the Tukey Honestly
Significant Difference (HSD) was selected. Finally, bivariate
correlations for each pair of variables are performed.

IV. RESULTS

In this section, we present our results and discuss their
importance. First, the identification of differences between
different plots is detailed. Finally, the correlation between the
analyzed parameters is described.

A. Testing the benefits of sensing devices to evaluate the

performance of different grass combinations

Considering that in each plot we obtain an individual
measure of each one of the evaluated parameters and we have
22 plots monitored during six weeks, a total of 132
observations were carried out for each variable, which is
considered a significant amount of data. It is important to note
that at plain sight, it is not easy to differentiate between
combination. Only experts are capable of identifying the
differences in their leaves.

Before performing the ANOVA to evaluate if the user
devices can be useful to differentiate between different
combinations (genotyping), it is essential to confirm that data
follows a normal distribution. It is a prerequisite for the
ANOVA. In Table 1, we have included the skewness and
kurtosis if obtained indexes are between ±2 we can use the
ANOVA tests. Data included in Table 1 indicates that SM,
CT, and GA follow normal distributions and ANOVA tests
can be performed. Nonetheless, the variables NDVI and GGA
do not follow a normal distribution; thus, alternative tests must
be performed. In this case, the test median of Mood will
substitute to the ANOVA, and the Kruskal-Wallis will be used
to estimate the different groups. The results of variance
analyses are summarized in Table 2.

TABLE I. SUMMARY SKEWNESS AND KURTOSIS OF DATA.

 Skewness Kurtosis

 SM CT NDVI GA GGA SM CT NDVI GA GGA
Control 0.686056 0.904177 -0.8997 0.138911 0.929755 -0.56894 -0.187175 -0.9178 -1.28267 -0.76948

PC 0.325911 1.36113 -1.7536 -0.14744 1.29273 -0.60346 0.335747 -0.7891 -1.09587 -0.94227

PB 1.4669 1.31779 -2.460 -0.43471 2.36019 -0.37907 0.00324324 0.9359 -0.32923 0.109402

PZ 1.07606 1.55038 -2.1278 0.999044 1.52993 -0.54186 0.0515326 0.4999 -0.89322 -0.67507

Normal

Distribution
Yes Yes No Yes No

TABLE II. SUMMARY OF ANOVA AND KRUSKAL-WALLIS. SIGNIFICANCE LEVELS: NS, NOT SIGNIFICANT; * P < 0.05; ** P < 0.01 AND *** P < 0.001.
THE DIFFERENT LETTER SUCCEEDING THE MEANS ARE SIGNIFICANTLY DIFFERENT (P < 0.05) ACCORDING TO TUKEY’S HONESTLY SIGNIFICANT DIFFERENCE

(HSD) TEST.

 SM CT NDVI GA GGA

Control 35.2583 a 14.6125 a 0.76 a 0.67875 b 0.35 a

PC 35.5 a 14.8417 a 0.745 a 0.61805 a 0.295 a

PB 34.3944 a 14.6056 a 0.79 b 0.77944 c 0.48 b

PZ 36.3722 a 14.4694 a 0.77 b 0.76472 c 0.425 b

Level of significance 0.8727 ns 0.9579 ns 0.0005*** 0.0000*** 0.0000***

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 9 / 24

According to the data presented in Table 2, we can affirm
that SM and CT have no variation, which means that those
parameters cannot be used to identify the different
combinations. Thus, SM and CT are variables which are not
useful for genotyping. In addition, those variables are
profoundly affected by environmental conditions and can
experience huge variations along the day.

On the other hand, the variables that consider the
electromagnetic spectrum of the plants (visible and infrared)
are offering more remarkable information. We need to remark
that this data is more stable in the time, there is no variation
along the day and it is not quickly affected by the
environmental parameters such as solar radiation, wind, or
rain among others.

With the data of NDVI, it is possible to identify two groups
of genotypes. The first group includes the mixture of C3
species (Control) and the Poa with Cynodon. Meanwhile, the
mixtures of Poa with Zoysia and Buchloe have different
values and belong to a separate group. Therefore, information
of NDVI is not suitable to identify the presence of C4 species
in all cases. The highest NDVI values are linked to the second
group (PZ and PB).

With regard to the information from the visible spectrum,
different results were obtained with GA and GGA. In both
cases, the results of the tests have pointed out that there are
differences in the observed grass species since the p-values are
lower than 0.05. The GGA index can identify differences in
two groups of plots. The Control and te PC mixtures form the
groups on the one hand, and PB and PZ on the other hand.
These results are coupled with the outcome obtained with the
NDVI.

On the contrary, the results obtained with GA data are
more specific than with GGA and NDVI. Again, the ANOVA
indicate with a p-value lower than 0.05 that there are
differences statistically significant among the different grass
combinations tested. In this case, the multiple range test
indicates that it is possible to identify three different groups.
PC mixture is included in the first group. The second group is
composed solely by the Control grass combination. Finally,
PZ and PB are the mixtures identified as the third group. The
different groups and distribution of data can be seen in the Box
diagram of Figure 2. In this graphic, the mean, median outliers
and other relevant information are summarized. Figure 2

presents clearly the similarity in the data of PB and PZ, which
cannot be differentiated with GA data.

Thus, the data of GA offers better results than the other
variables. It is important to note that with NDVI and GGA
data we have worked with non-parametric statistical tests due
to the distribution of the data, and those tests tend to be less
powerful to identify differences than parametric tests. To
obtain better results with GGA and NDVI, we would need a
larger amount of data. Therefore, it is possible that GGA and
NDVI can be used in the future with similar accuracy than GA
if the amount of data increase.

B. Correlation between evaluated variables

The seek of correlations between data, we aim to find the

relation between variables in order to reduce the number of

controlled variables in experimental plots. The fact of

gathering data from several variables implies an elevated time

consumption in the plots using diverse types of equipment. In

addition, some of the used equipment (particularly the

GreenSeeker) have a high cost and having the opportunity of

using another tool, as the digital pictures, to estimate the value

of NDVI is vital to save costs.

Thus, we are going to focus the correlation between

variables in trying to obtain an equation that allows us to

obtain or predict the value of NDVI based on the information

obtained from the digital pictures. In addition, we will seek to

have a correlation between SM and CT, since the

measurement of the CT is much faster, and the required

equipment is cheaper than the required for SM measuring.

To explore the existing correlation in the gathered data,

and to attend to the non-normal distribution of some variables,

Spearman correlation is selected. Although it is less powerful

than the Pearson correlation, the existence of variables

without normal distribution force us to use this test. The first

outcome of the correlation test is the correlation graphic, in

which the X-Y distributions of each pair of variables, also

known as Dispersion Matrix, can be seen in Figure 3 a).

Therefore, we can have in a simple graphic the tend of data of

all the included variables in the test. According to the results

of presented in Figure 3, we can identify at plain sight that

some of the variables are highly correlated.

Figure 2. Box Diagram with GA data for the different grass combinations where the different distribution of data can be identified.

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 10 / 24

a)

b)

Figure 3. Correlation between different variables, a) Dispersion Matrix, b)
Spearman Correlation Graphic (where X means that their correlation is not

statistically significant, and the numbers indicate the strength of correlations

from -1 to +1).

Meanwhile, in Figure 3 b) we depict the strength of
correlations between each pair of variables. The values close
to +1 indicate a strong and positive correlation, while values
close to -1 indicate a strong negative correlation. The strongest
correlations for the variables of plant aspect, or
electromagnetic spectrum, are found for GA with GGA (0.86),
and GA with NDVI (0.64). The correlation between GGA and
NDVI is much lower. On the other hand, regarding the plant-
soil interaction, a correlation was found between SM and CT
(0.58). Last but not least, another interesting correlation
between SM and NDVI was also found; however, the strength
of this correlation is lower than 0.50 (0.47).

Considering the results of the correlation test, we are going
to focus on the relation between GA and GGA, GA and NDVI
and TC and SM. The objective, as described before, is to
reduce the number of required measures and required
equipment for grass monitoring. The relation between
variables GA and GGA can be explained with a linear model,
in which given a certain value of GA it is possible to estimate
the GGA for the picture. The proposed mathematical model is
described in (1). It is important to note that this model is
developed for the different combinations of Poa pratensis
with other C4 species and include the Control mixture. The
proposed model is characterized by a correlation coefficient
of 0.83 and an R2 of 70% and can be seen in Figure 4.
Although there are other models which can explain with
higher accuracy the relation between both variables (R2 of
76%), we have selected the linear model due to its higher
simplicity and lower complexion in the calculation.

Concerning the relation between variables GA and NDVI,
again a linear model, in which given a specific value of GA, it

is possible to estimate the NDVI, is presented. Equation (2)
described the linear mathematical model that related both
variables. In this case, among all the evaluated mathematical
models, the linear regression was the one that offered higher
accuracy. The proposed model is characterized by a
correlation coefficient of 0.65 and an R2 of 43% and can be
seen in Figure 5. The equation of the proposed model is
detailed in (2).

Finally, the correlation found between SM and CT is
displayed. In this case and given the low accuracy of the linear
model, we have selected the “S-Curve” model. The S-Curve
model, which can be seen in Figure 6 has a correlation
coefficient of -0.57 and an R2 of 33.25. The equation that
follows the model is depicted in (3).

Figure 4. Simple regression between GA and GGA with a lineal

mathematic model

Figure 5. Simple regression between GA and NDVI with a lineal

mathematic model

Figure 6. Simple regression between CT and SM with an S-Curve

mathematic model

GGA =1.16152*GA -0.395785 (1)

CT (ºC)

S
M

 (
%

)

Gráfico del Modelo Ajustado

SM = exp(4,38257 - 12,0825/CT)

9 12 15 18 21 24

0

20

40

60

80

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 11 / 24

NDVI = 0.513359 + 0.329084*GA (2)
SM (%) = exp(4.38257 – 12.0825/CT (ºC)) (3)

The obtained results will allow the attainment of two

objectives. First, we verify a methodology to identify the
species that compose a lawn of Poa pratensis with other
grasses. Secondly, we present the correlation of variables that
will allow a reduction in the number of monitored parameters
in future experiments in which WSN and IoT are deployed.
We can use only one type of camera to monitor the GA and
estimate the GGA and NDVI from (1) and (2). Furthermore,
we will avoid the need of CT measurement by estimating this
value from the SM data. Thus, we will have the deployed
sensor underground instead than at certain height, as need for
CT measurement. This will facilitate the integration of IoT
systems with the daily activities carried out in lawns such
mowing or irrigating, which can be problematic with sensor
deployed over the ground.

It is important to note that the obtained results are only
based on data from Poa pratensis and more data must be
gathered to extrapolate our results to general turfgrass
assessment.

V. CONCLUSION

The fact of using several devices for monitoring
agriculture, or gardening, is widely discussed in this paper.
The tradeoff between the relevance of gathered information
and required time and costs to obtain this data is presented. To
solve this problem, we have evaluated the existing correlation
between different variables. Furthermore, the effectiveness of
each studied parameter for monitoring grass performance and
genotyping different species is presented.

In this paper, five different variables monitored in
precision agriculture are evaluated for genotyping, and the
existing correlation between variables is explored. Our results
point out that the variable which offers better results for
genotyping different grass combinations, including C3 and C4
plants, is the GA index. Other evaluated indexes such as GGA
and NDVI offered promising results, but more data is required
to evaluate their capabilities. With regards to existing
correlations, we found a correlation between CT and SM, GA
and NDVI, and GA and GAA. From those correlations, the
most interesting one is the possibility of estimating the SM
based on the CT.

In future work, we are going to include the measure of the
temperature of the soil surface, with no coverage, in our
datasets in order to obtain a more accurate estimation of SM
from the data of CT and soil temperature and the estimation
of coverage based on [17]. On the other hand, for the
genotyping, we will include data of other grass mixtures to
determine if GA by itself can identify more genotypes.

ACKNOWLEDGEMENT

This work has been partially funded by AREA VERDE-MG

projects, Projects GO-PDR18-XEROCESPED funded by the

European Agricultural Fund for Rural Development

(EAFRD) and IMIDRA, by the European Union through the

ERANETMED (Euromediterranean Cooperation through

ERANET joint activities and beyond) project

ERANETMED3-227 SMARTWATIR, and by Conselleria

de Educación, Cultura y Deporte with the Subvenciones para

la contratación de personal investigador en fase postdoctoral,

grant number APOSTD/2019/04.

REFERENCES

[1] R. Gebbers and V. I. Adamchuk, “Precision agriculture and food

security”, Science, 327(5967), 2010, pp. 828-831.

[2] L. García, L. Parra, J. M. Jimenez, J. Lloret, and P. Lorenz, “IoT-Based
Smart Irrigation Systems: An Overview on the Recent Trends on

Sensors and IoT Systems for Irrigation in Precision Agriculture”,

Sensors, 20(4), 2020, pp. 1042.
[3] S. Marios and J. Georgiou, “Precision agriculture: Challenges in

sensors and electronics for real-time soil and plant monitoring”, 2017

IEEE Biomedical Circuits and Systems Conference (BioCAS), 19-21

October, Turin, Italy, 2017, pp. 1-4.

[4] A., Glória, C. Dionísio, G. Simões, J. Cardoso, and P. Sebastião,

“Water Management for Sustainable Irrigation Systems Using
Internet-of-Things”, Sensors, 20(5), 2020, pp. 1402.

[5] J. Marín et al., “RGB Vegetation Indices, NDVI, and Biomass as

Indicators to Evaluate C3 and C4 Turfgrass under Different Water
Conditions”, Sustainability, 12(6), 2020, pp. 2160.

[6] J. A. Fernandez-Gallego et al., “Low-cost assessment of grain yield in

durum wheat using RGB images”, European Journal of Agronomy,
105, 2019, pp. 146-156.

[7] S. Yousfi et al., “Combined use of low-cost remote sensing techniques

and δ13C to assess bread wheat grain yield under different water and
nitrogen conditions”, Agronomy, 9(6), 2019, pp. 285.

[8] M. Buchaillot, et al. “Evaluating maize genotype performance under

low nitrogen conditions using RGB UAV phenotyping techniques”,
Sensors, 19(8), 2019, pp. 1815.

[9] L. Zhang, Y. Niu, H. Zhang, W. Han, G. Li, J. Tang, and X. Peng,

“Maize canopy temperature extracted from UAV thermal and RGB
imagery and its application in water stress monitoring”, Frontiers in

plant science, 10, 2019, pp. 1270.

[10] N. Kumar, A. Poddar, V. Shankar, C. S. P. Ojha, and A. J. Adeloye,
“Crop water stress index for scheduling irrigation of Indian mustard

(Brassica juncea) based on water use efficiency considerations”,

Journal of Agronomy and Crop Science, 206(1), 2020, pp. 148-159.
[11] T. Culpepper, J. Young, and B. Wherley, “Comparison of four warm‐

season turfgrass species to natural rainfall or supplemental irrigation in

a semiarid climate”, Agrosystems, Geosciences & Environment, 3(1),
2020, pp. e20011.

[12] M. Hong, D. J. Bremer, and D. van der Merwe, “Thermal Imaging

Detects Early Drought Stress in Turfgrass Utilizing Small Unmanned
Aircraft Systems”, Agrosystems, Geosciences & Environment, 2(1),

2019, pp. 1-9.

[13] RainBird ESP-LXME Controller Installation, Programming &
Operation Guide. Available at: https://www.rainbird.com/sites

/default/files/media/documents/2018-02/man_ESP-LXME-Installatio

n-Operation-Guide_en.pdf. Last access on 03/06/2020
[14] TDR 350 Manual. Available at: https://www.specmeters.com/assets/1

/22/6435_TDR_350_manual_(web).pdf. Last access on 30/06/2020

[15] Fluke 561 Infrared & Contact Thermometer manual. Available at:
https://dam-assets.fluke.com/s3fs-public/56x_____umeng0000.pdf.

Last access on 30/06/2020
[16] GreenSeeker Information. Available at:

http://trl.trimble.com/docushare/dsweb/Get/Document-475150/02250

3-1123A_GreenSeeker_DS_MarketSmart_USL_0415_LR_web.pdf.
Last access on 30/06/2020

[17] J. Marín, J. Rocher, L. Parra, S. Sendra, J. Lloret, and P. V. Mauri,

“Autonomous WSN for Lawns Monitoring in Smart Cities,” 2017
IEEE/ACS 14th International Conference on Computer Systems and

Applications (AICCSA), 30 October-03 November, Hammamet,
Tunisia, 2017, pp. 501-508.

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 12 / 24

Toward an Exact Simulation Interval for
Multiprocessor Real-Time Systems Validation

Joumana Lagha, Jean-Luc Béchennec, Sébastien Faucou and Olivier-H Roux
Université de Nantes, École Centrale de Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

Email: firstname.lastname@ls2n.fr

Abstract—In order to study the schedulability of complex real-
time systems, simulation can be used. Of course, to achieve formal
validation of schedulability, simulations must be run long enough
such that the schedule repeats. An upper bound on the length
of the simulation that is valid for a very wide class of systems
running on top of identical multiprocessor platforms is given
in a previous work. It is known that this bound is pessimistic.
In this paper, we derive a characterization of the exact bound
for the same class of systems and describe an algorithm for
its computation. We use it to quantify the pessimism of the
upper bound on a set of synthesized systems. We also give some
directions to explore the complexity vs. tightness trade-off for
this problem.

Keywords–Real time scheduling; Multiprocessor; Simulation.

I. INTRODUCTION

The correctness of real-time software systems does not
depend only on the value of results, but also on the date they
are produced. A real-time software is usually composed of a set
of recurring tasks that spawns jobs. Each job must be executed
within a given deadline. Scheduling algorithms are used to
allocate execution time to jobs. Schedulability analysis is used
to validate that the resulting schedule meets all deadlines.
For well-defined classes of systems, efficient schedulability
tests exist [1]. For complex systems, that are not in one of
these classes, it is sometimes possible to rely on simulation.
More precisely, this is possible if the context does not yield
scheduling anomalies, ie. when response times variations are
monotonic with regards to other system parameters. In this
paper, we will assume work under this hypothesis and refer
the reader to Section 7 of [2] for a discussion on this point.

To achieve formal validation of the system, the simulation
must be run on an interval long enough such that the schedule
repeats. If the scheduler is deterministic and memoryless, then,
if in this interval all jobs meet their deadline, it can be safely
concluded that the system is schedulable. The length of this
interval can be discovered during simulation by comparing
each new state to those encountered so far. The main drawback
of this approach is that it requires to memorize all states,
so it quickly becomes intractable. An alternative consists of
computing an upper bound B on the length of the simulation
interval and then simulate the system on [0, B). In 2016,
Goossens et al. [2] proposed an upper bound that is valid
for a wide class of systems: periodic asynchronous tasks with
arbitrary deadlines and structural constraints (such as prece-
dence, mutual exclusion and self-suspension) scheduled on top
of an identical multiprocessor platform by any deterministic
and memoryless algorithm.

It is known that this bound is pessimistic, especially
because it does not take into account the processing power
of the platform. Before looking for possible improvements,
it is interesting to evaluate how pessimistic it is. To answer
this question, we derive a characterization of the exact bound
for the same class of systems and describe an algorithm for
its computation. The algorithm relies on an enumeration of
the state space and has factorial time complexity. On a set of
synthetic systems, we find out that the pessimistic bound is
at least twice too long when the number of tasks is greater
than three times the number of processors. Based on the exact
formulation of the bound, we also suggest directions to explore
tightness vs. complexity trade-off for this problem.

The paper is organized as follows: in Section II, we review
related works. In Section III, we define notations and expose
the state-of-the-art. In Section IV, we give a characterization of
the exact bound and derive an algorithm for its computation. In
Section V, we compare the state-of-the-art and the exact bound
on a set of synthetic benchmarks to quantify its pessimism.
In Section VI, we present possible directions to explore the
tightness vs. complexity trade-off before concluding the paper.

II. RELATED WORKS

The first result on simulation intervals is obtained by Leung
and Merrill [3] in 1980, with Omax + 2H (where Omax is
the maximum activation offset and H is the hyperperiod) as
an upper bound for independent asynchronous task systems
with constrained deadlines scheduled with a fixed-task priority
algorithm. The same bound was later deemed valid for systems
with arbitrary deadlines by Goossens and Devillers [4]. For
multiprocessor platforms, Cucu and Goossens [5] derive in
2007 a result for independent asynchronous task systems (a
task system is asynchronous if at least two tasks have their
first activation on different dates) with arbitrary deadlines
scheduled by a global fixed-task priority algorithm. They also
prove that any feasible schedule generated by a deterministic
and memoryless scheduler is ultimately periodic. In 2012, Baru
et al. [6] proposed an upper bound on the simulation interval
for asynchronous task systems with constrained deadlines sub-
ject to simple precedence constraints running on an identical
multiprocessor platform and scheduled by any deterministic
and memoryless algorithm. The same interval is used and
tuned for fixed-job priority schedulers and independent tasks
in Nélis et al. [7]. The most recent and general result is the one
proposed by Goossens et al. [2] in 2016, that applies to a very
large class of systems: asynchronous task systems with arbi-
trary deadlines, subject to structural constraints (precedence,
mutual exclusion, self suspension), scheduled on an identical

7Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 13 / 24

multiprocessor platform by any deterministic and memoryless
scheduler. This bound has a low complexity, is safe but not
always tight. For many systems, it is very pessimistic and too
big to be used for practical purpose. Thus, in this paper, we aim
at deriving an exact bound. To do so, we relax the constraint on
the complexity of the computation. Dues to its complexity, our
bound can be computed for a restricted class of systems. For
these systems, it provides an exact simulation interval. While
deriving an exact bound, we also highlight how to explore
the complexity vs. precision trade-off, paving the way to the
development of low complexity yet precise bounds.

III. UPPER BOUND ON THE SIMULATION INTERVAL [2]

A. Model, notations, and definitions

N is the set of integer numbers. Let v be a vector of NN .
∀i ∈ [1, N], v[i] is the ith element of the vector v. We note that
0 the null vector: ∀i ∈ [1, N].0[i] = 0. The usual operators
+,−,×, < and = are used on vectors of NN and are the point-
wise extensions of their counterparts in N. {x | P (x)} is set
set of all x such that predicate P (x) is true. [x | P (x)] is the
list of all x such that predicate P (x) is true.

Let Θ = {τ1, τ2, . . . , τN} be a set of N asynchronous
periodic tasks, where each task τi is the 4-tuple of non negative
integers 〈Oi, Ci, Ti, Di〉, where Oi is the release time of the
first job of τi, Ci is the execution time of τi, Ti is the period of
τi, and Di its deadline. We assume that periods and deadlines
are unrelated (i.e., Di can be smaller than, equal to, or greater
than Ti). H = lcmτi∈Θ{Ti} is the hyperperiod of Θ.

At runtime, each task τi spawns an infinite sequence of
jobs τi,1, τi,2, Job τi,j enters the system at date ai,j =
Oi+(j−1)Ti. It must be executed before date di,j = ai,j+Di.

Let S(t) be the state of the system at date t. It is defined
by S(t) = (Crem1

(t), . . . , Cremn
(t),Ω1(t), . . .Ωn(t)), where

Cremi
is the remaining work to process for the jobs of task τi

activated prior to t, and Ωi(t) is a decrementing clock counting
the time until the next release of a job of τi.

Θ is executed on a platform composed of m identical pro-
cessors. Jobs are scheduled by a deterministic and memoryless
scheduler (see below). A given job is executed sequentially
(no inner parallelism) but can migrate from one processor to
another during its execution. It is assumed that there is no
penalty to migrate from one processor to another. Moreover, it
is assumed that a job cannot start its execution while all jobs
of the same task activated before are not finished.

Definition 1 (Feasible schedule): A feasible schedule for
Θ is an infinite schedule such that every job τi,j is fully
executed in its time window [ai,j , di,j].

Definition 2 (Deterministic and memoryless scheduler):
A scheduler such that the scheduling decision at time t is
unique and depends only on the current state of the system.

Definition 3 (Valid simulation interval): Interval [0,B) is a
valid simulation interval for Θ scheduled with a determin-
istic and memoryless scheduler if and only if ∃(t1, t2) ∈
[0, B]2. t1 6= t2 ∧ S(t1) = S(t2).

The model has two features that make its schedulability
analysis complex: arbitrary deadlines and asynchronous acti-
vation. Both are sources of backlog between hyperperiods.

Definition 4 (Backlog): The backlog βi(t) of a task τi at
date t is defined as the remaining work to be processed for
jobs of τi activated strictly before t.

In the following, we assume that all hypotheses formulated
in this section hold.

B. Ruling out asynchronous activations

To rule out the complexity arising from asynchronous task
activation, Goossens et al. observe that a simple transformation
can be applied to an asynchronous task set Θ to obtain a
synchronous task set Θ′ such that the length of the simulation
interval of Θ′ (considering any deterministic and memoryless
scheduler) is not smaller than that of Θ. For each task τi =
〈Oi, Ti, Di〉, the transformation yields τ ′i = 〈0, Ti, Oi +Di〉.

The idea is that all feasible schedules of Θ are also feasible
schedules of Θ′. Thus, if a simulation is run for a duration long
enough to validate any feasible schedule of Θ′, it is also long
enough to validate any feasible schedule of Θ. A detailed proof
is given in [2].

Given this result, we can now reason as if we only had
to handle synchronous task sets. Thus, we can now give a
trivial upper bound on the backlog of a task at the end of a
hyperperiod: ∀q > 0. βi(qH) ≤ (Oi + Di) − Ti. From now
on, we note βmaxi = max{0, (Oi + Di) − Ti} the maximum
backlog for task τi at any date t = qH in any feasible schedule,
and we note βmax = maxτi∈Θ β

max
i .

C. Extension to structural constraints

The approach used to rule out asynchronous activation
can be used to extend the result to systems with structural
constraints. Structural constraints are defined as “a relation
between jobs or subjobs, forbidding some execution orders,
preemptions, or insuring a minimal delay between the end
of a job (or sub-job) and the start of another one” [2].
Let Θ a system with structural constraints. Let Θ′ denote
the same system where all structural constraints have been
removed. Obviously, all feasible schedules of Θ are also
feasible schedules of Θ′. Thus, a valid simulation interval for
Θ′ is also a valid simulation interval for Θ.

D. Deriving the bound

In any non trivial synchronous system such that at least two
tasks have different periods, the search for the upper bound of
a valid simulation interval can be reduced to solutions of the
form B = qH (with q a positive integer) by definition of H
(the hyperperiod of Θ) since local clocks are equal in S(0)
and S(qH).

By definition, for any non negative integer q, Cremi
(qH) =

βi(qH), so in any feasible schedule, Cremi(qH) ≤ βmaxi .
Then, we can bound the number of different states of the
system in any feasible schedule at the end of a hyperperiod:
|{S(qH) | q ∈ N}| ≤

∏
i∈[1,N] (βmaxi + 1). Using the

assumption that the scheduler is deterministic and memoryless,
it is sufficient to run the simulation long enough to cover a
number of hyperperiods equal to the number of different states
at the end of a hyperperiod. If the schedule is not feasible then
a deadline miss will be discovered. If the schedule is feasible,

8Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 14 / 24

either the same state will have been encountered twice, or all
states will have been explored. This yields the bound:

B0 = H ×
∏

i∈[1,N]

(βmaxi + 1) (1)

E. Non tightness of B0

As claimed by the authors in [2], the bound is safe but
not tight. This is illustrated in Figure 1. Let us consider a
system with two tasks τ1 and τ2 such that 0 < βmax1 < βmax2 ,
running on a monoprocessor platform. The size of the state

β1

β2

βmax1

βmax2

β1 + β2 = max{βmax1 , βmax2 }

Figure 1. Illustration of the non-tightness of the bound: states in the red
dotted area do not belong to any feasible schedule.

space considered by the bound B computed above is the
number of points with integer coordinates in the rectangle
of width βmax2 and height βmax1 . Now, let us consider the
points in the red dotted area. They correspond to a pending
work at the end of a hyperperiod, which is strictly greater than
max{βmax1 , βmax2 } = βmax2 . Starting from such a state at any
t = qH , in any schedule, at least one job activated before t will
finish after t + βmax2 thus missing its deadline. We conclude
that this state can not belong to any feasible schedule.

IV. EXACT BOUND ON THE SIMULATION INTERVAL

A. Characterization

We have seen with Figure 1 that B0 fails to take into
account diagonal constraints arising from the fact that the plat-
form limits the execution parallelism and thus the maximum
amount of cumulative backlog at the end of a hyperperiod.
We can generalize this argument to derive a characterization
of the bound as a set of linear constraints. Let Λ ⊆ Γ be
a subset of the task set. On a monoprocessor platform, the
cumulative backlog at the end of a hyperperiod generated by
tasks in Λ is bounded by max[βmaxi | τi ∈ Λ] where max
returns the maximum value of a list. On a 2-processor platform,
execution parallelism allows us to achieve a higher bound:
max2[βmaxi | τi ∈ Λ] where max2 returns the sum of the 2
greatest values of a list. Indeed, even if two jobs can be exe-
cuted in parallelism, in a feasible schedule, they cannot overrun
their deadlines. Thus, when the time is past the penultimate
deadline, only one job among the jobs activated before the end
of the hyperperiod, has not reached its deadline, so in a feasible
schedule only this job could be running. Further generalizing

this argument, on a m-processor platform, every Λ ⊆ Γ yields
the constraints

∑
τi∈Λ βi ≤ maxm[βmaxi | τi ∈ Λ] where

maxm returns the sum of the m greatest values of a list. This
allows us to characterize the number of possible states at the
end of a hyperperiod (since we know that all local clocks
are null at such instants, the state is truncated to its Cremi(t)

components).

S =
{
x |x ∈ NN ∧

∀Λ ⊆ Θ.
∑
τi∈Λ

x[i] ≤ maxm[βmaxi | τi ∈ Λ]
} (2)

From this, we can derive the exact value of the bound on
the simulation interval:

B1 = H × |S| (3)

Note that using 2 to compute B involves computing the
power set of Θ (to enumerate all possible values of Λ), which
has 2|Θ| elements, and then enumerating the number of integer-
coordinate points over a linear polyhedron defined by 2|Θ|

constraints. It must also be noticed that B0 corresponds to
the enumeration of the points with integer coordinates of the
smallest hyperrectangle that contains S and is exact when the
definition of S involves no diagonal constraints, i.e., when the
number of tasks is not greater than the number of processors.

B. Computation of B1

To count the number of states in S, we rely on a fixed
point computation. We start from state 0 and date qH . We
expand the set of states time unit per time unit. Each time
unit, we add states that have a cumulative backlog that fits in
this extra time unit while taking into account platforms and
tasks constraints. We stop once we have reached a fixed point
over the set of states. We first describe the algorithm, then
prove its termination, soundness, completeness, and apply it
to a simple example.

1) One time unit mappings: Let us consider Act : N →
{0, 1}N such that ∀t ∈ [0, βmax).∀i ∈ [1, N].Act(t)[i] =
0 iff t ≤ βmaxi , and Act(t)[i] = 1 otherwise. That is to
say Act(t)[i] = 1 iff a job of τi activated before t has not
necessarily reached its deadline at date t.

Let Incr = {v | v ∈ {0, 1}N ∧
∑N
i=1 v[i] ≤ m}. An

element of Incr is a mapping of tasks to processors (remember
that jobs of the same task must execute sequentially). As an
example, for N = 3 tasks and m = 2 processors we have:

Incr =

{[
0
0
0

]
,

[
0
0
1

]
,

[
0
1
0

]
,

[
1
0
0

]
,

[
1
1
0

]
,

[
0
1
1

]
,

[
1
0
1

]}
Let incr be a function from date to parts of Incr such

that incr(t) = {v|v ∈ Incr ∧ v × Act(t) = v}. incr(t)
describes the mappings of tasks to processors for [t, t+ 1) in
any feasible schedule, discarding those which execute a job
of a task that has already missed its deadline. For example,

9Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 15 / 24

assuming N = 3 tasks, m = 2 processors, and Act(1) =

[
0
0
1

]
,

then we have:

incr(1) =

{[
0
0
0

]
,

[
0
0
1

]}
Lemma 1: A one time unit mapping of tasks onto pro-

cessor inc for interval [qH + t, qH + t + 1) for any non
negative integer q is part of a feasible schedule if and only
if inc ∈ incr(t).

Proof: Follows from the definition of incr.

Definition 5 (Possible mapping): A possible mapping is a
one time unit mapping of tasks onto processor inc ∈ incr(t).

2) Fixed point algorithm: Let S be a set of states. We
define the successor of S by elapsing one time unit from date
qH + t to qH + t+ 1 as follows:

next(S, t) = {s + inc | s ∈ S ∧ inc ∈ incr(t)} (4)

Given this definition of next, the set of possible states of
the system at the end of a hyperperiod in any feasible schedule
is the smallest fixed point of:

{
S0 = {0}

Sn+1 = Sn ∪ next(Sn, n)
(5)

The resulting bound B1 can be computed with algorithm
in Figure 2 below.

Figure 2. Fixed point algorithm for the computation of the exact bound B1.

3) Termination: Recall that βmax = maxτi∈Θ{βi} is
the greatest possible backlog of any task at the end of a
hyperperiod. From the definition of function incr, we have
incr(βmax) = {0} and then the smallest fixed point is met at
worst in βmax steps. During the computation of B1 each state
of S has to be stored. The number of states is upper bounded
by the B0. During the computation of B1, each new state has
to be compared to the set of states already explored. Hence
our algorithm has also a factorial complexity in the state space
size. A more detailed analysis, including a complexity analysis
of the problem is out of the scope of this paper.

4) Soundness and Completeness :

Theorem 1 (Completeness and Soundness): s ∈ S if and
only if s is reachable by a feasible schedule from 0 .

Proof: Soundness. Ab absurdo. Assume that there exists
a state s ∈ S which is not reachable by a feasible schedule
from 0. Then, there exists t ∈ [0, βmax), a state st ∈ St that is
reachable through possible mappings from 0 and a state st+1 ∈
St+1 that is not reachable through possible mappings from
0 such that st+1 ∈ next({st}, t). Then, there exists inc ∈
incr(t) such that st+1 = st + inc whereas inc is not possible
at date t contradicting Lemma 1.

Completeness. Ab absurdo. Assume that there exists a state
s which is reachable through possible mappings from 0 and
such that s 6∈ S. Then, there exists t ∈ [0, βmax) and a state
st+1 that is reachable by a possible mapping from st ∈ St
such that st+1 6∈ next({st}, t). Then, there exists inc such
that sk+1 = sk + inc and inc 6∈ incr(t) whereas inc is
possible at date t contradicting Lemma 1.

5) Example: Consider a system with N = 3 tasks running
on a platform with m = 2 processors. The charactetistics of

the tasks are such that
β1

β2

β3

=

[
1
1
3

]
. The possible mappings of

tasks to processors in the first time unit after a hyperperiod is
given by:

incr(0) = Incr =

{[
0
0
0

]
,

[
0
0
1

]
,

[
0
1
0

]
,

[
1
0
0

]
,

[
1
1
0

]
,

[
0
1
1

]
,

[
1
0
1

]}
and possible mappings in the following time units are given
by:

incr(1) = incr(2) =

{[
0
0
0

]
,

[
0
0
1

]}
and incr(3) =

{[
0
0
0

]}
Now, let us compute the smallest fixed point.

S0 =

{[
0
0
0

]}
, S1 =

{[
0
0
0

]
,

[
0
0
1

]
,

[
0
1
0

]
,

[
1
0
0

]
,

[
1
1
0

]
,

[
0
1
1

]
,

[
1
0
1

]}
,

S2 =

{[
0
0
0

]
,

[
0
0
1

]
,

[
0
1
0

]
,

[
1
0
0

]
,

[
1
1
0

]
,

[
0
1
1

]
,

[
1
0
1

]
,

[
0
0
2

]
,

[
1
1
1

]
,

[
0
1
2

]
,

[
1
0
2

]}
and then

S = S3 =

{[
0
0
0

]
,

[
0
0
1

]
,

[
0
1
0

]
,

[
1
0
0

]
,

[
1
1
0

]
,

[
0
1
1

]
,

[
1
0
1

]
,

[
0
0
2

]
,

[
1
1
1

]
,

[
0
1
2

]
,[

1
0
2

]
,

[
0
0
3

]
,

[
1
1
2

]
,

[
0
1
3

]
,

[
1
0
3

]}
We obtain B1 = H×|S| = 15H . With the same system, we

have B0 = H×(2×2×4) = 16H . The state that was discarded

in B1 is
[

1
1
3

]
because it requires 5 time units of computation

but a valid schedule cannot have more than max2{1, 1, 3} = 4
time units of pending work.

V. EXPERIMENTATION

A. Setup

The computation of B1 has factorial time complexity so it
does not scale to big systems. Its main interest is to provide
a reference to assess the tightness of approximate bounds.
In particular, it is worth asking when B0 is a reasonable

10Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 16 / 24

TABLE I. DETAILS AND PARAMETERS FOR THE 5 SERIES OF EXPERIMENTS

Series N m βmax Watchdog expiry time Timeout (%)

1 1 ≤ N ≤ 12 1 ≤ m ≤ 8 20 15 min for N ≤ 9 and 20 min for N > 9 18.47
2 1 ≤ N ≤ 12, 11 excluded 1 ≤ m ≤ 8 10 15 min for N ≤ 10 and 45 min when N is 12 8.92
3 1 ≤ N ≤ 12 1 ≤ m ≤ 8 5 15 min 7
4 k ≤ N ≤ 9 with k = 2×m 1 ≤ m ≤ 4 (10−N)× 8 10 min 0.75
5 16 4 2 ≤ βmax ≤ 6 10 min 29

approximation, and if it is worth searching for less pessimistic
approximations for certain systems. Thus, in this section,
we evaluate the pessimism of bound B0 with respect to
B1. We also provide some results concerning the resource
consumptions of the computation of B1 to characterize the
range of systems that it can solve.

We implemented algorithm 2 in C, using red-black trees
as the data structure for state sets. Computations have been
run on a Debian GNU/Linux 8.8 system (kernel 3.16.0-4)
with Intel(R) Xeon(R) CPU E5-2620 @ 2.00GHz and 128GB
RAM. The evaluation set is based on five series of experiments.
In each case, we take 20 samples per point (a point is
defined by a number of tasks, a number of processors, and
a value for βmax), and the algorithm is applied to each
point. For each sample, the maximum backlog of each task
is randomly generated between 1 and βmax using a uniform
distribution. The code is instrumented to report execution time
and maximum memory consumption of the computation of B1.
Lastly, a watchdog is used to stop the computation of B1 after
a pre-defined amount of time. Parameter values for each series
are shown in Table I.

We provide a set of graphs that have been chosen to be
as representative as possible of the data set. For each point,
we represent the arithmetic average as well as minimum and
maximum values among all 20 samples. In each figure the y-
axis represents the ratio B1/B0 as a percentage. The quantity
associated with the x-axis varies so it is specified in each figure.

B. Pessimism of B0

Figure 3 shows the result when the number of tasks
increases for a given number of processors. Figure 4 shows
the result when the number of processors increases for a given
number of tasks. As expected, both figures show that when
the number of diagonal constraints increases, B0 becomes
more pessimistic. From 2, diagonal constraints appear for sets
Λ ⊆ Θ such that |Λ| > m, i.e., when the platform does
not offer enough parallelism. Thus, the number of diagonal
constraints increases with N

m . Figure 5 plots B1

B0
against N

m . It
shows that, on this data series, B0 quickly becomes a loose
approximation of B1: when N

m becomes greater than 3, B1

B0
falls

to 50 %, and below for higher values of N
m . The complexity

of the computation of B1 does not allow us to extend the plot
further but it is expected that, as the number of linear constraint
increases, B1

B0
asymptotically tends to zero.

Figure 7 plots B1

B0
against the standard deviation computed

over the list [βmaxi | τi ∈ Θ]. Although it is not as clear as
the impact of N

m , it shows that when the standard deviation
is small, B0 tends to be more pessimistic. Figure 7 also
shows that similar values of B1

B0
can be reached for different

values of βmax with similar dispersion of values of βmaxi . An

2 3 4 5 6 7 8 9
0

20

40

60

80

100

Number of tasks

R
el

at
iv

e
nu

m
be

r
of

st
at

es
(%

)

m=1
m=2
m=4

Figure 3. N = 1 to 9 tasks, m = 1 to 4 processors, βmax = 20.

1 2 3 4 5 6 7 8
0

20

40

60

80

100

Number of processors

R
el

at
iv

e
nu

m
be

r
of

st
at

es
(%

)

N=6
N=8
N=10
N=12

Figure 4. N ∈ {6, 8, 10, 12} tasks, m = 1 to 8 processors, βmax = 10.

intuitive interpretation can be formulated from the example
of figure 1: if βmax1 = βmax2 then the diagonal constraints
β1 + β2 ≤ max{betamax1 , βmax2 } removes half of the points
of B0 and this is the worst case. So, the closer the values of
βmaxi in numerous mismatch, the more states it removes. And
of course, a small standard deviation denotes a system with a
small dispersion of βmaxi values.

C. Scalability of algorithm 2

The computation of B1 requires a factorial number of
comparisons with regards to the size of the state space of the
system. Thus, it is sensible to every parameter that has an
impact on the state space: number of tasks N , of processors
m, and the maximum backlogs of tasks βmaxi .

Table II groups results for N = 16 and m = 4. In this
case, the average execution time increases from 6.25 s to 385 s

11Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 17 / 24

2 3 4
0

20

40

60

80

100

N
m

R
el

at
iv

e
nu

m
be

r
of

st
at

es
(%

)

Figure 5. N = 1 to 12 tasks, m = 1 to 4 processors, βmax = 20.

2 3 4 5 6
5

10

15

βmaxR
el

at
iv

e
nu

m
be

r
of

st
at

es
(%

)

Figure 6. N = 16 tasks, m = 4 processors, βmax = 2 to 6.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
65

70

75

80

85

90

95

100

standard deviation of [βmaxi | τi ∈ Θ]R
el

at
iv

e
nu

m
be

r
of

st
at

es
(%

)

βmax = 5
βmax = 10
βmax = 20

Figure 7. N = 8 tasks, m = 4 processors, βmax ∈ {5, 10, 20}.

TABLE II. EXECUTION TIME (IN SECONDS), WHEN N = 16 AND
m = 4

βmax Average Maximum Minimum Standard deviation
3 6.25 22 microseconds 6.146244039
4 124.68 364 2 143.8439944
5 385 599 94 169.7838733

TABLE III. EXECUTION TIME (IN SECONDS), WHEN m = 4 AND
βmax = 20

N Average Maximum Minimum Standard deviation
6 5.95 33 microseconds 9.827324956
7 124.2 511 1 136.6607786
8 254.54 701 18 302.4903777

just by increasing βmax from 3 to 5. Table III groups results
for m = 4 and βmax = 20. In this case, the average execution
time increases from 5.95 s to 254.54 s just by increasing N
from 6 to 8. Lastly, Table IV groups results for N = 8 and
βmax = 20. In this case, the average time increases from 1.05 s
to 130.4 s just by increasing the m from 1 to 3. From these
three tables, the influence of the individual βmaxi values on
the overall execution time can also be seen: in Table II for
example, with N = 16, m = 4 and βmax = 5, the execution
time varies from 94 s to 599 s.

Similar results are observed for memory occupation. In-
deed, the whole state space has to be stored. Table V shows for
instance the maximum memory occupation for varying values
of N and m when βmax = 20. As expected, the time and
space complexity of algorithm 2 makes it impossible to deal
with systems that have too large a state space. Nevertheless,
many industrial systems use small multicore platforms. For in-
stance, the 32 bit Microcontroller TriCore family developed by
Infineon for the embedded automotive market offers platforms
with 1 to 6 cores. Moreover, not all tasks in these systems have
a non null backlog at hyperperiod boundaries, so B1 could be
of practical use for these systems. Additional experiments on
industrial benchmarks are required to provide an answer to this
question and it is out of the scope of this paper.

VI. CONCLUSION

The problem addressed in this paper is to compute an exact
bound on the simulation interval for systems of asynchronous
periodic tasks with arbitrary deadlines subject to structural

TABLE IV. EXECUTION TIME (IN SECONDS), WHEN N = 8 AND
βmax = 20

m Average Maximum Minimum Standard deviation
1 1.05 6 microseconds 1.637552731
2 98 343 4 95.8200067
3 130.4 899 1 361.2071865

TABLE V. RESIDENT SET SIZE USED (IN MB), WHEN βmax = 20

N m Average Maximum Minimum Std dev.
5 1 4.056 5.492 3.980 0.3380934782
6 1 13.935 47.980 3.988 13.92257703
7 1 108.555 640.840 3.812 166.1081405
8 1 1398.797 8286.392 66.756 2350.883606
9 1 15832.102 103894.004 640.600 28790.4245
5 2 8.250 19.372 3.980 5.43988676
6 2 35.805 168.132 3.988 39.78900124
7 2 238.146 940.680 10.796 229.4609528
8 2 3027.923 10032.492 147.412 3030.038648
9 2 27974.981 95923.060 1027.404 15778.69099

12Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 18 / 24

constraints scheduled by any deterministic and memoryless
algorithm on a uniform multiprocessor platform. A very simple
yet pessimistic solution for this problem is already known
in the state-of-the-art. We formulate a characterization of the
bound that involves the cardinal of the set of points with
integer coordinates in a polyhedron defined by an exponential
number of linear constraints. We propose and prove a fixed
point algorithm to compute this set, which has factorial time
complexity.

We rely on an implementation of this algorithm to estimate
the pessimism of the bound known from the state-of-the-
art through a set of experiments on synthetic systems. In
the results of these experiments we observe two points: (i)
the bound from the state-of-the-art quickly becomes a loose
estimation of the exact bound when the number of tasks
becomes greater than the number of processors of the platform;
(ii) the time complexity of our algorithm is too high to deal
with anything but small systems. From these two points, we
conclude that there is an interest in looking at approximate
bounds that lie in the middle between the state-of-the-art
and the exact bound. Our formulation of the problem as a
linear system already gives us a direction. The state-of-the-art
provides a simple but pessimistic solution by discarding all
diagonal constraints, while the exact bound does the opposite.
So, as a direct follow-up to the work described here, we will
now explore the idea to take into account a subset of the
diagonal constraints to find a good trade-off between precision
and time complexity.

REFERENCES

[1] R. I. Davis, A. Zabos, and A. Burns, “Efficient exact schedulability tests
for fixed priority real-time systems,” IEEE Transactions on Computers,
vol. 57, no. 9, 2008, pp. 1261–1276.

[2] J. Goossens, E. Grolleau, and L. Cucu-Grosjean, “Periodicity of real-
time schedules for dependent periodic tasks on identical multiprocessor
platforms,” Real-Time Syst, vol. 52, no. 6, 2016, pp. 808–832.

[3] J. Leung and J. Merrill, “A note on preemptive scheduling of periodic,
real-time tasks,” Information Processing Letters, vol. 11, no. 3, 1980, p.
115–118.

[4] J. Goossens and R. Devillers, “Feasibility intervals for the deadline
driven scheduler with arbitrary deadlines,” in Proceedings Sixth Interna-
tional Conference on Real-Time Computing Systems and Applications.
RTCSA’99 (Cat. No.PR00306), 1999, pp. 54–61.

[5] L. Cucu and J. Goossens, “Feasibility intervals for multiprocessor fixed-
priority scheduling of arbitrary deadline periodic systems,” in 2007
Design, Automation Test in Europe Conference Exhibition, 2007, pp.
1–6.

[6] J. Baro, F. Boniol, M. Cordovilla, E. Noulard, and C. Pagetti, “Off-
line (optimal) multiprocessor scheduling of dependent periodic tasks,” in
Proceedings of the 27th annual ACM symposium on applied computing
(SAC), 2012, pp. 1815–1820.

[7] V. Nélis, P. Yomsi, and J. Goossens, “Feasibility intervals for homoge-
neous multicores, asynchronous periodic tasks, and fjp schedulers,” in
Proceedings of the 21st international conference on real-time networks
and systems, 2013, pp. 277–286.

13Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 19 / 24

An Overview of Cloud-Native Networks Design and Testing

Zhaobo Zhang, Xinli Gu

Silicon Valley Network Technology Lab.

Futurewei Technologies Inc.

Santa Clara, CA, USA

e-mail: zzhang1@futurewei.com, xgu@futurewei.com

Abstract—Cloud-native patterns have reshaped application

development over the past decade. With the benefits of agility,

resiliency, and scalability, the network domain starts

embracing the cloud-native patterns to accelerate its evolution.

Containerization becomes another solution of network function

virtualization. Leveraging existing network services and the

mature container orchestration platform, cloud-native

networks attract wide attention, however the performance and

scalability challenges in design and testing arise as the

architecture advances. This paper presents an overview of

cloud-native networks, the design and testing challenges and

the development activities from open-source communities

towards overcoming those issues. Performance optimization

and hardware and software co-design are critical for the future

success of cloud-native networks.

Keywords—Cloud-native; Cloud-native network functions;

container; Kubernetes; continuous testing; performance testing.

I. INTRODUCTION

Since Amazon first launched cloud computing platforms,
delivering compute and storage resources through the
Internet in 2006, on-demand and scalable cloud
infrastructure has overwhelmingly reshaped the development
of software and business [1]. Application architecture shifts
from monoliths to microservices. Combining microservices
with containerization and Continuous Integration and
Continuous Delivery (CI/CD), the cloud-native concept
emerged around 2010. As one of the pioneers, Netflix
redesigned their systems in a cloud-native way and migrated
all the services and data to the cloud through a seven-year
journey, which facilitates rapid product release, new
resource-hungry features and ever-growing volumes of data
[2].

With proven success, cloud-native becomes a modern
way of developing software. In 2015, Cloud Native
Computing Foundation (CNCF) [3], a Linux Foundation
project, was founded to advance container technology and
align industry practice around its evolution. Since then, the
cloud-native technologies and tools have thrived and taken
great strides. Kubernetes [4], a container orchestration
platform for automated container deployment, scaling and
management is the first CNCF project. The plugin-based
design and high extensibility build its success and make it to
be the most adopted container orchestration system. Along
with orchestration, a configurable infrastructure layer called
service mesh is designed to ensure the security, resiliency,
and observability of the communications between services.
These two key components pave the way for container

deployment and runtime management and significantly
accelerate the cloud-native patterns adoption. In addition,
CNCF launched many other projects covering different
perspectives, including continuous integration and delivery,
container runtime, cloud-native network, etc.

In the 5G and cloud era, communication service
providers seek solutions to advance networks to meet ever-
changing customer needs, optimize network utilization, and
support new application scenarios, e.g., augmented reality,
virtual reality, Internet of things. Cloud-native principles are
meant to increase the velocity of the business. With API
enabled design, CI/CD and Development and Operations
(DevOps) practices, the cloud-native technologies improve
the service agility and time-to-market. Therefore, network
equipment vendors and communication service providers
start adopting cloud-native architecture, containerizing
network functions, more importantly, leveraging open-source
cloud-native tools to modernize networks, e.g., orchestration,
automation, monitoring. Together with application, network
development joins the cloud-native journey. Milestones are
illustrated in Figure 1.

Figure 1. Cloud-native Journey from Applications to Networks.

This paper aims to provide an overview of the current
landscape of cloud-native networks, with focus on
contributions from open-source communities. The definition
and reference architecture of cloud-native networks are first
introduced in Section II. The challenges and network specific
requirements are discussed in Section III. Good design
practice and guidance are summarized in Section IV. Testing
flow and performance testing are presented in Section V.
Conclusions are presented at the end.

II. CLOUD-NATIVE NETWORKS

Network architecture has evolved from individual
physical machines for each Physical Network Functions
(PNFs), to Virtual Network Functions (VNFs) running on
VMware or OpenStack, to what the CNCF sees as the next
wave of Cloud-native Network Functions (CNFs) running on
Kubernetes. CNFs are like VNFs, but they run on lighter
weight containers, simpler to upgrade, easier to secure, and
cheaper to operate.

14Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 20 / 24

Cloud-native networks can be understood from two
perspectives. The first is networks are built with cloud-native
principles, which means network functions are containerized,
with both control and data plane composed of microservices.
The other is that networks are to provide connectivity and
security to cloud-native applications in a cloud environment.
Therefore, the network itself and the workloads that it serves
both are considerably evolved. However, considering of the
existing infrastructure, the compatibility with the PNFs and
VNFs is needed in some scenarios.

As Kubernetes is the most adopted container
orchestration platform, the cloud-native networks discussed
in the remainder of the paper are in the context of
Kubernetes. Kubernetes networking is based on a plugin
model, which is open to third-party implementations. A
network plugin needs to provide connectivity and
reachability in pod networking. A pod is a group of
containers that are deployed together on the same host in
Kubernetes. Each pod has a unique and dynamic IP. All the
pods in a cluster are connected through a flat network.
Project Container Networking Interface (CNI) defines the
standards on how network plugins should look, and how
container runtime should invoke them [5]. It also provides a
set of basic plugins as reference.

Figure 2. Container Networking Block Diagram.

In Figure 2, a simplified network block diagram is shown
to illustrate the communication between pods across two
diffident nodes. A CNF module first builds the connectivity
between the pods and host network, and then it creates the
overlay network between hosts based on different protocols,
e.g., VXLAN or IPIP. This CNF can be implemented either
in a kernel bypass manner to improve performance or with
Linux kernel networking stack for the sake of simplicity.
Together with this CNF, an agent pod is typically used for
routes and network policy configuration. Project Flannel [6]
and Calico [7] are the two commonly used CNI solutions.

III. NETWORK SPECIFIC DESIGN

Network workloads, responsible for low-level traffic
forwarding, are different from the generic application
workloads running in the cloud. A containerized network
function may require multiple interfaces, faster data pipeline,
comprehensive network policies, etc. In this section, the
network specific requirements and solutions are discussed.

A. Multiple Networks Attachment

When Kubernetes initiate a pod, only one interface is
created by default. In order to provide multiple interfaces, a
CNCF network plumbing working group was formed, and a
meta-plugin solution was proposed to create multiple

network interfaces and manage multi-network policy. An
illustration is shown in Figure 3. Compared to one standard
CNI, multiple CNI plugins can be chained to form a meta-
plugin. Then, multiple networks can be attached to a single
pod. Project Multus [8] and CNI-Genie [9] provide reference
implementations.

Figure 3. Standard vs Multiple Network Interfaces Attachment.

B. Host Networking Performance Improvement

CNI often leverages Linux host networking to implement
network functions and policy. For example, iptables, a user-
space utility program, is used to configure the IP packet filter
rules. The filters are organized in different tables of chains to
treat packets with specific rules. However, it becomes a
bottleneck when large numbers of pods are under
orchestration, since each host needs updates if any pod
changes in the cluster.

An alternative of using iptables is implementing the
function with extended Berkeley Packet Filter (eBPF), a
Linux kernel technology, which compiles user programs to
bytecode and attached to the kernel to be more performant
[10]. eBPF enables the dynamic insertion of security,
visibility, and networking control logic to the kernel. The
flow is illustrated in Figure 4. The ability to run user-
supplied programs inside the Linux kernel makes eBPF a
powerful tool in terms of performance and convenience.
Project Cilium is an eBPF-based CNI [11]. Detailed
workflow and performance improvement can be found on
Cilium’s blog [12].

Figure 4. The Flow of eBPF Program Inserted to Linux Kernel.

C. Data Plane Acceleration

When a packet goes from user space to kernel space, an
expensive copy occurs. To avoid the copy overhead, DPDK
is widely used to process packets in user space and directly
interact with network hardware bypassing the Linux kernel
[13][14]. A data path comparison is shown in Figure 5. To
further improve the performance, a high-performance virtual
switch, e.g., Open vSwitch (OVS) can be added too. Project
Antrea implemented OVS based CNI. With offloading the
OVS function to supported Network Interface Card (NIC),

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 21 / 24

the network bandwidth is increased by more than 3 times
[15]. In order to provide high performance computing and
networking in hyperscale data centers, hardware acceleration
moves beyond CPUs and turn to dedicated chips [16].
Fortunately, Kubernetes provides a device plugin framework
to allow specific hardware in the cluster, e.g., Graphic
Processing Unit (GPU), NIC, which provides more
possibilities for hardware acceleration.

Figure 5. Data Plane Acceleration Bypass Linux Kernel.

D. Hybrid Multi-cloud Networking Orchestration

So far, the networks discussed above are intra-cluster
networks, i.e., the communication is within the same cluster.
However, as multi-cloud and hybrid cloud become more
prevalent in today’s business model, the inter-cluster
network becomes a critical problem.

Figure 6. Multi-cluster Networking.

To connect two different clusters, traffic typically goes
through the public Internet. An IPsec tunnel is often the
choice to ensure secure communication. Figure 6 shows a
simplified architecture of multi-cluster networking. A broker
is used to exchange the information between clusters, and a
gateway node is responsible for establishing IPsec tunnels
and updating local cluster information to the central broker.
Route agent runs on each node to configure the routes and
rules. Project Submariner is a reference solution for this
architecture [17]. For more comprehensive networking
features, Project Network Service Mesh (NSM) [18] and
Tungsten Fabric [19] can be referred.

IV. DESIGN PRINCIPLES

According to Sections II and III, the cloud-native
networks typically consist of agents on each node to forward
traffic and implement policies, a centralized control module
to communicate with the container runtime and agents, and a
data store to keep configurations and states. To design such a
system with cloud-native principles, the following guidance
is summarized from the best practices.

• Modularization
Each network function should be packed in its own

container and orchestrated in a dynamic way. Complex
network functions can be created by service function

chaining. Service dependency can be programmed through a
Helm chart in a unified format. Kubernetes style API is
recommended to allow unified control.

• State Separation
Network functions should be separated to stateless and

stateful, in order to scale the stateless functions smoothly.
The states of stateful functions can be stored in etcd, a
distributed key-value store in Kubernetes.

• Infrastructure as code

Network resources should be managed with machine-
readable files. All the changes should be documented into
files. Therefore, tasks like provision and roll back can be
easily automated. Compared to the traditional management
with command-line interface, automation removes the risk
associated with human error and decreases system
downtime.

• Low-Level Acceleration

Dedicated chips and hardware components are essential
to build future intelligent cloud infrastructure [13]. With
Kubernetes’s device plugin feature, hardware functions can
be exposed to containers for performance improvement. The
design of hardware APIs should be consistent and reusable.

• Built-in Observability and Analytics (AI ready)

The observability of CNFs should be considered during
the design phase, in order to enable continuous monitoring
and automated troubleshooting. Output formats should be
standardized and compatible with existing monitoring tools
like Prometheus [20] and Grafana [21]. Thus, full-stack
performance monitoring and analytics, from infrastructure to
application, can be supported. In addition, structured data
make artificial intelligence easy to apply and pave the way to
autonomous network.

• Platform Agnostic

The network services should be able to be deployed and
orchestrated seamlessly among public cloud, private cloud,
and edge cloud. The CNFs should require no changes under
different platforms.

V. TESTING METHODOLOGIES

Software testing today has been modernized by CI/CD
and DevOps, two important characteristics of cloud-native
patterns. Testing becomes a continuous activity in design,
deployment, and operation. In this section, the generic test
flow under CI/CD is first introduced, followed by
performance testing. Lastly, the observability in CNFs is
discussed.

CI is to establish a consistent and automated pipeline to
build, package and test applications. With regularly
checking new code, testing and integrating it with other
parts of the system, organizations can reduce development
and testing time from months down to days, even hours.
Test suites are often written alongside new features. Unit
tests ensure the committed code itself works. Integration
tests ensure no breaks are introduced into the main code
line. End-to-end tests ensure end user’s experience by
testing the entire product. Common CNF CI jobs provide
the test coverage on command-line interface, authorization,

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 22 / 24

storage, connectivity, network policy, etc. Security scan and
compliance tests are typically included as well.

CD automates the software delivery process. It ensures
the verified code changes from development environments
can be pushed into production seamlessly. An interesting
feature brought by CI/CD is canary testing, which releases
the new version of the software only to a small percentage
of users, to perform in-production test. New versions can be
easily rolled back with Kubernetes orchestration.

Besides functional testing, performance testing is critical
for cloud-native networks. The performance requirements of
cloud-native networks are twofold. One is the performance
of a CNF alone, e.g., how many packets a CNF can process
per second. The other is the scalability of handling large
amounts of network requests from web scale services, e.g.,
how fast the CNFs can provision one thousand endpoints or
update network policies on thousands of hosts. In order to
enable organizations to reliably test and compare
performance between VNFs and CNFs, CNCF launched the
CNF Testbed project in 2019.

The CNF Testbed project targets to build a repeatable test
environment by using immutable hardware, version control
on all configurations including underlay networking, and
bootstrapping workload repeatably with automation pipeline
[22]. The test framework typically includes a Kubernetes
cluster with CNFs under test, traffic generator, and underlay
networks illustrated in Figure 7. Traffic can be generated
either within the cluster or from an external generator. The
test steps are listed in TABLE I. The performance metrics
evaluated often include CNF deployment time, endpoints
provisioning time, network policy update time, idle-time
CPU and memory usage, runtime CPU and memory usage,
network throughput and latency.

Figure 7. CNF Testbed Framework.

TABLE I. PERFORMANCE TESTING STEPS

1. Provision hardware and Kubernetes cluster
2. Deploy CNFs

3. Deploy traffic generator

4. Run the traffic benchmarks and tests
5. Collect performance metrics

According to CNF Testbed’s initial results, from VNFs to

CNFs, the change will not affect the overall networking
performance [22]. In fact, the lightness of container
technology allows switching user context more quickly than
with VM Hypervisors, and containerized workload could
have a more direct interaction with underlying hardware.
Communities are looking for more use cases to make more
comprehensive comparison.

Since continuous testing and continuous monitoring
become the norm today, the observability is critical.

Observability includes tracing, metrics, and logs at various
levels like cluster level, container level and kernel level.
Kernel level tracing is particularly important for the CNFs.
Standard Linux tracing tools like perf, ftrace, SysDig can be
leveraged. To customize the network tracing, eBPF can be
used to translate and load user programs to the kernel.
Therefore, kernel networking events can be probed and
monitored. Furthermore, the probes can be added into the
CNFs program as well. Project IOVisor [23] implemented
eBPF based monitoring tools, e.g., trace TCP passive and
active connections, trace TCP packet drops with details,
trace TCP retransmits. In a customized CNF, eBPF
programs can be added to trace the changes of interface
counters, interface address, routing tables and network
address translation sessions, etc. It is an ongoing project to
enrich eBPF-based monitoring tools. With more detailed
and critical information extracted, fine-grained testing, fault
isolation, and smart analytics are possible [24].

VI. CONCLUSIONS

Cloud-native principles and technologies bring
tremendous benefits in terms of business agility, scalability
and resiliency. Modern networks adopt this trend to
accelerate development speed, improve resiliency with
dynamic scaling and safe upgrades, and reduce costs.
Kubernetes, a powerful production-grade orchestration
platform with high extensibility, accelerates the process of
network function containerization.

From PNFs to VNFs and CNFs, the implementation of
network functions keeps evolving. There are advantages and
issues for each paradigm. Although CNF brings many
benefits, not all the workloads could fit perfectly for
containers. Considering the performance advantages of
network specific hardware, the data plane acceleration with
hardware offloading cannot be neglect. This also brings new
opportunities for next-generation hardware design. Network
equipment and service providers could take a top-down
approach, according to the requirements of containerized
applications to do the hardware and software co-design, in
order to achieve the optimal network solutions and meet the
market needs in the cloud era.

REFERENCES

[1] R. Aljamal, A. El-Mousa and F. Jubair, "A User Perspective
Overview of The Top Infrastructure as a Service and High
Performance Computing Cloud Service Providers," IEEE
Jordan International Joint Conference on Electrical
Engineering and Information Technology, 2019, pp. 244-249.

[2] M. Villamizar et al., "Infrastructure Cost Comparison of
Running Web Applications in the Cloud Using AWS Lambda
and Monolithic and Microservice Architectures," 16th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 2016, pp. 179-182.

[3] CNCF, https://www.cncf.io/, [retrieved Oct. 2020].

[4] Kubernetes, https://kubernetes.io/, [retrieved Oct. 2020].

[5] CNI, https://github.com/containernetworking/cni, [retrieved
Oct. 2020].

[6] Flannel, https://github.com/coreos/flannel, [retrieved Oct.
2020].

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

 23 / 24

[7] Calico, https://www.projectcalico.org/, [retrieved Oct. 2020].

[8] Multus, https://github.com/intel/multus-cni, [retrieved Oct.
2020].

[9] CNI-Genie, https://github.com/cni-genie/CNI-Genie,
[retrieved Oct. 2020].

[10] S. Miano, M. Bertrone, F. Risso, M. Tumolo and M. V.
Bernal, "Creating Complex Network Services with eBPF:
Experience and Lessons Learned," IEEE 19th International
Conference on High Performance Switching and Routing
(HPSR), 2018, pp. 1-8.

[11] Cilium, https://cilium.io/, [retrieved Oct. 2020].

[12] Cilium Performace, https://cilium.io/blog/2020/10/09/cilium-
in-alibaba-cloud, [retrieved Oct. 2020]

[13] N. Pitaev, M. Falkner, A. Leivadeas, and I. Lambadaris,
“Characterizing the performance of concurrent virtualized
network functions with OVS-DPDK, FD.IO VPP and SR-
IOV”, in Proc. Of ACM International Conference on
Performance Engineering, 2018, pp 285-292.

[14] L. Linguaglossa et al., "Survey of Performance Acceleration
Techniques for Network Function Virtualization," in Proc. of
the IEEE, vol. 107, no. 4, pp. 746-764, 2019.

[15] Antrea, https://antrea.io/, [retrieved Oct. 2020].

[16] D. He, Z. Wang and J. Liu, "A Survey to Predict the Trend of
AI-able Server Evolution in the Cloud," in IEEE Access, vol.
6, pp. 10591-10602.

[17] Submarine, https://submariner.io/, [retrieved Oct. 2020].

[18] NSM, https://networkservicemesh.io/, [retrieved Oct. 2020].

[19] Tungsten Fabric, https://tungsten.io/, [retrieved Oct. 2020].

[20] Prometheus, https://prometheus.io/, [retrieved Oct. 2020].

[21] Grafana, https://grafana.com/, [retrieved Oct. 2020].

[22] CNF Testbed, https://github.com/cncf/cnf-testbed, [retrieved
Oct. 2020].

[23] IOVisor, https://www.iovisor.org/, [retrieved Oct. 2020].

[24] C. Cassagnes, L. Trestioreanu, C. Joly and R. State, "The rise
of eBPF for non-intrusive performance monitoring,"
IEEE/IFIP Network Operations and Management
Symposium, 2020, pp. 1-7.

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

Powered by TCPDF (www.tcpdf.org)

 24 / 24

http://www.tcpdf.org

